code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
def _lowerCamelCase ( a_ : int): lowerCamelCase :List[Any] = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def _lowerCamelCase ( a_ : int = 50_00): lowerCamelCase :str = [(i * (3 * i - 1)) // 2 for i in range(1 , __UpperCamelCase)] for i, pentagonal_i in enumerate(__UpperCamelCase): for j in range(__UpperCamelCase , len(__UpperCamelCase)): lowerCamelCase :Optional[int] = pentagonal_nums[j] lowerCamelCase :List[Any] = pentagonal_i + pentagonal_j lowerCamelCase :Optional[Any] = pentagonal_j - pentagonal_i if is_pentagonal(__UpperCamelCase) and is_pentagonal(__UpperCamelCase): return b return -1 if __name__ == "__main__": print(F'{solution() = }')
721
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { """andreasmadsen/efficient_mlm_m0.40""": ( """https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json""" ), } class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'roberta-prelayernorm' def __init__( self : str , __snake_case : List[str]=50265 , __snake_case : Union[str, Any]=768 , __snake_case : Tuple=12 , __snake_case : int=12 , __snake_case : Any=3072 , __snake_case : Optional[int]="gelu" , __snake_case : List[Any]=0.1 , __snake_case : int=0.1 , __snake_case : Union[str, Any]=512 , __snake_case : Dict=2 , __snake_case : int=0.0_2 , __snake_case : Any=1e-1_2 , __snake_case : Optional[int]=1 , __snake_case : Dict=0 , __snake_case : Optional[int]=2 , __snake_case : Any="absolute" , __snake_case : Union[str, Any]=True , __snake_case : List[str]=None , **__snake_case : Optional[int] , ): super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) lowerCamelCase :Optional[int] = vocab_size lowerCamelCase :Dict = hidden_size lowerCamelCase :Tuple = num_hidden_layers lowerCamelCase :Optional[int] = num_attention_heads lowerCamelCase :Any = hidden_act lowerCamelCase :List[Any] = intermediate_size lowerCamelCase :Union[str, Any] = hidden_dropout_prob lowerCamelCase :str = attention_probs_dropout_prob lowerCamelCase :Tuple = max_position_embeddings lowerCamelCase :int = type_vocab_size lowerCamelCase :Optional[Any] = initializer_range lowerCamelCase :Union[str, Any] = layer_norm_eps lowerCamelCase :Dict = position_embedding_type lowerCamelCase :List[Any] = use_cache lowerCamelCase :Optional[int] = classifier_dropout class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): @property def snake_case ( self : Any ): if self.task == "multiple-choice": lowerCamelCase :Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase :List[str] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
49
0
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class _lowerCAmelCase : def __init__( self : List[Any] , __snake_case : Optional[Any] , ): lowerCamelCase :Tuple = parent lowerCamelCase :Union[str, Any] = 13 lowerCamelCase :Optional[int] = 7 lowerCamelCase :Dict = True lowerCamelCase :List[Any] = True lowerCamelCase :Optional[int] = True lowerCamelCase :Any = 99 lowerCamelCase :List[Any] = 32 lowerCamelCase :List[Any] = 2 lowerCamelCase :str = 4 lowerCamelCase :List[Any] = 37 lowerCamelCase :List[str] = '''gelu''' lowerCamelCase :Any = 0.1 lowerCamelCase :Union[str, Any] = 0.1 lowerCamelCase :Any = 512 lowerCamelCase :Union[str, Any] = 16 lowerCamelCase :int = 2 lowerCamelCase :Union[str, Any] = 0.0_2 lowerCamelCase :Optional[int] = 3 lowerCamelCase :int = 4 lowerCamelCase :List[Any] = None def snake_case ( self : Union[str, Any] ): lowerCamelCase :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase :int = None if self.use_input_mask: lowerCamelCase :Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase :Union[str, Any] = None lowerCamelCase :str = None lowerCamelCase :Any = None if self.use_labels: lowerCamelCase :str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase :str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase :Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase :List[str] = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self : Union[str, Any] ): ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) :Optional[int] = self.prepare_config_and_inputs() lowerCamelCase :Optional[int] = True lowerCamelCase :List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCamelCase :int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def snake_case ( self : Optional[int] , __snake_case : int , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : Any , __snake_case : Any ): lowerCamelCase :List[Any] = TFEsmModel(config=A_ ) lowerCamelCase :List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} lowerCamelCase :List[str] = model(A_ ) lowerCamelCase :int = [input_ids, input_mask] lowerCamelCase :List[str] = model(A_ ) lowerCamelCase :str = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self : Union[str, Any] , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : int , __snake_case : List[Any] , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : List[str] , ): lowerCamelCase :Union[str, Any] = True lowerCamelCase :str = TFEsmModel(config=A_ ) lowerCamelCase :Tuple = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''encoder_hidden_states''': encoder_hidden_states, '''encoder_attention_mask''': encoder_attention_mask, } lowerCamelCase :Optional[Any] = model(A_ ) lowerCamelCase :Union[str, Any] = [input_ids, input_mask] lowerCamelCase :List[str] = model(A_ , encoder_hidden_states=A_ ) # Also check the case where encoder outputs are not passed lowerCamelCase :Optional[int] = model(A_ , attention_mask=A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self : str , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : List[Any] ): lowerCamelCase :Any = TFEsmForMaskedLM(config=A_ ) lowerCamelCase :Tuple = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self : Any , __snake_case : Optional[Any] , __snake_case : str , __snake_case : List[Any] , __snake_case : int , __snake_case : Tuple , __snake_case : Optional[int] ): lowerCamelCase :List[Any] = self.num_labels lowerCamelCase :Any = TFEsmForTokenClassification(config=A_ ) lowerCamelCase :Tuple = {'''input_ids''': input_ids, '''attention_mask''': input_mask} lowerCamelCase :Any = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self : Any ): lowerCamelCase :Union[str, Any] = self.prepare_config_and_inputs() ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) :Tuple = config_and_inputs lowerCamelCase :Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class _lowerCAmelCase ( _lowercase , _lowercase , unittest.TestCase ): _UpperCAmelCase = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) _UpperCAmelCase = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False def snake_case ( self : List[Any] ): lowerCamelCase :Optional[int] = TFEsmModelTester(self ) lowerCamelCase :Dict = ConfigTester(self , config_class=A_ , hidden_size=37 ) def snake_case ( self : Any ): self.config_tester.run_common_tests() def snake_case ( self : Union[str, Any] ): lowerCamelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def snake_case ( self : List[Any] ): lowerCamelCase :str = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*A_ ) def snake_case ( self : str ): lowerCamelCase :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def snake_case ( self : List[Any] ): lowerCamelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def snake_case ( self : Tuple ): for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase :Dict = TFEsmModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @unittest.skip('''Protein models do not support embedding resizing.''' ) def snake_case ( self : Optional[int] ): pass @unittest.skip('''Protein models do not support embedding resizing.''' ) def snake_case ( self : Tuple ): pass def snake_case ( self : str ): lowerCamelCase , lowerCamelCase :int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :Any = model_class(A_ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowerCamelCase :Dict = model.get_bias() assert isinstance(A_ , A_ ) for k, v in name.items(): assert isinstance(A_ , tf.Variable ) else: lowerCamelCase :int = model.get_output_embeddings() assert x is None lowerCamelCase :Tuple = model.get_bias() assert name is None @require_tf class _lowerCAmelCase ( unittest.TestCase ): @slow def snake_case ( self : Optional[Any] ): lowerCamelCase :Any = TFEsmForMaskedLM.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) lowerCamelCase :Optional[int] = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase :List[Any] = model(A_ )[0] lowerCamelCase :int = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , A_ ) # compare the actual values for a slice. lowerCamelCase :str = tf.constant( [ [ [8.9_2_1_5_1_8, -1_0.5_8_9_8_1_4, -6.4_6_7_1_3_0_7], [-6.3_9_6_7_1_5_6, -1_3.9_1_1_3_7_7, -1.1_2_1_1_9_1_5], [-7.7_8_1_2_4_7, -1_3.9_5_1_5_5_7, -3.7_4_0_5_9_2], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def snake_case ( self : Optional[Any] ): lowerCamelCase :Optional[Any] = TFEsmModel.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) lowerCamelCase :List[Any] = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCamelCase :Optional[Any] = model(A_ )[0] # compare the actual values for a slice. lowerCamelCase :List[Any] = tf.constant( [ [ [0.1_4_4_4_3_0_9_2, 0.5_4_1_2_5_3_2_7, 0.3_2_4_7_7_3_9], [0.3_0_3_4_0_4_8_4, 0.0_0_5_2_6_6_7_6, 0.3_1_0_7_7_7_2_2], [0.3_2_2_7_8_0_4_3, -0.2_4_9_8_7_0_9_6, 0.3_4_1_4_6_2_8], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
700
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = DebertaTokenizer _UpperCAmelCase = True _UpperCAmelCase = DebertaTokenizerFast def snake_case ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase :Dict = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] lowerCamelCase :List[str] = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) lowerCamelCase :Any = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCamelCase :Dict = {'''unk_token''': '''[UNK]'''} lowerCamelCase :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase :List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__snake_case ) ) def snake_case ( self : str , **__snake_case : Dict ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Optional[Any] , __snake_case : int ): lowerCamelCase :List[Any] = '''lower newer''' lowerCamelCase :List[str] = '''lower newer''' return input_text, output_text def snake_case ( self : str ): lowerCamelCase :Optional[int] = self.get_tokenizer() lowerCamelCase :Union[str, Any] = '''lower newer''' lowerCamelCase :str = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] lowerCamelCase :Optional[int] = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) lowerCamelCase :List[str] = tokens + [tokenizer.unk_token] lowerCamelCase :Optional[int] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def snake_case ( self : Optional[int] ): lowerCamelCase :List[str] = self.get_tokenizer() lowerCamelCase :Optional[int] = tokenizer('''Hello''' , '''World''' ) lowerCamelCase :List[str] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __snake_case ) @slow def snake_case ( self : str ): lowerCamelCase :Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) lowerCamelCase :Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__snake_case ) lowerCamelCase :Tuple = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__snake_case ) lowerCamelCase :Union[str, Any] = tokenizer.encode( '''sequence builders''' , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) lowerCamelCase :str = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) lowerCamelCase :Any = tokenizer.build_inputs_with_special_tokens(__snake_case ) lowerCamelCase :Dict = tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def snake_case ( self : str ): lowerCamelCase :List[str] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: lowerCamelCase :int = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) lowerCamelCase :Tuple = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] lowerCamelCase :List[Any] = tokenizer(__snake_case , padding=__snake_case ) lowerCamelCase :Union[str, Any] = [tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) for seq in encoding['''input_ids''']] # fmt: off lowerCamelCase :Any = { '''input_ids''': [ [1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on lowerCamelCase :Optional[int] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __snake_case ) for expected, decoded in zip(__snake_case , __snake_case ): self.assertEqual(__snake_case , __snake_case )
49
0
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _lowerCAmelCase : def __init__( self : str , __snake_case : List[Any] , __snake_case : str=13 , __snake_case : str=3 , __snake_case : Optional[Any]=True , __snake_case : Tuple=True , __snake_case : Any=0.1 , __snake_case : str=0.1 , __snake_case : Union[str, Any]=224 , __snake_case : Any=1000 , __snake_case : str=[3, 3, 6, 4] , __snake_case : int=[48, 56, 112, 220] , ): lowerCamelCase :int = parent lowerCamelCase :Tuple = batch_size lowerCamelCase :int = num_channels lowerCamelCase :Optional[int] = is_training lowerCamelCase :str = use_labels lowerCamelCase :Dict = hidden_dropout_prob lowerCamelCase :Any = attention_probs_dropout_prob lowerCamelCase :Union[str, Any] = num_labels lowerCamelCase :Optional[int] = image_size lowerCamelCase :List[Any] = layer_depths lowerCamelCase :List[str] = embed_dims def snake_case ( self : List[Any] ): lowerCamelCase :List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase :int = None if self.use_labels: lowerCamelCase :int = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase :Tuple = self.get_config() return config, pixel_values, labels def snake_case ( self : Tuple ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=__snake_case , layer_scale_init_value=1e-5 , ) def snake_case ( self : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : List[Any] ): lowerCamelCase :Optional[Any] = SwiftFormerModel(config=__snake_case ) model.to(__snake_case ) model.eval() lowerCamelCase :Tuple = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def snake_case ( self : Optional[Any] , __snake_case : Tuple , __snake_case : str , __snake_case : Dict ): lowerCamelCase :Dict = self.num_labels lowerCamelCase :Optional[Any] = SwiftFormerForImageClassification(__snake_case ) model.to(__snake_case ) model.eval() lowerCamelCase :Dict = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) lowerCamelCase :Dict = SwiftFormerForImageClassification(__snake_case ) model.to(__snake_case ) model.eval() lowerCamelCase :Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase :Optional[int] = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self : Optional[int] ): ((lowerCamelCase) , (lowerCamelCase) , (lowerCamelCase)) :str = self.prepare_config_and_inputs() lowerCamelCase :Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( lowercase__ , lowercase__ , unittest.TestCase ): _UpperCAmelCase = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () _UpperCAmelCase = ( {'feature-extraction': SwiftFormerModel, 'image-classification': SwiftFormerForImageClassification} if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def snake_case ( self : Union[str, Any] ): lowerCamelCase :Any = SwiftFormerModelTester(self ) lowerCamelCase :Union[str, Any] = ConfigTester( self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def snake_case ( self : Dict ): self.config_tester.run_common_tests() @unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' ) def snake_case ( self : List[Any] ): pass def snake_case ( self : List[Any] ): lowerCamelCase , lowerCamelCase :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :str = model_class(__snake_case ) lowerCamelCase :Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case , nn.Linear ) ) def snake_case ( self : Tuple ): lowerCamelCase , lowerCamelCase :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :Any = model_class(__snake_case ) lowerCamelCase :Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase :List[str] = [*signature.parameters.keys()] lowerCamelCase :Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __snake_case ) def snake_case ( self : Union[str, Any] ): lowerCamelCase :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def snake_case ( self : List[str] ): lowerCamelCase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case ) @slow def snake_case ( self : Optional[int] ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase :Tuple = SwiftFormerModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @unittest.skip(reason='''SwiftFormer does not output attentions''' ) def snake_case ( self : Tuple ): pass def snake_case ( self : int ): def check_hidden_states_output(__snake_case : Any , __snake_case : str , __snake_case : Optional[int] ): lowerCamelCase :List[Any] = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :Tuple = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :List[str] = outputs.hidden_states lowerCamelCase :List[str] = 8 self.assertEqual(len(__snake_case ) , __snake_case ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(__snake_case ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) lowerCamelCase , lowerCamelCase :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :Optional[Any] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase :int = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def snake_case ( self : Optional[Any] ): def _config_zero_init(__snake_case : Union[str, Any] ): lowerCamelCase :List[str] = copy.deepcopy(__snake_case ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(__snake_case , __snake_case , 1e-1_0 ) if isinstance(getattr(__snake_case , __snake_case , __snake_case ) , __snake_case ): lowerCamelCase :List[Any] = _config_zero_init(getattr(__snake_case , __snake_case ) ) setattr(__snake_case , __snake_case , __snake_case ) return configs_no_init lowerCamelCase , lowerCamelCase :List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase :List[str] = _config_zero_init(__snake_case ) for model_class in self.all_model_classes: lowerCamelCase :Optional[int] = model_class(config=__snake_case ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def snake_case ( self : int ): pass def _lowerCamelCase ( ): lowerCamelCase :int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): @cached_property def snake_case ( self : Union[str, Any] ): return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None @slow def snake_case ( self : Dict ): lowerCamelCase :Optional[Any] = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(__snake_case ) lowerCamelCase :Tuple = self.default_image_processor lowerCamelCase :List[str] = prepare_img() lowerCamelCase :Any = image_processor(images=__snake_case , return_tensors='''pt''' ).to(__snake_case ) # forward pass with torch.no_grad(): lowerCamelCase :str = model(**__snake_case ) # verify the logits lowerCamelCase :Tuple = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __snake_case ) lowerCamelCase :str = torch.tensor([[-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0]] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1e-4 ) )
701
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) A__ = [ """cross_validation.py""", """gradient_accumulation.py""", """local_sgd.py""", """multi_process_metrics.py""", """memory.py""", """automatic_gradient_accumulation.py""", """fsdp_with_peak_mem_tracking.py""", """deepspeed_with_config_support.py""", """megatron_lm_gpt_pretraining.py""", ] class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Any , __snake_case : str , __snake_case : bool , __snake_case : str = None , __snake_case : list = None ): lowerCamelCase :Tuple = None lowerCamelCase :Tuple = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) lowerCamelCase :Optional[int] = os.path.abspath('''examples''' ) for item in os.listdir(__snake_case ): if item not in EXCLUDE_EXAMPLES: lowerCamelCase :Optional[int] = os.path.join(__snake_case , __snake_case ) if os.path.isfile(__snake_case ) and ".py" in item_path: with self.subTest( tested_script=__snake_case , feature_script=__snake_case , tested_section='''main()''' if parser_only else '''training_function()''' , ): lowerCamelCase :Union[str, Any] = compare_against_test( os.path.join(__snake_case , __snake_case ) , __snake_case , __snake_case , __snake_case ) lowerCamelCase :int = '''\n'''.join(__snake_case ) if special_strings is not None: for string in special_strings: lowerCamelCase :int = diff.replace(__snake_case , '''''' ) self.assertEqual(__snake_case , '''''' ) def snake_case ( self : Dict ): self.one_complete_example('''complete_nlp_example.py''' , __snake_case ) self.one_complete_example('''complete_nlp_example.py''' , __snake_case ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Union[str, Any] = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) lowerCamelCase :Optional[int] = [ ''' ''' * 16 + '''{\n\n''', ''' ''' * 20 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 20 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 20 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 20 + '''"epoch": epoch,\n\n''', ''' ''' * 16 + '''},\n\n''', ''' ''' * 16 + '''step=epoch,\n''', ''' ''' * 12, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , __snake_case , __snake_case , __snake_case ) self.one_complete_example('''complete_cv_example.py''' , __snake_case , __snake_case , __snake_case ) @mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '1'} ) class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = False @classmethod def snake_case ( cls : Optional[Any] ): super().setUpClass() lowerCamelCase :Any = tempfile.mkdtemp() lowerCamelCase :Optional[int] = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) lowerCamelCase :List[str] = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def snake_case ( cls : Dict ): super().tearDownClass() shutil.rmtree(cls._tmpdir ) def snake_case ( self : int ): lowerCamelCase :Any = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def snake_case ( self : List[Any] ): lowerCamelCase :Tuple = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n ".split() lowerCamelCase :List[Any] = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def snake_case ( self : List[str] ): lowerCamelCase :Dict = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}\n ".split() lowerCamelCase :Dict = run_command(self._launch_args + testargs , return_stdout=__snake_case ) self.assertNotIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) def snake_case ( self : str ): lowerCamelCase :List[Any] = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}\n ".split() lowerCamelCase :Optional[int] = run_command(self._launch_args + testargs , return_stdout=__snake_case ) if torch.cuda.is_available(): lowerCamelCase :Union[str, Any] = torch.cuda.device_count() else: lowerCamelCase :Dict = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) else: self.assertIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) @slow def snake_case ( self : Any ): lowerCamelCase :Tuple = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): lowerCamelCase :Dict = run_command(self._launch_args + testargs , return_stdout=__snake_case ) lowerCamelCase :Tuple = re.findall('''({.+})''' , __snake_case ) lowerCamelCase :Optional[Any] = [r for r in results if '''accuracy''' in r][-1] lowerCamelCase :List[str] = ast.literal_eval(__snake_case ) self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 ) def snake_case ( self : int ): lowerCamelCase :Dict = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case ( self : Any ): with tempfile.TemporaryDirectory() as tmpdir: lowerCamelCase :Tuple = F"\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__snake_case , '''tracking''' ) ) ) def snake_case ( self : Tuple ): lowerCamelCase :Tuple = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def snake_case ( self : Optional[Any] ): lowerCamelCase :int = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
49
0
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self : List[str] , __snake_case : str = None , __snake_case : List[str] = None , __snake_case : str = None , __snake_case : Optional[Any] = None , __snake_case : Dict = False , __snake_case : int = False , __snake_case : Union[str, Any] = None , **__snake_case : Optional[int] , ): lowerCamelCase :List[Any] = path_or_paths lowerCamelCase :Any = split if split or isinstance(__snake_case , __snake_case ) else '''train''' lowerCamelCase :Optional[Any] = features lowerCamelCase :Optional[int] = cache_dir lowerCamelCase :int = keep_in_memory lowerCamelCase :Optional[Any] = streaming lowerCamelCase :Tuple = num_proc lowerCamelCase :str = kwargs @abstractmethod def snake_case ( self : Any ): pass class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self : Any , __snake_case : int = None , __snake_case : int = None , __snake_case : Dict = False , __snake_case : Optional[Any] = False , __snake_case : int = None , **__snake_case : Optional[int] , ): lowerCamelCase :int = features lowerCamelCase :List[Any] = cache_dir lowerCamelCase :str = keep_in_memory lowerCamelCase :Optional[Any] = streaming lowerCamelCase :Optional[int] = num_proc lowerCamelCase :int = kwargs @abstractmethod def snake_case ( self : List[str] ): pass
702
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs A__ = imread(R"""digital_image_processing/image_data/lena_small.jpg""") A__ = cvtColor(img, COLOR_BGR2GRAY) def _lowerCamelCase ( ): lowerCamelCase :int = cn.convert_to_negative(a_) # assert negative_img array for at least one True assert negative_img.any() def _lowerCamelCase ( ): with Image.open('''digital_image_processing/image_data/lena_small.jpg''') as img: # Work around assertion for response assert str(cc.change_contrast(a_ , 1_10)).startswith( '''<PIL.Image.Image image mode=RGB size=100x100 at''') def _lowerCamelCase ( ): lowerCamelCase :Optional[Any] = canny.gen_gaussian_kernel(9 , sigma=1.4) # Assert ambiguous array assert resp.all() def _lowerCamelCase ( ): lowerCamelCase :str = imread('''digital_image_processing/image_data/lena_small.jpg''' , 0) # assert ambiguous array for all == True assert canny_img.all() lowerCamelCase :Optional[Any] = canny.canny(a_) # assert canny array for at least one True assert canny_array.any() def _lowerCamelCase ( ): assert gg.gaussian_filter(a_ , 5 , sigma=0.9).all() def _lowerCamelCase ( ): # laplace diagonals lowerCamelCase :List[Any] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]]) lowerCamelCase :List[Any] = conv.img_convolve(a_ , a_).astype(a_) assert res.any() def _lowerCamelCase ( ): assert med.median_filter(a_ , 3).any() def _lowerCamelCase ( ): lowerCamelCase , lowerCamelCase :Union[str, Any] = sob.sobel_filter(a_) assert grad.any() and theta.any() def _lowerCamelCase ( ): lowerCamelCase :Dict = sp.make_sepia(a_ , 20) assert sepia.all() def _lowerCamelCase ( a_ : str = "digital_image_processing/image_data/lena_small.jpg"): lowerCamelCase :Any = bs.Burkes(imread(a_ , 1) , 1_20) burkes.process() assert burkes.output_img.any() def _lowerCamelCase ( a_ : str = "digital_image_processing/image_data/lena_small.jpg" , ): lowerCamelCase :Tuple = rs.NearestNeighbour(imread(a_ , 1) , 4_00 , 2_00) nn.process() assert nn.output.any() def _lowerCamelCase ( ): lowerCamelCase :Tuple = '''digital_image_processing/image_data/lena.jpg''' # Reading the image and converting it to grayscale. lowerCamelCase :Tuple = imread(a_ , 0) # Test for get_neighbors_pixel function() return not None lowerCamelCase :Dict = 0 lowerCamelCase :Optional[Any] = 0 lowerCamelCase :str = image[x_coordinate][y_coordinate] lowerCamelCase :Any = lbp.get_neighbors_pixel( a_ , a_ , a_ , a_) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCamelCase :int = np.zeros((image.shape[0], image.shape[1])) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0]): for j in range(0 , image.shape[1]): lowerCamelCase :Optional[int] = lbp.local_binary_value(a_ , a_ , a_) assert lbp_image.any()
49
0
from math import ceil, sqrt def _lowerCamelCase ( a_ : int = 1_00_00_00): lowerCamelCase :Tuple = 0 for outer_width in range(3 , (limit // 4) + 2): if outer_width**2 > limit: lowerCamelCase :int = max(ceil(sqrt(outer_width**2 - limit)) , 1) else: lowerCamelCase :Union[str, Any] = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(F'{solution() = }')
703
import os from math import logaa def _lowerCamelCase ( a_ : str = "base_exp.txt"): lowerCamelCase :float = 0 lowerCamelCase :Optional[int] = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(a_) , a_))): lowerCamelCase , lowerCamelCase :Optional[int] = list(map(a_ , line.split(''','''))) if x * logaa(a_) > largest: lowerCamelCase :List[Any] = x * logaa(a_) lowerCamelCase :Any = i + 1 return result if __name__ == "__main__": print(solution())
49
0
'''simple docstring''' from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class _lowerCAmelCase : def __init__( self : List[str] , __snake_case : Collection[float] | None = None ): if components is None: lowerCamelCase :Optional[Any] = [] lowerCamelCase :Dict = list(__snake_case ) def __len__( self : Dict ): return len(self.__components ) def __str__( self : Union[str, Any] ): return "(" + ",".join(map(__snake_case , self.__components ) ) + ")" def __add__( self : Optional[Any] , __snake_case : Vector ): lowerCamelCase :Any = len(self ) if size == len(__snake_case ): lowerCamelCase :Tuple = [self.__components[i] + other.component(__snake_case ) for i in range(__snake_case )] return Vector(__snake_case ) else: raise Exception('''must have the same size''' ) def __sub__( self : Any , __snake_case : Vector ): lowerCamelCase :Dict = len(self ) if size == len(__snake_case ): lowerCamelCase :List[str] = [self.__components[i] - other.component(__snake_case ) for i in range(__snake_case )] return Vector(__snake_case ) else: # error case raise Exception('''must have the same size''' ) @overload def __mul__( self : Any , __snake_case : float ): ... @overload def __mul__( self : Optional[int] , __snake_case : Vector ): ... def __mul__( self : int , __snake_case : float | Vector ): if isinstance(__snake_case , (float, int) ): lowerCamelCase :List[str] = [c * other for c in self.__components] return Vector(__snake_case ) elif isinstance(__snake_case , __snake_case ) and len(self ) == len(__snake_case ): lowerCamelCase :Any = len(self ) lowerCamelCase :Any = [self.__components[i] * other.component(__snake_case ) for i in range(__snake_case )] return sum(__snake_case ) else: # error case raise Exception('''invalid operand!''' ) def snake_case ( self : Optional[int] ): return Vector(self.__components ) def snake_case ( self : Dict , __snake_case : int ): if isinstance(__snake_case , __snake_case ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('''index out of range''' ) def snake_case ( self : Union[str, Any] , __snake_case : int , __snake_case : float ): assert -len(self.__components ) <= pos < len(self.__components ) lowerCamelCase :Any = value def snake_case ( self : str ): if len(self.__components ) == 0: raise Exception('''Vector is empty''' ) lowerCamelCase :Optional[Any] = [c**2 for c in self.__components] return math.sqrt(sum(__snake_case ) ) def snake_case ( self : Dict , __snake_case : Vector , __snake_case : bool = False ): lowerCamelCase :Dict = self * other lowerCamelCase :Any = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def _lowerCamelCase ( a_ : int): assert isinstance(_lowerCamelCase , _lowerCamelCase) return Vector([0] * dimension) def _lowerCamelCase ( a_ : int , a_ : int): assert isinstance(_lowerCamelCase , _lowerCamelCase) and (isinstance(_lowerCamelCase , _lowerCamelCase)) lowerCamelCase :str = [0] * dimension lowerCamelCase :Union[str, Any] = 1 return Vector(_lowerCamelCase) def _lowerCamelCase ( a_ : float , a_ : Vector , a_ : Vector): assert ( isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) and (isinstance(_lowerCamelCase , (int, float))) ) return x * scalar + y def _lowerCamelCase ( a_ : int , a_ : int , a_ : int): random.seed(_lowerCamelCase) lowerCamelCase :Optional[Any] = [random.randint(_lowerCamelCase , _lowerCamelCase) for _ in range(_lowerCamelCase)] return Vector(_lowerCamelCase) class _lowerCAmelCase : def __init__( self : Optional[Any] , __snake_case : list[list[float]] , __snake_case : int , __snake_case : int ): lowerCamelCase :Optional[int] = matrix lowerCamelCase :Dict = w lowerCamelCase :int = h def __str__( self : int ): lowerCamelCase :Optional[int] = "" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : Optional[Any] , __snake_case : Matrix ): if self.__width == other.width() and self.__height == other.height(): lowerCamelCase :Union[str, Any] = [] for i in range(self.__height ): lowerCamelCase :Any = [ self.__matrix[i][j] + other.component(__snake_case , __snake_case ) for j in range(self.__width ) ] matrix.append(__snake_case ) return Matrix(__snake_case , self.__width , self.__height ) else: raise Exception('''matrix must have the same dimension!''' ) def __sub__( self : int , __snake_case : Matrix ): if self.__width == other.width() and self.__height == other.height(): lowerCamelCase :Tuple = [] for i in range(self.__height ): lowerCamelCase :List[Any] = [ self.__matrix[i][j] - other.component(__snake_case , __snake_case ) for j in range(self.__width ) ] matrix.append(__snake_case ) return Matrix(__snake_case , self.__width , self.__height ) else: raise Exception('''matrices must have the same dimension!''' ) @overload def __mul__( self : Tuple , __snake_case : float ): ... @overload def __mul__( self : int , __snake_case : Vector ): ... def __mul__( self : Dict , __snake_case : float | Vector ): if isinstance(__snake_case , __snake_case ): # matrix-vector if len(__snake_case ) == self.__width: lowerCamelCase :Tuple = zero_vector(self.__height ) for i in range(self.__height ): lowerCamelCase :Optional[int] = [ self.__matrix[i][j] * other.component(__snake_case ) for j in range(self.__width ) ] ans.change_component(__snake_case , sum(__snake_case ) ) return ans else: raise Exception( '''vector must have the same size as the ''' '''number of columns of the matrix!''' ) elif isinstance(__snake_case , (int, float) ): # matrix-scalar lowerCamelCase :List[str] = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(__snake_case , self.__width , self.__height ) return None def snake_case ( self : List[str] ): return self.__height def snake_case ( self : int ): return self.__width def snake_case ( self : str , __snake_case : int , __snake_case : int ): if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('''change_component: indices out of bounds''' ) def snake_case ( self : Any , __snake_case : int , __snake_case : int , __snake_case : float ): if 0 <= x < self.__height and 0 <= y < self.__width: lowerCamelCase :Dict = value else: raise Exception('''change_component: indices out of bounds''' ) def snake_case ( self : Optional[Any] , __snake_case : int , __snake_case : int ): if self.__height != self.__width: raise Exception('''Matrix is not square''' ) lowerCamelCase :Union[str, Any] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(__snake_case ) ): lowerCamelCase :Any = minor[i][:y] + minor[i][y + 1 :] return Matrix(__snake_case , self.__width - 1 , self.__height - 1 ).determinant() def snake_case ( self : Dict , __snake_case : int , __snake_case : int ): if self.__height != self.__width: raise Exception('''Matrix is not square''' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(__snake_case , __snake_case ) else: raise Exception('''Indices out of bounds''' ) def snake_case ( self : List[str] ): if self.__height != self.__width: raise Exception('''Matrix is not square''' ) if self.__height < 1: raise Exception('''Matrix has no element''' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: lowerCamelCase :Dict = [ self.__matrix[0][y] * self.cofactor(0 , __snake_case ) for y in range(self.__width ) ] return sum(__snake_case ) def _lowerCamelCase ( a_ : int): lowerCamelCase :list[list[float]] = [[0] * n for _ in range(_lowerCamelCase)] return Matrix(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) def _lowerCamelCase ( a_ : int , a_ : int , a_ : int , a_ : int): random.seed(_lowerCamelCase) lowerCamelCase :list[list[float]] = [ [random.randint(_lowerCamelCase , _lowerCamelCase) for _ in range(_lowerCamelCase)] for _ in range(_lowerCamelCase) ] return Matrix(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
