code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class UpperCamelCase__( unittest.TestCase ): def a__( self : Union[str, Any] , lowerCAmelCase : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[int] )-> Dict: """simple docstring""" self.assertEqual(len(lowerCAmelCase ) , len(lowerCAmelCase ) ) for a, b in zip(lowerCAmelCase , lowerCAmelCase ): self.assertAlmostEqual(lowerCAmelCase , lowerCAmelCase , delta=lowerCAmelCase ) def a__( self : Union[str, Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(lowerCAmelCase ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def a__( self : int )-> Dict: """simple docstring""" UpperCAmelCase = None ops.enable_eager_execution_internal() UpperCAmelCase = tf.config.list_physical_devices('''CPU''' ) if len(lowerCAmelCase ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) UpperCAmelCase = tf.config.list_logical_devices(device_type='''CPU''' ) UpperCAmelCase = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): UpperCAmelCase = GradientAccumulator() UpperCAmelCase = tf.Variable([4.0, 3.0] ) UpperCAmelCase , UpperCAmelCase = create_optimizer(5E-5 , 10 , 5 ) UpperCAmelCase = tf.Variable([0.0, 0.0] , trainable=lowerCAmelCase ) def accumulate_on_replica(lowerCAmelCase : str ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(lowerCAmelCase : str , lowerCAmelCase : str ): with strategy.scope(): UpperCAmelCase = strategy.experimental_local_results(lowerCAmelCase ) local_variables[0].assign(lowerCAmelCase ) local_variables[1].assign(lowerCAmelCase ) strategy.run(lowerCAmelCase , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(lowerCAmelCase ) def _check_local_values(lowerCAmelCase : Any , lowerCAmelCase : str ): UpperCAmelCase = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , lowerCAmelCase , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , lowerCAmelCase , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
50
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : List[Any] = """▁""" _lowercase : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model"""} _lowercase : Any = { """vocab_file""": { """facebook/mbart-large-50-one-to-many-mmt""": ( """https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model""" ), } } _lowercase : int = { """facebook/mbart-large-50-one-to-many-mmt""": 1024, } # fmt: off _lowercase : int = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN""", """af_ZA""", """az_AZ""", """bn_IN""", """fa_IR""", """he_IL""", """hr_HR""", """id_ID""", """ka_GE""", """km_KH""", """mk_MK""", """ml_IN""", """mn_MN""", """mr_IN""", """pl_PL""", """ps_AF""", """pt_XX""", """sv_SE""", """sw_KE""", """ta_IN""", """te_IN""", """th_TH""", """tl_XX""", """uk_UA""", """ur_PK""", """xh_ZA""", """gl_ES""", """sl_SI"""] class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = VOCAB_FILES_NAMES __magic_name__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Union[str, Any] = ["input_ids", "attention_mask"] __magic_name__ : List[int] = [] __magic_name__ : List[int] = [] def __init__( self : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : str=None , lowerCAmelCase : List[Any]="</s>" , lowerCAmelCase : Union[str, Any]="</s>" , lowerCAmelCase : Union[str, Any]="<s>" , lowerCAmelCase : int="<unk>" , lowerCAmelCase : str="<pad>" , lowerCAmelCase : Optional[int]="<mask>" , lowerCAmelCase : Optional[Dict[str, Any]] = None , **lowerCAmelCase : List[Any] , )-> None: """simple docstring""" UpperCAmelCase = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else mask_token UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowerCAmelCase , tgt_lang=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase , ) UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase ) ) UpperCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase = 1 UpperCAmelCase = len(self.sp_model ) UpperCAmelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase ) } UpperCAmelCase = {v: k for k, v in self.lang_code_to_id.items()} UpperCAmelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCAmelCase = src_lang if src_lang is not None else '''en_XX''' UpperCAmelCase = self.lang_code_to_id[self._src_lang] UpperCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def a__( self : Union[str, Any] )-> int: """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def a__( self : str )-> str: """simple docstring""" return self._src_lang @src_lang.setter def a__( self : Any , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Tuple )-> Dict: """simple docstring""" UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = None return state def __setstate__( self : Dict , lowerCAmelCase : Dict )-> None: """simple docstring""" UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase = {} UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__( self : Union[str, Any] )-> Dict: """simple docstring""" UpperCAmelCase = {self.convert_ids_to_tokens(lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__( self : str , lowerCAmelCase : str )-> List[str]: """simple docstring""" return self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase ) def a__( self : Optional[int] , lowerCAmelCase : str )-> int: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase = self.sp_model.PieceToId(lowerCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def a__( self : List[Any] , lowerCAmelCase : int )-> str: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def a__( self : int , lowerCAmelCase : List[Any] )-> Dict: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = '''''' UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase ) + token UpperCAmelCase = True UpperCAmelCase = [] else: current_sub_tokens.append(lowerCAmelCase ) UpperCAmelCase = False out_string += self.sp_model.decode(lowerCAmelCase ) return out_string.strip() def a__( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase = os.path.join( lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase , '''wb''' ) as fi: UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase ) return (out_vocab_file,) def a__( self : List[str] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False )-> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) UpperCAmelCase = [1] * len(self.prefix_tokens ) UpperCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase )) + ([0] * len(lowerCAmelCase )) + suffix_ones def a__( self : Tuple , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None )-> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a__( self : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] , lowerCAmelCase : Optional[str] , **lowerCAmelCase : Optional[int] )-> Optional[Any]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCAmelCase = src_lang UpperCAmelCase = self(lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = self.convert_tokens_to_ids(lowerCAmelCase ) UpperCAmelCase = tgt_lang_id return inputs def a__( self : str , lowerCAmelCase : List[str] , lowerCAmelCase : str = "en_XX" , lowerCAmelCase : Optional[List[str]] = None , lowerCAmelCase : str = "ro_RO" , **lowerCAmelCase : List[str] , )-> BatchEncoding: """simple docstring""" UpperCAmelCase = src_lang UpperCAmelCase = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) def a__( self : Optional[int] )-> Union[str, Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def a__( self : List[Any] )-> int: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a__( self : List[Any] , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[src_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id] def a__( self : int , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[tgt_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id]
50
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase : Any = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys _lowercase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers _lowercase : Union[str, Any] = """3""" print("""Python version:""", sys.version) print("""transformers version:""", transformers.__version__) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) print("""NCCL version:""", torch.cuda.nccl.version()) except ImportError: print("""Torch version:""", None) try: import deepspeed print("""DeepSpeed version:""", deepspeed.__version__) except ImportError: print("""DeepSpeed version:""", None) try: import tensorflow as tf print("""TensorFlow version:""", tf.__version__) print("""TF GPUs available:""", bool(tf.config.list_physical_devices("""GPU"""))) print("""Number of TF GPUs available:""", len(tf.config.list_physical_devices("""GPU"""))) except ImportError: print("""TensorFlow version:""", None)
50
1
'''simple docstring''' def lowerCamelCase__ ( ): '''simple docstring''' for n in range(1 , 1_00_00_00 ): yield n * (n + 1) // 2 def lowerCamelCase__ ( A : List[str] ): '''simple docstring''' UpperCAmelCase = 1 UpperCAmelCase = 2 while i * i <= n: UpperCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def lowerCamelCase__ ( ): '''simple docstring''' return next(i for i in triangle_number_generator() if count_divisors(A ) > 5_00 ) if __name__ == "__main__": print(solution())
50
'''simple docstring''' import functools def lowerCamelCase__ ( A : list[int] , A : list[int] ): '''simple docstring''' if not isinstance(A , A ) or not all(isinstance(A , A ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(A ) != 3 or not all(isinstance(A , A ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(A ) == 0: return 0 if min(A ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(A ) >= 3_66: raise ValueError('''All days elements should be less than 366''' ) UpperCAmelCase = set(A ) @functools.cache def dynamic_programming(A : int ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
50
1
'''simple docstring''' import argparse import os import re import packaging.version _lowercase : Optional[int] = """examples/""" _lowercase : str = { """examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""), """doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } _lowercase : Dict = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } _lowercase : List[Any] = """README.md""" def lowerCamelCase__ ( A : int , A : str , A : Optional[Any] ): '''simple docstring''' with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase = f.read() UpperCAmelCase , UpperCAmelCase = REPLACE_PATTERNS[pattern] UpperCAmelCase = replace.replace('''VERSION''' , A ) UpperCAmelCase = re_pattern.sub(A , A ) with open(A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(A ) def lowerCamelCase__ ( A : Optional[int] ): '''simple docstring''' for folder, directories, fnames in os.walk(A ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(A , A ) , A , pattern='''examples''' ) def lowerCamelCase__ ( A : str , A : Dict=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(A , A , A ) if not patch: update_version_in_examples(A ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = '''🤗 Transformers currently provides the following architectures''' UpperCAmelCase = '''1. Want to contribute a new model?''' with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase = f.readlines() # Find the start of the list. UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): UpperCAmelCase = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(A ) def lowerCamelCase__ ( ): '''simple docstring''' with open(REPLACE_FILES['''init'''] , '''r''' ) as f: UpperCAmelCase = f.read() UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(A ).groups()[0] return packaging.version.parse(A ) def lowerCamelCase__ ( A : Tuple=False ): '''simple docstring''' UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: UpperCAmelCase = default_version.base_version elif patch: UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(A ) == 0: UpperCAmelCase = default_version print(f"""Updating version to {version}.""" ) global_version_update(A , patch=A ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = get_version() UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" UpperCAmelCase = current_version.base_version # Check with the user we got that right. UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(A ) == 0: UpperCAmelCase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(A ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": _lowercase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") _lowercase : Union[str, Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
50
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase : Any = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys _lowercase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
1
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Union[str, Any] = logging.get_logger(__name__) # TODO Update this _lowercase : int = { """facebook/esm-1b""": """https://huggingface.co/facebook/esm-1b/resolve/main/config.json""", # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Tuple = "esm" def __init__( self : Optional[Any] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Any=768 , lowerCAmelCase : List[str]=12 , lowerCAmelCase : Dict=12 , lowerCAmelCase : List[Any]=3072 , lowerCAmelCase : Any=0.1 , lowerCAmelCase : Tuple=0.1 , lowerCAmelCase : Any=1026 , lowerCAmelCase : Optional[Any]=0.02 , lowerCAmelCase : Optional[int]=1E-12 , lowerCAmelCase : List[str]="absolute" , lowerCAmelCase : int=True , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Dict=None , **lowerCAmelCase : Optional[int] , )-> Optional[int]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , mask_token_id=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = position_embedding_type UpperCAmelCase = use_cache UpperCAmelCase = emb_layer_norm_before UpperCAmelCase = token_dropout UpperCAmelCase = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) UpperCAmelCase = EsmFoldConfig() elif isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase = EsmFoldConfig(**lowerCAmelCase ) UpperCAmelCase = esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) UpperCAmelCase = get_default_vocab_list() else: UpperCAmelCase = vocab_list else: UpperCAmelCase = None UpperCAmelCase = None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , lowerCAmelCase ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def a__( self : Any )-> List[str]: """simple docstring""" UpperCAmelCase = super().to_dict() if isinstance(self.esmfold_config , lowerCAmelCase ): UpperCAmelCase = self.esmfold_config.to_dict() return output @dataclass class UpperCamelCase__: __magic_name__ : str = None __magic_name__ : bool = True __magic_name__ : bool = False __magic_name__ : bool = False __magic_name__ : bool = False __magic_name__ : float = 0 __magic_name__ : bool = True __magic_name__ : bool = False __magic_name__ : int = 128 __magic_name__ : "TrunkConfig" = None def a__( self : Any )-> Optional[int]: """simple docstring""" if self.trunk is None: UpperCAmelCase = TrunkConfig() elif isinstance(self.trunk , lowerCAmelCase ): UpperCAmelCase = TrunkConfig(**self.trunk ) def a__( self : List[str] )-> Dict: """simple docstring""" UpperCAmelCase = asdict(self ) UpperCAmelCase = self.trunk.to_dict() return output @dataclass class UpperCamelCase__: __magic_name__ : int = 48 __magic_name__ : int = 1024 __magic_name__ : int = 128 __magic_name__ : int = 32 __magic_name__ : int = 32 __magic_name__ : int = 32 __magic_name__ : float = 0 __magic_name__ : float = 0 __magic_name__ : bool = False __magic_name__ : int = 4 __magic_name__ : Optional[int] = 128 __magic_name__ : "StructureModuleConfig" = None def a__( self : Optional[int] )-> Union[str, Any]: """simple docstring""" if self.structure_module is None: UpperCAmelCase = StructureModuleConfig() elif isinstance(self.structure_module , lowerCAmelCase ): UpperCAmelCase = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' F""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' F""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) UpperCAmelCase = self.sequence_state_dim // self.sequence_head_width UpperCAmelCase = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' F""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' F""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(F"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def a__( self : List[Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = asdict(self ) UpperCAmelCase = self.structure_module.to_dict() return output @dataclass class UpperCamelCase__: __magic_name__ : int = 384 __magic_name__ : int = 128 __magic_name__ : int = 16 __magic_name__ : int = 128 __magic_name__ : int = 12 __magic_name__ : int = 4 __magic_name__ : int = 8 __magic_name__ : float = 0.1 __magic_name__ : int = 8 __magic_name__ : int = 1 __magic_name__ : int = 2 __magic_name__ : int = 7 __magic_name__ : int = 10 __magic_name__ : float = 1e-8 __magic_name__ : float = 1e5 def a__( self : Any )-> Optional[Any]: """simple docstring""" return asdict(self ) def lowerCamelCase__ ( ): '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
50
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def lowerCamelCase__ ( A : Optional[Any] , A : Tuple=1 ): '''simple docstring''' if n_shave_prefix_segments >= 0: return ".".join(path.split('''.''' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('''.''' )[:n_shave_prefix_segments] ) def lowerCamelCase__ ( A : int , A : Optional[Any]=0 ): '''simple docstring''' UpperCAmelCase = [] for old_item in old_list: UpperCAmelCase = old_item.replace('''in_layers.0''' , '''norm1''' ) UpperCAmelCase = new_item.replace('''in_layers.2''' , '''conv1''' ) UpperCAmelCase = new_item.replace('''out_layers.0''' , '''norm2''' ) UpperCAmelCase = new_item.replace('''out_layers.3''' , '''conv2''' ) UpperCAmelCase = new_item.replace('''emb_layers.1''' , '''time_emb_proj''' ) UpperCAmelCase = new_item.replace('''skip_connection''' , '''conv_shortcut''' ) UpperCAmelCase = shave_segments(A , n_shave_prefix_segments=A ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def lowerCamelCase__ ( A : Any , A : int=0 ): '''simple docstring''' UpperCAmelCase = [] for old_item in old_list: UpperCAmelCase = old_item UpperCAmelCase = new_item.replace('''norm.weight''' , '''group_norm.weight''' ) UpperCAmelCase = new_item.replace('''norm.bias''' , '''group_norm.bias''' ) UpperCAmelCase = new_item.replace('''proj_out.weight''' , '''proj_attn.weight''' ) UpperCAmelCase = new_item.replace('''proj_out.bias''' , '''proj_attn.bias''' ) UpperCAmelCase = shave_segments(A , n_shave_prefix_segments=A ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def lowerCamelCase__ ( A : Tuple , A : Union[str, Any] , A : int , A : Dict=None , A : Optional[int]=None , A : Optional[Any]=None ): '''simple docstring''' assert isinstance(A , A ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): UpperCAmelCase = old_checkpoint[path] UpperCAmelCase = old_tensor.shape[0] // 3 UpperCAmelCase = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) UpperCAmelCase = old_tensor.shape[0] // config['''num_head_channels'''] // 3 UpperCAmelCase = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = old_tensor.split(channels // num_heads , dim=1 ) UpperCAmelCase = query.reshape(A ) UpperCAmelCase = key.reshape(A ) UpperCAmelCase = value.reshape(A ) for path in paths: UpperCAmelCase = path['''new'''] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here UpperCAmelCase = new_path.replace('''middle_block.0''' , '''mid_block.resnets.0''' ) UpperCAmelCase = new_path.replace('''middle_block.1''' , '''mid_block.attentions.0''' ) UpperCAmelCase = new_path.replace('''middle_block.2''' , '''mid_block.resnets.1''' ) if additional_replacements is not None: for replacement in additional_replacements: UpperCAmelCase = new_path.replace(replacement['''old'''] , replacement['''new'''] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: UpperCAmelCase = old_checkpoint[path['''old''']][:, :, 0] else: UpperCAmelCase = old_checkpoint[path['''old''']] def lowerCamelCase__ ( A : Union[str, Any] , A : Dict ): '''simple docstring''' UpperCAmelCase = {} UpperCAmelCase = checkpoint['''time_embed.0.weight'''] UpperCAmelCase = checkpoint['''time_embed.0.bias'''] UpperCAmelCase = checkpoint['''time_embed.2.weight'''] UpperCAmelCase = checkpoint['''time_embed.2.bias'''] UpperCAmelCase = checkpoint['''input_blocks.0.0.weight'''] UpperCAmelCase = checkpoint['''input_blocks.0.0.bias'''] UpperCAmelCase = checkpoint['''out.0.weight'''] UpperCAmelCase = checkpoint['''out.0.bias'''] UpperCAmelCase = checkpoint['''out.2.weight'''] UpperCAmelCase = checkpoint['''out.2.bias'''] # Retrieves the keys for the input blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''input_blocks''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""input_blocks.{layer_id}""" in key] for layer_id in range(A ) } # Retrieves the keys for the middle blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''middle_block''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""middle_block.{layer_id}""" in key] for layer_id in range(A ) } # Retrieves the keys for the output blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''output_blocks''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""output_blocks.{layer_id}""" in key] for layer_id in range(A ) } for i in range(1 , A ): UpperCAmelCase = (i - 1) // (config['''num_res_blocks'''] + 1) UpperCAmelCase = (i - 1) % (config['''num_res_blocks'''] + 1) UpperCAmelCase = [key for key in input_blocks[i] if f"""input_blocks.{i}.0""" in key] UpperCAmelCase = [key for key in input_blocks[i] if f"""input_blocks.{i}.1""" in key] if f"""input_blocks.{i}.0.op.weight""" in checkpoint: UpperCAmelCase = checkpoint[ f"""input_blocks.{i}.0.op.weight""" ] UpperCAmelCase = checkpoint[ f"""input_blocks.{i}.0.op.bias""" ] continue UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = {'''old''': f"""input_blocks.{i}.0""", '''new''': f"""down_blocks.{block_id}.resnets.{layer_in_block_id}"""} UpperCAmelCase = {'''old''': '''resnets.2.op''', '''new''': '''downsamplers.0.op'''} assign_to_checkpoint( A , A , A , additional_replacements=[meta_path, resnet_op] , config=A ) if len(A ): UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''old''': f"""input_blocks.{i}.1""", '''new''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase = { f"""input_blocks.{i}.1.qkv.bias""": { '''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""input_blocks.{i}.1.qkv.weight""": { '''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( A , A , A , additional_replacements=[meta_path] , attention_paths_to_split=A , config=A , ) UpperCAmelCase = middle_blocks[0] UpperCAmelCase = middle_blocks[1] UpperCAmelCase = middle_blocks[2] UpperCAmelCase = renew_resnet_paths(A ) assign_to_checkpoint(A , A , A , config=A ) UpperCAmelCase = renew_resnet_paths(A ) assign_to_checkpoint(A , A , A , config=A ) UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''middle_block.1.qkv.bias''': { '''key''': '''mid_block.attentions.0.key.bias''', '''query''': '''mid_block.attentions.0.query.bias''', '''value''': '''mid_block.attentions.0.value.bias''', }, '''middle_block.1.qkv.weight''': { '''key''': '''mid_block.attentions.0.key.weight''', '''query''': '''mid_block.attentions.0.query.weight''', '''value''': '''mid_block.attentions.0.value.weight''', }, } assign_to_checkpoint( A , A , A , attention_paths_to_split=A , config=A ) for i in range(A ): UpperCAmelCase = i // (config['''num_res_blocks'''] + 1) UpperCAmelCase = i % (config['''num_res_blocks'''] + 1) UpperCAmelCase = [shave_segments(A , 2 ) for name in output_blocks[i]] UpperCAmelCase = {} for layer in output_block_layers: UpperCAmelCase , UpperCAmelCase = layer.split('''.''' )[0], shave_segments(A , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(A ) else: UpperCAmelCase = [layer_name] if len(A ) > 1: UpperCAmelCase = [key for key in output_blocks[i] if f"""output_blocks.{i}.0""" in key] UpperCAmelCase = [key for key in output_blocks[i] if f"""output_blocks.{i}.1""" in key] UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = {'''old''': f"""output_blocks.{i}.0""", '''new''': f"""up_blocks.{block_id}.resnets.{layer_in_block_id}"""} assign_to_checkpoint(A , A , A , additional_replacements=[meta_path] , config=A ) if ["conv.weight", "conv.bias"] in output_block_list.values(): UpperCAmelCase = list(output_block_list.values() ).index(['''conv.weight''', '''conv.bias'''] ) UpperCAmelCase = checkpoint[ f"""output_blocks.{i}.{index}.conv.weight""" ] UpperCAmelCase = checkpoint[ f"""output_blocks.{i}.{index}.conv.bias""" ] # Clear attentions as they have been attributed above. if len(A ) == 2: UpperCAmelCase = [] if len(A ): UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''old''': f"""output_blocks.{i}.1""", '''new''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase = { f"""output_blocks.{i}.1.qkv.bias""": { '''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""output_blocks.{i}.1.qkv.weight""": { '''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( A , A , A , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('''qkv''' in key for key in attentions ) else None , config=A , ) else: UpperCAmelCase = renew_resnet_paths(A , n_shave_prefix_segments=1 ) for path in resnet_0_paths: UpperCAmelCase = '''.'''.join(['''output_blocks''', str(A ), path['''old''']] ) UpperCAmelCase = '''.'''.join(['''up_blocks''', str(A ), '''resnets''', str(A ), path['''new''']] ) UpperCAmelCase = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": _lowercase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") _lowercase : Dict = parser.parse_args() _lowercase : List[Any] = torch.load(args.checkpoint_path) with open(args.config_file) as f: _lowercase : List[str] = json.loads(f.read()) _lowercase : Union[str, Any] = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] _lowercase : Any = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: _lowercase : Tuple = DDPMScheduler.from_config("""/""".join(args.checkpoint_path.split("""/""")[:-1])) _lowercase : Optional[Any] = VQModel.from_pretrained("""/""".join(args.checkpoint_path.split("""/""")[:-1])) _lowercase : Optional[Any] = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
50
1
'''simple docstring''' def lowerCamelCase__ ( A : List[Any] ): '''simple docstring''' UpperCAmelCase = 1 UpperCAmelCase = 2 while i * i <= n: UpperCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = 1 UpperCAmelCase = 1 while True: i += 1 t_num += i if count_divisors(A ) > 5_00: break return t_num if __name__ == "__main__": print(solution())
50
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Any = logging.get_logger(__name__) _lowercase : Dict = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = "dpr" def __init__( self : Dict , lowerCAmelCase : Any=30522 , lowerCAmelCase : List[str]=768 , lowerCAmelCase : Union[str, Any]=12 , lowerCAmelCase : Tuple=12 , lowerCAmelCase : Optional[int]=3072 , lowerCAmelCase : Optional[int]="gelu" , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : Any=0.1 , lowerCAmelCase : Optional[Any]=512 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : str=1E-12 , lowerCAmelCase : Optional[Any]=0 , lowerCAmelCase : Tuple="absolute" , lowerCAmelCase : int = 0 , **lowerCAmelCase : Union[str, Any] , )-> Optional[int]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = projection_dim UpperCAmelCase = position_embedding_type
50
1
'''simple docstring''' import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class UpperCamelCase__( unittest.TestCase ): def a__( self : Dict )-> List[Any]: """simple docstring""" UpperCAmelCase = '''hf-internal-testing/tiny-random-t5''' UpperCAmelCase = AutoTokenizer.from_pretrained(lowerCAmelCase ) UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase ) UpperCAmelCase = tokenizer('''This is me''' , return_tensors='''pt''' ) UpperCAmelCase = model.to_bettertransformer() self.assertTrue(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) UpperCAmelCase = model.generate(**lowerCAmelCase ) UpperCAmelCase = model.reverse_bettertransformer() self.assertFalse(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase ) UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase ) self.assertFalse( any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) UpperCAmelCase = model_reloaded.generate(**lowerCAmelCase ) self.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : Dict )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = '''hf-internal-testing/tiny-random-t5''' UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase ) UpperCAmelCase = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(lowerCAmelCase ): model.save_pretrained(lowerCAmelCase ) UpperCAmelCase = model.reverse_bettertransformer() model.save_pretrained(lowerCAmelCase )
50
'''simple docstring''' import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _lowercase : Tuple = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def lowerCamelCase__ ( A : Optional[Any] ): '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def lowerCamelCase__ ( A : Any , A : str ): '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase = False elif args.student_type == "gpt2": UpperCAmelCase = False def lowerCamelCase__ ( A : List[Any] , A : List[str] ): '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase = False def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=A , required=A , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=A , required=A , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=A , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=A , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=A , required=A , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=A , type=A , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=A , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=A , required=A , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=A , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=A , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=A , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=A , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=A , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=A , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=A , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=A , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=A , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=A , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=A , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=A , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=A , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=A , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=A , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=A , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=A , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=A , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=A , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=A , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=A , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=A , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=A , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=A , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=A , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=A , default=5_00 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=A , default=40_00 , help='''Checkpoint interval.''' ) UpperCAmelCase = parser.parse_args() sanity_checks(A ) # ARGS # init_gpu_params(A ) set_seed(A ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(f"""Param: {args}""" ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(A ) , A , indent=4 ) git_log(args.dump_path ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = MODEL_CLASSES[args.student_type] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # UpperCAmelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) UpperCAmelCase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): UpperCAmelCase = tokenizer.all_special_tokens.index(A ) UpperCAmelCase = tokenizer.all_special_ids[idx] logger.info(f"""Special tokens {special_tok_ids}""" ) UpperCAmelCase = special_tok_ids UpperCAmelCase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f"""Loading data from {args.data_file}""" ) with open(args.data_file , '''rb''' ) as fp: UpperCAmelCase = pickle.load(A ) if args.mlm: logger.info(f"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts , '''rb''' ) as fp: UpperCAmelCase = pickle.load(A ) UpperCAmelCase = np.maximum(A , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): UpperCAmelCase = 0.0 # do not predict special tokens UpperCAmelCase = torch.from_numpy(A ) else: UpperCAmelCase = None UpperCAmelCase = LmSeqsDataset(params=A , data=A ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(f"""Loading student config from {args.student_config}""" ) UpperCAmelCase = student_config_class.from_pretrained(args.student_config ) UpperCAmelCase = True if args.student_pretrained_weights is not None: logger.info(f"""Loading pretrained weights from {args.student_pretrained_weights}""" ) UpperCAmelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=A ) else: UpperCAmelCase = student_model_class(A ) if args.n_gpu > 0: student.to(f"""cuda:{args.local_rank}""" ) logger.info('''Student loaded.''' ) # TEACHER # UpperCAmelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=A ) if args.n_gpu > 0: teacher.to(f"""cuda:{args.local_rank}""" ) logger.info(f"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(A , A ) if args.freeze_token_type_embds: freeze_token_type_embeddings(A , A ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() UpperCAmelCase = Distiller( params=A , dataset=A , token_probs=A , student=A , teacher=A ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
50
1
'''simple docstring''' import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class UpperCamelCase__( unittest.TestCase ): def a__( self : List[Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = mock.Mock() UpperCAmelCase = 500 UpperCAmelCase = {} UpperCAmelCase = HTTPError UpperCAmelCase = {} # Download this model to make sure it's in the cache. UpperCAmelCase = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=lowerCAmelCase ) as mock_head: UpperCAmelCase = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def a__( self : int )-> Tuple: """simple docstring""" UpperCAmelCase = mock.Mock() UpperCAmelCase = 500 UpperCAmelCase = {} UpperCAmelCase = HTTPError UpperCAmelCase = {} # Download this model to make sure it's in the cache. UpperCAmelCase = GPTaTokenizerFast.from_pretrained('''gpt2''' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=lowerCAmelCase ) as mock_head: UpperCAmelCase = GPTaTokenizerFast.from_pretrained('''gpt2''' ) # This check we did call the fake head request mock_head.assert_called() def a__( self : str )-> Optional[Any]: """simple docstring""" try: UpperCAmelCase = tempfile.mktemp() with open(lowerCAmelCase , '''wb''' ) as f: http_get('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''' , lowerCAmelCase ) UpperCAmelCase = AlbertTokenizer.from_pretrained(lowerCAmelCase ) finally: os.remove(lowerCAmelCase ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('''tokenizer.json''' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('''tokenizer.json''' , '''wb''' ) as f: http_get('''https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json''' , lowerCAmelCase ) UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('''tokenizer.json''' ) def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = AlbertTokenizer.from_pretrained('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''' ) @is_staging_test class UpperCamelCase__( unittest.TestCase ): __magic_name__ : List[str] = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def a__( cls : Optional[int] )-> Tuple: """simple docstring""" UpperCAmelCase = TOKEN HfFolder.save_token(lowerCAmelCase ) @classmethod def a__( cls : Optional[Any] )-> Optional[Any]: """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-tokenizer''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-tokenizer-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-tokenizer''' ) except HTTPError: pass def a__( self : Optional[Any] )-> Any: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase = os.path.join(lowerCAmelCase , '''vocab.txt''' ) with open(lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) UpperCAmelCase = BertTokenizer(lowerCAmelCase ) tokenizer.push_to_hub('''test-tokenizer''' , use_auth_token=self._token ) UpperCAmelCase = BertTokenizer.from_pretrained(F"""{USER}/test-tokenizer""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='''test-tokenizer''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCAmelCase , repo_id='''test-tokenizer''' , push_to_hub=lowerCAmelCase , use_auth_token=self._token ) UpperCAmelCase = BertTokenizer.from_pretrained(F"""{USER}/test-tokenizer""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def a__( self : Union[str, Any] )-> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase = os.path.join(lowerCAmelCase , '''vocab.txt''' ) with open(lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) UpperCAmelCase = BertTokenizer(lowerCAmelCase ) tokenizer.push_to_hub('''valid_org/test-tokenizer-org''' , use_auth_token=self._token ) UpperCAmelCase = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-tokenizer-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( lowerCAmelCase , repo_id='''valid_org/test-tokenizer-org''' , push_to_hub=lowerCAmelCase , use_auth_token=self._token ) UpperCAmelCase = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def a__( self : int )-> Dict: """simple docstring""" CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase = os.path.join(lowerCAmelCase , '''vocab.txt''' ) with open(lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) UpperCAmelCase = CustomTokenizer(lowerCAmelCase ) # No fast custom tokenizer tokenizer.push_to_hub('''test-dynamic-tokenizer''' , use_auth_token=self._token ) UpperCAmelCase = AutoTokenizer.from_pretrained(F"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=lowerCAmelCase ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizer''' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase = os.path.join(lowerCAmelCase , '''vocab.txt''' ) with open(lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) UpperCAmelCase = BertTokenizerFast.from_pretrained(lowerCAmelCase ) bert_tokenizer.save_pretrained(lowerCAmelCase ) UpperCAmelCase = CustomTokenizerFast.from_pretrained(lowerCAmelCase ) tokenizer.push_to_hub('''test-dynamic-tokenizer''' , use_auth_token=self._token ) UpperCAmelCase = AutoTokenizer.from_pretrained(F"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=lowerCAmelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizerFast''' ) UpperCAmelCase = AutoTokenizer.from_pretrained( F"""{USER}/test-dynamic-tokenizer""" , use_fast=lowerCAmelCase , trust_remote_code=lowerCAmelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizer''' ) class UpperCamelCase__( unittest.TestCase ): def a__( self : int )-> Dict: """simple docstring""" UpperCAmelCase = Trie() trie.add('''Hello 友達''' ) self.assertEqual(trie.data , {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}} ) trie.add('''Hello''' ) trie.data self.assertEqual(trie.data , {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {'''''': 1, ''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}} ) def a__( self : Union[str, Any] )-> Any: """simple docstring""" UpperCAmelCase = Trie() self.assertEqual(trie.split('''[CLS] This is a extra_id_100''' ) , ['''[CLS] This is a extra_id_100'''] ) trie.add('''[CLS]''' ) trie.add('''extra_id_1''' ) trie.add('''extra_id_100''' ) self.assertEqual(trie.split('''[CLS] This is a extra_id_100''' ) , ['''[CLS]''', ''' This is a ''', '''extra_id_100'''] ) def a__( self : Tuple )-> Optional[Any]: """simple docstring""" UpperCAmelCase = Trie() trie.add('''A''' ) self.assertEqual(trie.split('''ABC''' ) , ['''A''', '''BC'''] ) self.assertEqual(trie.split('''BCA''' ) , ['''BC''', '''A'''] ) def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" UpperCAmelCase = Trie() trie.add('''TOKEN]''' ) trie.add('''[SPECIAL_TOKEN]''' ) self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''' ) , ['''This is something ''', '''[SPECIAL_TOKEN]'''] ) def a__( self : Optional[Any] )-> List[str]: """simple docstring""" UpperCAmelCase = Trie() trie.add('''A''' ) trie.add('''P''' ) trie.add('''[SPECIAL_TOKEN]''' ) self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''' ) , ['''This is something ''', '''[SPECIAL_TOKEN]'''] ) def a__( self : List[Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = Trie() trie.add('''AB''' ) trie.add('''B''' ) trie.add('''C''' ) self.assertEqual(trie.split('''ABC''' ) , ['''AB''', '''C'''] ) def a__( self : Union[str, Any] )-> Dict: """simple docstring""" UpperCAmelCase = Trie() trie.add('''ABC''' ) trie.add('''B''' ) trie.add('''CD''' ) self.assertEqual(trie.split('''ABCD''' ) , ['''ABC''', '''D'''] ) def a__( self : Optional[int] )-> List[str]: """simple docstring""" UpperCAmelCase = Trie() UpperCAmelCase = trie.cut_text('''ABC''' , [0, 0, 2, 1, 2, 3] ) self.assertEqual(lowerCAmelCase , ['''AB''', '''C'''] )
50
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Tuple = ["image_processor", "tokenizer"] __magic_name__ : Any = "ViTImageProcessor" __magic_name__ : str = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : List[str] , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=None , **lowerCAmelCase : Optional[int] )-> List[Any]: """simple docstring""" UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCAmelCase , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase , lowerCAmelCase ) def __call__( self : str , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=None , **lowerCAmelCase : List[str] )-> List[Any]: """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''' ) if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''' ) if text is not None: UpperCAmelCase = self.tokenizer(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if visual_prompt is not None: UpperCAmelCase = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if images is not None: UpperCAmelCase = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if visual_prompt is not None and images is not None: UpperCAmelCase = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: UpperCAmelCase = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase ) , tensor_type=lowerCAmelCase ) def a__( self : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int] )-> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str] )-> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase ) @property def a__( self : List[Any] )-> Optional[Any]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCAmelCase , ) return self.image_processor_class @property def a__( self : Any )-> List[Any]: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowerCAmelCase , ) return self.image_processor
50
1
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class UpperCamelCase__( unittest.TestCase ): def a__( self : Tuple )-> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def a__( self : List[str] )-> Any: """simple docstring""" UpperCAmelCase = 1 UpperCAmelCase = 3 UpperCAmelCase = (32, 32) UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase ) return image @property def a__( self : Optional[Any] )-> Tuple: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) return model @property def a__( self : Any )-> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def a__( self : Dict )-> Tuple: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(lowerCAmelCase ) @property def a__( self : Optional[Any] )-> Tuple: """simple docstring""" def extract(*lowerCAmelCase : str , **lowerCAmelCase : Tuple ): class UpperCamelCase__: def __init__( self : Optional[int] )-> Any: """simple docstring""" UpperCAmelCase = torch.ones([0] ) def a__( self : Dict , lowerCAmelCase : str )-> str: """simple docstring""" self.pixel_values.to(lowerCAmelCase ) return self return Out() return extract def a__( self : int )-> Dict: """simple docstring""" UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase = self.dummy_cond_unet UpperCAmelCase = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , ) UpperCAmelCase = self.dummy_vae UpperCAmelCase = self.dummy_text_encoder UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk UpperCAmelCase = StableDiffusionPipeline( unet=lowerCAmelCase , scheduler=lowerCAmelCase , vae=lowerCAmelCase , text_encoder=lowerCAmelCase , tokenizer=lowerCAmelCase , safety_checker=lowerCAmelCase , feature_extractor=self.dummy_extractor , ) UpperCAmelCase = sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase = '''A painting of a squirrel eating a burger''' UpperCAmelCase = torch.Generator(device=lowerCAmelCase ).manual_seed(0 ) UpperCAmelCase = sd_pipe([prompt] , generator=lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' ) UpperCAmelCase = output.images UpperCAmelCase = torch.Generator(device=lowerCAmelCase ).manual_seed(0 ) UpperCAmelCase = sd_pipe( [prompt] , generator=lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=lowerCAmelCase , )[0] UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def a__( self : Tuple )-> Tuple: """simple docstring""" UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase = self.dummy_cond_unet UpperCAmelCase = PNDMScheduler(skip_prk_steps=lowerCAmelCase ) UpperCAmelCase = self.dummy_vae UpperCAmelCase = self.dummy_text_encoder UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk UpperCAmelCase = StableDiffusionPipeline( unet=lowerCAmelCase , scheduler=lowerCAmelCase , vae=lowerCAmelCase , text_encoder=lowerCAmelCase , tokenizer=lowerCAmelCase , safety_checker=lowerCAmelCase , feature_extractor=self.dummy_extractor , ) UpperCAmelCase = sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase = '''A painting of a squirrel eating a burger''' UpperCAmelCase = torch.Generator(device=lowerCAmelCase ).manual_seed(0 ) UpperCAmelCase = sd_pipe([prompt] , generator=lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' ) UpperCAmelCase = output.images UpperCAmelCase = torch.Generator(device=lowerCAmelCase ).manual_seed(0 ) UpperCAmelCase = sd_pipe( [prompt] , generator=lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=lowerCAmelCase , )[0] UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def a__( self : Any )-> Any: """simple docstring""" UpperCAmelCase = StableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-lms-pipe''' , safety_checker=lowerCAmelCase ) assert isinstance(lowerCAmelCase , lowerCAmelCase ) assert isinstance(pipe.scheduler , lowerCAmelCase ) assert pipe.safety_checker is None UpperCAmelCase = pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase ) UpperCAmelCase = StableDiffusionPipeline.from_pretrained(lowerCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCAmelCase = pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" UpperCAmelCase = self.dummy_cond_unet UpperCAmelCase = PNDMScheduler(skip_prk_steps=lowerCAmelCase ) UpperCAmelCase = self.dummy_vae UpperCAmelCase = self.dummy_text_encoder UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # put models in fp16 UpperCAmelCase = unet.half() UpperCAmelCase = vae.half() UpperCAmelCase = bert.half() # make sure here that pndm scheduler skips prk UpperCAmelCase = StableDiffusionPipeline( unet=lowerCAmelCase , scheduler=lowerCAmelCase , vae=lowerCAmelCase , text_encoder=lowerCAmelCase , tokenizer=lowerCAmelCase , safety_checker=lowerCAmelCase , feature_extractor=self.dummy_extractor , ) UpperCAmelCase = sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase = '''A painting of a squirrel eating a burger''' UpperCAmelCase = sd_pipe([prompt] , num_inference_steps=2 , output_type='''np''' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class UpperCamelCase__( unittest.TestCase ): def a__( self : int )-> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a__( self : Dict )-> Optional[int]: """simple docstring""" UpperCAmelCase = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=lowerCAmelCase ) UpperCAmelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCAmelCase = sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase = ( '''portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle''' ''' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with''' ''' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and''' ''' children from bahnhof zoo, detailed ''' ) UpperCAmelCase = 4003660346 UpperCAmelCase = 7 # without safety guidance (sld_guidance_scale = 0) UpperCAmelCase = torch.manual_seed(lowerCAmelCase ) UpperCAmelCase = sd_pipe( [prompt] , generator=lowerCAmelCase , guidance_scale=lowerCAmelCase , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCAmelCase = output.images UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) UpperCAmelCase = torch.manual_seed(lowerCAmelCase ) UpperCAmelCase = sd_pipe( [prompt] , generator=lowerCAmelCase , guidance_scale=lowerCAmelCase , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCAmelCase = output.images UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def a__( self : Optional[int] )-> Any: """simple docstring""" UpperCAmelCase = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=lowerCAmelCase ) UpperCAmelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCAmelCase = sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase = '''padme amidala taking a bath artwork, safe for work, no nudity''' UpperCAmelCase = 2734971755 UpperCAmelCase = 7 UpperCAmelCase = torch.manual_seed(lowerCAmelCase ) UpperCAmelCase = sd_pipe( [prompt] , generator=lowerCAmelCase , guidance_scale=lowerCAmelCase , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCAmelCase = output.images UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 UpperCAmelCase = torch.manual_seed(lowerCAmelCase ) UpperCAmelCase = sd_pipe( [prompt] , generator=lowerCAmelCase , guidance_scale=lowerCAmelCase , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCAmelCase = output.images UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def a__( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' ) UpperCAmelCase = sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase = ( '''the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.''' ''' leyendecker''' ) UpperCAmelCase = 1044355234 UpperCAmelCase = 12 UpperCAmelCase = torch.manual_seed(lowerCAmelCase ) UpperCAmelCase = sd_pipe( [prompt] , generator=lowerCAmelCase , guidance_scale=lowerCAmelCase , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCAmelCase = output.images UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 UpperCAmelCase = torch.manual_seed(lowerCAmelCase ) UpperCAmelCase = sd_pipe( [prompt] , generator=lowerCAmelCase , guidance_scale=lowerCAmelCase , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCAmelCase = output.images UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
50
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Any = { """configuration_maskformer""": ["""MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MaskFormerConfig"""], """configuration_maskformer_swin""": ["""MaskFormerSwinConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = ["""MaskFormerFeatureExtractor"""] _lowercase : Dict = ["""MaskFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = [ """MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """MaskFormerForInstanceSegmentation""", """MaskFormerModel""", """MaskFormerPreTrainedModel""", ] _lowercase : List[Any] = [ """MaskFormerSwinBackbone""", """MaskFormerSwinModel""", """MaskFormerSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys _lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
50
1
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def lowerCamelCase__ ( A : Dict , A : Any ): '''simple docstring''' UpperCAmelCase = [] for part_id in partition_order: UpperCAmelCase = df.where(f"""SPARK_PARTITION_ID() = {part_id}""" ).collect() for row_idx, row in enumerate(A ): expected_row_ids_and_row_dicts.append((f"""{part_id}_{row_idx}""", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() UpperCAmelCase = spark.range(1_00 ).repartition(1 ) UpperCAmelCase = Spark(A ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() UpperCAmelCase = spark.range(10 ).repartition(2 ) UpperCAmelCase = [1, 0] UpperCAmelCase = _generate_iterable_examples(A , A ) # Reverse the partitions. UpperCAmelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(A , A ) for i, (row_id, row_dict) in enumerate(generate_fn() ): UpperCAmelCase , UpperCAmelCase = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() UpperCAmelCase = spark.range(10 ).repartition(1 ) UpperCAmelCase = SparkExamplesIterable(A ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(A ): assert row_id == f"""0_{i}""" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() UpperCAmelCase = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: UpperCAmelCase = lambda A : x.reverse() UpperCAmelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(A , [2, 1, 0] ) UpperCAmelCase = SparkExamplesIterable(A ).shuffle_data_sources(A ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(A ): UpperCAmelCase , UpperCAmelCase = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() UpperCAmelCase = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 UpperCAmelCase = SparkExamplesIterable(A ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 UpperCAmelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(A , [0, 2] ) for i, (row_id, row_dict) in enumerate(A ): UpperCAmelCase , UpperCAmelCase = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 UpperCAmelCase = SparkExamplesIterable(A ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 UpperCAmelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(A , [1, 3] ) for i, (row_id, row_dict) in enumerate(A ): UpperCAmelCase , UpperCAmelCase = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() UpperCAmelCase = spark.range(1_00 ).repartition(1 ) UpperCAmelCase = Spark(A ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_00
50
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowercase : Optional[Any] = 16 _lowercase : Dict = 32 def lowerCamelCase__ ( A : Accelerator , A : int = 16 ): '''simple docstring''' UpperCAmelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(A : int ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=A , max_length=A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase = datasets.map( A , batched=A , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(A : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase = 8 else: UpperCAmelCase = None return tokenizer.pad( A , padding='''longest''' , max_length=A , pad_to_multiple_of=A , return_tensors='''pt''' , ) # Instantiate dataloaders. UpperCAmelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=A , collate_fn=A , batch_size=A ) UpperCAmelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=A , collate_fn=A , batch_size=A ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowercase : Union[str, Any] = mocked_dataloaders # noqa: F811 def lowerCamelCase__ ( A : Optional[Any] , A : Tuple ): '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , A ) == "1": UpperCAmelCase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: UpperCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase = config['''lr'''] UpperCAmelCase = int(config['''num_epochs'''] ) UpperCAmelCase = int(config['''seed'''] ) UpperCAmelCase = int(config['''batch_size'''] ) set_seed(A ) UpperCAmelCase , UpperCAmelCase = get_dataloaders(A , A ) UpperCAmelCase = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation UpperCAmelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=A ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase = AdamW(params=model.parameters() , lr=A ) # Instantiate scheduler UpperCAmelCase = get_linear_schedule_with_warmup( optimizer=A , num_warmup_steps=1_00 , num_training_steps=(len(A ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( A , A , A , A , A ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: UpperCAmelCase = os.path.split(A )[-1].split('''.''' )[0] accelerator.init_trackers(A , A ) # Now we train the model for epoch in range(A ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: UpperCAmelCase = 0 for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase = model(**A ) UpperCAmelCase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() UpperCAmelCase = loss / gradient_accumulation_steps accelerator.backward(A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase = model(**A ) UpperCAmelCase = outputs.logits.argmax(dim=-1 ) UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=A , references=A , ) UpperCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , A ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(A ), '''epoch''': epoch, } , step=A , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=A , default=A , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=A , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(A , A ) if __name__ == "__main__": main()
50
1