704
def _lowerCamelCase ( a_ : list): if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''') for cell_n in range(1 , len(grid[0])): grid[0][cell_n] += grid[0][cell_n - 1] lowerCamelCase :Any = grid[0] for row_n in range(1 , len(a_)): lowerCamelCase :List[str] = grid[row_n] lowerCamelCase :Union[str, Any] = fill_row(a_ , a_) lowerCamelCase :List[Any] = grid[row_n] return grid[-1][-1] def _lowerCamelCase ( a_ : list , a_ : list): current_row[0] += row_above[0] for cell_n in range(1 , len(a_)): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n]) return current_row if __name__ == "__main__": import doctest doctest.testmod()
49
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType A__ = logging.get_logger(__name__) A__ = { """microsoft/deberta-v2-xlarge""": """https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json""", """microsoft/deberta-v2-xxlarge""": """https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json""", """microsoft/deberta-v2-xlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json""" ), """microsoft/deberta-v2-xxlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json""" ), } class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'deberta-v2' def __init__( self : Optional[Any] , __snake_case : Union[str, Any]=128100 , __snake_case : Optional[int]=1536 , __snake_case : Dict=24 , __snake_case : int=24 , __snake_case : Tuple=6144 , __snake_case : Union[str, Any]="gelu" , __snake_case : List[Any]=0.1 , __snake_case : Dict=0.1 , __snake_case : int=512 , __snake_case : int=0 , __snake_case : int=0.0_2 , __snake_case : int=1e-7 , __snake_case : List[str]=False , __snake_case : Union[str, Any]=-1 , __snake_case : List[Any]=0 , __snake_case : Optional[Any]=True , __snake_case : Tuple=None , __snake_case : Any=0 , __snake_case : int="gelu" , **__snake_case : Any , ): super().__init__(**_a ) lowerCamelCase :Union[str, Any] = hidden_size lowerCamelCase :Dict = num_hidden_layers lowerCamelCase :Union[str, Any] = num_attention_heads lowerCamelCase :List[Any] = intermediate_size lowerCamelCase :List[Any] = hidden_act lowerCamelCase :Optional[int] = hidden_dropout_prob lowerCamelCase :Dict = attention_probs_dropout_prob lowerCamelCase :int = max_position_embeddings lowerCamelCase :Any = type_vocab_size lowerCamelCase :List[Any] = initializer_range lowerCamelCase :int = relative_attention lowerCamelCase :Tuple = max_relative_positions lowerCamelCase :int = pad_token_id lowerCamelCase :Tuple = position_biased_input # Backwards compatibility if type(_a ) == str: lowerCamelCase :str = [x.strip() for x in pos_att_type.lower().split('''|''' )] lowerCamelCase :Any = pos_att_type lowerCamelCase :Optional[int] = vocab_size lowerCamelCase :Tuple = layer_norm_eps lowerCamelCase :Any = kwargs.get('''pooler_hidden_size''' , _a ) lowerCamelCase :Union[str, Any] = pooler_dropout lowerCamelCase :List[Any] = pooler_hidden_act class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): @property def snake_case ( self : Any ): if self.task == "multiple-choice": lowerCamelCase :Any = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCamelCase :Any = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)] ) else: return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)] ) @property def snake_case ( self : Optional[int] ): return 12 def snake_case ( self : int , __snake_case : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , __snake_case : int = -1 , __snake_case : int = -1 , __snake_case : int = -1 , __snake_case : bool = False , __snake_case : Optional["TensorType"] = None , __snake_case : int = 3 , __snake_case : int = 40 , __snake_case : int = 40 , __snake_case : "PreTrainedTokenizerBase" = None , ): lowerCamelCase :Any = super().generate_dummy_inputs(preprocessor=_a , framework=_a ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
705
import math def _lowerCamelCase ( a_ : int): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a_) + 1) , 6): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCamelCase ( a_ : float = 0.1): lowerCamelCase :Dict = 3 lowerCamelCase :List[Any] = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1): primes += is_prime(a_) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
49
0
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( __a , unittest.TestCase ): _UpperCAmelCase = LongformerTokenizer _UpperCAmelCase = True _UpperCAmelCase = LongformerTokenizerFast _UpperCAmelCase = True def snake_case ( self : Any ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase :List[Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] lowerCamelCase :List[str] = dict(zip(a_ , range(len(a_ ) ) ) ) lowerCamelCase :List[Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] lowerCamelCase :Any = {"""unk_token""": """<unk>"""} lowerCamelCase :int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase :Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(a_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(a_ ) ) def snake_case ( self : Union[str, Any] , **__snake_case : List[Any] ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **a_ ) def snake_case ( self : str , **__snake_case : str ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **a_ ) def snake_case ( self : Tuple , __snake_case : Tuple ): lowerCamelCase :int = """lower newer""" lowerCamelCase :Optional[int] = """lower newer""" return input_text, output_text def snake_case ( self : Optional[int] ): lowerCamelCase :Any = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCamelCase :int = """lower newer""" lowerCamelCase :Union[str, Any] = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] lowerCamelCase :int = tokenizer.tokenize(a_ ) # , add_prefix_space=True) self.assertListEqual(a_ , a_ ) lowerCamelCase :Any = tokens + [tokenizer.unk_token] lowerCamelCase :str = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , a_ ) def snake_case ( self : List[Any] ): lowerCamelCase :int = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=a_ ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=a_ ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def snake_case ( self : Optional[int] ): lowerCamelCase :Optional[int] = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) lowerCamelCase :Union[str, Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=a_ ) lowerCamelCase :Tuple = tokenizer.encode('''multi-sequence build''' , add_special_tokens=a_ ) lowerCamelCase :Tuple = tokenizer.encode( '''sequence builders''' , add_special_tokens=a_ , add_prefix_space=a_ ) lowerCamelCase :Optional[Any] = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=a_ , add_prefix_space=a_ ) lowerCamelCase :List[str] = tokenizer.build_inputs_with_special_tokens(a_ ) lowerCamelCase :Union[str, Any] = tokenizer.build_inputs_with_special_tokens(a_ , a_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def snake_case ( self : str ): lowerCamelCase :Optional[Any] = self.get_tokenizer() lowerCamelCase :Dict = """Encode this sequence.""" lowerCamelCase :Optional[Any] = tokenizer.byte_encoder[""" """.encode('''utf-8''' )[0]] # Testing encoder arguments lowerCamelCase :Union[str, Any] = tokenizer.encode(a_ , add_special_tokens=a_ , add_prefix_space=a_ ) lowerCamelCase :Optional[int] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(a_ , a_ ) lowerCamelCase :Optional[int] = tokenizer.encode(a_ , add_special_tokens=a_ , add_prefix_space=a_ ) lowerCamelCase :Optional[int] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(a_ , a_ ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) lowerCamelCase :Union[str, Any] = tokenizer.encode(a_ , add_special_tokens=a_ ) lowerCamelCase :str = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(a_ , a_ ) # Testing spaces after special tokens lowerCamelCase :List[str] = """<mask>""" tokenizer.add_special_tokens( {'''mask_token''': AddedToken(a_ , lstrip=a_ , rstrip=a_ )} ) # mask token has a left space lowerCamelCase :str = tokenizer.convert_tokens_to_ids(a_ ) lowerCamelCase :int = """Encode <mask> sequence""" lowerCamelCase :Tuple = """Encode <mask>sequence""" lowerCamelCase :List[str] = tokenizer.encode(a_ ) lowerCamelCase :Optional[int] = encoded.index(a_ ) lowerCamelCase :Tuple = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(a_ , a_ ) lowerCamelCase :Union[str, Any] = tokenizer.encode(a_ ) lowerCamelCase :Optional[int] = encoded.index(a_ ) lowerCamelCase :Any = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(a_ , a_ ) def snake_case ( self : Tuple ): pass def snake_case ( self : List[str] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase :str = self.rust_tokenizer_class.from_pretrained(a_ , **a_ ) lowerCamelCase :Dict = self.tokenizer_class.from_pretrained(a_ , **a_ ) lowerCamelCase :List[str] = """A, <mask> AllenNLP sentence.""" lowerCamelCase :Tuple = tokenizer_r.encode_plus(a_ , add_special_tokens=a_ , return_token_type_ids=a_ ) lowerCamelCase :Optional[int] = tokenizer_p.encode_plus(a_ , add_special_tokens=a_ , return_token_type_ids=a_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) lowerCamelCase :int = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) lowerCamelCase :int = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( a_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( a_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def snake_case ( self : List[str] ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): lowerCamelCase :Any = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=a_ , add_prefix_space=a_ , trim_offsets=a_ ) lowerCamelCase :Optional[Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) lowerCamelCase :Any = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , a_ ) self.assertEqual(post_processor_state['''add_prefix_space'''] , a_ ) self.assertEqual(post_processor_state['''trim_offsets'''] , a_ ) def snake_case ( self : List[str] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase :Optional[int] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` lowerCamelCase :int = F"{text_of_1_token} {text_of_1_token}" lowerCamelCase :Optional[int] = self.rust_tokenizer_class.from_pretrained( a_ , use_fast=a_ , add_prefix_space=a_ , trim_offsets=a_ ) lowerCamelCase :Dict = tokenizer_r(a_ , return_offsets_mapping=a_ , add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a_ ) + 1, len(a_ ) + 1 + len(a_ )) , ) lowerCamelCase :Union[str, Any] = self.rust_tokenizer_class.from_pretrained( a_ , use_fast=a_ , add_prefix_space=a_ , trim_offsets=a_ ) lowerCamelCase :str = tokenizer_r(a_ , return_offsets_mapping=a_ , add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a_ ) + 1, len(a_ ) + 1 + len(a_ )) , ) lowerCamelCase :Union[str, Any] = self.rust_tokenizer_class.from_pretrained( a_ , use_fast=a_ , add_prefix_space=a_ , trim_offsets=a_ ) lowerCamelCase :Dict = tokenizer_r(a_ , return_offsets_mapping=a_ , add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a_ ), len(a_ ) + 1 + len(a_ )) , ) lowerCamelCase :Tuple = self.rust_tokenizer_class.from_pretrained( a_ , use_fast=a_ , add_prefix_space=a_ , trim_offsets=a_ ) lowerCamelCase :Union[str, Any] = tokenizer_r(a_ , return_offsets_mapping=a_ , add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a_ ), len(a_ ) + 1 + len(a_ )) , ) lowerCamelCase :Tuple = F" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) lowerCamelCase :Optional[Any] = self.rust_tokenizer_class.from_pretrained( a_ , use_fast=a_ , add_prefix_space=a_ , trim_offsets=a_ ) lowerCamelCase :Union[str, Any] = tokenizer_r(a_ , return_offsets_mapping=a_ , add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(a_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a_ ) + 1, 1 + len(a_ ) + 1 + len(a_ )) , ) lowerCamelCase :Tuple = self.rust_tokenizer_class.from_pretrained( a_ , use_fast=a_ , add_prefix_space=a_ , trim_offsets=a_ ) lowerCamelCase :Any = tokenizer_r(a_ , return_offsets_mapping=a_ , add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(a_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a_ ), 1 + len(a_ ) + 1 + len(a_ )) , ) lowerCamelCase :List[str] = self.rust_tokenizer_class.from_pretrained( a_ , use_fast=a_ , add_prefix_space=a_ , trim_offsets=a_ ) lowerCamelCase :Optional[Any] = tokenizer_r(a_ , return_offsets_mapping=a_ , add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(a_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a_ ), 1 + len(a_ ) + 1 + len(a_ )) , )
706
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : str ): lowerCamelCase :int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :List[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :Optional[Any] = -1 lowerCamelCase :List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Tuple = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :str = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowerCamelCase :str = TextStreamer(__snake_case ) model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case , streamer=__snake_case ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCamelCase :Optional[int] = cs.out[:-1] self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : Dict ): lowerCamelCase :Tuple = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :int = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :List[Any] = -1 lowerCamelCase :Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Tuple = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :List[Any] = tokenizer.decode(greedy_ids[0] ) lowerCamelCase :List[str] = TextIteratorStreamer(__snake_case ) lowerCamelCase :List[str] = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} lowerCamelCase :Tuple = Thread(target=model.generate , kwargs=__snake_case ) thread.start() lowerCamelCase :Any = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : str ): lowerCamelCase :int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :Dict = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :List[str] = -1 lowerCamelCase :Optional[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Optional[Any] = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :List[str] = greedy_ids[:, input_ids.shape[1] :] lowerCamelCase :Union[str, Any] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowerCamelCase :List[str] = TextStreamer(__snake_case , skip_prompt=__snake_case ) model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case , streamer=__snake_case ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCamelCase :int = cs.out[:-1] self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : Optional[int] ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them lowerCamelCase :List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) lowerCamelCase :Union[str, Any] = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(__snake_case ) lowerCamelCase :Optional[int] = -1 lowerCamelCase :Union[str, Any] = torch.ones((1, 5) , device=__snake_case ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowerCamelCase :Dict = TextStreamer(__snake_case , skip_special_tokens=__snake_case ) model.generate(__snake_case , max_new_tokens=1 , do_sample=__snake_case , streamer=__snake_case ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowerCamelCase :Tuple = cs.out[:-1] # Remove the final "\n" lowerCamelCase :int = tokenizer(__snake_case , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def snake_case ( self : List[Any] ): lowerCamelCase :List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :Optional[int] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :Optional[int] = -1 lowerCamelCase :Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :List[Any] = TextIteratorStreamer(__snake_case , timeout=0.0_0_1 ) lowerCamelCase :Dict = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} lowerCamelCase :Tuple = Thread(target=model.generate , kwargs=__snake_case ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__snake_case ): lowerCamelCase :Dict = '''''' for new_text in streamer: streamer_text += new_text
49
0
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING A__ = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self : Union[str, Any] , *__snake_case : Any , **__snake_case : Union[str, Any] ): super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) requires_backends(self , '''vision''' ) self.check_model_type(__lowerCAmelCase ) def __call__( self : Any , __snake_case : Any , **__snake_case : List[str] ): return super().__call__(__lowerCAmelCase , **__lowerCAmelCase ) def snake_case ( self : List[str] , **__snake_case : Optional[int] ): return {}, {}, {} def snake_case ( self : List[Any] , __snake_case : List[Any] ): lowerCamelCase :Optional[Any] = load_image(__lowerCAmelCase ) lowerCamelCase :Union[str, Any] = image.size lowerCamelCase :Optional[int] = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) return model_inputs def snake_case ( self : str , __snake_case : str ): lowerCamelCase :Tuple = self.model(**__lowerCAmelCase ) return model_outputs def snake_case ( self : Dict , __snake_case : Union[str, Any] ): lowerCamelCase :Dict = model_outputs.predicted_depth lowerCamelCase :str = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='''bicubic''' , align_corners=__lowerCAmelCase ) lowerCamelCase :Optional[int] = prediction.squeeze().cpu().numpy() lowerCamelCase :Dict = (output * 255 / np.max(__lowerCAmelCase )).astype('''uint8''' ) lowerCamelCase :List[Any] = Image.fromarray(__lowerCAmelCase ) lowerCamelCase :List[str] = {} lowerCamelCase :str = predicted_depth lowerCamelCase :Optional[int] = depth return output_dict
707
from maths.prime_factors import prime_factors def _lowerCamelCase ( a_ : int): if not isinstance(a_ , a_): lowerCamelCase :Tuple = F"Input value of [number={number}] must be an integer" raise TypeError(a_) if number < 1: raise ValueError('''Input must be a positive integer''') return -1 if len(prime_factors(a_)) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
49
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/config.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/config.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json" ), "distilbert-base-uncased-finetuned-sst-2-english": ( "https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json" ), } class _lowerCAmelCase ( _UpperCAmelCase ): _UpperCAmelCase = 'distilbert' _UpperCAmelCase = { 'hidden_size': 'dim', 'num_attention_heads': 'n_heads', 'num_hidden_layers': 'n_layers', } def __init__( self : List[Any] , __snake_case : str=30522 , __snake_case : List[Any]=512 , __snake_case : Any=False , __snake_case : List[str]=6 , __snake_case : str=12 , __snake_case : Optional[Any]=768 , __snake_case : Any=4 * 768 , __snake_case : Optional[int]=0.1 , __snake_case : int=0.1 , __snake_case : Any="gelu" , __snake_case : Tuple=0.0_2 , __snake_case : List[str]=0.1 , __snake_case : Dict=0.2 , __snake_case : str=0 , **__snake_case : List[str] , ): lowerCamelCase :Dict = vocab_size lowerCamelCase :str = max_position_embeddings lowerCamelCase :Optional[Any] = sinusoidal_pos_embds lowerCamelCase :Optional[Any] = n_layers lowerCamelCase :List[Any] = n_heads lowerCamelCase :int = dim lowerCamelCase :str = hidden_dim lowerCamelCase :Optional[Any] = dropout lowerCamelCase :Any = attention_dropout lowerCamelCase :Dict = activation lowerCamelCase :Tuple = initializer_range lowerCamelCase :str = qa_dropout lowerCamelCase :List[str] = seq_classif_dropout super().__init__(**lowercase_ , pad_token_id=lowercase_ ) class _lowerCAmelCase ( _UpperCAmelCase ): @property def snake_case ( self : List[Any] ): if self.task == "multiple-choice": lowerCamelCase :Any = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCamelCase :Union[str, Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
708
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() A__ = logging.get_logger(__name__) def _lowerCamelCase ( a_ : str , a_ : str=False): lowerCamelCase :Optional[int] = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''')) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''')) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''')) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''')) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''')) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''')) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''')) for stage_idx in range(len(config.backbone_config.depths)): for layer_idx in range(config.backbone_config.depths[stage_idx]): rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias")) # transformer encoder for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight")) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias")) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight")) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias")) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight")) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias")) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight")) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias")) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight")) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias")) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ]) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCamelCase :List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''') else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ]) # fmt: on return rename_keys def _lowerCamelCase ( a_ : Any , a_ : Any , a_ : int=False): for i in range(config.num_hidden_layers): if base_model: lowerCamelCase :Union[str, Any] = '''''' else: lowerCamelCase :Optional[int] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase :Optional[Any] = state_dict.pop(F"blocks.{i}.attn.qkv.weight") lowerCamelCase :Any = state_dict.pop(F"blocks.{i}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict lowerCamelCase :Any = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase :Tuple = in_proj_bias[: config.hidden_size] lowerCamelCase :int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase :Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase :Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase :List[Any] = in_proj_bias[-config.hidden_size :] def _lowerCamelCase ( a_ : int): lowerCamelCase :Any = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(a_ , a_) def _lowerCamelCase ( a_ : int , a_ : Any , a_ : Tuple): lowerCamelCase :Optional[Any] = dct.pop(a_) lowerCamelCase :str = val def _lowerCamelCase ( ): lowerCamelCase :Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase :Tuple = Image.open(requests.get(a_ , stream=a_).raw) return im @torch.no_grad() def _lowerCamelCase ( a_ : Optional[Any] , a_ : Optional[Any] , a_ : Optional[Any]=False): lowerCamelCase :Optional[int] = BitConfig( global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=a_ , ) lowerCamelCase :Optional[int] = ViTHybridConfig(backbone_config=a_ , image_size=3_84 , num_labels=10_00) lowerCamelCase :List[Any] = False # load original model from timm lowerCamelCase :List[str] = timm.create_model(a_ , pretrained=a_) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCamelCase :List[str] = timm_model.state_dict() if base_model: remove_classification_head_(a_) lowerCamelCase :Tuple = create_rename_keys(a_ , a_) for src, dest in rename_keys: rename_key(a_ , a_ , a_) read_in_q_k_v(a_ , a_ , a_) lowerCamelCase :List[str] = '''huggingface/label-files''' lowerCamelCase :Any = '''imagenet-1k-id2label.json''' lowerCamelCase :List[Any] = json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''') , '''r''')) lowerCamelCase :Optional[Any] = {int(a_): v for k, v in idalabel.items()} lowerCamelCase :Optional[int] = idalabel lowerCamelCase :Union[str, Any] = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": lowerCamelCase :Optional[Any] = ViTHybridModel(a_).eval() else: lowerCamelCase :Dict = ViTHybridForImageClassification(a_).eval() model.load_state_dict(a_) # create image processor lowerCamelCase :Dict = create_transform(**resolve_data_config({} , model=a_)) lowerCamelCase :str = transform.transforms lowerCamelCase :int = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } lowerCamelCase :Any = ViTHybridImageProcessor( do_resize=a_ , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=a_ , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=a_ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCamelCase :Dict = prepare_img() lowerCamelCase :str = transform(a_).unsqueeze(0) lowerCamelCase :str = processor(a_ , return_tensors='''pt''').pixel_values # verify pixel values assert torch.allclose(a_ , a_) # verify logits with torch.no_grad(): lowerCamelCase :Optional[int] = model(a_) lowerCamelCase :Union[str, Any] = outputs.logits print('''Predicted class:''' , logits.argmax(-1).item()) if base_model: lowerCamelCase :Union[str, Any] = timm_model.forward_features(a_) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(a_ , outputs.pooler_output , atol=1e-3) else: lowerCamelCase :List[str] = timm_model(a_) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(a_ , outputs.logits , atol=1e-3) print('''Looks ok!''') if pytorch_dump_folder_path is not None: Path(a_).mkdir(exist_ok=a_) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}") model.save_pretrained(a_) print(F"Saving processor to {pytorch_dump_folder_path}") processor.save_pretrained(a_) if push_to_hub: print(F"Pushing model and processor to the hub {vit_name}") model.push_to_hub(F"ybelkada/{vit_name}") processor.push_to_hub(F"ybelkada/{vit_name}") if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_r50_s16_384""", type=str, help="""Name of the hybrid ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) A__ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
49
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _UpperCamelCase = { '''configuration_graphormer''': ['''GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GraphormerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GraphormerForGraphClassification''', '''GraphormerModel''', '''GraphormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
709
def _lowerCamelCase ( a_ : int = 4_00_00_00): lowerCamelCase :Dict = [0, 1] lowerCamelCase :Optional[Any] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1]) if fib[i + 2] > n: break i += 1 lowerCamelCase :Dict = 0 for j in range(len(a_) - 1): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F'{solution() = }')
49
0
import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig A__ = logging.get_logger(__name__) # General docstring A__ = '''PoolFormerConfig''' # Base docstring A__ = '''sail/poolformer_s12''' A__ = [1, 512, 7, 7] # Image classification docstring A__ = '''sail/poolformer_s12''' A__ = '''tabby, tabby cat''' A__ = [ '''sail/poolformer_s12''', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def _lowerCamelCase ( a_ : Optional[Any] , a_ : float = 0.0 , a_ : bool = False): if drop_prob == 0.0 or not training: return input lowerCamelCase :Union[str, Any] = 1 - drop_prob lowerCamelCase :Tuple = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets lowerCamelCase :Any = keep_prob + torch.rand(UpperCAmelCase__ , dtype=input.dtype , device=input.device) random_tensor.floor_() # binarize lowerCamelCase :Optional[Any] = input.div(UpperCAmelCase__) * random_tensor return output class _lowerCAmelCase ( nn.Module ): def __init__( self : Tuple , __snake_case : Optional[float] = None ): super().__init__() lowerCamelCase :Tuple = drop_prob def snake_case ( self : Union[str, Any] , __snake_case : torch.Tensor ): return drop_path(__lowerCAmelCase , self.drop_prob , self.training ) def snake_case ( self : List[str] ): return "p={}".format(self.drop_prob ) class _lowerCAmelCase ( nn.Module ): def __init__( self : Union[str, Any] , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : Dict=None ): super().__init__() lowerCamelCase :int = patch_size if isinstance(__lowerCAmelCase , collections.abc.Iterable ) else (patch_size, patch_size) lowerCamelCase :str = stride if isinstance(__lowerCAmelCase , collections.abc.Iterable ) else (stride, stride) lowerCamelCase :Union[str, Any] = padding if isinstance(__lowerCAmelCase , collections.abc.Iterable ) else (padding, padding) lowerCamelCase :Union[str, Any] = nn.Convad(__lowerCAmelCase , __lowerCAmelCase , kernel_size=__lowerCAmelCase , stride=__lowerCAmelCase , padding=__lowerCAmelCase ) lowerCamelCase :Union[str, Any] = norm_layer(__lowerCAmelCase ) if norm_layer else nn.Identity() def snake_case ( self : List[str] , __snake_case : Union[str, Any] ): lowerCamelCase :Union[str, Any] = self.projection(__lowerCAmelCase ) lowerCamelCase :Tuple = self.norm(__lowerCAmelCase ) return embeddings class _lowerCAmelCase ( nn.GroupNorm ): def __init__( self : Tuple , __snake_case : int , **__snake_case : Optional[Any] ): super().__init__(1 , __lowerCAmelCase , **__lowerCAmelCase ) class _lowerCAmelCase ( nn.Module ): def __init__( self : int , __snake_case : Optional[Any] ): super().__init__() lowerCamelCase :List[str] = nn.AvgPoolad(__lowerCAmelCase , stride=1 , padding=pool_size // 2 , count_include_pad=__lowerCAmelCase ) def snake_case ( self : Optional[Any] , __snake_case : List[Any] ): return self.pool(__lowerCAmelCase ) - hidden_states class _lowerCAmelCase ( nn.Module ): def __init__( self : Tuple , __snake_case : int , __snake_case : Optional[int] , __snake_case : Optional[int] , __snake_case : Any ): super().__init__() lowerCamelCase :Tuple = nn.Convad(__lowerCAmelCase , __lowerCAmelCase , 1 ) lowerCamelCase :List[Any] = nn.Convad(__lowerCAmelCase , __lowerCAmelCase , 1 ) lowerCamelCase :int = PoolFormerDropPath(__lowerCAmelCase ) if isinstance(config.hidden_act , __lowerCAmelCase ): lowerCamelCase :Dict = ACTaFN[config.hidden_act] else: lowerCamelCase :List[str] = config.hidden_act def snake_case ( self : Tuple , __snake_case : List[str] ): lowerCamelCase :Optional[Any] = self.conva(__lowerCAmelCase ) lowerCamelCase :Tuple = self.act_fn(__lowerCAmelCase ) lowerCamelCase :str = self.drop(__lowerCAmelCase ) lowerCamelCase :List[str] = self.conva(__lowerCAmelCase ) lowerCamelCase :List[Any] = self.drop(__lowerCAmelCase ) return hidden_states class _lowerCAmelCase ( nn.Module ): def __init__( self : Dict , __snake_case : Optional[Any] , __snake_case : int , __snake_case : Dict , __snake_case : Dict , __snake_case : Tuple , __snake_case : Union[str, Any] ): super().__init__() lowerCamelCase :Tuple = PoolFormerPooling(__lowerCAmelCase ) lowerCamelCase :str = PoolFormerOutput(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase :int = PoolFormerGroupNorm(__lowerCAmelCase ) lowerCamelCase :List[str] = PoolFormerGroupNorm(__lowerCAmelCase ) # Useful for training neural nets lowerCamelCase :List[Any] = PoolFormerDropPath(__lowerCAmelCase ) if drop_path > 0.0 else nn.Identity() lowerCamelCase :Any = config.use_layer_scale if config.use_layer_scale: lowerCamelCase :Optional[int] = nn.Parameter( config.layer_scale_init_value * torch.ones((__lowerCAmelCase) ) , requires_grad=__lowerCAmelCase ) lowerCamelCase :Optional[Any] = nn.Parameter( config.layer_scale_init_value * torch.ones((__lowerCAmelCase) ) , requires_grad=__lowerCAmelCase ) def snake_case ( self : Dict , __snake_case : Dict ): if self.use_layer_scale: lowerCamelCase :Union[str, Any] = self.pooling(self.before_norm(__lowerCAmelCase ) ) lowerCamelCase :List[Any] = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection lowerCamelCase :str = hidden_states + self.drop_path(__lowerCAmelCase ) lowerCamelCase :List[str] = () lowerCamelCase :List[str] = self.output(self.after_norm(__lowerCAmelCase ) ) lowerCamelCase :Optional[int] = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection lowerCamelCase :List[Any] = hidden_states + self.drop_path(__lowerCAmelCase ) lowerCamelCase :int = (output,) + outputs return outputs else: lowerCamelCase :Optional[int] = self.drop_path(self.pooling(self.before_norm(__lowerCAmelCase ) ) ) # First residual connection lowerCamelCase :Optional[int] = pooling_output + hidden_states lowerCamelCase :Optional[int] = () # Second residual connection inside the PoolFormerOutput block lowerCamelCase :Tuple = self.drop_path(self.output(self.after_norm(__lowerCAmelCase ) ) ) lowerCamelCase :Optional[int] = hidden_states + layer_output lowerCamelCase :Dict = (output,) + outputs return outputs class _lowerCAmelCase ( nn.Module ): def __init__( self : Any , __snake_case : Dict ): super().__init__() lowerCamelCase :Optional[Any] = config # stochastic depth decay rule lowerCamelCase :List[Any] = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings lowerCamelCase :List[str] = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) lowerCamelCase :str = nn.ModuleList(__lowerCAmelCase ) # Transformer blocks lowerCamelCase :Optional[Any] = [] lowerCamelCase :int = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers lowerCamelCase :int = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( __lowerCAmelCase , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(__lowerCAmelCase ) ) lowerCamelCase :Optional[Any] = nn.ModuleList(__lowerCAmelCase ) def snake_case ( self : Any , __snake_case : Dict , __snake_case : Optional[Any]=False , __snake_case : List[str]=True ): lowerCamelCase :Any = () if output_hidden_states else None lowerCamelCase :Optional[int] = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): lowerCamelCase , lowerCamelCase :str = layers # Get patch embeddings from hidden_states lowerCamelCase :Dict = embedding_layer(__lowerCAmelCase ) # Send the embeddings through the blocks for _, blk in enumerate(__lowerCAmelCase ): lowerCamelCase :List[Any] = blk(__lowerCAmelCase ) lowerCamelCase :Any = layer_outputs[0] if output_hidden_states: lowerCamelCase :int = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=__lowerCAmelCase , hidden_states=__lowerCAmelCase ) class _lowerCAmelCase ( UpperCAmelCase__ ): _UpperCAmelCase = PoolFormerConfig _UpperCAmelCase = 'poolformer' _UpperCAmelCase = 'pixel_values' _UpperCAmelCase = True def snake_case ( self : List[str] , __snake_case : List[str] ): if isinstance(__lowerCAmelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__lowerCAmelCase , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def snake_case ( self : Optional[int] , __snake_case : Optional[int] , __snake_case : Optional[Any]=False ): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowerCamelCase :Dict = value A__ = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' A__ = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`PoolFormerImageProcessor.__call__`] for details. ''' @add_start_docstrings( 'The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.' , UpperCAmelCase__ , ) class _lowerCAmelCase ( UpperCAmelCase__ ): def __init__( self : Any , __snake_case : Union[str, Any] ): super().__init__(__lowerCAmelCase ) lowerCamelCase :Optional[int] = config lowerCamelCase :int = PoolFormerEncoder(__lowerCAmelCase ) # Initialize weights and apply final processing self.post_init() def snake_case ( self : List[Any] ): return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(__lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def snake_case ( self : int , __snake_case : Optional[torch.FloatTensor] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , ): lowerCamelCase :Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCamelCase :Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) lowerCamelCase :int = self.encoder( __lowerCAmelCase , output_hidden_states=__lowerCAmelCase , return_dict=__lowerCAmelCase , ) lowerCamelCase :Dict = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=__lowerCAmelCase , hidden_states=encoder_outputs.hidden_states , ) class _lowerCAmelCase ( nn.Module ): def __init__( self : Union[str, Any] , __snake_case : Any ): super().__init__() lowerCamelCase :Optional[Any] = nn.Linear(config.hidden_size , config.hidden_size ) def snake_case ( self : int , __snake_case : List[Any] ): lowerCamelCase :Optional[int] = self.dense(__lowerCAmelCase ) return output @add_start_docstrings( '\n PoolFormer Model transformer with an image classification head on top\n ' , UpperCAmelCase__ , ) class _lowerCAmelCase ( UpperCAmelCase__ ): def __init__( self : Dict , __snake_case : Optional[int] ): super().__init__(__lowerCAmelCase ) lowerCamelCase :Tuple = config.num_labels lowerCamelCase :Tuple = PoolFormerModel(__lowerCAmelCase ) # Final norm lowerCamelCase :Optional[int] = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head lowerCamelCase :Union[str, Any] = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def snake_case ( self : Union[str, Any] , __snake_case : Optional[torch.FloatTensor] = None , __snake_case : Optional[torch.LongTensor] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , ): lowerCamelCase :Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase :List[Any] = self.poolformer( __lowerCAmelCase , output_hidden_states=__lowerCAmelCase , return_dict=__lowerCAmelCase , ) lowerCamelCase :str = outputs[0] lowerCamelCase :str = self.classifier(self.norm(__lowerCAmelCase ).mean([-2, -1] ) ) lowerCamelCase :str = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowerCamelCase :List[str] = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowerCamelCase :Tuple = '''single_label_classification''' else: lowerCamelCase :Optional[int] = '''multi_label_classification''' if self.config.problem_type == "regression": lowerCamelCase :Optional[int] = MSELoss() if self.num_labels == 1: lowerCamelCase :Optional[Any] = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowerCamelCase :int = loss_fct(__lowerCAmelCase , __lowerCAmelCase ) elif self.config.problem_type == "single_label_classification": lowerCamelCase :Optional[Any] = CrossEntropyLoss() lowerCamelCase :List[Any] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowerCamelCase :str = BCEWithLogitsLoss() lowerCamelCase :Dict = loss_fct(__lowerCAmelCase , __lowerCAmelCase ) if not return_dict: lowerCamelCase :Optional[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__lowerCAmelCase , logits=__lowerCAmelCase , hidden_states=outputs.hidden_states )
710
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ = { """configuration_nllb_moe""": [ """NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NllbMoeConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""", """NllbMoeForConditionalGeneration""", """NllbMoeModel""", """NllbMoePreTrainedModel""", """NllbMoeTop2Router""", """NllbMoeSparseMLP""", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
49
0
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A__ = logging.get_logger(__name__) A__ = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } A__ = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } A__ = {"""facebook/blenderbot_small-90M""": 512} def _lowerCamelCase ( a_ : List[str]): lowerCamelCase :Tuple = set() lowerCamelCase :str = word[0] for char in word[1:]: pairs.add((prev_char, char)) lowerCamelCase :List[Any] = char lowerCamelCase :Any = set(_snake_case) return pairs class _lowerCAmelCase ( __UpperCAmelCase ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ["""input_ids""", """attention_mask"""] def __init__( self : Tuple , __snake_case : Any , __snake_case : Optional[int] , __snake_case : List[str]="__start__" , __snake_case : str="__end__" , __snake_case : Union[str, Any]="__unk__" , __snake_case : Optional[int]="__null__" , **__snake_case : Union[str, Any] , ): super().__init__(unk_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , **UpperCAmelCase_ ) with open(UpperCAmelCase_ , encoding='''utf-8''' ) as vocab_handle: lowerCamelCase :Dict = json.load(UpperCAmelCase_ ) lowerCamelCase :int = {v: k for k, v in self.encoder.items()} with open(UpperCAmelCase_ , encoding='''utf-8''' ) as merges_handle: lowerCamelCase :int = merges_handle.read().split('''\n''' )[1:-1] lowerCamelCase :Optional[Any] = [tuple(merge.split() ) for merge in merges] lowerCamelCase :Union[str, Any] = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) lowerCamelCase :Tuple = {} @property def snake_case ( self : Tuple ): return len(self.encoder ) def snake_case ( self : List[Any] ): return dict(self.encoder , **self.added_tokens_encoder ) def snake_case ( self : str , __snake_case : Optional[Any] ): if token in self.cache: return self.cache[token] lowerCamelCase :List[str] = re.sub('''([.,!?()])''' , R''' \1''' , UpperCAmelCase_ ) lowerCamelCase :Optional[Any] = re.sub('''(\')''' , R''' \1 ''' , UpperCAmelCase_ ) lowerCamelCase :Optional[int] = re.sub(R'''\s{2,}''' , ''' ''' , UpperCAmelCase_ ) if "\n" in token: lowerCamelCase :List[Any] = token.replace('''\n''' , ''' __newln__''' ) lowerCamelCase :str = token.split(''' ''' ) lowerCamelCase :Dict = [] for token in tokens: if not len(UpperCAmelCase_ ): continue lowerCamelCase :Tuple = token.lower() lowerCamelCase :List[Any] = tuple(UpperCAmelCase_ ) lowerCamelCase :Union[str, Any] = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) lowerCamelCase :Union[str, Any] = get_pairs(UpperCAmelCase_ ) if not pairs: words.append(UpperCAmelCase_ ) continue while True: lowerCamelCase :List[Any] = min(UpperCAmelCase_ , key=lambda __snake_case : self.bpe_ranks.get(UpperCAmelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase , lowerCamelCase :int = bigram lowerCamelCase :Any = [] lowerCamelCase :List[Any] = 0 while i < len(UpperCAmelCase_ ): try: lowerCamelCase :Optional[Any] = word.index(UpperCAmelCase_ , UpperCAmelCase_ ) new_word.extend(word[i:j] ) lowerCamelCase :str = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(UpperCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase :Tuple = tuple(UpperCAmelCase_ ) lowerCamelCase :Union[str, Any] = new_word if len(UpperCAmelCase_ ) == 1: break else: lowerCamelCase :Union[str, Any] = get_pairs(UpperCAmelCase_ ) lowerCamelCase :str = '''@@ '''.join(UpperCAmelCase_ ) lowerCamelCase :List[str] = word[:-4] lowerCamelCase :List[Any] = word words.append(UpperCAmelCase_ ) return " ".join(UpperCAmelCase_ ) def snake_case ( self : Dict , __snake_case : Dict ): lowerCamelCase :Dict = [] lowerCamelCase :Optional[int] = re.findall(R'''\S+\n?''' , UpperCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(UpperCAmelCase_ ).split(''' ''' ) ) ) return split_tokens def snake_case ( self : List[Any] , __snake_case : Tuple ): lowerCamelCase :List[str] = token.lower() return self.encoder.get(UpperCAmelCase_ , self.encoder.get(self.unk_token ) ) def snake_case ( self : Optional[Any] , __snake_case : Dict ): return self.decoder.get(UpperCAmelCase_ , self.unk_token ) def snake_case ( self : str , __snake_case : Optional[int] ): lowerCamelCase :List[str] = ''' '''.join(UpperCAmelCase_ ).replace('''@@ ''' , '''''' ).strip() return out_string def snake_case ( self : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] = None ): if not os.path.isdir(UpperCAmelCase_ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return lowerCamelCase :Any = os.path.join( UpperCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase :Union[str, Any] = os.path.join( UpperCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(UpperCAmelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_ ) + '''\n''' ) lowerCamelCase :List[Any] = 0 with open(UpperCAmelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __snake_case : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ''' Please check that the tokenizer is not corrupted!''' ) lowerCamelCase :int = token_index writer.write(''' '''.join(UpperCAmelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file
711
import numpy class _lowerCAmelCase : def __init__( self : Dict , __snake_case : numpy.ndarray , __snake_case : numpy.ndarray ): lowerCamelCase :Dict = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. lowerCamelCase :Dict = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. lowerCamelCase :Dict = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. lowerCamelCase :Any = numpy.random.rand(3 , 1 ) # Real output values provided. lowerCamelCase :Union[str, Any] = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. lowerCamelCase :List[str] = numpy.zeros(output_array.shape ) def snake_case ( self : Optional[int] ): lowerCamelCase :Any = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. lowerCamelCase :Any = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. lowerCamelCase :Dict = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def snake_case ( self : Any ): lowerCamelCase :Union[str, Any] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) lowerCamelCase :Dict = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) lowerCamelCase :int = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def snake_case ( self : Dict , __snake_case : numpy.ndarray , __snake_case : int , __snake_case : bool ): for iteration in range(1 , iterations + 1 ): lowerCamelCase :Union[str, Any] = self.feedforward() self.back_propagation() if give_loss: lowerCamelCase :Tuple = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"Iteration {iteration} Loss: {loss}" ) def snake_case ( self : Optional[int] , __snake_case : numpy.ndarray ): lowerCamelCase :int = input_arr lowerCamelCase :Union[str, Any] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) lowerCamelCase :Optional[Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) lowerCamelCase :Optional[int] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def _lowerCamelCase ( a_ : numpy.ndarray): return 1 / (1 + numpy.exp(-value)) def _lowerCamelCase ( a_ : numpy.ndarray): return (value) * (1 - (value)) def _lowerCamelCase ( ): lowerCamelCase :Optional[Any] = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. lowerCamelCase :int = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa) # Calling neural network class. lowerCamelCase :List[Any] = TwoHiddenLayerNeuralNetwork( input_array=a_ , output_array=a_) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=a_ , iterations=10 , give_loss=a_) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa)) if __name__ == "__main__": example()
49
0
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class _lowerCAmelCase ( UpperCamelCase_ ): _UpperCAmelCase = 4_2 class _lowerCAmelCase ( nn.Module ): def __init__( self : List[Any] , __snake_case : int=3 , __snake_case : Optional[int]=3 , __snake_case : Union[str, Any]=("DownEncoderBlock2D",) , __snake_case : Tuple=(64,) , __snake_case : List[str]=2 , __snake_case : Union[str, Any]=32 , __snake_case : str="silu" , __snake_case : int=True , ): super().__init__() lowerCamelCase :int = layers_per_block lowerCamelCase :Dict = torch.nn.Convad( UpperCamelCase__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) lowerCamelCase :Optional[Any] = None lowerCamelCase :Union[str, Any] = nn.ModuleList([] ) # down lowerCamelCase :Union[str, Any] = block_out_channels[0] for i, down_block_type in enumerate(UpperCamelCase__ ): lowerCamelCase :Optional[int] = output_channel lowerCamelCase :List[str] = block_out_channels[i] lowerCamelCase :Tuple = i == len(UpperCamelCase__ ) - 1 lowerCamelCase :Any = get_down_block( UpperCamelCase__ , num_layers=self.layers_per_block , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) self.down_blocks.append(UpperCamelCase__ ) # mid lowerCamelCase :Optional[int] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift='''default''' , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # out lowerCamelCase :Any = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=UpperCamelCase__ , eps=1e-6 ) lowerCamelCase :Optional[int] = nn.SiLU() lowerCamelCase :int = 2 * out_channels if double_z else out_channels lowerCamelCase :int = nn.Convad(block_out_channels[-1] , UpperCamelCase__ , 3 , padding=1 ) lowerCamelCase :List[Any] = False def snake_case ( self : Tuple , __snake_case : List[str] ): lowerCamelCase :Any = x lowerCamelCase :Tuple = self.conv_in(UpperCamelCase__ ) if self.training and self.gradient_checkpointing: def create_custom_forward(__snake_case : Union[str, Any] ): def custom_forward(*__snake_case : List[str] ): return module(*UpperCamelCase__ ) return custom_forward # down if is_torch_version('''>=''' , '''1.11.0''' ): for down_block in self.down_blocks: lowerCamelCase :Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) # middle lowerCamelCase :Any = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: for down_block in self.down_blocks: lowerCamelCase :Union[str, Any] = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ ) # middle lowerCamelCase :Tuple = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , UpperCamelCase__ ) else: # down for down_block in self.down_blocks: lowerCamelCase :str = down_block(UpperCamelCase__ ) # middle lowerCamelCase :Optional[Any] = self.mid_block(UpperCamelCase__ ) # post-process lowerCamelCase :Dict = self.conv_norm_out(UpperCamelCase__ ) lowerCamelCase :Union[str, Any] = self.conv_act(UpperCamelCase__ ) lowerCamelCase :Any = self.conv_out(UpperCamelCase__ ) return sample class _lowerCAmelCase ( nn.Module ): def __init__( self : List[str] , __snake_case : int=3 , __snake_case : Optional[Any]=3 , __snake_case : Any=("UpDecoderBlock2D",) , __snake_case : Union[str, Any]=(64,) , __snake_case : List[Any]=2 , __snake_case : Optional[int]=32 , __snake_case : List[Any]="silu" , __snake_case : Optional[Any]="group" , ): super().__init__() lowerCamelCase :Dict = layers_per_block lowerCamelCase :List[Any] = nn.Convad( UpperCamelCase__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) lowerCamelCase :List[str] = None lowerCamelCase :Tuple = nn.ModuleList([] ) lowerCamelCase :int = in_channels if norm_type == '''spatial''' else None # mid lowerCamelCase :Any = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift='''default''' if norm_type == '''group''' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # up lowerCamelCase :int = list(reversed(UpperCamelCase__ ) ) lowerCamelCase :List[Any] = reversed_block_out_channels[0] for i, up_block_type in enumerate(UpperCamelCase__ ): lowerCamelCase :List[str] = output_channel lowerCamelCase :Optional[int] = reversed_block_out_channels[i] lowerCamelCase :int = i == len(UpperCamelCase__ ) - 1 lowerCamelCase :Dict = get_up_block( UpperCamelCase__ , num_layers=self.layers_per_block + 1 , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , prev_output_channel=UpperCamelCase__ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , resnet_time_scale_shift=UpperCamelCase__ , ) self.up_blocks.append(UpperCamelCase__ ) lowerCamelCase :Optional[int] = output_channel # out if norm_type == "spatial": lowerCamelCase :List[str] = SpatialNorm(block_out_channels[0] , UpperCamelCase__ ) else: lowerCamelCase :List[Any] = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=UpperCamelCase__ , eps=1e-6 ) lowerCamelCase :List[Any] = nn.SiLU() lowerCamelCase :str = nn.Convad(block_out_channels[0] , UpperCamelCase__ , 3 , padding=1 ) lowerCamelCase :Any = False def snake_case ( self : Optional[int] , __snake_case : Any , __snake_case : Dict=None ): lowerCamelCase :int = z lowerCamelCase :Any = self.conv_in(UpperCamelCase__ ) lowerCamelCase :Any = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__snake_case : Optional[int] ): def custom_forward(*__snake_case : Dict ): return module(*UpperCamelCase__ ) return custom_forward if is_torch_version('''>=''' , '''1.11.0''' ): # middle lowerCamelCase :List[str] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) lowerCamelCase :Optional[int] = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: lowerCamelCase :List[str] = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: # middle lowerCamelCase :Dict = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase :List[str] = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: lowerCamelCase :Tuple = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ ) else: # middle lowerCamelCase :Optional[Any] = self.mid_block(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase :Optional[int] = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: lowerCamelCase :Any = up_block(UpperCamelCase__ , UpperCamelCase__ ) # post-process if latent_embeds is None: lowerCamelCase :str = self.conv_norm_out(UpperCamelCase__ ) else: lowerCamelCase :Dict = self.conv_norm_out(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase :str = self.conv_act(UpperCamelCase__ ) lowerCamelCase :Union[str, Any] = self.conv_out(UpperCamelCase__ ) return sample class _lowerCAmelCase ( nn.Module ): def __init__( self : int , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : List[Any] , __snake_case : Optional[Any]=None , __snake_case : Tuple="random" , __snake_case : Dict=False , __snake_case : Optional[Any]=True ): super().__init__() lowerCamelCase :Optional[Any] = n_e lowerCamelCase :Tuple = vq_embed_dim lowerCamelCase :Union[str, Any] = beta lowerCamelCase :List[str] = legacy lowerCamelCase :Dict = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) lowerCamelCase :str = remap if self.remap is not None: self.register_buffer('''used''' , torch.tensor(np.load(self.remap ) ) ) lowerCamelCase :Union[str, Any] = self.used.shape[0] lowerCamelCase :List[str] = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": lowerCamelCase :List[str] = self.re_embed lowerCamelCase :Tuple = self.re_embed + 1 print( F"Remapping {self.n_e} indices to {self.re_embed} indices. " F"Using {self.unknown_index} for unknown indices." ) else: lowerCamelCase :Dict = n_e lowerCamelCase :int = sane_index_shape def snake_case ( self : Tuple , __snake_case : Union[str, Any] ): lowerCamelCase :Union[str, Any] = inds.shape assert len(UpperCamelCase__ ) > 1 lowerCamelCase :Optional[int] = inds.reshape(ishape[0] , -1 ) lowerCamelCase :int = self.used.to(UpperCamelCase__ ) lowerCamelCase :List[str] = (inds[:, :, None] == used[None, None, ...]).long() lowerCamelCase :Union[str, Any] = match.argmax(-1 ) lowerCamelCase :List[Any] = match.sum(2 ) < 1 if self.unknown_index == "random": lowerCamelCase :Optional[Any] = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: lowerCamelCase :str = self.unknown_index return new.reshape(UpperCamelCase__ ) def snake_case ( self : List[str] , __snake_case : Dict ): lowerCamelCase :Optional[Any] = inds.shape assert len(UpperCamelCase__ ) > 1 lowerCamelCase :List[Any] = inds.reshape(ishape[0] , -1 ) lowerCamelCase :Optional[Any] = self.used.to(UpperCamelCase__ ) if self.re_embed > self.used.shape[0]: # extra token lowerCamelCase :Any = 0 # simply set to zero lowerCamelCase :Any = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , UpperCamelCase__ ) return back.reshape(UpperCamelCase__ ) def snake_case ( self : int , __snake_case : Dict ): lowerCamelCase :List[Any] = z.permute(0 , 2 , 3 , 1 ).contiguous() lowerCamelCase :Any = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z lowerCamelCase :Dict = torch.argmin(torch.cdist(UpperCamelCase__ , self.embedding.weight ) , dim=1 ) lowerCamelCase :List[Any] = self.embedding(UpperCamelCase__ ).view(z.shape ) lowerCamelCase :Union[str, Any] = None lowerCamelCase :Any = None # compute loss for embedding if not self.legacy: lowerCamelCase :Optional[int] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: lowerCamelCase :Union[str, Any] = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients lowerCamelCase :List[Any] = z + (z_q - z).detach() # reshape back to match original input shape lowerCamelCase :Optional[Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: lowerCamelCase :Optional[Any] = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis lowerCamelCase :Optional[Any] = self.remap_to_used(UpperCamelCase__ ) lowerCamelCase :str = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: lowerCamelCase :List[Any] = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def snake_case ( self : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Any ): if self.remap is not None: lowerCamelCase :Any = indices.reshape(shape[0] , -1 ) # add batch axis lowerCamelCase :List[str] = self.unmap_to_all(UpperCamelCase__ ) lowerCamelCase :int = indices.reshape(-1 ) # flatten again # get quantized latent vectors lowerCamelCase :Any = self.embedding(UpperCamelCase__ ) if shape is not None: lowerCamelCase :List[Any] = z_q.view(UpperCamelCase__ ) # reshape back to match original input shape lowerCamelCase :Dict = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class _lowerCAmelCase ( UpperCamelCase_ ): def __init__( self : Union[str, Any] , __snake_case : Any , __snake_case : List[str]=False ): lowerCamelCase :List[Any] = parameters lowerCamelCase :Dict = torch.chunk(UpperCamelCase__ , 2 , dim=1 ) lowerCamelCase :Any = torch.clamp(self.logvar , -3_0.0 , 2_0.0 ) lowerCamelCase :Optional[int] = deterministic lowerCamelCase :Optional[Any] = torch.exp(0.5 * self.logvar ) lowerCamelCase :Tuple = torch.exp(self.logvar ) if self.deterministic: lowerCamelCase :int = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def snake_case ( self : Any , __snake_case : Optional[torch.Generator] = None ): lowerCamelCase :int = randn_tensor( self.mean.shape , generator=UpperCamelCase__ , device=self.parameters.device , dtype=self.parameters.dtype ) lowerCamelCase :Union[str, Any] = self.mean + self.std * sample return x def snake_case ( self : str , __snake_case : str=None ): if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def snake_case ( self : List[Any] , __snake_case : Tuple , __snake_case : str=[1, 2, 3] ): if self.deterministic: return torch.Tensor([0.0] ) lowerCamelCase :Optional[Any] = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=UpperCamelCase__ ) def snake_case ( self : List[str] ): return self.mean
712
def _lowerCamelCase ( a_ : str , a_ : str): lowerCamelCase :List[str] = len(a_) lowerCamelCase :List[str] = len(a_) lowerCamelCase :int = [[False for _ in range(m + 1)] for _ in range(n + 1)] lowerCamelCase :Optional[Any] = True for i in range(a_): for j in range(m + 1): if dp[i][j]: if j < m and a[i].upper() == b[j]: lowerCamelCase :Any = True if a[i].islower(): lowerCamelCase :List[str] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
49
0
import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available A__ = logging.getLogger(__name__) @dataclass class _lowerCAmelCase : _UpperCAmelCase = 4_2 _UpperCAmelCase = 4_2 _UpperCAmelCase = 4_2 @dataclass class _lowerCAmelCase : _UpperCAmelCase = 4_2 _UpperCAmelCase = 4_2 _UpperCAmelCase = None _UpperCAmelCase = None class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'train' _UpperCAmelCase = 'dev' _UpperCAmelCase = 'test' class _lowerCAmelCase : @staticmethod def snake_case ( __snake_case : Optional[Any] , __snake_case : Optional[Any] ): raise NotImplementedError @staticmethod def snake_case ( __snake_case : List[Any] ): raise NotImplementedError @staticmethod def snake_case ( __snake_case : List[str] , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Any=False , __snake_case : Tuple="[CLS]" , __snake_case : str=1 , __snake_case : str="[SEP]" , __snake_case : Optional[Any]=False , __snake_case : List[Any]=False , __snake_case : Union[str, Any]=0 , __snake_case : Optional[int]=0 , __snake_case : List[str]=-100 , __snake_case : Union[str, Any]=0 , __snake_case : int=True , ): lowerCamelCase :Union[str, Any] = {label: i for i, label in enumerate(_SCREAMING_SNAKE_CASE )} lowerCamelCase :str = [] for ex_index, example in enumerate(_SCREAMING_SNAKE_CASE ): if ex_index % 10000 == 0: logger.info('''Writing example %d of %d''' , _SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) ) lowerCamelCase :str = [] lowerCamelCase :int = [] for word, label in zip(example.words , example.labels ): lowerCamelCase :List[str] = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(_SCREAMING_SNAKE_CASE ) > 0: tokens.extend(_SCREAMING_SNAKE_CASE ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(_SCREAMING_SNAKE_CASE ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. lowerCamelCase :Optional[int] = tokenizer.num_special_tokens_to_add() if len(_SCREAMING_SNAKE_CASE ) > max_seq_length - special_tokens_count: lowerCamelCase :Optional[Any] = tokens[: (max_seq_length - special_tokens_count)] lowerCamelCase :List[str] = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] lowerCamelCase :int = [sequence_a_segment_id] * len(_SCREAMING_SNAKE_CASE ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: lowerCamelCase :List[Any] = [cls_token] + tokens lowerCamelCase :str = [pad_token_label_id] + label_ids lowerCamelCase :Any = [cls_token_segment_id] + segment_ids lowerCamelCase :int = tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. lowerCamelCase :Optional[Any] = [1 if mask_padding_with_zero else 0] * len(_SCREAMING_SNAKE_CASE ) # Zero-pad up to the sequence length. lowerCamelCase :Tuple = max_seq_length - len(_SCREAMING_SNAKE_CASE ) if pad_on_left: lowerCamelCase :int = ([pad_token] * padding_length) + input_ids lowerCamelCase :Optional[int] = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask lowerCamelCase :Optional[int] = ([pad_token_segment_id] * padding_length) + segment_ids lowerCamelCase :int = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(_SCREAMING_SNAKE_CASE ) == max_seq_length assert len(_SCREAMING_SNAKE_CASE ) == max_seq_length assert len(_SCREAMING_SNAKE_CASE ) == max_seq_length assert len(_SCREAMING_SNAKE_CASE ) == max_seq_length if ex_index < 5: logger.info('''*** Example ***''' ) logger.info('''guid: %s''' , example.guid ) logger.info('''tokens: %s''' , ''' '''.join([str(_SCREAMING_SNAKE_CASE ) for x in tokens] ) ) logger.info('''input_ids: %s''' , ''' '''.join([str(_SCREAMING_SNAKE_CASE ) for x in input_ids] ) ) logger.info('''input_mask: %s''' , ''' '''.join([str(_SCREAMING_SNAKE_CASE ) for x in input_mask] ) ) logger.info('''segment_ids: %s''' , ''' '''.join([str(_SCREAMING_SNAKE_CASE ) for x in segment_ids] ) ) logger.info('''label_ids: %s''' , ''' '''.join([str(_SCREAMING_SNAKE_CASE ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: lowerCamelCase :Union[str, Any] = None features.append( InputFeatures( input_ids=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , label_ids=_SCREAMING_SNAKE_CASE ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 4_2 _UpperCAmelCase = nn.CrossEntropyLoss().ignore_index def __init__( self : Any , __snake_case : Any , __snake_case : Optional[Any] , __snake_case : Any , __snake_case : str , __snake_case : List[Any] , __snake_case : Dict = None , __snake_case : Union[str, Any]=False , __snake_case : List[str] = Split.train , ): lowerCamelCase :List[Any] = os.path.join( _SCREAMING_SNAKE_CASE , '''cached_{}_{}_{}'''.format(mode.value , tokenizer.__class__.__name__ , str(_SCREAMING_SNAKE_CASE ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase :Dict = cached_features_file + '''.lock''' with FileLock(_SCREAMING_SNAKE_CASE ): if os.path.exists(_SCREAMING_SNAKE_CASE ) and not overwrite_cache: logger.info(F"Loading features from cached file {cached_features_file}" ) lowerCamelCase :Any = torch.load(_SCREAMING_SNAKE_CASE ) else: logger.info(F"Creating features from dataset file at {data_dir}" ) lowerCamelCase :int = token_classification_task.read_examples_from_file(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # TODO clean up all this to leverage built-in features of tokenizers lowerCamelCase :List[Any] = token_classification_task.convert_examples_to_features( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_SCREAMING_SNAKE_CASE , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(F"Saving features into cached file {cached_features_file}" ) torch.save(self.features , _SCREAMING_SNAKE_CASE ) def __len__( self : Tuple ): return len(self.features ) def __getitem__( self : Optional[int] , __snake_case : Any ): return self.features[i] if is_tf_available(): import tensorflow as tf class _lowerCAmelCase : _UpperCAmelCase = 4_2 _UpperCAmelCase = -1_0_0 def __init__( self : List[str] , __snake_case : List[Any] , __snake_case : Any , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Optional[Any] = None , __snake_case : List[Any]=False , __snake_case : str = Split.train , ): lowerCamelCase :Union[str, Any] = token_classification_task.read_examples_from_file(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # TODO clean up all this to leverage built-in features of tokenizers lowerCamelCase :List[Any] = token_classification_task.convert_examples_to_features( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_SCREAMING_SNAKE_CASE , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: lowerCamelCase :int = tf.data.Dataset.from_generator( _SCREAMING_SNAKE_CASE , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa}, tf.intaa) , ( {'''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: lowerCamelCase :List[str] = tf.data.Dataset.from_generator( _SCREAMING_SNAKE_CASE , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa}, tf.intaa) , ( { '''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] ), '''token_type_ids''': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def snake_case ( self : Union[str, Any] ): lowerCamelCase :Optional[Any] = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : Union[str, Any] ): return len(self.features ) def __getitem__( self : Optional[int] , __snake_case : List[Any] ): return self.features[i]
713
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : def __init__( self : Any , __snake_case : Optional[int] , __snake_case : int=13 , __snake_case : str=[30, 30] , __snake_case : Tuple=2 , __snake_case : Optional[Any]=3 , __snake_case : int=True , __snake_case : Tuple=True , __snake_case : List[Any]=32 , __snake_case : int=5 , __snake_case : Optional[Any]=4 , __snake_case : Union[str, Any]=37 , __snake_case : str="gelu" , __snake_case : Tuple=0.1 , __snake_case : List[Any]=0.1 , __snake_case : Union[str, Any]=10 , __snake_case : str=0.0_2 , __snake_case : Union[str, Any]=3 , __snake_case : Union[str, Any]=None , __snake_case : List[str]=8 , __snake_case : Any=10 , ): lowerCamelCase :Optional[Any] = parent lowerCamelCase :List[Any] = batch_size lowerCamelCase :Any = image_size lowerCamelCase :Union[str, Any] = patch_size lowerCamelCase :Any = num_channels lowerCamelCase :List[Any] = is_training lowerCamelCase :Optional[Any] = use_labels lowerCamelCase :Any = hidden_size lowerCamelCase :List[Any] = num_hidden_layers lowerCamelCase :List[str] = num_attention_heads lowerCamelCase :Tuple = intermediate_size lowerCamelCase :List[str] = hidden_act lowerCamelCase :List[str] = hidden_dropout_prob lowerCamelCase :Any = attention_probs_dropout_prob lowerCamelCase :List[Any] = type_sequence_label_size lowerCamelCase :Optional[int] = initializer_range lowerCamelCase :List[Any] = num_labels lowerCamelCase :Any = scope lowerCamelCase :Union[str, Any] = n_targets lowerCamelCase :Optional[Any] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowerCamelCase :Tuple = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowerCamelCase :str = num_patches + 1 + self.num_detection_tokens def snake_case ( self : List[str] ): lowerCamelCase :str = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowerCamelCase :List[str] = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowerCamelCase :Optional[int] = [] for i in range(self.batch_size ): lowerCamelCase :List[str] = {} lowerCamelCase :Tuple = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=__snake_case ) lowerCamelCase :List[str] = torch.rand(self.n_targets , 4 , device=__snake_case ) labels.append(__snake_case ) lowerCamelCase :str = self.get_config() return config, pixel_values, labels def snake_case ( self : Union[str, Any] ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__snake_case , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def snake_case ( self : Tuple , __snake_case : Tuple , __snake_case : Tuple , __snake_case : Any ): lowerCamelCase :Optional[Any] = YolosModel(config=__snake_case ) model.to(__snake_case ) model.eval() lowerCamelCase :Union[str, Any] = model(__snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def snake_case ( self : Dict , __snake_case : str , __snake_case : Optional[int] , __snake_case : Optional[Any] ): lowerCamelCase :int = YolosForObjectDetection(__snake_case ) model.to(__snake_case ) model.eval() lowerCamelCase :str = model(pixel_values=__snake_case ) lowerCamelCase :Any = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) lowerCamelCase :int = model(pixel_values=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def snake_case ( self : int ): lowerCamelCase :List[Any] = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase :str = config_and_inputs lowerCamelCase :Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () _UpperCAmelCase = ( {'feature-extraction': YolosModel, 'object-detection': YolosForObjectDetection} if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def snake_case ( self : Any , __snake_case : List[Any] , __snake_case : Tuple , __snake_case : Dict=False ): lowerCamelCase :Optional[int] = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowerCamelCase :Dict = [] for i in range(self.model_tester.batch_size ): lowerCamelCase :Optional[Any] = {} lowerCamelCase :List[Any] = torch.ones( size=(self.model_tester.n_targets,) , device=__snake_case , dtype=torch.long ) lowerCamelCase :str = torch.ones( self.model_tester.n_targets , 4 , device=__snake_case , dtype=torch.float ) labels.append(__snake_case ) lowerCamelCase :Union[str, Any] = labels return inputs_dict def snake_case ( self : Tuple ): lowerCamelCase :Union[str, Any] = YolosModelTester(self ) lowerCamelCase :Dict = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=37 ) def snake_case ( self : Union[str, Any] ): self.config_tester.run_common_tests() def snake_case ( self : Optional[Any] ): # YOLOS does not use inputs_embeds pass def snake_case ( self : Tuple ): lowerCamelCase , lowerCamelCase :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :Optional[int] = model_class(__snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase :str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case , nn.Linear ) ) def snake_case ( self : str ): lowerCamelCase , lowerCamelCase :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :str = model_class(__snake_case ) lowerCamelCase :Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase :Tuple = [*signature.parameters.keys()] lowerCamelCase :Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __snake_case ) def snake_case ( self : int ): lowerCamelCase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def snake_case ( self : str ): lowerCamelCase , lowerCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase :int = True # in YOLOS, the seq_len is different lowerCamelCase :str = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowerCamelCase :str = True lowerCamelCase :Tuple = False lowerCamelCase :Optional[int] = True lowerCamelCase :int = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :str = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :str = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase :Optional[Any] = True lowerCamelCase :str = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :Tuple = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Tuple = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowerCamelCase :Optional[int] = len(__snake_case ) # Check attention is always last and order is fine lowerCamelCase :Union[str, Any] = True lowerCamelCase :List[Any] = True lowerCamelCase :Tuple = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :int = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Dict = 1 self.assertEqual(out_len + added_hidden_states , len(__snake_case ) ) lowerCamelCase :Dict = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def snake_case ( self : List[str] ): def check_hidden_states_output(__snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Tuple ): lowerCamelCase :Union[str, Any] = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :Any = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Optional[Any] = outputs.hidden_states lowerCamelCase :Any = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__snake_case ) , __snake_case ) # YOLOS has a different seq_length lowerCamelCase :List[str] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowerCamelCase , lowerCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :Union[str, Any] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase :Any = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*__snake_case ) @slow def snake_case ( self : Dict ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase :Tuple = YolosModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def _lowerCamelCase ( ): lowerCamelCase :int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): @cached_property def snake_case ( self : Tuple ): return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def snake_case ( self : Dict ): lowerCamelCase :Union[str, Any] = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(__snake_case ) lowerCamelCase :Optional[Any] = self.default_image_processor lowerCamelCase :str = prepare_img() lowerCamelCase :Dict = image_processor(images=__snake_case , return_tensors='''pt''' ).to(__snake_case ) # forward pass with torch.no_grad(): lowerCamelCase :Optional[Any] = model(inputs.pixel_values ) # verify outputs lowerCamelCase :int = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , __snake_case ) lowerCamelCase :Any = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=__snake_case , ) lowerCamelCase :Any = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __snake_case , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , __snake_case , atol=1e-4 ) ) # verify postprocessing lowerCamelCase :List[str] = image_processor.post_process_object_detection( __snake_case , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] lowerCamelCase :List[str] = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(__snake_case ) lowerCamelCase :str = [75, 75, 17, 63, 17] lowerCamelCase :Tuple = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(__snake_case ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , __snake_case , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , __snake_case ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , __snake_case ) )