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def lowerCamelCase__ ( A : Optional[Any] , A : Any , A : List[str] ): '''simple docstring''' if isinstance(A , torch.Tensor ): return image elif isinstance(A , PIL.Image.Image ): UpperCAmelCase = [image] if isinstance(image[0] , PIL.Image.Image ): UpperCAmelCase = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] UpperCAmelCase = np.concatenate(A , axis=0 ) UpperCAmelCase = np.array(A ).astype(np.floataa ) / 255.0 UpperCAmelCase = image.transpose(0 , 3 , 1 , 2 ) UpperCAmelCase = 2.0 * image - 1.0 UpperCAmelCase = torch.from_numpy(A ) elif isinstance(image[0] , torch.Tensor ): UpperCAmelCase = torch.cat(A , dim=0 ) return image def lowerCamelCase__ ( A : str , A : str , A : List[Any] , A : Optional[int]=0.9_995 ): '''simple docstring''' if not isinstance(A , np.ndarray ): UpperCAmelCase = True UpperCAmelCase = va.device UpperCAmelCase = va.cpu().numpy() UpperCAmelCase = va.cpu().numpy() UpperCAmelCase = np.sum(va * va / (np.linalg.norm(A ) * np.linalg.norm(A )) ) if np.abs(A ) > DOT_THRESHOLD: UpperCAmelCase = (1 - t) * va + t * va else: UpperCAmelCase = np.arccos(A ) UpperCAmelCase = np.sin(A ) UpperCAmelCase = theta_a * t UpperCAmelCase = np.sin(A ) UpperCAmelCase = np.sin(theta_a - theta_t ) / sin_theta_a UpperCAmelCase = sin_theta_t / sin_theta_a UpperCAmelCase = sa * va + sa * va if inputs_are_torch: UpperCAmelCase = torch.from_numpy(A ).to(A ) return va def lowerCamelCase__ ( A : Optional[Any] , A : Optional[Any] ): '''simple docstring''' UpperCAmelCase = F.normalize(A , dim=-1 ) UpperCAmelCase = F.normalize(A , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def lowerCamelCase__ ( A : Union[str, Any] , A : Any ): '''simple docstring''' for param in model.parameters(): UpperCAmelCase = value class UpperCamelCase__( lowerCAmelCase ): def __init__( self : Union[str, Any] , lowerCAmelCase : AutoencoderKL , lowerCAmelCase : CLIPTextModel , lowerCAmelCase : CLIPModel , lowerCAmelCase : CLIPTokenizer , lowerCAmelCase : UNetaDConditionModel , lowerCAmelCase : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , lowerCAmelCase : CLIPFeatureExtractor , lowerCAmelCase : List[str]=None , lowerCAmelCase : Tuple=None , lowerCAmelCase : Tuple=None , )-> Optional[Any]: """simple docstring""" super().__init__() self.register_modules( vae=lowerCAmelCase , text_encoder=lowerCAmelCase , clip_model=lowerCAmelCase , tokenizer=lowerCAmelCase , unet=lowerCAmelCase , scheduler=lowerCAmelCase , feature_extractor=lowerCAmelCase , coca_model=lowerCAmelCase , coca_tokenizer=lowerCAmelCase , coca_transform=lowerCAmelCase , ) UpperCAmelCase = ( feature_extractor.size if isinstance(feature_extractor.size , lowerCAmelCase ) else feature_extractor.size['''shortest_edge'''] ) UpperCAmelCase = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , lowerCAmelCase ) set_requires_grad(self.clip_model , lowerCAmelCase ) def a__( self : Tuple , lowerCAmelCase : Optional[Union[str, int]] = "auto" )-> Any: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCAmelCase ) def a__( self : Optional[int] )-> Dict: """simple docstring""" self.enable_attention_slicing(lowerCAmelCase ) def a__( self : str )-> str: """simple docstring""" set_requires_grad(self.vae , lowerCAmelCase ) def a__( self : List[Any] )-> int: """simple docstring""" set_requires_grad(self.vae , lowerCAmelCase ) def a__( self : List[str] )-> Dict: """simple docstring""" set_requires_grad(self.unet , lowerCAmelCase ) def a__( self : Union[str, Any] )-> Optional[int]: """simple docstring""" set_requires_grad(self.unet , lowerCAmelCase ) def a__( self : Optional[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Tuple )-> Optional[int]: """simple docstring""" UpperCAmelCase = min(int(num_inference_steps * strength ) , lowerCAmelCase ) UpperCAmelCase = max(num_inference_steps - init_timestep , 0 ) UpperCAmelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def a__( self : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : List[str]=None )-> List[str]: """simple docstring""" if not isinstance(lowerCAmelCase , torch.Tensor ): raise ValueError(F"""`image` has to be of type `torch.Tensor` but is {type(lowerCAmelCase )}""" ) UpperCAmelCase = image.to(device=lowerCAmelCase , dtype=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(lowerCAmelCase ) ] UpperCAmelCase = torch.cat(lowerCAmelCase , dim=0 ) else: UpperCAmelCase = self.vae.encode(lowerCAmelCase ).latent_dist.sample(lowerCAmelCase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCAmelCase = 0.18215 * init_latents UpperCAmelCase = init_latents.repeat_interleave(lowerCAmelCase , dim=0 ) UpperCAmelCase = randn_tensor(init_latents.shape , generator=lowerCAmelCase , device=lowerCAmelCase , dtype=lowerCAmelCase ) # get latents UpperCAmelCase = self.scheduler.add_noise(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = init_latents return latents def a__( self : List[str] , lowerCAmelCase : Any )-> Optional[Any]: """simple docstring""" UpperCAmelCase = self.coca_transform(lowerCAmelCase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): UpperCAmelCase = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) UpperCAmelCase = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('''<end_of_text>''' )[0].replace('''<start_of_text>''' , '''''' ).rstrip(''' .,''' ) def a__( self : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any )-> List[str]: """simple docstring""" UpperCAmelCase = self.feature_extractor.preprocess(lowerCAmelCase ) UpperCAmelCase = torch.from_numpy(clip_image_input['''pixel_values'''][0] ).unsqueeze(0 ).to(self.device ).half() UpperCAmelCase = self.clip_model.get_image_features(lowerCAmelCase ) UpperCAmelCase = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=lowerCAmelCase ) UpperCAmelCase = image_embeddings_clip.repeat_interleave(lowerCAmelCase , dim=0 ) return image_embeddings_clip @torch.enable_grad() def a__( self : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , )-> Tuple: """simple docstring""" UpperCAmelCase = latents.detach().requires_grad_() UpperCAmelCase = self.scheduler.scale_model_input(lowerCAmelCase , lowerCAmelCase ) # predict the noise residual UpperCAmelCase = self.unet(lowerCAmelCase , lowerCAmelCase , encoder_hidden_states=lowerCAmelCase ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): UpperCAmelCase = self.scheduler.alphas_cumprod[timestep] UpperCAmelCase = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCAmelCase = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 UpperCAmelCase = torch.sqrt(lowerCAmelCase ) UpperCAmelCase = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , lowerCAmelCase ): UpperCAmelCase = self.scheduler.sigmas[index] UpperCAmelCase = latents - sigma * noise_pred else: raise ValueError(F"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCAmelCase = 1 / 0.18215 * sample UpperCAmelCase = self.vae.decode(lowerCAmelCase ).sample UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase = transforms.Resize(self.feature_extractor_size )(lowerCAmelCase ) UpperCAmelCase = self.normalize(lowerCAmelCase ).to(latents.dtype ) UpperCAmelCase = self.clip_model.get_image_features(lowerCAmelCase ) UpperCAmelCase = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=lowerCAmelCase ) UpperCAmelCase = spherical_dist_loss(lowerCAmelCase , lowerCAmelCase ).mean() * clip_guidance_scale UpperCAmelCase = -torch.autograd.grad(lowerCAmelCase , lowerCAmelCase )[0] if isinstance(self.scheduler , lowerCAmelCase ): UpperCAmelCase = latents.detach() + grads * (sigma**2) UpperCAmelCase = noise_pred_original else: UpperCAmelCase = noise_pred_original - torch.sqrt(lowerCAmelCase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : Union[str, Any] , lowerCAmelCase : Union[torch.FloatTensor, PIL.Image.Image] , lowerCAmelCase : Union[torch.FloatTensor, PIL.Image.Image] , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[int] = 512 , lowerCAmelCase : Optional[int] = 512 , lowerCAmelCase : float = 0.6 , lowerCAmelCase : Optional[int] = 50 , lowerCAmelCase : Optional[float] = 7.5 , lowerCAmelCase : Optional[int] = 1 , lowerCAmelCase : float = 0.0 , lowerCAmelCase : Optional[float] = 100 , lowerCAmelCase : Optional[torch.Generator] = None , lowerCAmelCase : Optional[str] = "pil" , lowerCAmelCase : bool = True , lowerCAmelCase : float = 0.8 , lowerCAmelCase : float = 0.1 , lowerCAmelCase : float = 0.1 , )-> Optional[Any]: """simple docstring""" if isinstance(lowerCAmelCase , lowerCAmelCase ) and len(lowerCAmelCase ) != batch_size: raise ValueError(F"""You have passed {batch_size} batch_size, but only {len(lowerCAmelCase )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(lowerCAmelCase , torch.Generator ) and batch_size > 1: UpperCAmelCase = [generator] + [None] * (batch_size - 1) UpperCAmelCase = [ ('''model''', self.coca_model is None), ('''tokenizer''', self.coca_tokenizer is None), ('''transform''', self.coca_transform is None), ] UpperCAmelCase = [x[0] for x in coca_is_none if x[1]] UpperCAmelCase = ''', '''.join(lowerCAmelCase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(lowerCAmelCase ): raise ValueError( F"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" F"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) UpperCAmelCase = self.get_image_description(lowerCAmelCase ) if style_prompt is None: if len(lowerCAmelCase ): raise ValueError( F"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" F""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) UpperCAmelCase = self.get_image_description(lowerCAmelCase ) # get prompt text embeddings for content and style UpperCAmelCase = self.tokenizer( lowerCAmelCase , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=lowerCAmelCase , return_tensors='''pt''' , ) UpperCAmelCase = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] UpperCAmelCase = self.tokenizer( lowerCAmelCase , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=lowerCAmelCase , return_tensors='''pt''' , ) UpperCAmelCase = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] UpperCAmelCase = slerp(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # duplicate text embeddings for each generation per prompt UpperCAmelCase = text_embeddings.repeat_interleave(lowerCAmelCase , dim=0 ) # set timesteps UpperCAmelCase = '''offset''' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) UpperCAmelCase = {} if accepts_offset: UpperCAmelCase = 1 self.scheduler.set_timesteps(lowerCAmelCase , **lowerCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) UpperCAmelCase , UpperCAmelCase = self.get_timesteps(lowerCAmelCase , lowerCAmelCase , self.device ) UpperCAmelCase = timesteps[:1].repeat(lowerCAmelCase ) # Preprocess image UpperCAmelCase = preprocess(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = self.prepare_latents( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , text_embeddings.dtype , self.device , lowerCAmelCase ) UpperCAmelCase = preprocess(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = self.prepare_latents( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , text_embeddings.dtype , self.device , lowerCAmelCase ) UpperCAmelCase = slerp(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) if clip_guidance_scale > 0: UpperCAmelCase = self.get_clip_image_embeddings(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = self.get_clip_image_embeddings(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = slerp( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCAmelCase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCAmelCase = content_text_input.input_ids.shape[-1] UpperCAmelCase = self.tokenizer([''''''] , padding='''max_length''' , max_length=lowerCAmelCase , return_tensors='''pt''' ) UpperCAmelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt UpperCAmelCase = uncond_embeddings.repeat_interleave(lowerCAmelCase , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCAmelCase = (batch_size, self.unet.config.in_channels, height // 8, width // 8) UpperCAmelCase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps UpperCAmelCase = torch.randn(lowerCAmelCase , generator=lowerCAmelCase , device='''cpu''' , dtype=lowerCAmelCase ).to( self.device ) else: UpperCAmelCase = torch.randn(lowerCAmelCase , generator=lowerCAmelCase , device=self.device , dtype=lowerCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) UpperCAmelCase = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCAmelCase = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCAmelCase = {} if accepts_eta: UpperCAmelCase = eta # check if the scheduler accepts generator UpperCAmelCase = '''generator''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: UpperCAmelCase = generator with self.progress_bar(total=lowerCAmelCase ): for i, t in enumerate(lowerCAmelCase ): # expand the latents if we are doing classifier free guidance UpperCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase = self.scheduler.scale_model_input(lowerCAmelCase , lowerCAmelCase ) # predict the noise residual UpperCAmelCase = self.unet(lowerCAmelCase , lowerCAmelCase , encoder_hidden_states=lowerCAmelCase ).sample # perform classifier free guidance if do_classifier_free_guidance: UpperCAmelCase , UpperCAmelCase = noise_pred.chunk(2 ) UpperCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: UpperCAmelCase = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) UpperCAmelCase , UpperCAmelCase = self.cond_fn( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase = self.scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCAmelCase = 1 / 0.18215 * latents UpperCAmelCase = self.vae.decode(lowerCAmelCase ).sample UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase = self.numpy_to_pil(lowerCAmelCase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=lowerCAmelCase , nsfw_content_detected=lowerCAmelCase )
50
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : int = { """configuration_xmod""": [ """XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XmodConfig""", """XmodOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = [ """XMOD_PRETRAINED_MODEL_ARCHIVE_LIST""", """XmodForCausalLM""", """XmodForMaskedLM""", """XmodForMultipleChoice""", """XmodForQuestionAnswering""", """XmodForSequenceClassification""", """XmodForTokenClassification""", """XmodModel""", """XmodPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys _lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowercase : Tuple = { """configuration_perceiver""": ["""PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PerceiverConfig""", """PerceiverOnnxConfig"""], """tokenization_perceiver""": ["""PerceiverTokenizer"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = ["""PerceiverFeatureExtractor"""] _lowercase : Optional[int] = ["""PerceiverImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ """PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PerceiverForImageClassificationConvProcessing""", """PerceiverForImageClassificationFourier""", """PerceiverForImageClassificationLearned""", """PerceiverForMaskedLM""", """PerceiverForMultimodalAutoencoding""", """PerceiverForOpticalFlow""", """PerceiverForSequenceClassification""", """PerceiverLayer""", """PerceiverModel""", """PerceiverPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys _lowercase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : List[str] = { """facebook/encodec_24khz""": """https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json""", """facebook/encodec_48khz""": """https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json""", } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : List[str] = "encodec" def __init__( self : List[str] , lowerCAmelCase : int=[1.5, 3.0, 6.0, 12.0, 24.0] , lowerCAmelCase : Tuple=24000 , lowerCAmelCase : List[Any]=1 , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : str=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=128 , lowerCAmelCase : Any=32 , lowerCAmelCase : Any=1 , lowerCAmelCase : List[Any]=[8, 5, 4, 2] , lowerCAmelCase : Union[str, Any]="weight_norm" , lowerCAmelCase : str=7 , lowerCAmelCase : Optional[int]=7 , lowerCAmelCase : Any=3 , lowerCAmelCase : Tuple=2 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : List[str]="reflect" , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Union[str, Any]=1.0 , lowerCAmelCase : Optional[Any]=1024 , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : str=True , **lowerCAmelCase : str , )-> List[str]: """simple docstring""" UpperCAmelCase = target_bandwidths UpperCAmelCase = sampling_rate UpperCAmelCase = audio_channels UpperCAmelCase = normalize UpperCAmelCase = chunk_length_s UpperCAmelCase = overlap UpperCAmelCase = hidden_size UpperCAmelCase = num_filters UpperCAmelCase = num_residual_layers UpperCAmelCase = upsampling_ratios UpperCAmelCase = norm_type UpperCAmelCase = kernel_size UpperCAmelCase = last_kernel_size UpperCAmelCase = residual_kernel_size UpperCAmelCase = dilation_growth_rate UpperCAmelCase = use_causal_conv UpperCAmelCase = pad_mode UpperCAmelCase = compress UpperCAmelCase = num_lstm_layers UpperCAmelCase = trim_right_ratio UpperCAmelCase = codebook_size UpperCAmelCase = codebook_dim if codebook_dim is not None else hidden_size UpperCAmelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**lowerCAmelCase ) @property def a__( self : str )-> Optional[int]: """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def a__( self : List[str] )-> Optional[int]: """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def a__( self : List[Any] )-> int: """simple docstring""" UpperCAmelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def a__( self : int )-> int: """simple docstring""" return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
50
1
'''simple docstring''' def lowerCamelCase__ ( A : List[Any] , A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = [0 for i in range(r + 1 )] # nc0 = 1 UpperCAmelCase = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. UpperCAmelCase = min(A , A ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
50
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase : Any = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _lowercase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowercase : int = { """configuration_groupvit""": [ """GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GroupViTConfig""", """GroupViTOnnxConfig""", """GroupViTTextConfig""", """GroupViTVisionConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] = [ """GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GroupViTModel""", """GroupViTPreTrainedModel""", """GroupViTTextModel""", """GroupViTVisionModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] = [ """TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFGroupViTModel""", """TFGroupViTPreTrainedModel""", """TFGroupViTTextModel""", """TFGroupViTVisionModel""", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys _lowercase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
'''simple docstring''' import heapq def lowerCamelCase__ ( A : dict ): '''simple docstring''' UpperCAmelCase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(A , [-1 * len(A ), (key, value)] ) # chosen_vertices = set of chosen vertices UpperCAmelCase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices UpperCAmelCase = heapq.heappop(A )[1][0] chosen_vertices.add(A ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: UpperCAmelCase = elem[1][1].index(A ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(A ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _lowercase : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
50
1
'''simple docstring''' import argparse from collections import defaultdict import yaml _lowercase : Dict = """docs/source/en/_toctree.yml""" def lowerCamelCase__ ( A : Any ): '''simple docstring''' UpperCAmelCase = defaultdict(A ) UpperCAmelCase = [] UpperCAmelCase = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'''local''': doc['''local'''], '''title''': doc['''title''']} ) else: new_doc_list.append(A ) UpperCAmelCase = new_doc_list UpperCAmelCase = [key for key, value in counts.items() if value > 1] UpperCAmelCase = [] for duplicate_key in duplicates: UpperCAmelCase = list({doc['''title'''] for doc in doc_list if doc['''local'''] == duplicate_key} ) if len(A ) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if '''local''' not in counts or counts[doc['''local''']] == 1] ) UpperCAmelCase = sorted(A , key=lambda A : s["title"].lower() ) # "overview" gets special treatment and is always first if len(A ) > 1: raise ValueError('''{doc_list} has two \'overview\' docs which is not allowed.''' ) overview_doc.extend(A ) # Sort return overview_doc def lowerCamelCase__ ( A : Tuple=False ): '''simple docstring''' with open(A , encoding='''utf-8''' ) as f: UpperCAmelCase = yaml.safe_load(f.read() ) # Get to the API doc UpperCAmelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCAmelCase = content[api_idx]['''sections'''] # Then to the model doc UpperCAmelCase = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 UpperCAmelCase = api_doc[scheduler_idx]['''sections'''] UpperCAmelCase = clean_doc_toc(A ) UpperCAmelCase = False if new_scheduler_doc != scheduler_doc: UpperCAmelCase = True if overwrite: UpperCAmelCase = new_scheduler_doc if diff: if overwrite: UpperCAmelCase = api_doc with open(A , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(A , allow_unicode=A ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) def lowerCamelCase__ ( A : Optional[Any]=False ): '''simple docstring''' with open(A , encoding='''utf-8''' ) as f: UpperCAmelCase = yaml.safe_load(f.read() ) # Get to the API doc UpperCAmelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCAmelCase = content[api_idx]['''sections'''] # Then to the model doc UpperCAmelCase = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 UpperCAmelCase = False UpperCAmelCase = api_doc[pipeline_idx]['''sections'''] UpperCAmelCase = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: UpperCAmelCase = pipeline_doc['''section'''] UpperCAmelCase = clean_doc_toc(A ) if overwrite: UpperCAmelCase = new_sub_pipeline_doc new_pipeline_docs.append(A ) # sort overall pipeline doc UpperCAmelCase = clean_doc_toc(A ) if new_pipeline_docs != pipeline_docs: UpperCAmelCase = True if overwrite: UpperCAmelCase = new_pipeline_docs if diff: if overwrite: UpperCAmelCase = api_doc with open(A , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(A , allow_unicode=A ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": _lowercase : List[str] = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") _lowercase : Optional[Any] = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
50
'''simple docstring''' import argparse import os import re import packaging.version _lowercase : Optional[int] = """examples/""" _lowercase : str = { """examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""), """doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } _lowercase : Dict = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } _lowercase : List[Any] = """README.md""" def lowerCamelCase__ ( A : int , A : str , A : Optional[Any] ): '''simple docstring''' with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase = f.read() UpperCAmelCase , UpperCAmelCase = REPLACE_PATTERNS[pattern] UpperCAmelCase = replace.replace('''VERSION''' , A ) UpperCAmelCase = re_pattern.sub(A , A ) with open(A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(A ) def lowerCamelCase__ ( A : Optional[int] ): '''simple docstring''' for folder, directories, fnames in os.walk(A ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(A , A ) , A , pattern='''examples''' ) def lowerCamelCase__ ( A : str , A : Dict=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(A , A , A ) if not patch: update_version_in_examples(A ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = '''🤗 Transformers currently provides the following architectures''' UpperCAmelCase = '''1. Want to contribute a new model?''' with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase = f.readlines() # Find the start of the list. UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): UpperCAmelCase = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(A ) def lowerCamelCase__ ( ): '''simple docstring''' with open(REPLACE_FILES['''init'''] , '''r''' ) as f: UpperCAmelCase = f.read() UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(A ).groups()[0] return packaging.version.parse(A ) def lowerCamelCase__ ( A : Tuple=False ): '''simple docstring''' UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: UpperCAmelCase = default_version.base_version elif patch: UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(A ) == 0: UpperCAmelCase = default_version print(f"""Updating version to {version}.""" ) global_version_update(A , patch=A ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = get_version() UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" UpperCAmelCase = current_version.base_version # Check with the user we got that right. UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(A ) == 0: UpperCAmelCase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(A ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": _lowercase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") _lowercase : Union[str, Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
50
1
'''simple docstring''' import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def lowerCamelCase__ ( A : dict ): '''simple docstring''' return (data["data"], data["target"]) def lowerCamelCase__ ( A : np.ndarray , A : np.ndarray , A : np.ndarray ): '''simple docstring''' UpperCAmelCase = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(A , A ) # Predict target for test data UpperCAmelCase = xgb.predict(A ) UpperCAmelCase = predictions.reshape(len(A ) , 1 ) return predictions def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = fetch_california_housing() UpperCAmelCase , UpperCAmelCase = data_handling(A ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = train_test_split( A , A , test_size=0.25 , random_state=1 ) UpperCAmelCase = xgboost(A , A , A ) # Error printing print(f"""Mean Absolute Error : {mean_absolute_error(A , A )}""" ) print(f"""Mean Square Error : {mean_squared_error(A , A )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
50
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : List[Any] , lowerCAmelCase : Optional[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = 3 UpperCAmelCase = 250 UpperCAmelCase = ids_tensor((batch_size, length) , lowerCAmelCase ) UpperCAmelCase = torch.ones((batch_size, length) , device=lowerCAmelCase , dtype=torch.float ) / length return input_ids, scores def a__( self : Dict )-> Optional[int]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = MaxLengthCriteria(max_length=10 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : Optional[Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def a__( self : Tuple )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : int )-> Any: """simple docstring""" validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(lowerCAmelCase ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) UpperCAmelCase = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(lowerCAmelCase ) , 1 )
50
1
'''simple docstring''' from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo _lowercase : List[str] = """\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ _lowercase : Optional[Any] = """\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ _lowercase : Any = """\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__( datasets.Metric ): def a__( self : Optional[int] )-> MetricInfo: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , ) def a__( self : Optional[Any] , lowerCAmelCase : List[List[List[str]]] , lowerCAmelCase : List[List[str]] , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 4 , )-> Dict[str, float]: """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowerCAmelCase , hypotheses=lowerCAmelCase , min_len=lowerCAmelCase , max_len=lowerCAmelCase ) }
50
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCamelCase__( metaclass=lowerCAmelCase ): __magic_name__ : List[str] = ["note_seq"] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : int )-> Optional[int]: """simple docstring""" requires_backends(self , ['''note_seq'''] ) @classmethod def a__( cls : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int] )-> Dict: """simple docstring""" requires_backends(cls , ['''note_seq'''] ) @classmethod def a__( cls : int , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any] )-> Union[str, Any]: """simple docstring""" requires_backends(cls , ['''note_seq'''] )
50
1
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("""Googling.....""") _lowercase : List[Any] = """https://www.google.com/search?q=""" + """ """.join(sys.argv[1:]) _lowercase : Tuple = requests.get(url, headers={"""UserAgent""": UserAgent().random}) # res.raise_for_status() with open("""project1a.html""", """wb""") as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) _lowercase : str = BeautifulSoup(res.text, """html.parser""") _lowercase : str = list(soup.select(""".eZt8xd"""))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("""href""")) else: webbrowser.open(F"""https://google.com{link.get("href")}""")
50
'''simple docstring''' import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( A : List[Any] , A : int , A : List[str] , A : Optional[int] ): '''simple docstring''' UpperCAmelCase = BigBirdConfig.from_json_file(A ) print(f"""Building PyTorch model from configuration: {config}""" ) if is_trivia_qa: UpperCAmelCase = BigBirdForQuestionAnswering(A ) else: UpperCAmelCase = BigBirdForPreTraining(A ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(A , A , is_trivia_qa=A ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(A ) if __name__ == "__main__": _lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--big_bird_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_trivia_qa""", action="""store_true""", help="""Whether to convert a model with a trivia_qa head.""" ) _lowercase : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
50
1
'''simple docstring''' import math def lowerCamelCase__ ( A : int ): '''simple docstring''' UpperCAmelCase = [True] * n UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): UpperCAmelCase = i * 2 while index < n: UpperCAmelCase = False UpperCAmelCase = index + i UpperCAmelCase = [2] for i in range(3 , A , 2 ): if is_prime[i]: primes.append(A ) return primes def lowerCamelCase__ ( A : int = 99_99_66_66_33_33 ): '''simple docstring''' UpperCAmelCase = math.floor(math.sqrt(A ) ) + 1_00 UpperCAmelCase = prime_sieve(A ) UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = primes[prime_index] while (last_prime**2) <= limit: UpperCAmelCase = primes[prime_index + 1] UpperCAmelCase = last_prime**2 UpperCAmelCase = next_prime**2 # Get numbers divisible by lps(current) UpperCAmelCase = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) UpperCAmelCase = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps UpperCAmelCase = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair UpperCAmelCase = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
50
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : Optional[int] )-> str: """simple docstring""" UpperCAmelCase = [[1, 2, 4], [1, 2, 3, 4]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) self.assertTrue(isinstance(dc.token_ids , lowerCAmelCase ) ) with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def a__( self : Union[str, Any] )-> str: """simple docstring""" UpperCAmelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint(lowerCAmelCase ) # fails here def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = [[1, 2, 3], [1, 2, 4]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(3 ) UpperCAmelCase = stepped is True and completed is True and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def a__( self : int )-> Dict: """simple docstring""" UpperCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
50
1
'''simple docstring''' from functools import lru_cache @lru_cache def lowerCamelCase__ ( A : int ): '''simple docstring''' if num < 0: raise ValueError('''Number should not be negative.''' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
50
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCamelCase__ ( A : List[Any] ): '''simple docstring''' return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class UpperCamelCase__( lowerCAmelCase ): @staticmethod def a__( lowerCAmelCase : ArgumentParser )-> Optional[Any]: """simple docstring""" UpperCAmelCase = parser.add_parser('''download''' ) download_parser.add_argument( '''--cache-dir''' , type=lowerCAmelCase , default=lowerCAmelCase , help='''Path to location to store the models''' ) download_parser.add_argument( '''--force''' , action='''store_true''' , help='''Force the model to be download even if already in cache-dir''' ) download_parser.add_argument( '''--trust-remote-code''' , action='''store_true''' , help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''' , ) download_parser.add_argument('''model''' , type=lowerCAmelCase , help='''Name of the model to download''' ) download_parser.set_defaults(func=lowerCAmelCase ) def __init__( self : Dict , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : bool , lowerCAmelCase : bool )-> Any: """simple docstring""" UpperCAmelCase = model UpperCAmelCase = cache UpperCAmelCase = force UpperCAmelCase = trust_remote_code def a__( self : int )-> Optional[Any]: """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
50
1
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : List[Any] , lowerCAmelCase : Optional[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = 3 UpperCAmelCase = 250 UpperCAmelCase = ids_tensor((batch_size, length) , lowerCAmelCase ) UpperCAmelCase = torch.ones((batch_size, length) , device=lowerCAmelCase , dtype=torch.float ) / length return input_ids, scores def a__( self : Dict )-> Optional[int]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = MaxLengthCriteria(max_length=10 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : Optional[Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def a__( self : Tuple )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : int )-> Any: """simple docstring""" validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(lowerCAmelCase ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) UpperCAmelCase = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(lowerCAmelCase ) , 1 )
50
'''simple docstring''' def lowerCamelCase__ ( A : str ): '''simple docstring''' assert column_title.isupper() UpperCAmelCase = 0 UpperCAmelCase = len(A ) - 1 UpperCAmelCase = 0 while index >= 0: UpperCAmelCase = (ord(column_title[index] ) - 64) * pow(26 , A ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
50
1
'''simple docstring''' # This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def lowerCamelCase__ ( A : Optional[int] , A : Dict , A : List[Any] , A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = multiprocessing.Manager() UpperCAmelCase = manager.list() UpperCAmelCase = multiprocessing.Process(target=A , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def lowerCamelCase__ ( A : Optional[Any] , A : Optional[int] , A : Any ): '''simple docstring''' with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil UpperCAmelCase = shutil.rmtree UpperCAmelCase = os.rmdir UpperCAmelCase = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: UpperCAmelCase = {} with swallow_io(): with time_limit(A ): exec(A , A ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(f"""failed: {e}""" ) # Needed for cleaning up. UpperCAmelCase = rmtree UpperCAmelCase = rmdir UpperCAmelCase = chdir @contextlib.contextmanager def lowerCamelCase__ ( A : Dict ): '''simple docstring''' def signal_handler(A : Dict , A : List[str] ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , A ) signal.signal(signal.SIGALRM , A ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = WriteOnlyStringIO() with contextlib.redirect_stdout(A ): with contextlib.redirect_stderr(A ): with redirect_stdin(A ): yield @contextlib.contextmanager def lowerCamelCase__ ( ): '''simple docstring''' with tempfile.TemporaryDirectory() as dirname: with chdir(A ): yield dirname class UpperCamelCase__( lowerCAmelCase ): pass class UpperCamelCase__( io.StringIO ): def a__( self : int , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any] )-> int: """simple docstring""" raise OSError def a__( self : int , *lowerCAmelCase : Tuple , **lowerCAmelCase : int )-> str: """simple docstring""" raise OSError def a__( self : Any , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Any )-> Dict: """simple docstring""" raise OSError def a__( self : Tuple , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any] )-> List[Any]: """simple docstring""" return False class UpperCamelCase__( contextlib._RedirectStream ): # type: ignore __magic_name__ : List[str] = "stdin" @contextlib.contextmanager def lowerCamelCase__ ( A : int ): '''simple docstring''' if root == ".": yield return UpperCAmelCase = os.getcwd() os.chdir(A ) try: yield except BaseException as exc: raise exc finally: os.chdir(A ) def lowerCamelCase__ ( A : Union[str, Any]=None ): '''simple docstring''' if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins UpperCAmelCase = None UpperCAmelCase = None import os UpperCAmelCase = '''1''' UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None import shutil UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None import subprocess UpperCAmelCase = None # type: ignore UpperCAmelCase = None import sys UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None
50
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__( unittest.TestCase ): def __init__( self : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Tuple=32 , lowerCAmelCase : Optional[int]=3 , lowerCAmelCase : Optional[Any]=10 , lowerCAmelCase : Optional[Any]=[10, 20, 30, 40] , lowerCAmelCase : Optional[int]=[1, 1, 2, 1] , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Tuple=True , lowerCAmelCase : List[Any]="relu" , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Union[str, Any]=None , )-> Optional[int]: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = num_channels UpperCAmelCase = embeddings_size UpperCAmelCase = hidden_sizes UpperCAmelCase = depths UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_act UpperCAmelCase = num_labels UpperCAmelCase = scope UpperCAmelCase = len(lowerCAmelCase ) def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = self.get_config() return config, pixel_values def a__( self : str )-> Optional[Any]: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def a__( self : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Any )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = FlaxRegNetModel(config=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__( self : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] )-> List[str]: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = FlaxRegNetForImageClassification(config=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__( self : List[str] )-> Any: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__( lowerCAmelCase , unittest.TestCase ): __magic_name__ : Optional[int] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __magic_name__ : Optional[int] = False __magic_name__ : List[str] = False __magic_name__ : Dict = False def a__( self : Union[str, Any] )-> None: """simple docstring""" UpperCAmelCase = FlaxRegNetModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase ) def a__( self : List[str] )-> List[str]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__( self : Tuple )-> Tuple: """simple docstring""" return def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def a__( self : str )-> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def a__( self : Any )-> List[str]: """simple docstring""" pass def a__( self : Any )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def a__( self : Tuple )-> int: """simple docstring""" def check_hidden_states_output(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int ): UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase ) , expected_num_stages + 1 ) UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = model_class(lowerCAmelCase ) @jax.jit def model_jitted(lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple ): return model(pixel_values=lowerCAmelCase , **lowerCAmelCase ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple() self.assertEqual(len(lowerCAmelCase ) , len(lowerCAmelCase ) ) for jitted_output, output in zip(lowerCAmelCase , lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCamelCase__( unittest.TestCase ): @cached_property def a__( self : Dict )-> int: """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def a__( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=lowerCAmelCase , return_tensors='''np''' ) UpperCAmelCase = model(**lowerCAmelCase ) # verify the logits UpperCAmelCase = (1, 1000) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) UpperCAmelCase = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
50
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor _lowercase : List[str] = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowerCamelCase__ ( A : Optional[int] ): '''simple docstring''' if isinstance(A , torch.Tensor ): return image elif isinstance(A , PIL.Image.Image ): UpperCAmelCase = [image] UpperCAmelCase = [trans(img.convert('''RGB''' ) ) for img in image] UpperCAmelCase = torch.stack(A ) return image class UpperCamelCase__( lowerCAmelCase ): def __init__( self : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any] )-> Tuple: """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM UpperCAmelCase = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowerCAmelCase , scheduler=lowerCAmelCase ) def a__( self : Any , lowerCAmelCase : str )-> str: """simple docstring""" if strength < 0 or strength > 1: raise ValueError(F"""The value of strength should in [0.0, 1.0] but is {strength}""" ) def a__( self : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Tuple , lowerCAmelCase : Any )-> int: """simple docstring""" UpperCAmelCase = min(int(num_inference_steps * strength ) , lowerCAmelCase ) UpperCAmelCase = max(num_inference_steps - init_timestep , 0 ) UpperCAmelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def a__( self : Optional[int] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : int , lowerCAmelCase : str=None )-> Dict: """simple docstring""" if not isinstance(lowerCAmelCase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowerCAmelCase )}""" ) UpperCAmelCase = image.to(device=lowerCAmelCase , dtype=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) and len(lowerCAmelCase ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(lowerCAmelCase )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) UpperCAmelCase = init_latents.shape UpperCAmelCase = randn_tensor(lowerCAmelCase , generator=lowerCAmelCase , device=lowerCAmelCase , dtype=lowerCAmelCase ) # get latents print('''add noise to latents at timestep''' , lowerCAmelCase ) UpperCAmelCase = self.scheduler.add_noise(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = init_latents return latents @torch.no_grad() def __call__( self : Union[str, Any] , lowerCAmelCase : Union[torch.FloatTensor, PIL.Image.Image] = None , lowerCAmelCase : float = 0.8 , lowerCAmelCase : int = 1 , lowerCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase : float = 0.0 , lowerCAmelCase : int = 50 , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[str] = "pil" , lowerCAmelCase : bool = True , )-> Union[ImagePipelineOutput, Tuple]: """simple docstring""" self.check_inputs(lowerCAmelCase ) # 2. Preprocess image UpperCAmelCase = preprocess(lowerCAmelCase ) # 3. set timesteps self.scheduler.set_timesteps(lowerCAmelCase , device=self.device ) UpperCAmelCase , UpperCAmelCase = self.get_timesteps(lowerCAmelCase , lowerCAmelCase , self.device ) UpperCAmelCase = timesteps[:1].repeat(lowerCAmelCase ) # 4. Prepare latent variables UpperCAmelCase = self.prepare_latents(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , self.unet.dtype , self.device , lowerCAmelCase ) UpperCAmelCase = latents # 5. Denoising loop for t in self.progress_bar(lowerCAmelCase ): # 1. predict noise model_output UpperCAmelCase = self.unet(lowerCAmelCase , lowerCAmelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 UpperCAmelCase = self.scheduler.step( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , eta=lowerCAmelCase , use_clipped_model_output=lowerCAmelCase , generator=lowerCAmelCase , ).prev_sample UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase = self.numpy_to_pil(lowerCAmelCase ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=lowerCAmelCase )
50
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : List[Any] = """▁""" _lowercase : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model"""} _lowercase : Any = { """vocab_file""": { """facebook/mbart-large-50-one-to-many-mmt""": ( """https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model""" ), } } _lowercase : int = { """facebook/mbart-large-50-one-to-many-mmt""": 1024, } # fmt: off _lowercase : int = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN""", """af_ZA""", """az_AZ""", """bn_IN""", """fa_IR""", """he_IL""", """hr_HR""", """id_ID""", """ka_GE""", """km_KH""", """mk_MK""", """ml_IN""", """mn_MN""", """mr_IN""", """pl_PL""", """ps_AF""", """pt_XX""", """sv_SE""", """sw_KE""", """ta_IN""", """te_IN""", """th_TH""", """tl_XX""", """uk_UA""", """ur_PK""", """xh_ZA""", """gl_ES""", """sl_SI"""] class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = VOCAB_FILES_NAMES __magic_name__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Union[str, Any] = ["input_ids", "attention_mask"] __magic_name__ : List[int] = [] __magic_name__ : List[int] = [] def __init__( self : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : str=None , lowerCAmelCase : List[Any]="</s>" , lowerCAmelCase : Union[str, Any]="</s>" , lowerCAmelCase : Union[str, Any]="<s>" , lowerCAmelCase : int="<unk>" , lowerCAmelCase : str="<pad>" , lowerCAmelCase : Optional[int]="<mask>" , lowerCAmelCase : Optional[Dict[str, Any]] = None , **lowerCAmelCase : List[Any] , )-> None: """simple docstring""" UpperCAmelCase = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else mask_token UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowerCAmelCase , tgt_lang=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase , ) UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase ) ) UpperCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase = 1 UpperCAmelCase = len(self.sp_model ) UpperCAmelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase ) } UpperCAmelCase = {v: k for k, v in self.lang_code_to_id.items()} UpperCAmelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCAmelCase = src_lang if src_lang is not None else '''en_XX''' UpperCAmelCase = self.lang_code_to_id[self._src_lang] UpperCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def a__( self : Union[str, Any] )-> int: """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def a__( self : str )-> str: """simple docstring""" return self._src_lang @src_lang.setter def a__( self : Any , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Tuple )-> Dict: """simple docstring""" UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = None return state def __setstate__( self : Dict , lowerCAmelCase : Dict )-> None: """simple docstring""" UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase = {} UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__( self : Union[str, Any] )-> Dict: """simple docstring""" UpperCAmelCase = {self.convert_ids_to_tokens(lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__( self : str , lowerCAmelCase : str )-> List[str]: """simple docstring""" return self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase ) def a__( self : Optional[int] , lowerCAmelCase : str )-> int: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase = self.sp_model.PieceToId(lowerCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def a__( self : List[Any] , lowerCAmelCase : int )-> str: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def a__( self : int , lowerCAmelCase : List[Any] )-> Dict: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = '''''' UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase ) + token UpperCAmelCase = True UpperCAmelCase = [] else: current_sub_tokens.append(lowerCAmelCase ) UpperCAmelCase = False out_string += self.sp_model.decode(lowerCAmelCase ) return out_string.strip() def a__( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase = os.path.join( lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase , '''wb''' ) as fi: UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase ) return (out_vocab_file,) def a__( self : List[str] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False )-> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) UpperCAmelCase = [1] * len(self.prefix_tokens ) UpperCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase )) + ([0] * len(lowerCAmelCase )) + suffix_ones def a__( self : Tuple , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None )-> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a__( self : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] , lowerCAmelCase : Optional[str] , **lowerCAmelCase : Optional[int] )-> Optional[Any]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCAmelCase = src_lang UpperCAmelCase = self(lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = self.convert_tokens_to_ids(lowerCAmelCase ) UpperCAmelCase = tgt_lang_id return inputs def a__( self : str , lowerCAmelCase : List[str] , lowerCAmelCase : str = "en_XX" , lowerCAmelCase : Optional[List[str]] = None , lowerCAmelCase : str = "ro_RO" , **lowerCAmelCase : List[str] , )-> BatchEncoding: """simple docstring""" UpperCAmelCase = src_lang UpperCAmelCase = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) def a__( self : Optional[int] )-> Union[str, Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def a__( self : List[Any] )-> int: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a__( self : List[Any] , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[src_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id] def a__( self : int , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[tgt_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id]
50
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : List[Any] = logging.get_logger(__name__) _lowercase : List[Any] = { """alibaba-damo/mgp-str-base""": """https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json""", } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[Any] = "mgp-str" def __init__( self : int , lowerCAmelCase : int=[32, 128] , lowerCAmelCase : str=4 , lowerCAmelCase : Optional[Any]=3 , lowerCAmelCase : str=27 , lowerCAmelCase : Dict=38 , lowerCAmelCase : str=50257 , lowerCAmelCase : List[Any]=30522 , lowerCAmelCase : Union[str, Any]=768 , lowerCAmelCase : Optional[Any]=12 , lowerCAmelCase : str=12 , lowerCAmelCase : Optional[Any]=4.0 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : Union[str, Any]=1E-5 , lowerCAmelCase : str=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : int=0.0 , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : Union[str, Any]=0.02 , **lowerCAmelCase : int , )-> Any: """simple docstring""" super().__init__(**lowerCAmelCase ) UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = max_token_length UpperCAmelCase = num_character_labels UpperCAmelCase = num_bpe_labels UpperCAmelCase = num_wordpiece_labels UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = mlp_ratio UpperCAmelCase = distilled UpperCAmelCase = layer_norm_eps UpperCAmelCase = drop_rate UpperCAmelCase = qkv_bias UpperCAmelCase = attn_drop_rate UpperCAmelCase = drop_path_rate UpperCAmelCase = output_aa_attentions UpperCAmelCase = initializer_range
50
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers _lowercase : Union[str, Any] = """3""" print("""Python version:""", sys.version) print("""transformers version:""", transformers.__version__) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) print("""NCCL version:""", torch.cuda.nccl.version()) except ImportError: print("""Torch version:""", None) try: import deepspeed print("""DeepSpeed version:""", deepspeed.__version__) except ImportError: print("""DeepSpeed version:""", None) try: import tensorflow as tf print("""TensorFlow version:""", tf.__version__) print("""TF GPUs available:""", bool(tf.config.list_physical_devices("""GPU"""))) print("""Number of TF GPUs available:""", len(tf.config.list_physical_devices("""GPU"""))) except ImportError: print("""TensorFlow version:""", None)
50
1
'''simple docstring''' import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def lowerCamelCase__ ( A : Union[str, Any]=32 , A : Dict=10 , A : int=1_00 , A : Optional[int]=10_26 , A : Dict=True , A : Dict="data/tokenized_stories_train_wikitext103.jbl" , A : Optional[int]="igf_context_pairs.jbl" , ): '''simple docstring''' set_seed(3 ) # generate train_data and objective_set UpperCAmelCase , UpperCAmelCase = generate_datasets( A , A , number=A , min_len=10_26 , trim=A ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? UpperCAmelCase = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # load pretrained model UpperCAmelCase = load_gpta('''gpt2''' ).to(A ) print('''computing perplexity on objective set''' ) UpperCAmelCase = compute_perplexity(A , A , A ).item() print('''perplexity on objective set:''' , A ) # collect igf pairs and save to file demo.jbl collect_objective_set(A , A , A , A , A , A , A , A ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def lowerCamelCase__ ( A : Optional[Any] , A : List[Any]=15 , A : Any=1_28 , A : Dict=1_00 , A : Any="igf_model.pt" , ): '''simple docstring''' set_seed(42 ) # Load pre-trained model UpperCAmelCase = GPTaLMHeadModel.from_pretrained('''gpt2''' ) # Initialize secondary learner to use embedding weights of model UpperCAmelCase = SecondaryLearner(A ) # Train secondary learner UpperCAmelCase = train_secondary_learner( A , A , max_epochs=A , batch_size=A , eval_freq=1_00 , igf_model_path=A , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def lowerCamelCase__ ( A : int , A : List[Any] , A : Any , A : Optional[Any]=32 , A : Union[str, Any]=10_00 , A : List[Any]=16 , A : Any=1.0 , A : List[str]=recopy_gpta , A : Any=None , A : Union[str, Any]=10 , A : Any="gpt2_finetuned.pt" , ): '''simple docstring''' UpperCAmelCase = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) UpperCAmelCase = RandomSampler(A ) UpperCAmelCase = DataLoader(A , sampler=A ) UpperCAmelCase = max_steps // (len(A )) + 1 UpperCAmelCase = 0 UpperCAmelCase = torch.zeros((1, context_len) , dtype=torch.long , device=A ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = recopy_model(A , A , A ) model.train() if secondary_learner is not None: secondary_learner.to(A ) secondary_learner.eval() UpperCAmelCase = [] UpperCAmelCase = 0 UpperCAmelCase = [] UpperCAmelCase = [] # Compute the performance of the transformer model at the beginning UpperCAmelCase = compute_perplexity(A , A , A ) test_perps.append(A ) print('''Test perplexity, step''' , A , ''':''' , A ) for epoch in range(int(A ) ): for step, example in enumerate(A ): torch.cuda.empty_cache() UpperCAmelCase = random.randint(0 , example.size(2 ) - context_len - 1 ) UpperCAmelCase = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() UpperCAmelCase = model(A , labels=A ) UpperCAmelCase = True if secondary_learner is not None: UpperCAmelCase = secondary_learner.forward( torch.tensor(A , dtype=torch.long , device=A ).unsqueeze(0 ) )[0].item() observed_qs.append(float(A ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: UpperCAmelCase = -1 if predicted_q < threshold: UpperCAmelCase = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) UpperCAmelCase = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() UpperCAmelCase = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: UpperCAmelCase = compute_perplexity(A , A , A ) test_perps.append(A ) print('''Test perplexity, step''' , A , ''':''' , A ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , A ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description='''Fine-tune a transformer model with IGF on a language modeling task''' ) # Required parameters parser.add_argument( '''--data_dir''' , default=A , type=A , required=A , help='''The input data dir. Should contain data files for WikiText.''' , ) parser.add_argument( '''--model_name_or_path''' , default=A , type=A , required=A , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--data_file''' , type=A , default=A , help=( '''A jbl file containing tokenized data which can be split as objective dataset, ''' '''train_dataset and test_dataset.''' ) , ) parser.add_argument( '''--igf_data_file''' , type=A , default=A , help='''A jbl file containing the context and information gain pairs to train secondary learner.''' , ) parser.add_argument( '''--output_dir''' , default=A , type=A , required=A , help='''The output directory where the final fine-tuned model is stored.''' , ) parser.add_argument( '''--tokenizer_name''' , default=A , type=A , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument('''--seed''' , type=A , default=A , help='''A seed for reproducible training.''' ) parser.add_argument( '''--context_len''' , default=32 , type=A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--size_objective_set''' , default=1_00 , type=A , help='''number of articles that are long enough to be used as our objective set''' , ) parser.add_argument( '''--eval_freq''' , default=1_00 , type=A , help='''secondary model evaluation is triggered at eval_freq''' ) parser.add_argument('''--max_steps''' , default=10_00 , type=A , help='''To calculate training epochs''' ) parser.add_argument( '''--secondary_learner_batch_size''' , default=1_28 , type=A , help='''batch size of training data for secondary learner''' , ) parser.add_argument( '''--batch_size''' , default=16 , type=A , help='''batch size of training data of language model(gpt2) ''' ) parser.add_argument( '''--eval_interval''' , default=10 , type=A , help=( '''decay the selectivity of our secondary learner filter from''' '''1 standard deviation above average to 1 below average after 10 batches''' ) , ) parser.add_argument( '''--number''' , default=1_00 , type=A , help='''The number of examples split to be used as objective_set/test_data''' ) parser.add_argument( '''--min_len''' , default=10_26 , type=A , help='''The minimum length of the article to be used as objective set''' ) parser.add_argument( '''--secondary_learner_max_epochs''' , default=15 , type=A , help='''number of epochs to train secondary learner''' ) parser.add_argument('''--trim''' , default=A , type=A , help='''truncate the example if it exceeds context length''' ) parser.add_argument( '''--threshold''' , default=1.0 , type=A , help=( '''The threshold value used by secondary learner to filter the train_data and allow only''' ''' informative data as input to the model''' ) , ) parser.add_argument('''--finetuned_model_name''' , default='''gpt2_finetuned.pt''' , type=A , help='''finetuned_model_name''' ) parser.add_argument( '''--recopy_model''' , default=A , type=A , help='''Reset the model to the original pretrained GPT-2 weights after each iteration''' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=1_00 , min_len=10_26 , trim=A , data_file='''data/tokenized_stories_train_wikitext103.jbl''' , igf_data_file='''igf_context_pairs.jbl''' , ) # Load train data for secondary learner UpperCAmelCase = joblib.load('''data/IGF_values.jbl''' ) # Train secondary learner UpperCAmelCase = training_secondary_learner( A , secondary_learner_max_epochs=15 , secondary_learner_batch_size=1_28 , eval_freq=1_00 , igf_model_path='''igf_model.pt''' , ) # load pretrained gpt2 model UpperCAmelCase = GPTaLMHeadModel.from_pretrained('''gpt2''' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model UpperCAmelCase , UpperCAmelCase = generate_datasets( context_len=32 , file='''data/tokenized_stories_train_wikitext103.jbl''' , number=1_00 , min_len=10_26 , trim=A ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( A , A , A , context_len=32 , max_steps=10_00 , batch_size=16 , threshold=1.0 , recopy_model=A , secondary_learner=A , eval_interval=10 , finetuned_model_name='''gpt2_finetuned.pt''' , ) if __name__ == "__main__": main()
50
'''simple docstring''' import functools def lowerCamelCase__ ( A : list[int] , A : list[int] ): '''simple docstring''' if not isinstance(A , A ) or not all(isinstance(A , A ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(A ) != 3 or not all(isinstance(A , A ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(A ) == 0: return 0 if min(A ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(A ) >= 3_66: raise ValueError('''All days elements should be less than 366''' ) UpperCAmelCase = set(A ) @functools.cache def dynamic_programming(A : int ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
50
1
'''simple docstring''' from collections.abc import Generator def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = 0, 1 while True: UpperCAmelCase , UpperCAmelCase = b, a + b yield b def lowerCamelCase__ ( A : int = 10_00 ): '''simple docstring''' UpperCAmelCase = 1 UpperCAmelCase = fibonacci_generator() while len(str(next(A ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
50
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase : Any = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys _lowercase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
1
'''simple docstring''' import re import string import numpy as np import datasets _lowercase : List[str] = """ Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. """ _lowercase : str = """ Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 25.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 50.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 75.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results[\"exact_match\"], 1)) 100.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"] >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 33.3 """ _lowercase : List[str] = """ """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__( datasets.Metric ): def a__( self : Tuple )-> str: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , reference_urls=[] , ) def a__( self : int , lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : List[str]=None , lowerCAmelCase : Optional[Any]=False , lowerCAmelCase : Any=False , lowerCAmelCase : Optional[Any]=False , )-> Optional[Any]: """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: UpperCAmelCase = np.array([re.sub(lowerCAmelCase , '''''' , lowerCAmelCase ) for x in predictions] ) UpperCAmelCase = np.array([re.sub(lowerCAmelCase , '''''' , lowerCAmelCase ) for x in references] ) else: UpperCAmelCase = np.asarray(lowerCAmelCase ) UpperCAmelCase = np.asarray(lowerCAmelCase ) if ignore_case: UpperCAmelCase = np.char.lower(lowerCAmelCase ) UpperCAmelCase = np.char.lower(lowerCAmelCase ) if ignore_punctuation: UpperCAmelCase = string.punctuation.maketrans('''''' , '''''' , string.punctuation ) UpperCAmelCase = np.char.translate(lowerCAmelCase , table=lowerCAmelCase ) UpperCAmelCase = np.char.translate(lowerCAmelCase , table=lowerCAmelCase ) if ignore_numbers: UpperCAmelCase = string.digits.maketrans('''''' , '''''' , string.digits ) UpperCAmelCase = np.char.translate(lowerCAmelCase , table=lowerCAmelCase ) UpperCAmelCase = np.char.translate(lowerCAmelCase , table=lowerCAmelCase ) UpperCAmelCase = predictions == references return {"exact_match": np.mean(lowerCAmelCase ) * 100}