49
0
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : str ): lowerCamelCase :Optional[Any] = inspect.getfile(accelerate.test_utils ) lowerCamelCase :List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) lowerCamelCase :int = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def snake_case ( self : Dict ): lowerCamelCase :Optional[int] = F"\n {self.test_dir}/xla_spawn.py\n --num_cores 8\n {self.test_file_path}\n ".split() lowerCamelCase :List[Any] = [sys.executable] + distributed_args execute_subprocess_async(__snake_case , env=os.environ.copy() )
714
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Tuple ): lowerCamelCase :List[Any] = inspect.getfile(accelerate.test_utils ) lowerCamelCase :Dict = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 lowerCamelCase :Any = test_metrics @require_cpu def snake_case ( self : Dict ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def snake_case ( self : int ): debug_launcher(self.test_metrics.main ) @require_single_gpu def snake_case ( self : Any ): self.test_metrics.main() @require_multi_gpu def snake_case ( self : Optional[int] ): print(F"Found {torch.cuda.device_count()} devices." ) lowerCamelCase :Optional[int] = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__snake_case , env=os.environ.copy() )
49
0
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset A__ = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class _lowerCAmelCase ( nn.Module ): def __init__( self : List[Any] , __snake_case : List[Any] ): super().__init__() lowerCamelCase :Any = torchvision.models.resnetaaa(pretrained=__lowercase ) lowerCamelCase :str = list(model.children() )[:-2] lowerCamelCase :Any = nn.Sequential(*__lowercase ) lowerCamelCase :str = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def snake_case ( self : Union[str, Any] , __snake_case : Dict ): # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 lowerCamelCase :Union[str, Any] = self.pool(self.model(__lowercase ) ) lowerCamelCase :Tuple = torch.flatten(__lowercase , start_dim=2 ) lowerCamelCase :List[Any] = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class _lowerCAmelCase ( lowercase__ ): def __init__( self : Any , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : Optional[int] ): lowerCamelCase :Tuple = [json.loads(__lowercase ) for l in open(__lowercase )] lowerCamelCase :List[Any] = os.path.dirname(__lowercase ) lowerCamelCase :Optional[int] = tokenizer lowerCamelCase :int = labels lowerCamelCase :str = len(__lowercase ) lowerCamelCase :Any = max_seq_length lowerCamelCase :Dict = transforms def __len__( self : str ): return len(self.data ) def __getitem__( self : List[str] , __snake_case : Tuple ): lowerCamelCase :Dict = torch.LongTensor(self.tokenizer.encode(self.data[index]['''text'''] , add_special_tokens=__lowercase ) ) lowerCamelCase , lowerCamelCase , lowerCamelCase :int = sentence[0], sentence[1:-1], sentence[-1] lowerCamelCase :Tuple = sentence[: self.max_seq_length] lowerCamelCase :Optional[int] = torch.zeros(self.n_classes ) lowerCamelCase :Tuple = 1 lowerCamelCase :List[str] = Image.open(os.path.join(self.data_dir , self.data[index]['''img'''] ) ).convert('''RGB''' ) lowerCamelCase :int = self.transforms(__lowercase ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def snake_case ( self : Any ): lowerCamelCase :Any = Counter() for row in self.data: label_freqs.update(row['''label'''] ) return label_freqs def _lowerCamelCase ( a_ : Optional[Any]): lowerCamelCase :str = [len(row['''sentence''']) for row in batch] lowerCamelCase , lowerCamelCase :Optional[Any] = len(SCREAMING_SNAKE_CASE_), max(SCREAMING_SNAKE_CASE_) lowerCamelCase :int = torch.zeros(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , dtype=torch.long) lowerCamelCase :Dict = torch.zeros(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , dtype=torch.long) for i_batch, (input_row, length) in enumerate(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)): lowerCamelCase :Any = input_row['''sentence'''] lowerCamelCase :Union[str, Any] = 1 lowerCamelCase :List[str] = torch.stack([row['''image'''] for row in batch]) lowerCamelCase :Tuple = torch.stack([row['''label'''] for row in batch]) lowerCamelCase :int = torch.stack([row['''image_start_token'''] for row in batch]) lowerCamelCase :Union[str, Any] = torch.stack([row['''image_end_token'''] for row in batch]) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def _lowerCamelCase ( ): return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def _lowerCamelCase ( ): return transforms.Compose( [ transforms.Resize(2_56), transforms.CenterCrop(2_24), transforms.ToTensor(), transforms.Normalize( mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] , std=[0.12_221_994, 0.12_145_835, 0.14_380_469] , ), ])
715
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = '' _UpperCAmelCase = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) _UpperCAmelCase = None # compression type in fsspec. ex: "gzip" _UpperCAmelCase = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : str , __snake_case : str = "" , __snake_case : Optional[str] = None , __snake_case : Optional[dict] = None , **__snake_case : Dict ): super().__init__(self , **__snake_case ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode lowerCamelCase :Optional[Any] = fsspec.open( __snake_case , mode='''rb''' , protocol=__snake_case , compression=self.compression , client_kwargs={ '''requote_redirect_url''': False, # see https://github.com/huggingface/datasets/pull/5459 '''trust_env''': True, # Enable reading proxy env variables. **(target_options or {}).pop('''client_kwargs''' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) lowerCamelCase :List[str] = os.path.basename(self.file.path.split('''::''' )[0] ) lowerCamelCase :Dict = ( self.compressed_name[: self.compressed_name.rindex('''.''' )] if '''.''' in self.compressed_name else self.compressed_name ) lowerCamelCase :List[str] = None @classmethod def snake_case ( cls : Any , __snake_case : Any ): # compressed file paths are always relative to the archive root return super()._strip_protocol(__snake_case ).lstrip('''/''' ) def snake_case ( self : Any ): if self.dir_cache is None: lowerCamelCase :Optional[Any] = {**self.file.fs.info(self.file.path ), '''name''': self.uncompressed_name} lowerCamelCase :Optional[Any] = {f['''name''']: f} def snake_case ( self : Union[str, Any] , __snake_case : str ): return self.file.open().read() def snake_case ( self : Optional[int] , __snake_case : str , __snake_case : str = "rb" , __snake_case : int=None , __snake_case : Optional[int]=True , __snake_case : str=None , **__snake_case : str , ): lowerCamelCase :List[str] = self._strip_protocol(__snake_case ) if mode != "rb": raise ValueError(F"Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'" ) return self.file.open() class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'bz2' _UpperCAmelCase = 'bz2' _UpperCAmelCase = '.bz2' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'gzip' _UpperCAmelCase = 'gzip' _UpperCAmelCase = '.gz' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'lz4' _UpperCAmelCase = 'lz4' _UpperCAmelCase = '.lz4' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'xz' _UpperCAmelCase = 'xz' _UpperCAmelCase = '.xz' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'zstd' _UpperCAmelCase = 'zstd' _UpperCAmelCase = '.zst' def __init__( self : str , __snake_case : str , __snake_case : str = "rb" , __snake_case : Optional[str] = None , __snake_case : Optional[dict] = None , __snake_case : int = DEFAULT_BLOCK_SIZE , **__snake_case : int , ): super().__init__( fo=__snake_case , mode=__snake_case , target_protocol=__snake_case , target_options=__snake_case , block_size=__snake_case , **__snake_case , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 lowerCamelCase :Tuple = self.file.__enter__ class _lowerCAmelCase : def __init__( self : Dict , __snake_case : Tuple ): lowerCamelCase :Optional[int] = file_ def __enter__( self : Optional[int] ): self._file.__enter__() return self def __exit__( self : str , *__snake_case : Optional[Any] , **__snake_case : List[Any] ): self._file.__exit__(*__snake_case , **__snake_case ) def __iter__( self : Optional[Any] ): return iter(self._file ) def snake_case ( self : List[Any] ): return next(self._file ) def __getattr__( self : Any , __snake_case : str ): return getattr(self._file , __snake_case ) def fixed_enter(*__snake_case : Optional[int] , **__snake_case : str ): return WrappedFile(_enter(*__snake_case , **__snake_case ) ) lowerCamelCase :Dict = fixed_enter
49
0
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCAmelCase ( __snake_case , unittest.TestCase ): _UpperCAmelCase = KandinskyVaaInpaintPipeline _UpperCAmelCase = ['image_embeds', 'negative_image_embeds', 'image', 'mask_image'] _UpperCAmelCase = [ 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] _UpperCAmelCase = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] _UpperCAmelCase = False @property def snake_case ( self : Optional[int] ): return 32 @property def snake_case ( self : List[str] ): return 32 @property def snake_case ( self : List[Any] ): return self.time_input_dim @property def snake_case ( self : Any ): return self.time_input_dim * 4 @property def snake_case ( self : str ): return 100 @property def snake_case ( self : List[str] ): torch.manual_seed(0 ) lowerCamelCase :List[Any] = { "in_channels": 9, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } lowerCamelCase :Optional[int] = UNetaDConditionModel(**A_ ) return model @property def snake_case ( self : Optional[int] ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def snake_case ( self : Dict ): torch.manual_seed(0 ) lowerCamelCase :Union[str, Any] = VQModel(**self.dummy_movq_kwargs ) return model def snake_case ( self : Union[str, Any] ): lowerCamelCase :List[Any] = self.dummy_unet lowerCamelCase :Optional[Any] = self.dummy_movq lowerCamelCase :Optional[Any] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='''linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=A_ , set_alpha_to_one=A_ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=A_ , ) lowerCamelCase :Dict = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def snake_case ( self : int , __snake_case : Union[str, Any] , __snake_case : int=0 ): lowerCamelCase :int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(A_ ) ).to(A_ ) lowerCamelCase :Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( A_ ) # create init_image lowerCamelCase :Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(A_ ) ).to(A_ ) lowerCamelCase :Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase :str = Image.fromarray(np.uinta(A_ ) ).convert('''RGB''' ).resize((256, 256) ) # create mask lowerCamelCase :Dict = np.ones((64, 64) , dtype=np.floataa ) lowerCamelCase :Union[str, Any] = 0 if str(A_ ).startswith('''mps''' ): lowerCamelCase :Tuple = torch.manual_seed(A_ ) else: lowerCamelCase :Optional[int] = torch.Generator(device=A_ ).manual_seed(A_ ) lowerCamelCase :Optional[int] = { "image": init_image, "mask_image": mask, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 2, "guidance_scale": 4.0, "output_type": "np", } return inputs def snake_case ( self : List[str] ): lowerCamelCase :int = "cpu" lowerCamelCase :Dict = self.get_dummy_components() lowerCamelCase :str = self.pipeline_class(**A_ ) lowerCamelCase :Any = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) lowerCamelCase :int = pipe(**self.get_dummy_inputs(A_ ) ) lowerCamelCase :List[Any] = output.images lowerCamelCase :List[str] = pipe( **self.get_dummy_inputs(A_ ) , return_dict=A_ , )[0] lowerCamelCase :Optional[int] = image[0, -3:, -3:, -1] lowerCamelCase :int = image_from_tuple[0, -3:, -3:, -1] print(F"image.shape {image.shape}" ) assert image.shape == (1, 64, 64, 3) lowerCamelCase :List[str] = np.array( [0.5_0_7_7_5_9_0_3, 0.4_9_5_2_7_1_9_5, 0.4_8_8_2_4_5_4_3, 0.5_0_1_9_2_2_3_7, 0.4_8_6_4_4_9_0_6, 0.4_9_3_7_3_8_1_4, 0.4_7_8_0_5_9_8, 0.4_7_2_3_4_8_2_7, 0.4_8_3_2_7_8_4_8] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def snake_case ( self : Union[str, Any] ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : List[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self : List[str] ): lowerCamelCase :Optional[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy''' ) lowerCamelCase :Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) lowerCamelCase :Tuple = np.ones((768, 768) , dtype=np.floataa ) lowerCamelCase :str = 0 lowerCamelCase :Tuple = "a hat" lowerCamelCase :Tuple = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(A_ ) lowerCamelCase :Optional[Any] = KandinskyVaaInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder-inpaint''' , torch_dtype=torch.floataa ) lowerCamelCase :int = pipeline.to(A_ ) pipeline.set_progress_bar_config(disable=A_ ) lowerCamelCase :Tuple = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowerCamelCase :List[Any] = pipe_prior( A_ , generator=A_ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() lowerCamelCase :Union[str, Any] = pipeline( image=A_ , mask_image=A_ , image_embeds=A_ , negative_image_embeds=A_ , generator=A_ , num_inference_steps=100 , height=768 , width=768 , output_type='''np''' , ) lowerCamelCase :Union[str, Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(A_ , A_ )
716
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = LEDTokenizer _UpperCAmelCase = LEDTokenizerFast _UpperCAmelCase = True def snake_case ( self : Any ): super().setUp() lowerCamelCase :Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] lowerCamelCase :Any = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) lowerCamelCase :List[str] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCamelCase :int = {'''unk_token''': '''<unk>'''} lowerCamelCase :Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__snake_case ) ) def snake_case ( self : int , **__snake_case : int ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Dict , **__snake_case : Any ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Optional[Any] , __snake_case : Union[str, Any] ): return "lower newer", "lower newer" @cached_property def snake_case ( self : Any ): return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' ) @cached_property def snake_case ( self : int ): return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' ) @require_torch def snake_case ( self : str ): lowerCamelCase :Any = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowerCamelCase :List[Any] = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[Any] = tokenizer(__snake_case , max_length=len(__snake_case ) , padding=__snake_case , return_tensors='''pt''' ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowerCamelCase :List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(__snake_case , __snake_case ) @require_torch def snake_case ( self : Tuple ): lowerCamelCase :Dict = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Union[str, Any] = tokenizer(__snake_case , padding=__snake_case , return_tensors='''pt''' ) self.assertIn('''input_ids''' , __snake_case ) self.assertIn('''attention_mask''' , __snake_case ) self.assertNotIn('''labels''' , __snake_case ) self.assertNotIn('''decoder_attention_mask''' , __snake_case ) @require_torch def snake_case ( self : Union[str, Any] ): lowerCamelCase :Union[str, Any] = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :List[Any] = tokenizer(text_target=__snake_case , max_length=32 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) @require_torch def snake_case ( self : List[Any] ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[Any] = tokenizer( ['''I am a small frog''' * 1024, '''I am a small frog'''] , padding=__snake_case , truncation=__snake_case , return_tensors='''pt''' ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def snake_case ( self : Optional[int] ): lowerCamelCase :Union[str, Any] = ['''A long paragraph for summarization.'''] lowerCamelCase :Any = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Union[str, Any] = tokenizer(__snake_case , return_tensors='''pt''' ) lowerCamelCase :Any = tokenizer(text_target=__snake_case , return_tensors='''pt''' ) lowerCamelCase :Optional[int] = inputs['''input_ids'''] lowerCamelCase :Any = targets['''input_ids'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def snake_case ( self : Dict ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[int] = ['''Summary of the text.''', '''Another summary.'''] lowerCamelCase :List[Any] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] lowerCamelCase :Optional[int] = tokenizer(__snake_case , padding=__snake_case ) lowerCamelCase :Union[str, Any] = [[0] * len(__snake_case ) for x in encoded_output['''input_ids''']] lowerCamelCase :str = tokenizer.pad(__snake_case ) self.assertSequenceEqual(outputs['''global_attention_mask'''] , __snake_case ) def snake_case ( self : Tuple ): pass def snake_case ( self : Optional[int] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase :Optional[Any] = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :Tuple = self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :int = '''A, <mask> AllenNLP sentence.''' lowerCamelCase :str = tokenizer_r.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case ) lowerCamelCase :str = tokenizer_p.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case ) self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) lowerCamelCase :Optional[int] = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) lowerCamelCase :Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __snake_case , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __snake_case , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
49
0
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument A__ = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def _lowerCamelCase ( a_ : Any): lowerCamelCase :List[Any] = list(s_dict.keys()) for key in keys: lowerCamelCase :List[str] = R'''.*/layers_(\d+)''' lowerCamelCase :List[Any] = key if re.match(a_ , a_): lowerCamelCase :Tuple = re.sub(R'''layers_(\d+)''' , R'''block/\1/layer''' , a_) lowerCamelCase :str = R'''(encoder|decoder)\/''' if re.match(a_ , a_): lowerCamelCase :Tuple = re.match(a_ , a_).groups() if groups[0] == "encoder": lowerCamelCase :Optional[Any] = re.sub(R'''/mlp/''' , R'''/1/mlp/''' , a_) lowerCamelCase :Any = re.sub(R'''/pre_mlp_layer_norm/''' , R'''/1/layer_norm/''' , a_) elif groups[0] == "decoder": lowerCamelCase :List[str] = re.sub(R'''/mlp/''' , R'''/2/mlp/''' , a_) lowerCamelCase :Dict = re.sub(R'''/pre_mlp_layer_norm/''' , R'''/2/layer_norm/''' , a_) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: lowerCamelCase :Any = new_key.replace(a_ , a_) print(F"{key} -> {new_key}") lowerCamelCase :Union[str, Any] = s_dict.pop(a_) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: lowerCamelCase :Any = s_dict[ '''encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: lowerCamelCase :int = s_dict[ '''decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys()): if "expert" in key: lowerCamelCase :List[str] = s_dict[key].shape[0] lowerCamelCase :str = s_dict[key] for idx in range(a_): lowerCamelCase :Any = expert_weihts[idx] print(F"{key} -> {key.replace('expert/' , 'nested fstring')}") s_dict.pop(a_) return s_dict A__ = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def _lowerCamelCase ( a_ : Union[str, Any] , a_ : Optional[Any]): import regex as re with open(a_ , '''r''') as f: lowerCamelCase :Any = f.read() lowerCamelCase :Tuple = re.findall(R'''(.*) = ([0-9.]*)''' , a_) lowerCamelCase :List[str] = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": lowerCamelCase :Any = float(a_) if '''.''' in value else int(a_) lowerCamelCase :Any = re.findall(R'''(.*activations) = \(\'(.*)\',\)''' , a_)[0] lowerCamelCase :Optional[int] = str(activation[1]) lowerCamelCase :Tuple = num_experts lowerCamelCase :Any = SwitchTransformersConfig(**a_) return config def _lowerCamelCase ( a_ : Dict , a_ : Optional[int] , a_ : List[str]=None , a_ : Tuple="./" , a_ : Tuple=8): print(F"Loading flax weights from : {flax_checkpoint_path}") lowerCamelCase :str = checkpoints.load_tax_checkpoint(a_) if gin_file is not None: lowerCamelCase :List[str] = convert_gin_to_config(a_ , a_) else: lowerCamelCase :Any = SwitchTransformersConfig.from_pretrained(a_) lowerCamelCase :List[Any] = SwitchTransformersForConditionalGeneration(a_) lowerCamelCase :str = flax_params['''target'''] lowerCamelCase :List[str] = flatten_dict(a_ , sep='''/''') lowerCamelCase :Union[str, Any] = rename_keys(a_) lowerCamelCase :Union[str, Any] = unflatten_dict(a_ , sep='''/''') # Load the flax params in the PT model load_flax_weights_in_pytorch_model(a_ , a_) print(F"Save PyTorch model to {pytorch_dump_path}") pt_model.save_pretrained(a_) if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the""" """ model architecture. If not provided, a `gin_file` has to be provided.""" ), ) parser.add_argument( """--gin_file""", default=None, type=str, required=False, help="""Path to the gin config file. If not provided, a `config_file` has to be passed """, ) parser.add_argument( """--config_name""", default=None, type=str, required=False, help="""Config name of SwitchTransformers model.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output pytorch model.""" ) parser.add_argument("""--num_experts""", default=8, type=int, required=False, help="""Number of experts""") A__ = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
717
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) A__ = { """configuration_layoutlmv2""": ["""LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv2Config"""], """processing_layoutlmv2""": ["""LayoutLMv2Processor"""], """tokenization_layoutlmv2""": ["""LayoutLMv2Tokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""LayoutLMv2TokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""LayoutLMv2FeatureExtractor"""] A__ = ["""LayoutLMv2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """LayoutLMv2ForQuestionAnswering""", """LayoutLMv2ForSequenceClassification""", """LayoutLMv2ForTokenClassification""", """LayoutLMv2Layer""", """LayoutLMv2Model""", """LayoutLMv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
49
0
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _lowerCamelCase ( ): lowerCamelCase :Dict = ArgumentParser( description=( '''PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes''' )) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=__lowerCAmelCase , default=1 , help='''Number of TPU cores to use (1 or 8).''') # positional parser.add_argument( '''training_script''' , type=__lowerCAmelCase , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=__lowerCAmelCase) return parser.parse_args() def _lowerCamelCase ( ): lowerCamelCase :List[str] = parse_args() # Import training_script as a module. lowerCamelCase :Optional[Any] = Path(args.training_script) sys.path.append(str(script_fpath.parent.resolve())) lowerCamelCase :Any = script_fpath.stem lowerCamelCase :Tuple = importlib.import_module(__lowerCAmelCase) # Patch sys.argv lowerCamelCase :Union[str, Any] = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores)] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores) if __name__ == "__main__": main()
718
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _lowerCAmelCase : @staticmethod def snake_case ( *__snake_case : str , **__snake_case : str ): pass @is_pipeline_test @require_vision class _lowerCAmelCase ( unittest.TestCase ): @require_torch def snake_case ( self : Union[str, Any] ): lowerCamelCase :Optional[int] = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Dict = image_classifier(__snake_case , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__snake_case ) , [ [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}], [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}], ] , ) lowerCamelCase :Tuple = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], ] , ) @require_tf def snake_case ( self : Tuple ): lowerCamelCase :Tuple = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Optional[Any] = image_classifier(__snake_case , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(__snake_case ) , [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}] , ) lowerCamelCase :int = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], ] , ) @slow @require_torch def snake_case ( self : Any ): lowerCamelCase :str = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Optional[Any] = image_classifier(__snake_case , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) lowerCamelCase :Any = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def snake_case ( self : Optional[Any] ): lowerCamelCase :Union[str, Any] = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes lowerCamelCase :Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Dict = image_classifier(__snake_case , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) lowerCamelCase :Any = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , )
49
0
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) A__ = logging.getLogger(__name__) A__ = """Hello world! cécé herlolip""" A__ = namedtuple( """BertAbsConfig""", [ """temp_dir""", """large""", """use_bert_emb""", """finetune_bert""", """encoder""", """share_emb""", """max_pos""", """enc_layers""", """enc_hidden_size""", """enc_heads""", """enc_ff_size""", """enc_dropout""", """dec_layers""", """dec_hidden_size""", """dec_heads""", """dec_ff_size""", """dec_dropout""", ], ) def _lowerCamelCase ( a_ : Optional[Any] , a_ : Optional[Any]): lowerCamelCase :List[str] = BertAbsConfig( temp_dir='''.''' , finetune_bert=lowercase__ , large=lowercase__ , share_emb=lowercase__ , use_bert_emb=lowercase__ , encoder='''bert''' , max_pos=5_12 , enc_layers=6 , enc_hidden_size=5_12 , enc_heads=8 , enc_ff_size=5_12 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=7_68 , dec_heads=8 , dec_ff_size=20_48 , dec_dropout=0.2 , ) lowerCamelCase :Optional[int] = torch.load(lowercase__ , lambda a_ , a_: storage) lowerCamelCase :Union[str, Any] = AbsSummarizer(lowercase__ , torch.device('''cpu''') , lowercase__) original.eval() lowerCamelCase :Dict = BertAbsSummarizer(lowercase__ , torch.device('''cpu''')) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('''convert the model''') new_model.bert.load_state_dict(original.bert.state_dict()) new_model.decoder.load_state_dict(original.decoder.state_dict()) new_model.generator.load_state_dict(original.generator.state_dict()) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('''Make sure that the models\' outputs are identical''') lowerCamelCase :List[Any] = BertTokenizer.from_pretrained('''bert-base-uncased''') # prepare the model inputs lowerCamelCase :Union[str, Any] = tokenizer.encode('''This is sample éàalj\'-.''') encoder_input_ids.extend([tokenizer.pad_token_id] * (5_12 - len(lowercase__))) lowerCamelCase :Any = torch.tensor(lowercase__).unsqueeze(0) lowerCamelCase :Union[str, Any] = tokenizer.encode('''This is sample 3 éàalj\'-.''') decoder_input_ids.extend([tokenizer.pad_token_id] * (5_12 - len(lowercase__))) lowerCamelCase :str = torch.tensor(lowercase__).unsqueeze(0) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight)) == 0 # forward pass lowerCamelCase :Optional[int] = encoder_input_ids lowerCamelCase :List[str] = decoder_input_ids lowerCamelCase :Tuple = None lowerCamelCase :int = None lowerCamelCase :List[str] = None lowerCamelCase :Optional[Any] = None lowerCamelCase :Optional[int] = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical lowerCamelCase :Dict = original(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__)[0] lowerCamelCase :Union[str, Any] = original.generator(lowercase__) lowerCamelCase :List[Any] = new_model( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__)[0] lowerCamelCase :Dict = new_model.generator(lowercase__) lowerCamelCase :Dict = torch.max(torch.abs(output_converted_model - output_original_model)).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(lowercase__)) lowerCamelCase :Optional[Any] = torch.max(torch.abs(output_converted_generator - output_original_generator)).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(lowercase__)) lowerCamelCase :List[str] = torch.allclose(lowercase__ , lowercase__ , atol=1e-3) if are_identical: logging.info('''all weights are equal up to 1e-3''') else: raise ValueError('''the weights are different. The new model is likely different from the original one.''') # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('''saving the model\'s state dictionary''') torch.save( new_model.state_dict() , '''./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin''') if __name__ == "__main__": A__ = argparse.ArgumentParser() parser.add_argument( """--bertabs_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""", ) A__ = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
719
import operator as op def _lowerCamelCase ( a_ : Tuple): lowerCamelCase :int = [] lowerCamelCase :List[str] = lambda a_ , a_: int(x / y) # noqa: E731 integer division operation lowerCamelCase :Optional[int] = { '''^''': op.pow, '''*''': op.mul, '''/''': div, '''+''': op.add, '''-''': op.sub, } # operators & their respective operation # print table header print('''Symbol'''.center(8) , '''Action'''.center(12) , '''Stack''' , sep=''' | ''') print('''-''' * (30 + len(a_))) for x in post_fix: if x.isdigit(): # if x in digit stack.append(a_) # append x to stack # output in tabular format print(x.rjust(8) , ('''push(''' + x + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') else: lowerCamelCase :Optional[Any] = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8) , ('''pop(''' + b + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') lowerCamelCase :str = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8) , ('''pop(''' + a + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') stack.append( str(opr[x](int(a_) , int(a_)))) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8) , ('''push(''' + a + x + b + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''' , ) return int(stack[0]) if __name__ == "__main__": A__ = input("""\n\nEnter a Postfix Equation (space separated) = """).split(""" """) print("""\n\tResult = """, solve(Postfix))
49
0