50
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def lowerCamelCase__ ( A : Optional[Any] , A : Tuple=1 ): '''simple docstring''' if n_shave_prefix_segments >= 0: return ".".join(path.split('''.''' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('''.''' )[:n_shave_prefix_segments] ) def lowerCamelCase__ ( A : int , A : Optional[Any]=0 ): '''simple docstring''' UpperCAmelCase = [] for old_item in old_list: UpperCAmelCase = old_item.replace('''in_layers.0''' , '''norm1''' ) UpperCAmelCase = new_item.replace('''in_layers.2''' , '''conv1''' ) UpperCAmelCase = new_item.replace('''out_layers.0''' , '''norm2''' ) UpperCAmelCase = new_item.replace('''out_layers.3''' , '''conv2''' ) UpperCAmelCase = new_item.replace('''emb_layers.1''' , '''time_emb_proj''' ) UpperCAmelCase = new_item.replace('''skip_connection''' , '''conv_shortcut''' ) UpperCAmelCase = shave_segments(A , n_shave_prefix_segments=A ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def lowerCamelCase__ ( A : Any , A : int=0 ): '''simple docstring''' UpperCAmelCase = [] for old_item in old_list: UpperCAmelCase = old_item UpperCAmelCase = new_item.replace('''norm.weight''' , '''group_norm.weight''' ) UpperCAmelCase = new_item.replace('''norm.bias''' , '''group_norm.bias''' ) UpperCAmelCase = new_item.replace('''proj_out.weight''' , '''proj_attn.weight''' ) UpperCAmelCase = new_item.replace('''proj_out.bias''' , '''proj_attn.bias''' ) UpperCAmelCase = shave_segments(A , n_shave_prefix_segments=A ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def lowerCamelCase__ ( A : Tuple , A : Union[str, Any] , A : int , A : Dict=None , A : Optional[int]=None , A : Optional[Any]=None ): '''simple docstring''' assert isinstance(A , A ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): UpperCAmelCase = old_checkpoint[path] UpperCAmelCase = old_tensor.shape[0] // 3 UpperCAmelCase = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) UpperCAmelCase = old_tensor.shape[0] // config['''num_head_channels'''] // 3 UpperCAmelCase = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = old_tensor.split(channels // num_heads , dim=1 ) UpperCAmelCase = query.reshape(A ) UpperCAmelCase = key.reshape(A ) UpperCAmelCase = value.reshape(A ) for path in paths: UpperCAmelCase = path['''new'''] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here UpperCAmelCase = new_path.replace('''middle_block.0''' , '''mid_block.resnets.0''' ) UpperCAmelCase = new_path.replace('''middle_block.1''' , '''mid_block.attentions.0''' ) UpperCAmelCase = new_path.replace('''middle_block.2''' , '''mid_block.resnets.1''' ) if additional_replacements is not None: for replacement in additional_replacements: UpperCAmelCase = new_path.replace(replacement['''old'''] , replacement['''new'''] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: UpperCAmelCase = old_checkpoint[path['''old''']][:, :, 0] else: UpperCAmelCase = old_checkpoint[path['''old''']] def lowerCamelCase__ ( A : Union[str, Any] , A : Dict ): '''simple docstring''' UpperCAmelCase = {} UpperCAmelCase = checkpoint['''time_embed.0.weight'''] UpperCAmelCase = checkpoint['''time_embed.0.bias'''] UpperCAmelCase = checkpoint['''time_embed.2.weight'''] UpperCAmelCase = checkpoint['''time_embed.2.bias'''] UpperCAmelCase = checkpoint['''input_blocks.0.0.weight'''] UpperCAmelCase = checkpoint['''input_blocks.0.0.bias'''] UpperCAmelCase = checkpoint['''out.0.weight'''] UpperCAmelCase = checkpoint['''out.0.bias'''] UpperCAmelCase = checkpoint['''out.2.weight'''] UpperCAmelCase = checkpoint['''out.2.bias'''] # Retrieves the keys for the input blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''input_blocks''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""input_blocks.{layer_id}""" in key] for layer_id in range(A ) } # Retrieves the keys for the middle blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''middle_block''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""middle_block.{layer_id}""" in key] for layer_id in range(A ) } # Retrieves the keys for the output blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''output_blocks''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""output_blocks.{layer_id}""" in key] for layer_id in range(A ) } for i in range(1 , A ): UpperCAmelCase = (i - 1) // (config['''num_res_blocks'''] + 1) UpperCAmelCase = (i - 1) % (config['''num_res_blocks'''] + 1) UpperCAmelCase = [key for key in input_blocks[i] if f"""input_blocks.{i}.0""" in key] UpperCAmelCase = [key for key in input_blocks[i] if f"""input_blocks.{i}.1""" in key] if f"""input_blocks.{i}.0.op.weight""" in checkpoint: UpperCAmelCase = checkpoint[ f"""input_blocks.{i}.0.op.weight""" ] UpperCAmelCase = checkpoint[ f"""input_blocks.{i}.0.op.bias""" ] continue UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = {'''old''': f"""input_blocks.{i}.0""", '''new''': f"""down_blocks.{block_id}.resnets.{layer_in_block_id}"""} UpperCAmelCase = {'''old''': '''resnets.2.op''', '''new''': '''downsamplers.0.op'''} assign_to_checkpoint( A , A , A , additional_replacements=[meta_path, resnet_op] , config=A ) if len(A ): UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''old''': f"""input_blocks.{i}.1""", '''new''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase = { f"""input_blocks.{i}.1.qkv.bias""": { '''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""input_blocks.{i}.1.qkv.weight""": { '''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( A , A , A , additional_replacements=[meta_path] , attention_paths_to_split=A , config=A , ) UpperCAmelCase = middle_blocks[0] UpperCAmelCase = middle_blocks[1] UpperCAmelCase = middle_blocks[2] UpperCAmelCase = renew_resnet_paths(A ) assign_to_checkpoint(A , A , A , config=A ) UpperCAmelCase = renew_resnet_paths(A ) assign_to_checkpoint(A , A , A , config=A ) UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''middle_block.1.qkv.bias''': { '''key''': '''mid_block.attentions.0.key.bias''', '''query''': '''mid_block.attentions.0.query.bias''', '''value''': '''mid_block.attentions.0.value.bias''', }, '''middle_block.1.qkv.weight''': { '''key''': '''mid_block.attentions.0.key.weight''', '''query''': '''mid_block.attentions.0.query.weight''', '''value''': '''mid_block.attentions.0.value.weight''', }, } assign_to_checkpoint( A , A , A , attention_paths_to_split=A , config=A ) for i in range(A ): UpperCAmelCase = i // (config['''num_res_blocks'''] + 1) UpperCAmelCase = i % (config['''num_res_blocks'''] + 1) UpperCAmelCase = [shave_segments(A , 2 ) for name in output_blocks[i]] UpperCAmelCase = {} for layer in output_block_layers: UpperCAmelCase , UpperCAmelCase = layer.split('''.''' )[0], shave_segments(A , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(A ) else: UpperCAmelCase = [layer_name] if len(A ) > 1: UpperCAmelCase = [key for key in output_blocks[i] if f"""output_blocks.{i}.0""" in key] UpperCAmelCase = [key for key in output_blocks[i] if f"""output_blocks.{i}.1""" in key] UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = {'''old''': f"""output_blocks.{i}.0""", '''new''': f"""up_blocks.{block_id}.resnets.{layer_in_block_id}"""} assign_to_checkpoint(A , A , A , additional_replacements=[meta_path] , config=A ) if ["conv.weight", "conv.bias"] in output_block_list.values(): UpperCAmelCase = list(output_block_list.values() ).index(['''conv.weight''', '''conv.bias'''] ) UpperCAmelCase = checkpoint[ f"""output_blocks.{i}.{index}.conv.weight""" ] UpperCAmelCase = checkpoint[ f"""output_blocks.{i}.{index}.conv.bias""" ] # Clear attentions as they have been attributed above. if len(A ) == 2: UpperCAmelCase = [] if len(A ): UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''old''': f"""output_blocks.{i}.1""", '''new''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase = { f"""output_blocks.{i}.1.qkv.bias""": { '''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""output_blocks.{i}.1.qkv.weight""": { '''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( A , A , A , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('''qkv''' in key for key in attentions ) else None , config=A , ) else: UpperCAmelCase = renew_resnet_paths(A , n_shave_prefix_segments=1 ) for path in resnet_0_paths: UpperCAmelCase = '''.'''.join(['''output_blocks''', str(A ), path['''old''']] ) UpperCAmelCase = '''.'''.join(['''up_blocks''', str(A ), '''resnets''', str(A ), path['''new''']] ) UpperCAmelCase = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": _lowercase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") _lowercase : Dict = parser.parse_args() _lowercase : List[Any] = torch.load(args.checkpoint_path) with open(args.config_file) as f: _lowercase : List[str] = json.loads(f.read()) _lowercase : Union[str, Any] = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] _lowercase : Any = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: _lowercase : Tuple = DDPMScheduler.from_config("""/""".join(args.checkpoint_path.split("""/""")[:-1])) _lowercase : Optional[Any] = VQModel.from_pretrained("""/""".join(args.checkpoint_path.split("""/""")[:-1])) _lowercase : Optional[Any] = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
50
1
'''simple docstring''' from __future__ import annotations def lowerCamelCase__ ( A : int ): '''simple docstring''' UpperCAmelCase = 2 UpperCAmelCase = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(A ) if n > 1: factors.append(A ) return factors if __name__ == "__main__": import doctest doctest.testmod()
50
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Any = logging.get_logger(__name__) _lowercase : Dict = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = "dpr" def __init__( self : Dict , lowerCAmelCase : Any=30522 , lowerCAmelCase : List[str]=768 , lowerCAmelCase : Union[str, Any]=12 , lowerCAmelCase : Tuple=12 , lowerCAmelCase : Optional[int]=3072 , lowerCAmelCase : Optional[int]="gelu" , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : Any=0.1 , lowerCAmelCase : Optional[Any]=512 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : str=1E-12 , lowerCAmelCase : Optional[Any]=0 , lowerCAmelCase : Tuple="absolute" , lowerCAmelCase : int = 0 , **lowerCAmelCase : Union[str, Any] , )-> Optional[int]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = projection_dim UpperCAmelCase = position_embedding_type
50
1
'''simple docstring''' from functools import reduce _lowercase : int = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def lowerCamelCase__ ( A : str = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda A , A : str(int(A ) * int(A ) ) , n[i : i + 13] ) ) for i in range(len(A ) - 12 ) ) if __name__ == "__main__": print(F"""{solution() = }""")
50
'''simple docstring''' import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _lowercase : Tuple = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def lowerCamelCase__ ( A : Optional[Any] ): '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def lowerCamelCase__ ( A : Any , A : str ): '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase = False elif args.student_type == "gpt2": UpperCAmelCase = False def lowerCamelCase__ ( A : List[Any] , A : List[str] ): '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase = False def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=A , required=A , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=A , required=A , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=A , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=A , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=A , required=A , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=A , type=A , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=A , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=A , required=A , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=A , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=A , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=A , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=A , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=A , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=A , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=A , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=A , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=A , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=A , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=A , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=A , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=A , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=A , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=A , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=A , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=A , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=A , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=A , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=A , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=A , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=A , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=A , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=A , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=A , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=A , default=5_00 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=A , default=40_00 , help='''Checkpoint interval.''' ) UpperCAmelCase = parser.parse_args() sanity_checks(A ) # ARGS # init_gpu_params(A ) set_seed(A ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(f"""Param: {args}""" ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(A ) , A , indent=4 ) git_log(args.dump_path ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = MODEL_CLASSES[args.student_type] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # UpperCAmelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) UpperCAmelCase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): UpperCAmelCase = tokenizer.all_special_tokens.index(A ) UpperCAmelCase = tokenizer.all_special_ids[idx] logger.info(f"""Special tokens {special_tok_ids}""" ) UpperCAmelCase = special_tok_ids UpperCAmelCase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f"""Loading data from {args.data_file}""" ) with open(args.data_file , '''rb''' ) as fp: UpperCAmelCase = pickle.load(A ) if args.mlm: logger.info(f"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts , '''rb''' ) as fp: UpperCAmelCase = pickle.load(A ) UpperCAmelCase = np.maximum(A , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): UpperCAmelCase = 0.0 # do not predict special tokens UpperCAmelCase = torch.from_numpy(A ) else: UpperCAmelCase = None UpperCAmelCase = LmSeqsDataset(params=A , data=A ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(f"""Loading student config from {args.student_config}""" ) UpperCAmelCase = student_config_class.from_pretrained(args.student_config ) UpperCAmelCase = True if args.student_pretrained_weights is not None: logger.info(f"""Loading pretrained weights from {args.student_pretrained_weights}""" ) UpperCAmelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=A ) else: UpperCAmelCase = student_model_class(A ) if args.n_gpu > 0: student.to(f"""cuda:{args.local_rank}""" ) logger.info('''Student loaded.''' ) # TEACHER # UpperCAmelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=A ) if args.n_gpu > 0: teacher.to(f"""cuda:{args.local_rank}""" ) logger.info(f"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(A , A ) if args.freeze_token_type_embds: freeze_token_type_embeddings(A , A ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() UpperCAmelCase = Distiller( params=A , dataset=A , token_probs=A , student=A , teacher=A ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
50
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCamelCase__( metaclass=lowerCAmelCase ): __magic_name__ : int = ["torch", "transformers", "onnx"] def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any] )-> Dict: """simple docstring""" requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def a__( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Dict )-> Any: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def a__( cls : Optional[int] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int )-> int: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class UpperCamelCase__( metaclass=lowerCAmelCase ): __magic_name__ : Dict = ["torch", "transformers", "onnx"] def __init__( self : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[Any] )-> List[str]: """simple docstring""" requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def a__( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : str )-> Union[str, Any]: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def a__( cls : Tuple , *lowerCAmelCase : str , **lowerCAmelCase : Optional[Any] )-> List[str]: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class UpperCamelCase__( metaclass=lowerCAmelCase ): __magic_name__ : Tuple = ["torch", "transformers", "onnx"] def __init__( self : int , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int] )-> List[Any]: """simple docstring""" requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def a__( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : str )-> Optional[Any]: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def a__( cls : Optional[Any] , *lowerCAmelCase : str , **lowerCAmelCase : int )-> Optional[int]: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class UpperCamelCase__( metaclass=lowerCAmelCase ): __magic_name__ : List[str] = ["torch", "transformers", "onnx"] def __init__( self : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[Any] )-> Optional[Any]: """simple docstring""" requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def a__( cls : Optional[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any] )-> str: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def a__( cls : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any )-> Tuple: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class UpperCamelCase__( metaclass=lowerCAmelCase ): __magic_name__ : Optional[int] = ["torch", "transformers", "onnx"] def __init__( self : Tuple , *lowerCAmelCase : List[Any] , **lowerCAmelCase : int )-> Optional[int]: """simple docstring""" requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def a__( cls : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any] )-> List[str]: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def a__( cls : int , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Union[str, Any] )-> List[str]: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class UpperCamelCase__( metaclass=lowerCAmelCase ): __magic_name__ : Union[str, Any] = ["torch", "transformers", "onnx"] def __init__( self : Any , *lowerCAmelCase : Any , **lowerCAmelCase : str )-> Optional[int]: """simple docstring""" requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def a__( cls : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int] )-> str: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def a__( cls : Any , *lowerCAmelCase : int , **lowerCAmelCase : Dict )-> Optional[int]: """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
50
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Tuple = ["image_processor", "tokenizer"] __magic_name__ : Any = "ViTImageProcessor" __magic_name__ : str = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : List[str] , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=None , **lowerCAmelCase : Optional[int] )-> List[Any]: """simple docstring""" UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCAmelCase , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase , lowerCAmelCase ) def __call__( self : str , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=None , **lowerCAmelCase : List[str] )-> List[Any]: """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''' ) if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''' ) if text is not None: UpperCAmelCase = self.tokenizer(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if visual_prompt is not None: UpperCAmelCase = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if images is not None: UpperCAmelCase = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if visual_prompt is not None and images is not None: UpperCAmelCase = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: UpperCAmelCase = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase ) , tensor_type=lowerCAmelCase ) def a__( self : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int] )-> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str] )-> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase ) @property def a__( self : List[Any] )-> Optional[Any]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCAmelCase , ) return self.image_processor_class @property def a__( self : Any )-> List[Any]: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowerCAmelCase , ) return self.image_processor
50
1
'''simple docstring''' def lowerCamelCase__ ( A : int ): '''simple docstring''' UpperCAmelCase = int(A ) if decimal in (0, 1): # Exit cases for the recursion return str(A ) UpperCAmelCase , UpperCAmelCase = divmod(A , 2 ) return binary_recursive(A ) + str(A ) def lowerCamelCase__ ( A : str ): '''simple docstring''' UpperCAmelCase = str(A ).strip() if not number: raise ValueError('''No input value was provided''' ) UpperCAmelCase = '''-''' if number.startswith('''-''' ) else '''''' UpperCAmelCase = number.lstrip('''-''' ) if not number.isnumeric(): raise ValueError('''Input value is not an integer''' ) return f"""{negative}0b{binary_recursive(int(A ) )}""" if __name__ == "__main__": from doctest import testmod testmod()
50
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Any = { """configuration_maskformer""": ["""MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MaskFormerConfig"""], """configuration_maskformer_swin""": ["""MaskFormerSwinConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = ["""MaskFormerFeatureExtractor"""] _lowercase : Dict = ["""MaskFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = [ """MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """MaskFormerForInstanceSegmentation""", """MaskFormerModel""", """MaskFormerPreTrainedModel""", ] _lowercase : List[Any] = [ """MaskFormerSwinBackbone""", """MaskFormerSwinModel""", """MaskFormerSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys _lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
50
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available _lowercase : List[str] = {"""tokenization_herbert""": ["""HerbertTokenizer"""]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = ["""HerbertTokenizerFast"""] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowercase : Optional[Any] = 16 _lowercase : Dict = 32 def lowerCamelCase__ ( A : Accelerator , A : int = 16 ): '''simple docstring''' UpperCAmelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(A : int ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=A , max_length=A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase = datasets.map( A , batched=A , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(A : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase = 8 else: UpperCAmelCase = None return tokenizer.pad( A , padding='''longest''' , max_length=A , pad_to_multiple_of=A , return_tensors='''pt''' , ) # Instantiate dataloaders. UpperCAmelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=A , collate_fn=A , batch_size=A ) UpperCAmelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=A , collate_fn=A , batch_size=A ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowercase : Union[str, Any] = mocked_dataloaders # noqa: F811 def lowerCamelCase__ ( A : Optional[Any] , A : Tuple ): '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , A ) == "1": UpperCAmelCase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: UpperCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase = config['''lr'''] UpperCAmelCase = int(config['''num_epochs'''] ) UpperCAmelCase = int(config['''seed'''] ) UpperCAmelCase = int(config['''batch_size'''] ) set_seed(A ) UpperCAmelCase , UpperCAmelCase = get_dataloaders(A , A ) UpperCAmelCase = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation UpperCAmelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=A ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase = AdamW(params=model.parameters() , lr=A ) # Instantiate scheduler UpperCAmelCase = get_linear_schedule_with_warmup( optimizer=A , num_warmup_steps=1_00 , num_training_steps=(len(A ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( A , A , A , A , A ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: UpperCAmelCase = os.path.split(A )[-1].split('''.''' )[0] accelerator.init_trackers(A , A ) # Now we train the model for epoch in range(A ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: UpperCAmelCase = 0 for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase = model(**A ) UpperCAmelCase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() UpperCAmelCase = loss / gradient_accumulation_steps accelerator.backward(A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase = model(**A ) UpperCAmelCase = outputs.logits.argmax(dim=-1 ) UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=A , references=A , ) UpperCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , A ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(A ), '''epoch''': epoch, } , step=A , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=A , default=A , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=A , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(A , A ) if __name__ == "__main__": main()
50
1
'''simple docstring''' import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class UpperCamelCase__( unittest.TestCase ): def a__( self : Optional[int] )-> List[Any]: """simple docstring""" UpperCAmelCase = 10 def a__( self : List[str] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = [1, 2, 3, 4] UpperCAmelCase = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(lowerCAmelCase , self.block_size , 0 ) , lowerCAmelCase ) def a__( self : Optional[Any] )-> List[str]: """simple docstring""" UpperCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] UpperCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(lowerCAmelCase , self.block_size , 0 ) , lowerCAmelCase ) def a__( self : List[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] UpperCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(lowerCAmelCase , self.block_size , 0 ) , lowerCAmelCase ) def a__( self : Union[str, Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' UpperCAmelCase , UpperCAmelCase = process_story(lowerCAmelCase ) self.assertEqual(lowerCAmelCase , [] ) def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = '''''' UpperCAmelCase , UpperCAmelCase = process_story(lowerCAmelCase ) self.assertEqual(lowerCAmelCase , [] ) self.assertEqual(lowerCAmelCase , [] ) def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" UpperCAmelCase = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) UpperCAmelCase , UpperCAmelCase = process_story(lowerCAmelCase ) UpperCAmelCase = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = ['''It was the best of times.'''] self.assertEqual(lowerCAmelCase , lowerCAmelCase ) def a__( self : int )-> Optional[int]: """simple docstring""" UpperCAmelCase = torch.tensor([1, 2, 3, 4] ) UpperCAmelCase = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(lowerCAmelCase , 0 ).numpy() , expected.numpy() ) def a__( self : Any )-> Any: """simple docstring""" UpperCAmelCase = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) UpperCAmelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowerCAmelCase , 23 ).numpy() , expected.numpy() ) def a__( self : Tuple )-> Any: """simple docstring""" UpperCAmelCase = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) UpperCAmelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowerCAmelCase , 1 ).numpy() , expected.numpy() ) def a__( self : Optional[int] )-> str: """simple docstring""" UpperCAmelCase = 101 UpperCAmelCase = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) UpperCAmelCase = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) UpperCAmelCase = compute_token_type_ids(lowerCAmelCase , lowerCAmelCase ) np.testing.assert_array_equal(lowerCAmelCase , lowerCAmelCase )
50
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : int = { """configuration_xmod""": [ """XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XmodConfig""", """XmodOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = [ """XMOD_PRETRAINED_MODEL_ARCHIVE_LIST""", """XmodForCausalLM""", """XmodForMaskedLM""", """XmodForMultipleChoice""", """XmodForQuestionAnswering""", """XmodForSequenceClassification""", """XmodForTokenClassification""", """XmodModel""", """XmodPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys _lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
1
'''simple docstring''' import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() _lowercase : int = [ """word_embeddings_layernorm.weight""", """word_embeddings_layernorm.bias""", """input_layernorm.weight""", """input_layernorm.bias""", """post_attention_layernorm.weight""", """post_attention_layernorm.bias""", """self_attention.dense.bias""", """mlp.dense_4h_to_h.bias""", """ln_f.weight""", """ln_f.bias""", ] _lowercase : Any = [ """mlp.dense_4h_to_h.weight""", """self_attention.dense.weight""", ] def lowerCamelCase__ ( A : Dict , A : Optional[int] ): '''simple docstring''' UpperCAmelCase = { '''word_embeddings.weight''': '''word_embeddings.weight''', '''word_embeddings.norm.weight''': '''word_embeddings_layernorm.weight''', '''word_embeddings.norm.bias''': '''word_embeddings_layernorm.bias''', '''weight''': '''ln_f.weight''', '''bias''': '''ln_f.bias''', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks UpperCAmelCase = int(re.match(R'''.*layer_(\d*).*''' , A )[1] ) layer_number -= 3 return f"""h.{layer_number}.""" + key def lowerCamelCase__ ( A : Dict ): '''simple docstring''' if dtype == torch.bool: return 1 / 8 UpperCAmelCase = re.search(R'''[^\d](\d+)$''' , str(A ) ) if bit_search is None: raise ValueError(f"""`dtype` is not a valid dtype: {dtype}.""" ) UpperCAmelCase = int(bit_search.groups()[0] ) return bit_size // 8 def lowerCamelCase__ ( A : Union[str, Any] , A : str , A : Any , A : List[Any] , A : str ): '''simple docstring''' if bloom_config_file == "": UpperCAmelCase = BloomConfig() else: UpperCAmelCase = BloomConfig.from_json_file(A ) if shard_model: UpperCAmelCase = os.listdir(A ) UpperCAmelCase = sorted(filter(lambda A : s.startswith('''layer''' ) and "model_00" in s , A ) ) UpperCAmelCase = {'''weight_map''': {}, '''metadata''': {}} UpperCAmelCase = 0 UpperCAmelCase = None UpperCAmelCase = BloomConfig() for j, file in enumerate(A ): print('''Processing file: {}'''.format(A ) ) UpperCAmelCase = None for i in range(A ): # load all TP files UpperCAmelCase = file.replace('''model_00''' , f"""model_0{i}""" ) UpperCAmelCase = torch.load(os.path.join(A , A ) , map_location='''cpu''' ) # Rename keys in the transformers names UpperCAmelCase = list(temp.keys() ) for key in keys: UpperCAmelCase = temp.pop(A ) if tensors is None: UpperCAmelCase = temp else: for key in tensors.keys(): if any(key.endswith(A ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel UpperCAmelCase = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks UpperCAmelCase = torch.cat([tensors[key], temp[key]] , dim=A ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(A ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): UpperCAmelCase = tensors[key] / pretraining_tp torch.save( A , os.path.join( A , '''pytorch_model_{}-of-{}.bin'''.format(str(j + 1 ).zfill(5 ) , str(len(A ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): UpperCAmelCase = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: UpperCAmelCase = '''pytorch_model_{}-of-{}.bin'''.format( str(j + 1 ).zfill(5 ) , str(len(A ) ).zfill(5 ) ) UpperCAmelCase = BloomConfig() UpperCAmelCase = pytorch_dump_folder_path + '''/''' + CONFIG_NAME UpperCAmelCase = total_size with open(A , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) with open(os.path.join(A , WEIGHTS_NAME + '''.index.json''' ) , '''w''' , encoding='''utf-8''' ) as f: UpperCAmelCase = json.dumps(A , indent=2 , sort_keys=A ) + '''\n''' f.write(A ) else: UpperCAmelCase = BloomModel(A ) UpperCAmelCase = os.listdir(A ) UpperCAmelCase = sorted(filter(lambda A : s.startswith('''layer''' ) and "model_00" in s , A ) ) UpperCAmelCase = None for i, file in enumerate(A ): UpperCAmelCase = None for i in range(A ): # load all TP files UpperCAmelCase = file.replace('''model_00''' , f"""model_0{i}""" ) UpperCAmelCase = torch.load(os.path.join(A , A ) , map_location='''cpu''' ) # Rename keys in the transformers names UpperCAmelCase = list(temp.keys() ) for key in keys: UpperCAmelCase = temp.pop(A ) if tensors is None: UpperCAmelCase = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(A ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel UpperCAmelCase = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks UpperCAmelCase = torch.cat([tensors[key], temp[key]] , dim=A ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(A ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): UpperCAmelCase = tensors[key] / pretraining_tp UpperCAmelCase = model.load_state_dict(A , strict=A ) assert not other_keys.unexpected_keys, f"""The keys {other_keys.unexpected_keys} are unexpected""" if missing_keys is None: UpperCAmelCase = set(other_keys.missing_keys ) else: UpperCAmelCase = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, f"""The keys {missing_keys} are missing""" # Save pytorch-model os.makedirs(A , exist_ok=A ) UpperCAmelCase = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME UpperCAmelCase = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(f"""Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}""" ) if config.torch_dtype is not None: UpperCAmelCase = model.to(config.torch_dtype ) torch.save(model.state_dict() , A ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(A , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowercase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--bloom_checkpoint_path""", default=None, type=str, required=True, help="""Path to the Megatron-LM checkpoint path.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--bloom_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--shard_model""", action="""store_true""", help="""An optional setting to shard the output model \nThis enables sharding the converted checkpoint""", ) parser.add_argument( """--pretraining_tp""", default=4, type=int, help="""Pretraining TP rank that has been used when training the model in Megatron-LM \n""", ) _lowercase : List[Any] = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
50
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : List[str] = { """facebook/encodec_24khz""": """https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json""", """facebook/encodec_48khz""": """https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json""", } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : List[str] = "encodec" def __init__( self : List[str] , lowerCAmelCase : int=[1.5, 3.0, 6.0, 12.0, 24.0] , lowerCAmelCase : Tuple=24000 , lowerCAmelCase : List[Any]=1 , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : str=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=128 , lowerCAmelCase : Any=32 , lowerCAmelCase : Any=1 , lowerCAmelCase : List[Any]=[8, 5, 4, 2] , lowerCAmelCase : Union[str, Any]="weight_norm" , lowerCAmelCase : str=7 , lowerCAmelCase : Optional[int]=7 , lowerCAmelCase : Any=3 , lowerCAmelCase : Tuple=2 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : List[str]="reflect" , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Union[str, Any]=1.0 , lowerCAmelCase : Optional[Any]=1024 , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : str=True , **lowerCAmelCase : str , )-> List[str]: """simple docstring""" UpperCAmelCase = target_bandwidths UpperCAmelCase = sampling_rate UpperCAmelCase = audio_channels UpperCAmelCase = normalize UpperCAmelCase = chunk_length_s UpperCAmelCase = overlap UpperCAmelCase = hidden_size UpperCAmelCase = num_filters UpperCAmelCase = num_residual_layers UpperCAmelCase = upsampling_ratios UpperCAmelCase = norm_type UpperCAmelCase = kernel_size UpperCAmelCase = last_kernel_size UpperCAmelCase = residual_kernel_size UpperCAmelCase = dilation_growth_rate UpperCAmelCase = use_causal_conv UpperCAmelCase = pad_mode UpperCAmelCase = compress UpperCAmelCase = num_lstm_layers UpperCAmelCase = trim_right_ratio UpperCAmelCase = codebook_size UpperCAmelCase = codebook_dim if codebook_dim is not None else hidden_size UpperCAmelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**lowerCAmelCase ) @property def a__( self : str )-> Optional[int]: """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def a__( self : List[str] )-> Optional[int]: """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def a__( self : List[Any] )-> int: """simple docstring""" UpperCAmelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def a__( self : int )-> int: """simple docstring""" return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
50
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings _lowercase : Optional[int] = r""" [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `\" / \"`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `\" // \"`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `\"train\"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `\"compressed\"`) The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and `\"compressed\"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a \"dummy\" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. """ @add_start_docstrings(lowerCAmelCase ) class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : List[Any] = "rag" __magic_name__ : Any = True def __init__( self : List[Any] , lowerCAmelCase : Any=None , lowerCAmelCase : str=True , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Tuple=None , lowerCAmelCase : Any=None , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[Any]=" / " , lowerCAmelCase : Dict=" // " , lowerCAmelCase : int=5 , lowerCAmelCase : Optional[Any]=300 , lowerCAmelCase : List[str]=768 , lowerCAmelCase : Optional[Any]=8 , lowerCAmelCase : int="wiki_dpr" , lowerCAmelCase : Optional[int]="train" , lowerCAmelCase : Any="compressed" , lowerCAmelCase : str=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Tuple=False , lowerCAmelCase : Optional[Any]=False , lowerCAmelCase : Dict=0.0 , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Any=False , lowerCAmelCase : int=False , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : int=True , lowerCAmelCase : Optional[Any]=None , **lowerCAmelCase : Optional[Any] , )-> int: """simple docstring""" super().__init__( bos_token_id=lowerCAmelCase , pad_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , forced_eos_token_id=lowerCAmelCase , is_encoder_decoder=lowerCAmelCase , prefix=lowerCAmelCase , vocab_size=lowerCAmelCase , **lowerCAmelCase , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" UpperCAmelCase = kwargs.pop('''question_encoder''' ) UpperCAmelCase = question_encoder_config.pop('''model_type''' ) UpperCAmelCase = kwargs.pop('''generator''' ) UpperCAmelCase = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase = AutoConfig.for_model(lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = AutoConfig.for_model(lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = reduce_loss UpperCAmelCase = label_smoothing UpperCAmelCase = exclude_bos_score UpperCAmelCase = do_marginalize UpperCAmelCase = title_sep UpperCAmelCase = doc_sep UpperCAmelCase = n_docs UpperCAmelCase = max_combined_length UpperCAmelCase = dataset UpperCAmelCase = dataset_split UpperCAmelCase = index_name UpperCAmelCase = retrieval_vector_size UpperCAmelCase = retrieval_batch_size UpperCAmelCase = passages_path UpperCAmelCase = index_path UpperCAmelCase = use_dummy_dataset UpperCAmelCase = output_retrieved UpperCAmelCase = do_deduplication UpperCAmelCase = use_cache if self.forced_eos_token_id is None: UpperCAmelCase = getattr(self.generator , '''forced_eos_token_id''' , lowerCAmelCase ) @classmethod def a__( cls : Any , lowerCAmelCase : PretrainedConfig , lowerCAmelCase : PretrainedConfig , **lowerCAmelCase : Optional[int] )-> PretrainedConfig: """simple docstring""" return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **lowerCAmelCase ) def a__( self : List[str] )-> Tuple: """simple docstring""" UpperCAmelCase = copy.deepcopy(self.__dict__ ) UpperCAmelCase = self.question_encoder.to_dict() UpperCAmelCase = self.generator.to_dict() UpperCAmelCase = self.__class__.model_type return output
50
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase : Any = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _lowercase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
1
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) _lowercase : Any = pytest.mark.integration @pytest.mark.parametrize('''path''' , ['''paws''', '''csv'''] ) def lowerCamelCase__ ( A : Any , A : Tuple ): '''simple docstring''' inspect_dataset(A , A ) UpperCAmelCase = path + '''.py''' assert script_name in os.listdir(A ) assert "__pycache__" not in os.listdir(A ) @pytest.mark.filterwarnings('''ignore:inspect_metric is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.parametrize('''path''' , ['''accuracy'''] ) def lowerCamelCase__ ( A : List[str] , A : Tuple ): '''simple docstring''' inspect_metric(A , A ) UpperCAmelCase = path + '''.py''' assert script_name in os.listdir(A ) assert "__pycache__" not in os.listdir(A ) @pytest.mark.parametrize( '''path, config_name, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def lowerCamelCase__ ( A : Dict , A : Optional[int] , A : List[str] ): '''simple docstring''' UpperCAmelCase = get_dataset_config_info(A , config_name=A ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def lowerCamelCase__ ( A : Union[str, Any] , A : List[str] , A : int ): '''simple docstring''' with pytest.raises(A ): get_dataset_config_info(A , config_name=A ) @pytest.mark.parametrize( '''path, expected''' , [ ('''squad''', '''plain_text'''), ('''acronym_identification''', '''default'''), ('''lhoestq/squad''', '''plain_text'''), ('''lhoestq/test''', '''default'''), ('''lhoestq/demo1''', '''lhoestq--demo1'''), ('''dalle-mini/wit''', '''dalle-mini--wit'''), ] , ) def lowerCamelCase__ ( A : Optional[Any] , A : int ): '''simple docstring''' UpperCAmelCase = get_dataset_config_names(A ) assert expected in config_names @pytest.mark.parametrize( '''path, expected_configs, expected_splits_in_first_config''' , [ ('''squad''', ['''plain_text'''], ['''train''', '''validation''']), ('''dalle-mini/wit''', ['''dalle-mini--wit'''], ['''train''']), ('''paws''', ['''labeled_final''', '''labeled_swap''', '''unlabeled_final'''], ['''train''', '''test''', '''validation''']), ] , ) def lowerCamelCase__ ( A : Tuple , A : Union[str, Any] , A : Dict ): '''simple docstring''' UpperCAmelCase = get_dataset_infos(A ) assert list(infos.keys() ) == expected_configs UpperCAmelCase = expected_configs[0] assert expected_config in infos UpperCAmelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( '''path, expected_config, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def lowerCamelCase__ ( A : str , A : Union[str, Any] , A : Optional[Any] ): '''simple docstring''' UpperCAmelCase = get_dataset_infos(A ) assert expected_config in infos UpperCAmelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def lowerCamelCase__ ( A : Union[str, Any] , A : List[str] , A : int ): '''simple docstring''' with pytest.raises(A ): get_dataset_split_names(A , config_name=A )
50
'''simple docstring''' import heapq def lowerCamelCase__ ( A : dict ): '''simple docstring''' UpperCAmelCase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(A , [-1 * len(A ), (key, value)] ) # chosen_vertices = set of chosen vertices UpperCAmelCase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices UpperCAmelCase = heapq.heappop(A )[1][0] chosen_vertices.add(A ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: UpperCAmelCase = elem[1][1].index(A ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(A ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _lowercase : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
50
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase : str = { """configuration_canine""": ["""CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CanineConfig"""], """tokenization_canine""": ["""CanineTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] = [ """CANINE_PRETRAINED_MODEL_ARCHIVE_LIST""", """CanineForMultipleChoice""", """CanineForQuestionAnswering""", """CanineForSequenceClassification""", """CanineForTokenClassification""", """CanineLayer""", """CanineModel""", """CaninePreTrainedModel""", """load_tf_weights_in_canine""", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys _lowercase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
'''simple docstring''' import argparse import os import re import packaging.version _lowercase : Optional[int] = """examples/""" _lowercase : str = { """examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""), """doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } _lowercase : Dict = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } _lowercase : List[Any] = """README.md""" def lowerCamelCase__ ( A : int , A : str , A : Optional[Any] ): '''simple docstring''' with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase = f.read() UpperCAmelCase , UpperCAmelCase = REPLACE_PATTERNS[pattern] UpperCAmelCase = replace.replace('''VERSION''' , A ) UpperCAmelCase = re_pattern.sub(A , A ) with open(A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(A ) def lowerCamelCase__ ( A : Optional[int] ): '''simple docstring''' for folder, directories, fnames in os.walk(A ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(A , A ) , A , pattern='''examples''' ) def lowerCamelCase__ ( A : str , A : Dict=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(A , A , A ) if not patch: update_version_in_examples(A ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = '''🤗 Transformers currently provides the following architectures''' UpperCAmelCase = '''1. Want to contribute a new model?''' with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase = f.readlines() # Find the start of the list. UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): UpperCAmelCase = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(A ) def lowerCamelCase__ ( ): '''simple docstring''' with open(REPLACE_FILES['''init'''] , '''r''' ) as f: UpperCAmelCase = f.read() UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(A ).groups()[0] return packaging.version.parse(A ) def lowerCamelCase__ ( A : Tuple=False ): '''simple docstring''' UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: UpperCAmelCase = default_version.base_version elif patch: UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(A ) == 0: UpperCAmelCase = default_version print(f"""Updating version to {version}.""" ) global_version_update(A , patch=A ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = get_version() UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" UpperCAmelCase = current_version.base_version # Check with the user we got that right. UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(A ) == 0: UpperCAmelCase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(A ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": _lowercase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") _lowercase : Union[str, Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
50
1
'''simple docstring''' def lowerCamelCase__ ( A : str ): '''simple docstring''' if n_term == "": return [] UpperCAmelCase = [] for temp in range(int(A ) ): series.append(f"""1/{temp + 1}""" if series else '''1''' ) return series if __name__ == "__main__": _lowercase : Union[str, Any] = input("""Enter the last number (nth term) of the Harmonic Series""") print("""Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n""") print(harmonic_series(nth_term))
50
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : List[Any] , lowerCAmelCase : Optional[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = 3 UpperCAmelCase = 250 UpperCAmelCase = ids_tensor((batch_size, length) , lowerCAmelCase ) UpperCAmelCase = torch.ones((batch_size, length) , device=lowerCAmelCase , dtype=torch.float ) / length return input_ids, scores def a__( self : Dict )-> Optional[int]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = MaxLengthCriteria(max_length=10 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : Optional[Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def a__( self : Tuple )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : int )-> Any: """simple docstring""" validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(lowerCAmelCase ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) UpperCAmelCase = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(lowerCAmelCase ) , 1 )
50
1
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class UpperCamelCase__: def __init__( self : Union[str, Any] , lowerCAmelCase : list[tuple[float, float]] )-> Any: """simple docstring""" UpperCAmelCase = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. UpperCAmelCase = len(lowerCAmelCase ) - 1 def a__( self : str , lowerCAmelCase : float )-> list[float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." UpperCAmelCase = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , lowerCAmelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(lowerCAmelCase ) , 5 ) == 1 return output_values def a__( self : Union[str, Any] , lowerCAmelCase : float )-> tuple[float, float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." UpperCAmelCase = self.basis_function(lowerCAmelCase ) UpperCAmelCase = 0.0 UpperCAmelCase = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def a__( self : List[str] , lowerCAmelCase : float = 0.01 )-> Any: """simple docstring""" from matplotlib import pyplot as plt # type: ignore UpperCAmelCase = [] # x coordinates of points to plot UpperCAmelCase = [] # y coordinates of points to plot UpperCAmelCase = 0.0 while t <= 1: UpperCAmelCase = self.bezier_curve_function(lowerCAmelCase ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size UpperCAmelCase = [i[0] for i in self.list_of_points] UpperCAmelCase = [i[1] for i in self.list_of_points] plt.plot( lowerCAmelCase , lowerCAmelCase , color='''blue''' , label='''Curve of Degree ''' + str(self.degree ) , ) plt.scatter(lowerCAmelCase , lowerCAmelCase , color='''red''' , label='''Control Points''' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
50
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCamelCase__( metaclass=lowerCAmelCase ): __magic_name__ : List[str] = ["note_seq"] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : int )-> Optional[int]: """simple docstring""" requires_backends(self , ['''note_seq'''] ) @classmethod def a__( cls : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int] )-> Dict: """simple docstring""" requires_backends(cls , ['''note_seq'''] ) @classmethod def a__( cls : int , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any] )-> Union[str, Any]: """simple docstring""" requires_backends(cls , ['''note_seq'''] )
50
1
'''simple docstring''' from statistics import mean import numpy as np def lowerCamelCase__ ( A : list , A : list , A : list , A : int ): '''simple docstring''' UpperCAmelCase = 0 # Number of processes finished UpperCAmelCase = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. UpperCAmelCase = [0] * no_of_process # List to include calculation results UpperCAmelCase = [0] * no_of_process # Sort by arrival time. UpperCAmelCase = [burst_time[i] for i in np.argsort(A )] UpperCAmelCase = [process_name[i] for i in np.argsort(A )] arrival_time.sort() while no_of_process > finished_process_count: UpperCAmelCase = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: UpperCAmelCase = arrival_time[i] UpperCAmelCase = 0 # Index showing the location of the process being performed UpperCAmelCase = 0 # Saves the current response ratio. UpperCAmelCase = 0 for i in range(0 , A ): if finished_process[i] == 0 and arrival_time[i] <= current_time: UpperCAmelCase = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: UpperCAmelCase = temp UpperCAmelCase = i # Calculate the turn around time UpperCAmelCase = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. UpperCAmelCase = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def lowerCamelCase__ ( A : list , A : list , A : list , A : int ): '''simple docstring''' UpperCAmelCase = [0] * no_of_process for i in range(0 , A ): UpperCAmelCase = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": _lowercase : int = 5 _lowercase : List[str] = ["""A""", """B""", """C""", """D""", """E"""] _lowercase : Tuple = [1, 2, 3, 4, 5] _lowercase : Union[str, Any] = [1, 2, 3, 4, 5] _lowercase : int = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) _lowercase : List[str] = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print("""Process name \tArrival time \tBurst time \tTurn around time \tWaiting time""") for i in range(0, no_of_process): print( F"""{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t""" F"""{turn_around_time[i]}\t\t\t{waiting_time[i]}""" ) print(F"""average waiting time : {mean(waiting_time):.5f}""") print(F"""average turn around time : {mean(turn_around_time):.5f}""")
50
'''simple docstring''' import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( A : List[Any] , A : int , A : List[str] , A : Optional[int] ): '''simple docstring''' UpperCAmelCase = BigBirdConfig.from_json_file(A ) print(f"""Building PyTorch model from configuration: {config}""" ) if is_trivia_qa: UpperCAmelCase = BigBirdForQuestionAnswering(A ) else: UpperCAmelCase = BigBirdForPreTraining(A ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(A , A , is_trivia_qa=A ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(A ) if __name__ == "__main__": _lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--big_bird_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_trivia_qa""", action="""store_true""", help="""Whether to convert a model with a trivia_qa head.""" ) _lowercase : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
50
1
'''simple docstring''' import socket def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) UpperCAmelCase = socket.gethostname() UpperCAmelCase = 1_23_12 sock.connect((host, port) ) sock.send(b'''Hello server!''' ) with open('''Received_file''' , '''wb''' ) as out_file: print('''File opened''' ) print('''Receiving data...''' ) while True: UpperCAmelCase = sock.recv(10_24 ) if not data: break out_file.write(A ) print('''Successfully received the file''' ) sock.close() print('''Connection closed''' ) if __name__ == "__main__": main()
50
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : Optional[int] )-> str: """simple docstring""" UpperCAmelCase = [[1, 2, 4], [1, 2, 3, 4]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) self.assertTrue(isinstance(dc.token_ids , lowerCAmelCase ) ) with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def a__( self : Union[str, Any] )-> str: """simple docstring""" UpperCAmelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint(lowerCAmelCase ) # fails here def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = [[1, 2, 3], [1, 2, 4]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(3 ) UpperCAmelCase = stepped is True and completed is True and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def a__( self : int )-> Dict: """simple docstring""" UpperCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
50
1
'''simple docstring''' import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin _lowercase : List[str] = get_tests_dir("""fixtures/test_sentencepiece.model""") _lowercase : Optional[int] = get_tests_dir("""fixtures/test_sentencepiece_bpe.model""") _lowercase : Union[str, Any] = """pt""" if is_torch_available() else """tf""" @require_sentencepiece @require_tokenizers class UpperCamelCase__( lowerCAmelCase , unittest.TestCase ): __magic_name__ : Optional[int] = CamembertTokenizer __magic_name__ : Dict = CamembertTokenizerFast __magic_name__ : int = True __magic_name__ : Optional[int] = True def a__( self : Optional[Any] )-> Any: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase = CamembertTokenizer(lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def a__( self : Dict )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = '''<pad>''' UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase ) , lowerCAmelCase ) def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>NOTUSED''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(lowerCAmelCase ) , 1004 ) def a__( self : Optional[Any] )-> Optional[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1005 ) def a__( self : List[str] )-> List[str]: """simple docstring""" UpperCAmelCase = CamembertTokenizer(lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) UpperCAmelCase = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) UpperCAmelCase = '''I was born in 92000, and this is falsé.''' UpperCAmelCase = tokenizer.encode(lowerCAmelCase ) UpperCAmelCase = rust_tokenizer.encode(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) UpperCAmelCase = rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) UpperCAmelCase = tokenizer.convert_ids_to_tokens(lowerCAmelCase ) UpperCAmelCase = rust_tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) def a__( self : Union[str, Any] )-> List[Any]: """simple docstring""" if not self.test_rust_tokenizer: return UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = '''I was born in 92000, and this is falsé.''' UpperCAmelCase = tokenizer.tokenize(lowerCAmelCase ) UpperCAmelCase = rust_tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) UpperCAmelCase = rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = tokenizer.encode(lowerCAmelCase ) UpperCAmelCase = rust_tokenizer.encode(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) @slow def a__( self : int )-> List[str]: """simple docstring""" UpperCAmelCase = {'''input_ids''': [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 27575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 22804, 18818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 10326, 24, 2267, 20, 416, 5072, 15612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. UpperCAmelCase = [ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase , model_name='''camembert-base''' , revision='''3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf''' , sequences=lowerCAmelCase , )
50
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCamelCase__ ( A : List[Any] ): '''simple docstring''' return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class UpperCamelCase__( lowerCAmelCase ): @staticmethod def a__( lowerCAmelCase : ArgumentParser )-> Optional[Any]: """simple docstring""" UpperCAmelCase = parser.add_parser('''download''' ) download_parser.add_argument( '''--cache-dir''' , type=lowerCAmelCase , default=lowerCAmelCase , help='''Path to location to store the models''' ) download_parser.add_argument( '''--force''' , action='''store_true''' , help='''Force the model to be download even if already in cache-dir''' ) download_parser.add_argument( '''--trust-remote-code''' , action='''store_true''' , help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''' , ) download_parser.add_argument('''model''' , type=lowerCAmelCase , help='''Name of the model to download''' ) download_parser.set_defaults(func=lowerCAmelCase ) def __init__( self : Dict , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : bool , lowerCAmelCase : bool )-> Any: """simple docstring""" UpperCAmelCase = model UpperCAmelCase = cache UpperCAmelCase = force UpperCAmelCase = trust_remote_code def a__( self : int )-> Optional[Any]: """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
50
1