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class _lowerCAmelCase : def __init__( self : Optional[int] , __snake_case : str = "cpu" , __snake_case : str = "openai/clip-vit-large-patch14" ): lowerCamelCase :List[str] = device lowerCamelCase :Tuple = CLIPTokenizerFast.from_pretrained(__a ) lowerCamelCase :Dict = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] lowerCamelCase :Dict = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] lowerCamelCase :Tuple = torchvision.transforms.Normalize(self.image_mean , self.image_std ) lowerCamelCase :List[Any] = torchvision.transforms.Resize(224 ) lowerCamelCase :Dict = torchvision.transforms.CenterCrop(224 ) def snake_case ( self : Tuple , __snake_case : str ): lowerCamelCase :List[str] = self.resize(__a ) lowerCamelCase :str = self.center_crop(__a ) lowerCamelCase :int = self.normalize(__a ) return images def __call__( self : int , __snake_case : Optional[Any]=None , __snake_case : Dict=None , **__snake_case : int ): lowerCamelCase :str = self.tokenizer(text=__a , **__a ) lowerCamelCase :Optional[int] = self.preprocess_img(__a ) lowerCamelCase :str = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class _lowerCAmelCase ( nn.Module ): def __init__( self : List[str] , __snake_case : Optional[Any]=10 , __snake_case : Dict=0.0_1 , __snake_case : Optional[Any]=None , __snake_case : List[Any]=None , __snake_case : Any=None , __snake_case : int=None , __snake_case : Tuple=None , __snake_case : int=None , __snake_case : Union[str, Any]=False , __snake_case : str=True , __snake_case : List[str]="image" , __snake_case : Any=True , __snake_case : Dict=False , __snake_case : str=False , __snake_case : Any=False , ): super().__init__() lowerCamelCase :Any = None lowerCamelCase :Optional[int] = device if device else get_device() if vqgan: lowerCamelCase :List[Any] = vqgan else: lowerCamelCase :Union[str, Any] = load_vqgan(self.device , conf_path=__a , ckpt_path=__a ) self.vqgan.eval() if clip: lowerCamelCase :str = clip else: lowerCamelCase :Tuple = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) lowerCamelCase :Any = ProcessorGradientFlow(device=self.device ) lowerCamelCase :List[Any] = iterations lowerCamelCase :str = lr lowerCamelCase :Optional[int] = log lowerCamelCase :List[Any] = make_grid lowerCamelCase :Optional[int] = return_val lowerCamelCase :Optional[int] = quantize lowerCamelCase :List[Any] = self.vqgan.decoder.z_shape def snake_case ( self : int , __snake_case : Optional[Any]=None , __snake_case : List[Any]=None , __snake_case : List[Any]=5 , __snake_case : List[str]=True ): lowerCamelCase :Optional[int] = [] if output_path is None: lowerCamelCase :Optional[int] = """./animation.gif""" if input_path is None: lowerCamelCase :List[str] = self.save_path lowerCamelCase :str = sorted(glob(input_path + '''/*''' ) ) if not len(__a ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(__a ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) lowerCamelCase :List[Any] = total_duration / len(__a ) lowerCamelCase :int = [frame_duration] * len(__a ) if extend_frames: lowerCamelCase :Tuple = 1.5 lowerCamelCase :str = 3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(__a ) ) imageio.mimsave(__a , __a , duration=__a ) print(F"gif saved to {output_path}" ) def snake_case ( self : Optional[Any] , __snake_case : Tuple=None , __snake_case : Any=None ): if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError lowerCamelCase :Tuple = preprocess(Image.open(__a ) , target_image_size=256 ).to(self.device ) lowerCamelCase :Dict = preprocess_vqgan(__a ) lowerCamelCase :List[str] = self.vqgan.encode(__a ) return z def snake_case ( self : Optional[Any] , __snake_case : Dict ): lowerCamelCase :List[str] = self.latent.detach().requires_grad_() lowerCamelCase :int = base_latent + transform_vector if self.quantize: lowerCamelCase :Union[str, Any] = self.vqgan.quantize(__a ) else: lowerCamelCase :Optional[Any] = trans_latent return self.vqgan.decode(__a ) def snake_case ( self : str , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : List[Any]=None ): lowerCamelCase :Optional[int] = self.clip_preprocessor(text=__a , images=__a , return_tensors='''pt''' , padding=__a ) lowerCamelCase :Optional[int] = self.clip(**__a ) lowerCamelCase :Optional[int] = clip_outputs.logits_per_image if weights is not None: lowerCamelCase :List[str] = similarity_logits * weights return similarity_logits.sum() def snake_case ( self : Any , __snake_case : Tuple , __snake_case : Tuple , __snake_case : int ): lowerCamelCase :List[Any] = self._get_clip_similarity(pos_prompts['''prompts'''] , __a , weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: lowerCamelCase :Optional[Any] = self._get_clip_similarity(neg_prompts['''prompts'''] , __a , weights=neg_prompts['''weights'''] ) else: lowerCamelCase :int = torch.tensor([1] , device=self.device ) lowerCamelCase :Dict = -torch.log(__a ) + torch.log(__a ) return loss def snake_case ( self : Optional[int] , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Dict ): lowerCamelCase :Tuple = torch.randn_like(self.latent , requires_grad=__a , device=self.device ) lowerCamelCase :int = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() lowerCamelCase :Optional[Any] = self._add_vector(__a ) lowerCamelCase :Optional[Any] = loop_post_process(__a ) lowerCamelCase :Dict = self._get_CLIP_loss(__a , __a , __a ) print('''CLIP loss''' , __a ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=__a ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def snake_case ( self : Optional[Any] , __snake_case : Optional[int] , __snake_case : Optional[int] , __snake_case : Tuple ): wandb.init(reinit=__a , project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: lowerCamelCase :Dict = Image.open(__a ) lowerCamelCase :Optional[Any] = image.resize((256, 256) ) wandb.log('''Original Image''' , wandb.Image(__a ) ) def snake_case ( self : str , __snake_case : Union[str, Any] ): if not prompts: return [] lowerCamelCase :Dict = [] lowerCamelCase :str = [] if isinstance(__a , __a ): lowerCamelCase :int = [prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(__a , (tuple, list) ): lowerCamelCase :str = prompt[0] lowerCamelCase :Optional[Any] = float(prompt[1] ) elif ":" in prompt: lowerCamelCase :str = prompt.split(''':''' ) lowerCamelCase :int = float(__a ) else: lowerCamelCase :Union[str, Any] = prompt lowerCamelCase :Optional[int] = 1.0 processed_prompts.append(__a ) weights.append(__a ) return { "prompts": processed_prompts, "weights": torch.tensor(__a , device=self.device ), } def snake_case ( self : List[Any] , __snake_case : int , __snake_case : Any=None , __snake_case : Tuple=None , __snake_case : Tuple=True , __snake_case : Any=False , __snake_case : Any=True , __snake_case : List[str]=True , __snake_case : int=None , ): if image_path: lowerCamelCase :str = self._get_latent(__a ) else: lowerCamelCase :List[str] = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(__a , __a , __a ) assert pos_prompts, "You must provide at least one positive prompt." lowerCamelCase :int = self.process_prompts(__a ) lowerCamelCase :int = self.process_prompts(__a ) if save_final and save_path is None: lowerCamelCase :str = os.path.join('''./outputs/''' , '''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(__a ): os.makedirs(__a ) else: lowerCamelCase :Dict = save_path + """_""" + get_timestamp() os.makedirs(__a ) lowerCamelCase :Tuple = save_path lowerCamelCase :str = self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(__a ) ) lowerCamelCase :Optional[int] = loop_post_process(__a ) for iter, transformed_img in enumerate(self._optimize_CLIP(__a , __a , __a ) ): if show_intermediate: show_pil(__a ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F"iter_{iter:03d}.png" ) ) if self.log: wandb.log({'''Image''': wandb.Image(__a )} ) if show_final: show_pil(__a ) if save_final: transformed_img.save(os.path.join(self.save_path , F"iter_{iter:03d}_final.png" ) )
720
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() A__ = logging.get_logger(__name__) A__ = """Hello, World!""" A__ = """en_XX""" def _lowerCamelCase ( a_ : str , a_ : str , a_ : bool): lowerCamelCase :int = Path('''data_bin''') lowerCamelCase :Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(a_).parent) , checkpoint_file=Path(a_).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(a_) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(a_).parent / '''sentencepiece.bpe.model''') , src_dict=str(data_dir / '''dict.txt''') , ) xmod.eval() # disable dropout print(a_) lowerCamelCase :Any = xmod.model.encoder.sentence_encoder lowerCamelCase :List[str] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: lowerCamelCase :Dict = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our X-MOD config:''' , a_) lowerCamelCase :List[Any] = XmodForSequenceClassification(a_) if classification_head else XmodForMaskedLM(a_) model.eval() # Now let's copy all the weights. # Embeddings lowerCamelCase :Union[str, Any] = xmod_sent_encoder.embed_tokens.weight lowerCamelCase :Tuple = xmod_sent_encoder.embed_positions.weight lowerCamelCase :List[str] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight) # just zero them out b/c xmod doesn't use them. lowerCamelCase :List[Any] = xmod_sent_encoder.layernorm_embedding.weight lowerCamelCase :Optional[int] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers): # Encoder: start of layer lowerCamelCase :Union[str, Any] = model.roberta.encoder.layer[i] lowerCamelCase :List[str] = xmod_sent_encoder.layers[i] # self attention lowerCamelCase :Optional[int] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size)) ): raise AssertionError('''Dimensions of self-attention weights do not match.''') lowerCamelCase :Optional[int] = xmod_layer.self_attn.q_proj.weight lowerCamelCase :List[str] = xmod_layer.self_attn.q_proj.bias lowerCamelCase :str = xmod_layer.self_attn.k_proj.weight lowerCamelCase :Optional[Any] = xmod_layer.self_attn.k_proj.bias lowerCamelCase :Dict = xmod_layer.self_attn.v_proj.weight lowerCamelCase :Optional[int] = xmod_layer.self_attn.v_proj.bias # self-attention output lowerCamelCase :Optional[int] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('''Dimensions of self-attention output weights do not match.''') lowerCamelCase :List[Any] = xmod_layer.self_attn.out_proj.weight lowerCamelCase :Union[str, Any] = xmod_layer.self_attn.out_proj.bias lowerCamelCase :str = xmod_layer.self_attn_layer_norm.weight lowerCamelCase :List[Any] = xmod_layer.self_attn_layer_norm.bias # intermediate lowerCamelCase :Optional[int] = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of intermediate weights do not match.''') lowerCamelCase :int = xmod_layer.fca.weight lowerCamelCase :Union[str, Any] = xmod_layer.fca.bias # output lowerCamelCase :List[str] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of feed-forward weights do not match.''') lowerCamelCase :str = xmod_layer.fca.weight lowerCamelCase :int = xmod_layer.fca.bias lowerCamelCase :List[Any] = xmod_layer.final_layer_norm.weight lowerCamelCase :List[str] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: lowerCamelCase :List[str] = xmod_layer.adapter_layer_norm.weight lowerCamelCase :int = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys()) != sorted(xmod_layer.adapter_modules.keys()): raise AssertionError('''Lists of language adapters do not match.''') for lang_code, adapter in xmod_layer.adapter_modules.items(): lowerCamelCase :Optional[int] = bert_output.adapter_modules[lang_code] lowerCamelCase :Dict = xmod_layer.adapter_modules[lang_code] lowerCamelCase :List[Any] = from_adapter.fca.weight lowerCamelCase :List[Any] = from_adapter.fca.bias lowerCamelCase :Dict = from_adapter.fca.weight lowerCamelCase :Optional[Any] = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: lowerCamelCase :Dict = xmod_sent_encoder.layer_norm.weight lowerCamelCase :List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: lowerCamelCase :Union[str, Any] = xmod.model.classification_heads['''mnli'''].dense.weight lowerCamelCase :Tuple = xmod.model.classification_heads['''mnli'''].dense.bias lowerCamelCase :Optional[Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight lowerCamelCase :List[Any] = xmod.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head lowerCamelCase :int = xmod.model.encoder.lm_head.dense.weight lowerCamelCase :List[Any] = xmod.model.encoder.lm_head.dense.bias lowerCamelCase :Optional[int] = xmod.model.encoder.lm_head.layer_norm.weight lowerCamelCase :List[Any] = xmod.model.encoder.lm_head.layer_norm.bias lowerCamelCase :List[Any] = xmod.model.encoder.lm_head.weight lowerCamelCase :Any = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCamelCase :str = xmod.encode(a_).unsqueeze(0) # batch of size 1 model.roberta.set_default_language(a_) lowerCamelCase :Any = model(a_)[0] if classification_head: lowerCamelCase :Dict = xmod.model.classification_heads['''mnli'''](xmod.extract_features(a_)) else: lowerCamelCase :int = xmod.model(a_ , lang_id=[SAMPLE_LANGUAGE])[0] print(our_output.shape , their_output.shape) lowerCamelCase :List[str] = torch.max(torch.abs(our_output - their_output)).item() print(F"max_absolute_diff = {max_absolute_diff}") # ~ 1e-7 lowerCamelCase :str = torch.allclose(a_ , a_ , atol=1e-3) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''') if not success: raise Exception('''Something went wRoNg''') Path(a_).mkdir(parents=a_ , exist_ok=a_) print(F"Saving model to {pytorch_dump_folder_path}") model.save_pretrained(a_) if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) A__ = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
49
0
A__ : Union[str, Any] = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" A__ : str = [{"type": "code", "content": INSTALL_CONTENT}] A__ : Any = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
721
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { """andreasmadsen/efficient_mlm_m0.40""": ( """https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json""" ), } class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'roberta-prelayernorm' def __init__( self : str , __snake_case : List[str]=50265 , __snake_case : Union[str, Any]=768 , __snake_case : Tuple=12 , __snake_case : int=12 , __snake_case : Any=3072 , __snake_case : Optional[int]="gelu" , __snake_case : List[Any]=0.1 , __snake_case : int=0.1 , __snake_case : Union[str, Any]=512 , __snake_case : Dict=2 , __snake_case : int=0.0_2 , __snake_case : Any=1e-1_2 , __snake_case : Optional[int]=1 , __snake_case : Dict=0 , __snake_case : Optional[int]=2 , __snake_case : Any="absolute" , __snake_case : Union[str, Any]=True , __snake_case : List[str]=None , **__snake_case : Optional[int] , ): super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) lowerCamelCase :Optional[int] = vocab_size lowerCamelCase :Dict = hidden_size lowerCamelCase :Tuple = num_hidden_layers lowerCamelCase :Optional[int] = num_attention_heads lowerCamelCase :Any = hidden_act lowerCamelCase :List[Any] = intermediate_size lowerCamelCase :Union[str, Any] = hidden_dropout_prob lowerCamelCase :str = attention_probs_dropout_prob lowerCamelCase :Tuple = max_position_embeddings lowerCamelCase :int = type_vocab_size lowerCamelCase :Optional[Any] = initializer_range lowerCamelCase :Union[str, Any] = layer_norm_eps lowerCamelCase :Dict = position_embedding_type lowerCamelCase :List[Any] = use_cache lowerCamelCase :Optional[int] = classifier_dropout class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): @property def snake_case ( self : Any ): if self.task == "multiple-choice": lowerCamelCase :Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase :List[str] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
49
0
from ...configuration_utils import PretrainedConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { """microsoft/trocr-base-handwritten""": ( """https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json""" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class _lowerCAmelCase ( __a ): _UpperCAmelCase = 'trocr' _UpperCAmelCase = ['past_key_values'] _UpperCAmelCase = { 'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'decoder_layers', } def __init__( self : List[Any] , __snake_case : Optional[Any]=50265 , __snake_case : List[str]=1024 , __snake_case : int=12 , __snake_case : Tuple=16 , __snake_case : Union[str, Any]=4096 , __snake_case : List[Any]="gelu" , __snake_case : Optional[int]=512 , __snake_case : List[str]=0.1 , __snake_case : List[Any]=0.0 , __snake_case : Optional[int]=0.0 , __snake_case : List[Any]=2 , __snake_case : int=0.0_2 , __snake_case : Union[str, Any]=0.0 , __snake_case : Tuple=True , __snake_case : int=False , __snake_case : int=True , __snake_case : List[Any]=True , __snake_case : Union[str, Any]=1 , __snake_case : str=0 , __snake_case : Dict=2 , **__snake_case : Optional[Any] , ): lowerCamelCase :Union[str, Any] = vocab_size lowerCamelCase :int = d_model lowerCamelCase :Tuple = decoder_layers lowerCamelCase :Any = decoder_attention_heads lowerCamelCase :Dict = decoder_ffn_dim lowerCamelCase :List[Any] = activation_function lowerCamelCase :List[Any] = max_position_embeddings lowerCamelCase :Union[str, Any] = dropout lowerCamelCase :List[str] = attention_dropout lowerCamelCase :List[str] = activation_dropout lowerCamelCase :int = init_std lowerCamelCase :List[str] = decoder_layerdrop lowerCamelCase :str = use_cache lowerCamelCase :List[str] = scale_embedding lowerCamelCase :Union[str, Any] = use_learned_position_embeddings lowerCamelCase :List[str] = layernorm_embedding super().__init__( pad_token_id=A__ , bos_token_id=A__ , eos_token_id=A__ , decoder_start_token_id=A__ , **A__ , )
700
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = DebertaTokenizer _UpperCAmelCase = True _UpperCAmelCase = DebertaTokenizerFast def snake_case ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase :Dict = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] lowerCamelCase :List[str] = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) lowerCamelCase :Any = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCamelCase :Dict = {'''unk_token''': '''[UNK]'''} lowerCamelCase :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase :List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__snake_case ) ) def snake_case ( self : str , **__snake_case : Dict ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Optional[Any] , __snake_case : int ): lowerCamelCase :List[Any] = '''lower newer''' lowerCamelCase :List[str] = '''lower newer''' return input_text, output_text def snake_case ( self : str ): lowerCamelCase :Optional[int] = self.get_tokenizer() lowerCamelCase :Union[str, Any] = '''lower newer''' lowerCamelCase :str = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] lowerCamelCase :Optional[int] = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) lowerCamelCase :List[str] = tokens + [tokenizer.unk_token] lowerCamelCase :Optional[int] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def snake_case ( self : Optional[int] ): lowerCamelCase :List[str] = self.get_tokenizer() lowerCamelCase :Optional[int] = tokenizer('''Hello''' , '''World''' ) lowerCamelCase :List[str] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __snake_case ) @slow def snake_case ( self : str ): lowerCamelCase :Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) lowerCamelCase :Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__snake_case ) lowerCamelCase :Tuple = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__snake_case ) lowerCamelCase :Union[str, Any] = tokenizer.encode( '''sequence builders''' , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) lowerCamelCase :str = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) lowerCamelCase :Any = tokenizer.build_inputs_with_special_tokens(__snake_case ) lowerCamelCase :Dict = tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def snake_case ( self : str ): lowerCamelCase :List[str] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: lowerCamelCase :int = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) lowerCamelCase :Tuple = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] lowerCamelCase :List[Any] = tokenizer(__snake_case , padding=__snake_case ) lowerCamelCase :Union[str, Any] = [tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) for seq in encoding['''input_ids''']] # fmt: off lowerCamelCase :Any = { '''input_ids''': [ [1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on lowerCamelCase :Optional[int] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __snake_case ) for expected, decoded in zip(__snake_case , __snake_case ): self.assertEqual(__snake_case , __snake_case )
49
0
def _lowerCamelCase ( a_ : Any): lowerCamelCase :Optional[int] = [] lowerCamelCase :Optional[Any] = [] lowerCamelCase :List[str] = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator lowerCamelCase :Union[str, Any] = len(_SCREAMING_SNAKE_CASE) if (len(_SCREAMING_SNAKE_CASE) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8) , '''Stack'''.center(_SCREAMING_SNAKE_CASE) , '''Postfix'''.center(_SCREAMING_SNAKE_CASE) , sep=''' | ''' , ) print('''-''' * (print_width * 3 + 7)) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(_SCREAMING_SNAKE_CASE) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(_SCREAMING_SNAKE_CASE) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop()) # Pop stack & add the content to Postfix stack.pop() else: if len(_SCREAMING_SNAKE_CASE) == 0: stack.append(_SCREAMING_SNAKE_CASE) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(_SCREAMING_SNAKE_CASE) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop()) # pop stack & add to Postfix stack.append(_SCREAMING_SNAKE_CASE) # push x to stack print( x.center(8) , (''''''.join(_SCREAMING_SNAKE_CASE)).ljust(_SCREAMING_SNAKE_CASE) , (''''''.join(_SCREAMING_SNAKE_CASE)).ljust(_SCREAMING_SNAKE_CASE) , sep=''' | ''' , ) # Output in tabular format while len(_SCREAMING_SNAKE_CASE) > 0: # while stack is not empty post_fix.append(stack.pop()) # pop stack & add to Postfix print( ''' '''.center(8) , (''''''.join(_SCREAMING_SNAKE_CASE)).ljust(_SCREAMING_SNAKE_CASE) , (''''''.join(_SCREAMING_SNAKE_CASE)).ljust(_SCREAMING_SNAKE_CASE) , sep=''' | ''' , ) # Output in tabular format return "".join(_SCREAMING_SNAKE_CASE) # return Postfix as str def _lowerCamelCase ( a_ : Union[str, Any]): lowerCamelCase :Optional[Any] = list(infix[::-1]) # reverse the infix equation for i in range(len(_SCREAMING_SNAKE_CASE)): if infix[i] == "(": lowerCamelCase :int = ''')''' # change "(" to ")" elif infix[i] == ")": lowerCamelCase :Any = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(_SCREAMING_SNAKE_CASE)))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": A__ = input("""\nEnter an Infix Equation = """) # Input an Infix equation A__ = """""".join(Infix.split()) # Remove spaces from the input print("""\n\t""", Infix, """(Infix) -> """, infix_2_prefix(Infix), """(Prefix)""")
701
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) A__ = [ """cross_validation.py""", """gradient_accumulation.py""", """local_sgd.py""", """multi_process_metrics.py""", """memory.py""", """automatic_gradient_accumulation.py""", """fsdp_with_peak_mem_tracking.py""", """deepspeed_with_config_support.py""", """megatron_lm_gpt_pretraining.py""", ] class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Any , __snake_case : str , __snake_case : bool , __snake_case : str = None , __snake_case : list = None ): lowerCamelCase :Tuple = None lowerCamelCase :Tuple = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) lowerCamelCase :Optional[int] = os.path.abspath('''examples''' ) for item in os.listdir(__snake_case ): if item not in EXCLUDE_EXAMPLES: lowerCamelCase :Optional[int] = os.path.join(__snake_case , __snake_case ) if os.path.isfile(__snake_case ) and ".py" in item_path: with self.subTest( tested_script=__snake_case , feature_script=__snake_case , tested_section='''main()''' if parser_only else '''training_function()''' , ): lowerCamelCase :Union[str, Any] = compare_against_test( os.path.join(__snake_case , __snake_case ) , __snake_case , __snake_case , __snake_case ) lowerCamelCase :int = '''\n'''.join(__snake_case ) if special_strings is not None: for string in special_strings: lowerCamelCase :int = diff.replace(__snake_case , '''''' ) self.assertEqual(__snake_case , '''''' ) def snake_case ( self : Dict ): self.one_complete_example('''complete_nlp_example.py''' , __snake_case ) self.one_complete_example('''complete_nlp_example.py''' , __snake_case ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Union[str, Any] = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) lowerCamelCase :Optional[int] = [ ''' ''' * 16 + '''{\n\n''', ''' ''' * 20 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 20 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 20 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 20 + '''"epoch": epoch,\n\n''', ''' ''' * 16 + '''},\n\n''', ''' ''' * 16 + '''step=epoch,\n''', ''' ''' * 12, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , __snake_case , __snake_case , __snake_case ) self.one_complete_example('''complete_cv_example.py''' , __snake_case , __snake_case , __snake_case ) @mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '1'} ) class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = False @classmethod def snake_case ( cls : Optional[Any] ): super().setUpClass() lowerCamelCase :Any = tempfile.mkdtemp() lowerCamelCase :Optional[int] = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) lowerCamelCase :List[str] = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def snake_case ( cls : Dict ): super().tearDownClass() shutil.rmtree(cls._tmpdir ) def snake_case ( self : int ): lowerCamelCase :Any = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def snake_case ( self : List[Any] ): lowerCamelCase :Tuple = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n ".split() lowerCamelCase :List[Any] = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def snake_case ( self : List[str] ): lowerCamelCase :Dict = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}\n ".split() lowerCamelCase :Dict = run_command(self._launch_args + testargs , return_stdout=__snake_case ) self.assertNotIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) def snake_case ( self : str ): lowerCamelCase :List[Any] = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}\n ".split() lowerCamelCase :Optional[int] = run_command(self._launch_args + testargs , return_stdout=__snake_case ) if torch.cuda.is_available(): lowerCamelCase :Union[str, Any] = torch.cuda.device_count() else: lowerCamelCase :Dict = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) else: self.assertIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) @slow def snake_case ( self : Any ): lowerCamelCase :Tuple = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): lowerCamelCase :Dict = run_command(self._launch_args + testargs , return_stdout=__snake_case ) lowerCamelCase :Tuple = re.findall('''({.+})''' , __snake_case ) lowerCamelCase :Optional[Any] = [r for r in results if '''accuracy''' in r][-1] lowerCamelCase :List[str] = ast.literal_eval(__snake_case ) self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 ) def snake_case ( self : int ): lowerCamelCase :Dict = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case ( self : Any ): with tempfile.TemporaryDirectory() as tmpdir: lowerCamelCase :Tuple = F"\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__snake_case , '''tracking''' ) ) ) def snake_case ( self : Tuple ): lowerCamelCase :Tuple = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def snake_case ( self : Optional[Any] ): lowerCamelCase :int = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
49
0
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Dict ): lowerCamelCase :Tuple = '''ylacombe/bark-small''' lowerCamelCase :int = tempfile.mkdtemp() lowerCamelCase :Dict = '''en_speaker_1''' lowerCamelCase :int = '''This is a test string''' lowerCamelCase :int = '''speaker_embeddings_path.json''' lowerCamelCase :Dict = '''speaker_embeddings''' def snake_case ( self : Tuple , **__snake_case : int ): return AutoTokenizer.from_pretrained(self.checkpoint , **__UpperCamelCase ) def snake_case ( self : str ): shutil.rmtree(self.tmpdirname ) def snake_case ( self : Tuple ): lowerCamelCase :List[Any] = self.get_tokenizer() lowerCamelCase :Optional[int] = BarkProcessor(tokenizer=__UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase :Optional[int] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def snake_case ( self : Union[str, Any] ): lowerCamelCase :int = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) lowerCamelCase :Optional[Any] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) lowerCamelCase :List[Any] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def snake_case ( self : Tuple ): lowerCamelCase :Tuple = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) lowerCamelCase :Optional[int] = 35 lowerCamelCase :Optional[int] = 2 lowerCamelCase :str = 8 lowerCamelCase :Optional[int] = { '''semantic_prompt''': np.ones(__UpperCamelCase ), '''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len) ), '''fine_prompt''': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset lowerCamelCase :Optional[int] = processor(text=self.input_string , voice_preset=__UpperCamelCase ) lowerCamelCase :int = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__UpperCamelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file lowerCamelCase :int = os.path.join(self.tmpdirname , '''file.npz''' ) np.savez(__UpperCamelCase , **__UpperCamelCase ) lowerCamelCase :Optional[Any] = processor(text=self.input_string , voice_preset=__UpperCamelCase ) lowerCamelCase :str = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__UpperCamelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub lowerCamelCase :str = processor(text=self.input_string , voice_preset=self.voice_preset ) def snake_case ( self : int ): lowerCamelCase :int = self.get_tokenizer() lowerCamelCase :List[str] = BarkProcessor(tokenizer=__UpperCamelCase ) lowerCamelCase :List[Any] = processor(text=self.input_string ) lowerCamelCase :Tuple = tokenizer( self.input_string , padding='''max_length''' , max_length=256 , add_special_tokens=__UpperCamelCase , return_attention_mask=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
702
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs A__ = imread(R"""digital_image_processing/image_data/lena_small.jpg""") A__ = cvtColor(img, COLOR_BGR2GRAY) def _lowerCamelCase ( ): lowerCamelCase :int = cn.convert_to_negative(a_) # assert negative_img array for at least one True assert negative_img.any() def _lowerCamelCase ( ): with Image.open('''digital_image_processing/image_data/lena_small.jpg''') as img: # Work around assertion for response assert str(cc.change_contrast(a_ , 1_10)).startswith( '''<PIL.Image.Image image mode=RGB size=100x100 at''') def _lowerCamelCase ( ): lowerCamelCase :Optional[Any] = canny.gen_gaussian_kernel(9 , sigma=1.4) # Assert ambiguous array assert resp.all() def _lowerCamelCase ( ): lowerCamelCase :str = imread('''digital_image_processing/image_data/lena_small.jpg''' , 0) # assert ambiguous array for all == True assert canny_img.all() lowerCamelCase :Optional[Any] = canny.canny(a_) # assert canny array for at least one True assert canny_array.any() def _lowerCamelCase ( ): assert gg.gaussian_filter(a_ , 5 , sigma=0.9).all() def _lowerCamelCase ( ): # laplace diagonals lowerCamelCase :List[Any] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]]) lowerCamelCase :List[Any] = conv.img_convolve(a_ , a_).astype(a_) assert res.any() def _lowerCamelCase ( ): assert med.median_filter(a_ , 3).any() def _lowerCamelCase ( ): lowerCamelCase , lowerCamelCase :Union[str, Any] = sob.sobel_filter(a_) assert grad.any() and theta.any() def _lowerCamelCase ( ): lowerCamelCase :Dict = sp.make_sepia(a_ , 20) assert sepia.all() def _lowerCamelCase ( a_ : str = "digital_image_processing/image_data/lena_small.jpg"): lowerCamelCase :Any = bs.Burkes(imread(a_ , 1) , 1_20) burkes.process() assert burkes.output_img.any() def _lowerCamelCase ( a_ : str = "digital_image_processing/image_data/lena_small.jpg" , ): lowerCamelCase :Tuple = rs.NearestNeighbour(imread(a_ , 1) , 4_00 , 2_00) nn.process() assert nn.output.any() def _lowerCamelCase ( ): lowerCamelCase :Tuple = '''digital_image_processing/image_data/lena.jpg''' # Reading the image and converting it to grayscale. lowerCamelCase :Tuple = imread(a_ , 0) # Test for get_neighbors_pixel function() return not None lowerCamelCase :Dict = 0 lowerCamelCase :Optional[Any] = 0 lowerCamelCase :str = image[x_coordinate][y_coordinate] lowerCamelCase :Any = lbp.get_neighbors_pixel( a_ , a_ , a_ , a_) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCamelCase :int = np.zeros((image.shape[0], image.shape[1])) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0]): for j in range(0 , image.shape[1]): lowerCamelCase :Optional[int] = lbp.local_binary_value(a_ , a_ , a_) assert lbp_image.any()
49
0
def _lowerCamelCase ( a_ : Optional[int] = 1_00_00_00): lowerCamelCase :Tuple = 1 lowerCamelCase :Any = 1 lowerCamelCase :Union[str, Any] = {1: 1} for inputa in range(2 , lowerCAmelCase_): lowerCamelCase :List[Any] = 0 lowerCamelCase :Tuple = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: lowerCamelCase :Optional[Any] = (3 * number) + 1 counter += 1 if inputa not in counters: lowerCamelCase :Optional[int] = counter if counter > pre_counter: lowerCamelCase :Optional[int] = inputa lowerCamelCase :Any = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
703
import os from math import logaa def _lowerCamelCase ( a_ : str = "base_exp.txt"): lowerCamelCase :float = 0 lowerCamelCase :Optional[int] = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(a_) , a_))): lowerCamelCase , lowerCamelCase :Optional[int] = list(map(a_ , line.split(''','''))) if x * logaa(a_) > largest: lowerCamelCase :List[Any] = x * logaa(a_) lowerCamelCase :Any = i + 1 return result if __name__ == "__main__": print(solution())
49
0
'''simple docstring''' import argparse import logging import pickle from collections import Counter logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) A__ = logging.getLogger(__name__) if __name__ == "__main__": A__ = argparse.ArgumentParser( description="""Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)""" ) parser.add_argument( """--data_file""", type=str, default="""data/dump.bert-base-uncased.pickle""", help="""The binarized dataset.""" ) parser.add_argument( """--token_counts_dump""", type=str, default="""data/token_counts.bert-base-uncased.pickle""", help="""The dump file.""" ) parser.add_argument("""--vocab_size""", default=30_522, type=int) A__ = parser.parse_args() logger.info(F'Loading data from {args.data_file}') with open(args.data_file, """rb""") as fp: A__ = pickle.load(fp) logger.info("""Counting occurrences for MLM.""") A__ = Counter() for tk_ids in data: counter.update(tk_ids) A__ = [0] * args.vocab_size for k, v in counter.items(): A__ = v logger.info(F'Dump to {args.token_counts_dump}') with open(args.token_counts_dump, """wb""") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
704
def _lowerCamelCase ( a_ : list): if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''') for cell_n in range(1 , len(grid[0])): grid[0][cell_n] += grid[0][cell_n - 1] lowerCamelCase :Any = grid[0] for row_n in range(1 , len(a_)): lowerCamelCase :List[str] = grid[row_n] lowerCamelCase :Union[str, Any] = fill_row(a_ , a_) lowerCamelCase :List[Any] = grid[row_n] return grid[-1][-1] def _lowerCamelCase ( a_ : list , a_ : list): current_row[0] += row_above[0] for cell_n in range(1 , len(a_)): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n]) return current_row if __name__ == "__main__": import doctest doctest.testmod()
49
0
from functools import reduce A__ = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def _lowerCamelCase ( a_ : str = N): return max( # mypy cannot properly interpret reduce int(reduce(lambda a_ , a_: str(int(a_) * int(a_)) , n[i : i + 13])) for i in range(len(a_) - 12)) if __name__ == "__main__": print(F'{solution() = }')
705
import math def _lowerCamelCase ( a_ : int): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a_) + 1) , 6): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCamelCase ( a_ : float = 0.1): lowerCamelCase :Dict = 3 lowerCamelCase :List[Any] = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1): primes += is_prime(a_) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
49
0
def _lowerCamelCase ( a_ : Tuple , a_ : Optional[int]): lowerCamelCase :Tuple = (boundary[1] - boundary[0]) / steps lowerCamelCase :Any = boundary[0] lowerCamelCase :str = boundary[1] lowerCamelCase :Tuple = make_points(lowercase_ , lowercase_ , lowercase_) lowerCamelCase :Union[str, Any] = 0.0 y += (h / 2.0) * f(lowercase_) for i in x_i: # print(i) y += h * f(lowercase_) y += (h / 2.0) * f(lowercase_) return y def _lowerCamelCase ( a_ : Dict , a_ : List[str] , a_ : str): lowerCamelCase :Optional[Any] = a + h while x < (b - h): yield x lowerCamelCase :Optional[Any] = x + h def _lowerCamelCase ( a_ : Dict): # enter your function here lowerCamelCase :Dict = (x - 0) * (x - 0) return y def _lowerCamelCase ( ): lowerCamelCase :int = 0.0 # Lower bound of integration lowerCamelCase :List[str] = 1.0 # Upper bound of integration lowerCamelCase :List[str] = 10.0 # define number of steps or resolution lowerCamelCase :List[Any] = [a, b] # define boundary of integration lowerCamelCase :Dict = method_a(lowercase_ , lowercase_) print(F"y = {y}") if __name__ == "__main__": main()