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__( unittest.TestCase ): def __init__( self : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Tuple=32 , lowerCAmelCase : Optional[int]=3 , lowerCAmelCase : Optional[Any]=10 , lowerCAmelCase : Optional[Any]=[10, 20, 30, 40] , lowerCAmelCase : Optional[int]=[1, 1, 2, 1] , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Tuple=True , lowerCAmelCase : List[Any]="relu" , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Union[str, Any]=None , )-> Optional[int]: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = num_channels UpperCAmelCase = embeddings_size UpperCAmelCase = hidden_sizes UpperCAmelCase = depths UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_act UpperCAmelCase = num_labels UpperCAmelCase = scope UpperCAmelCase = len(lowerCAmelCase ) def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = self.get_config() return config, pixel_values def a__( self : str )-> Optional[Any]: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def a__( self : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Any )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = FlaxRegNetModel(config=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__( self : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] )-> List[str]: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = FlaxRegNetForImageClassification(config=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__( self : List[str] )-> Any: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__( lowerCAmelCase , unittest.TestCase ): __magic_name__ : Optional[int] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __magic_name__ : Optional[int] = False __magic_name__ : List[str] = False __magic_name__ : Dict = False def a__( self : Union[str, Any] )-> None: """simple docstring""" UpperCAmelCase = FlaxRegNetModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase ) def a__( self : List[str] )-> List[str]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__( self : Tuple )-> Tuple: """simple docstring""" return def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def a__( self : str )-> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def a__( self : Any )-> List[str]: """simple docstring""" pass def a__( self : Any )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def a__( self : Tuple )-> int: """simple docstring""" def check_hidden_states_output(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int ): UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase ) , expected_num_stages + 1 ) UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = model_class(lowerCAmelCase ) @jax.jit def model_jitted(lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple ): return model(pixel_values=lowerCAmelCase , **lowerCAmelCase ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple() self.assertEqual(len(lowerCAmelCase ) , len(lowerCAmelCase ) ) for jitted_output, output in zip(lowerCAmelCase , lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCamelCase__( unittest.TestCase ): @cached_property def a__( self : Dict )-> int: """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def a__( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=lowerCAmelCase , return_tensors='''np''' ) UpperCAmelCase = model(**lowerCAmelCase ) # verify the logits UpperCAmelCase = (1, 1000) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) UpperCAmelCase = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
50
'''simple docstring''' def lowerCamelCase__ ( A : str ): '''simple docstring''' assert column_title.isupper() UpperCAmelCase = 0 UpperCAmelCase = len(A ) - 1 UpperCAmelCase = 0 while index >= 0: UpperCAmelCase = (ord(column_title[index] ) - 64) * pow(26 , A ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
50
1
'''simple docstring''' def lowerCamelCase__ ( A : list[int] ): '''simple docstring''' UpperCAmelCase = [] if len(A ) == 1: return [nums.copy()] for _ in range(len(A ) ): UpperCAmelCase = nums.pop(0 ) UpperCAmelCase = permute(A ) for perm in permutations: perm.append(A ) result.extend(A ) nums.append(A ) return result def lowerCamelCase__ ( A : int ): '''simple docstring''' def backtrack(A : Union[str, Any] ): if start == len(A ) - 1: output.append(nums[:] ) else: for i in range(A , len(A ) ): UpperCAmelCase , UpperCAmelCase = nums[i], nums[start] backtrack(start + 1 ) UpperCAmelCase , UpperCAmelCase = nums[i], nums[start] # backtrack UpperCAmelCase = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function _lowercase : Optional[int] = permutea([1, 2, 3]) print(res) doctest.testmod()
50
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__( unittest.TestCase ): def __init__( self : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Tuple=32 , lowerCAmelCase : Optional[int]=3 , lowerCAmelCase : Optional[Any]=10 , lowerCAmelCase : Optional[Any]=[10, 20, 30, 40] , lowerCAmelCase : Optional[int]=[1, 1, 2, 1] , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Tuple=True , lowerCAmelCase : List[Any]="relu" , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Union[str, Any]=None , )-> Optional[int]: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = num_channels UpperCAmelCase = embeddings_size UpperCAmelCase = hidden_sizes UpperCAmelCase = depths UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_act UpperCAmelCase = num_labels UpperCAmelCase = scope UpperCAmelCase = len(lowerCAmelCase ) def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = self.get_config() return config, pixel_values def a__( self : str )-> Optional[Any]: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def a__( self : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Any )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = FlaxRegNetModel(config=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__( self : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] )-> List[str]: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = FlaxRegNetForImageClassification(config=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__( self : List[str] )-> Any: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__( lowerCAmelCase , unittest.TestCase ): __magic_name__ : Optional[int] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __magic_name__ : Optional[int] = False __magic_name__ : List[str] = False __magic_name__ : Dict = False def a__( self : Union[str, Any] )-> None: """simple docstring""" UpperCAmelCase = FlaxRegNetModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase ) def a__( self : List[str] )-> List[str]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__( self : Tuple )-> Tuple: """simple docstring""" return def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def a__( self : str )-> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def a__( self : Any )-> List[str]: """simple docstring""" pass def a__( self : Any )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def a__( self : Tuple )-> int: """simple docstring""" def check_hidden_states_output(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int ): UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase ) , expected_num_stages + 1 ) UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = model_class(lowerCAmelCase ) @jax.jit def model_jitted(lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple ): return model(pixel_values=lowerCAmelCase , **lowerCAmelCase ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple() self.assertEqual(len(lowerCAmelCase ) , len(lowerCAmelCase ) ) for jitted_output, output in zip(lowerCAmelCase , lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCamelCase__( unittest.TestCase ): @cached_property def a__( self : Dict )-> int: """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def a__( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=lowerCAmelCase , return_tensors='''np''' ) UpperCAmelCase = model(**lowerCAmelCase ) # verify the logits UpperCAmelCase = (1, 1000) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) UpperCAmelCase = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
50
1
'''simple docstring''' # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class UpperCamelCase__( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): __magic_name__ : str = StableDiffusionControlNetImgaImgPipeline __magic_name__ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} __magic_name__ : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __magic_name__ : str = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"control_image"} ) __magic_name__ : List[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def a__( self : Any )-> Tuple: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0 ) UpperCAmelCase = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) UpperCAmelCase = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , ) torch.manual_seed(0 ) UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCAmelCase = CLIPTextModel(lowerCAmelCase ) UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCAmelCase = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def a__( self : Any , lowerCAmelCase : int , lowerCAmelCase : List[str]=0 )-> Any: """simple docstring""" if str(lowerCAmelCase ).startswith('''mps''' ): UpperCAmelCase = torch.manual_seed(lowerCAmelCase ) else: UpperCAmelCase = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) UpperCAmelCase = 2 UpperCAmelCase = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowerCAmelCase , device=torch.device(lowerCAmelCase ) , ) UpperCAmelCase = floats_tensor(control_image.shape , rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase = Image.fromarray(np.uinta(lowerCAmelCase ) ).convert('''RGB''' ).resize((64, 64) ) UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def a__( self : List[str] )-> int: """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def a__( self : Dict )-> str: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def a__( self : Optional[int] )-> Optional[int]: """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class UpperCamelCase__( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): __magic_name__ : Tuple = StableDiffusionControlNetImgaImgPipeline __magic_name__ : str = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} __magic_name__ : str = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __magic_name__ : Any = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def a__( self : Dict )-> List[Any]: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(lowerCAmelCase : Tuple ): if isinstance(lowerCAmelCase , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) UpperCAmelCase = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(lowerCAmelCase ) torch.manual_seed(0 ) UpperCAmelCase = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(lowerCAmelCase ) torch.manual_seed(0 ) UpperCAmelCase = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , ) torch.manual_seed(0 ) UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCAmelCase = CLIPTextModel(lowerCAmelCase ) UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCAmelCase = MultiControlNetModel([controlneta, controlneta] ) UpperCAmelCase = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def a__( self : List[str] , lowerCAmelCase : int , lowerCAmelCase : Union[str, Any]=0 )-> List[str]: """simple docstring""" if str(lowerCAmelCase ).startswith('''mps''' ): UpperCAmelCase = torch.manual_seed(lowerCAmelCase ) else: UpperCAmelCase = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) UpperCAmelCase = 2 UpperCAmelCase = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowerCAmelCase , device=torch.device(lowerCAmelCase ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowerCAmelCase , device=torch.device(lowerCAmelCase ) , ), ] UpperCAmelCase = floats_tensor(control_image[0].shape , rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase = Image.fromarray(np.uinta(lowerCAmelCase ) ).convert('''RGB''' ).resize((64, 64) ) UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def a__( self : List[Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**lowerCAmelCase ) pipe.to(lowerCAmelCase ) UpperCAmelCase = 10.0 UpperCAmelCase = 4 UpperCAmelCase = self.get_dummy_inputs(lowerCAmelCase ) UpperCAmelCase = steps UpperCAmelCase = scale UpperCAmelCase = pipe(**lowerCAmelCase )[0] UpperCAmelCase = self.get_dummy_inputs(lowerCAmelCase ) UpperCAmelCase = steps UpperCAmelCase = scale UpperCAmelCase = pipe(**lowerCAmelCase , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] UpperCAmelCase = self.get_dummy_inputs(lowerCAmelCase ) UpperCAmelCase = steps UpperCAmelCase = scale UpperCAmelCase = pipe(**lowerCAmelCase , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] UpperCAmelCase = self.get_dummy_inputs(lowerCAmelCase ) UpperCAmelCase = steps UpperCAmelCase = scale UpperCAmelCase = pipe(**lowerCAmelCase , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def a__( self : str )-> List[str]: """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def a__( self : Tuple )-> Tuple: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def a__( self : int )-> Optional[int]: """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def a__( self : int )-> Optional[int]: """simple docstring""" UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(lowerCAmelCase ) except NotImplementedError: pass @slow @require_torch_gpu class UpperCamelCase__( unittest.TestCase ): def a__( self : Optional[Any] )-> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a__( self : Optional[Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = ControlNetModel.from_pretrained('''lllyasviel/sd-controlnet-canny''' ) UpperCAmelCase = StableDiffusionControlNetImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , safety_checker=lowerCAmelCase , controlnet=lowerCAmelCase ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCAmelCase = '''evil space-punk bird''' UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ).resize((512, 512) ) UpperCAmelCase = load_image( '''https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png''' ).resize((512, 512) ) UpperCAmelCase = pipe( lowerCAmelCase , lowerCAmelCase , control_image=lowerCAmelCase , generator=lowerCAmelCase , output_type='''np''' , num_inference_steps=50 , strength=0.6 , ) UpperCAmelCase = output.images[0] assert image.shape == (512, 512, 3) UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy''' ) assert np.abs(expected_image - image ).max() < 9E-2
50
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : List[Any] = """▁""" _lowercase : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model"""} _lowercase : Any = { """vocab_file""": { """facebook/mbart-large-50-one-to-many-mmt""": ( """https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model""" ), } } _lowercase : int = { """facebook/mbart-large-50-one-to-many-mmt""": 1024, } # fmt: off _lowercase : int = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN""", """af_ZA""", """az_AZ""", """bn_IN""", """fa_IR""", """he_IL""", """hr_HR""", """id_ID""", """ka_GE""", """km_KH""", """mk_MK""", """ml_IN""", """mn_MN""", """mr_IN""", """pl_PL""", """ps_AF""", """pt_XX""", """sv_SE""", """sw_KE""", """ta_IN""", """te_IN""", """th_TH""", """tl_XX""", """uk_UA""", """ur_PK""", """xh_ZA""", """gl_ES""", """sl_SI"""] class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = VOCAB_FILES_NAMES __magic_name__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Union[str, Any] = ["input_ids", "attention_mask"] __magic_name__ : List[int] = [] __magic_name__ : List[int] = [] def __init__( self : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : str=None , lowerCAmelCase : List[Any]="</s>" , lowerCAmelCase : Union[str, Any]="</s>" , lowerCAmelCase : Union[str, Any]="<s>" , lowerCAmelCase : int="<unk>" , lowerCAmelCase : str="<pad>" , lowerCAmelCase : Optional[int]="<mask>" , lowerCAmelCase : Optional[Dict[str, Any]] = None , **lowerCAmelCase : List[Any] , )-> None: """simple docstring""" UpperCAmelCase = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else mask_token UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowerCAmelCase , tgt_lang=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase , ) UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase ) ) UpperCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase = 1 UpperCAmelCase = len(self.sp_model ) UpperCAmelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase ) } UpperCAmelCase = {v: k for k, v in self.lang_code_to_id.items()} UpperCAmelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCAmelCase = src_lang if src_lang is not None else '''en_XX''' UpperCAmelCase = self.lang_code_to_id[self._src_lang] UpperCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def a__( self : Union[str, Any] )-> int: """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def a__( self : str )-> str: """simple docstring""" return self._src_lang @src_lang.setter def a__( self : Any , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Tuple )-> Dict: """simple docstring""" UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = None return state def __setstate__( self : Dict , lowerCAmelCase : Dict )-> None: """simple docstring""" UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase = {} UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__( self : Union[str, Any] )-> Dict: """simple docstring""" UpperCAmelCase = {self.convert_ids_to_tokens(lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__( self : str , lowerCAmelCase : str )-> List[str]: """simple docstring""" return self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase ) def a__( self : Optional[int] , lowerCAmelCase : str )-> int: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase = self.sp_model.PieceToId(lowerCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def a__( self : List[Any] , lowerCAmelCase : int )-> str: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def a__( self : int , lowerCAmelCase : List[Any] )-> Dict: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = '''''' UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase ) + token UpperCAmelCase = True UpperCAmelCase = [] else: current_sub_tokens.append(lowerCAmelCase ) UpperCAmelCase = False out_string += self.sp_model.decode(lowerCAmelCase ) return out_string.strip() def a__( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase = os.path.join( lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase , '''wb''' ) as fi: UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase ) return (out_vocab_file,) def a__( self : List[str] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False )-> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) UpperCAmelCase = [1] * len(self.prefix_tokens ) UpperCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase )) + ([0] * len(lowerCAmelCase )) + suffix_ones def a__( self : Tuple , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None )-> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a__( self : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] , lowerCAmelCase : Optional[str] , **lowerCAmelCase : Optional[int] )-> Optional[Any]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCAmelCase = src_lang UpperCAmelCase = self(lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = self.convert_tokens_to_ids(lowerCAmelCase ) UpperCAmelCase = tgt_lang_id return inputs def a__( self : str , lowerCAmelCase : List[str] , lowerCAmelCase : str = "en_XX" , lowerCAmelCase : Optional[List[str]] = None , lowerCAmelCase : str = "ro_RO" , **lowerCAmelCase : List[str] , )-> BatchEncoding: """simple docstring""" UpperCAmelCase = src_lang UpperCAmelCase = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) def a__( self : Optional[int] )-> Union[str, Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def a__( self : List[Any] )-> int: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a__( self : List[Any] , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[src_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id] def a__( self : int , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[tgt_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id]
50
1
'''simple docstring''' def lowerCamelCase__ ( A : str ): '''simple docstring''' UpperCAmelCase = 0 # if input_string is "aba" than new_input_string become "a|b|a" UpperCAmelCase = '''''' UpperCAmelCase = '''''' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(A ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring UpperCAmelCase , UpperCAmelCase = 0, 0 # length[i] shows the length of palindromic substring with center i UpperCAmelCase = [1 for i in range(len(A ) )] # for each character in new_string find corresponding palindromic string UpperCAmelCase = 0 for j in range(len(A ) ): UpperCAmelCase = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(A ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 UpperCAmelCase = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: UpperCAmelCase = j - k + 1 # noqa: E741 UpperCAmelCase = j + k - 1 # update max_length and start position if max_length < length[j]: UpperCAmelCase = length[j] UpperCAmelCase = j # create that string UpperCAmelCase = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
50
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers _lowercase : Union[str, Any] = """3""" print("""Python version:""", sys.version) print("""transformers version:""", transformers.__version__) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) print("""NCCL version:""", torch.cuda.nccl.version()) except ImportError: print("""Torch version:""", None) try: import deepspeed print("""DeepSpeed version:""", deepspeed.__version__) except ImportError: print("""DeepSpeed version:""", None) try: import tensorflow as tf print("""TensorFlow version:""", tf.__version__) print("""TF GPUs available:""", bool(tf.config.list_physical_devices("""GPU"""))) print("""Number of TF GPUs available:""", len(tf.config.list_physical_devices("""GPU"""))) except ImportError: print("""TensorFlow version:""", None)
50
1
'''simple docstring''' import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCamelCase__( unittest.TestCase ): @property def a__( self : Optional[int] )-> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def a__( self : int )-> List[str]: """simple docstring""" UpperCAmelCase = self.dummy_uncond_unet UpperCAmelCase = PNDMScheduler() UpperCAmelCase = PNDMPipeline(unet=lowerCAmelCase , scheduler=lowerCAmelCase ) pndm.to(lowerCAmelCase ) pndm.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = pndm(generator=lowerCAmelCase , num_inference_steps=20 , output_type='''numpy''' ).images UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = pndm(generator=lowerCAmelCase , num_inference_steps=20 , output_type='''numpy''' , return_dict=lowerCAmelCase )[0] UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : List[Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = '''google/ddpm-cifar10-32''' UpperCAmelCase = UNetaDModel.from_pretrained(lowerCAmelCase ) UpperCAmelCase = PNDMScheduler() UpperCAmelCase = PNDMPipeline(unet=lowerCAmelCase , scheduler=lowerCAmelCase ) pndm.to(lowerCAmelCase ) pndm.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = pndm(generator=lowerCAmelCase , output_type='''numpy''' ).images UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase = np.array([0.1564, 0.14645, 0.1406, 0.14715, 0.12425, 0.14045, 0.13115, 0.12175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
50
'''simple docstring''' import functools def lowerCamelCase__ ( A : list[int] , A : list[int] ): '''simple docstring''' if not isinstance(A , A ) or not all(isinstance(A , A ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(A ) != 3 or not all(isinstance(A , A ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(A ) == 0: return 0 if min(A ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(A ) >= 3_66: raise ValueError('''All days elements should be less than 366''' ) UpperCAmelCase = set(A ) @functools.cache def dynamic_programming(A : int ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
50
1
'''simple docstring''' def lowerCamelCase__ ( A : int , A : int ): '''simple docstring''' return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
50
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase : Any = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys _lowercase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
1
'''simple docstring''' from math import factorial def lowerCamelCase__ ( A : int = 20 ): '''simple docstring''' UpperCAmelCase = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... UpperCAmelCase = n // 2 return int(factorial(A ) / (factorial(A ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: _lowercase : Optional[int] = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number.""")
50
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def lowerCamelCase__ ( A : Optional[Any] , A : Tuple=1 ): '''simple docstring''' if n_shave_prefix_segments >= 0: return ".".join(path.split('''.''' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('''.''' )[:n_shave_prefix_segments] ) def lowerCamelCase__ ( A : int , A : Optional[Any]=0 ): '''simple docstring''' UpperCAmelCase = [] for old_item in old_list: UpperCAmelCase = old_item.replace('''in_layers.0''' , '''norm1''' ) UpperCAmelCase = new_item.replace('''in_layers.2''' , '''conv1''' ) UpperCAmelCase = new_item.replace('''out_layers.0''' , '''norm2''' ) UpperCAmelCase = new_item.replace('''out_layers.3''' , '''conv2''' ) UpperCAmelCase = new_item.replace('''emb_layers.1''' , '''time_emb_proj''' ) UpperCAmelCase = new_item.replace('''skip_connection''' , '''conv_shortcut''' ) UpperCAmelCase = shave_segments(A , n_shave_prefix_segments=A ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def lowerCamelCase__ ( A : Any , A : int=0 ): '''simple docstring''' UpperCAmelCase = [] for old_item in old_list: UpperCAmelCase = old_item UpperCAmelCase = new_item.replace('''norm.weight''' , '''group_norm.weight''' ) UpperCAmelCase = new_item.replace('''norm.bias''' , '''group_norm.bias''' ) UpperCAmelCase = new_item.replace('''proj_out.weight''' , '''proj_attn.weight''' ) UpperCAmelCase = new_item.replace('''proj_out.bias''' , '''proj_attn.bias''' ) UpperCAmelCase = shave_segments(A , n_shave_prefix_segments=A ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def lowerCamelCase__ ( A : Tuple , A : Union[str, Any] , A : int , A : Dict=None , A : Optional[int]=None , A : Optional[Any]=None ): '''simple docstring''' assert isinstance(A , A ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): UpperCAmelCase = old_checkpoint[path] UpperCAmelCase = old_tensor.shape[0] // 3 UpperCAmelCase = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) UpperCAmelCase = old_tensor.shape[0] // config['''num_head_channels'''] // 3 UpperCAmelCase = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = old_tensor.split(channels // num_heads , dim=1 ) UpperCAmelCase = query.reshape(A ) UpperCAmelCase = key.reshape(A ) UpperCAmelCase = value.reshape(A ) for path in paths: UpperCAmelCase = path['''new'''] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here UpperCAmelCase = new_path.replace('''middle_block.0''' , '''mid_block.resnets.0''' ) UpperCAmelCase = new_path.replace('''middle_block.1''' , '''mid_block.attentions.0''' ) UpperCAmelCase = new_path.replace('''middle_block.2''' , '''mid_block.resnets.1''' ) if additional_replacements is not None: for replacement in additional_replacements: UpperCAmelCase = new_path.replace(replacement['''old'''] , replacement['''new'''] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: UpperCAmelCase = old_checkpoint[path['''old''']][:, :, 0] else: UpperCAmelCase = old_checkpoint[path['''old''']] def lowerCamelCase__ ( A : Union[str, Any] , A : Dict ): '''simple docstring''' UpperCAmelCase = {} UpperCAmelCase = checkpoint['''time_embed.0.weight'''] UpperCAmelCase = checkpoint['''time_embed.0.bias'''] UpperCAmelCase = checkpoint['''time_embed.2.weight'''] UpperCAmelCase = checkpoint['''time_embed.2.bias'''] UpperCAmelCase = checkpoint['''input_blocks.0.0.weight'''] UpperCAmelCase = checkpoint['''input_blocks.0.0.bias'''] UpperCAmelCase = checkpoint['''out.0.weight'''] UpperCAmelCase = checkpoint['''out.0.bias'''] UpperCAmelCase = checkpoint['''out.2.weight'''] UpperCAmelCase = checkpoint['''out.2.bias'''] # Retrieves the keys for the input blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''input_blocks''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""input_blocks.{layer_id}""" in key] for layer_id in range(A ) } # Retrieves the keys for the middle blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''middle_block''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""middle_block.{layer_id}""" in key] for layer_id in range(A ) } # Retrieves the keys for the output blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''output_blocks''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""output_blocks.{layer_id}""" in key] for layer_id in range(A ) } for i in range(1 , A ): UpperCAmelCase = (i - 1) // (config['''num_res_blocks'''] + 1) UpperCAmelCase = (i - 1) % (config['''num_res_blocks'''] + 1) UpperCAmelCase = [key for key in input_blocks[i] if f"""input_blocks.{i}.0""" in key] UpperCAmelCase = [key for key in input_blocks[i] if f"""input_blocks.{i}.1""" in key] if f"""input_blocks.{i}.0.op.weight""" in checkpoint: UpperCAmelCase = checkpoint[ f"""input_blocks.{i}.0.op.weight""" ] UpperCAmelCase = checkpoint[ f"""input_blocks.{i}.0.op.bias""" ] continue UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = {'''old''': f"""input_blocks.{i}.0""", '''new''': f"""down_blocks.{block_id}.resnets.{layer_in_block_id}"""} UpperCAmelCase = {'''old''': '''resnets.2.op''', '''new''': '''downsamplers.0.op'''} assign_to_checkpoint( A , A , A , additional_replacements=[meta_path, resnet_op] , config=A ) if len(A ): UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''old''': f"""input_blocks.{i}.1""", '''new''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase = { f"""input_blocks.{i}.1.qkv.bias""": { '''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""input_blocks.{i}.1.qkv.weight""": { '''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( A , A , A , additional_replacements=[meta_path] , attention_paths_to_split=A , config=A , ) UpperCAmelCase = middle_blocks[0] UpperCAmelCase = middle_blocks[1] UpperCAmelCase = middle_blocks[2] UpperCAmelCase = renew_resnet_paths(A ) assign_to_checkpoint(A , A , A , config=A ) UpperCAmelCase = renew_resnet_paths(A ) assign_to_checkpoint(A , A , A , config=A ) UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''middle_block.1.qkv.bias''': { '''key''': '''mid_block.attentions.0.key.bias''', '''query''': '''mid_block.attentions.0.query.bias''', '''value''': '''mid_block.attentions.0.value.bias''', }, '''middle_block.1.qkv.weight''': { '''key''': '''mid_block.attentions.0.key.weight''', '''query''': '''mid_block.attentions.0.query.weight''', '''value''': '''mid_block.attentions.0.value.weight''', }, } assign_to_checkpoint( A , A , A , attention_paths_to_split=A , config=A ) for i in range(A ): UpperCAmelCase = i // (config['''num_res_blocks'''] + 1) UpperCAmelCase = i % (config['''num_res_blocks'''] + 1) UpperCAmelCase = [shave_segments(A , 2 ) for name in output_blocks[i]] UpperCAmelCase = {} for layer in output_block_layers: UpperCAmelCase , UpperCAmelCase = layer.split('''.''' )[0], shave_segments(A , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(A ) else: UpperCAmelCase = [layer_name] if len(A ) > 1: UpperCAmelCase = [key for key in output_blocks[i] if f"""output_blocks.{i}.0""" in key] UpperCAmelCase = [key for key in output_blocks[i] if f"""output_blocks.{i}.1""" in key] UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = {'''old''': f"""output_blocks.{i}.0""", '''new''': f"""up_blocks.{block_id}.resnets.{layer_in_block_id}"""} assign_to_checkpoint(A , A , A , additional_replacements=[meta_path] , config=A ) if ["conv.weight", "conv.bias"] in output_block_list.values(): UpperCAmelCase = list(output_block_list.values() ).index(['''conv.weight''', '''conv.bias'''] ) UpperCAmelCase = checkpoint[ f"""output_blocks.{i}.{index}.conv.weight""" ] UpperCAmelCase = checkpoint[ f"""output_blocks.{i}.{index}.conv.bias""" ] # Clear attentions as they have been attributed above. if len(A ) == 2: UpperCAmelCase = [] if len(A ): UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''old''': f"""output_blocks.{i}.1""", '''new''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase = { f"""output_blocks.{i}.1.qkv.bias""": { '''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""output_blocks.{i}.1.qkv.weight""": { '''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( A , A , A , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('''qkv''' in key for key in attentions ) else None , config=A , ) else: UpperCAmelCase = renew_resnet_paths(A , n_shave_prefix_segments=1 ) for path in resnet_0_paths: UpperCAmelCase = '''.'''.join(['''output_blocks''', str(A ), path['''old''']] ) UpperCAmelCase = '''.'''.join(['''up_blocks''', str(A ), '''resnets''', str(A ), path['''new''']] ) UpperCAmelCase = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": _lowercase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") _lowercase : Dict = parser.parse_args() _lowercase : List[Any] = torch.load(args.checkpoint_path) with open(args.config_file) as f: _lowercase : List[str] = json.loads(f.read()) _lowercase : Union[str, Any] = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] _lowercase : Any = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: _lowercase : Tuple = DDPMScheduler.from_config("""/""".join(args.checkpoint_path.split("""/""")[:-1])) _lowercase : Optional[Any] = VQModel.from_pretrained("""/""".join(args.checkpoint_path.split("""/""")[:-1])) _lowercase : Optional[Any] = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
50
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class UpperCamelCase__( unittest.TestCase ): def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = tempfile.mkdtemp() # fmt: off UpperCAmelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on UpperCAmelCase = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase ) ) ) ) UpperCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] UpperCAmelCase = {'''unk_token''': '''<unk>'''} UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowerCAmelCase ) ) UpperCAmelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48145466, 0.4578275, 0.40821073], '''image_std''': [0.26862954, 0.26130258, 0.27577711], } UpperCAmelCase = os.path.join(self.tmpdirname , lowerCAmelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(lowerCAmelCase , lowerCAmelCase ) def a__( self : Optional[int] , **lowerCAmelCase : Optional[int] )-> int: """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase ) def a__( self : str , **lowerCAmelCase : Optional[int] )-> Optional[Any]: """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase ) def a__( self : List[str] , **lowerCAmelCase : Optional[int] )-> Optional[Any]: """simple docstring""" return CLIPImageProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase ) def a__( self : Union[str, Any] )-> List[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def a__( self : Dict )-> List[Any]: """simple docstring""" UpperCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCAmelCase = [Image.fromarray(np.moveaxis(lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def a__( self : Optional[int] )-> Any: """simple docstring""" UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = self.get_image_processor() UpperCAmelCase = CLIPProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) UpperCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCAmelCase ) UpperCAmelCase = CLIPProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) UpperCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , lowerCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCAmelCase ) self.assertIsInstance(processor_fast.image_processor , lowerCAmelCase ) def a__( self : Optional[int] )-> Any: """simple docstring""" UpperCAmelCase = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) UpperCAmelCase = self.get_image_processor(do_normalize=lowerCAmelCase , padding_value=1.0 ) UpperCAmelCase = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase ) def a__( self : Union[str, Any] )-> str: """simple docstring""" UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = CLIPProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase ) UpperCAmelCase = self.prepare_image_inputs() UpperCAmelCase = image_processor(lowerCAmelCase , return_tensors='''np''' ) UpperCAmelCase = processor(images=lowerCAmelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def a__( self : int )-> List[Any]: """simple docstring""" UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = CLIPProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase ) UpperCAmelCase = '''lower newer''' UpperCAmelCase = processor(text=lowerCAmelCase ) UpperCAmelCase = tokenizer(lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = CLIPProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase ) UpperCAmelCase = '''lower newer''' UpperCAmelCase = self.prepare_image_inputs() UpperCAmelCase = processor(text=lowerCAmelCase , images=lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase ): processor() def a__( self : int )-> int: """simple docstring""" UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = CLIPProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase ) UpperCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase = processor.batch_decode(lowerCAmelCase ) UpperCAmelCase = tokenizer.batch_decode(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) def a__( self : List[str] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = CLIPProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase ) UpperCAmelCase = '''lower newer''' UpperCAmelCase = self.prepare_image_inputs() UpperCAmelCase = processor(text=lowerCAmelCase , images=lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
50
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Any = logging.get_logger(__name__) _lowercase : Dict = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = "dpr" def __init__( self : Dict , lowerCAmelCase : Any=30522 , lowerCAmelCase : List[str]=768 , lowerCAmelCase : Union[str, Any]=12 , lowerCAmelCase : Tuple=12 , lowerCAmelCase : Optional[int]=3072 , lowerCAmelCase : Optional[int]="gelu" , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : Any=0.1 , lowerCAmelCase : Optional[Any]=512 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : str=1E-12 , lowerCAmelCase : Optional[Any]=0 , lowerCAmelCase : Tuple="absolute" , lowerCAmelCase : int = 0 , **lowerCAmelCase : Union[str, Any] , )-> Optional[int]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = projection_dim UpperCAmelCase = position_embedding_type
50
1
'''simple docstring''' from abc import ABC, abstractmethod from typing import List, Optional class UpperCamelCase__( lowerCAmelCase ): def __init__( self : Dict )-> Dict: """simple docstring""" self.test() def a__( self : Tuple )-> str: """simple docstring""" UpperCAmelCase = 0 UpperCAmelCase = False while not completed: if counter == 1: self.reset() UpperCAmelCase = self.advance() if not self.does_advance(lowerCAmelCase ): raise Exception( '''Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.''' ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self.update(lowerCAmelCase ) counter += 1 if counter > 10000: raise Exception('''update() does not fulfill the constraint.''' ) if self.remaining() != 0: raise Exception('''Custom Constraint is not defined correctly.''' ) @abstractmethod def a__( self : str )-> Any: """simple docstring""" raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def a__( self : Optional[int] , lowerCAmelCase : int )-> int: """simple docstring""" raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def a__( self : Optional[Any] , lowerCAmelCase : int )-> Tuple: """simple docstring""" raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def a__( self : List[Any] )-> Any: """simple docstring""" raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def a__( self : List[str] )-> Dict: """simple docstring""" raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def a__( self : int , lowerCAmelCase : Tuple=False )-> Optional[int]: """simple docstring""" raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class UpperCamelCase__( lowerCAmelCase ): def __init__( self : Optional[int] , lowerCAmelCase : List[int] )-> List[str]: """simple docstring""" super(lowerCAmelCase , self ).__init__() if not isinstance(lowerCAmelCase , lowerCAmelCase ) or len(lowerCAmelCase ) == 0: raise ValueError(F"""`token_ids` has to be a non-empty list, but is {token_ids}.""" ) if any((not isinstance(lowerCAmelCase , lowerCAmelCase ) or token_id < 0) for token_id in token_ids ): raise ValueError(F"""Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.""" ) UpperCAmelCase = token_ids UpperCAmelCase = len(self.token_ids ) UpperCAmelCase = -1 # the index of the currently fulfilled step UpperCAmelCase = False def a__( self : Optional[Any] )-> Dict: """simple docstring""" if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def a__( self : List[Any] , lowerCAmelCase : int )-> List[str]: """simple docstring""" if not isinstance(lowerCAmelCase , lowerCAmelCase ): raise ValueError(F"""`token_id` has to be an `int`, but is {token_id} of type {type(lowerCAmelCase )}""" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def a__( self : Optional[int] , lowerCAmelCase : int )-> Optional[int]: """simple docstring""" if not isinstance(lowerCAmelCase , lowerCAmelCase ): raise ValueError(F"""`token_id` has to be an `int`, but is {token_id} of type {type(lowerCAmelCase )}""" ) UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False if self.does_advance(lowerCAmelCase ): self.fulfilled_idx += 1 UpperCAmelCase = True if self.fulfilled_idx == (self.seqlen - 1): UpperCAmelCase = True UpperCAmelCase = completed else: # failed to make progress. UpperCAmelCase = True self.reset() return stepped, completed, reset def a__( self : Dict )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = False UpperCAmelCase = 0 def a__( self : int )-> List[str]: """simple docstring""" return self.seqlen - (self.fulfilled_idx + 1) def a__( self : Dict , lowerCAmelCase : str=False )-> int: """simple docstring""" UpperCAmelCase = PhrasalConstraint(self.token_ids ) if stateful: UpperCAmelCase = self.seqlen UpperCAmelCase = self.fulfilled_idx UpperCAmelCase = self.completed return new_constraint class UpperCamelCase__: def __init__( self : Optional[Any] , lowerCAmelCase : List[List[int]] , lowerCAmelCase : Dict=True )-> Optional[int]: """simple docstring""" UpperCAmelCase = max([len(lowerCAmelCase ) for one in nested_token_ids] ) UpperCAmelCase = {} for token_ids in nested_token_ids: UpperCAmelCase = root for tidx, token_id in enumerate(lowerCAmelCase ): if token_id not in level: UpperCAmelCase = {} UpperCAmelCase = level[token_id] if no_subsets and self.has_subsets(lowerCAmelCase , lowerCAmelCase ): raise ValueError( '''Each list in `nested_token_ids` can\'t be a complete subset of another list, but is''' F""" {nested_token_ids}.""" ) UpperCAmelCase = root def a__( self : Dict , lowerCAmelCase : Optional[int] )-> List[Any]: """simple docstring""" UpperCAmelCase = self.trie for current_token in current_seq: UpperCAmelCase = start[current_token] UpperCAmelCase = list(start.keys() ) return next_tokens def a__( self : int , lowerCAmelCase : Dict )-> Tuple: """simple docstring""" UpperCAmelCase = self.next_tokens(lowerCAmelCase ) return len(lowerCAmelCase ) == 0 def a__( self : Dict , lowerCAmelCase : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = list(root.values() ) if len(lowerCAmelCase ) == 0: return 1 else: return sum([self.count_leaves(lowerCAmelCase ) for nn in next_nodes] ) def a__( self : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : int )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.count_leaves(lowerCAmelCase ) return len(lowerCAmelCase ) != leaf_count class UpperCamelCase__( lowerCAmelCase ): def __init__( self : List[Any] , lowerCAmelCase : List[List[int]] )-> int: """simple docstring""" super(lowerCAmelCase , self ).__init__() if not isinstance(lowerCAmelCase , lowerCAmelCase ) or len(lowerCAmelCase ) == 0: raise ValueError(F"""`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.""" ) if any(not isinstance(lowerCAmelCase , lowerCAmelCase ) for token_ids in nested_token_ids ): raise ValueError(F"""`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.""" ) if any( any((not isinstance(lowerCAmelCase , lowerCAmelCase ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F"""Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.""" ) UpperCAmelCase = DisjunctiveTrie(lowerCAmelCase ) UpperCAmelCase = nested_token_ids UpperCAmelCase = self.trie.max_height UpperCAmelCase = [] UpperCAmelCase = False def a__( self : Dict )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.trie.next_tokens(self.current_seq ) if len(lowerCAmelCase ) == 0: return None else: return token_list def a__( self : List[str] , lowerCAmelCase : int )-> int: """simple docstring""" if not isinstance(lowerCAmelCase , lowerCAmelCase ): raise ValueError(F"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(lowerCAmelCase )}""" ) UpperCAmelCase = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def a__( self : Optional[Any] , lowerCAmelCase : int )-> Tuple: """simple docstring""" if not isinstance(lowerCAmelCase , lowerCAmelCase ): raise ValueError(F"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(lowerCAmelCase )}""" ) UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False if self.does_advance(lowerCAmelCase ): self.current_seq.append(lowerCAmelCase ) UpperCAmelCase = True else: UpperCAmelCase = True self.reset() UpperCAmelCase = self.trie.reached_leaf(self.current_seq ) UpperCAmelCase = completed return stepped, completed, reset def a__( self : str )-> List[Any]: """simple docstring""" UpperCAmelCase = False UpperCAmelCase = [] def a__( self : Dict )-> str: """simple docstring""" if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def a__( self : int , lowerCAmelCase : Any=False )-> Optional[Any]: """simple docstring""" UpperCAmelCase = DisjunctiveConstraint(self.token_ids ) if stateful: UpperCAmelCase = self.seqlen UpperCAmelCase = self.current_seq UpperCAmelCase = self.completed return new_constraint class UpperCamelCase__: def __init__( self : Tuple , lowerCAmelCase : List[Constraint] )-> int: """simple docstring""" UpperCAmelCase = constraints # max # of steps required to fulfill a given constraint UpperCAmelCase = max([c.seqlen for c in constraints] ) UpperCAmelCase = len(lowerCAmelCase ) UpperCAmelCase = False self.init_state() def a__( self : Optional[Any] )-> Dict: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = None UpperCAmelCase = [constraint.copy(stateful=lowerCAmelCase ) for constraint in self.constraints] def a__( self : Optional[Any] )-> List[str]: """simple docstring""" UpperCAmelCase = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def a__( self : Any )-> List[Any]: """simple docstring""" UpperCAmelCase = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" UpperCAmelCase = constraint.advance() if isinstance(lowerCAmelCase , lowerCAmelCase ): token_list.append(lowerCAmelCase ) elif isinstance(lowerCAmelCase , lowerCAmelCase ): token_list.extend(lowerCAmelCase ) else: UpperCAmelCase = self.inprogress_constraint.advance() if isinstance(lowerCAmelCase , lowerCAmelCase ): token_list.append(lowerCAmelCase ) elif isinstance(lowerCAmelCase , lowerCAmelCase ): token_list.extend(lowerCAmelCase ) if len(lowerCAmelCase ) == 0: return None else: return token_list def a__( self : str , lowerCAmelCase : Optional[List[int]] )-> str: """simple docstring""" self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint UpperCAmelCase , UpperCAmelCase = self.add(lowerCAmelCase ) # the entire list of constraints are fulfilled if self.completed: break def a__( self : str , lowerCAmelCase : int )-> Dict: """simple docstring""" if not isinstance(lowerCAmelCase , lowerCAmelCase ): raise ValueError(F"""`token_id` should be an `int`, but is `{token_id}`.""" ) UpperCAmelCase , UpperCAmelCase = False, False if self.completed: UpperCAmelCase = True UpperCAmelCase = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self.inprogress_constraint.update(lowerCAmelCase ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=lowerCAmelCase ) ) UpperCAmelCase = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) UpperCAmelCase = None if len(self.pending_constraints ) == 0: # we're done! UpperCAmelCase = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(lowerCAmelCase ): UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = pending_constraint.update(lowerCAmelCase ) if not stepped: raise Exception( '''`constraint.update(token_id)` is not yielding incremental progress, ''' '''even though `constraint.does_advance(token_id)` is true.''' ) if complete: self.complete_constraints.append(lowerCAmelCase ) UpperCAmelCase = None if not complete and stepped: UpperCAmelCase = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". UpperCAmelCase = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. UpperCAmelCase = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def a__( self : str , lowerCAmelCase : str=True )-> str: """simple docstring""" UpperCAmelCase = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: UpperCAmelCase = [ constraint.copy(stateful=lowerCAmelCase ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: UpperCAmelCase = self.inprogress_constraint.copy(stateful=lowerCAmelCase ) UpperCAmelCase = [constraint.copy() for constraint in self.pending_constraints] return new_state
50
'''simple docstring''' import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _lowercase : Tuple = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def lowerCamelCase__ ( A : Optional[Any] ): '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def lowerCamelCase__ ( A : Any , A : str ): '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase = False elif args.student_type == "gpt2": UpperCAmelCase = False def lowerCamelCase__ ( A : List[Any] , A : List[str] ): '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase = False def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=A , required=A , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=A , required=A , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=A , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=A , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=A , required=A , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=A , type=A , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=A , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=A , required=A , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=A , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=A , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=A , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=A , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=A , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=A , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=A , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=A , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=A , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=A , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=A , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=A , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=A , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=A , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=A , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=A , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=A , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=A , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=A , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=A , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=A , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=A , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=A , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=A , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=A , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=A , default=5_00 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=A , default=40_00 , help='''Checkpoint interval.''' ) UpperCAmelCase = parser.parse_args() sanity_checks(A ) # ARGS # init_gpu_params(A ) set_seed(A ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(f"""Param: {args}""" ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(A ) , A , indent=4 ) git_log(args.dump_path ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = MODEL_CLASSES[args.student_type] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # UpperCAmelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) UpperCAmelCase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): UpperCAmelCase = tokenizer.all_special_tokens.index(A ) UpperCAmelCase = tokenizer.all_special_ids[idx] logger.info(f"""Special tokens {special_tok_ids}""" ) UpperCAmelCase = special_tok_ids UpperCAmelCase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f"""Loading data from {args.data_file}""" ) with open(args.data_file , '''rb''' ) as fp: UpperCAmelCase = pickle.load(A ) if args.mlm: logger.info(f"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts , '''rb''' ) as fp: UpperCAmelCase = pickle.load(A ) UpperCAmelCase = np.maximum(A , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): UpperCAmelCase = 0.0 # do not predict special tokens UpperCAmelCase = torch.from_numpy(A ) else: UpperCAmelCase = None UpperCAmelCase = LmSeqsDataset(params=A , data=A ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(f"""Loading student config from {args.student_config}""" ) UpperCAmelCase = student_config_class.from_pretrained(args.student_config ) UpperCAmelCase = True if args.student_pretrained_weights is not None: logger.info(f"""Loading pretrained weights from {args.student_pretrained_weights}""" ) UpperCAmelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=A ) else: UpperCAmelCase = student_model_class(A ) if args.n_gpu > 0: student.to(f"""cuda:{args.local_rank}""" ) logger.info('''Student loaded.''' ) # TEACHER # UpperCAmelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=A ) if args.n_gpu > 0: teacher.to(f"""cuda:{args.local_rank}""" ) logger.info(f"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(A , A ) if args.freeze_token_type_embds: freeze_token_type_embeddings(A , A ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() UpperCAmelCase = Distiller( params=A , dataset=A , token_probs=A , student=A , teacher=A ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
50
1
'''simple docstring''' def lowerCamelCase__ ( A : str , A : str ): '''simple docstring''' if len(A ) != len(A ): raise ValueError('''String lengths must match!''' ) UpperCAmelCase = 0 for chara, chara in zip(A , A ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
50
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Tuple = ["image_processor", "tokenizer"] __magic_name__ : Any = "ViTImageProcessor" __magic_name__ : str = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : List[str] , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=None , **lowerCAmelCase : Optional[int] )-> List[Any]: """simple docstring""" UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCAmelCase , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase , lowerCAmelCase ) def __call__( self : str , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=None , **lowerCAmelCase : List[str] )-> List[Any]: """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''' ) if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''' ) if text is not None: UpperCAmelCase = self.tokenizer(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if visual_prompt is not None: UpperCAmelCase = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if images is not None: UpperCAmelCase = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if visual_prompt is not None and images is not None: UpperCAmelCase = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: UpperCAmelCase = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase ) , tensor_type=lowerCAmelCase ) def a__( self : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int] )-> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str] )-> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase ) @property def a__( self : List[Any] )-> Optional[Any]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCAmelCase , ) return self.image_processor_class @property def a__( self : Any )-> List[Any]: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowerCAmelCase , ) return self.image_processor
50
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class UpperCamelCase__( unittest.TestCase ): @slow def a__( self : Optional[int] )-> Optional[int]: """simple docstring""" UpperCAmelCase = TFCamembertModel.from_pretrained('''jplu/tf-camembert-base''' ) UpperCAmelCase = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" UpperCAmelCase = model(lowerCAmelCase )['''last_hidden_state'''] UpperCAmelCase = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , lowerCAmelCase ) # compare the actual values for a slice. UpperCAmelCase = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
50
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Any = { """configuration_maskformer""": ["""MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MaskFormerConfig"""], """configuration_maskformer_swin""": ["""MaskFormerSwinConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = ["""MaskFormerFeatureExtractor"""] _lowercase : Dict = ["""MaskFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = [ """MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """MaskFormerForInstanceSegmentation""", """MaskFormerModel""", """MaskFormerPreTrainedModel""", ] _lowercase : List[Any] = [ """MaskFormerSwinBackbone""", """MaskFormerSwinModel""", """MaskFormerSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys _lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
50
1
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _lowercase : int = logging.get_logger(__name__) _lowercase : int = { """Salesforce/codegen-350M-nl""": """https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json""", """Salesforce/codegen-350M-multi""": """https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json""", """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json""", """Salesforce/codegen-2B-nl""": """https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json""", """Salesforce/codegen-2B-multi""": """https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json""", """Salesforce/codegen-2B-mono""": """https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json""", """Salesforce/codegen-6B-nl""": """https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json""", """Salesforce/codegen-6B-multi""": """https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json""", """Salesforce/codegen-6B-mono""": """https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json""", """Salesforce/codegen-16B-nl""": """https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json""", """Salesforce/codegen-16B-multi""": """https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json""", """Salesforce/codegen-16B-mono""": """https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json""", } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : List[Any] = "codegen" __magic_name__ : Any = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : int , lowerCAmelCase : Optional[int]=50400 , lowerCAmelCase : Tuple=2048 , lowerCAmelCase : List[Any]=2048 , lowerCAmelCase : Optional[int]=4096 , lowerCAmelCase : str=28 , lowerCAmelCase : Tuple=16 , lowerCAmelCase : List[Any]=64 , lowerCAmelCase : Dict=None , lowerCAmelCase : Any="gelu_new" , lowerCAmelCase : Tuple=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : Optional[Any]=0.0 , lowerCAmelCase : List[Any]=1E-5 , lowerCAmelCase : Optional[int]=0.02 , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : Union[str, Any]=50256 , lowerCAmelCase : str=50256 , lowerCAmelCase : List[Any]=False , **lowerCAmelCase : Union[str, Any] , )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = vocab_size UpperCAmelCase = n_ctx UpperCAmelCase = n_positions UpperCAmelCase = n_embd UpperCAmelCase = n_layer UpperCAmelCase = n_head UpperCAmelCase = n_inner UpperCAmelCase = rotary_dim UpperCAmelCase = activation_function UpperCAmelCase = resid_pdrop UpperCAmelCase = embd_pdrop UpperCAmelCase = attn_pdrop UpperCAmelCase = layer_norm_epsilon UpperCAmelCase = initializer_range UpperCAmelCase = use_cache UpperCAmelCase = bos_token_id UpperCAmelCase = eos_token_id super().__init__( bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , tie_word_embeddings=lowerCAmelCase , **lowerCAmelCase ) class UpperCamelCase__( lowerCAmelCase ): def __init__( self : Union[str, Any] , lowerCAmelCase : PretrainedConfig , lowerCAmelCase : str = "default" , lowerCAmelCase : List[PatchingSpec] = None , lowerCAmelCase : bool = False , )-> Optional[Any]: """simple docstring""" super().__init__(lowerCAmelCase , task=lowerCAmelCase , patching_specs=lowerCAmelCase , use_past=lowerCAmelCase ) if not getattr(self._config , '''pad_token_id''' , lowerCAmelCase ): # TODO: how to do that better? UpperCAmelCase = 0 @property def a__( self : Any )-> Mapping[str, Mapping[int, str]]: """simple docstring""" UpperCAmelCase = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase , direction='''inputs''' ) UpperCAmelCase = {0: '''batch''', 1: '''past_sequence + sequence'''} else: UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def a__( self : Union[str, Any] )-> int: """simple docstring""" return self._config.n_layer @property def a__( self : int )-> int: """simple docstring""" return self._config.n_head def a__( self : Dict , lowerCAmelCase : PreTrainedTokenizer , lowerCAmelCase : int = -1 , lowerCAmelCase : int = -1 , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[TensorType] = None , )-> Mapping[str, Any]: """simple docstring""" UpperCAmelCase = super(lowerCAmelCase , self ).generate_dummy_inputs( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) # We need to order the input in the way they appears in the forward() UpperCAmelCase = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase , UpperCAmelCase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values UpperCAmelCase = seqlen + 2 UpperCAmelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) UpperCAmelCase = [ (torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase )) for _ in range(self.num_layers ) ] UpperCAmelCase = common_inputs['''attention_mask'''] if self.use_past: UpperCAmelCase = ordered_inputs['''attention_mask'''].dtype UpperCAmelCase = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(lowerCAmelCase , lowerCAmelCase , dtype=lowerCAmelCase )] , dim=1 ) return ordered_inputs @property def a__( self : Dict )-> int: """simple docstring""" return 13
50
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowercase : Optional[Any] = 16 _lowercase : Dict = 32 def lowerCamelCase__ ( A : Accelerator , A : int = 16 ): '''simple docstring''' UpperCAmelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(A : int ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=A , max_length=A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase = datasets.map( A , batched=A , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(A : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase = 8 else: UpperCAmelCase = None return tokenizer.pad( A , padding='''longest''' , max_length=A , pad_to_multiple_of=A , return_tensors='''pt''' , ) # Instantiate dataloaders. UpperCAmelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=A , collate_fn=A , batch_size=A ) UpperCAmelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=A , collate_fn=A , batch_size=A ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowercase : Union[str, Any] = mocked_dataloaders # noqa: F811 def lowerCamelCase__ ( A : Optional[Any] , A : Tuple ): '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , A ) == "1": UpperCAmelCase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: UpperCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase = config['''lr'''] UpperCAmelCase = int(config['''num_epochs'''] ) UpperCAmelCase = int(config['''seed'''] ) UpperCAmelCase = int(config['''batch_size'''] ) set_seed(A ) UpperCAmelCase , UpperCAmelCase = get_dataloaders(A , A ) UpperCAmelCase = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation UpperCAmelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=A ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase = AdamW(params=model.parameters() , lr=A ) # Instantiate scheduler UpperCAmelCase = get_linear_schedule_with_warmup( optimizer=A , num_warmup_steps=1_00 , num_training_steps=(len(A ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( A , A , A , A , A ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: UpperCAmelCase = os.path.split(A )[-1].split('''.''' )[0] accelerator.init_trackers(A , A ) # Now we train the model for epoch in range(A ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: UpperCAmelCase = 0 for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase = model(**A ) UpperCAmelCase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() UpperCAmelCase = loss / gradient_accumulation_steps accelerator.backward(A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase = model(**A ) UpperCAmelCase = outputs.logits.argmax(dim=-1 ) UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=A , references=A , ) UpperCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , A ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(A ), '''epoch''': epoch, } , step=A , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=A , default=A , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=A , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(A , A ) if __name__ == "__main__": main()
50
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowercase : Optional[Any] = logging.get_logger(__name__) def lowerCamelCase__ ( A : int ): '''simple docstring''' UpperCAmelCase = DPTConfig(embedding_type='''hybrid''' ) if "large" in checkpoint_url: UpperCAmelCase = 10_24 UpperCAmelCase = 40_96 UpperCAmelCase = 24 UpperCAmelCase = 16 UpperCAmelCase = [5, 11, 17, 23] UpperCAmelCase = [2_56, 5_12, 10_24, 10_24] UpperCAmelCase = (1, 3_84, 3_84) if "nyu" or "midas" in checkpoint_url: UpperCAmelCase = 7_68 UpperCAmelCase = [1, 1, 1, 0.5] UpperCAmelCase = [2_56, 5_12, 7_68, 7_68] UpperCAmelCase = 1_50 UpperCAmelCase = 16 UpperCAmelCase = (1, 3_84, 3_84) UpperCAmelCase = False UpperCAmelCase = '''project''' if "ade" in checkpoint_url: UpperCAmelCase = True UpperCAmelCase = 7_68 UpperCAmelCase = [1, 1, 1, 0.5] UpperCAmelCase = 1_50 UpperCAmelCase = 16 UpperCAmelCase = '''huggingface/label-files''' UpperCAmelCase = '''ade20k-id2label.json''' UpperCAmelCase = json.load(open(cached_download(hf_hub_url(A , A , repo_type='''dataset''' ) ) , '''r''' ) ) UpperCAmelCase = {int(A ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} UpperCAmelCase = [1, 1_50, 4_80, 4_80] return config, expected_shape def lowerCamelCase__ ( A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(A , A ) def lowerCamelCase__ ( A : List[Any] ): '''simple docstring''' if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCAmelCase = name.replace('''pretrained.model''' , '''dpt.encoder''' ) if "pretrained.model" in name: UpperCAmelCase = name.replace('''pretrained.model''' , '''dpt.embeddings''' ) if "patch_embed" in name: UpperCAmelCase = name.replace('''patch_embed''' , '''''' ) if "pos_embed" in name: UpperCAmelCase = name.replace('''pos_embed''' , '''position_embeddings''' ) if "attn.proj" in name: UpperCAmelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "proj" in name and "project" not in name: UpperCAmelCase = name.replace('''proj''' , '''projection''' ) if "blocks" in name: UpperCAmelCase = name.replace('''blocks''' , '''layer''' ) if "mlp.fc1" in name: UpperCAmelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if "norm1" in name and "backbone" not in name: UpperCAmelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name and "backbone" not in name: UpperCAmelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "scratch.output_conv" in name: UpperCAmelCase = name.replace('''scratch.output_conv''' , '''head''' ) if "scratch" in name: UpperCAmelCase = name.replace('''scratch''' , '''neck''' ) if "layer1_rn" in name: UpperCAmelCase = name.replace('''layer1_rn''' , '''convs.0''' ) if "layer2_rn" in name: UpperCAmelCase = name.replace('''layer2_rn''' , '''convs.1''' ) if "layer3_rn" in name: UpperCAmelCase = name.replace('''layer3_rn''' , '''convs.2''' ) if "layer4_rn" in name: UpperCAmelCase = name.replace('''layer4_rn''' , '''convs.3''' ) if "refinenet" in name: UpperCAmelCase = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCAmelCase = name.replace(f"""refinenet{layer_idx}""" , f"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: UpperCAmelCase = name.replace('''out_conv''' , '''projection''' ) if "resConfUnit1" in name: UpperCAmelCase = name.replace('''resConfUnit1''' , '''residual_layer1''' ) if "resConfUnit2" in name: UpperCAmelCase = name.replace('''resConfUnit2''' , '''residual_layer2''' ) if "conv1" in name: UpperCAmelCase = name.replace('''conv1''' , '''convolution1''' ) if "conv2" in name: UpperCAmelCase = name.replace('''conv2''' , '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: UpperCAmelCase = name.replace('''pretrained''' , '''dpt''' ) if "bn" in name: UpperCAmelCase = name.replace('''bn''' , '''batch_norm''' ) if "head" in name: UpperCAmelCase = name.replace('''head''' , '''head.head''' ) if "encoder.norm" in name: UpperCAmelCase = name.replace('''encoder.norm''' , '''layernorm''' ) if "auxlayer" in name: UpperCAmelCase = name.replace('''auxlayer''' , '''auxiliary_head.head''' ) if "backbone" in name: UpperCAmelCase = name.replace('''backbone''' , '''backbone.bit.encoder''' ) if ".." in name: UpperCAmelCase = name.replace('''..''' , '''.''' ) if "stem.conv" in name: UpperCAmelCase = name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: UpperCAmelCase = name.replace('''blocks''' , '''layers''' ) if "convolution" in name and "backbone" in name: UpperCAmelCase = name.replace('''convolution''' , '''conv''' ) if "layer" in name and "backbone" in name: UpperCAmelCase = name.replace('''layer''' , '''layers''' ) if "backbone.bit.encoder.bit" in name: UpperCAmelCase = name.replace('''backbone.bit.encoder.bit''' , '''backbone.bit''' ) if "embedder.conv" in name: UpperCAmelCase = name.replace('''embedder.conv''' , '''embedder.convolution''' ) if "backbone.bit.encoder.stem.norm" in name: UpperCAmelCase = name.replace('''backbone.bit.encoder.stem.norm''' , '''backbone.bit.embedder.norm''' ) return name def lowerCamelCase__ ( A : Any , A : Union[str, Any] ): '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) UpperCAmelCase = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase = in_proj_weight[: config.hidden_size, :] UpperCAmelCase = in_proj_bias[: config.hidden_size] UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase = in_proj_bias[-config.hidden_size :] def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase = Image.open(requests.get(A , stream=A ).raw ) return im @torch.no_grad() def lowerCamelCase__ ( A : Dict , A : List[str] , A : Any , A : Dict , A : Optional[int] ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = get_dpt_config(A ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") UpperCAmelCase = torch.load(A , map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(A ) # rename keys for key in state_dict.copy().keys(): UpperCAmelCase = state_dict.pop(A ) UpperCAmelCase = val # read in qkv matrices read_in_q_k_v(A , A ) # load HuggingFace model UpperCAmelCase = DPTForSemanticSegmentation(A ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(A ) model.load_state_dict(A ) model.eval() # Check outputs on an image UpperCAmelCase = 4_80 if '''ade''' in checkpoint_url else 3_84 UpperCAmelCase = DPTImageProcessor(size=A ) UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(A , return_tensors='''pt''' ) # forward pass UpperCAmelCase = model(**A ).logits if '''ade''' in checkpoint_url else model(**A ).predicted_depth if show_prediction: UpperCAmelCase = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='''bicubic''' , align_corners=A , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 2_55 ).show() if pytorch_dump_folder_path is not None: Path(A ).mkdir(exist_ok=A ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(A ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(A ) if push_to_hub: model.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) image_processor.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) if __name__ == "__main__": _lowercase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""", type=str, help="""URL of the original DPT checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=False, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) parser.add_argument( """--model_name""", default="""dpt-large""", type=str, help="""Name of the model, in case you're pushing to the hub.""", ) parser.add_argument( """--show_prediction""", action="""store_true""", ) _lowercase : str = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
50
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : int = { """configuration_xmod""": [ """XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XmodConfig""", """XmodOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = [ """XMOD_PRETRAINED_MODEL_ARCHIVE_LIST""", """XmodForCausalLM""", """XmodForMaskedLM""", """XmodForMultipleChoice""", """XmodForQuestionAnswering""", """XmodForSequenceClassification""", """XmodForTokenClassification""", """XmodModel""", """XmodPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys _lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
1
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging _lowercase : Optional[Any] = logging.get_logger(__name__) def lowerCamelCase__ ( A : Any , A : Dict , A : str , A : Optional[Any]=False ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise if not is_sharded: UpperCAmelCase = os.path.abspath(A ) logger.info(f"""Loading PyTorch weights from {pt_path}""" ) UpperCAmelCase = torch.load(A , map_location='''cpu''' ) logger.info(f"""PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.""" ) UpperCAmelCase = convert_pytorch_state_dict_to_flax(A , A ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files UpperCAmelCase = convert_pytorch_sharded_state_dict_to_flax(A , A ) return flax_state_dict def lowerCamelCase__ ( A : Tuple[str] , A : np.ndarray , A : Dict[str, jnp.ndarray] , A : str , ): '''simple docstring''' def is_key_or_prefix_key_in_dict(A : Tuple[str] ) -> bool: return len(set(A ) & {key, (model_prefix,) + key} ) > 0 # layer norm UpperCAmelCase = pt_tuple_key[:-1] + ('''scale''',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(A ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean UpperCAmelCase = pt_tuple_key[:-1] + ('''mean''',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(A ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var UpperCAmelCase = pt_tuple_key[:-1] + ('''var''',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(A ): return renamed_pt_tuple_key, pt_tensor # embedding UpperCAmelCase = pt_tuple_key[:-1] + ('''embedding''',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(A ): return renamed_pt_tuple_key, pt_tensor # conv layer UpperCAmelCase = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(A ): UpperCAmelCase = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCAmelCase = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(A ): UpperCAmelCase = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCAmelCase = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCAmelCase = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 UpperCAmelCase = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): UpperCAmelCase = pt_tuple_key[-2] + '''_g''' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): UpperCAmelCase = pt_tuple_key[-2] + '''_v''' if name is not None: UpperCAmelCase = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowerCamelCase__ ( A : int , A : int ): '''simple docstring''' UpperCAmelCase = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCAmelCase = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: UpperCAmelCase = flax_model.params['''params'''] else: UpperCAmelCase = flax_model.params UpperCAmelCase = flatten_dict(A ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCAmelCase = flatten_dict(flax_model.params['''batch_stats'''] ) random_flax_state_dict.update(A ) UpperCAmelCase = {} UpperCAmelCase = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) UpperCAmelCase = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary UpperCAmelCase = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCAmelCase = pt_tuple_key[1:] # Correctly rename weight parameters UpperCAmelCase , UpperCAmelCase = rename_key_and_reshape_tensor( A , A , A , A ) # add model prefix if necessary UpperCAmelCase = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCAmelCase = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: UpperCAmelCase = jnp.asarray(A ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(A , A ) continue # also add unexpected weight so that warning is thrown UpperCAmelCase = jnp.asarray(A ) else: # also add unexpected weight so that warning is thrown UpperCAmelCase = jnp.asarray(A ) return unflatten_dict(A ) def lowerCamelCase__ ( A : Optional[int] , A : str ): '''simple docstring''' import torch # Load the index UpperCAmelCase = {} for shard_file in shard_filenames: # load using msgpack utils UpperCAmelCase = torch.load(A ) UpperCAmelCase = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCAmelCase = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCAmelCase = flax_model.params['''params'''] UpperCAmelCase = flatten_dict(A ) random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) ) else: UpperCAmelCase = flax_model.params UpperCAmelCase = flatten_dict(A ) UpperCAmelCase = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) UpperCAmelCase = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary UpperCAmelCase = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCAmelCase = pt_tuple_key[1:] # Correctly rename weight parameters UpperCAmelCase , UpperCAmelCase = rename_key_and_reshape_tensor( A , A , A , A ) # add model prefix if necessary UpperCAmelCase = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCAmelCase = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: UpperCAmelCase = jnp.asarray(A ) continue if "var" in flax_key[-1]: UpperCAmelCase = jnp.asarray(A ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(A , A ) continue # also add unexpected weight so that warning is thrown UpperCAmelCase = jnp.asarray(A ) else: # also add unexpected weight so that warning is thrown UpperCAmelCase = jnp.asarray(A ) return unflatten_dict(A ) def lowerCamelCase__ ( A : List[str] , A : List[Any] ): '''simple docstring''' UpperCAmelCase = os.path.abspath(A ) logger.info(f"""Loading Flax weights from {flax_checkpoint_path}""" ) # import correct flax class UpperCAmelCase = getattr(A , '''Flax''' + model.__class__.__name__ ) # load flax weight dict with open(A , '''rb''' ) as state_f: try: UpperCAmelCase = from_bytes(A , state_f.read() ) except UnpicklingError: raise EnvironmentError(f"""Unable to convert {flax_checkpoint_path} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(A , A ) def lowerCamelCase__ ( A : Tuple , A : List[Any] ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights UpperCAmelCase = flatten_dict(jax.tree_util.tree_map(lambda A : x.dtype == jnp.bfloataa , A ) ).values() if any(A ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) UpperCAmelCase = jax.tree_util.tree_map( lambda A : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , A ) UpperCAmelCase = flatten_dict(A ) UpperCAmelCase = pt_model.state_dict() UpperCAmelCase = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) UpperCAmelCase = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys UpperCAmelCase = [] UpperCAmelCase = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): UpperCAmelCase = flax_key_tuple[0] == pt_model.base_model_prefix UpperCAmelCase = '''.'''.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: UpperCAmelCase = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: UpperCAmelCase = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(A ) not in pt_model_dict: # conv layer UpperCAmelCase = flax_key_tuple[:-1] + ('''weight''',) UpperCAmelCase = jnp.transpose(A , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(A ) not in pt_model_dict: # linear layer UpperCAmelCase = flax_key_tuple[:-1] + ('''weight''',) UpperCAmelCase = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: UpperCAmelCase = flax_key_tuple[:-1] + ('''weight''',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: UpperCAmelCase = flax_key_tuple[:-1] + ('''running_mean''',) elif "var" in flax_key_tuple[-1]: UpperCAmelCase = flax_key_tuple[:-1] + ('''running_var''',) if "batch_stats" in flax_state: UpperCAmelCase = '''.'''.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: UpperCAmelCase = '''.'''.join(A ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. UpperCAmelCase = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: UpperCAmelCase = key.split('''.''' ) UpperCAmelCase = None if key_components[-3::2] == ["parametrizations", "original0"]: UpperCAmelCase = key_components[-2] + '''_g''' elif key_components[-3::2] == ["parametrizations", "original1"]: UpperCAmelCase = key_components[-2] + '''_v''' if name is not None: UpperCAmelCase = key_components[:-3] + [name] UpperCAmelCase = '''.'''.join(A ) UpperCAmelCase = key if flax_key in special_pt_names: UpperCAmelCase = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict UpperCAmelCase = np.asarray(A ) if not isinstance(A , np.ndarray ) else flax_tensor UpperCAmelCase = torch.from_numpy(A ) # remove from missing keys missing_keys.remove(A ) else: # weight is not expected by PyTorch model unexpected_keys.append(A ) pt_model.load_state_dict(A ) # re-transform missing_keys to list UpperCAmelCase = list(A ) if len(A ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) else: logger.warning(f"""All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n""" ) if len(A ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" ''' use it for predictions and inference.''' ) else: logger.warning( f"""All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n""" '''If your task is similar to the task the model of the checkpoint was trained on, ''' f"""you can already use {pt_model.__class__.__name__} for predictions without further training.""" ) return pt_model
50
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : List[str] = { """facebook/encodec_24khz""": """https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json""", """facebook/encodec_48khz""": """https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json""", } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : List[str] = "encodec" def __init__( self : List[str] , lowerCAmelCase : int=[1.5, 3.0, 6.0, 12.0, 24.0] , lowerCAmelCase : Tuple=24000 , lowerCAmelCase : List[Any]=1 , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : str=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=128 , lowerCAmelCase : Any=32 , lowerCAmelCase : Any=1 , lowerCAmelCase : List[Any]=[8, 5, 4, 2] , lowerCAmelCase : Union[str, Any]="weight_norm" , lowerCAmelCase : str=7 , lowerCAmelCase : Optional[int]=7 , lowerCAmelCase : Any=3 , lowerCAmelCase : Tuple=2 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : List[str]="reflect" , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Union[str, Any]=1.0 , lowerCAmelCase : Optional[Any]=1024 , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : str=True , **lowerCAmelCase : str , )-> List[str]: """simple docstring""" UpperCAmelCase = target_bandwidths UpperCAmelCase = sampling_rate UpperCAmelCase = audio_channels UpperCAmelCase = normalize UpperCAmelCase = chunk_length_s UpperCAmelCase = overlap UpperCAmelCase = hidden_size UpperCAmelCase = num_filters UpperCAmelCase = num_residual_layers UpperCAmelCase = upsampling_ratios UpperCAmelCase = norm_type UpperCAmelCase = kernel_size UpperCAmelCase = last_kernel_size UpperCAmelCase = residual_kernel_size UpperCAmelCase = dilation_growth_rate UpperCAmelCase = use_causal_conv UpperCAmelCase = pad_mode UpperCAmelCase = compress UpperCAmelCase = num_lstm_layers UpperCAmelCase = trim_right_ratio UpperCAmelCase = codebook_size UpperCAmelCase = codebook_dim if codebook_dim is not None else hidden_size UpperCAmelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**lowerCAmelCase ) @property def a__( self : str )-> Optional[int]: """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def a__( self : List[str] )-> Optional[int]: """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def a__( self : List[Any] )-> int: """simple docstring""" UpperCAmelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def a__( self : int )-> int: """simple docstring""" return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
50
1
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING _lowercase : int = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class UpperCamelCase__( lowerCAmelCase ): def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any] )-> str: """simple docstring""" super().__init__(*lowerCAmelCase , **lowerCAmelCase ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == '''tf''' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def a__( self : Any , lowerCAmelCase : Any=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[Any]=None )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = {} UpperCAmelCase = {} if prompt is not None: UpperCAmelCase = prompt if generate_kwargs is not None: UpperCAmelCase = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: UpperCAmelCase = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '''\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,''' ''' please use only one''' ) UpperCAmelCase = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Union[str, Any] , lowerCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowerCAmelCase : Optional[Any] )-> Dict: """simple docstring""" return super().__call__(lowerCAmelCase , **lowerCAmelCase ) def a__( self : Any , lowerCAmelCase : Tuple , lowerCAmelCase : List[str]=None )-> int: """simple docstring""" UpperCAmelCase = load_image(lowerCAmelCase ) if prompt is not None: if not isinstance(lowerCAmelCase , lowerCAmelCase ): raise ValueError( F"""Received an invalid text input, got - {type(lowerCAmelCase )} - but expected a single string. """ '''Note also that one single text can be provided for conditional image to text generation.''' ) UpperCAmelCase = self.model.config.model_type if model_type == "git": UpperCAmelCase = self.image_processor(images=lowerCAmelCase , return_tensors=self.framework ) UpperCAmelCase = self.tokenizer(text=lowerCAmelCase , add_special_tokens=lowerCAmelCase ).input_ids UpperCAmelCase = [self.tokenizer.cls_token_id] + input_ids UpperCAmelCase = torch.tensor(lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({'''input_ids''': input_ids} ) elif model_type == "pix2struct": UpperCAmelCase = self.image_processor(images=lowerCAmelCase , header_text=lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation UpperCAmelCase = self.image_processor(images=lowerCAmelCase , return_tensors=self.framework ) UpperCAmelCase = self.tokenizer(lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(lowerCAmelCase ) else: raise ValueError(F"""Model type {model_type} does not support conditional text generation""" ) else: UpperCAmelCase = self.image_processor(images=lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: UpperCAmelCase = None return model_inputs def a__( self : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : str=None )-> Union[str, Any]: """simple docstring""" if ( "input_ids" in model_inputs and isinstance(model_inputs['''input_ids'''] , lowerCAmelCase ) and all(x is None for x in model_inputs['''input_ids'''] ) ): UpperCAmelCase = None if generate_kwargs is None: UpperCAmelCase = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. UpperCAmelCase = model_inputs.pop(self.model.main_input_name ) UpperCAmelCase = self.model.generate(lowerCAmelCase , **lowerCAmelCase , **lowerCAmelCase ) return model_outputs def a__( self : Dict , lowerCAmelCase : List[Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = [] for output_ids in model_outputs: UpperCAmelCase = { '''generated_text''': self.tokenizer.decode( lowerCAmelCase , skip_special_tokens=lowerCAmelCase , ) } records.append(lowerCAmelCase ) return records
50
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase : Any = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _lowercase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer _lowercase : str = logging.get_logger(__name__) _lowercase : List[str] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowercase : str = { """vocab_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt""" ), """squeezebert/squeezebert-mnli""": """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt""", """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli""": ( """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json""" ), }, } _lowercase : Dict = { """squeezebert/squeezebert-uncased""": 512, """squeezebert/squeezebert-mnli""": 512, """squeezebert/squeezebert-mnli-headless""": 512, } _lowercase : Tuple = { """squeezebert/squeezebert-uncased""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli-headless""": {"""do_lower_case""": True}, } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[Any] = VOCAB_FILES_NAMES __magic_name__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Optional[int] = PRETRAINED_INIT_CONFIGURATION __magic_name__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Optional[Any] = SqueezeBertTokenizer def __init__( self : Optional[Any] , lowerCAmelCase : List[str]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : str="[UNK]" , lowerCAmelCase : Optional[int]="[SEP]" , lowerCAmelCase : int="[PAD]" , lowerCAmelCase : Union[str, Any]="[CLS]" , lowerCAmelCase : Union[str, Any]="[MASK]" , lowerCAmelCase : Tuple=True , lowerCAmelCase : Tuple=None , **lowerCAmelCase : Union[str, Any] , )-> List[Any]: """simple docstring""" super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , tokenize_chinese_chars=lowerCAmelCase , strip_accents=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCAmelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCAmelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCAmelCase ) != tokenize_chinese_chars ): UpperCAmelCase = getattr(lowerCAmelCase , normalizer_state.pop('''type''' ) ) UpperCAmelCase = do_lower_case UpperCAmelCase = strip_accents UpperCAmelCase = tokenize_chinese_chars UpperCAmelCase = normalizer_class(**lowerCAmelCase ) UpperCAmelCase = do_lower_case def a__( self : Optional[int] , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any]=None )-> List[Any]: """simple docstring""" UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a__( self : Tuple , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None )-> List[int]: """simple docstring""" UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]: """simple docstring""" UpperCAmelCase = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase )
50
'''simple docstring''' import heapq def lowerCamelCase__ ( A : dict ): '''simple docstring''' UpperCAmelCase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(A , [-1 * len(A ), (key, value)] ) # chosen_vertices = set of chosen vertices UpperCAmelCase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices UpperCAmelCase = heapq.heappop(A )[1][0] chosen_vertices.add(A ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: UpperCAmelCase = elem[1][1].index(A ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(A ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _lowercase : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
50
1
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Dict = (EulerDiscreteScheduler,) __magic_name__ : str = 10 def a__( self : List[str] , **lowerCAmelCase : Any )-> Any: """simple docstring""" UpperCAmelCase = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**lowerCAmelCase ) return config def a__( self : Optional[int] )-> Any: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=lowerCAmelCase ) def a__( self : Optional[Any] )-> Optional[Any]: """simple docstring""" for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase , beta_end=lowerCAmelCase ) def a__( self : List[str] )-> Optional[Any]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCAmelCase ) def a__( self : int )-> Optional[int]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase ) def a__( self : Dict )-> Tuple: """simple docstring""" UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase = sample.to(lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase = scheduler.scale_model_input(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , generator=lowerCAmelCase ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(lowerCAmelCase ) ) UpperCAmelCase = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 10.0807 ) < 1E-2 assert abs(result_mean.item() - 0.0131 ) < 1E-3 def a__( self : Optional[int] )-> str: """simple docstring""" UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(prediction_type='''v_prediction''' ) UpperCAmelCase = scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase = sample.to(lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase = scheduler.scale_model_input(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , generator=lowerCAmelCase ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(lowerCAmelCase ) ) UpperCAmelCase = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 0.0002 ) < 1E-2 assert abs(result_mean.item() - 2.2676E-06 ) < 1E-3 def a__( self : int )-> Optional[Any]: """simple docstring""" UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() UpperCAmelCase = sample.to(lowerCAmelCase ) for t in scheduler.timesteps: UpperCAmelCase = scheduler.scale_model_input(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , generator=lowerCAmelCase ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(lowerCAmelCase ) ) UpperCAmelCase = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 10.0807 ) < 1E-2 assert abs(result_mean.item() - 0.0131 ) < 1E-3 def a__( self : Optional[Any] )-> List[str]: """simple docstring""" UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowerCAmelCase , use_karras_sigmas=lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() UpperCAmelCase = sample.to(lowerCAmelCase ) for t in scheduler.timesteps: UpperCAmelCase = scheduler.scale_model_input(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , generator=lowerCAmelCase ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(lowerCAmelCase ) ) UpperCAmelCase = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 124.52299499511719 ) < 1E-2 assert abs(result_mean.item() - 0.16213932633399963 ) < 1E-3
50
'''simple docstring''' import argparse import os import re import packaging.version _lowercase : Optional[int] = """examples/""" _lowercase : str = { """examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""), """doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } _lowercase : Dict = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } _lowercase : List[Any] = """README.md""" def lowerCamelCase__ ( A : int , A : str , A : Optional[Any] ): '''simple docstring''' with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase = f.read() UpperCAmelCase , UpperCAmelCase = REPLACE_PATTERNS[pattern] UpperCAmelCase = replace.replace('''VERSION''' , A ) UpperCAmelCase = re_pattern.sub(A , A ) with open(A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(A ) def lowerCamelCase__ ( A : Optional[int] ): '''simple docstring''' for folder, directories, fnames in os.walk(A ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(A , A ) , A , pattern='''examples''' ) def lowerCamelCase__ ( A : str , A : Dict=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(A , A , A ) if not patch: update_version_in_examples(A ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = '''🤗 Transformers currently provides the following architectures''' UpperCAmelCase = '''1. Want to contribute a new model?''' with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase = f.readlines() # Find the start of the list. UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): UpperCAmelCase = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(A ) def lowerCamelCase__ ( ): '''simple docstring''' with open(REPLACE_FILES['''init'''] , '''r''' ) as f: UpperCAmelCase = f.read() UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(A ).groups()[0] return packaging.version.parse(A ) def lowerCamelCase__ ( A : Tuple=False ): '''simple docstring''' UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: UpperCAmelCase = default_version.base_version elif patch: UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(A ) == 0: UpperCAmelCase = default_version print(f"""Updating version to {version}.""" ) global_version_update(A , patch=A ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = get_version() UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" UpperCAmelCase = current_version.base_version # Check with the user we got that right. UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(A ) == 0: UpperCAmelCase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(A ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": _lowercase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") _lowercase : Union[str, Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
50
1
'''simple docstring''' def lowerCamelCase__ ( A : str , A : bool = False ): '''simple docstring''' if not isinstance(A , A ): UpperCAmelCase = f"""Expected string as input, found {type(A )}""" raise ValueError(A ) if not isinstance(A , A ): UpperCAmelCase = f"""Expected boolean as use_pascal parameter, found {type(A )}""" raise ValueError(A ) UpperCAmelCase = input_str.split('''_''' ) UpperCAmelCase = 0 if use_pascal else 1 UpperCAmelCase = words[start_index:] UpperCAmelCase = [word[0].upper() + word[1:] for word in words_to_capitalize] UpperCAmelCase = '''''' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
50
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : List[Any] , lowerCAmelCase : Optional[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = 3 UpperCAmelCase = 250 UpperCAmelCase = ids_tensor((batch_size, length) , lowerCAmelCase ) UpperCAmelCase = torch.ones((batch_size, length) , device=lowerCAmelCase , dtype=torch.float ) / length return input_ids, scores def a__( self : Dict )-> Optional[int]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = MaxLengthCriteria(max_length=10 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : Optional[Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def a__( self : Tuple )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : int )-> Any: """simple docstring""" validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(lowerCAmelCase ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) UpperCAmelCase = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(lowerCAmelCase ) , 1 )
50
1
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration _lowercase : Optional[int] = [ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] _lowercase : Optional[Any] = [ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] _lowercase : Tuple = ( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) _lowercase : List[Any] = ( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) _lowercase : Tuple = [ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def lowerCamelCase__ ( A : str , A : int ): '''simple docstring''' for tf_name, hf_name in patterns: UpperCAmelCase = k.replace(A , A ) return k def lowerCamelCase__ ( A : dict , A : dict ): '''simple docstring''' UpperCAmelCase = BigBirdPegasusConfig(**A ) UpperCAmelCase = BigBirdPegasusForConditionalGeneration(A ) UpperCAmelCase = torch_model.state_dict() UpperCAmelCase = {} # separating decoder weights UpperCAmelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} UpperCAmelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() , '''tf -> hf conversion''' ): UpperCAmelCase = [k.endswith(A ) for ending in KEYS_TO_IGNORE] if any(A ): continue UpperCAmelCase = DECODER_PATTERNS UpperCAmelCase = rename_state_dict_key(A , A ) if new_k not in state_dict: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCAmelCase = v.T UpperCAmelCase = torch.from_numpy(A ) assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() , '''tf -> hf conversion''' ): UpperCAmelCase = [k.endswith(A ) for ending in KEYS_TO_IGNORE] if any(A ): continue UpperCAmelCase = REMAINING_PATTERNS UpperCAmelCase = rename_state_dict_key(A , A ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCAmelCase = v.T UpperCAmelCase = torch.from_numpy(A ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" UpperCAmelCase = mapping['''model.embed_positions.weight'''] UpperCAmelCase = mapping.pop('''model.embed_positions.weight''' ) UpperCAmelCase , UpperCAmelCase = torch_model.load_state_dict(A , strict=A ) UpperCAmelCase = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def lowerCamelCase__ ( A : int ): '''simple docstring''' UpperCAmelCase = tf.train.list_variables(A ) UpperCAmelCase = {} UpperCAmelCase = ['''global_step'''] for name, shape in tqdm(A , desc='''converting tf checkpoint to dict''' ): UpperCAmelCase = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCAmelCase = tf.train.load_variable(A , A ) UpperCAmelCase = array return tf_weights def lowerCamelCase__ ( A : str , A : str , A : dict ): '''simple docstring''' UpperCAmelCase = get_tf_weights_as_numpy(A ) UpperCAmelCase = convert_bigbird_pegasus(A , A ) torch_model.save_pretrained(A ) if __name__ == "__main__": _lowercase : List[str] = argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") _lowercase : Union[str, Any] = parser.parse_args() _lowercase : Dict = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
50
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCamelCase__( metaclass=lowerCAmelCase ): __magic_name__ : List[str] = ["note_seq"] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : int )-> Optional[int]: """simple docstring""" requires_backends(self , ['''note_seq'''] ) @classmethod def a__( cls : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int] )-> Dict: """simple docstring""" requires_backends(cls , ['''note_seq'''] ) @classmethod def a__( cls : int , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any] )-> Union[str, Any]: """simple docstring""" requires_backends(cls , ['''note_seq'''] )
50
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : Tuple = { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : List[Any] = "speech_to_text" __magic_name__ : int = ["past_key_values"] __magic_name__ : Optional[int] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : int , lowerCAmelCase : int=10000 , lowerCAmelCase : List[str]=12 , lowerCAmelCase : Optional[int]=2048 , lowerCAmelCase : List[Any]=4 , lowerCAmelCase : Optional[Any]=6 , lowerCAmelCase : List[str]=2048 , lowerCAmelCase : str=4 , lowerCAmelCase : Dict=0.0 , lowerCAmelCase : List[Any]=0.0 , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : str=True , lowerCAmelCase : Optional[Any]="relu" , lowerCAmelCase : Optional[Any]=256 , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : str=0.0 , lowerCAmelCase : Dict=0.0 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : Dict=2 , lowerCAmelCase : int=True , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : int=0 , lowerCAmelCase : Dict=2 , lowerCAmelCase : Dict=6000 , lowerCAmelCase : Optional[int]=1024 , lowerCAmelCase : Any=2 , lowerCAmelCase : int=(5, 5) , lowerCAmelCase : Dict=1024 , lowerCAmelCase : List[str]=80 , lowerCAmelCase : List[str]=1 , **lowerCAmelCase : Any , )-> List[Any]: """simple docstring""" UpperCAmelCase = vocab_size UpperCAmelCase = d_model UpperCAmelCase = encoder_ffn_dim UpperCAmelCase = encoder_layers UpperCAmelCase = encoder_attention_heads UpperCAmelCase = decoder_ffn_dim UpperCAmelCase = decoder_layers UpperCAmelCase = decoder_attention_heads UpperCAmelCase = dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = activation_function UpperCAmelCase = init_std UpperCAmelCase = encoder_layerdrop UpperCAmelCase = decoder_layerdrop UpperCAmelCase = use_cache UpperCAmelCase = encoder_layers UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase = max_source_positions UpperCAmelCase = max_target_positions UpperCAmelCase = num_conv_layers UpperCAmelCase = list(lowerCAmelCase ) UpperCAmelCase = conv_channels UpperCAmelCase = input_feat_per_channel UpperCAmelCase = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ''' F"""but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, """ F"""`config.num_conv_layers = {self.num_conv_layers}`.""" ) super().__init__( pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , is_encoder_decoder=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , **lowerCAmelCase , )
50
'''simple docstring''' import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( A : List[Any] , A : int , A : List[str] , A : Optional[int] ): '''simple docstring''' UpperCAmelCase = BigBirdConfig.from_json_file(A ) print(f"""Building PyTorch model from configuration: {config}""" ) if is_trivia_qa: UpperCAmelCase = BigBirdForQuestionAnswering(A ) else: UpperCAmelCase = BigBirdForPreTraining(A ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(A , A , is_trivia_qa=A ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(A ) if __name__ == "__main__": _lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--big_bird_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_trivia_qa""", action="""store_true""", help="""Whether to convert a model with a trivia_qa head.""" ) _lowercase : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
50
1
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Tuple = ["image_processor", "tokenizer"] __magic_name__ : Any = "ViTImageProcessor" __magic_name__ : str = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : List[str] , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=None , **lowerCAmelCase : Optional[int] )-> List[Any]: """simple docstring""" UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCAmelCase , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase , lowerCAmelCase ) def __call__( self : str , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=None , **lowerCAmelCase : List[str] )-> List[Any]: """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''' ) if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''' ) if text is not None: UpperCAmelCase = self.tokenizer(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if visual_prompt is not None: UpperCAmelCase = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if images is not None: UpperCAmelCase = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if visual_prompt is not None and images is not None: UpperCAmelCase = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: UpperCAmelCase = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase ) , tensor_type=lowerCAmelCase ) def a__( self : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int] )-> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str] )-> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase ) @property def a__( self : List[Any] )-> Optional[Any]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCAmelCase , ) return self.image_processor_class @property def a__( self : Any )-> List[Any]: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowerCAmelCase , ) return self.image_processor
50
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : Optional[int] )-> str: """simple docstring""" UpperCAmelCase = [[1, 2, 4], [1, 2, 3, 4]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) self.assertTrue(isinstance(dc.token_ids , lowerCAmelCase ) ) with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def a__( self : Union[str, Any] )-> str: """simple docstring""" UpperCAmelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint(lowerCAmelCase ) # fails here def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = [[1, 2, 3], [1, 2, 4]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(3 ) UpperCAmelCase = stepped is True and completed is True and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def a__( self : int )-> Dict: """simple docstring""" UpperCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
50
1
'''simple docstring''' def lowerCamelCase__ ( A : int , A : int ): '''simple docstring''' return number | (1 << position) def lowerCamelCase__ ( A : int , A : int ): '''simple docstring''' return number & ~(1 << position) def lowerCamelCase__ ( A : int , A : int ): '''simple docstring''' return number ^ (1 << position) def lowerCamelCase__ ( A : int , A : int ): '''simple docstring''' return ((number >> position) & 1) == 1 def lowerCamelCase__ ( A : int , A : int ): '''simple docstring''' return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
50
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCamelCase__ ( A : List[Any] ): '''simple docstring''' return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class UpperCamelCase__( lowerCAmelCase ): @staticmethod def a__( lowerCAmelCase : ArgumentParser )-> Optional[Any]: """simple docstring""" UpperCAmelCase = parser.add_parser('''download''' ) download_parser.add_argument( '''--cache-dir''' , type=lowerCAmelCase , default=lowerCAmelCase , help='''Path to location to store the models''' ) download_parser.add_argument( '''--force''' , action='''store_true''' , help='''Force the model to be download even if already in cache-dir''' ) download_parser.add_argument( '''--trust-remote-code''' , action='''store_true''' , help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''' , ) download_parser.add_argument('''model''' , type=lowerCAmelCase , help='''Name of the model to download''' ) download_parser.set_defaults(func=lowerCAmelCase ) def __init__( self : Dict , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : bool , lowerCAmelCase : bool )-> Any: """simple docstring""" UpperCAmelCase = model UpperCAmelCase = cache UpperCAmelCase = force UpperCAmelCase = trust_remote_code def a__( self : int )-> Optional[Any]: """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
50
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowercase : Any = logging.get_logger(__name__) _lowercase : str = """▁""" _lowercase : Dict = {"""vocab_file""": """sentencepiece.bpe.model""", """monolingual_vocab_file""": """dict.txt"""} _lowercase : Dict = { """vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model""", }, """monolingual_vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt""", }, } _lowercase : Optional[int] = {"""vinai/bartpho-syllable""": 1024} class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Tuple = VOCAB_FILES_NAMES __magic_name__ : Tuple = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : List[Any] = ["input_ids", "attention_mask"] def __init__( self : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : int="<s>" , lowerCAmelCase : Dict="</s>" , lowerCAmelCase : Dict="</s>" , lowerCAmelCase : str="<s>" , lowerCAmelCase : Optional[int]="<unk>" , lowerCAmelCase : str="<pad>" , lowerCAmelCase : List[Any]="<mask>" , lowerCAmelCase : Optional[Dict[str, Any]] = None , **lowerCAmelCase : Optional[int] , )-> None: """simple docstring""" UpperCAmelCase = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else mask_token UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase , ) UpperCAmelCase = vocab_file UpperCAmelCase = monolingual_vocab_file UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility UpperCAmelCase = {} UpperCAmelCase = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(lowerCAmelCase ) not in self.fairseq_tokens_to_ids: UpperCAmelCase = cnt cnt += 1 with open(lowerCAmelCase , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): UpperCAmelCase = line.strip().split()[0] UpperCAmelCase = len(self.fairseq_tokens_to_ids ) if str(lowerCAmelCase ) not in self.fairseq_tokens_to_ids: UpperCAmelCase = len(self.fairseq_tokens_to_ids ) UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Union[str, Any] )-> List[str]: """simple docstring""" UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = None UpperCAmelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self : int , lowerCAmelCase : str )-> List[Any]: """simple docstring""" UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase = {} UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def a__( self : List[str] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None )-> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] UpperCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a__( self : str , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False )-> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase )) + [1] return [1] + ([0] * len(lowerCAmelCase )) + [1, 1] + ([0] * len(lowerCAmelCase )) + [1] def a__( self : Tuple , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None )-> List[int]: """simple docstring""" UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def a__( self : Any )-> Optional[int]: """simple docstring""" return len(self.fairseq_ids_to_tokens ) def a__( self : Dict )-> int: """simple docstring""" UpperCAmelCase = {self.convert_ids_to_tokens(lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__( self : Any , lowerCAmelCase : str )-> List[str]: """simple docstring""" return self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase ) def a__( self : Union[str, Any] , lowerCAmelCase : Union[str, Any] )-> List[Any]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def a__( self : Tuple , lowerCAmelCase : List[str] )-> Union[str, Any]: """simple docstring""" return self.fairseq_ids_to_tokens[index] def a__( self : List[Any] , lowerCAmelCase : Optional[Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = ''''''.join(lowerCAmelCase ).replace(lowerCAmelCase , ''' ''' ).strip() return out_string def a__( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase = os.path.join( lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase = os.path.join( lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase , '''wb''' ) as fi: UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( lowerCAmelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , lowerCAmelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F"""{str(lowerCAmelCase )} \n""" ) return out_vocab_file, out_monolingual_vocab_file
50
'''simple docstring''' def lowerCamelCase__ ( A : str ): '''simple docstring''' assert column_title.isupper() UpperCAmelCase = 0 UpperCAmelCase = len(A ) - 1 UpperCAmelCase = 0 while index >= 0: UpperCAmelCase = (ord(column_title[index] ) - 64) * pow(26 , A ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
50
1
'''simple docstring''' import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(""">=""", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType _lowercase : Dict = get_logger(__name__) def lowerCamelCase__ ( A : List[Any] , A : str , A : Dict , A : int , A : List[Any]=0 ): '''simple docstring''' os.makedirs(A , exist_ok=A ) with FSDP.state_dict_type( A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): UpperCAmelCase = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: UpperCAmelCase = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" UpperCAmelCase = os.path.join(A , A ) if accelerator.process_index == 0: logger.info(f"""Saving model to {output_model_file}""" ) torch.save(A , A ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: UpperCAmelCase = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) UpperCAmelCase = os.path.join(A , A ) logger.info(f"""Saving model to {output_model_file}""" ) torch.save(A , A ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: UpperCAmelCase = os.path.join(A , f"""{MODEL_NAME}_{model_index}""" ) os.makedirs(A , exist_ok=A ) logger.info(f"""Saving model to {ckpt_dir}""" ) UpperCAmelCase = {'''model''': state_dict} dist_cp.save_state_dict( state_dict=A , storage_writer=dist_cp.FileSystemWriter(A ) , planner=DefaultSavePlanner() , ) logger.info(f"""Model saved to {ckpt_dir}""" ) def lowerCamelCase__ ( A : Optional[int] , A : List[str] , A : Union[str, Any] , A : Dict , A : List[Any]=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(A ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( '''Set the `sync_module_states` flag to `True` so that model states are synced across processes when ''' '''initializing FSDP object''' ) return UpperCAmelCase = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" UpperCAmelCase = os.path.join(A , A ) logger.info(f"""Loading model from {input_model_file}""" ) UpperCAmelCase = torch.load(A ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: UpperCAmelCase = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) UpperCAmelCase = os.path.join(A , A ) logger.info(f"""Loading model from {input_model_file}""" ) UpperCAmelCase = torch.load(A ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: UpperCAmelCase = ( os.path.join(A , f"""{MODEL_NAME}_{model_index}""" ) if f"""{MODEL_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading model from {ckpt_dir}""" ) UpperCAmelCase = {'''model''': model.state_dict()} dist_cp.load_state_dict( state_dict=A , storage_reader=dist_cp.FileSystemReader(A ) , planner=DefaultLoadPlanner() , ) UpperCAmelCase = state_dict['''model'''] logger.info(f"""Model loaded from {ckpt_dir}""" ) model.load_state_dict(A ) def lowerCamelCase__ ( A : str , A : Any , A : List[Any] , A : Dict , A : int , A : Optional[Any]=0 ): '''simple docstring''' os.makedirs(A , exist_ok=A ) with FSDP.state_dict_type( A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): UpperCAmelCase = FSDP.optim_state_dict(A , A ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: UpperCAmelCase = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) UpperCAmelCase = os.path.join(A , A ) logger.info(f"""Saving Optimizer state to {output_optimizer_file}""" ) torch.save(A , A ) logger.info(f"""Optimizer state saved in {output_optimizer_file}""" ) else: UpperCAmelCase = os.path.join(A , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) os.makedirs(A , exist_ok=A ) logger.info(f"""Saving Optimizer state to {ckpt_dir}""" ) dist_cp.save_state_dict( state_dict={'''optimizer''': optim_state} , storage_writer=dist_cp.FileSystemWriter(A ) , planner=DefaultSavePlanner() , ) logger.info(f"""Optimizer state saved in {ckpt_dir}""" ) def lowerCamelCase__ ( A : Union[str, Any] , A : Dict , A : Union[str, Any] , A : Any , A : Tuple , A : int=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: UpperCAmelCase = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: UpperCAmelCase = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) UpperCAmelCase = os.path.join(A , A ) logger.info(f"""Loading Optimizer state from {input_optimizer_file}""" ) UpperCAmelCase = torch.load(A ) logger.info(f"""Optimizer state loaded from {input_optimizer_file}""" ) else: UpperCAmelCase = ( os.path.join(A , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) if f"""{OPTIMIZER_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading Optimizer from {ckpt_dir}""" ) UpperCAmelCase = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='''optimizer''' , storage_reader=dist_cp.FileSystemReader(A ) , ) UpperCAmelCase = optim_state['''optimizer'''] logger.info(f"""Optimizer loaded from {ckpt_dir}""" ) UpperCAmelCase = FSDP.optim_state_dict_to_load(A , A , A ) optimizer.load_state_dict(A )
50