706
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : str ): lowerCamelCase :int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :List[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :Optional[Any] = -1 lowerCamelCase :List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Tuple = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :str = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowerCamelCase :str = TextStreamer(__snake_case ) model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case , streamer=__snake_case ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCamelCase :Optional[int] = cs.out[:-1] self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : Dict ): lowerCamelCase :Tuple = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :int = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :List[Any] = -1 lowerCamelCase :Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Tuple = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :List[Any] = tokenizer.decode(greedy_ids[0] ) lowerCamelCase :List[str] = TextIteratorStreamer(__snake_case ) lowerCamelCase :List[str] = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} lowerCamelCase :Tuple = Thread(target=model.generate , kwargs=__snake_case ) thread.start() lowerCamelCase :Any = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : str ): lowerCamelCase :int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :Dict = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :List[str] = -1 lowerCamelCase :Optional[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Optional[Any] = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :List[str] = greedy_ids[:, input_ids.shape[1] :] lowerCamelCase :Union[str, Any] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowerCamelCase :List[str] = TextStreamer(__snake_case , skip_prompt=__snake_case ) model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case , streamer=__snake_case ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCamelCase :int = cs.out[:-1] self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : Optional[int] ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them lowerCamelCase :List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) lowerCamelCase :Union[str, Any] = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(__snake_case ) lowerCamelCase :Optional[int] = -1 lowerCamelCase :Union[str, Any] = torch.ones((1, 5) , device=__snake_case ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowerCamelCase :Dict = TextStreamer(__snake_case , skip_special_tokens=__snake_case ) model.generate(__snake_case , max_new_tokens=1 , do_sample=__snake_case , streamer=__snake_case ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowerCamelCase :Tuple = cs.out[:-1] # Remove the final "\n" lowerCamelCase :int = tokenizer(__snake_case , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def snake_case ( self : List[Any] ): lowerCamelCase :List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :Optional[int] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :Optional[int] = -1 lowerCamelCase :Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :List[Any] = TextIteratorStreamer(__snake_case , timeout=0.0_0_1 ) lowerCamelCase :Dict = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} lowerCamelCase :Tuple = Thread(target=model.generate , kwargs=__snake_case ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__snake_case ): lowerCamelCase :Dict = '''''' for new_text in streamer: streamer_text += new_text
49
0
from ...configuration_utils import PretrainedConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { """transfo-xl-wt103""": """https://huggingface.co/transfo-xl-wt103/resolve/main/config.json""", } class _lowerCAmelCase ( UpperCAmelCase_ ): _UpperCAmelCase = "transfo-xl" _UpperCAmelCase = ["mems"] _UpperCAmelCase = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Optional[Any] , __snake_case : Tuple=267735 , __snake_case : Union[str, Any]=[20000, 40000, 200000] , __snake_case : int=1024 , __snake_case : int=1024 , __snake_case : int=16 , __snake_case : Any=64 , __snake_case : int=4096 , __snake_case : Dict=4 , __snake_case : int=False , __snake_case : Optional[int]=18 , __snake_case : List[str]=1600 , __snake_case : Optional[Any]=1000 , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=True , __snake_case : Optional[Any]=0 , __snake_case : Union[str, Any]=-1 , __snake_case : Tuple=True , __snake_case : Tuple=0.1 , __snake_case : Union[str, Any]=0.0 , __snake_case : str=True , __snake_case : Union[str, Any]="normal" , __snake_case : Optional[Any]=0.0_1 , __snake_case : List[str]=0.0_1 , __snake_case : Union[str, Any]=0.0_2 , __snake_case : Optional[int]=1e-5 , __snake_case : int=0 , **__snake_case : Union[str, Any] , ): lowerCamelCase :Optional[Any] = vocab_size lowerCamelCase :Any = [] self.cutoffs.extend(_snake_case ) if proj_share_all_but_first: lowerCamelCase :str = [False] + [True] * len(self.cutoffs ) else: lowerCamelCase :int = [False] + [False] * len(self.cutoffs ) lowerCamelCase :List[Any] = d_model lowerCamelCase :int = d_embed lowerCamelCase :Optional[int] = d_head lowerCamelCase :List[str] = d_inner lowerCamelCase :List[str] = div_val lowerCamelCase :Tuple = pre_lnorm lowerCamelCase :Tuple = n_layer lowerCamelCase :Tuple = n_head lowerCamelCase :List[Any] = mem_len lowerCamelCase :Dict = same_length lowerCamelCase :Optional[Any] = attn_type lowerCamelCase :Optional[Any] = clamp_len lowerCamelCase :Optional[int] = sample_softmax lowerCamelCase :Union[str, Any] = adaptive lowerCamelCase :int = dropout lowerCamelCase :Union[str, Any] = dropatt lowerCamelCase :int = untie_r lowerCamelCase :int = init lowerCamelCase :Optional[int] = init_range lowerCamelCase :str = proj_init_std lowerCamelCase :Tuple = init_std lowerCamelCase :Optional[int] = layer_norm_epsilon super().__init__(eos_token_id=_snake_case , **_snake_case ) @property def snake_case ( self : Optional[Any] ): logger.info(F"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def snake_case ( self : Any , __snake_case : Any ): raise NotImplementedError( F"The model {self.model_type} is one of the few models that has no sequence length limit." )
707
from maths.prime_factors import prime_factors def _lowerCamelCase ( a_ : int): if not isinstance(a_ , a_): lowerCamelCase :Tuple = F"Input value of [number={number}] must be an integer" raise TypeError(a_) if number < 1: raise ValueError('''Input must be a positive integer''') return -1 if len(prime_factors(a_)) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
49
0
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) A__ = logging.getLogger() A__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _lowerCAmelCase ( _lowerCAmelCase ): def snake_case ( self : int , __snake_case : Dict ): os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) lowerCamelCase :int = {'''source''': '''What is love ?''', '''target''': '''life'''} lowerCamelCase :Optional[Any] = {'''train''': 12, '''val''': 2, '''test''': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: lowerCamelCase :Union[str, Any] = '''\n'''.join([contents[field]] * n_lines[split] ) with open(os.path.join(_lowerCAmelCase , F"{split}.{field}" ) , '''w''' ) as f: f.write(_lowerCAmelCase ) def snake_case ( self : Union[str, Any] , __snake_case : int , __snake_case : str = "pytorch" ): lowerCamelCase :Union[str, Any] = self.get_auto_remove_tmp_dir() lowerCamelCase :str = os.path.join(_lowerCAmelCase , '''output''' ) lowerCamelCase :Any = os.path.join(_lowerCAmelCase , '''data''' ) self._create_dummy_data(data_dir=_lowerCAmelCase ) lowerCamelCase :Any = F"\n --data_dir {data_dir} \\n --output_dir {output_dir} \\n --model_name_or_path facebook/rag-sequence-base \\n --model_type rag_sequence \\n --do_train \\n --do_predict \\n --n_val -1 \\n --val_check_interval 1.0 \\n --train_batch_size 2 \\n --eval_batch_size 1 \\n --max_source_length 25 \\n --max_target_length 25 \\n --val_max_target_length 25 \\n --test_max_target_length 25 \\n --label_smoothing 0.1 \\n --dropout 0.1 \\n --attention_dropout 0.1 \\n --weight_decay 0.001 \\n --adam_epsilon 1e-08 \\n --max_grad_norm 0.1 \\n --lr_scheduler polynomial \\n --learning_rate 3e-04 \\n --num_train_epochs 1 \\n --warmup_steps 4 \\n --gradient_accumulation_steps 1 \\n --distributed-port 8787 \\n --use_dummy_dataset 1 \\n --distributed_retriever {distributed_retriever} \\n ".split() if gpus > 0: testargs.append(F"--gpus={gpus}" ) if is_apex_available(): testargs.append('''--fp16''' ) else: testargs.append('''--gpus=0''' ) testargs.append('''--distributed_backend=ddp_cpu''' ) testargs.append('''--num_processes=2''' ) lowerCamelCase :Dict = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(_lowerCAmelCase , env=self.get_env() ) lowerCamelCase :Union[str, Any] = os.path.join(_lowerCAmelCase , '''metrics.json''' ) with open(_lowerCAmelCase ) as f: lowerCamelCase :Optional[int] = json.load(_lowerCAmelCase ) return result @require_torch_gpu def snake_case ( self : List[str] ): lowerCamelCase :int = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 ) @require_torch_multi_gpu def snake_case ( self : Dict ): lowerCamelCase :Dict = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 ) @require_torch_gpu @require_ray def snake_case ( self : str ): lowerCamelCase :Union[str, Any] = self._run_finetune(gpus=1 , distributed_retriever='''ray''' ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 ) @require_torch_multi_gpu @require_ray def snake_case ( self : Optional[Any] ): lowerCamelCase :Optional[int] = self._run_finetune(gpus=1 , distributed_retriever='''ray''' ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 )
708
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() A__ = logging.get_logger(__name__) def _lowerCamelCase ( a_ : str , a_ : str=False): lowerCamelCase :Optional[int] = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''')) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''')) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''')) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''')) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''')) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''')) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''')) for stage_idx in range(len(config.backbone_config.depths)): for layer_idx in range(config.backbone_config.depths[stage_idx]): rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias")) # transformer encoder for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight")) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias")) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight")) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias")) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight")) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias")) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight")) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias")) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight")) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias")) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ]) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCamelCase :List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''') else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ]) # fmt: on return rename_keys def _lowerCamelCase ( a_ : Any , a_ : Any , a_ : int=False): for i in range(config.num_hidden_layers): if base_model: lowerCamelCase :Union[str, Any] = '''''' else: lowerCamelCase :Optional[int] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase :Optional[Any] = state_dict.pop(F"blocks.{i}.attn.qkv.weight") lowerCamelCase :Any = state_dict.pop(F"blocks.{i}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict lowerCamelCase :Any = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase :Tuple = in_proj_bias[: config.hidden_size] lowerCamelCase :int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase :Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase :Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase :List[Any] = in_proj_bias[-config.hidden_size :] def _lowerCamelCase ( a_ : int): lowerCamelCase :Any = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(a_ , a_) def _lowerCamelCase ( a_ : int , a_ : Any , a_ : Tuple): lowerCamelCase :Optional[Any] = dct.pop(a_) lowerCamelCase :str = val def _lowerCamelCase ( ): lowerCamelCase :Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase :Tuple = Image.open(requests.get(a_ , stream=a_).raw) return im @torch.no_grad() def _lowerCamelCase ( a_ : Optional[Any] , a_ : Optional[Any] , a_ : Optional[Any]=False): lowerCamelCase :Optional[int] = BitConfig( global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=a_ , ) lowerCamelCase :Optional[int] = ViTHybridConfig(backbone_config=a_ , image_size=3_84 , num_labels=10_00) lowerCamelCase :List[Any] = False # load original model from timm lowerCamelCase :List[str] = timm.create_model(a_ , pretrained=a_) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCamelCase :List[str] = timm_model.state_dict() if base_model: remove_classification_head_(a_) lowerCamelCase :Tuple = create_rename_keys(a_ , a_) for src, dest in rename_keys: rename_key(a_ , a_ , a_) read_in_q_k_v(a_ , a_ , a_) lowerCamelCase :List[str] = '''huggingface/label-files''' lowerCamelCase :Any = '''imagenet-1k-id2label.json''' lowerCamelCase :List[Any] = json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''') , '''r''')) lowerCamelCase :Optional[Any] = {int(a_): v for k, v in idalabel.items()} lowerCamelCase :Optional[int] = idalabel lowerCamelCase :Union[str, Any] = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": lowerCamelCase :Optional[Any] = ViTHybridModel(a_).eval() else: lowerCamelCase :Dict = ViTHybridForImageClassification(a_).eval() model.load_state_dict(a_) # create image processor lowerCamelCase :Dict = create_transform(**resolve_data_config({} , model=a_)) lowerCamelCase :str = transform.transforms lowerCamelCase :int = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } lowerCamelCase :Any = ViTHybridImageProcessor( do_resize=a_ , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=a_ , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=a_ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCamelCase :Dict = prepare_img() lowerCamelCase :str = transform(a_).unsqueeze(0) lowerCamelCase :str = processor(a_ , return_tensors='''pt''').pixel_values # verify pixel values assert torch.allclose(a_ , a_) # verify logits with torch.no_grad(): lowerCamelCase :Optional[int] = model(a_) lowerCamelCase :Union[str, Any] = outputs.logits print('''Predicted class:''' , logits.argmax(-1).item()) if base_model: lowerCamelCase :Union[str, Any] = timm_model.forward_features(a_) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(a_ , outputs.pooler_output , atol=1e-3) else: lowerCamelCase :List[str] = timm_model(a_) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(a_ , outputs.logits , atol=1e-3) print('''Looks ok!''') if pytorch_dump_folder_path is not None: Path(a_).mkdir(exist_ok=a_) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}") model.save_pretrained(a_) print(F"Saving processor to {pytorch_dump_folder_path}") processor.save_pretrained(a_) if push_to_hub: print(F"Pushing model and processor to the hub {vit_name}") model.push_to_hub(F"ybelkada/{vit_name}") processor.push_to_hub(F"ybelkada/{vit_name}") if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_r50_s16_384""", type=str, help="""Name of the hybrid ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) A__ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
49
0
import mpmath # for roots of unity import numpy as np class _lowerCAmelCase : def __init__( self : Union[str, Any] , __snake_case : Optional[Any]=None , __snake_case : Optional[int]=None ): # Input as list lowerCamelCase :Optional[int] = list(poly_a or [0] )[:] lowerCamelCase :List[str] = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() lowerCamelCase :int = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() lowerCamelCase :Optional[int] = len(self.polyB ) # Add 0 to make lengths equal a power of 2 lowerCamelCase :Union[str, Any] = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform lowerCamelCase :Tuple = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product lowerCamelCase :Dict = self.__multiply() def snake_case ( self : List[str] , __snake_case : Tuple ): lowerCamelCase :List[Any] = [[x] for x in self.polyA] if which == """A""" else [[x] for x in self.polyB] # Corner case if len(_a ) <= 1: return dft[0] # lowerCamelCase :Any = self.c_max_length // 2 while next_ncol > 0: lowerCamelCase :int = [[] for i in range(_a )] lowerCamelCase :Any = self.root**next_ncol # First half of next step lowerCamelCase :List[str] = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(_a ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step lowerCamelCase :Tuple = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(_a ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update lowerCamelCase :str = new_dft lowerCamelCase :Optional[int] = next_ncol // 2 return dft[0] def snake_case ( self : List[Any] ): lowerCamelCase :List[str] = self.__dft('''A''' ) lowerCamelCase :Optional[int] = self.__dft('''B''' ) lowerCamelCase :List[Any] = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT lowerCamelCase :Optional[int] = 2 while next_ncol <= self.c_max_length: lowerCamelCase :str = [[] for i in range(_a )] lowerCamelCase :Optional[Any] = self.root ** (next_ncol // 2) lowerCamelCase :Union[str, Any] = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update lowerCamelCase :Any = new_inverse_c next_ncol *= 2 # Unpack lowerCamelCase :List[Any] = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Tuple ): lowerCamelCase :Optional[Any] = """A = """ + """ + """.join( F"{coef}*x^{i}" for coef, i in enumerate(self.polyA[: self.len_A] ) ) lowerCamelCase :Tuple = """B = """ + """ + """.join( F"{coef}*x^{i}" for coef, i in enumerate(self.polyB[: self.len_B] ) ) lowerCamelCase :Any = """A*B = """ + """ + """.join( F"{coef}*x^{i}" for coef, i in enumerate(self.product ) ) return F"{a}\n{b}\n{c}" # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
709
def _lowerCamelCase ( a_ : int = 4_00_00_00): lowerCamelCase :Dict = [0, 1] lowerCamelCase :Optional[Any] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1]) if fib[i + 2] > n: break i += 1 lowerCamelCase :Dict = 0 for j in range(len(a_) - 1): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F'{solution() = }')
49
0
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class _lowerCAmelCase ( pl.LightningModule ): def __init__( self : Union[str, Any] , __snake_case : Any ): super().__init__() lowerCamelCase :Dict = model lowerCamelCase :Union[str, Any] = 2 lowerCamelCase :Any = nn.Linear(self.model.config.hidden_size , self.num_labels ) def snake_case ( self : Dict ): pass def _lowerCamelCase ( a_ : str , a_ : str , a_ : str): lowerCamelCase :List[Any] = LongformerModel.from_pretrained(__UpperCamelCase) lowerCamelCase :Optional[int] = LightningModel(__UpperCamelCase) lowerCamelCase :List[Any] = torch.load(__UpperCamelCase , map_location=torch.device('''cpu''')) lightning_model.load_state_dict(ckpt['''state_dict''']) # init longformer question answering model lowerCamelCase :Dict = LongformerForQuestionAnswering.from_pretrained(__UpperCamelCase) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict()) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict()) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(__UpperCamelCase) print(F"Conversion successful. Model saved under {pytorch_dump_folder_path}") if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--longformer_model""", default=None, type=str, required=True, help="""model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.""", ) parser.add_argument( """--longformer_question_answering_ckpt_path""", default=None, type=str, required=True, help="""Path the official PyTorch Lightning Checkpoint.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) A__ = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
710
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ = { """configuration_nllb_moe""": [ """NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NllbMoeConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""", """NllbMoeForConditionalGeneration""", """NllbMoeModel""", """NllbMoePreTrainedModel""", """NllbMoeTop2Router""", """NllbMoeSparseMLP""", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
49
0
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def _lowerCamelCase ( a_ : int): lowerCamelCase :List[str] = int(number**0.5) return number == sq * sq def _lowerCamelCase ( a_ : int , a_ : int , a_ : int , a_ : int , a_ : int , a_ : int): lowerCamelCase :Tuple = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den lowerCamelCase :Union[str, Any] = x_den * y_den * z_den lowerCamelCase :Union[str, Any] = gcd(lowerCamelCase_ , lowerCamelCase_) top //= hcf bottom //= hcf return top, bottom def _lowerCamelCase ( a_ : int = 35): lowerCamelCase :str = set() lowerCamelCase :Optional[Any] = 42 lowerCamelCase :str = Fraction(0) lowerCamelCase :Dict = 42 for x_num in range(1 , order + 1): for x_den in range(x_num + 1 , order + 1): for y_num in range(1 , order + 1): for y_den in range(y_num + 1 , order + 1): # n=1 lowerCamelCase :Any = x_num * y_den + x_den * y_num lowerCamelCase :Tuple = x_den * y_den lowerCamelCase :Tuple = gcd(lowerCamelCase_ , lowerCamelCase_) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCamelCase :str = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) unique_s.add(lowerCamelCase_) # n=2 lowerCamelCase :str = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) lowerCamelCase :List[str] = x_den * x_den * y_den * y_den if is_sq(lowerCamelCase_) and is_sq(lowerCamelCase_): lowerCamelCase :Optional[int] = int(sqrt(lowerCamelCase_)) lowerCamelCase :str = int(sqrt(lowerCamelCase_)) lowerCamelCase :Union[str, Any] = gcd(lowerCamelCase_ , lowerCamelCase_) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCamelCase :Tuple = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) unique_s.add(lowerCamelCase_) # n=-1 lowerCamelCase :Dict = x_num * y_num lowerCamelCase :Optional[Any] = x_den * y_num + x_num * y_den lowerCamelCase :Union[str, Any] = gcd(lowerCamelCase_ , lowerCamelCase_) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCamelCase :int = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) unique_s.add(lowerCamelCase_) # n=2 lowerCamelCase :Any = x_num * x_num * y_num * y_num lowerCamelCase :Union[str, Any] = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(lowerCamelCase_) and is_sq(lowerCamelCase_): lowerCamelCase :List[Any] = int(sqrt(lowerCamelCase_)) lowerCamelCase :Tuple = int(sqrt(lowerCamelCase_)) lowerCamelCase :int = gcd(lowerCamelCase_ , lowerCamelCase_) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCamelCase :Any = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) unique_s.add(lowerCamelCase_) for num, den in unique_s: total += Fraction(lowerCamelCase_ , lowerCamelCase_) return total.denominator + total.numerator if __name__ == "__main__": print(F'{solution() = }')
711
import numpy class _lowerCAmelCase : def __init__( self : Dict , __snake_case : numpy.ndarray , __snake_case : numpy.ndarray ): lowerCamelCase :Dict = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. lowerCamelCase :Dict = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. lowerCamelCase :Dict = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. lowerCamelCase :Any = numpy.random.rand(3 , 1 ) # Real output values provided. lowerCamelCase :Union[str, Any] = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. lowerCamelCase :List[str] = numpy.zeros(output_array.shape ) def snake_case ( self : Optional[int] ): lowerCamelCase :Any = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. lowerCamelCase :Any = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. lowerCamelCase :Dict = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def snake_case ( self : Any ): lowerCamelCase :Union[str, Any] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) lowerCamelCase :Dict = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) lowerCamelCase :int = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def snake_case ( self : Dict , __snake_case : numpy.ndarray , __snake_case : int , __snake_case : bool ): for iteration in range(1 , iterations + 1 ): lowerCamelCase :Union[str, Any] = self.feedforward() self.back_propagation() if give_loss: lowerCamelCase :Tuple = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"Iteration {iteration} Loss: {loss}" ) def snake_case ( self : Optional[int] , __snake_case : numpy.ndarray ): lowerCamelCase :int = input_arr lowerCamelCase :Union[str, Any] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) lowerCamelCase :Optional[Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) lowerCamelCase :Optional[int] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def _lowerCamelCase ( a_ : numpy.ndarray): return 1 / (1 + numpy.exp(-value)) def _lowerCamelCase ( a_ : numpy.ndarray): return (value) * (1 - (value)) def _lowerCamelCase ( ): lowerCamelCase :Optional[Any] = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. lowerCamelCase :int = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa) # Calling neural network class. lowerCamelCase :List[Any] = TwoHiddenLayerNeuralNetwork( input_array=a_ , output_array=a_) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=a_ , iterations=10 , give_loss=a_) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa)) if __name__ == "__main__": example()
49
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) A__ = { "configuration_mega": ["MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegaConfig", "MegaOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ "MEGA_PRETRAINED_MODEL_ARCHIVE_LIST", "MegaForCausalLM", "MegaForMaskedLM", "MegaForMultipleChoice", "MegaForQuestionAnswering", "MegaForSequenceClassification", "MegaForTokenClassification", "MegaModel", "MegaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
712
def _lowerCamelCase ( a_ : str , a_ : str): lowerCamelCase :List[str] = len(a_) lowerCamelCase :List[str] = len(a_) lowerCamelCase :int = [[False for _ in range(m + 1)] for _ in range(n + 1)] lowerCamelCase :Optional[Any] = True for i in range(a_): for j in range(m + 1): if dp[i][j]: if j < m and a[i].upper() == b[j]: lowerCamelCase :Any = True if a[i].islower(): lowerCamelCase :List[str] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
49
0
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig A__ = { """susnato/ernie-m-base_pytorch""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json""", """susnato/ernie-m-large_pytorch""": """https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json""", } class _lowerCAmelCase ( __lowercase ): _UpperCAmelCase = 'ernie_m' _UpperCAmelCase = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self : List[str] , __snake_case : List[Any] = 250002 , __snake_case : Optional[Any] = 768 , __snake_case : List[Any] = 12 , __snake_case : str = 12 , __snake_case : str = 3072 , __snake_case : Union[str, Any] = "gelu" , __snake_case : Any = 0.1 , __snake_case : Union[str, Any] = 0.1 , __snake_case : str = 514 , __snake_case : int = 0.0_2 , __snake_case : Any = 1 , __snake_case : Union[str, Any] = 1e-0_5 , __snake_case : Any=None , __snake_case : Tuple=False , __snake_case : Tuple=0.0 , **__snake_case : Optional[int] , ): super().__init__(pad_token_id=__A , **__A ) lowerCamelCase :Tuple = vocab_size lowerCamelCase :int = hidden_size lowerCamelCase :Union[str, Any] = num_hidden_layers lowerCamelCase :Optional[int] = num_attention_heads lowerCamelCase :Dict = intermediate_size lowerCamelCase :Tuple = hidden_act lowerCamelCase :Any = hidden_dropout_prob lowerCamelCase :int = attention_probs_dropout_prob lowerCamelCase :Union[str, Any] = max_position_embeddings lowerCamelCase :Tuple = initializer_range lowerCamelCase :Optional[Any] = layer_norm_eps lowerCamelCase :Union[str, Any] = classifier_dropout lowerCamelCase :Union[str, Any] = is_decoder lowerCamelCase :int = act_dropout
713
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : def __init__( self : Any , __snake_case : Optional[int] , __snake_case : int=13 , __snake_case : str=[30, 30] , __snake_case : Tuple=2 , __snake_case : Optional[Any]=3 , __snake_case : int=True , __snake_case : Tuple=True , __snake_case : List[Any]=32 , __snake_case : int=5 , __snake_case : Optional[Any]=4 , __snake_case : Union[str, Any]=37 , __snake_case : str="gelu" , __snake_case : Tuple=0.1 , __snake_case : List[Any]=0.1 , __snake_case : Union[str, Any]=10 , __snake_case : str=0.0_2 , __snake_case : Union[str, Any]=3 , __snake_case : Union[str, Any]=None , __snake_case : List[str]=8 , __snake_case : Any=10 , ): lowerCamelCase :Optional[Any] = parent lowerCamelCase :List[Any] = batch_size lowerCamelCase :Any = image_size lowerCamelCase :Union[str, Any] = patch_size lowerCamelCase :Any = num_channels lowerCamelCase :List[Any] = is_training lowerCamelCase :Optional[Any] = use_labels lowerCamelCase :Any = hidden_size lowerCamelCase :List[Any] = num_hidden_layers lowerCamelCase :List[str] = num_attention_heads lowerCamelCase :Tuple = intermediate_size lowerCamelCase :List[str] = hidden_act lowerCamelCase :List[str] = hidden_dropout_prob lowerCamelCase :Any = attention_probs_dropout_prob lowerCamelCase :List[Any] = type_sequence_label_size lowerCamelCase :Optional[int] = initializer_range lowerCamelCase :List[Any] = num_labels lowerCamelCase :Any = scope lowerCamelCase :Union[str, Any] = n_targets lowerCamelCase :Optional[Any] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowerCamelCase :Tuple = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowerCamelCase :str = num_patches + 1 + self.num_detection_tokens def snake_case ( self : List[str] ): lowerCamelCase :str = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowerCamelCase :List[str] = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowerCamelCase :Optional[int] = [] for i in range(self.batch_size ): lowerCamelCase :List[str] = {} lowerCamelCase :Tuple = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=__snake_case ) lowerCamelCase :List[str] = torch.rand(self.n_targets , 4 , device=__snake_case ) labels.append(__snake_case ) lowerCamelCase :str = self.get_config() return config, pixel_values, labels def snake_case ( self : Union[str, Any] ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__snake_case , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def snake_case ( self : Tuple , __snake_case : Tuple , __snake_case : Tuple , __snake_case : Any ): lowerCamelCase :Optional[Any] = YolosModel(config=__snake_case ) model.to(__snake_case ) model.eval() lowerCamelCase :Union[str, Any] = model(__snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def snake_case ( self : Dict , __snake_case : str , __snake_case : Optional[int] , __snake_case : Optional[Any] ): lowerCamelCase :int = YolosForObjectDetection(__snake_case ) model.to(__snake_case ) model.eval() lowerCamelCase :str = model(pixel_values=__snake_case ) lowerCamelCase :Any = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) lowerCamelCase :int = model(pixel_values=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def snake_case ( self : int ): lowerCamelCase :List[Any] = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase :str = config_and_inputs lowerCamelCase :Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () _UpperCAmelCase = ( {'feature-extraction': YolosModel, 'object-detection': YolosForObjectDetection} if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def snake_case ( self : Any , __snake_case : List[Any] , __snake_case : Tuple , __snake_case : Dict=False ): lowerCamelCase :Optional[int] = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowerCamelCase :Dict = [] for i in range(self.model_tester.batch_size ): lowerCamelCase :Optional[Any] = {} lowerCamelCase :List[Any] = torch.ones( size=(self.model_tester.n_targets,) , device=__snake_case , dtype=torch.long ) lowerCamelCase :str = torch.ones( self.model_tester.n_targets , 4 , device=__snake_case , dtype=torch.float ) labels.append(__snake_case ) lowerCamelCase :Union[str, Any] = labels return inputs_dict def snake_case ( self : Tuple ): lowerCamelCase :Union[str, Any] = YolosModelTester(self ) lowerCamelCase :Dict = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=37 ) def snake_case ( self : Union[str, Any] ): self.config_tester.run_common_tests() def snake_case ( self : Optional[Any] ): # YOLOS does not use inputs_embeds pass def snake_case ( self : Tuple ): lowerCamelCase , lowerCamelCase :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :Optional[int] = model_class(__snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase :str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case , nn.Linear ) ) def snake_case ( self : str ): lowerCamelCase , lowerCamelCase :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :str = model_class(__snake_case ) lowerCamelCase :Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase :Tuple = [*signature.parameters.keys()] lowerCamelCase :Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __snake_case ) def snake_case ( self : int ): lowerCamelCase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def snake_case ( self : str ): lowerCamelCase , lowerCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase :int = True # in YOLOS, the seq_len is different lowerCamelCase :str = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowerCamelCase :str = True lowerCamelCase :Tuple = False lowerCamelCase :Optional[int] = True lowerCamelCase :int = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :str = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :str = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase :Optional[Any] = True lowerCamelCase :str = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :Tuple = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Tuple = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowerCamelCase :Optional[int] = len(__snake_case ) # Check attention is always last and order is fine lowerCamelCase :Union[str, Any] = True lowerCamelCase :List[Any] = True lowerCamelCase :Tuple = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :int = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Dict = 1 self.assertEqual(out_len + added_hidden_states , len(__snake_case ) ) lowerCamelCase :Dict = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def snake_case ( self : List[str] ): def check_hidden_states_output(__snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Tuple ): lowerCamelCase :Union[str, Any] = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :Any = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Optional[Any] = outputs.hidden_states lowerCamelCase :Any = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__snake_case ) , __snake_case ) # YOLOS has a different seq_length lowerCamelCase :List[str] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowerCamelCase , lowerCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :Union[str, Any] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase :Any = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*__snake_case ) @slow def snake_case ( self : Dict ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase :Tuple = YolosModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def _lowerCamelCase ( ): lowerCamelCase :int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): @cached_property def snake_case ( self : Tuple ): return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def snake_case ( self : Dict ): lowerCamelCase :Union[str, Any] = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(__snake_case ) lowerCamelCase :Optional[Any] = self.default_image_processor lowerCamelCase :str = prepare_img() lowerCamelCase :Dict = image_processor(images=__snake_case , return_tensors='''pt''' ).to(__snake_case ) # forward pass with torch.no_grad(): lowerCamelCase :Optional[Any] = model(inputs.pixel_values ) # verify outputs lowerCamelCase :int = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , __snake_case ) lowerCamelCase :Any = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=__snake_case , ) lowerCamelCase :Any = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __snake_case , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , __snake_case , atol=1e-4 ) ) # verify postprocessing lowerCamelCase :List[str] = image_processor.post_process_object_detection( __snake_case , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] lowerCamelCase :List[str] = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(__snake_case ) lowerCamelCase :str = [75, 75, 17, 63, 17] lowerCamelCase :Tuple = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(__snake_case ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , __snake_case , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , __snake_case ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , __snake_case ) )
49
0
import random def _lowerCAmelCase ( a_ : List[str] , a_ : str , a_ : str): lowerCamelCase :Dict = a[left_index] lowerCamelCase :Union[str, Any] = left_index + 1 for j in range(left_index + 1 , UpperCamelCase__): if a[j] < pivot: lowerCamelCase , lowerCamelCase :Optional[int] = a[i], a[j] i += 1 lowerCamelCase , lowerCamelCase :int = a[i - 1], a[left_index] return i - 1 def _lowerCAmelCase ( a_ : Optional[int] , a_ : List[Any] , a_ : str): if left < right: lowerCamelCase :Dict = random.randint(UpperCamelCase__ , right - 1) lowerCamelCase , lowerCamelCase :Union[str, Any] = ( a[left], a[pivot], ) # switches the pivot with the left most bound lowerCamelCase :Tuple = partition(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__) quick_sort_random( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__) # recursive quicksort to the left of the pivot point quick_sort_random( UpperCamelCase__ , pivot_index + 1 , UpperCamelCase__) # recursive quicksort to the right of the pivot point def _lowerCAmelCase ( ): lowerCamelCase :Tuple = input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase :Union[str, Any] = [int(UpperCamelCase__) for item in user_input.split(''',''')] quick_sort_random(UpperCamelCase__ , 0 , len(UpperCamelCase__)) print(UpperCamelCase__) if __name__ == "__main__": main()
714
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Tuple ): lowerCamelCase :List[Any] = inspect.getfile(accelerate.test_utils ) lowerCamelCase :Dict = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 lowerCamelCase :Any = test_metrics @require_cpu def snake_case ( self : Dict ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def snake_case ( self : int ): debug_launcher(self.test_metrics.main ) @require_single_gpu def snake_case ( self : Any ): self.test_metrics.main() @require_multi_gpu def snake_case ( self : Optional[int] ): print(F"Found {torch.cuda.device_count()} devices." ) lowerCamelCase :Optional[int] = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__snake_case , env=os.environ.copy() )
49
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { '''microsoft/wavlm-base''': '''https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json''', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class _lowerCAmelCase ( __UpperCAmelCase ): _UpperCAmelCase = '''wavlm''' def __init__( self : int , __snake_case : int=32 , __snake_case : Optional[int]=768 , __snake_case : Optional[int]=12 , __snake_case : List[Any]=12 , __snake_case : List[Any]=3072 , __snake_case : Tuple="gelu" , __snake_case : List[str]=0.1 , __snake_case : Any=0.1 , __snake_case : int=0.1 , __snake_case : Tuple=0.0 , __snake_case : Any=0.1 , __snake_case : str=0.1 , __snake_case : Any=0.0_2 , __snake_case : Optional[int]=1e-5 , __snake_case : int="group" , __snake_case : List[str]="gelu" , __snake_case : int=(512, 512, 512, 512, 512, 512, 512) , __snake_case : int=(5, 2, 2, 2, 2, 2, 2) , __snake_case : Any=(10, 3, 3, 3, 3, 2, 2) , __snake_case : List[str]=False , __snake_case : Any=128 , __snake_case : Optional[int]=16 , __snake_case : Dict=320 , __snake_case : str=800 , __snake_case : int=False , __snake_case : Union[str, Any]=True , __snake_case : str=0.0_5 , __snake_case : Optional[int]=10 , __snake_case : Dict=2 , __snake_case : Dict=0.0 , __snake_case : Tuple=10 , __snake_case : str=320 , __snake_case : Dict=2 , __snake_case : Tuple=0.1 , __snake_case : Optional[int]=100 , __snake_case : Optional[Any]=256 , __snake_case : List[str]=256 , __snake_case : Tuple=0.1 , __snake_case : List[str]="mean" , __snake_case : Tuple=False , __snake_case : Optional[int]=False , __snake_case : Dict=256 , __snake_case : Any=(512, 512, 512, 512, 1500) , __snake_case : List[str]=(5, 3, 3, 1, 1) , __snake_case : List[str]=(1, 2, 3, 1, 1) , __snake_case : Optional[Any]=512 , __snake_case : Any=80 , __snake_case : Optional[int]=0 , __snake_case : int=1 , __snake_case : List[str]=2 , __snake_case : Union[str, Any]=False , __snake_case : Optional[int]=3 , __snake_case : Dict=2 , __snake_case : Tuple=3 , __snake_case : Any=None , **__snake_case : int , ): super().__init__(**__SCREAMING_SNAKE_CASE , pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE ) lowerCamelCase :Optional[int] = hidden_size lowerCamelCase :List[Any] = feat_extract_norm lowerCamelCase :Optional[Any] = feat_extract_activation lowerCamelCase :List[Any] = list(__SCREAMING_SNAKE_CASE ) lowerCamelCase :List[Any] = list(__SCREAMING_SNAKE_CASE ) lowerCamelCase :List[Any] = list(__SCREAMING_SNAKE_CASE ) lowerCamelCase :Optional[int] = conv_bias lowerCamelCase :List[Any] = num_buckets lowerCamelCase :Optional[Any] = max_bucket_distance lowerCamelCase :int = num_conv_pos_embeddings lowerCamelCase :List[Any] = num_conv_pos_embedding_groups lowerCamelCase :Dict = len(self.conv_dim ) lowerCamelCase :List[Any] = num_hidden_layers lowerCamelCase :int = intermediate_size lowerCamelCase :List[Any] = hidden_act lowerCamelCase :int = num_attention_heads lowerCamelCase :List[Any] = hidden_dropout lowerCamelCase :Tuple = attention_dropout lowerCamelCase :List[str] = activation_dropout lowerCamelCase :List[Any] = feat_proj_dropout lowerCamelCase :Dict = final_dropout lowerCamelCase :Optional[int] = layerdrop lowerCamelCase :Dict = layer_norm_eps lowerCamelCase :str = initializer_range lowerCamelCase :List[Any] = num_ctc_classes lowerCamelCase :int = vocab_size lowerCamelCase :Optional[Any] = do_stable_layer_norm lowerCamelCase :List[str] = use_weighted_layer_sum lowerCamelCase :str = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase :Dict = apply_spec_augment lowerCamelCase :Any = mask_time_prob lowerCamelCase :str = mask_time_length lowerCamelCase :List[Any] = mask_time_min_masks lowerCamelCase :Union[str, Any] = mask_feature_prob lowerCamelCase :Union[str, Any] = mask_feature_length # parameters for pretraining with codevector quantized representations lowerCamelCase :List[Any] = num_codevectors_per_group lowerCamelCase :Tuple = num_codevector_groups lowerCamelCase :Optional[int] = contrastive_logits_temperature lowerCamelCase :Any = num_negatives lowerCamelCase :Union[str, Any] = codevector_dim lowerCamelCase :List[str] = proj_codevector_dim lowerCamelCase :Union[str, Any] = diversity_loss_weight # ctc loss lowerCamelCase :str = ctc_loss_reduction lowerCamelCase :Dict = ctc_zero_infinity # adapter lowerCamelCase :Dict = add_adapter lowerCamelCase :List[str] = adapter_kernel_size lowerCamelCase :Tuple = adapter_stride lowerCamelCase :str = num_adapter_layers lowerCamelCase :List[Any] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowerCamelCase :int = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowerCamelCase :str = list(__SCREAMING_SNAKE_CASE ) lowerCamelCase :Any = list(__SCREAMING_SNAKE_CASE ) lowerCamelCase :Tuple = list(__SCREAMING_SNAKE_CASE ) lowerCamelCase :Dict = xvector_output_dim @property def snake_case ( self : Optional[int] ): return functools.reduce(operator.mul , self.conv_stride , 1 )
715
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = '' _UpperCAmelCase = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) _UpperCAmelCase = None # compression type in fsspec. ex: "gzip" _UpperCAmelCase = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : str , __snake_case : str = "" , __snake_case : Optional[str] = None , __snake_case : Optional[dict] = None , **__snake_case : Dict ): super().__init__(self , **__snake_case ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode lowerCamelCase :Optional[Any] = fsspec.open( __snake_case , mode='''rb''' , protocol=__snake_case , compression=self.compression , client_kwargs={ '''requote_redirect_url''': False, # see https://github.com/huggingface/datasets/pull/5459 '''trust_env''': True, # Enable reading proxy env variables. **(target_options or {}).pop('''client_kwargs''' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) lowerCamelCase :List[str] = os.path.basename(self.file.path.split('''::''' )[0] ) lowerCamelCase :Dict = ( self.compressed_name[: self.compressed_name.rindex('''.''' )] if '''.''' in self.compressed_name else self.compressed_name ) lowerCamelCase :List[str] = None @classmethod def snake_case ( cls : Any , __snake_case : Any ): # compressed file paths are always relative to the archive root return super()._strip_protocol(__snake_case ).lstrip('''/''' ) def snake_case ( self : Any ): if self.dir_cache is None: lowerCamelCase :Optional[Any] = {**self.file.fs.info(self.file.path ), '''name''': self.uncompressed_name} lowerCamelCase :Optional[Any] = {f['''name''']: f} def snake_case ( self : Union[str, Any] , __snake_case : str ): return self.file.open().read() def snake_case ( self : Optional[int] , __snake_case : str , __snake_case : str = "rb" , __snake_case : int=None , __snake_case : Optional[int]=True , __snake_case : str=None , **__snake_case : str , ): lowerCamelCase :List[str] = self._strip_protocol(__snake_case ) if mode != "rb": raise ValueError(F"Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'" ) return self.file.open() class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'bz2' _UpperCAmelCase = 'bz2' _UpperCAmelCase = '.bz2' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'gzip' _UpperCAmelCase = 'gzip' _UpperCAmelCase = '.gz' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'lz4' _UpperCAmelCase = 'lz4' _UpperCAmelCase = '.lz4' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'xz' _UpperCAmelCase = 'xz' _UpperCAmelCase = '.xz' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'zstd' _UpperCAmelCase = 'zstd' _UpperCAmelCase = '.zst' def __init__( self : str , __snake_case : str , __snake_case : str = "rb" , __snake_case : Optional[str] = None , __snake_case : Optional[dict] = None , __snake_case : int = DEFAULT_BLOCK_SIZE , **__snake_case : int , ): super().__init__( fo=__snake_case , mode=__snake_case , target_protocol=__snake_case , target_options=__snake_case , block_size=__snake_case , **__snake_case , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 lowerCamelCase :Tuple = self.file.__enter__ class _lowerCAmelCase : def __init__( self : Dict , __snake_case : Tuple ): lowerCamelCase :Optional[int] = file_ def __enter__( self : Optional[int] ): self._file.__enter__() return self def __exit__( self : str , *__snake_case : Optional[Any] , **__snake_case : List[Any] ): self._file.__exit__(*__snake_case , **__snake_case ) def __iter__( self : Optional[Any] ): return iter(self._file ) def snake_case ( self : List[Any] ): return next(self._file ) def __getattr__( self : Any , __snake_case : str ): return getattr(self._file , __snake_case ) def fixed_enter(*__snake_case : Optional[int] , **__snake_case : str ): return WrappedFile(_enter(*__snake_case , **__snake_case ) ) lowerCamelCase :Dict = fixed_enter
49
0
import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline A__ = version.parse(version.parse(torch.__version__).base_version) < version.parse("""1.11""") def _lowerCamelCase ( a_ : int , a_ : tuple , a_ : Path , a_ : List[Any] , a_ : List[str] , a_ : List[str] , a_ : Dict , a_ : Any=False , ): output_path.parent.mkdir(parents=a_ , exist_ok=a_) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( a_ , a_ , f=output_path.as_posix() , input_names=a_ , output_names=a_ , dynamic_axes=a_ , do_constant_folding=a_ , use_external_data_format=a_ , enable_onnx_checker=a_ , opset_version=a_ , ) else: export( a_ , a_ , f=output_path.as_posix() , input_names=a_ , output_names=a_ , dynamic_axes=a_ , do_constant_folding=a_ , opset_version=a_ , ) @torch.no_grad() def _lowerCamelCase ( a_ : str , a_ : str , a_ : int , a_ : bool = False): lowerCamelCase :Optional[Any] = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): lowerCamelCase :Union[str, Any] = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''') else: lowerCamelCase :int = 'cpu' lowerCamelCase :Any = StableDiffusionPipeline.from_pretrained(a_ , torch_dtype=a_).to(a_) lowerCamelCase :Optional[int] = Path(a_) # TEXT ENCODER lowerCamelCase :Any = pipeline.text_encoder.config.max_position_embeddings lowerCamelCase :Tuple = pipeline.text_encoder.config.hidden_size lowerCamelCase :str = pipeline.tokenizer( '''A sample prompt''' , padding='''max_length''' , max_length=pipeline.tokenizer.model_max_length , truncation=a_ , return_tensors='''pt''' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=a_ , dtype=torch.intaa)) , output_path=output_path / '''text_encoder''' / '''model.onnx''' , ordered_input_names=['''input_ids'''] , output_names=['''last_hidden_state''', '''pooler_output'''] , dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''sequence'''}, } , opset=a_ , ) del pipeline.text_encoder # UNET lowerCamelCase :List[str] = pipeline.unet.config.in_channels lowerCamelCase :str = pipeline.unet.config.sample_size lowerCamelCase :List[str] = output_path / 'unet' / 'model.onnx' onnx_export( pipeline.unet , model_args=( torch.randn(2 , a_ , a_ , a_).to(device=a_ , dtype=a_), torch.randn(2).to(device=a_ , dtype=a_), torch.randn(2 , a_ , a_).to(device=a_ , dtype=a_), False, ) , output_path=a_ , ordered_input_names=['''sample''', '''timestep''', '''encoder_hidden_states''', '''return_dict'''] , output_names=['''out_sample'''] , dynamic_axes={ '''sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, '''timestep''': {0: '''batch'''}, '''encoder_hidden_states''': {0: '''batch''', 1: '''sequence'''}, } , opset=a_ , use_external_data_format=a_ , ) lowerCamelCase :Optional[int] = str(unet_path.absolute().as_posix()) lowerCamelCase :List[Any] = os.path.dirname(a_) lowerCamelCase :List[str] = onnx.load(a_) # clean up existing tensor files shutil.rmtree(a_) os.mkdir(a_) # collate external tensor files into one onnx.save_model( a_ , a_ , save_as_external_data=a_ , all_tensors_to_one_file=a_ , location='''weights.pb''' , convert_attribute=a_ , ) del pipeline.unet # VAE ENCODER lowerCamelCase :Any = pipeline.vae lowerCamelCase :Optional[Any] = vae_encoder.config.in_channels lowerCamelCase :List[Any] = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder lowerCamelCase :Dict = lambda a_ , a_: vae_encoder.encode(a_ , a_)[0].sample() onnx_export( a_ , model_args=( torch.randn(1 , a_ , a_ , a_).to(device=a_ , dtype=a_), False, ) , output_path=output_path / '''vae_encoder''' / '''model.onnx''' , ordered_input_names=['''sample''', '''return_dict'''] , output_names=['''latent_sample'''] , dynamic_axes={ '''sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=a_ , ) # VAE DECODER lowerCamelCase :List[str] = pipeline.vae lowerCamelCase :Any = vae_decoder.config.latent_channels lowerCamelCase :Optional[Any] = vae_decoder.config.out_channels # forward only through the decoder part lowerCamelCase :List[str] = vae_encoder.decode onnx_export( a_ , model_args=( torch.randn(1 , a_ , a_ , a_).to(device=a_ , dtype=a_), False, ) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=a_ , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: lowerCamelCase :int = pipeline.safety_checker lowerCamelCase :List[str] = safety_checker.config.vision_config.num_channels lowerCamelCase :str = safety_checker.config.vision_config.image_size lowerCamelCase :Tuple = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , a_ , a_ , a_ , ).to(device=a_ , dtype=a_), torch.randn(1 , a_ , a_ , a_).to(device=a_ , dtype=a_), ) , output_path=output_path / '''safety_checker''' / '''model.onnx''' , ordered_input_names=['''clip_input''', '''images'''] , output_names=['''out_images''', '''has_nsfw_concepts'''] , dynamic_axes={ '''clip_input''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, '''images''': {0: '''batch''', 1: '''height''', 2: '''width''', 3: '''channels'''}, } , opset=a_ , ) del pipeline.safety_checker lowerCamelCase :Any = OnnxRuntimeModel.from_pretrained(output_path / '''safety_checker''') lowerCamelCase :Optional[Any] = pipeline.feature_extractor else: lowerCamelCase :List[str] = None lowerCamelCase :List[str] = None lowerCamelCase :Dict = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / '''vae_encoder''') , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / '''vae_decoder''') , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / '''text_encoder''') , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / '''unet''') , scheduler=pipeline.scheduler , safety_checker=a_ , feature_extractor=a_ , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(a_) print('''ONNX pipeline saved to''' , a_) del pipeline del onnx_pipeline lowerCamelCase :Any = OnnxStableDiffusionPipeline.from_pretrained(a_ , provider='''CPUExecutionProvider''') print('''ONNX pipeline is loadable''') if __name__ == "__main__": A__ = argparse.ArgumentParser() parser.add_argument( """--model_path""", type=str, required=True, help="""Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).""", ) parser.add_argument("""--output_path""", type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--opset""", default=14, type=int, help="""The version of the ONNX operator set to use.""", ) parser.add_argument("""--fp16""", action="""store_true""", default=False, help="""Export the models in `float16` mode""") A__ = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
716
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = LEDTokenizer _UpperCAmelCase = LEDTokenizerFast _UpperCAmelCase = True def snake_case ( self : Any ): super().setUp() lowerCamelCase :Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] lowerCamelCase :Any = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) lowerCamelCase :List[str] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCamelCase :int = {'''unk_token''': '''<unk>'''} lowerCamelCase :Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__snake_case ) ) def snake_case ( self : int , **__snake_case : int ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Dict , **__snake_case : Any ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Optional[Any] , __snake_case : Union[str, Any] ): return "lower newer", "lower newer" @cached_property def snake_case ( self : Any ): return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' ) @cached_property def snake_case ( self : int ): return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' ) @require_torch def snake_case ( self : str ): lowerCamelCase :Any = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowerCamelCase :List[Any] = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[Any] = tokenizer(__snake_case , max_length=len(__snake_case ) , padding=__snake_case , return_tensors='''pt''' ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowerCamelCase :List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(__snake_case , __snake_case ) @require_torch def snake_case ( self : Tuple ): lowerCamelCase :Dict = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Union[str, Any] = tokenizer(__snake_case , padding=__snake_case , return_tensors='''pt''' ) self.assertIn('''input_ids''' , __snake_case ) self.assertIn('''attention_mask''' , __snake_case ) self.assertNotIn('''labels''' , __snake_case ) self.assertNotIn('''decoder_attention_mask''' , __snake_case ) @require_torch def snake_case ( self : Union[str, Any] ): lowerCamelCase :Union[str, Any] = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :List[Any] = tokenizer(text_target=__snake_case , max_length=32 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) @require_torch def snake_case ( self : List[Any] ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[Any] = tokenizer( ['''I am a small frog''' * 1024, '''I am a small frog'''] , padding=__snake_case , truncation=__snake_case , return_tensors='''pt''' ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def snake_case ( self : Optional[int] ): lowerCamelCase :Union[str, Any] = ['''A long paragraph for summarization.'''] lowerCamelCase :Any = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Union[str, Any] = tokenizer(__snake_case , return_tensors='''pt''' ) lowerCamelCase :Any = tokenizer(text_target=__snake_case , return_tensors='''pt''' ) lowerCamelCase :Optional[int] = inputs['''input_ids'''] lowerCamelCase :Any = targets['''input_ids'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def snake_case ( self : Dict ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[int] = ['''Summary of the text.''', '''Another summary.'''] lowerCamelCase :List[Any] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] lowerCamelCase :Optional[int] = tokenizer(__snake_case , padding=__snake_case ) lowerCamelCase :Union[str, Any] = [[0] * len(__snake_case ) for x in encoded_output['''input_ids''']] lowerCamelCase :str = tokenizer.pad(__snake_case ) self.assertSequenceEqual(outputs['''global_attention_mask'''] , __snake_case ) def snake_case ( self : Tuple ): pass def snake_case ( self : Optional[int] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase :Optional[Any] = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :Tuple = self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :int = '''A, <mask> AllenNLP sentence.''' lowerCamelCase :str = tokenizer_r.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case ) lowerCamelCase :str = tokenizer_p.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case ) self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) lowerCamelCase :Optional[int] = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) lowerCamelCase :Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __snake_case , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __snake_case , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
49
0
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: A__ = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class _lowerCAmelCase ( unittest.TestCase ): def __init__( self : Tuple , __snake_case : str , __snake_case : Dict=7 , __snake_case : Tuple=3 , __snake_case : Dict=18 , __snake_case : Dict=30 , __snake_case : Tuple=400 , __snake_case : Optional[int]=None , __snake_case : List[Any]=True , __snake_case : int=True , __snake_case : Optional[int]=None , ): lowerCamelCase :Optional[int] = size if size is not None else {'''height''': 20, '''width''': 20} lowerCamelCase :Dict = parent lowerCamelCase :List[Any] = batch_size lowerCamelCase :Union[str, Any] = num_channels lowerCamelCase :str = image_size lowerCamelCase :Optional[Any] = min_resolution lowerCamelCase :int = max_resolution lowerCamelCase :Optional[int] = size lowerCamelCase :int = do_normalize lowerCamelCase :Optional[Any] = do_convert_rgb lowerCamelCase :Optional[int] = [512, 1024, 2048, 4096] lowerCamelCase :List[str] = patch_size if patch_size is not None else {'''height''': 16, '''width''': 16} def snake_case ( self : Tuple ): return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def snake_case ( self : str ): lowerCamelCase :Tuple = '''https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg''' lowerCamelCase :Optional[Any] = Image.open(requests.get(__A , stream=__A ).raw ).convert('''RGB''' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.' , ) @require_torch @require_vision class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = PixaStructImageProcessor if is_vision_available() else None def snake_case ( self : Optional[int] ): lowerCamelCase :Optional[int] = PixaStructImageProcessingTester(self ) @property def snake_case ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def snake_case ( self : Optional[int] ): lowerCamelCase :Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , '''do_normalize''' ) ) self.assertTrue(hasattr(__A , '''do_convert_rgb''' ) ) def snake_case ( self : Any ): lowerCamelCase :List[Any] = self.image_processor_tester.prepare_dummy_image() lowerCamelCase :Any = self.image_processing_class(**self.image_processor_dict ) lowerCamelCase :str = 2048 lowerCamelCase :Union[str, Any] = image_processor(__A , return_tensors='''pt''' , max_patches=__A ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0_6_0_6 ) , atol=1e-3 , rtol=1e-3 ) ) def snake_case ( self : Optional[int] ): # Initialize image_processor lowerCamelCase :Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase :List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input lowerCamelCase :Tuple = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowerCamelCase :Dict = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__A ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched lowerCamelCase :Union[str, Any] = image_processor( __A , return_tensors='''pt''' , max_patches=__A ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def snake_case ( self : Any ): # Initialize image_processor lowerCamelCase :Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input lowerCamelCase :Union[str, Any] = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 lowerCamelCase :Union[str, Any] = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(__A ): lowerCamelCase :Tuple = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__A ).flattened_patches lowerCamelCase :int = '''Hello''' lowerCamelCase :int = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__A , header_text=__A ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched lowerCamelCase :Optional[Any] = image_processor( __A , return_tensors='''pt''' , max_patches=__A , header_text=__A ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def snake_case ( self : Optional[int] ): # Initialize image_processor lowerCamelCase :Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase :Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) lowerCamelCase :Union[str, Any] = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowerCamelCase :Any = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__A ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched lowerCamelCase :Dict = image_processor( __A , return_tensors='''pt''' , max_patches=__A ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def snake_case ( self : Tuple ): # Initialize image_processor lowerCamelCase :str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase :Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input lowerCamelCase :List[Any] = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowerCamelCase :List[Any] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__A ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched lowerCamelCase :Optional[Any] = image_processor( __A , return_tensors='''pt''' , max_patches=__A ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.' , ) @require_torch @require_vision class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = PixaStructImageProcessor if is_vision_available() else None def snake_case ( self : Optional[int] ): lowerCamelCase :Tuple = PixaStructImageProcessingTester(self , num_channels=4 ) lowerCamelCase :Any = 3 @property def snake_case ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def snake_case ( self : str ): lowerCamelCase :Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , '''do_normalize''' ) ) self.assertTrue(hasattr(__A , '''do_convert_rgb''' ) ) def snake_case ( self : List[Any] ): # Initialize image_processor lowerCamelCase :Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase :Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input lowerCamelCase :Optional[int] = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowerCamelCase :Any = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=__A ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched lowerCamelCase :Optional[int] = image_processor( __A , return_tensors='''pt''' , max_patches=__A ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
717
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) A__ = { """configuration_layoutlmv2""": ["""LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv2Config"""], """processing_layoutlmv2""": ["""LayoutLMv2Processor"""], """tokenization_layoutlmv2""": ["""LayoutLMv2Tokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""LayoutLMv2TokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""LayoutLMv2FeatureExtractor"""] A__ = ["""LayoutLMv2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """LayoutLMv2ForQuestionAnswering""", """LayoutLMv2ForSequenceClassification""", """LayoutLMv2ForTokenClassification""", """LayoutLMv2Layer""", """LayoutLMv2Model""", """LayoutLMv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
49
0
from __future__ import annotations from typing import TypedDict class _lowerCAmelCase ( __snake_case ): _UpperCAmelCase = 4_2 _UpperCAmelCase = 4_2 def _lowerCamelCase ( a_ : str): if not isinstance(_lowerCamelCase , _lowerCamelCase): raise TypeError('''The parameter s type must be str.''') return [s[i:] + s[:i] for i in range(len(_lowerCamelCase))] def _lowerCamelCase ( a_ : str): if not isinstance(_lowerCamelCase , _lowerCamelCase): raise TypeError('''The parameter s type must be str.''') if not s: raise ValueError('''The parameter s must not be empty.''') lowerCamelCase :int = all_rotations(_lowerCamelCase) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation lowerCamelCase :BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations]), "idx_original_string": rotations.index(_lowerCamelCase), } return response def _lowerCamelCase ( a_ : str , a_ : int): if not isinstance(_lowerCamelCase , _lowerCamelCase): raise TypeError('''The parameter bwt_string type must be str.''') if not bwt_string: raise ValueError('''The parameter bwt_string must not be empty.''') try: lowerCamelCase :int = int(_lowerCamelCase) except ValueError: raise TypeError( '''The parameter idx_original_string type must be int or passive''' ''' of cast to int.''') if idx_original_string < 0: raise ValueError('''The parameter idx_original_string must not be lower than 0.''') if idx_original_string >= len(_lowerCamelCase): raise ValueError( '''The parameter idx_original_string must be lower than''' ''' len(bwt_string).''') lowerCamelCase :Tuple = [""""""] * len(_lowerCamelCase) for _ in range(len(_lowerCamelCase)): for i in range(len(_lowerCamelCase)): lowerCamelCase :Optional[Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": A__ = """Provide a string that I will generate its BWT transform: """ A__ = input(entry_msg).strip() A__ = bwt_transform(s) print( F'Burrows Wheeler transform for string \'{s}\' results ' F'in \'{result["bwt_string"]}\'' ) A__ = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( F'Reversing Burrows Wheeler transform for entry \'{result["bwt_string"]}\' ' F'we get original string \'{original_string}\'' )
718
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _lowerCAmelCase : @staticmethod def snake_case ( *__snake_case : str , **__snake_case : str ): pass @is_pipeline_test @require_vision class _lowerCAmelCase ( unittest.TestCase ): @require_torch def snake_case ( self : Union[str, Any] ): lowerCamelCase :Optional[int] = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Dict = image_classifier(__snake_case , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__snake_case ) , [ [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}], [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}], ] , ) lowerCamelCase :Tuple = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], ] , ) @require_tf def snake_case ( self : Tuple ): lowerCamelCase :Tuple = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Optional[Any] = image_classifier(__snake_case , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(__snake_case ) , [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}] , ) lowerCamelCase :int = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], ] , ) @slow @require_torch def snake_case ( self : Any ): lowerCamelCase :str = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Optional[Any] = image_classifier(__snake_case , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) lowerCamelCase :Any = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def snake_case ( self : Optional[Any] ): lowerCamelCase :Union[str, Any] = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes lowerCamelCase :Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Dict = image_classifier(__snake_case , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) lowerCamelCase :Any = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , )
49
0
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. A__ = abspath(join(dirname(dirname(__file__)), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def _lowerCamelCase ( a_ : Optional[Any]): from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowercase_) def _lowerCamelCase ( a_ : Any): from diffusers.utils.testing_utils import pytest_terminal_summary_main lowerCamelCase :List[str] = terminalreporter.config.getoption('''--make-reports''') if make_reports: pytest_terminal_summary_main(lowercase_ , id=lowercase_)
719
import operator as op def _lowerCamelCase ( a_ : Tuple): lowerCamelCase :int = [] lowerCamelCase :List[str] = lambda a_ , a_: int(x / y) # noqa: E731 integer division operation lowerCamelCase :Optional[int] = { '''^''': op.pow, '''*''': op.mul, '''/''': div, '''+''': op.add, '''-''': op.sub, } # operators & their respective operation # print table header print('''Symbol'''.center(8) , '''Action'''.center(12) , '''Stack''' , sep=''' | ''') print('''-''' * (30 + len(a_))) for x in post_fix: if x.isdigit(): # if x in digit stack.append(a_) # append x to stack # output in tabular format print(x.rjust(8) , ('''push(''' + x + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') else: lowerCamelCase :Optional[Any] = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8) , ('''pop(''' + b + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') lowerCamelCase :str = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8) , ('''pop(''' + a + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') stack.append( str(opr[x](int(a_) , int(a_)))) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8) , ('''push(''' + a + x + b + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''' , ) return int(stack[0]) if __name__ == "__main__": A__ = input("""\n\nEnter a Postfix Equation (space separated) = """).split(""" """) print("""\n\tResult = """, solve(Postfix))