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__( unittest.TestCase ): def __init__( self : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Tuple=32 , lowerCAmelCase : Optional[int]=3 , lowerCAmelCase : Optional[Any]=10 , lowerCAmelCase : Optional[Any]=[10, 20, 30, 40] , lowerCAmelCase : Optional[int]=[1, 1, 2, 1] , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Tuple=True , lowerCAmelCase : List[Any]="relu" , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Union[str, Any]=None , )-> Optional[int]: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = num_channels UpperCAmelCase = embeddings_size UpperCAmelCase = hidden_sizes UpperCAmelCase = depths UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_act UpperCAmelCase = num_labels UpperCAmelCase = scope UpperCAmelCase = len(lowerCAmelCase ) def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = self.get_config() return config, pixel_values def a__( self : str )-> Optional[Any]: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def a__( self : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Any )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = FlaxRegNetModel(config=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__( self : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] )-> List[str]: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = FlaxRegNetForImageClassification(config=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__( self : List[str] )-> Any: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__( lowerCAmelCase , unittest.TestCase ): __magic_name__ : Optional[int] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __magic_name__ : Optional[int] = False __magic_name__ : List[str] = False __magic_name__ : Dict = False def a__( self : Union[str, Any] )-> None: """simple docstring""" UpperCAmelCase = FlaxRegNetModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase ) def a__( self : List[str] )-> List[str]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__( self : Tuple )-> Tuple: """simple docstring""" return def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def a__( self : str )-> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def a__( self : Any )-> List[str]: """simple docstring""" pass def a__( self : Any )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def a__( self : Tuple )-> int: """simple docstring""" def check_hidden_states_output(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int ): UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase ) , expected_num_stages + 1 ) UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = model_class(lowerCAmelCase ) @jax.jit def model_jitted(lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple ): return model(pixel_values=lowerCAmelCase , **lowerCAmelCase ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple() self.assertEqual(len(lowerCAmelCase ) , len(lowerCAmelCase ) ) for jitted_output, output in zip(lowerCAmelCase , lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCamelCase__( unittest.TestCase ): @cached_property def a__( self : Dict )-> int: """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def a__( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=lowerCAmelCase , return_tensors='''np''' ) UpperCAmelCase = model(**lowerCAmelCase ) # verify the logits UpperCAmelCase = (1, 1000) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) UpperCAmelCase = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
50
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[Any] = "philschmid/bart-large-cnn-samsum" __magic_name__ : Any = ( "This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, " "and returns a summary of the text." ) __magic_name__ : Optional[int] = "summarizer" __magic_name__ : Optional[Any] = AutoTokenizer __magic_name__ : Dict = AutoModelForSeqaSeqLM __magic_name__ : Any = ["text"] __magic_name__ : str = ["text"] def a__( self : Optional[int] , lowerCAmelCase : Optional[int] )-> Optional[Any]: """simple docstring""" return self.pre_processor(lowerCAmelCase , return_tensors='''pt''' , truncation=lowerCAmelCase ) def a__( self : str , lowerCAmelCase : List[Any] )-> Optional[Any]: """simple docstring""" return self.model.generate(**lowerCAmelCase )[0] def a__( self : List[Any] , lowerCAmelCase : Union[str, Any] )-> Union[str, Any]: """simple docstring""" return self.pre_processor.decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase )
50
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : List[Any] = """▁""" _lowercase : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model"""} _lowercase : Any = { """vocab_file""": { """facebook/mbart-large-50-one-to-many-mmt""": ( """https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model""" ), } } _lowercase : int = { """facebook/mbart-large-50-one-to-many-mmt""": 1024, } # fmt: off _lowercase : int = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN""", """af_ZA""", """az_AZ""", """bn_IN""", """fa_IR""", """he_IL""", """hr_HR""", """id_ID""", """ka_GE""", """km_KH""", """mk_MK""", """ml_IN""", """mn_MN""", """mr_IN""", """pl_PL""", """ps_AF""", """pt_XX""", """sv_SE""", """sw_KE""", """ta_IN""", """te_IN""", """th_TH""", """tl_XX""", """uk_UA""", """ur_PK""", """xh_ZA""", """gl_ES""", """sl_SI"""] class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = VOCAB_FILES_NAMES __magic_name__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Union[str, Any] = ["input_ids", "attention_mask"] __magic_name__ : List[int] = [] __magic_name__ : List[int] = [] def __init__( self : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : str=None , lowerCAmelCase : List[Any]="</s>" , lowerCAmelCase : Union[str, Any]="</s>" , lowerCAmelCase : Union[str, Any]="<s>" , lowerCAmelCase : int="<unk>" , lowerCAmelCase : str="<pad>" , lowerCAmelCase : Optional[int]="<mask>" , lowerCAmelCase : Optional[Dict[str, Any]] = None , **lowerCAmelCase : List[Any] , )-> None: """simple docstring""" UpperCAmelCase = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else mask_token UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowerCAmelCase , tgt_lang=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase , ) UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase ) ) UpperCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase = 1 UpperCAmelCase = len(self.sp_model ) UpperCAmelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase ) } UpperCAmelCase = {v: k for k, v in self.lang_code_to_id.items()} UpperCAmelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCAmelCase = src_lang if src_lang is not None else '''en_XX''' UpperCAmelCase = self.lang_code_to_id[self._src_lang] UpperCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def a__( self : Union[str, Any] )-> int: """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def a__( self : str )-> str: """simple docstring""" return self._src_lang @src_lang.setter def a__( self : Any , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Tuple )-> Dict: """simple docstring""" UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = None return state def __setstate__( self : Dict , lowerCAmelCase : Dict )-> None: """simple docstring""" UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase = {} UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__( self : Union[str, Any] )-> Dict: """simple docstring""" UpperCAmelCase = {self.convert_ids_to_tokens(lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__( self : str , lowerCAmelCase : str )-> List[str]: """simple docstring""" return self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase ) def a__( self : Optional[int] , lowerCAmelCase : str )-> int: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase = self.sp_model.PieceToId(lowerCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def a__( self : List[Any] , lowerCAmelCase : int )-> str: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def a__( self : int , lowerCAmelCase : List[Any] )-> Dict: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = '''''' UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase ) + token UpperCAmelCase = True UpperCAmelCase = [] else: current_sub_tokens.append(lowerCAmelCase ) UpperCAmelCase = False out_string += self.sp_model.decode(lowerCAmelCase ) return out_string.strip() def a__( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase = os.path.join( lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase , '''wb''' ) as fi: UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase ) return (out_vocab_file,) def a__( self : List[str] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False )-> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) UpperCAmelCase = [1] * len(self.prefix_tokens ) UpperCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase )) + ([0] * len(lowerCAmelCase )) + suffix_ones def a__( self : Tuple , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None )-> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a__( self : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] , lowerCAmelCase : Optional[str] , **lowerCAmelCase : Optional[int] )-> Optional[Any]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCAmelCase = src_lang UpperCAmelCase = self(lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = self.convert_tokens_to_ids(lowerCAmelCase ) UpperCAmelCase = tgt_lang_id return inputs def a__( self : str , lowerCAmelCase : List[str] , lowerCAmelCase : str = "en_XX" , lowerCAmelCase : Optional[List[str]] = None , lowerCAmelCase : str = "ro_RO" , **lowerCAmelCase : List[str] , )-> BatchEncoding: """simple docstring""" UpperCAmelCase = src_lang UpperCAmelCase = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) def a__( self : Optional[int] )-> Union[str, Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def a__( self : List[Any] )-> int: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a__( self : List[Any] , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[src_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id] def a__( self : int , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[tgt_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id]
50
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowercase : Tuple = logging.get_logger(__name__) def lowerCamelCase__ ( A : Optional[int] , A : int=False , A : Dict=False , A : Optional[int]=False ): '''simple docstring''' UpperCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""transformer.blocks.{i}.norm1.weight""", f"""vilt.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""transformer.blocks.{i}.norm1.bias""", f"""vilt.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""transformer.blocks.{i}.attn.proj.weight""", f"""vilt.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""transformer.blocks.{i}.attn.proj.bias""", f"""vilt.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""transformer.blocks.{i}.norm2.weight""", f"""vilt.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""transformer.blocks.{i}.norm2.bias""", f"""vilt.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (f"""transformer.blocks.{i}.mlp.fc1.weight""", f"""vilt.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""transformer.blocks.{i}.mlp.fc1.bias""", f"""vilt.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""transformer.blocks.{i}.mlp.fc2.weight""", f"""vilt.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""transformer.blocks.{i}.mlp.fc2.bias""", f"""vilt.encoder.layer.{i}.output.dense.bias""") ) # embeddings rename_keys.extend( [ # text embeddings ('''text_embeddings.word_embeddings.weight''', '''vilt.embeddings.text_embeddings.word_embeddings.weight'''), ( '''text_embeddings.position_embeddings.weight''', '''vilt.embeddings.text_embeddings.position_embeddings.weight''', ), ('''text_embeddings.position_ids''', '''vilt.embeddings.text_embeddings.position_ids'''), ( '''text_embeddings.token_type_embeddings.weight''', '''vilt.embeddings.text_embeddings.token_type_embeddings.weight''', ), ('''text_embeddings.LayerNorm.weight''', '''vilt.embeddings.text_embeddings.LayerNorm.weight'''), ('''text_embeddings.LayerNorm.bias''', '''vilt.embeddings.text_embeddings.LayerNorm.bias'''), # patch embeddings ('''transformer.cls_token''', '''vilt.embeddings.cls_token'''), ('''transformer.patch_embed.proj.weight''', '''vilt.embeddings.patch_embeddings.projection.weight'''), ('''transformer.patch_embed.proj.bias''', '''vilt.embeddings.patch_embeddings.projection.bias'''), ('''transformer.pos_embed''', '''vilt.embeddings.position_embeddings'''), # token type embeddings ('''token_type_embeddings.weight''', '''vilt.embeddings.token_type_embeddings.weight'''), ] ) # final layernorm + pooler rename_keys.extend( [ ('''transformer.norm.weight''', '''vilt.layernorm.weight'''), ('''transformer.norm.bias''', '''vilt.layernorm.bias'''), ('''pooler.dense.weight''', '''vilt.pooler.dense.weight'''), ('''pooler.dense.bias''', '''vilt.pooler.dense.bias'''), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('''vqa_classifier.0.weight''', '''classifier.0.weight'''), ('''vqa_classifier.0.bias''', '''classifier.0.bias'''), ('''vqa_classifier.1.weight''', '''classifier.1.weight'''), ('''vqa_classifier.1.bias''', '''classifier.1.bias'''), ('''vqa_classifier.3.weight''', '''classifier.3.weight'''), ('''vqa_classifier.3.bias''', '''classifier.3.bias'''), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('''nlvr2_classifier.0.weight''', '''classifier.0.weight'''), ('''nlvr2_classifier.0.bias''', '''classifier.0.bias'''), ('''nlvr2_classifier.1.weight''', '''classifier.1.weight'''), ('''nlvr2_classifier.1.bias''', '''classifier.1.bias'''), ('''nlvr2_classifier.3.weight''', '''classifier.3.weight'''), ('''nlvr2_classifier.3.bias''', '''classifier.3.bias'''), ] ) else: pass return rename_keys def lowerCamelCase__ ( A : int , A : Tuple ): '''simple docstring''' for i in range(config.num_hidden_layers ): UpperCAmelCase = '''vilt.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase = state_dict.pop(f"""transformer.blocks.{i}.attn.qkv.weight""" ) UpperCAmelCase = state_dict.pop(f"""transformer.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase = in_proj_bias[: config.hidden_size] UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase = in_proj_bias[-config.hidden_size :] def lowerCamelCase__ ( A : Optional[Any] ): '''simple docstring''' UpperCAmelCase = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(A , A ) def lowerCamelCase__ ( A : Optional[Any] , A : Optional[Any] , A : Dict ): '''simple docstring''' UpperCAmelCase = dct.pop(A ) UpperCAmelCase = val @torch.no_grad() def lowerCamelCase__ ( A : List[str] , A : Dict ): '''simple docstring''' UpperCAmelCase = ViltConfig(image_size=3_84 , patch_size=32 , tie_word_embeddings=A ) UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False if "vqa" in checkpoint_url: UpperCAmelCase = True UpperCAmelCase = 31_29 UpperCAmelCase = '''huggingface/label-files''' UpperCAmelCase = '''vqa2-id2label.json''' UpperCAmelCase = json.load(open(hf_hub_download(A , A , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase = {int(A ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} UpperCAmelCase = ViltForQuestionAnswering(A ) elif "nlvr" in checkpoint_url: UpperCAmelCase = True UpperCAmelCase = 2 UpperCAmelCase = {0: '''False''', 1: '''True'''} UpperCAmelCase = {v: k for k, v in config.idalabel.items()} UpperCAmelCase = 3 UpperCAmelCase = ViltForImagesAndTextClassification(A ) elif "irtr" in checkpoint_url: UpperCAmelCase = True UpperCAmelCase = ViltForImageAndTextRetrieval(A ) elif "mlm_itm" in checkpoint_url: UpperCAmelCase = True UpperCAmelCase = ViltForMaskedLM(A ) else: raise ValueError('''Unknown model type''' ) # load state_dict of original model, remove and rename some keys UpperCAmelCase = torch.hub.load_state_dict_from_url(A , map_location='''cpu''' )['''state_dict'''] UpperCAmelCase = create_rename_keys(A , A , A , A ) for src, dest in rename_keys: rename_key(A , A , A ) read_in_q_k_v(A , A ) if mlm_model or irtr_model: UpperCAmelCase = ['''itm_score.fc.weight''', '''itm_score.fc.bias'''] for k in ignore_keys: state_dict.pop(A , A ) # load state dict into HuggingFace model model.eval() if mlm_model: UpperCAmelCase , UpperCAmelCase = model.load_state_dict(A , strict=A ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(A ) # Define processor UpperCAmelCase = ViltImageProcessor(size=3_84 ) UpperCAmelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) UpperCAmelCase = ViltProcessor(A , A ) # Forward pass on example inputs (image + text) if nlvr_model: UpperCAmelCase = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=A ).raw ) UpperCAmelCase = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=A ).raw ) UpperCAmelCase = ( '''The left image contains twice the number of dogs as the right image, and at least two dogs in total are''' ''' standing.''' ) UpperCAmelCase = processor(A , A , return_tensors='''pt''' ) UpperCAmelCase = processor(A , A , return_tensors='''pt''' ) UpperCAmelCase = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: UpperCAmelCase = Image.open(requests.get('''http://images.cocodataset.org/val2017/000000039769.jpg''' , stream=A ).raw ) if mlm_model: UpperCAmelCase = '''a bunch of [MASK] laying on a [MASK].''' else: UpperCAmelCase = '''How many cats are there?''' UpperCAmelCase = processor(A , A , return_tensors='''pt''' ) UpperCAmelCase = model(**A ) # Verify outputs if mlm_model: UpperCAmelCase = torch.Size([1, 11, 3_05_22] ) UpperCAmelCase = torch.tensor([-12.5_061, -12.5_123, -12.5_174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , A , atol=1E-4 ) # verify masked token prediction equals "cats" UpperCAmelCase = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: UpperCAmelCase = torch.Size([1, 31_29] ) UpperCAmelCase = torch.tensor([-15.9_495, -18.1_472, -10.3_041] ) assert torch.allclose(outputs.logits[0, :3] , A , atol=1E-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , A , atol=1E-4 ) # verify vqa prediction equals "2" UpperCAmelCase = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: UpperCAmelCase = torch.Size([1, 2] ) UpperCAmelCase = torch.tensor([-2.8_721, 2.1_291] ) assert torch.allclose(outputs.logits[0, :3] , A , atol=1E-4 ) assert outputs.logits.shape == expected_shape Path(A ).mkdir(exist_ok=A ) print(f"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(A ) processor.save_pretrained(A ) if __name__ == "__main__": _lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _lowercase : List[str] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
50
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers _lowercase : Union[str, Any] = """3""" print("""Python version:""", sys.version) print("""transformers version:""", transformers.__version__) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) print("""NCCL version:""", torch.cuda.nccl.version()) except ImportError: print("""Torch version:""", None) try: import deepspeed print("""DeepSpeed version:""", deepspeed.__version__) except ImportError: print("""DeepSpeed version:""", None) try: import tensorflow as tf print("""TensorFlow version:""", tf.__version__) print("""TF GPUs available:""", bool(tf.config.list_physical_devices("""GPU"""))) print("""Number of TF GPUs available:""", len(tf.config.list_physical_devices("""GPU"""))) except ImportError: print("""TensorFlow version:""", None)
50
1
'''simple docstring''' def lowerCamelCase__ ( A : int , A : int ): '''simple docstring''' return int((input_a, input_a).count(1 ) != 0 ) def lowerCamelCase__ ( ): '''simple docstring''' assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
50
'''simple docstring''' import functools def lowerCamelCase__ ( A : list[int] , A : list[int] ): '''simple docstring''' if not isinstance(A , A ) or not all(isinstance(A , A ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(A ) != 3 or not all(isinstance(A , A ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(A ) == 0: return 0 if min(A ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(A ) >= 3_66: raise ValueError('''All days elements should be less than 366''' ) UpperCAmelCase = set(A ) @functools.cache def dynamic_programming(A : int ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
50
1
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal _lowercase : Any = datasets.utils.logging.get_logger(__name__) _lowercase : Optional[int] = ["""names""", """prefix"""] _lowercase : Any = ["""warn_bad_lines""", """error_bad_lines""", """mangle_dupe_cols"""] _lowercase : Any = ["""encoding_errors""", """on_bad_lines"""] _lowercase : str = ["""date_format"""] @dataclass class UpperCamelCase__( datasets.BuilderConfig ): __magic_name__ : str = "," __magic_name__ : Optional[str] = None __magic_name__ : Optional[Union[int, List[int], str]] = "infer" __magic_name__ : Optional[List[str]] = None __magic_name__ : Optional[List[str]] = None __magic_name__ : Optional[Union[int, str, List[int], List[str]]] = None __magic_name__ : Optional[Union[List[int], List[str]]] = None __magic_name__ : Optional[str] = None __magic_name__ : bool = True __magic_name__ : Optional[Literal["c", "python", "pyarrow"]] = None __magic_name__ : Dict[Union[int, str], Callable[[Any], Any]] = None __magic_name__ : Optional[list] = None __magic_name__ : Optional[list] = None __magic_name__ : bool = False __magic_name__ : Optional[Union[int, List[int]]] = None __magic_name__ : Optional[int] = None __magic_name__ : Optional[Union[str, List[str]]] = None __magic_name__ : bool = True __magic_name__ : bool = True __magic_name__ : bool = False __magic_name__ : bool = True __magic_name__ : Optional[str] = None __magic_name__ : str = "." __magic_name__ : Optional[str] = None __magic_name__ : str = '"' __magic_name__ : int = 0 __magic_name__ : Optional[str] = None __magic_name__ : Optional[str] = None __magic_name__ : Optional[str] = None __magic_name__ : Optional[str] = None __magic_name__ : bool = True __magic_name__ : bool = True __magic_name__ : int = 0 __magic_name__ : bool = True __magic_name__ : bool = False __magic_name__ : Optional[str] = None __magic_name__ : int = 1_0000 __magic_name__ : Optional[datasets.Features] = None __magic_name__ : Optional[str] = "strict" __magic_name__ : Literal["error", "warn", "skip"] = "error" __magic_name__ : Optional[str] = None def a__( self : List[str] )-> Union[str, Any]: """simple docstring""" if self.delimiter is not None: UpperCAmelCase = self.delimiter if self.column_names is not None: UpperCAmelCase = self.column_names @property def a__( self : List[str] )-> List[str]: """simple docstring""" UpperCAmelCase = { '''sep''': self.sep, '''header''': self.header, '''names''': self.names, '''index_col''': self.index_col, '''usecols''': self.usecols, '''prefix''': self.prefix, '''mangle_dupe_cols''': self.mangle_dupe_cols, '''engine''': self.engine, '''converters''': self.converters, '''true_values''': self.true_values, '''false_values''': self.false_values, '''skipinitialspace''': self.skipinitialspace, '''skiprows''': self.skiprows, '''nrows''': self.nrows, '''na_values''': self.na_values, '''keep_default_na''': self.keep_default_na, '''na_filter''': self.na_filter, '''verbose''': self.verbose, '''skip_blank_lines''': self.skip_blank_lines, '''thousands''': self.thousands, '''decimal''': self.decimal, '''lineterminator''': self.lineterminator, '''quotechar''': self.quotechar, '''quoting''': self.quoting, '''escapechar''': self.escapechar, '''comment''': self.comment, '''encoding''': self.encoding, '''dialect''': self.dialect, '''error_bad_lines''': self.error_bad_lines, '''warn_bad_lines''': self.warn_bad_lines, '''skipfooter''': self.skipfooter, '''doublequote''': self.doublequote, '''memory_map''': self.memory_map, '''float_precision''': self.float_precision, '''chunksize''': self.chunksize, '''encoding_errors''': self.encoding_errors, '''on_bad_lines''': self.on_bad_lines, '''date_format''': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class UpperCamelCase__( datasets.ArrowBasedBuilder ): __magic_name__ : Any = CsvConfig def a__( self : List[Any] )-> Tuple: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def a__( self : int , lowerCAmelCase : Optional[int] )-> int: """simple docstring""" if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) UpperCAmelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase , (str, list, tuple) ): UpperCAmelCase = data_files if isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase = [files] UpperCAmelCase = [dl_manager.iter_files(lowerCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] UpperCAmelCase = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase = [files] UpperCAmelCase = [dl_manager.iter_files(lowerCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase , gen_kwargs={'''files''': files} ) ) return splits def a__( self : List[str] , lowerCAmelCase : pa.Table )-> pa.Table: """simple docstring""" if self.config.features is not None: UpperCAmelCase = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase ) for feature in self.config.features.values() ): # cheaper cast UpperCAmelCase = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase ) else: # more expensive cast; allows str <-> int/float or str to Audio for example UpperCAmelCase = table_cast(lowerCAmelCase , lowerCAmelCase ) return pa_table def a__( self : List[Any] , lowerCAmelCase : str )-> Tuple: """simple docstring""" UpperCAmelCase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str UpperCAmelCase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase ) ): UpperCAmelCase = pd.read_csv(lowerCAmelCase , iterator=lowerCAmelCase , dtype=lowerCAmelCase , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCAmelCase ): UpperCAmelCase = pa.Table.from_pandas(lowerCAmelCase ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(lowerCAmelCase )}: {e}""" ) raise
50
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase : Any = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys _lowercase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
1
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class UpperCamelCase__: def __init__( self : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any]=13 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : Tuple=24 , lowerCAmelCase : Union[str, Any]=16 , lowerCAmelCase : List[Any]=True , lowerCAmelCase : int=True , lowerCAmelCase : int=32 , lowerCAmelCase : Optional[Any]=5 , lowerCAmelCase : List[str]=4 , lowerCAmelCase : Optional[Any]=37 , lowerCAmelCase : Any="gelu" , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : int=0.1 , lowerCAmelCase : List[str]=10 , lowerCAmelCase : List[str]=0.02 , lowerCAmelCase : List[str]=None , lowerCAmelCase : Union[str, Any]=2 , lowerCAmelCase : int=2 , )-> Optional[Any]: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = patch_size UpperCAmelCase = max_length UpperCAmelCase = num_mel_bins UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = scope UpperCAmelCase = frequency_stride UpperCAmelCase = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) UpperCAmelCase = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 UpperCAmelCase = (self.max_length - self.patch_size) // self.time_stride + 1 UpperCAmelCase = frequency_out_dimension * time_out_dimension UpperCAmelCase = num_patches + 2 def a__( self : List[Any] )-> List[str]: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = self.get_config() return config, input_values, labels def a__( self : int )-> List[str]: """simple docstring""" return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def a__( self : int , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : int )-> Dict: """simple docstring""" UpperCAmelCase = ASTModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__( self : Optional[Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = {'''input_values''': input_values} return config, inputs_dict @require_torch class UpperCamelCase__( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): __magic_name__ : List[Any] = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) __magic_name__ : Any = ( {"audio-classification": ASTForAudioClassification, "feature-extraction": ASTModel} if is_torch_available() else {} ) __magic_name__ : List[Any] = False __magic_name__ : Any = False __magic_name__ : Any = False __magic_name__ : Any = False def a__( self : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Dict )-> Optional[int]: """simple docstring""" if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def a__( self : Any )-> Optional[Any]: """simple docstring""" UpperCAmelCase = ASTModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase , hidden_size=37 ) def a__( self : Optional[int] )-> Any: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''AST does not use inputs_embeds''' ) def a__( self : Optional[int] )-> int: """simple docstring""" pass def a__( self : str )-> Union[str, Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase , nn.Linear ) ) def a__( self : str )-> int: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''input_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def a__( self : Tuple )-> List[str]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) @slow def a__( self : Optional[Any] )-> Dict: """simple docstring""" for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = ASTModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' ) UpperCAmelCase , UpperCAmelCase = torchaudio.load(A ) return audio, sampling_rate @require_torch @require_torchaudio class UpperCamelCase__( unittest.TestCase ): @cached_property def a__( self : Any )-> Tuple: """simple docstring""" return ( ASTFeatureExtractor.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ) if is_torchaudio_available() else None ) @slow def a__( self : List[str] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = self.default_feature_extractor UpperCAmelCase = ASTForAudioClassification.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ).to(lowerCAmelCase ) UpperCAmelCase = self.default_feature_extractor UpperCAmelCase , UpperCAmelCase = prepare_audio() UpperCAmelCase = audio.squeeze().numpy() UpperCAmelCase = feature_extractor(lowerCAmelCase , sampling_rate=lowerCAmelCase , return_tensors='''pt''' ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase = model(**lowerCAmelCase ) # verify the logits UpperCAmelCase = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) UpperCAmelCase = torch.tensor([-0.8760, -7.0042, -8.6602] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
50
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def lowerCamelCase__ ( A : Optional[Any] , A : Tuple=1 ): '''simple docstring''' if n_shave_prefix_segments >= 0: return ".".join(path.split('''.''' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('''.''' )[:n_shave_prefix_segments] ) def lowerCamelCase__ ( A : int , A : Optional[Any]=0 ): '''simple docstring''' UpperCAmelCase = [] for old_item in old_list: UpperCAmelCase = old_item.replace('''in_layers.0''' , '''norm1''' ) UpperCAmelCase = new_item.replace('''in_layers.2''' , '''conv1''' ) UpperCAmelCase = new_item.replace('''out_layers.0''' , '''norm2''' ) UpperCAmelCase = new_item.replace('''out_layers.3''' , '''conv2''' ) UpperCAmelCase = new_item.replace('''emb_layers.1''' , '''time_emb_proj''' ) UpperCAmelCase = new_item.replace('''skip_connection''' , '''conv_shortcut''' ) UpperCAmelCase = shave_segments(A , n_shave_prefix_segments=A ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def lowerCamelCase__ ( A : Any , A : int=0 ): '''simple docstring''' UpperCAmelCase = [] for old_item in old_list: UpperCAmelCase = old_item UpperCAmelCase = new_item.replace('''norm.weight''' , '''group_norm.weight''' ) UpperCAmelCase = new_item.replace('''norm.bias''' , '''group_norm.bias''' ) UpperCAmelCase = new_item.replace('''proj_out.weight''' , '''proj_attn.weight''' ) UpperCAmelCase = new_item.replace('''proj_out.bias''' , '''proj_attn.bias''' ) UpperCAmelCase = shave_segments(A , n_shave_prefix_segments=A ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def lowerCamelCase__ ( A : Tuple , A : Union[str, Any] , A : int , A : Dict=None , A : Optional[int]=None , A : Optional[Any]=None ): '''simple docstring''' assert isinstance(A , A ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): UpperCAmelCase = old_checkpoint[path] UpperCAmelCase = old_tensor.shape[0] // 3 UpperCAmelCase = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) UpperCAmelCase = old_tensor.shape[0] // config['''num_head_channels'''] // 3 UpperCAmelCase = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = old_tensor.split(channels // num_heads , dim=1 ) UpperCAmelCase = query.reshape(A ) UpperCAmelCase = key.reshape(A ) UpperCAmelCase = value.reshape(A ) for path in paths: UpperCAmelCase = path['''new'''] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here UpperCAmelCase = new_path.replace('''middle_block.0''' , '''mid_block.resnets.0''' ) UpperCAmelCase = new_path.replace('''middle_block.1''' , '''mid_block.attentions.0''' ) UpperCAmelCase = new_path.replace('''middle_block.2''' , '''mid_block.resnets.1''' ) if additional_replacements is not None: for replacement in additional_replacements: UpperCAmelCase = new_path.replace(replacement['''old'''] , replacement['''new'''] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: UpperCAmelCase = old_checkpoint[path['''old''']][:, :, 0] else: UpperCAmelCase = old_checkpoint[path['''old''']] def lowerCamelCase__ ( A : Union[str, Any] , A : Dict ): '''simple docstring''' UpperCAmelCase = {} UpperCAmelCase = checkpoint['''time_embed.0.weight'''] UpperCAmelCase = checkpoint['''time_embed.0.bias'''] UpperCAmelCase = checkpoint['''time_embed.2.weight'''] UpperCAmelCase = checkpoint['''time_embed.2.bias'''] UpperCAmelCase = checkpoint['''input_blocks.0.0.weight'''] UpperCAmelCase = checkpoint['''input_blocks.0.0.bias'''] UpperCAmelCase = checkpoint['''out.0.weight'''] UpperCAmelCase = checkpoint['''out.0.bias'''] UpperCAmelCase = checkpoint['''out.2.weight'''] UpperCAmelCase = checkpoint['''out.2.bias'''] # Retrieves the keys for the input blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''input_blocks''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""input_blocks.{layer_id}""" in key] for layer_id in range(A ) } # Retrieves the keys for the middle blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''middle_block''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""middle_block.{layer_id}""" in key] for layer_id in range(A ) } # Retrieves the keys for the output blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''output_blocks''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""output_blocks.{layer_id}""" in key] for layer_id in range(A ) } for i in range(1 , A ): UpperCAmelCase = (i - 1) // (config['''num_res_blocks'''] + 1) UpperCAmelCase = (i - 1) % (config['''num_res_blocks'''] + 1) UpperCAmelCase = [key for key in input_blocks[i] if f"""input_blocks.{i}.0""" in key] UpperCAmelCase = [key for key in input_blocks[i] if f"""input_blocks.{i}.1""" in key] if f"""input_blocks.{i}.0.op.weight""" in checkpoint: UpperCAmelCase = checkpoint[ f"""input_blocks.{i}.0.op.weight""" ] UpperCAmelCase = checkpoint[ f"""input_blocks.{i}.0.op.bias""" ] continue UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = {'''old''': f"""input_blocks.{i}.0""", '''new''': f"""down_blocks.{block_id}.resnets.{layer_in_block_id}"""} UpperCAmelCase = {'''old''': '''resnets.2.op''', '''new''': '''downsamplers.0.op'''} assign_to_checkpoint( A , A , A , additional_replacements=[meta_path, resnet_op] , config=A ) if len(A ): UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''old''': f"""input_blocks.{i}.1""", '''new''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase = { f"""input_blocks.{i}.1.qkv.bias""": { '''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""input_blocks.{i}.1.qkv.weight""": { '''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( A , A , A , additional_replacements=[meta_path] , attention_paths_to_split=A , config=A , ) UpperCAmelCase = middle_blocks[0] UpperCAmelCase = middle_blocks[1] UpperCAmelCase = middle_blocks[2] UpperCAmelCase = renew_resnet_paths(A ) assign_to_checkpoint(A , A , A , config=A ) UpperCAmelCase = renew_resnet_paths(A ) assign_to_checkpoint(A , A , A , config=A ) UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''middle_block.1.qkv.bias''': { '''key''': '''mid_block.attentions.0.key.bias''', '''query''': '''mid_block.attentions.0.query.bias''', '''value''': '''mid_block.attentions.0.value.bias''', }, '''middle_block.1.qkv.weight''': { '''key''': '''mid_block.attentions.0.key.weight''', '''query''': '''mid_block.attentions.0.query.weight''', '''value''': '''mid_block.attentions.0.value.weight''', }, } assign_to_checkpoint( A , A , A , attention_paths_to_split=A , config=A ) for i in range(A ): UpperCAmelCase = i // (config['''num_res_blocks'''] + 1) UpperCAmelCase = i % (config['''num_res_blocks'''] + 1) UpperCAmelCase = [shave_segments(A , 2 ) for name in output_blocks[i]] UpperCAmelCase = {} for layer in output_block_layers: UpperCAmelCase , UpperCAmelCase = layer.split('''.''' )[0], shave_segments(A , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(A ) else: UpperCAmelCase = [layer_name] if len(A ) > 1: UpperCAmelCase = [key for key in output_blocks[i] if f"""output_blocks.{i}.0""" in key] UpperCAmelCase = [key for key in output_blocks[i] if f"""output_blocks.{i}.1""" in key] UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = {'''old''': f"""output_blocks.{i}.0""", '''new''': f"""up_blocks.{block_id}.resnets.{layer_in_block_id}"""} assign_to_checkpoint(A , A , A , additional_replacements=[meta_path] , config=A ) if ["conv.weight", "conv.bias"] in output_block_list.values(): UpperCAmelCase = list(output_block_list.values() ).index(['''conv.weight''', '''conv.bias'''] ) UpperCAmelCase = checkpoint[ f"""output_blocks.{i}.{index}.conv.weight""" ] UpperCAmelCase = checkpoint[ f"""output_blocks.{i}.{index}.conv.bias""" ] # Clear attentions as they have been attributed above. if len(A ) == 2: UpperCAmelCase = [] if len(A ): UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''old''': f"""output_blocks.{i}.1""", '''new''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase = { f"""output_blocks.{i}.1.qkv.bias""": { '''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""output_blocks.{i}.1.qkv.weight""": { '''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( A , A , A , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('''qkv''' in key for key in attentions ) else None , config=A , ) else: UpperCAmelCase = renew_resnet_paths(A , n_shave_prefix_segments=1 ) for path in resnet_0_paths: UpperCAmelCase = '''.'''.join(['''output_blocks''', str(A ), path['''old''']] ) UpperCAmelCase = '''.'''.join(['''up_blocks''', str(A ), '''resnets''', str(A ), path['''new''']] ) UpperCAmelCase = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": _lowercase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") _lowercase : Dict = parser.parse_args() _lowercase : List[Any] = torch.load(args.checkpoint_path) with open(args.config_file) as f: _lowercase : List[str] = json.loads(f.read()) _lowercase : Union[str, Any] = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] _lowercase : Any = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: _lowercase : Tuple = DDPMScheduler.from_config("""/""".join(args.checkpoint_path.split("""/""")[:-1])) _lowercase : Optional[Any] = VQModel.from_pretrained("""/""".join(args.checkpoint_path.split("""/""")[:-1])) _lowercase : Optional[Any] = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
50
1
'''simple docstring''' def lowerCamelCase__ ( A : int ): '''simple docstring''' UpperCAmelCase = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def lowerCamelCase__ ( A : int = 50_00 ): '''simple docstring''' UpperCAmelCase = [(i * (3 * i - 1)) // 2 for i in range(1 , A )] for i, pentagonal_i in enumerate(A ): for j in range(A , len(A ) ): UpperCAmelCase = pentagonal_nums[j] UpperCAmelCase = pentagonal_i + pentagonal_j UpperCAmelCase = pentagonal_j - pentagonal_i if is_pentagonal(A ) and is_pentagonal(A ): return b return -1 if __name__ == "__main__": print(F"""{solution() = }""")
50
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Any = logging.get_logger(__name__) _lowercase : Dict = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = "dpr" def __init__( self : Dict , lowerCAmelCase : Any=30522 , lowerCAmelCase : List[str]=768 , lowerCAmelCase : Union[str, Any]=12 , lowerCAmelCase : Tuple=12 , lowerCAmelCase : Optional[int]=3072 , lowerCAmelCase : Optional[int]="gelu" , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : Any=0.1 , lowerCAmelCase : Optional[Any]=512 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : str=1E-12 , lowerCAmelCase : Optional[Any]=0 , lowerCAmelCase : Tuple="absolute" , lowerCAmelCase : int = 0 , **lowerCAmelCase : Union[str, Any] , )-> Optional[int]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = projection_dim UpperCAmelCase = position_embedding_type
50
1
'''simple docstring''' import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def lowerCamelCase__ ( A : Dict , A : Dict , A : Optional[int]=[] ): '''simple docstring''' UpperCAmelCase = size[0] - overlap_pixels * 2 UpperCAmelCase = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels UpperCAmelCase = np.ones((size_y, size_x) , dtype=np.uinta ) * 2_55 UpperCAmelCase = np.pad(A , mode='''linear_ramp''' , pad_width=A , end_values=0 ) if "l" in remove_borders: UpperCAmelCase = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: UpperCAmelCase = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: UpperCAmelCase = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: UpperCAmelCase = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def lowerCamelCase__ ( A : List[Any] , A : Union[str, Any] , A : Union[str, Any] ): '''simple docstring''' return max(A , min(A , A ) ) def lowerCamelCase__ ( A : [int] , A : [int] , A : [int] ): '''simple docstring''' return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def lowerCamelCase__ ( A : [int] , A : int , A : [int] ): '''simple docstring''' UpperCAmelCase = list(A ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap UpperCAmelCase = clamp_rect(A , [0, 0] , [image_size[0], image_size[1]] ) return rect def lowerCamelCase__ ( A : Tuple , A : List[str] , A : List[str] , A : Dict ): '''simple docstring''' UpperCAmelCase = Image.new('''RGB''' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(A , (original_slice, 0) ) return result def lowerCamelCase__ ( A : str , A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) UpperCAmelCase = tile.crop(A ) return tile def lowerCamelCase__ ( A : Dict , A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = n % d return n - divisor class UpperCamelCase__( lowerCAmelCase ): def __init__( self : Dict , lowerCAmelCase : AutoencoderKL , lowerCAmelCase : CLIPTextModel , lowerCAmelCase : CLIPTokenizer , lowerCAmelCase : UNetaDConditionModel , lowerCAmelCase : DDPMScheduler , lowerCAmelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCAmelCase : int = 350 , )-> List[Any]: """simple docstring""" super().__init__( vae=lowerCAmelCase , text_encoder=lowerCAmelCase , tokenizer=lowerCAmelCase , unet=lowerCAmelCase , low_res_scheduler=lowerCAmelCase , scheduler=lowerCAmelCase , max_noise_level=lowerCAmelCase , ) def a__( self : List[str] , lowerCAmelCase : Any , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[Any] )-> Optional[int]: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) UpperCAmelCase = add_overlap_rect(lowerCAmelCase , lowerCAmelCase , image.size ) UpperCAmelCase = image.crop(lowerCAmelCase ) UpperCAmelCase = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] UpperCAmelCase = translated_slice_x - (original_image_slice / 2) UpperCAmelCase = max(0 , lowerCAmelCase ) UpperCAmelCase = squeeze_tile(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = to_input.size UpperCAmelCase = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) UpperCAmelCase = super(lowerCAmelCase , self ).__call__(image=lowerCAmelCase , **lowerCAmelCase ).images[0] UpperCAmelCase = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) UpperCAmelCase = unsqueeze_tile(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) UpperCAmelCase = [] if x == 0: remove_borders.append('''l''' ) elif crop_rect[2] == image.size[0]: remove_borders.append('''r''' ) if y == 0: remove_borders.append('''t''' ) elif crop_rect[3] == image.size[1]: remove_borders.append('''b''' ) UpperCAmelCase = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=lowerCAmelCase ) , mode='''L''' , ) final_image.paste( lowerCAmelCase , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , lowerCAmelCase ) @torch.no_grad() def __call__( self : str , lowerCAmelCase : Union[str, List[str]] , lowerCAmelCase : Union[PIL.Image.Image, List[PIL.Image.Image]] , lowerCAmelCase : int = 75 , lowerCAmelCase : float = 9.0 , lowerCAmelCase : int = 50 , lowerCAmelCase : Optional[Union[str, List[str]]] = None , lowerCAmelCase : Optional[int] = 1 , lowerCAmelCase : float = 0.0 , lowerCAmelCase : Optional[torch.Generator] = None , lowerCAmelCase : Optional[torch.FloatTensor] = None , lowerCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 128 , lowerCAmelCase : int = 32 , lowerCAmelCase : int = 32 , )-> List[Any]: """simple docstring""" UpperCAmelCase = Image.new('''RGB''' , (image.size[0] * 4, image.size[1] * 4) ) UpperCAmelCase = math.ceil(image.size[0] / tile_size ) UpperCAmelCase = math.ceil(image.size[1] / tile_size ) UpperCAmelCase = tcx * tcy UpperCAmelCase = 0 for y in range(lowerCAmelCase ): for x in range(lowerCAmelCase ): self._process_tile( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , prompt=lowerCAmelCase , num_inference_steps=lowerCAmelCase , guidance_scale=lowerCAmelCase , noise_level=lowerCAmelCase , negative_prompt=lowerCAmelCase , num_images_per_prompt=lowerCAmelCase , eta=lowerCAmelCase , generator=lowerCAmelCase , latents=lowerCAmelCase , ) current_count += 1 if callback is not None: callback({'''progress''': current_count / total_tile_count, '''image''': final_image} ) return final_image def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = '''stabilityai/stable-diffusion-x4-upscaler''' UpperCAmelCase = StableDiffusionTiledUpscalePipeline.from_pretrained(A , revision='''fp16''' , torch_dtype=torch.floataa ) UpperCAmelCase = pipe.to('''cuda''' ) UpperCAmelCase = Image.open('''../../docs/source/imgs/diffusers_library.jpg''' ) def callback(A : Optional[Any] ): print(f"""progress: {obj["progress"]:.4f}""" ) obj["image"].save('''diffusers_library_progress.jpg''' ) UpperCAmelCase = pipe(image=A , prompt='''Black font, white background, vector''' , noise_level=40 , callback=A ) final_image.save('''diffusers_library.jpg''' ) if __name__ == "__main__": main()
50
'''simple docstring''' import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _lowercase : Tuple = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def lowerCamelCase__ ( A : Optional[Any] ): '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def lowerCamelCase__ ( A : Any , A : str ): '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase = False elif args.student_type == "gpt2": UpperCAmelCase = False def lowerCamelCase__ ( A : List[Any] , A : List[str] ): '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase = False def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=A , required=A , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=A , required=A , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=A , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=A , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=A , required=A , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=A , type=A , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=A , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=A , required=A , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=A , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=A , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=A , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=A , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=A , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=A , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=A , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=A , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=A , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=A , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=A , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=A , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=A , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=A , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=A , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=A , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=A , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=A , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=A , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=A , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=A , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=A , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=A , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=A , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=A , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=A , default=5_00 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=A , default=40_00 , help='''Checkpoint interval.''' ) UpperCAmelCase = parser.parse_args() sanity_checks(A ) # ARGS # init_gpu_params(A ) set_seed(A ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(f"""Param: {args}""" ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(A ) , A , indent=4 ) git_log(args.dump_path ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = MODEL_CLASSES[args.student_type] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # UpperCAmelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) UpperCAmelCase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): UpperCAmelCase = tokenizer.all_special_tokens.index(A ) UpperCAmelCase = tokenizer.all_special_ids[idx] logger.info(f"""Special tokens {special_tok_ids}""" ) UpperCAmelCase = special_tok_ids UpperCAmelCase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f"""Loading data from {args.data_file}""" ) with open(args.data_file , '''rb''' ) as fp: UpperCAmelCase = pickle.load(A ) if args.mlm: logger.info(f"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts , '''rb''' ) as fp: UpperCAmelCase = pickle.load(A ) UpperCAmelCase = np.maximum(A , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): UpperCAmelCase = 0.0 # do not predict special tokens UpperCAmelCase = torch.from_numpy(A ) else: UpperCAmelCase = None UpperCAmelCase = LmSeqsDataset(params=A , data=A ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(f"""Loading student config from {args.student_config}""" ) UpperCAmelCase = student_config_class.from_pretrained(args.student_config ) UpperCAmelCase = True if args.student_pretrained_weights is not None: logger.info(f"""Loading pretrained weights from {args.student_pretrained_weights}""" ) UpperCAmelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=A ) else: UpperCAmelCase = student_model_class(A ) if args.n_gpu > 0: student.to(f"""cuda:{args.local_rank}""" ) logger.info('''Student loaded.''' ) # TEACHER # UpperCAmelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=A ) if args.n_gpu > 0: teacher.to(f"""cuda:{args.local_rank}""" ) logger.info(f"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(A , A ) if args.freeze_token_type_embds: freeze_token_type_embeddings(A , A ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() UpperCAmelCase = Distiller( params=A , dataset=A , token_probs=A , student=A , teacher=A ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
50
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class UpperCamelCase__: __magic_name__ : Optional[Any] = PegasusConfig __magic_name__ : Union[str, Any] = {} __magic_name__ : List[Any] = "gelu" def __init__( self : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple=13 , lowerCAmelCase : Any=7 , lowerCAmelCase : int=True , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Dict=99 , lowerCAmelCase : Optional[Any]=32 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : List[Any]=4 , lowerCAmelCase : Tuple=37 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : Union[str, Any]=40 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : Union[str, Any]=1 , lowerCAmelCase : List[str]=0 , )-> Tuple: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = eos_token_id UpperCAmelCase = pad_token_id UpperCAmelCase = bos_token_id def a__( self : Optional[Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase = prepare_pegasus_inputs_dict(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return config, inputs_dict def a__( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : str )-> Optional[int]: """simple docstring""" UpperCAmelCase = TFPegasusModel(config=lowerCAmelCase ).get_decoder() UpperCAmelCase = inputs_dict['''input_ids'''] UpperCAmelCase = input_ids[:1, :] UpperCAmelCase = inputs_dict['''attention_mask'''][:1, :] UpperCAmelCase = inputs_dict['''head_mask'''] UpperCAmelCase = 1 # first forward pass UpperCAmelCase = model(lowerCAmelCase , attention_mask=lowerCAmelCase , head_mask=lowerCAmelCase , use_cache=lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase = model(lowerCAmelCase , attention_mask=lowerCAmelCase )[0] UpperCAmelCase = model(lowerCAmelCase , attention_mask=lowerCAmelCase , past_key_values=lowerCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCAmelCase , lowerCAmelCase , rtol=1E-3 ) def lowerCamelCase__ ( A : List[Any] , A : Union[str, Any] , A : int , A : str=None , A : List[Any]=None , A : List[Any]=None , A : Union[str, Any]=None , A : Optional[int]=None , ): '''simple docstring''' if attention_mask is None: UpperCAmelCase = tf.cast(tf.math.not_equal(A , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCamelCase__( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): __magic_name__ : List[Any] = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () __magic_name__ : List[str] = (TFPegasusForConditionalGeneration,) if is_tf_available() else () __magic_name__ : str = ( { "conversational": TFPegasusForConditionalGeneration, "feature-extraction": TFPegasusModel, "summarization": TFPegasusForConditionalGeneration, "text2text-generation": TFPegasusForConditionalGeneration, "translation": TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) __magic_name__ : List[str] = True __magic_name__ : List[str] = False __magic_name__ : Optional[int] = False def a__( self : Tuple )-> Optional[Any]: """simple docstring""" UpperCAmelCase = TFPegasusModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase ) def a__( self : str )-> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def a__( self : Optional[int] )-> int: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase ) @require_sentencepiece @require_tokenizers @require_tf class UpperCamelCase__( unittest.TestCase ): __magic_name__ : Union[str, Any] = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] __magic_name__ : Optional[Any] = [ "California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to" " reduce the risk of wildfires.", "N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.", ] # differs slightly from pytorch, likely due to numerical differences in linear layers __magic_name__ : Optional[int] = "google/pegasus-xsum" @cached_property def a__( self : Optional[Any] )-> Union[str, Any]: """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def a__( self : Any )-> Any: """simple docstring""" UpperCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def a__( self : str , **lowerCAmelCase : Any )-> Tuple: """simple docstring""" UpperCAmelCase = self.translate_src_text(**lowerCAmelCase ) assert self.expected_text == generated_words def a__( self : List[Any] , **lowerCAmelCase : Tuple )-> Any: """simple docstring""" UpperCAmelCase = self.tokenizer(self.src_text , **lowerCAmelCase , padding=lowerCAmelCase , return_tensors='''tf''' ) UpperCAmelCase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=lowerCAmelCase , ) UpperCAmelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowerCAmelCase ) return generated_words @slow def a__( self : List[str] )-> List[str]: """simple docstring""" self._assert_generated_batch_equal_expected()
50
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Tuple = ["image_processor", "tokenizer"] __magic_name__ : Any = "ViTImageProcessor" __magic_name__ : str = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : List[str] , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=None , **lowerCAmelCase : Optional[int] )-> List[Any]: """simple docstring""" UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCAmelCase , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase , lowerCAmelCase ) def __call__( self : str , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=None , **lowerCAmelCase : List[str] )-> List[Any]: """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''' ) if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''' ) if text is not None: UpperCAmelCase = self.tokenizer(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if visual_prompt is not None: UpperCAmelCase = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if images is not None: UpperCAmelCase = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if visual_prompt is not None and images is not None: UpperCAmelCase = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: UpperCAmelCase = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase ) , tensor_type=lowerCAmelCase ) def a__( self : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int] )-> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str] )-> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase ) @property def a__( self : List[Any] )-> Optional[Any]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCAmelCase , ) return self.image_processor_class @property def a__( self : Any )-> List[Any]: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowerCAmelCase , ) return self.image_processor
50
1
'''simple docstring''' import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# _lowercase : List[Any] = [ # (stable-diffusion, HF Diffusers) ("""time_embed.0.weight""", """time_embedding.linear_1.weight"""), ("""time_embed.0.bias""", """time_embedding.linear_1.bias"""), ("""time_embed.2.weight""", """time_embedding.linear_2.weight"""), ("""time_embed.2.bias""", """time_embedding.linear_2.bias"""), ("""input_blocks.0.0.weight""", """conv_in.weight"""), ("""input_blocks.0.0.bias""", """conv_in.bias"""), ("""out.0.weight""", """conv_norm_out.weight"""), ("""out.0.bias""", """conv_norm_out.bias"""), ("""out.2.weight""", """conv_out.weight"""), ("""out.2.bias""", """conv_out.bias"""), ] _lowercase : int = [ # (stable-diffusion, HF Diffusers) ("""in_layers.0""", """norm1"""), ("""in_layers.2""", """conv1"""), ("""out_layers.0""", """norm2"""), ("""out_layers.3""", """conv2"""), ("""emb_layers.1""", """time_emb_proj"""), ("""skip_connection""", """conv_shortcut"""), ] _lowercase : List[str] = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks _lowercase : List[Any] = F"""down_blocks.{i}.resnets.{j}.""" _lowercase : Union[str, Any] = F"""input_blocks.{3*i + j + 1}.0.""" unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 _lowercase : int = F"""down_blocks.{i}.attentions.{j}.""" _lowercase : Tuple = F"""input_blocks.{3*i + j + 1}.1.""" unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks _lowercase : List[str] = F"""up_blocks.{i}.resnets.{j}.""" _lowercase : Any = F"""output_blocks.{3*i + j}.0.""" unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 _lowercase : Optional[Any] = F"""up_blocks.{i}.attentions.{j}.""" _lowercase : Optional[int] = F"""output_blocks.{3*i + j}.1.""" unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 _lowercase : Dict = F"""down_blocks.{i}.downsamplers.0.conv.""" _lowercase : Tuple = F"""input_blocks.{3*(i+1)}.0.op.""" unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 _lowercase : Union[str, Any] = F"""up_blocks.{i}.upsamplers.0.""" _lowercase : Tuple = F"""output_blocks.{3*i + 2}.{1 if i == 0 else 2}.""" unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) _lowercase : Tuple = """mid_block.attentions.0.""" _lowercase : Optional[Any] = """middle_block.1.""" unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): _lowercase : int = F"""mid_block.resnets.{j}.""" _lowercase : Any = F"""middle_block.{2*j}.""" unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def lowerCamelCase__ ( A : List[Any] ): '''simple docstring''' UpperCAmelCase = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: UpperCAmelCase = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: UpperCAmelCase = v.replace(A , A ) UpperCAmelCase = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: UpperCAmelCase = v.replace(A , A ) UpperCAmelCase = v UpperCAmelCase = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# _lowercase : Any = [ # (stable-diffusion, HF Diffusers) ("""nin_shortcut""", """conv_shortcut"""), ("""norm_out""", """conv_norm_out"""), ("""mid.attn_1.""", """mid_block.attentions.0."""), ] for i in range(4): # down_blocks have two resnets for j in range(2): _lowercase : List[str] = F"""encoder.down_blocks.{i}.resnets.{j}.""" _lowercase : Optional[int] = F"""encoder.down.{i}.block.{j}.""" vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: _lowercase : Union[str, Any] = F"""down_blocks.{i}.downsamplers.0.""" _lowercase : str = F"""down.{i}.downsample.""" vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) _lowercase : Optional[int] = F"""up_blocks.{i}.upsamplers.0.""" _lowercase : Union[str, Any] = F"""up.{3-i}.upsample.""" vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): _lowercase : Tuple = F"""decoder.up_blocks.{i}.resnets.{j}.""" _lowercase : int = F"""decoder.up.{3-i}.block.{j}.""" vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): _lowercase : Any = F"""mid_block.resnets.{i}.""" _lowercase : List[Any] = F"""mid.block_{i+1}.""" vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) _lowercase : Optional[Any] = [ # (stable-diffusion, HF Diffusers) ("""norm.""", """group_norm."""), ("""q.""", """query."""), ("""k.""", """key."""), ("""v.""", """value."""), ("""proj_out.""", """proj_attn."""), ] def lowerCamelCase__ ( A : Dict ): '''simple docstring''' return w.reshape(*w.shape , 1 , 1 ) def lowerCamelCase__ ( A : str ): '''simple docstring''' UpperCAmelCase = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: UpperCAmelCase = v.replace(A , A ) UpperCAmelCase = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: UpperCAmelCase = v.replace(A , A ) UpperCAmelCase = v UpperCAmelCase = {v: vae_state_dict[k] for k, v in mapping.items()} UpperCAmelCase = ['''q''', '''k''', '''v''', '''proj_out'''] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if f"""mid.attn_1.{weight_name}.weight""" in k: print(f"""Reshaping {k} for SD format""" ) UpperCAmelCase = reshape_weight_for_sd(A ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# _lowercase : Union[str, Any] = [ # (stable-diffusion, HF Diffusers) ("""resblocks.""", """text_model.encoder.layers."""), ("""ln_1""", """layer_norm1"""), ("""ln_2""", """layer_norm2"""), (""".c_fc.""", """.fc1."""), (""".c_proj.""", """.fc2."""), (""".attn""", """.self_attn"""), ("""ln_final.""", """transformer.text_model.final_layer_norm."""), ("""token_embedding.weight""", """transformer.text_model.embeddings.token_embedding.weight"""), ("""positional_embedding""", """transformer.text_model.embeddings.position_embedding.weight"""), ] _lowercase : int = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} _lowercase : str = re.compile("""|""".join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp _lowercase : Dict = {"""q""": 0, """k""": 1, """v""": 2} def lowerCamelCase__ ( A : Optional[int] ): '''simple docstring''' UpperCAmelCase = {} UpperCAmelCase = {} UpperCAmelCase = {} for k, v in text_enc_dict.items(): if ( k.endswith('''.self_attn.q_proj.weight''' ) or k.endswith('''.self_attn.k_proj.weight''' ) or k.endswith('''.self_attn.v_proj.weight''' ) ): UpperCAmelCase = k[: -len('''.q_proj.weight''' )] UpperCAmelCase = k[-len('''q_proj.weight''' )] if k_pre not in capture_qkv_weight: UpperCAmelCase = [None, None, None] UpperCAmelCase = v continue if ( k.endswith('''.self_attn.q_proj.bias''' ) or k.endswith('''.self_attn.k_proj.bias''' ) or k.endswith('''.self_attn.v_proj.bias''' ) ): UpperCAmelCase = k[: -len('''.q_proj.bias''' )] UpperCAmelCase = k[-len('''q_proj.bias''' )] if k_pre not in capture_qkv_bias: UpperCAmelCase = [None, None, None] UpperCAmelCase = v continue UpperCAmelCase = textenc_pattern.sub(lambda A : protected[re.escape(m.group(0 ) )] , A ) UpperCAmelCase = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) UpperCAmelCase = textenc_pattern.sub(lambda A : protected[re.escape(m.group(0 ) )] , A ) UpperCAmelCase = torch.cat(A ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) UpperCAmelCase = textenc_pattern.sub(lambda A : protected[re.escape(m.group(0 ) )] , A ) UpperCAmelCase = torch.cat(A ) return new_state_dict def lowerCamelCase__ ( A : Tuple ): '''simple docstring''' return text_enc_dict if __name__ == "__main__": _lowercase : Tuple = argparse.ArgumentParser() parser.add_argument("""--model_path""", default=None, type=str, required=True, help="""Path to the model to convert.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--use_safetensors""", action="""store_true""", help="""Save weights use safetensors, default is ckpt.""" ) _lowercase : Any = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors _lowercase : Optional[Any] = osp.join(args.model_path, """unet""", """diffusion_pytorch_model.safetensors""") _lowercase : Union[str, Any] = osp.join(args.model_path, """vae""", """diffusion_pytorch_model.safetensors""") _lowercase : Optional[Any] = osp.join(args.model_path, """text_encoder""", """model.safetensors""") # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): _lowercase : List[Any] = load_file(unet_path, device="""cpu""") else: _lowercase : List[Any] = osp.join(args.model_path, """unet""", """diffusion_pytorch_model.bin""") _lowercase : int = torch.load(unet_path, map_location="""cpu""") if osp.exists(vae_path): _lowercase : Tuple = load_file(vae_path, device="""cpu""") else: _lowercase : int = osp.join(args.model_path, """vae""", """diffusion_pytorch_model.bin""") _lowercase : Union[str, Any] = torch.load(vae_path, map_location="""cpu""") if osp.exists(text_enc_path): _lowercase : Union[str, Any] = load_file(text_enc_path, device="""cpu""") else: _lowercase : List[Any] = osp.join(args.model_path, """text_encoder""", """pytorch_model.bin""") _lowercase : int = torch.load(text_enc_path, map_location="""cpu""") # Convert the UNet model _lowercase : Optional[int] = convert_unet_state_dict(unet_state_dict) _lowercase : Dict = {"""model.diffusion_model.""" + k: v for k, v in unet_state_dict.items()} # Convert the VAE model _lowercase : Dict = convert_vae_state_dict(vae_state_dict) _lowercase : Tuple = {"""first_stage_model.""" + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper _lowercase : Any = """text_model.encoder.layers.22.layer_norm2.bias""" in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm _lowercase : Any = {"""transformer.""" + k: v for k, v in text_enc_dict.items()} _lowercase : Dict = convert_text_enc_state_dict_vaa(text_enc_dict) _lowercase : Dict = {"""cond_stage_model.model.""" + k: v for k, v in text_enc_dict.items()} else: _lowercase : Optional[Any] = convert_text_enc_state_dict(text_enc_dict) _lowercase : Any = {"""cond_stage_model.transformer.""" + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint _lowercase : Tuple = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: _lowercase : Tuple = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: _lowercase : Dict = {"""state_dict""": state_dict} torch.save(state_dict, args.checkpoint_path)
50
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Any = { """configuration_maskformer""": ["""MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MaskFormerConfig"""], """configuration_maskformer_swin""": ["""MaskFormerSwinConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = ["""MaskFormerFeatureExtractor"""] _lowercase : Dict = ["""MaskFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = [ """MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """MaskFormerForInstanceSegmentation""", """MaskFormerModel""", """MaskFormerPreTrainedModel""", ] _lowercase : List[Any] = [ """MaskFormerSwinBackbone""", """MaskFormerSwinModel""", """MaskFormerSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys _lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
50
1
'''simple docstring''' def lowerCamelCase__ ( A : list[int] , A : list[int] ): '''simple docstring''' UpperCAmelCase = len(A ) print('''The following activities are selected:''' ) # The first activity is always selected UpperCAmelCase = 0 print(A , end=''',''' ) # Consider rest of the activities for j in range(A ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(A , end=''',''' ) UpperCAmelCase = j if __name__ == "__main__": import doctest doctest.testmod() _lowercase : Tuple = [1, 3, 0, 5, 8, 5] _lowercase : Any = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
50
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowercase : Optional[Any] = 16 _lowercase : Dict = 32 def lowerCamelCase__ ( A : Accelerator , A : int = 16 ): '''simple docstring''' UpperCAmelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(A : int ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=A , max_length=A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase = datasets.map( A , batched=A , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(A : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase = 8 else: UpperCAmelCase = None return tokenizer.pad( A , padding='''longest''' , max_length=A , pad_to_multiple_of=A , return_tensors='''pt''' , ) # Instantiate dataloaders. UpperCAmelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=A , collate_fn=A , batch_size=A ) UpperCAmelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=A , collate_fn=A , batch_size=A ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowercase : Union[str, Any] = mocked_dataloaders # noqa: F811 def lowerCamelCase__ ( A : Optional[Any] , A : Tuple ): '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , A ) == "1": UpperCAmelCase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: UpperCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase = config['''lr'''] UpperCAmelCase = int(config['''num_epochs'''] ) UpperCAmelCase = int(config['''seed'''] ) UpperCAmelCase = int(config['''batch_size'''] ) set_seed(A ) UpperCAmelCase , UpperCAmelCase = get_dataloaders(A , A ) UpperCAmelCase = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation UpperCAmelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=A ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase = AdamW(params=model.parameters() , lr=A ) # Instantiate scheduler UpperCAmelCase = get_linear_schedule_with_warmup( optimizer=A , num_warmup_steps=1_00 , num_training_steps=(len(A ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( A , A , A , A , A ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: UpperCAmelCase = os.path.split(A )[-1].split('''.''' )[0] accelerator.init_trackers(A , A ) # Now we train the model for epoch in range(A ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: UpperCAmelCase = 0 for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase = model(**A ) UpperCAmelCase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() UpperCAmelCase = loss / gradient_accumulation_steps accelerator.backward(A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase = model(**A ) UpperCAmelCase = outputs.logits.argmax(dim=-1 ) UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=A , references=A , ) UpperCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , A ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(A ), '''epoch''': epoch, } , step=A , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=A , default=A , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=A , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(A , A ) if __name__ == "__main__": main()
50
1
'''simple docstring''' import requests from bsa import BeautifulSoup def lowerCamelCase__ ( A : str = "AAPL" ): '''simple docstring''' UpperCAmelCase = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" UpperCAmelCase = BeautifulSoup(requests.get(A ).text , '''html.parser''' ) UpperCAmelCase = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
50
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : int = { """configuration_xmod""": [ """XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XmodConfig""", """XmodOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = [ """XMOD_PRETRAINED_MODEL_ARCHIVE_LIST""", """XmodForCausalLM""", """XmodForMaskedLM""", """XmodForMultipleChoice""", """XmodForQuestionAnswering""", """XmodForSequenceClassification""", """XmodForTokenClassification""", """XmodModel""", """XmodPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys _lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase : Dict = { """configuration_mvp""": ["""MVP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MvpConfig""", """MvpOnnxConfig"""], """tokenization_mvp""": ["""MvpTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = ["""MvpTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = [ """MVP_PRETRAINED_MODEL_ARCHIVE_LIST""", """MvpForCausalLM""", """MvpForConditionalGeneration""", """MvpForQuestionAnswering""", """MvpForSequenceClassification""", """MvpModel""", """MvpPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys _lowercase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : List[str] = { """facebook/encodec_24khz""": """https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json""", """facebook/encodec_48khz""": """https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json""", } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : List[str] = "encodec" def __init__( self : List[str] , lowerCAmelCase : int=[1.5, 3.0, 6.0, 12.0, 24.0] , lowerCAmelCase : Tuple=24000 , lowerCAmelCase : List[Any]=1 , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : str=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=128 , lowerCAmelCase : Any=32 , lowerCAmelCase : Any=1 , lowerCAmelCase : List[Any]=[8, 5, 4, 2] , lowerCAmelCase : Union[str, Any]="weight_norm" , lowerCAmelCase : str=7 , lowerCAmelCase : Optional[int]=7 , lowerCAmelCase : Any=3 , lowerCAmelCase : Tuple=2 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : List[str]="reflect" , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Union[str, Any]=1.0 , lowerCAmelCase : Optional[Any]=1024 , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : str=True , **lowerCAmelCase : str , )-> List[str]: """simple docstring""" UpperCAmelCase = target_bandwidths UpperCAmelCase = sampling_rate UpperCAmelCase = audio_channels UpperCAmelCase = normalize UpperCAmelCase = chunk_length_s UpperCAmelCase = overlap UpperCAmelCase = hidden_size UpperCAmelCase = num_filters UpperCAmelCase = num_residual_layers UpperCAmelCase = upsampling_ratios UpperCAmelCase = norm_type UpperCAmelCase = kernel_size UpperCAmelCase = last_kernel_size UpperCAmelCase = residual_kernel_size UpperCAmelCase = dilation_growth_rate UpperCAmelCase = use_causal_conv UpperCAmelCase = pad_mode UpperCAmelCase = compress UpperCAmelCase = num_lstm_layers UpperCAmelCase = trim_right_ratio UpperCAmelCase = codebook_size UpperCAmelCase = codebook_dim if codebook_dim is not None else hidden_size UpperCAmelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**lowerCAmelCase ) @property def a__( self : str )-> Optional[int]: """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def a__( self : List[str] )-> Optional[int]: """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def a__( self : List[Any] )-> int: """simple docstring""" UpperCAmelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def a__( self : int )-> int: """simple docstring""" return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
50
1
'''simple docstring''' from __future__ import annotations from PIL import Image # Define glider example _lowercase : Dict = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example _lowercase : Tuple = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def lowerCamelCase__ ( A : list[list[int]] ): '''simple docstring''' UpperCAmelCase = [] for i in range(len(A ) ): UpperCAmelCase = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours UpperCAmelCase = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(A ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(A ) - 1: neighbour_count += cells[i + 1][j] if i < len(A ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. UpperCAmelCase = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(A ) return next_generation def lowerCamelCase__ ( A : list[list[int]] , A : int ): '''simple docstring''' UpperCAmelCase = [] for _ in range(A ): # Create output image UpperCAmelCase = Image.new('''RGB''' , (len(cells[0] ), len(A )) ) UpperCAmelCase = img.load() # Save cells to image for x in range(len(A ) ): for y in range(len(cells[0] ) ): UpperCAmelCase = 2_55 - cells[y][x] * 2_55 UpperCAmelCase = (colour, colour, colour) # Save image images.append(A ) UpperCAmelCase = new_generation(A ) return images if __name__ == "__main__": _lowercase : int = generate_images(GLIDER, 16) images[0].save("""out.gif""", save_all=True, append_images=images[1:])
50
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase : Any = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _lowercase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
1
'''simple docstring''' from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def lowerCamelCase__ ( A : bool = True , *A : Tuple , **A : Tuple ): '''simple docstring''' if not is_tqdm_available(): raise ImportError('''Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.''' ) UpperCAmelCase = False if main_process_only: UpperCAmelCase = PartialState().local_process_index == 0 return _tqdm(*A , **A , disable=A )
50
'''simple docstring''' import heapq def lowerCamelCase__ ( A : dict ): '''simple docstring''' UpperCAmelCase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(A , [-1 * len(A ), (key, value)] ) # chosen_vertices = set of chosen vertices UpperCAmelCase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices UpperCAmelCase = heapq.heappop(A )[1][0] chosen_vertices.add(A ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: UpperCAmelCase = elem[1][1].index(A ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(A ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _lowercase : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
50
1
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class UpperCamelCase__( unittest.TestCase ): def a__( self : int )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase ) ) def a__( self : List[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase ) ) def a__( self : Optional[Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase ) ) def a__( self : List[Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase ) ) def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', # Removed: 'text_encoder/model.safetensors', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase ) ) def a__( self : Union[str, Any] )-> int: """simple docstring""" UpperCAmelCase = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] UpperCAmelCase = '''fp16''' self.assertTrue(is_safetensors_compatible(lowerCAmelCase , variant=lowerCAmelCase ) ) def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = [ '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] UpperCAmelCase = '''fp16''' self.assertTrue(is_safetensors_compatible(lowerCAmelCase , variant=lowerCAmelCase ) ) def a__( self : List[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] UpperCAmelCase = '''fp16''' self.assertTrue(is_safetensors_compatible(lowerCAmelCase , variant=lowerCAmelCase ) ) def a__( self : Optional[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] UpperCAmelCase = '''fp16''' self.assertFalse(is_safetensors_compatible(lowerCAmelCase , variant=lowerCAmelCase ) ) def a__( self : Any )-> Optional[Any]: """simple docstring""" UpperCAmelCase = [ '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', ] UpperCAmelCase = '''fp16''' self.assertTrue(is_safetensors_compatible(lowerCAmelCase , variant=lowerCAmelCase ) ) def a__( self : Optional[int] )-> List[Any]: """simple docstring""" UpperCAmelCase = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] UpperCAmelCase = '''fp16''' self.assertTrue(is_safetensors_compatible(lowerCAmelCase , variant=lowerCAmelCase ) ) def a__( self : Optional[int] )-> List[str]: """simple docstring""" UpperCAmelCase = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', # 'text_encoder/model.fp16.safetensors', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] UpperCAmelCase = '''fp16''' self.assertFalse(is_safetensors_compatible(lowerCAmelCase , variant=lowerCAmelCase ) )
50
'''simple docstring''' import argparse import os import re import packaging.version _lowercase : Optional[int] = """examples/""" _lowercase : str = { """examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""), """doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } _lowercase : Dict = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } _lowercase : List[Any] = """README.md""" def lowerCamelCase__ ( A : int , A : str , A : Optional[Any] ): '''simple docstring''' with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase = f.read() UpperCAmelCase , UpperCAmelCase = REPLACE_PATTERNS[pattern] UpperCAmelCase = replace.replace('''VERSION''' , A ) UpperCAmelCase = re_pattern.sub(A , A ) with open(A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(A ) def lowerCamelCase__ ( A : Optional[int] ): '''simple docstring''' for folder, directories, fnames in os.walk(A ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(A , A ) , A , pattern='''examples''' ) def lowerCamelCase__ ( A : str , A : Dict=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(A , A , A ) if not patch: update_version_in_examples(A ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = '''🤗 Transformers currently provides the following architectures''' UpperCAmelCase = '''1. Want to contribute a new model?''' with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase = f.readlines() # Find the start of the list. UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): UpperCAmelCase = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(A ) def lowerCamelCase__ ( ): '''simple docstring''' with open(REPLACE_FILES['''init'''] , '''r''' ) as f: UpperCAmelCase = f.read() UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(A ).groups()[0] return packaging.version.parse(A ) def lowerCamelCase__ ( A : Tuple=False ): '''simple docstring''' UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: UpperCAmelCase = default_version.base_version elif patch: UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(A ) == 0: UpperCAmelCase = default_version print(f"""Updating version to {version}.""" ) global_version_update(A , patch=A ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = get_version() UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" UpperCAmelCase = current_version.base_version # Check with the user we got that right. UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(A ) == 0: UpperCAmelCase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(A ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": _lowercase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") _lowercase : Union[str, Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
50
1
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowercase : Tuple = 16 _lowercase : Tuple = 32 def lowerCamelCase__ ( A : Accelerator , A : int = 16 ): '''simple docstring''' UpperCAmelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(A : Any ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=A , max_length=A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase = datasets.map( A , batched=A , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(A : Optional[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase = 8 else: UpperCAmelCase = None return tokenizer.pad( A , padding='''longest''' , max_length=A , pad_to_multiple_of=A , return_tensors='''pt''' , ) # Instantiate dataloaders. UpperCAmelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=A , collate_fn=A , batch_size=A ) UpperCAmelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=A , collate_fn=A , batch_size=A ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowercase : Union[str, Any] = mocked_dataloaders # noqa: F811 def lowerCamelCase__ ( A : Dict , A : int ): '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , A ) == "1": UpperCAmelCase = 2 # Initialize accelerator UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase = config['''lr'''] UpperCAmelCase = int(config['''num_epochs'''] ) UpperCAmelCase = int(config['''seed'''] ) UpperCAmelCase = int(config['''batch_size'''] ) UpperCAmelCase = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation UpperCAmelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase = MAX_GPU_BATCH_SIZE set_seed(A ) UpperCAmelCase , UpperCAmelCase = get_dataloaders(A , A ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=A ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase = AdamW(params=model.parameters() , lr=A ) # Instantiate scheduler UpperCAmelCase = get_linear_schedule_with_warmup( optimizer=A , num_warmup_steps=1_00 , num_training_steps=(len(A ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( A , A , A , A , A ) # Now we train the model for epoch in range(A ): model.train() for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase = model(**A ) UpperCAmelCase = outputs.loss UpperCAmelCase = loss / gradient_accumulation_steps accelerator.backward(A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() UpperCAmelCase = 0 for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase = model(**A ) UpperCAmelCase = outputs.logits.argmax(dim=-1 ) UpperCAmelCase , UpperCAmelCase = accelerator.gather((predictions, batch['''labels''']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(A ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples UpperCAmelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCAmelCase = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=A , references=A , ) UpperCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , A ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=A , default=A , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(A , A ) if __name__ == "__main__": main()
50
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : List[Any] , lowerCAmelCase : Optional[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = 3 UpperCAmelCase = 250 UpperCAmelCase = ids_tensor((batch_size, length) , lowerCAmelCase ) UpperCAmelCase = torch.ones((batch_size, length) , device=lowerCAmelCase , dtype=torch.float ) / length return input_ids, scores def a__( self : Dict )-> Optional[int]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = MaxLengthCriteria(max_length=10 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : Optional[Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def a__( self : Tuple )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : int )-> Any: """simple docstring""" validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(lowerCAmelCase ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) UpperCAmelCase = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(lowerCAmelCase ) , 1 )
50
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class UpperCamelCase__( unittest.TestCase ): def a__( self : List[Any] )-> int: """simple docstring""" UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = SamImageProcessor() UpperCAmelCase = SamProcessor(lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def a__( self : List[Any] , **lowerCAmelCase : int )-> Tuple: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase ).image_processor def a__( self : Any )-> Optional[int]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def a__( self : List[str] )-> str: """simple docstring""" UpperCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCAmelCase = [Image.fromarray(np.moveaxis(lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def a__( self : Union[str, Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase = self.get_image_processor(do_normalize=lowerCAmelCase , padding_value=1.0 ) UpperCAmelCase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase ) def a__( self : str )-> str: """simple docstring""" UpperCAmelCase = self.get_image_processor() UpperCAmelCase = SamProcessor(image_processor=lowerCAmelCase ) UpperCAmelCase = self.prepare_image_inputs() UpperCAmelCase = image_processor(lowerCAmelCase , return_tensors='''np''' ) UpperCAmelCase = processor(images=lowerCAmelCase , return_tensors='''np''' ) input_feat_extract.pop('''original_sizes''' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('''reshaped_input_sizes''' ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_torch def a__( self : List[Any] )-> List[str]: """simple docstring""" UpperCAmelCase = self.get_image_processor() UpperCAmelCase = SamProcessor(image_processor=lowerCAmelCase ) UpperCAmelCase = [torch.ones((1, 3, 5, 5) )] UpperCAmelCase = [[1764, 2646]] UpperCAmelCase = [[683, 1024]] UpperCAmelCase = processor.post_process_masks(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) UpperCAmelCase = processor.post_process_masks( lowerCAmelCase , torch.tensor(lowerCAmelCase ) , torch.tensor(lowerCAmelCase ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np UpperCAmelCase = [np.ones((1, 3, 5, 5) )] UpperCAmelCase = processor.post_process_masks(lowerCAmelCase , np.array(lowerCAmelCase ) , np.array(lowerCAmelCase ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) UpperCAmelCase = [[1, 0], [0, 1]] with self.assertRaises(lowerCAmelCase ): UpperCAmelCase = processor.post_process_masks(lowerCAmelCase , np.array(lowerCAmelCase ) , np.array(lowerCAmelCase ) ) @require_vision @require_tf class UpperCamelCase__( unittest.TestCase ): def a__( self : int )-> str: """simple docstring""" UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = SamImageProcessor() UpperCAmelCase = SamProcessor(lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def a__( self : Any , **lowerCAmelCase : Union[str, Any] )-> Tuple: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase ).image_processor def a__( self : Optional[int] )-> Optional[int]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def a__( self : Any )-> List[str]: """simple docstring""" UpperCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCAmelCase = [Image.fromarray(np.moveaxis(lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def a__( self : Tuple )-> Optional[Any]: """simple docstring""" UpperCAmelCase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase = self.get_image_processor(do_normalize=lowerCAmelCase , padding_value=1.0 ) UpperCAmelCase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase ) def a__( self : List[str] )-> Any: """simple docstring""" UpperCAmelCase = self.get_image_processor() UpperCAmelCase = SamProcessor(image_processor=lowerCAmelCase ) UpperCAmelCase = self.prepare_image_inputs() UpperCAmelCase = image_processor(lowerCAmelCase , return_tensors='''np''' ) UpperCAmelCase = processor(images=lowerCAmelCase , return_tensors='''np''' ) input_feat_extract.pop('''original_sizes''' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('''reshaped_input_sizes''' ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_tf def a__( self : Union[str, Any] )-> Dict: """simple docstring""" UpperCAmelCase = self.get_image_processor() UpperCAmelCase = SamProcessor(image_processor=lowerCAmelCase ) UpperCAmelCase = [tf.ones((1, 3, 5, 5) )] UpperCAmelCase = [[1764, 2646]] UpperCAmelCase = [[683, 1024]] UpperCAmelCase = processor.post_process_masks(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , return_tensors='''tf''' ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) UpperCAmelCase = processor.post_process_masks( lowerCAmelCase , tf.convert_to_tensor(lowerCAmelCase ) , tf.convert_to_tensor(lowerCAmelCase ) , return_tensors='''tf''' , ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np UpperCAmelCase = [np.ones((1, 3, 5, 5) )] UpperCAmelCase = processor.post_process_masks( lowerCAmelCase , np.array(lowerCAmelCase ) , np.array(lowerCAmelCase ) , return_tensors='''tf''' ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) UpperCAmelCase = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): UpperCAmelCase = processor.post_process_masks( lowerCAmelCase , np.array(lowerCAmelCase ) , np.array(lowerCAmelCase ) , return_tensors='''tf''' ) @require_vision @require_torchvision class UpperCamelCase__( unittest.TestCase ): def a__( self : List[Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = SamImageProcessor() UpperCAmelCase = SamProcessor(lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def a__( self : str , **lowerCAmelCase : Optional[int] )-> int: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase ).image_processor def a__( self : List[Any] )-> Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def a__( self : int )-> Any: """simple docstring""" UpperCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCAmelCase = [Image.fromarray(np.moveaxis(lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def a__( self : int )-> Tuple: """simple docstring""" UpperCAmelCase = self.get_image_processor() UpperCAmelCase = SamProcessor(image_processor=lowerCAmelCase ) UpperCAmelCase = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) UpperCAmelCase = [tf.convert_to_tensor(lowerCAmelCase )] UpperCAmelCase = [torch.tensor(lowerCAmelCase )] UpperCAmelCase = [[1764, 2646]] UpperCAmelCase = [[683, 1024]] UpperCAmelCase = processor.post_process_masks( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , return_tensors='''tf''' ) UpperCAmelCase = processor.post_process_masks( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , return_tensors='''pt''' ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def a__( self : Dict )-> List[Any]: """simple docstring""" UpperCAmelCase = self.get_image_processor() UpperCAmelCase = SamProcessor(image_processor=lowerCAmelCase ) UpperCAmelCase = self.prepare_image_inputs() UpperCAmelCase = image_processor(lowerCAmelCase , return_tensors='''pt''' )['''pixel_values'''].numpy() UpperCAmelCase = processor(images=lowerCAmelCase , return_tensors='''pt''' )['''pixel_values'''].numpy() UpperCAmelCase = image_processor(lowerCAmelCase , return_tensors='''tf''' )['''pixel_values'''].numpy() UpperCAmelCase = processor(images=lowerCAmelCase , return_tensors='''tf''' )['''pixel_values'''].numpy() self.assertTrue(np.allclose(lowerCAmelCase , lowerCAmelCase ) ) self.assertTrue(np.allclose(lowerCAmelCase , lowerCAmelCase ) ) self.assertTrue(np.allclose(lowerCAmelCase , lowerCAmelCase ) )
50
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCamelCase__( metaclass=lowerCAmelCase ): __magic_name__ : List[str] = ["note_seq"] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : int )-> Optional[int]: """simple docstring""" requires_backends(self , ['''note_seq'''] ) @classmethod def a__( cls : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int] )-> Dict: """simple docstring""" requires_backends(cls , ['''note_seq'''] ) @classmethod def a__( cls : int , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any] )-> Union[str, Any]: """simple docstring""" requires_backends(cls , ['''note_seq'''] )
50
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Tuple = logging.get_logger(__name__) _lowercase : int = { """bigcode/gpt_bigcode-santacoder""": """https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json""", } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Union[str, Any] = "gpt_bigcode" __magic_name__ : List[Any] = ["past_key_values"] __magic_name__ : Optional[Any] = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Any , lowerCAmelCase : Any=50257 , lowerCAmelCase : Dict=1024 , lowerCAmelCase : str=768 , lowerCAmelCase : Any=12 , lowerCAmelCase : str=12 , lowerCAmelCase : str=None , lowerCAmelCase : Optional[int]="gelu_pytorch_tanh" , lowerCAmelCase : Tuple=0.1 , lowerCAmelCase : Tuple=0.1 , lowerCAmelCase : Any=0.1 , lowerCAmelCase : List[str]=1E-5 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : Dict=True , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : List[Any]=50256 , lowerCAmelCase : List[Any]=50256 , lowerCAmelCase : List[Any]=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : str=True , **lowerCAmelCase : Tuple , )-> int: """simple docstring""" UpperCAmelCase = vocab_size UpperCAmelCase = n_positions UpperCAmelCase = n_embd UpperCAmelCase = n_layer UpperCAmelCase = n_head UpperCAmelCase = n_inner UpperCAmelCase = activation_function UpperCAmelCase = resid_pdrop UpperCAmelCase = embd_pdrop UpperCAmelCase = attn_pdrop UpperCAmelCase = layer_norm_epsilon UpperCAmelCase = initializer_range UpperCAmelCase = scale_attn_weights UpperCAmelCase = use_cache UpperCAmelCase = attention_softmax_in_fpaa UpperCAmelCase = scale_attention_softmax_in_fpaa UpperCAmelCase = multi_query UpperCAmelCase = bos_token_id UpperCAmelCase = eos_token_id super().__init__(bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase )
50
'''simple docstring''' import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( A : List[Any] , A : int , A : List[str] , A : Optional[int] ): '''simple docstring''' UpperCAmelCase = BigBirdConfig.from_json_file(A ) print(f"""Building PyTorch model from configuration: {config}""" ) if is_trivia_qa: UpperCAmelCase = BigBirdForQuestionAnswering(A ) else: UpperCAmelCase = BigBirdForPreTraining(A ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(A , A , is_trivia_qa=A ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(A ) if __name__ == "__main__": _lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--big_bird_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_trivia_qa""", action="""store_true""", help="""Whether to convert a model with a trivia_qa head.""" ) _lowercase : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
50
1
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class UpperCamelCase__( unittest.TestCase ): def __init__( self : Tuple , lowerCAmelCase : Optional[Any] , lowerCAmelCase : int=7 , lowerCAmelCase : List[str]=3 , lowerCAmelCase : Optional[int]=18 , lowerCAmelCase : Union[str, Any]=30 , lowerCAmelCase : List[Any]=400 , lowerCAmelCase : Any=True , lowerCAmelCase : int=None , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Dict=None , lowerCAmelCase : Any=True , lowerCAmelCase : Optional[int]=[0.5, 0.5, 0.5] , lowerCAmelCase : int=[0.5, 0.5, 0.5] , lowerCAmelCase : Optional[Any]=False , )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = size if size is not None else {'''height''': 20, '''width''': 20} UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = num_channels UpperCAmelCase = image_size UpperCAmelCase = min_resolution UpperCAmelCase = max_resolution UpperCAmelCase = do_resize UpperCAmelCase = size UpperCAmelCase = do_center_crop UpperCAmelCase = crop_size UpperCAmelCase = do_normalize UpperCAmelCase = image_mean UpperCAmelCase = image_std UpperCAmelCase = do_reduce_labels def a__( self : Any )-> Tuple: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCAmelCase = Image.open(dataset[0]['''file'''] ) UpperCAmelCase = Image.open(dataset[1]['''file'''] ) return image, map def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCAmelCase = Image.open(ds[0]['''file'''] ) UpperCAmelCase = Image.open(ds[1]['''file'''] ) UpperCAmelCase = Image.open(ds[2]['''file'''] ) UpperCAmelCase = Image.open(ds[3]['''file'''] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class UpperCamelCase__( lowerCAmelCase , unittest.TestCase ): __magic_name__ : Union[str, Any] = BeitImageProcessor if is_vision_available() else None def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = BeitImageProcessingTester(self ) @property def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__( self : Dict )-> int: """simple docstring""" UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCAmelCase , '''size''' ) ) self.assertTrue(hasattr(lowerCAmelCase , '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCAmelCase , '''center_crop''' ) ) self.assertTrue(hasattr(lowerCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCAmelCase , '''image_std''' ) ) def a__( self : str )-> int: """simple docstring""" UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) self.assertEqual(image_processor.do_reduce_labels , lowerCAmelCase ) UpperCAmelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=lowerCAmelCase ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) self.assertEqual(image_processor.do_reduce_labels , lowerCAmelCase ) def a__( self : Tuple )-> str: """simple docstring""" pass def a__( self : Optional[int] )-> Optional[int]: """simple docstring""" UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image ) # Test not batched input UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase = image_processing(lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def a__( self : Optional[int] )-> Tuple: """simple docstring""" UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray ) # Test not batched input UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase = image_processing(lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def a__( self : Any )-> List[Any]: """simple docstring""" UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor ) # Test not batched input UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase = image_processing(lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase ) UpperCAmelCase = [] for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input UpperCAmelCase = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test batched UpperCAmelCase = image_processing(lowerCAmelCase , lowerCAmelCase , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test not batched input (PIL images) UpperCAmelCase , UpperCAmelCase = prepare_semantic_single_inputs() UpperCAmelCase = image_processing(lowerCAmelCase , lowerCAmelCase , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test batched input (PIL images) UpperCAmelCase , UpperCAmelCase = prepare_semantic_batch_inputs() UpperCAmelCase = image_processing(lowerCAmelCase , lowerCAmelCase , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 2, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) def a__( self : Dict )-> int: """simple docstring""" UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 UpperCAmelCase , UpperCAmelCase = prepare_semantic_single_inputs() UpperCAmelCase = image_processing(lowerCAmelCase , lowerCAmelCase , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 150 ) UpperCAmelCase = True UpperCAmelCase = image_processing(lowerCAmelCase , lowerCAmelCase , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 )
50
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : Optional[int] )-> str: """simple docstring""" UpperCAmelCase = [[1, 2, 4], [1, 2, 3, 4]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) self.assertTrue(isinstance(dc.token_ids , lowerCAmelCase ) ) with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def a__( self : Union[str, Any] )-> str: """simple docstring""" UpperCAmelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint(lowerCAmelCase ) # fails here def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = [[1, 2, 3], [1, 2, 4]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(3 ) UpperCAmelCase = stepped is True and completed is True and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def a__( self : int )-> Dict: """simple docstring""" UpperCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
50
1
'''simple docstring''' import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def lowerCamelCase__ ( A : Optional[Any] ): '''simple docstring''' if isinstance(A , collections.abc.Iterable ): return x return (x, x) @require_flax class UpperCamelCase__: def a__( self : Any , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] )-> Optional[int]: """simple docstring""" pass def a__( self : Dict )-> Any: """simple docstring""" pass def a__( self : List[Any] )-> Any: """simple docstring""" pass def a__( self : Union[str, Any] , lowerCAmelCase : np.ndarray , lowerCAmelCase : np.ndarray , lowerCAmelCase : float )-> List[Any]: """simple docstring""" UpperCAmelCase = np.abs((a - b) ).max() self.assertLessEqual(lowerCAmelCase , lowerCAmelCase , F"""Difference between torch and flax is {diff} (>= {tol}).""" ) def a__( self : Dict , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any=None , **lowerCAmelCase : List[Any] )-> Dict: """simple docstring""" UpperCAmelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = FlaxVisionTextDualEncoderModel(lowerCAmelCase ) UpperCAmelCase = model(input_ids=lowerCAmelCase , pixel_values=lowerCAmelCase , attention_mask=lowerCAmelCase ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) ) def a__( self : int , lowerCAmelCase : int , lowerCAmelCase : List[Any] , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : Optional[Any]=None , **lowerCAmelCase : Optional[int] )-> Dict: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.get_vision_text_model(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = {'''vision_model''': vision_model, '''text_model''': text_model} UpperCAmelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase ) UpperCAmelCase = model(input_ids=lowerCAmelCase , pixel_values=lowerCAmelCase , attention_mask=lowerCAmelCase ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def a__( self : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any=None , **lowerCAmelCase : List[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.get_vision_text_model(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = {'''vision_model''': vision_model, '''text_model''': text_model} UpperCAmelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase ) UpperCAmelCase = model(input_ids=lowerCAmelCase , pixel_values=lowerCAmelCase , attention_mask=lowerCAmelCase ) UpperCAmelCase = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase ) UpperCAmelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase ) UpperCAmelCase = model(input_ids=lowerCAmelCase , pixel_values=lowerCAmelCase , attention_mask=lowerCAmelCase ) UpperCAmelCase = after_output[0] UpperCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase , 1E-3 ) def a__( self : Union[str, Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[Any]=None , **lowerCAmelCase : List[Any] )-> List[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.get_vision_text_model(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = {'''vision_model''': vision_model, '''text_model''': text_model} UpperCAmelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase ) UpperCAmelCase = model( input_ids=lowerCAmelCase , pixel_values=lowerCAmelCase , attention_mask=lowerCAmelCase , output_attentions=lowerCAmelCase ) UpperCAmelCase = output.vision_model_output.attentions self.assertEqual(len(lowerCAmelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase = to_atuple(vision_model.config.image_size ) UpperCAmelCase = to_atuple(vision_model.config.patch_size ) UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) UpperCAmelCase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) UpperCAmelCase = output.text_model_output.attentions self.assertEqual(len(lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def a__( self : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : List[Any] )-> Any: """simple docstring""" pt_model.to(lowerCAmelCase ) pt_model.eval() # prepare inputs UpperCAmelCase = inputs_dict UpperCAmelCase = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): UpperCAmelCase = pt_model(**lowerCAmelCase ).to_tuple() UpperCAmelCase = fx_model(**lowerCAmelCase ).to_tuple() self.assertEqual(len(lowerCAmelCase ) , len(lowerCAmelCase ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowerCAmelCase , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCAmelCase ) UpperCAmelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase , from_pt=lowerCAmelCase ) UpperCAmelCase = fx_model_loaded(**lowerCAmelCase ).to_tuple() self.assertEqual(len(lowerCAmelCase ) , len(lowerCAmelCase ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowerCAmelCase , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCAmelCase ) UpperCAmelCase = VisionTextDualEncoderModel.from_pretrained(lowerCAmelCase , from_flax=lowerCAmelCase ) pt_model_loaded.to(lowerCAmelCase ) pt_model_loaded.eval() with torch.no_grad(): UpperCAmelCase = pt_model_loaded(**lowerCAmelCase ).to_tuple() self.assertEqual(len(lowerCAmelCase ) , len(lowerCAmelCase ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(lowerCAmelCase , pt_output_loaded.numpy() , 4E-2 ) def a__( self : List[str] , lowerCAmelCase : str , lowerCAmelCase : List[str] , lowerCAmelCase : Dict )-> Optional[int]: """simple docstring""" UpperCAmelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = VisionTextDualEncoderModel(lowerCAmelCase ) UpperCAmelCase = FlaxVisionTextDualEncoderModel(lowerCAmelCase ) UpperCAmelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCAmelCase ) UpperCAmelCase = fx_state self.check_pt_flax_equivalence(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def a__( self : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any )-> List[Any]: """simple docstring""" UpperCAmelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = VisionTextDualEncoderModel(lowerCAmelCase ) UpperCAmelCase = FlaxVisionTextDualEncoderModel(lowerCAmelCase ) UpperCAmelCase = load_flax_weights_in_pytorch_model(lowerCAmelCase , fx_model.params ) self.check_pt_flax_equivalence(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def a__( self : Union[str, Any] )-> str: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowerCAmelCase ) def a__( self : List[str] )-> Any: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowerCAmelCase ) def a__( self : Tuple )-> Tuple: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() self.check_save_load(**lowerCAmelCase ) def a__( self : List[Any] )-> int: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowerCAmelCase ) @is_pt_flax_cross_test def a__( self : int )-> List[str]: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase = config_inputs_dict.pop('''vision_config''' ) UpperCAmelCase = config_inputs_dict.pop('''text_config''' ) UpperCAmelCase = config_inputs_dict self.check_equivalence_pt_to_flax(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) self.check_equivalence_flax_to_pt(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) @slow def a__( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.get_pretrained_model_and_inputs() UpperCAmelCase = model_a(**lowerCAmelCase ) UpperCAmelCase = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowerCAmelCase ) UpperCAmelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase ) UpperCAmelCase = model_a(**lowerCAmelCase ) UpperCAmelCase = after_outputs[0] UpperCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase , 1E-5 ) @require_flax class UpperCamelCase__( lowerCAmelCase , unittest.TestCase ): def a__( self : str )-> Dict: """simple docstring""" UpperCAmelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=lowerCAmelCase , text_from_pt=lowerCAmelCase , ) UpperCAmelCase = 13 UpperCAmelCase = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) UpperCAmelCase = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) UpperCAmelCase = random_attention_mask([batch_size, 4] ) UpperCAmelCase = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def a__( self : Optional[int] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = FlaxViTModel(lowerCAmelCase ) UpperCAmelCase = FlaxBertModel(lowerCAmelCase ) return vision_model, text_model def a__( self : Union[str, Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = FlaxViTModelTester(self ) UpperCAmelCase = FlaxBertModelTester(self ) UpperCAmelCase = vit_model_tester.prepare_config_and_inputs() UpperCAmelCase = bert_model_tester.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase = vision_config_and_inputs UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class UpperCamelCase__( lowerCAmelCase , unittest.TestCase ): def a__( self : str )-> Tuple: """simple docstring""" UpperCAmelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-clip''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=lowerCAmelCase , text_from_pt=lowerCAmelCase , ) UpperCAmelCase = 13 UpperCAmelCase = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) UpperCAmelCase = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) UpperCAmelCase = random_attention_mask([batch_size, 4] ) UpperCAmelCase = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def a__( self : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : int )-> Tuple: """simple docstring""" UpperCAmelCase = FlaxCLIPVisionModel(lowerCAmelCase ) UpperCAmelCase = FlaxBertModel(lowerCAmelCase ) return vision_model, text_model def a__( self : Dict )-> Dict: """simple docstring""" UpperCAmelCase = FlaxCLIPVisionModelTester(self ) UpperCAmelCase = FlaxBertModelTester(self ) UpperCAmelCase = clip_model_tester.prepare_config_and_inputs() UpperCAmelCase = bert_model_tester.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase = vision_config_and_inputs UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class UpperCamelCase__( unittest.TestCase ): @slow def a__( self : str )-> Dict: """simple docstring""" UpperCAmelCase = FlaxVisionTextDualEncoderModel.from_pretrained('''clip-italian/clip-italian''' , logit_scale_init_value=1.0 ) UpperCAmelCase = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' ) UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) UpperCAmelCase = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] , images=lowerCAmelCase , padding=lowerCAmelCase , return_tensors='''np''' ) UpperCAmelCase = model(**lowerCAmelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) UpperCAmelCase = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , lowerCAmelCase , atol=1E-3 ) )
50
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCamelCase__ ( A : List[Any] ): '''simple docstring''' return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class UpperCamelCase__( lowerCAmelCase ): @staticmethod def a__( lowerCAmelCase : ArgumentParser )-> Optional[Any]: """simple docstring""" UpperCAmelCase = parser.add_parser('''download''' ) download_parser.add_argument( '''--cache-dir''' , type=lowerCAmelCase , default=lowerCAmelCase , help='''Path to location to store the models''' ) download_parser.add_argument( '''--force''' , action='''store_true''' , help='''Force the model to be download even if already in cache-dir''' ) download_parser.add_argument( '''--trust-remote-code''' , action='''store_true''' , help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''' , ) download_parser.add_argument('''model''' , type=lowerCAmelCase , help='''Name of the model to download''' ) download_parser.set_defaults(func=lowerCAmelCase ) def __init__( self : Dict , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : bool , lowerCAmelCase : bool )-> Any: """simple docstring""" UpperCAmelCase = model UpperCAmelCase = cache UpperCAmelCase = force UpperCAmelCase = trust_remote_code def a__( self : int )-> Optional[Any]: """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
50
1
'''simple docstring''' from __future__ import annotations from collections.abc import Generator def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = {} UpperCAmelCase = 2 while True: UpperCAmelCase = factor_map.pop(A , A ) if factor: UpperCAmelCase = factor + prime while x in factor_map: x += factor UpperCAmelCase = factor else: UpperCAmelCase = prime yield prime prime += 1 def lowerCamelCase__ ( A : float = 1E10 ): '''simple docstring''' UpperCAmelCase = sieve() UpperCAmelCase = 1 while True: UpperCAmelCase = next(A ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(A ) n += 2 if __name__ == "__main__": print(solution())
50
'''simple docstring''' def lowerCamelCase__ ( A : str ): '''simple docstring''' assert column_title.isupper() UpperCAmelCase = 0 UpperCAmelCase = len(A ) - 1 UpperCAmelCase = 0 while index >= 0: UpperCAmelCase = (ord(column_title[index] ) - 64) * pow(26 , A ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
50
1
'''simple docstring''' def lowerCamelCase__ ( A : int ): '''simple docstring''' if number < 0: raise ValueError('''number must not be negative''' ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
50
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__( unittest.TestCase ): def __init__( self : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Tuple=32 , lowerCAmelCase : Optional[int]=3 , lowerCAmelCase : Optional[Any]=10 , lowerCAmelCase : Optional[Any]=[10, 20, 30, 40] , lowerCAmelCase : Optional[int]=[1, 1, 2, 1] , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Tuple=True , lowerCAmelCase : List[Any]="relu" , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Union[str, Any]=None , )-> Optional[int]: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = num_channels UpperCAmelCase = embeddings_size UpperCAmelCase = hidden_sizes UpperCAmelCase = depths UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_act UpperCAmelCase = num_labels UpperCAmelCase = scope UpperCAmelCase = len(lowerCAmelCase ) def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = self.get_config() return config, pixel_values def a__( self : str )-> Optional[Any]: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def a__( self : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Any )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = FlaxRegNetModel(config=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__( self : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] )-> List[str]: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = FlaxRegNetForImageClassification(config=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__( self : List[str] )-> Any: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__( lowerCAmelCase , unittest.TestCase ): __magic_name__ : Optional[int] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __magic_name__ : Optional[int] = False __magic_name__ : List[str] = False __magic_name__ : Dict = False def a__( self : Union[str, Any] )-> None: """simple docstring""" UpperCAmelCase = FlaxRegNetModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase ) def a__( self : List[str] )-> List[str]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__( self : Tuple )-> Tuple: """simple docstring""" return def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def a__( self : str )-> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def a__( self : Any )-> List[str]: """simple docstring""" pass def a__( self : Any )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def a__( self : Tuple )-> int: """simple docstring""" def check_hidden_states_output(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int ): UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase ) , expected_num_stages + 1 ) UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = model_class(lowerCAmelCase ) @jax.jit def model_jitted(lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple ): return model(pixel_values=lowerCAmelCase , **lowerCAmelCase ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple() self.assertEqual(len(lowerCAmelCase ) , len(lowerCAmelCase ) ) for jitted_output, output in zip(lowerCAmelCase , lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCamelCase__( unittest.TestCase ): @cached_property def a__( self : Dict )-> int: """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def a__( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=lowerCAmelCase , return_tensors='''np''' ) UpperCAmelCase = model(**lowerCAmelCase ) # verify the logits UpperCAmelCase = (1, 1000) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) UpperCAmelCase = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
50
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _lowercase : Tuple = logging.getLogger(__name__) @dataclass class UpperCamelCase__: __magic_name__ : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __magic_name__ : Optional[str] = field( default=lowerCAmelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __magic_name__ : Optional[str] = field( default="NER" , metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) __magic_name__ : Optional[str] = field( default=lowerCAmelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __magic_name__ : bool = field(default=lowerCAmelCase , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. __magic_name__ : Optional[str] = field( default=lowerCAmelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class UpperCamelCase__: __magic_name__ : str = field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) __magic_name__ : Optional[str] = field( default=lowerCAmelCase , metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} , ) __magic_name__ : int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__ : bool = field( default=lowerCAmelCase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) UpperCAmelCase = import_module('''tasks''' ) try: UpperCAmelCase = getattr(A , model_args.task_type ) UpperCAmelCase = token_classification_task_clazz() except AttributeError: raise ValueError( f"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , A ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task UpperCAmelCase = token_classification_task.get_labels(data_args.labels ) UpperCAmelCase = dict(enumerate(A ) ) UpperCAmelCase = len(A ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=A , idalabel=A , labelaid={label: i for i, label in enumerate(A )} , cache_dir=model_args.cache_dir , ) UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) UpperCAmelCase = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=A , cache_dir=model_args.cache_dir , ) # Get datasets UpperCAmelCase = ( TokenClassificationDataset( token_classification_task=A , data_dir=data_args.data_dir , tokenizer=A , labels=A , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) UpperCAmelCase = ( TokenClassificationDataset( token_classification_task=A , data_dir=data_args.data_dir , tokenizer=A , labels=A , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(A : np.ndarray , A : np.ndarray ) -> Tuple[List[int], List[int]]: UpperCAmelCase = np.argmax(A , axis=2 ) UpperCAmelCase , UpperCAmelCase = preds.shape UpperCAmelCase = [[] for _ in range(A )] UpperCAmelCase = [[] for _ in range(A )] for i in range(A ): for j in range(A ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(A : EvalPrediction ) -> Dict: UpperCAmelCase , UpperCAmelCase = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(A , A ), "precision": precision_score(A , A ), "recall": recall_score(A , A ), "f1": fa_score(A , A ), } # Data collator UpperCAmelCase = DataCollatorWithPadding(A , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer UpperCAmelCase = Trainer( model=A , args=A , train_dataset=A , eval_dataset=A , compute_metrics=A , data_collator=A , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase = trainer.evaluate() UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_process_zero(): with open(A , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , A , A ) writer.write('''%s = %s\n''' % (key, value) ) results.update(A ) # Predict if training_args.do_predict: UpperCAmelCase = TokenClassificationDataset( token_classification_task=A , data_dir=data_args.data_dir , tokenizer=A , labels=A , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = trainer.predict(A ) UpperCAmelCase , UpperCAmelCase = align_predictions(A , A ) UpperCAmelCase = os.path.join(training_args.output_dir , '''test_results.txt''' ) if trainer.is_world_process_zero(): with open(A , '''w''' ) as writer: for key, value in metrics.items(): logger.info(''' %s = %s''' , A , A ) writer.write('''%s = %s\n''' % (key, value) ) # Save predictions UpperCAmelCase = os.path.join(training_args.output_dir , '''test_predictions.txt''' ) if trainer.is_world_process_zero(): with open(A , '''w''' ) as writer: with open(os.path.join(data_args.data_dir , '''test.txt''' ) , '''r''' ) as f: token_classification_task.write_predictions_to_file(A , A , A ) return results def lowerCamelCase__ ( A : Tuple ): '''simple docstring''' main() if __name__ == "__main__": main()
50
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : List[Any] = """▁""" _lowercase : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model"""} _lowercase : Any = { """vocab_file""": { """facebook/mbart-large-50-one-to-many-mmt""": ( """https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model""" ), } } _lowercase : int = { """facebook/mbart-large-50-one-to-many-mmt""": 1024, } # fmt: off _lowercase : int = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN""", """af_ZA""", """az_AZ""", """bn_IN""", """fa_IR""", """he_IL""", """hr_HR""", """id_ID""", """ka_GE""", """km_KH""", """mk_MK""", """ml_IN""", """mn_MN""", """mr_IN""", """pl_PL""", """ps_AF""", """pt_XX""", """sv_SE""", """sw_KE""", """ta_IN""", """te_IN""", """th_TH""", """tl_XX""", """uk_UA""", """ur_PK""", """xh_ZA""", """gl_ES""", """sl_SI"""] class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = VOCAB_FILES_NAMES __magic_name__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Union[str, Any] = ["input_ids", "attention_mask"] __magic_name__ : List[int] = [] __magic_name__ : List[int] = [] def __init__( self : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : str=None , lowerCAmelCase : List[Any]="</s>" , lowerCAmelCase : Union[str, Any]="</s>" , lowerCAmelCase : Union[str, Any]="<s>" , lowerCAmelCase : int="<unk>" , lowerCAmelCase : str="<pad>" , lowerCAmelCase : Optional[int]="<mask>" , lowerCAmelCase : Optional[Dict[str, Any]] = None , **lowerCAmelCase : List[Any] , )-> None: """simple docstring""" UpperCAmelCase = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else mask_token UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowerCAmelCase , tgt_lang=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase , ) UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase ) ) UpperCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase = 1 UpperCAmelCase = len(self.sp_model ) UpperCAmelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase ) } UpperCAmelCase = {v: k for k, v in self.lang_code_to_id.items()} UpperCAmelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCAmelCase = src_lang if src_lang is not None else '''en_XX''' UpperCAmelCase = self.lang_code_to_id[self._src_lang] UpperCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def a__( self : Union[str, Any] )-> int: """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def a__( self : str )-> str: """simple docstring""" return self._src_lang @src_lang.setter def a__( self : Any , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Tuple )-> Dict: """simple docstring""" UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = None return state def __setstate__( self : Dict , lowerCAmelCase : Dict )-> None: """simple docstring""" UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase = {} UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__( self : Union[str, Any] )-> Dict: """simple docstring""" UpperCAmelCase = {self.convert_ids_to_tokens(lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__( self : str , lowerCAmelCase : str )-> List[str]: """simple docstring""" return self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase ) def a__( self : Optional[int] , lowerCAmelCase : str )-> int: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase = self.sp_model.PieceToId(lowerCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def a__( self : List[Any] , lowerCAmelCase : int )-> str: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def a__( self : int , lowerCAmelCase : List[Any] )-> Dict: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = '''''' UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase ) + token UpperCAmelCase = True UpperCAmelCase = [] else: current_sub_tokens.append(lowerCAmelCase ) UpperCAmelCase = False out_string += self.sp_model.decode(lowerCAmelCase ) return out_string.strip() def a__( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase = os.path.join( lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase , '''wb''' ) as fi: UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase ) return (out_vocab_file,) def a__( self : List[str] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False )-> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) UpperCAmelCase = [1] * len(self.prefix_tokens ) UpperCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase )) + ([0] * len(lowerCAmelCase )) + suffix_ones def a__( self : Tuple , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None )-> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a__( self : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] , lowerCAmelCase : Optional[str] , **lowerCAmelCase : Optional[int] )-> Optional[Any]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCAmelCase = src_lang UpperCAmelCase = self(lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = self.convert_tokens_to_ids(lowerCAmelCase ) UpperCAmelCase = tgt_lang_id return inputs def a__( self : str , lowerCAmelCase : List[str] , lowerCAmelCase : str = "en_XX" , lowerCAmelCase : Optional[List[str]] = None , lowerCAmelCase : str = "ro_RO" , **lowerCAmelCase : List[str] , )-> BatchEncoding: """simple docstring""" UpperCAmelCase = src_lang UpperCAmelCase = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) def a__( self : Optional[int] )-> Union[str, Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def a__( self : List[Any] )-> int: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a__( self : List[Any] , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[src_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id] def a__( self : int , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[tgt_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id]
50
1
'''simple docstring''' import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class UpperCamelCase__( unittest.TestCase ): def a__( self : str , lowerCAmelCase : int , lowerCAmelCase : int )-> int: """simple docstring""" UpperCAmelCase = jnp.ones((batch_size, length) ) / length return scores def a__( self : Tuple )-> List[str]: """simple docstring""" UpperCAmelCase = None UpperCAmelCase = 20 UpperCAmelCase = self._get_uniform_logits(batch_size=2 , length=lowerCAmelCase ) # tweak scores to not be uniform anymore UpperCAmelCase = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch UpperCAmelCase = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax UpperCAmelCase = jax.nn.softmax(lowerCAmelCase , axis=-1 ) UpperCAmelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) UpperCAmelCase = FlaxTemperatureLogitsWarper(temperature=1.3 ) UpperCAmelCase = jax.nn.softmax(temp_dist_warper_sharper(lowerCAmelCase , scores.copy() , cur_len=lowerCAmelCase ) , axis=-1 ) UpperCAmelCase = jax.nn.softmax(temp_dist_warper_smoother(lowerCAmelCase , scores.copy() , cur_len=lowerCAmelCase ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def a__( self : List[str] )-> List[str]: """simple docstring""" UpperCAmelCase = None UpperCAmelCase = 10 UpperCAmelCase = 2 # create ramp distribution UpperCAmelCase = np.broadcast_to(np.arange(lowerCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() UpperCAmelCase = ramp_logits[1:, : vocab_size // 2] + vocab_size UpperCAmelCase = FlaxTopKLogitsWarper(3 ) UpperCAmelCase = top_k_warp(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case UpperCAmelCase = 5 UpperCAmelCase = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) UpperCAmelCase = np.broadcast_to(np.arange(lowerCAmelCase )[None, :] , (batch_size, length) ).copy() UpperCAmelCase = top_k_warp_safety_check(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def a__( self : Dict )-> Optional[Any]: """simple docstring""" UpperCAmelCase = None UpperCAmelCase = 10 UpperCAmelCase = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) UpperCAmelCase = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) UpperCAmelCase = FlaxTopPLogitsWarper(0.8 ) UpperCAmelCase = np.exp(top_p_warp(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 UpperCAmelCase = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-3 ) ) # check edge cases with negative and extreme logits UpperCAmelCase = np.broadcast_to(np.arange(lowerCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme UpperCAmelCase = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept UpperCAmelCase = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) UpperCAmelCase = top_p_warp(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def a__( self : int )-> Optional[int]: """simple docstring""" UpperCAmelCase = 20 UpperCAmelCase = 4 UpperCAmelCase = 0 UpperCAmelCase = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase ) # check that min length is applied at length 5 UpperCAmelCase = ids_tensor((batch_size, 20) , vocab_size=20 ) UpperCAmelCase = 5 UpperCAmelCase = self._get_uniform_logits(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = min_dist_processor(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''' )] ) # check that min length is not applied anymore at length 15 UpperCAmelCase = self._get_uniform_logits(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = 15 UpperCAmelCase = min_dist_processor(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) self.assertFalse(jnp.isinf(lowerCAmelCase ).any() ) def a__( self : List[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = 20 UpperCAmelCase = 4 UpperCAmelCase = 0 UpperCAmelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase ) # check that all scores are -inf except the bos_token_id score UpperCAmelCase = ids_tensor((batch_size, 1) , vocab_size=20 ) UpperCAmelCase = 1 UpperCAmelCase = self._get_uniform_logits(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = logits_processor(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 UpperCAmelCase = 3 UpperCAmelCase = self._get_uniform_logits(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = logits_processor(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) self.assertFalse(jnp.isinf(lowerCAmelCase ).any() ) def a__( self : Optional[int] )-> Tuple: """simple docstring""" UpperCAmelCase = 20 UpperCAmelCase = 4 UpperCAmelCase = 0 UpperCAmelCase = 5 UpperCAmelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase , eos_token_id=lowerCAmelCase ) # check that all scores are -inf except the eos_token_id when max_length is reached UpperCAmelCase = ids_tensor((batch_size, 4) , vocab_size=20 ) UpperCAmelCase = 4 UpperCAmelCase = self._get_uniform_logits(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = logits_processor(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached UpperCAmelCase = 3 UpperCAmelCase = self._get_uniform_logits(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = logits_processor(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) self.assertFalse(jnp.isinf(lowerCAmelCase ).any() ) def a__( self : List[str] )-> Tuple: """simple docstring""" UpperCAmelCase = 4 UpperCAmelCase = 10 UpperCAmelCase = 15 UpperCAmelCase = 2 UpperCAmelCase = 1 UpperCAmelCase = 15 # dummy input_ids and scores UpperCAmelCase = ids_tensor((batch_size, sequence_length) , lowerCAmelCase ) UpperCAmelCase = input_ids.copy() UpperCAmelCase = self._get_uniform_logits(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = scores.copy() # instantiate all dist processors UpperCAmelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) UpperCAmelCase = FlaxTopKLogitsWarper(3 ) UpperCAmelCase = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors UpperCAmelCase = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase ) UpperCAmelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase ) UpperCAmelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase , eos_token_id=lowerCAmelCase ) UpperCAmelCase = 10 # no processor list UpperCAmelCase = temp_dist_warp(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) UpperCAmelCase = top_k_warp(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) UpperCAmelCase = top_p_warp(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) UpperCAmelCase = min_dist_proc(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) UpperCAmelCase = bos_dist_proc(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) UpperCAmelCase = eos_dist_proc(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) # with processor list UpperCAmelCase = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) UpperCAmelCase = processor(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def a__( self : Dict )-> str: """simple docstring""" UpperCAmelCase = 4 UpperCAmelCase = 10 UpperCAmelCase = 15 UpperCAmelCase = 2 UpperCAmelCase = 1 UpperCAmelCase = 15 # dummy input_ids and scores UpperCAmelCase = ids_tensor((batch_size, sequence_length) , lowerCAmelCase ) UpperCAmelCase = input_ids.copy() UpperCAmelCase = self._get_uniform_logits(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = scores.copy() # instantiate all dist processors UpperCAmelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) UpperCAmelCase = FlaxTopKLogitsWarper(3 ) UpperCAmelCase = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors UpperCAmelCase = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase ) UpperCAmelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase ) UpperCAmelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase , eos_token_id=lowerCAmelCase ) UpperCAmelCase = 10 # no processor list def run_no_processor_list(lowerCAmelCase : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] ): UpperCAmelCase = temp_dist_warp(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) UpperCAmelCase = top_k_warp(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) UpperCAmelCase = top_p_warp(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) UpperCAmelCase = min_dist_proc(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) UpperCAmelCase = bos_dist_proc(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) UpperCAmelCase = eos_dist_proc(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) return scores # with processor list def run_processor_list(lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : List[Any] ): UpperCAmelCase = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) UpperCAmelCase = processor(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase ) return scores UpperCAmelCase = jax.jit(lowerCAmelCase ) UpperCAmelCase = jax.jit(lowerCAmelCase ) UpperCAmelCase = jitted_run_no_processor_list(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = jitted_run_processor_list(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
50
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers _lowercase : Union[str, Any] = """3""" print("""Python version:""", sys.version) print("""transformers version:""", transformers.__version__) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) print("""NCCL version:""", torch.cuda.nccl.version()) except ImportError: print("""Torch version:""", None) try: import deepspeed print("""DeepSpeed version:""", deepspeed.__version__) except ImportError: print("""DeepSpeed version:""", None) try: import tensorflow as tf print("""TensorFlow version:""", tf.__version__) print("""TF GPUs available:""", bool(tf.config.list_physical_devices("""GPU"""))) print("""Number of TF GPUs available:""", len(tf.config.list_physical_devices("""GPU"""))) except ImportError: print("""TensorFlow version:""", None)
50
1
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _lowercase : Optional[Any] = logging.get_logger("""transformers.models.speecht5""") def lowerCamelCase__ ( A : List[Any] , A : int , A : Union[str, Any] ): '''simple docstring''' hf_model.apply_weight_norm() UpperCAmelCase = checkpoint['''input_conv.weight_g'''] UpperCAmelCase = checkpoint['''input_conv.weight_v'''] UpperCAmelCase = checkpoint['''input_conv.bias'''] for i in range(len(config.upsample_rates ) ): UpperCAmelCase = checkpoint[f"""upsamples.{i}.1.weight_g"""] UpperCAmelCase = checkpoint[f"""upsamples.{i}.1.weight_v"""] UpperCAmelCase = checkpoint[f"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): UpperCAmelCase = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_g"""] UpperCAmelCase = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_v"""] UpperCAmelCase = checkpoint[f"""blocks.{i}.convs1.{j}.1.bias"""] UpperCAmelCase = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_g"""] UpperCAmelCase = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_v"""] UpperCAmelCase = checkpoint[f"""blocks.{i}.convs2.{j}.1.bias"""] UpperCAmelCase = checkpoint['''output_conv.1.weight_g'''] UpperCAmelCase = checkpoint['''output_conv.1.weight_v'''] UpperCAmelCase = checkpoint['''output_conv.1.bias'''] hf_model.remove_weight_norm() @torch.no_grad() def lowerCamelCase__ ( A : str , A : Dict , A : int , A : Union[str, Any]=None , A : Optional[Any]=None , ): '''simple docstring''' if config_path is not None: UpperCAmelCase = SpeechTaHifiGanConfig.from_pretrained(A ) else: UpperCAmelCase = SpeechTaHifiGanConfig() UpperCAmelCase = SpeechTaHifiGan(A ) UpperCAmelCase = torch.load(A ) load_weights(orig_checkpoint['''model''']['''generator'''] , A , A ) UpperCAmelCase = np.load(A ) UpperCAmelCase = stats[0].reshape(-1 ) UpperCAmelCase = stats[1].reshape(-1 ) UpperCAmelCase = torch.from_numpy(A ).float() UpperCAmelCase = torch.from_numpy(A ).float() model.save_pretrained(A ) if repo_id: print('''Pushing to the hub...''' ) model.push_to_hub(A ) if __name__ == "__main__": _lowercase : List[Any] = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) _lowercase : Optional[Any] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
50
'''simple docstring''' import functools def lowerCamelCase__ ( A : list[int] , A : list[int] ): '''simple docstring''' if not isinstance(A , A ) or not all(isinstance(A , A ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(A ) != 3 or not all(isinstance(A , A ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(A ) == 0: return 0 if min(A ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(A ) >= 3_66: raise ValueError('''All days elements should be less than 366''' ) UpperCAmelCase = set(A ) @functools.cache def dynamic_programming(A : int ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
50
1
'''simple docstring''' import torch from diffusers import DiffusionPipeline class UpperCamelCase__( lowerCAmelCase ): def __init__( self : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict )-> int: """simple docstring""" super().__init__() self.register_modules(unet=lowerCAmelCase , scheduler=lowerCAmelCase ) def __call__( self : Optional[Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) UpperCAmelCase = 1 UpperCAmelCase = self.unet(lowerCAmelCase , lowerCAmelCase ).sample UpperCAmelCase = self.scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ).prev_sample UpperCAmelCase = scheduler_output - scheduler_output + torch.ones_like(lowerCAmelCase ) return result
50
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase : Any = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys _lowercase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
1
'''simple docstring''' import functools def lowerCamelCase__ ( A : list[int] , A : list[int] ): '''simple docstring''' if not isinstance(A , A ) or not all(isinstance(A , A ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(A ) != 3 or not all(isinstance(A , A ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(A ) == 0: return 0 if min(A ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(A ) >= 3_66: raise ValueError('''All days elements should be less than 366''' ) UpperCAmelCase = set(A ) @functools.cache def dynamic_programming(A : int ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
50
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def lowerCamelCase__ ( A : Optional[Any] , A : Tuple=1 ): '''simple docstring''' if n_shave_prefix_segments >= 0: return ".".join(path.split('''.''' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('''.''' )[:n_shave_prefix_segments] ) def lowerCamelCase__ ( A : int , A : Optional[Any]=0 ): '''simple docstring''' UpperCAmelCase = [] for old_item in old_list: UpperCAmelCase = old_item.replace('''in_layers.0''' , '''norm1''' ) UpperCAmelCase = new_item.replace('''in_layers.2''' , '''conv1''' ) UpperCAmelCase = new_item.replace('''out_layers.0''' , '''norm2''' ) UpperCAmelCase = new_item.replace('''out_layers.3''' , '''conv2''' ) UpperCAmelCase = new_item.replace('''emb_layers.1''' , '''time_emb_proj''' ) UpperCAmelCase = new_item.replace('''skip_connection''' , '''conv_shortcut''' ) UpperCAmelCase = shave_segments(A , n_shave_prefix_segments=A ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def lowerCamelCase__ ( A : Any , A : int=0 ): '''simple docstring''' UpperCAmelCase = [] for old_item in old_list: UpperCAmelCase = old_item UpperCAmelCase = new_item.replace('''norm.weight''' , '''group_norm.weight''' ) UpperCAmelCase = new_item.replace('''norm.bias''' , '''group_norm.bias''' ) UpperCAmelCase = new_item.replace('''proj_out.weight''' , '''proj_attn.weight''' ) UpperCAmelCase = new_item.replace('''proj_out.bias''' , '''proj_attn.bias''' ) UpperCAmelCase = shave_segments(A , n_shave_prefix_segments=A ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def lowerCamelCase__ ( A : Tuple , A : Union[str, Any] , A : int , A : Dict=None , A : Optional[int]=None , A : Optional[Any]=None ): '''simple docstring''' assert isinstance(A , A ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): UpperCAmelCase = old_checkpoint[path] UpperCAmelCase = old_tensor.shape[0] // 3 UpperCAmelCase = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) UpperCAmelCase = old_tensor.shape[0] // config['''num_head_channels'''] // 3 UpperCAmelCase = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = old_tensor.split(channels // num_heads , dim=1 ) UpperCAmelCase = query.reshape(A ) UpperCAmelCase = key.reshape(A ) UpperCAmelCase = value.reshape(A ) for path in paths: UpperCAmelCase = path['''new'''] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here UpperCAmelCase = new_path.replace('''middle_block.0''' , '''mid_block.resnets.0''' ) UpperCAmelCase = new_path.replace('''middle_block.1''' , '''mid_block.attentions.0''' ) UpperCAmelCase = new_path.replace('''middle_block.2''' , '''mid_block.resnets.1''' ) if additional_replacements is not None: for replacement in additional_replacements: UpperCAmelCase = new_path.replace(replacement['''old'''] , replacement['''new'''] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: UpperCAmelCase = old_checkpoint[path['''old''']][:, :, 0] else: UpperCAmelCase = old_checkpoint[path['''old''']] def lowerCamelCase__ ( A : Union[str, Any] , A : Dict ): '''simple docstring''' UpperCAmelCase = {} UpperCAmelCase = checkpoint['''time_embed.0.weight'''] UpperCAmelCase = checkpoint['''time_embed.0.bias'''] UpperCAmelCase = checkpoint['''time_embed.2.weight'''] UpperCAmelCase = checkpoint['''time_embed.2.bias'''] UpperCAmelCase = checkpoint['''input_blocks.0.0.weight'''] UpperCAmelCase = checkpoint['''input_blocks.0.0.bias'''] UpperCAmelCase = checkpoint['''out.0.weight'''] UpperCAmelCase = checkpoint['''out.0.bias'''] UpperCAmelCase = checkpoint['''out.2.weight'''] UpperCAmelCase = checkpoint['''out.2.bias'''] # Retrieves the keys for the input blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''input_blocks''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""input_blocks.{layer_id}""" in key] for layer_id in range(A ) } # Retrieves the keys for the middle blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''middle_block''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""middle_block.{layer_id}""" in key] for layer_id in range(A ) } # Retrieves the keys for the output blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''output_blocks''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""output_blocks.{layer_id}""" in key] for layer_id in range(A ) } for i in range(1 , A ): UpperCAmelCase = (i - 1) // (config['''num_res_blocks'''] + 1) UpperCAmelCase = (i - 1) % (config['''num_res_blocks'''] + 1) UpperCAmelCase = [key for key in input_blocks[i] if f"""input_blocks.{i}.0""" in key] UpperCAmelCase = [key for key in input_blocks[i] if f"""input_blocks.{i}.1""" in key] if f"""input_blocks.{i}.0.op.weight""" in checkpoint: UpperCAmelCase = checkpoint[ f"""input_blocks.{i}.0.op.weight""" ] UpperCAmelCase = checkpoint[ f"""input_blocks.{i}.0.op.bias""" ] continue UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = {'''old''': f"""input_blocks.{i}.0""", '''new''': f"""down_blocks.{block_id}.resnets.{layer_in_block_id}"""} UpperCAmelCase = {'''old''': '''resnets.2.op''', '''new''': '''downsamplers.0.op'''} assign_to_checkpoint( A , A , A , additional_replacements=[meta_path, resnet_op] , config=A ) if len(A ): UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''old''': f"""input_blocks.{i}.1""", '''new''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase = { f"""input_blocks.{i}.1.qkv.bias""": { '''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""input_blocks.{i}.1.qkv.weight""": { '''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( A , A , A , additional_replacements=[meta_path] , attention_paths_to_split=A , config=A , ) UpperCAmelCase = middle_blocks[0] UpperCAmelCase = middle_blocks[1] UpperCAmelCase = middle_blocks[2] UpperCAmelCase = renew_resnet_paths(A ) assign_to_checkpoint(A , A , A , config=A ) UpperCAmelCase = renew_resnet_paths(A ) assign_to_checkpoint(A , A , A , config=A ) UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''middle_block.1.qkv.bias''': { '''key''': '''mid_block.attentions.0.key.bias''', '''query''': '''mid_block.attentions.0.query.bias''', '''value''': '''mid_block.attentions.0.value.bias''', }, '''middle_block.1.qkv.weight''': { '''key''': '''mid_block.attentions.0.key.weight''', '''query''': '''mid_block.attentions.0.query.weight''', '''value''': '''mid_block.attentions.0.value.weight''', }, } assign_to_checkpoint( A , A , A , attention_paths_to_split=A , config=A ) for i in range(A ): UpperCAmelCase = i // (config['''num_res_blocks'''] + 1) UpperCAmelCase = i % (config['''num_res_blocks'''] + 1) UpperCAmelCase = [shave_segments(A , 2 ) for name in output_blocks[i]] UpperCAmelCase = {} for layer in output_block_layers: UpperCAmelCase , UpperCAmelCase = layer.split('''.''' )[0], shave_segments(A , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(A ) else: UpperCAmelCase = [layer_name] if len(A ) > 1: UpperCAmelCase = [key for key in output_blocks[i] if f"""output_blocks.{i}.0""" in key] UpperCAmelCase = [key for key in output_blocks[i] if f"""output_blocks.{i}.1""" in key] UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = {'''old''': f"""output_blocks.{i}.0""", '''new''': f"""up_blocks.{block_id}.resnets.{layer_in_block_id}"""} assign_to_checkpoint(A , A , A , additional_replacements=[meta_path] , config=A ) if ["conv.weight", "conv.bias"] in output_block_list.values(): UpperCAmelCase = list(output_block_list.values() ).index(['''conv.weight''', '''conv.bias'''] ) UpperCAmelCase = checkpoint[ f"""output_blocks.{i}.{index}.conv.weight""" ] UpperCAmelCase = checkpoint[ f"""output_blocks.{i}.{index}.conv.bias""" ] # Clear attentions as they have been attributed above. if len(A ) == 2: UpperCAmelCase = [] if len(A ): UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''old''': f"""output_blocks.{i}.1""", '''new''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase = { f"""output_blocks.{i}.1.qkv.bias""": { '''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""output_blocks.{i}.1.qkv.weight""": { '''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( A , A , A , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('''qkv''' in key for key in attentions ) else None , config=A , ) else: UpperCAmelCase = renew_resnet_paths(A , n_shave_prefix_segments=1 ) for path in resnet_0_paths: UpperCAmelCase = '''.'''.join(['''output_blocks''', str(A ), path['''old''']] ) UpperCAmelCase = '''.'''.join(['''up_blocks''', str(A ), '''resnets''', str(A ), path['''new''']] ) UpperCAmelCase = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": _lowercase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") _lowercase : Dict = parser.parse_args() _lowercase : List[Any] = torch.load(args.checkpoint_path) with open(args.config_file) as f: _lowercase : List[str] = json.loads(f.read()) _lowercase : Union[str, Any] = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] _lowercase : Any = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: _lowercase : Tuple = DDPMScheduler.from_config("""/""".join(args.checkpoint_path.split("""/""")[:-1])) _lowercase : Optional[Any] = VQModel.from_pretrained("""/""".join(args.checkpoint_path.split("""/""")[:-1])) _lowercase : Optional[Any] = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
50
1
'''simple docstring''' import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() _lowercase : Union[str, Any] = logging.get_logger(__name__) def lowerCamelCase__ ( A : List[str] ): '''simple docstring''' UpperCAmelCase = MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError('''Quantized models are not supported.''' ) UpperCAmelCase = re.match(R'''^mobilenet_v1_([^_]*)_([^_]*)$''' , A ) if matches: UpperCAmelCase = float(matches[1] ) UpperCAmelCase = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". UpperCAmelCase = 10_01 UpperCAmelCase = '''imagenet-1k-id2label.json''' UpperCAmelCase = '''huggingface/label-files''' UpperCAmelCase = json.load(open(hf_hub_download(A , A , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase = {int(A ) + 1: v for k, v in idalabel.items()} UpperCAmelCase = '''background''' UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase = Image.open(requests.get(A , stream=A ).raw ) return im @torch.no_grad() def lowerCamelCase__ ( A : str , A : str , A : str , A : Union[str, Any]=False ): '''simple docstring''' UpperCAmelCase = get_mobilenet_va_config(A ) # Load 🤗 model UpperCAmelCase = MobileNetVaForImageClassification(A ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(A , A , A ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor UpperCAmelCase = MobileNetVaImageProcessor( crop_size={'''width''': config.image_size, '''height''': config.image_size} , size={'''shortest_edge''': config.image_size + 32} , ) UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCAmelCase = model(**A ) UpperCAmelCase = outputs.logits assert logits.shape == (1, 10_01) if model_name == "mobilenet_v1_1.0_224": UpperCAmelCase = torch.tensor([-4.1_739, -1.1_233, 3.1_205] ) elif model_name == "mobilenet_v1_0.75_192": UpperCAmelCase = torch.tensor([-3.9_440, -2.3_141, -0.3_333] ) else: UpperCAmelCase = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , A , atol=1E-4 ) Path(A ).mkdir(exist_ok=A ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(A ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(A ) if push_to_hub: print('''Pushing to the hub...''' ) UpperCAmelCase = '''google/''' + model_name image_processor.push_to_hub(A ) model.push_to_hub(A ) if __name__ == "__main__": _lowercase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _lowercase : Optional[int] = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
50
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Any = logging.get_logger(__name__) _lowercase : Dict = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = "dpr" def __init__( self : Dict , lowerCAmelCase : Any=30522 , lowerCAmelCase : List[str]=768 , lowerCAmelCase : Union[str, Any]=12 , lowerCAmelCase : Tuple=12 , lowerCAmelCase : Optional[int]=3072 , lowerCAmelCase : Optional[int]="gelu" , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : Any=0.1 , lowerCAmelCase : Optional[Any]=512 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : str=1E-12 , lowerCAmelCase : Optional[Any]=0 , lowerCAmelCase : Tuple="absolute" , lowerCAmelCase : int = 0 , **lowerCAmelCase : Union[str, Any] , )-> Optional[int]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = projection_dim UpperCAmelCase = position_embedding_type
50
1
'''simple docstring''' from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class UpperCamelCase__: def a__( self : Tuple , lowerCAmelCase : List[str] )-> str: """simple docstring""" raise NotImplementedError() def a__( self : List[Any] )-> List[str]: """simple docstring""" raise NotImplementedError() class UpperCamelCase__( lowerCAmelCase ): def __init__( self : Any , lowerCAmelCase : "AutoTokenizer" , lowerCAmelCase : bool = False , **lowerCAmelCase : List[Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = tokenizer UpperCAmelCase = skip_prompt UpperCAmelCase = decode_kwargs # variables used in the streaming process UpperCAmelCase = [] UpperCAmelCase = 0 UpperCAmelCase = True def a__( self : Optional[int] , lowerCAmelCase : Any )-> int: """simple docstring""" if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError('''TextStreamer only supports batch size 1''' ) elif len(value.shape ) > 1: UpperCAmelCase = value[0] if self.skip_prompt and self.next_tokens_are_prompt: UpperCAmelCase = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) UpperCAmelCase = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith('''\n''' ): UpperCAmelCase = text[self.print_len :] UpperCAmelCase = [] UpperCAmelCase = 0 # If the last token is a CJK character, we print the characters. elif len(lowerCAmelCase ) > 0 and self._is_chinese_char(ord(text[-1] ) ): UpperCAmelCase = text[self.print_len :] self.print_len += len(lowerCAmelCase ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: UpperCAmelCase = text[self.print_len : text.rfind(''' ''' ) + 1] self.print_len += len(lowerCAmelCase ) self.on_finalized_text(lowerCAmelCase ) def a__( self : List[Any] )-> int: """simple docstring""" if len(self.token_cache ) > 0: UpperCAmelCase = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) UpperCAmelCase = text[self.print_len :] UpperCAmelCase = [] UpperCAmelCase = 0 else: UpperCAmelCase = '''''' UpperCAmelCase = True self.on_finalized_text(lowerCAmelCase , stream_end=lowerCAmelCase ) def a__( self : Any , lowerCAmelCase : str , lowerCAmelCase : bool = False )-> Tuple: """simple docstring""" print(lowerCAmelCase , flush=lowerCAmelCase , end='''''' if not stream_end else None ) def a__( self : List[str] , lowerCAmelCase : Optional[int] )-> Optional[int]: """simple docstring""" if ( (cp >= 0X4e_00 and cp <= 0X9f_ff) or (cp >= 0X34_00 and cp <= 0X4d_bf) # or (cp >= 0X2_00_00 and cp <= 0X2_a6_df) # or (cp >= 0X2_a7_00 and cp <= 0X2_b7_3f) # or (cp >= 0X2_b7_40 and cp <= 0X2_b8_1f) # or (cp >= 0X2_b8_20 and cp <= 0X2_ce_af) # or (cp >= 0Xf9_00 and cp <= 0Xfa_ff) or (cp >= 0X2_f8_00 and cp <= 0X2_fa_1f) # ): # return True return False class UpperCamelCase__( lowerCAmelCase ): def __init__( self : Optional[Any] , lowerCAmelCase : "AutoTokenizer" , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[float] = None , **lowerCAmelCase : List[str] )-> Tuple: """simple docstring""" super().__init__(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = Queue() UpperCAmelCase = None UpperCAmelCase = timeout def a__( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : bool = False )-> int: """simple docstring""" self.text_queue.put(lowerCAmelCase , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self : Tuple )-> Any: """simple docstring""" return self def a__( self : Union[str, Any] )-> Tuple: """simple docstring""" UpperCAmelCase = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
50
'''simple docstring''' import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _lowercase : Tuple = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def lowerCamelCase__ ( A : Optional[Any] ): '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def lowerCamelCase__ ( A : Any , A : str ): '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase = False elif args.student_type == "gpt2": UpperCAmelCase = False def lowerCamelCase__ ( A : List[Any] , A : List[str] ): '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase = False def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=A , required=A , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=A , required=A , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=A , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=A , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=A , required=A , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=A , type=A , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=A , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=A , required=A , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=A , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=A , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=A , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=A , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=A , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=A , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=A , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=A , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=A , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=A , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=A , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=A , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=A , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=A , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=A , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=A , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=A , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=A , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=A , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=A , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=A , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=A , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=A , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=A , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=A , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=A , default=5_00 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=A , default=40_00 , help='''Checkpoint interval.''' ) UpperCAmelCase = parser.parse_args() sanity_checks(A ) # ARGS # init_gpu_params(A ) set_seed(A ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(f"""Param: {args}""" ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(A ) , A , indent=4 ) git_log(args.dump_path ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = MODEL_CLASSES[args.student_type] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # UpperCAmelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) UpperCAmelCase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): UpperCAmelCase = tokenizer.all_special_tokens.index(A ) UpperCAmelCase = tokenizer.all_special_ids[idx] logger.info(f"""Special tokens {special_tok_ids}""" ) UpperCAmelCase = special_tok_ids UpperCAmelCase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f"""Loading data from {args.data_file}""" ) with open(args.data_file , '''rb''' ) as fp: UpperCAmelCase = pickle.load(A ) if args.mlm: logger.info(f"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts , '''rb''' ) as fp: UpperCAmelCase = pickle.load(A ) UpperCAmelCase = np.maximum(A , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): UpperCAmelCase = 0.0 # do not predict special tokens UpperCAmelCase = torch.from_numpy(A ) else: UpperCAmelCase = None UpperCAmelCase = LmSeqsDataset(params=A , data=A ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(f"""Loading student config from {args.student_config}""" ) UpperCAmelCase = student_config_class.from_pretrained(args.student_config ) UpperCAmelCase = True if args.student_pretrained_weights is not None: logger.info(f"""Loading pretrained weights from {args.student_pretrained_weights}""" ) UpperCAmelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=A ) else: UpperCAmelCase = student_model_class(A ) if args.n_gpu > 0: student.to(f"""cuda:{args.local_rank}""" ) logger.info('''Student loaded.''' ) # TEACHER # UpperCAmelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=A ) if args.n_gpu > 0: teacher.to(f"""cuda:{args.local_rank}""" ) logger.info(f"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(A , A ) if args.freeze_token_type_embds: freeze_token_type_embeddings(A , A ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() UpperCAmelCase = Distiller( params=A , dataset=A , token_probs=A , student=A , teacher=A ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
50
1
'''simple docstring''' from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig _lowercase : str = { """susnato/ernie-m-base_pytorch""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json""", """susnato/ernie-m-large_pytorch""": """https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json""", } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : List[str] = "ernie_m" __magic_name__ : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self : Any , lowerCAmelCase : int = 250002 , lowerCAmelCase : int = 768 , lowerCAmelCase : int = 12 , lowerCAmelCase : int = 12 , lowerCAmelCase : int = 3072 , lowerCAmelCase : str = "gelu" , lowerCAmelCase : float = 0.1 , lowerCAmelCase : float = 0.1 , lowerCAmelCase : int = 514 , lowerCAmelCase : float = 0.02 , lowerCAmelCase : int = 1 , lowerCAmelCase : float = 1E-05 , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : List[Any]=False , lowerCAmelCase : List[str]=0.0 , **lowerCAmelCase : List[str] , )-> Optional[int]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = classifier_dropout UpperCAmelCase = is_decoder UpperCAmelCase = act_dropout
50
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Tuple = ["image_processor", "tokenizer"] __magic_name__ : Any = "ViTImageProcessor" __magic_name__ : str = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : List[str] , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=None , **lowerCAmelCase : Optional[int] )-> List[Any]: """simple docstring""" UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCAmelCase , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase , lowerCAmelCase ) def __call__( self : str , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=None , **lowerCAmelCase : List[str] )-> List[Any]: """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''' ) if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''' ) if text is not None: UpperCAmelCase = self.tokenizer(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if visual_prompt is not None: UpperCAmelCase = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if images is not None: UpperCAmelCase = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if visual_prompt is not None and images is not None: UpperCAmelCase = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: UpperCAmelCase = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase ) , tensor_type=lowerCAmelCase ) def a__( self : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int] )-> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str] )-> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase ) @property def a__( self : List[Any] )-> Optional[Any]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCAmelCase , ) return self.image_processor_class @property def a__( self : Any )-> List[Any]: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowerCAmelCase , ) return self.image_processor
50
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : Any = { """configuration_x_clip""": [ """XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XCLIPConfig""", """XCLIPTextConfig""", """XCLIPVisionConfig""", ], """processing_x_clip""": ["""XCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Tuple = [ """XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """XCLIPModel""", """XCLIPPreTrainedModel""", """XCLIPTextModel""", """XCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys _lowercase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Any = { """configuration_maskformer""": ["""MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MaskFormerConfig"""], """configuration_maskformer_swin""": ["""MaskFormerSwinConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = ["""MaskFormerFeatureExtractor"""] _lowercase : Dict = ["""MaskFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = [ """MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """MaskFormerForInstanceSegmentation""", """MaskFormerModel""", """MaskFormerPreTrainedModel""", ] _lowercase : List[Any] = [ """MaskFormerSwinBackbone""", """MaskFormerSwinModel""", """MaskFormerSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys _lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
50
1
'''simple docstring''' import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _lowercase : Tuple = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def lowerCamelCase__ ( A : Optional[Any] ): '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def lowerCamelCase__ ( A : Any , A : str ): '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase = False elif args.student_type == "gpt2": UpperCAmelCase = False def lowerCamelCase__ ( A : List[Any] , A : List[str] ): '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase = False def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=A , required=A , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=A , required=A , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=A , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=A , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=A , required=A , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=A , type=A , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=A , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=A , required=A , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=A , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=A , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=A , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=A , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=A , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=A , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=A , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=A , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=A , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=A , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=A , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=A , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=A , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=A , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=A , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=A , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=A , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=A , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=A , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=A , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=A , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=A , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=A , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=A , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=A , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=A , default=5_00 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=A , default=40_00 , help='''Checkpoint interval.''' ) UpperCAmelCase = parser.parse_args() sanity_checks(A ) # ARGS # init_gpu_params(A ) set_seed(A ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(f"""Param: {args}""" ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(A ) , A , indent=4 ) git_log(args.dump_path ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = MODEL_CLASSES[args.student_type] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # UpperCAmelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) UpperCAmelCase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): UpperCAmelCase = tokenizer.all_special_tokens.index(A ) UpperCAmelCase = tokenizer.all_special_ids[idx] logger.info(f"""Special tokens {special_tok_ids}""" ) UpperCAmelCase = special_tok_ids UpperCAmelCase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f"""Loading data from {args.data_file}""" ) with open(args.data_file , '''rb''' ) as fp: UpperCAmelCase = pickle.load(A ) if args.mlm: logger.info(f"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts , '''rb''' ) as fp: UpperCAmelCase = pickle.load(A ) UpperCAmelCase = np.maximum(A , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): UpperCAmelCase = 0.0 # do not predict special tokens UpperCAmelCase = torch.from_numpy(A ) else: UpperCAmelCase = None UpperCAmelCase = LmSeqsDataset(params=A , data=A ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(f"""Loading student config from {args.student_config}""" ) UpperCAmelCase = student_config_class.from_pretrained(args.student_config ) UpperCAmelCase = True if args.student_pretrained_weights is not None: logger.info(f"""Loading pretrained weights from {args.student_pretrained_weights}""" ) UpperCAmelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=A ) else: UpperCAmelCase = student_model_class(A ) if args.n_gpu > 0: student.to(f"""cuda:{args.local_rank}""" ) logger.info('''Student loaded.''' ) # TEACHER # UpperCAmelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=A ) if args.n_gpu > 0: teacher.to(f"""cuda:{args.local_rank}""" ) logger.info(f"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(A , A ) if args.freeze_token_type_embds: freeze_token_type_embeddings(A , A ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() UpperCAmelCase = Distiller( params=A , dataset=A , token_probs=A , student=A , teacher=A ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
50
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowercase : Optional[Any] = 16 _lowercase : Dict = 32 def lowerCamelCase__ ( A : Accelerator , A : int = 16 ): '''simple docstring''' UpperCAmelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(A : int ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=A , max_length=A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase = datasets.map( A , batched=A , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(A : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase = 8 else: UpperCAmelCase = None return tokenizer.pad( A , padding='''longest''' , max_length=A , pad_to_multiple_of=A , return_tensors='''pt''' , ) # Instantiate dataloaders. UpperCAmelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=A , collate_fn=A , batch_size=A ) UpperCAmelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=A , collate_fn=A , batch_size=A ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowercase : Union[str, Any] = mocked_dataloaders # noqa: F811 def lowerCamelCase__ ( A : Optional[Any] , A : Tuple ): '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , A ) == "1": UpperCAmelCase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: UpperCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase = config['''lr'''] UpperCAmelCase = int(config['''num_epochs'''] ) UpperCAmelCase = int(config['''seed'''] ) UpperCAmelCase = int(config['''batch_size'''] ) set_seed(A ) UpperCAmelCase , UpperCAmelCase = get_dataloaders(A , A ) UpperCAmelCase = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation UpperCAmelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=A ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase = AdamW(params=model.parameters() , lr=A ) # Instantiate scheduler UpperCAmelCase = get_linear_schedule_with_warmup( optimizer=A , num_warmup_steps=1_00 , num_training_steps=(len(A ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( A , A , A , A , A ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: UpperCAmelCase = os.path.split(A )[-1].split('''.''' )[0] accelerator.init_trackers(A , A ) # Now we train the model for epoch in range(A ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: UpperCAmelCase = 0 for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase = model(**A ) UpperCAmelCase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() UpperCAmelCase = loss / gradient_accumulation_steps accelerator.backward(A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase = model(**A ) UpperCAmelCase = outputs.logits.argmax(dim=-1 ) UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=A , references=A , ) UpperCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , A ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(A ), '''epoch''': epoch, } , step=A , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=A , default=A , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=A , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(A , A ) if __name__ == "__main__": main()
50
1
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=lowerCAmelCase ) class UpperCamelCase__( lowerCAmelCase ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization __magic_name__ : str = field(default="question-answering-extractive" , metadata={"include_in_asdict_even_if_is_default": True} ) __magic_name__ : ClassVar[Features] = Features({"question": Value("string" ), "context": Value("string" )} ) __magic_name__ : ClassVar[Features] = Features( { "answers": Sequence( { "text": Value("string" ), "answer_start": Value("int32" ), } ) } ) __magic_name__ : str = "question" __magic_name__ : str = "context" __magic_name__ : str = "answers" @property def a__( self : Optional[int] )-> Dict[str, str]: """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
50
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : int = { """configuration_xmod""": [ """XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XmodConfig""", """XmodOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = [ """XMOD_PRETRAINED_MODEL_ARCHIVE_LIST""", """XmodForCausalLM""", """XmodForMaskedLM""", """XmodForMultipleChoice""", """XmodForQuestionAnswering""", """XmodForSequenceClassification""", """XmodForTokenClassification""", """XmodModel""", """XmodPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys _lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
1
'''simple docstring''' def lowerCamelCase__ ( A : str , A : int ): '''simple docstring''' return [sentence[i : i + ngram_size] for i in range(len(A ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
50
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : List[str] = { """facebook/encodec_24khz""": """https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json""", """facebook/encodec_48khz""": """https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json""", } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : List[str] = "encodec" def __init__( self : List[str] , lowerCAmelCase : int=[1.5, 3.0, 6.0, 12.0, 24.0] , lowerCAmelCase : Tuple=24000 , lowerCAmelCase : List[Any]=1 , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : str=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=128 , lowerCAmelCase : Any=32 , lowerCAmelCase : Any=1 , lowerCAmelCase : List[Any]=[8, 5, 4, 2] , lowerCAmelCase : Union[str, Any]="weight_norm" , lowerCAmelCase : str=7 , lowerCAmelCase : Optional[int]=7 , lowerCAmelCase : Any=3 , lowerCAmelCase : Tuple=2 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : List[str]="reflect" , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Union[str, Any]=1.0 , lowerCAmelCase : Optional[Any]=1024 , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : str=True , **lowerCAmelCase : str , )-> List[str]: """simple docstring""" UpperCAmelCase = target_bandwidths UpperCAmelCase = sampling_rate UpperCAmelCase = audio_channels UpperCAmelCase = normalize UpperCAmelCase = chunk_length_s UpperCAmelCase = overlap UpperCAmelCase = hidden_size UpperCAmelCase = num_filters UpperCAmelCase = num_residual_layers UpperCAmelCase = upsampling_ratios UpperCAmelCase = norm_type UpperCAmelCase = kernel_size UpperCAmelCase = last_kernel_size UpperCAmelCase = residual_kernel_size UpperCAmelCase = dilation_growth_rate UpperCAmelCase = use_causal_conv UpperCAmelCase = pad_mode UpperCAmelCase = compress UpperCAmelCase = num_lstm_layers UpperCAmelCase = trim_right_ratio UpperCAmelCase = codebook_size UpperCAmelCase = codebook_dim if codebook_dim is not None else hidden_size UpperCAmelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**lowerCAmelCase ) @property def a__( self : str )-> Optional[int]: """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def a__( self : List[str] )-> Optional[int]: """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def a__( self : List[Any] )-> int: """simple docstring""" UpperCAmelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def a__( self : int )-> int: """simple docstring""" return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
50
1