49
0
from __future__ import annotations from collections.abc import Generator def _lowerCamelCase ( ): lowerCamelCase :Optional[Any] = {} lowerCamelCase :Optional[int] = 2 while True: lowerCamelCase :Optional[Any] = factor_map.pop(lowerCAmelCase__ , lowerCAmelCase__) if factor: lowerCamelCase :Tuple = factor + prime while x in factor_map: x += factor lowerCamelCase :int = factor else: lowerCamelCase :Optional[Any] = prime yield prime prime += 1 def _lowerCamelCase ( a_ : float = 1e1_0): lowerCamelCase :Union[str, Any] = sieve() lowerCamelCase :Dict = 1 while True: lowerCamelCase :Union[str, Any] = next(lowerCAmelCase__) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(lowerCAmelCase__) n += 2 if __name__ == "__main__": print(solution())
720
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() A__ = logging.get_logger(__name__) A__ = """Hello, World!""" A__ = """en_XX""" def _lowerCamelCase ( a_ : str , a_ : str , a_ : bool): lowerCamelCase :int = Path('''data_bin''') lowerCamelCase :Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(a_).parent) , checkpoint_file=Path(a_).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(a_) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(a_).parent / '''sentencepiece.bpe.model''') , src_dict=str(data_dir / '''dict.txt''') , ) xmod.eval() # disable dropout print(a_) lowerCamelCase :Any = xmod.model.encoder.sentence_encoder lowerCamelCase :List[str] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: lowerCamelCase :Dict = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our X-MOD config:''' , a_) lowerCamelCase :List[Any] = XmodForSequenceClassification(a_) if classification_head else XmodForMaskedLM(a_) model.eval() # Now let's copy all the weights. # Embeddings lowerCamelCase :Union[str, Any] = xmod_sent_encoder.embed_tokens.weight lowerCamelCase :Tuple = xmod_sent_encoder.embed_positions.weight lowerCamelCase :List[str] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight) # just zero them out b/c xmod doesn't use them. lowerCamelCase :List[Any] = xmod_sent_encoder.layernorm_embedding.weight lowerCamelCase :Optional[int] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers): # Encoder: start of layer lowerCamelCase :Union[str, Any] = model.roberta.encoder.layer[i] lowerCamelCase :List[str] = xmod_sent_encoder.layers[i] # self attention lowerCamelCase :Optional[int] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size)) ): raise AssertionError('''Dimensions of self-attention weights do not match.''') lowerCamelCase :Optional[int] = xmod_layer.self_attn.q_proj.weight lowerCamelCase :List[str] = xmod_layer.self_attn.q_proj.bias lowerCamelCase :str = xmod_layer.self_attn.k_proj.weight lowerCamelCase :Optional[Any] = xmod_layer.self_attn.k_proj.bias lowerCamelCase :Dict = xmod_layer.self_attn.v_proj.weight lowerCamelCase :Optional[int] = xmod_layer.self_attn.v_proj.bias # self-attention output lowerCamelCase :Optional[int] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('''Dimensions of self-attention output weights do not match.''') lowerCamelCase :List[Any] = xmod_layer.self_attn.out_proj.weight lowerCamelCase :Union[str, Any] = xmod_layer.self_attn.out_proj.bias lowerCamelCase :str = xmod_layer.self_attn_layer_norm.weight lowerCamelCase :List[Any] = xmod_layer.self_attn_layer_norm.bias # intermediate lowerCamelCase :Optional[int] = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of intermediate weights do not match.''') lowerCamelCase :int = xmod_layer.fca.weight lowerCamelCase :Union[str, Any] = xmod_layer.fca.bias # output lowerCamelCase :List[str] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of feed-forward weights do not match.''') lowerCamelCase :str = xmod_layer.fca.weight lowerCamelCase :int = xmod_layer.fca.bias lowerCamelCase :List[Any] = xmod_layer.final_layer_norm.weight lowerCamelCase :List[str] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: lowerCamelCase :List[str] = xmod_layer.adapter_layer_norm.weight lowerCamelCase :int = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys()) != sorted(xmod_layer.adapter_modules.keys()): raise AssertionError('''Lists of language adapters do not match.''') for lang_code, adapter in xmod_layer.adapter_modules.items(): lowerCamelCase :Optional[int] = bert_output.adapter_modules[lang_code] lowerCamelCase :Dict = xmod_layer.adapter_modules[lang_code] lowerCamelCase :List[Any] = from_adapter.fca.weight lowerCamelCase :List[Any] = from_adapter.fca.bias lowerCamelCase :Dict = from_adapter.fca.weight lowerCamelCase :Optional[Any] = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: lowerCamelCase :Dict = xmod_sent_encoder.layer_norm.weight lowerCamelCase :List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: lowerCamelCase :Union[str, Any] = xmod.model.classification_heads['''mnli'''].dense.weight lowerCamelCase :Tuple = xmod.model.classification_heads['''mnli'''].dense.bias lowerCamelCase :Optional[Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight lowerCamelCase :List[Any] = xmod.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head lowerCamelCase :int = xmod.model.encoder.lm_head.dense.weight lowerCamelCase :List[Any] = xmod.model.encoder.lm_head.dense.bias lowerCamelCase :Optional[int] = xmod.model.encoder.lm_head.layer_norm.weight lowerCamelCase :List[Any] = xmod.model.encoder.lm_head.layer_norm.bias lowerCamelCase :List[Any] = xmod.model.encoder.lm_head.weight lowerCamelCase :Any = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCamelCase :str = xmod.encode(a_).unsqueeze(0) # batch of size 1 model.roberta.set_default_language(a_) lowerCamelCase :Any = model(a_)[0] if classification_head: lowerCamelCase :Dict = xmod.model.classification_heads['''mnli'''](xmod.extract_features(a_)) else: lowerCamelCase :int = xmod.model(a_ , lang_id=[SAMPLE_LANGUAGE])[0] print(our_output.shape , their_output.shape) lowerCamelCase :List[str] = torch.max(torch.abs(our_output - their_output)).item() print(F"max_absolute_diff = {max_absolute_diff}") # ~ 1e-7 lowerCamelCase :str = torch.allclose(a_ , a_ , atol=1e-3) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''') if not success: raise Exception('''Something went wRoNg''') Path(a_).mkdir(parents=a_ , exist_ok=a_) print(F"Saving model to {pytorch_dump_folder_path}") model.save_pretrained(a_) if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) A__ = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
49
0
from __future__ import annotations import math def _lowerCamelCase ( a_ : int): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowerCamelCase) + 1) , 6): if number % i == 0 or number % (i + 2) == 0: return False return True A__ : Optional[int] = [num for num in range(3, 100_001, 2) if not is_prime(num)] def _lowerCamelCase ( a_ : int): if not isinstance(_lowerCamelCase , _lowerCamelCase): raise ValueError('''n must be an integer''') if n <= 0: raise ValueError('''n must be >= 0''') lowerCamelCase :Any = [] for num in range(len(_lowerCamelCase)): lowerCamelCase :List[Any] = 0 while 2 * i * i <= odd_composites[num]: lowerCamelCase :Optional[Any] = odd_composites[num] - 2 * i * i if is_prime(_lowerCamelCase): break i += 1 else: list_nums.append(odd_composites[num]) if len(_lowerCamelCase) == n: return list_nums return [] def _lowerCamelCase ( ): return compute_nums(1)[0] if __name__ == "__main__": print(F'{solution() = }')
721
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { """andreasmadsen/efficient_mlm_m0.40""": ( """https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json""" ), } class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'roberta-prelayernorm' def __init__( self : str , __snake_case : List[str]=50265 , __snake_case : Union[str, Any]=768 , __snake_case : Tuple=12 , __snake_case : int=12 , __snake_case : Any=3072 , __snake_case : Optional[int]="gelu" , __snake_case : List[Any]=0.1 , __snake_case : int=0.1 , __snake_case : Union[str, Any]=512 , __snake_case : Dict=2 , __snake_case : int=0.0_2 , __snake_case : Any=1e-1_2 , __snake_case : Optional[int]=1 , __snake_case : Dict=0 , __snake_case : Optional[int]=2 , __snake_case : Any="absolute" , __snake_case : Union[str, Any]=True , __snake_case : List[str]=None , **__snake_case : Optional[int] , ): super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) lowerCamelCase :Optional[int] = vocab_size lowerCamelCase :Dict = hidden_size lowerCamelCase :Tuple = num_hidden_layers lowerCamelCase :Optional[int] = num_attention_heads lowerCamelCase :Any = hidden_act lowerCamelCase :List[Any] = intermediate_size lowerCamelCase :Union[str, Any] = hidden_dropout_prob lowerCamelCase :str = attention_probs_dropout_prob lowerCamelCase :Tuple = max_position_embeddings lowerCamelCase :int = type_vocab_size lowerCamelCase :Optional[Any] = initializer_range lowerCamelCase :Union[str, Any] = layer_norm_eps lowerCamelCase :Dict = position_embedding_type lowerCamelCase :List[Any] = use_cache lowerCamelCase :Optional[int] = classifier_dropout class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): @property def snake_case ( self : Any ): if self.task == "multiple-choice": lowerCamelCase :Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase :List[str] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
49
0
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def _lowerCamelCase ( a_ : str): lowerCamelCase :Optional[Any] = args.pruning_method lowerCamelCase :List[Any] = args.threshold lowerCamelCase :Optional[Any] = args.model_name_or_path.rstrip('''/''') lowerCamelCase :Union[str, Any] = args.target_model_path print(F"Load fine-pruned model from {model_name_or_path}") lowerCamelCase :Union[str, Any] = torch.load(os.path.join(a_ , '''pytorch_model.bin''')) lowerCamelCase :List[str] = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: lowerCamelCase :int = tensor print(F"Copied layer {name}") elif "classifier" in name or "qa_output" in name: lowerCamelCase :Optional[int] = tensor print(F"Copied layer {name}") elif "bias" in name: lowerCamelCase :Any = tensor print(F"Copied layer {name}") else: if pruning_method == "magnitude": lowerCamelCase :Tuple = MagnitudeBinarizer.apply(inputs=a_ , threshold=a_) lowerCamelCase :Union[str, Any] = tensor * mask print(F"Pruned layer {name}") elif pruning_method == "topK": if "mask_scores" in name: continue lowerCamelCase :int = name[:-6] lowerCamelCase :Dict = model[F"{prefix_}mask_scores"] lowerCamelCase :Tuple = TopKBinarizer.apply(a_ , a_) lowerCamelCase :Dict = tensor * mask print(F"Pruned layer {name}") elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue lowerCamelCase :int = name[:-6] lowerCamelCase :int = model[F"{prefix_}mask_scores"] lowerCamelCase :List[Any] = ThresholdBinarizer.apply(a_ , a_ , a_) lowerCamelCase :Any = tensor * mask print(F"Pruned layer {name}") elif pruning_method == "l0": if "mask_scores" in name: continue lowerCamelCase :List[Any] = name[:-6] lowerCamelCase :Optional[Any] = model[F"{prefix_}mask_scores"] lowerCamelCase , lowerCamelCase :Optional[Any] = -0.1, 1.1 lowerCamelCase :List[str] = torch.sigmoid(a_) lowerCamelCase :List[Any] = s * (r - l) + l lowerCamelCase :Dict = s_bar.clamp(min=0.0 , max=1.0) lowerCamelCase :str = tensor * mask print(F"Pruned layer {name}") else: raise ValueError('''Unknown pruning method''') if target_model_path is None: lowerCamelCase :Tuple = os.path.join( os.path.dirname(a_) , F"bertarized_{os.path.basename(a_)}") if not os.path.isdir(a_): shutil.copytree(a_ , a_) print(F"\nCreated folder {target_model_path}") torch.save(a_ , os.path.join(a_ , '''pytorch_model.bin''')) print('''\nPruned model saved! See you later!''') if __name__ == "__main__": A__ = argparse.ArgumentParser() parser.add_argument( """--pruning_method""", choices=["""l0""", """magnitude""", """topK""", """sigmoied_threshold"""], type=str, required=True, help=( """Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,""" """ sigmoied_threshold = Soft movement pruning)""" ), ) parser.add_argument( """--threshold""", type=float, required=False, help=( """For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.""" """For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.""" """Not needed for `l0`""" ), ) parser.add_argument( """--model_name_or_path""", type=str, required=True, help="""Folder containing the model that was previously fine-pruned""", ) parser.add_argument( """--target_model_path""", default=None, type=str, required=False, help="""Folder containing the model that was previously fine-pruned""", ) A__ = parser.parse_args() main(args)
700
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = DebertaTokenizer _UpperCAmelCase = True _UpperCAmelCase = DebertaTokenizerFast def snake_case ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase :Dict = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] lowerCamelCase :List[str] = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) lowerCamelCase :Any = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCamelCase :Dict = {'''unk_token''': '''[UNK]'''} lowerCamelCase :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase :List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__snake_case ) ) def snake_case ( self : str , **__snake_case : Dict ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Optional[Any] , __snake_case : int ): lowerCamelCase :List[Any] = '''lower newer''' lowerCamelCase :List[str] = '''lower newer''' return input_text, output_text def snake_case ( self : str ): lowerCamelCase :Optional[int] = self.get_tokenizer() lowerCamelCase :Union[str, Any] = '''lower newer''' lowerCamelCase :str = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] lowerCamelCase :Optional[int] = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) lowerCamelCase :List[str] = tokens + [tokenizer.unk_token] lowerCamelCase :Optional[int] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def snake_case ( self : Optional[int] ): lowerCamelCase :List[str] = self.get_tokenizer() lowerCamelCase :Optional[int] = tokenizer('''Hello''' , '''World''' ) lowerCamelCase :List[str] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __snake_case ) @slow def snake_case ( self : str ): lowerCamelCase :Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) lowerCamelCase :Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__snake_case ) lowerCamelCase :Tuple = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__snake_case ) lowerCamelCase :Union[str, Any] = tokenizer.encode( '''sequence builders''' , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) lowerCamelCase :str = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) lowerCamelCase :Any = tokenizer.build_inputs_with_special_tokens(__snake_case ) lowerCamelCase :Dict = tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def snake_case ( self : str ): lowerCamelCase :List[str] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: lowerCamelCase :int = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) lowerCamelCase :Tuple = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] lowerCamelCase :List[Any] = tokenizer(__snake_case , padding=__snake_case ) lowerCamelCase :Union[str, Any] = [tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) for seq in encoding['''input_ids''']] # fmt: off lowerCamelCase :Any = { '''input_ids''': [ [1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on lowerCamelCase :Optional[int] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __snake_case ) for expected, decoded in zip(__snake_case , __snake_case ): self.assertEqual(__snake_case , __snake_case )
49
0
import argparse from collections import defaultdict import yaml A__ = """docs/source/en/_toctree.yml""" def _lowerCamelCase ( a_ : List[Any]): lowerCamelCase :str = defaultdict(SCREAMING_SNAKE_CASE_) for doc in model_doc: counts[doc["local"]] += 1 lowerCamelCase :str = [key for key, value in counts.items() if value > 1] lowerCamelCase :Any = [] for duplicate_key in duplicates: lowerCamelCase :Any = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key}) if len(SCREAMING_SNAKE_CASE_) > 1: raise ValueError( F"{duplicate_key} is present several times in the documentation table of content at " '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''') # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]}) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1]) # Sort return sorted(SCREAMING_SNAKE_CASE_ , key=lambda a_: s["title"].lower()) def _lowerCamelCase ( a_ : str=False): with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''') as f: lowerCamelCase :List[str] = yaml.safe_load(f.read()) # Get to the API doc lowerCamelCase :Any = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowerCamelCase :Dict = content[api_idx]["sections"] # Then to the model doc lowerCamelCase :int = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 lowerCamelCase :List[Any] = api_doc[model_idx]["sections"] lowerCamelCase :Union[str, Any] = [(idx, section) for idx, section in enumerate(SCREAMING_SNAKE_CASE_) if "sections" in section] lowerCamelCase :Tuple = False for idx, modality_doc in modalities_docs: lowerCamelCase :str = modality_doc["sections"] lowerCamelCase :int = clean_model_doc_toc(SCREAMING_SNAKE_CASE_) if old_modality_doc != new_modality_doc: lowerCamelCase :List[Any] = True if overwrite: lowerCamelCase :Optional[int] = new_modality_doc if diff: if overwrite: lowerCamelCase :Optional[int] = model_doc lowerCamelCase :List[Any] = api_doc with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''') as f: f.write(yaml.dump(SCREAMING_SNAKE_CASE_ , allow_unicode=SCREAMING_SNAKE_CASE_)) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''') if __name__ == "__main__": A__ = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") A__ = parser.parse_args() check_model_doc(args.fix_and_overwrite)
701
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) A__ = [ """cross_validation.py""", """gradient_accumulation.py""", """local_sgd.py""", """multi_process_metrics.py""", """memory.py""", """automatic_gradient_accumulation.py""", """fsdp_with_peak_mem_tracking.py""", """deepspeed_with_config_support.py""", """megatron_lm_gpt_pretraining.py""", ] class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Any , __snake_case : str , __snake_case : bool , __snake_case : str = None , __snake_case : list = None ): lowerCamelCase :Tuple = None lowerCamelCase :Tuple = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) lowerCamelCase :Optional[int] = os.path.abspath('''examples''' ) for item in os.listdir(__snake_case ): if item not in EXCLUDE_EXAMPLES: lowerCamelCase :Optional[int] = os.path.join(__snake_case , __snake_case ) if os.path.isfile(__snake_case ) and ".py" in item_path: with self.subTest( tested_script=__snake_case , feature_script=__snake_case , tested_section='''main()''' if parser_only else '''training_function()''' , ): lowerCamelCase :Union[str, Any] = compare_against_test( os.path.join(__snake_case , __snake_case ) , __snake_case , __snake_case , __snake_case ) lowerCamelCase :int = '''\n'''.join(__snake_case ) if special_strings is not None: for string in special_strings: lowerCamelCase :int = diff.replace(__snake_case , '''''' ) self.assertEqual(__snake_case , '''''' ) def snake_case ( self : Dict ): self.one_complete_example('''complete_nlp_example.py''' , __snake_case ) self.one_complete_example('''complete_nlp_example.py''' , __snake_case ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Union[str, Any] = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) lowerCamelCase :Optional[int] = [ ''' ''' * 16 + '''{\n\n''', ''' ''' * 20 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 20 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 20 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 20 + '''"epoch": epoch,\n\n''', ''' ''' * 16 + '''},\n\n''', ''' ''' * 16 + '''step=epoch,\n''', ''' ''' * 12, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , __snake_case , __snake_case , __snake_case ) self.one_complete_example('''complete_cv_example.py''' , __snake_case , __snake_case , __snake_case ) @mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '1'} ) class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = False @classmethod def snake_case ( cls : Optional[Any] ): super().setUpClass() lowerCamelCase :Any = tempfile.mkdtemp() lowerCamelCase :Optional[int] = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) lowerCamelCase :List[str] = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def snake_case ( cls : Dict ): super().tearDownClass() shutil.rmtree(cls._tmpdir ) def snake_case ( self : int ): lowerCamelCase :Any = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def snake_case ( self : List[Any] ): lowerCamelCase :Tuple = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n ".split() lowerCamelCase :List[Any] = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def snake_case ( self : List[str] ): lowerCamelCase :Dict = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}\n ".split() lowerCamelCase :Dict = run_command(self._launch_args + testargs , return_stdout=__snake_case ) self.assertNotIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) def snake_case ( self : str ): lowerCamelCase :List[Any] = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}\n ".split() lowerCamelCase :Optional[int] = run_command(self._launch_args + testargs , return_stdout=__snake_case ) if torch.cuda.is_available(): lowerCamelCase :Union[str, Any] = torch.cuda.device_count() else: lowerCamelCase :Dict = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) else: self.assertIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) @slow def snake_case ( self : Any ): lowerCamelCase :Tuple = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): lowerCamelCase :Dict = run_command(self._launch_args + testargs , return_stdout=__snake_case ) lowerCamelCase :Tuple = re.findall('''({.+})''' , __snake_case ) lowerCamelCase :Optional[Any] = [r for r in results if '''accuracy''' in r][-1] lowerCamelCase :List[str] = ast.literal_eval(__snake_case ) self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 ) def snake_case ( self : int ): lowerCamelCase :Dict = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case ( self : Any ): with tempfile.TemporaryDirectory() as tmpdir: lowerCamelCase :Tuple = F"\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__snake_case , '''tracking''' ) ) ) def snake_case ( self : Tuple ): lowerCamelCase :Tuple = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def snake_case ( self : Optional[Any] ): lowerCamelCase :int = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
49
0
from math import pi def _lowerCamelCase ( a_ : int , a_ : int): return 2 * pi * radius * (angle / 3_60) if __name__ == "__main__": print(arc_length(90, 10))
702
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs A__ = imread(R"""digital_image_processing/image_data/lena_small.jpg""") A__ = cvtColor(img, COLOR_BGR2GRAY) def _lowerCamelCase ( ): lowerCamelCase :int = cn.convert_to_negative(a_) # assert negative_img array for at least one True assert negative_img.any() def _lowerCamelCase ( ): with Image.open('''digital_image_processing/image_data/lena_small.jpg''') as img: # Work around assertion for response assert str(cc.change_contrast(a_ , 1_10)).startswith( '''<PIL.Image.Image image mode=RGB size=100x100 at''') def _lowerCamelCase ( ): lowerCamelCase :Optional[Any] = canny.gen_gaussian_kernel(9 , sigma=1.4) # Assert ambiguous array assert resp.all() def _lowerCamelCase ( ): lowerCamelCase :str = imread('''digital_image_processing/image_data/lena_small.jpg''' , 0) # assert ambiguous array for all == True assert canny_img.all() lowerCamelCase :Optional[Any] = canny.canny(a_) # assert canny array for at least one True assert canny_array.any() def _lowerCamelCase ( ): assert gg.gaussian_filter(a_ , 5 , sigma=0.9).all() def _lowerCamelCase ( ): # laplace diagonals lowerCamelCase :List[Any] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]]) lowerCamelCase :List[Any] = conv.img_convolve(a_ , a_).astype(a_) assert res.any() def _lowerCamelCase ( ): assert med.median_filter(a_ , 3).any() def _lowerCamelCase ( ): lowerCamelCase , lowerCamelCase :Union[str, Any] = sob.sobel_filter(a_) assert grad.any() and theta.any() def _lowerCamelCase ( ): lowerCamelCase :Dict = sp.make_sepia(a_ , 20) assert sepia.all() def _lowerCamelCase ( a_ : str = "digital_image_processing/image_data/lena_small.jpg"): lowerCamelCase :Any = bs.Burkes(imread(a_ , 1) , 1_20) burkes.process() assert burkes.output_img.any() def _lowerCamelCase ( a_ : str = "digital_image_processing/image_data/lena_small.jpg" , ): lowerCamelCase :Tuple = rs.NearestNeighbour(imread(a_ , 1) , 4_00 , 2_00) nn.process() assert nn.output.any() def _lowerCamelCase ( ): lowerCamelCase :Tuple = '''digital_image_processing/image_data/lena.jpg''' # Reading the image and converting it to grayscale. lowerCamelCase :Tuple = imread(a_ , 0) # Test for get_neighbors_pixel function() return not None lowerCamelCase :Dict = 0 lowerCamelCase :Optional[Any] = 0 lowerCamelCase :str = image[x_coordinate][y_coordinate] lowerCamelCase :Any = lbp.get_neighbors_pixel( a_ , a_ , a_ , a_) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCamelCase :int = np.zeros((image.shape[0], image.shape[1])) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0]): for j in range(0 , image.shape[1]): lowerCamelCase :Optional[int] = lbp.local_binary_value(a_ , a_ , a_) assert lbp_image.any()
49
0
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING A__ = logging.get_logger(__name__) @add_end_docstrings(__A ) class _lowerCAmelCase ( __A ): def __init__( self : Dict , *__snake_case : Optional[Any] , **__snake_case : str ): super().__init__(*__snake_case , **__snake_case ) self.check_model_type(__snake_case ) def snake_case ( self : Any , __snake_case : List[str]=None , __snake_case : Any=None , __snake_case : str=None , **__snake_case : List[str] ): lowerCamelCase :List[Any] = {}, {} if padding is not None: lowerCamelCase :Union[str, Any] = padding if truncation is not None: lowerCamelCase :Optional[Any] = truncation if top_k is not None: lowerCamelCase :int = top_k return preprocess_params, {}, postprocess_params def __call__( self : str , __snake_case : List[Any] , __snake_case : int = None , **__snake_case : Optional[int] ): if isinstance(__snake_case , (Image.Image, str) ) and isinstance(__snake_case , __snake_case ): lowerCamelCase :Tuple = {'image': image, 'question': question} else: lowerCamelCase :Union[str, Any] = image lowerCamelCase :str = super().__call__(__snake_case , **__snake_case ) return results def snake_case ( self : Tuple , __snake_case : Tuple , __snake_case : List[str]=False , __snake_case : Optional[int]=False ): lowerCamelCase :Any = load_image(inputs['''image'''] ) lowerCamelCase :Any = self.tokenizer( inputs['''question'''] , return_tensors=self.framework , padding=__snake_case , truncation=__snake_case ) lowerCamelCase :Dict = self.image_processor(images=__snake_case , return_tensors=self.framework ) model_inputs.update(__snake_case ) return model_inputs def snake_case ( self : Any , __snake_case : int ): lowerCamelCase :List[Any] = self.model(**__snake_case ) return model_outputs def snake_case ( self : Tuple , __snake_case : int , __snake_case : Tuple=5 ): if top_k > self.model.config.num_labels: lowerCamelCase :str = self.model.config.num_labels if self.framework == "pt": lowerCamelCase :int = model_outputs.logits.sigmoid()[0] lowerCamelCase :Optional[int] = probs.topk(__snake_case ) else: raise ValueError(F"Unsupported framework: {self.framework}" ) lowerCamelCase :List[str] = scores.tolist() lowerCamelCase :int = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(__snake_case , __snake_case )]
703
import os from math import logaa def _lowerCamelCase ( a_ : str = "base_exp.txt"): lowerCamelCase :float = 0 lowerCamelCase :Optional[int] = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(a_) , a_))): lowerCamelCase , lowerCamelCase :Optional[int] = list(map(a_ , line.split(''','''))) if x * logaa(a_) > largest: lowerCamelCase :List[Any] = x * logaa(a_) lowerCamelCase :Any = i + 1 return result if __name__ == "__main__": print(solution())
49
0
'''simple docstring''' def _lowerCamelCase ( a_ : Optional[int] , a_ : Optional[Any]): return abs(__snake_case) if a == 0 else greatest_common_divisor(b % a , __snake_case) def _lowerCamelCase ( a_ : int , a_ : Dict): while y: # --> when y=0 then loop will terminate and return x as final GCD. lowerCamelCase , lowerCamelCase :Optional[int] = y, x % y return abs(__snake_case) def _lowerCamelCase ( ): try: lowerCamelCase :int = input('''Enter two integers separated by comma (,): ''').split(''',''') lowerCamelCase :List[str] = int(nums[0]) lowerCamelCase :List[Any] = int(nums[1]) print( F"greatest_common_divisor({num_a}, {num_a}) = " F"{greatest_common_divisor(__snake_case , __snake_case)}") print(F"By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(__snake_case , __snake_case)}") except (IndexError, UnboundLocalError, ValueError): print('''Wrong input''') if __name__ == "__main__": main()
704
def _lowerCamelCase ( a_ : list): if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''') for cell_n in range(1 , len(grid[0])): grid[0][cell_n] += grid[0][cell_n - 1] lowerCamelCase :Any = grid[0] for row_n in range(1 , len(a_)): lowerCamelCase :List[str] = grid[row_n] lowerCamelCase :Union[str, Any] = fill_row(a_ , a_) lowerCamelCase :List[Any] = grid[row_n] return grid[-1][-1] def _lowerCamelCase ( a_ : list , a_ : list): current_row[0] += row_above[0] for cell_n in range(1 , len(a_)): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n]) return current_row if __name__ == "__main__": import doctest doctest.testmod()
49
0
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler A__ = 16 A__ = 32 def _lowerCamelCase ( a_ : Tuple , a_ : Any = 16 , a_ : List[Any] = "bert-base-cased"): lowerCamelCase :Any = AutoTokenizer.from_pretrained(lowerCAmelCase__) lowerCamelCase :List[str] = load_dataset('''glue''' , '''mrpc''') def tokenize_function(a_ : Union[str, Any]): # max_length=None => use the model max length (it's actually the default) lowerCamelCase :Any = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCamelCase :Any = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=lowerCAmelCase__) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase :str = tokenized_datasets.rename_column('''label''' , '''labels''') def collate_fn(a_ : Any): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase__ , padding='''max_length''' , max_length=1_28 , return_tensors='''pt''') return tokenizer.pad(lowerCAmelCase__ , padding='''longest''' , return_tensors='''pt''') # Instantiate dataloaders. lowerCamelCase :Any = DataLoader( tokenized_datasets['''train'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__) lowerCamelCase :List[str] = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__) return train_dataloader, eval_dataloader def _lowerCamelCase ( a_ : int , a_ : Tuple): # Initialize accelerator lowerCamelCase :Union[str, Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase :int = config['''lr'''] lowerCamelCase :Optional[int] = int(config['''num_epochs''']) lowerCamelCase :Optional[int] = int(config['''seed''']) lowerCamelCase :Tuple = int(config['''batch_size''']) lowerCamelCase :Any = args.model_name_or_path set_seed(lowerCAmelCase__) lowerCamelCase , lowerCamelCase :Optional[int] = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase :List[str] = AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase__ , return_dict=lowerCAmelCase__) # Instantiate optimizer lowerCamelCase :Tuple = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowerCamelCase :Optional[int] = optimizer_cls(params=model.parameters() , lr=lowerCAmelCase__) if accelerator.state.deepspeed_plugin is not None: lowerCamelCase :List[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: lowerCamelCase :List[str] = 1 lowerCamelCase :Tuple = (len(lowerCAmelCase__) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowerCamelCase :str = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=0 , num_training_steps=lowerCAmelCase__ , ) else: lowerCamelCase :Tuple = DummyScheduler(lowerCAmelCase__ , total_num_steps=lowerCAmelCase__ , warmup_num_steps=0) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase :int = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) # We need to keep track of how many total steps we have iterated over lowerCamelCase :str = 0 # We also need to keep track of the stating epoch so files are named properly lowerCamelCase :int = 0 # Now we train the model lowerCamelCase :Dict = evaluate.load('''glue''' , '''mrpc''') lowerCamelCase :Optional[Any] = 0 lowerCamelCase :Optional[Any] = {} for epoch in range(lowerCAmelCase__ , lowerCAmelCase__): model.train() for step, batch in enumerate(lowerCAmelCase__): lowerCamelCase :int = model(**lowerCAmelCase__) lowerCamelCase :Optional[int] = outputs.loss lowerCamelCase :int = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase__) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() lowerCamelCase :Optional[int] = 0 for step, batch in enumerate(lowerCAmelCase__): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): lowerCamelCase :str = model(**lowerCAmelCase__) lowerCamelCase :List[str] = outputs.logits.argmax(dim=-1) # It is slightly faster to call this once, than multiple times lowerCamelCase , lowerCamelCase :List[Any] = accelerator.gather( (predictions, batch['''labels'''])) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowerCAmelCase__) - 1: lowerCamelCase :List[Any] = predictions[: len(eval_dataloader.dataset) - samples_seen] lowerCamelCase :Any = references[: len(eval_dataloader.dataset) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) lowerCamelCase :int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , lowerCAmelCase__) lowerCamelCase :Optional[int] = eval_metric['''accuracy'''] if best_performance < eval_metric["accuracy"]: lowerCamelCase :int = eval_metric['''accuracy'''] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F"Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''all_results.json''') , '''w''') as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__) def _lowerCamelCase ( ): lowerCamelCase :str = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''') parser.add_argument( '''--model_name_or_path''' , type=lowerCAmelCase__ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=lowerCAmelCase__ , ) parser.add_argument( '''--output_dir''' , type=lowerCAmelCase__ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--performance_lower_bound''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help='''Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.''' , ) parser.add_argument( '''--num_epochs''' , type=lowerCAmelCase__ , default=3 , help='''Number of train epochs.''' , ) lowerCamelCase :str = parser.parse_args() lowerCamelCase :List[Any] = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(lowerCAmelCase__ , lowerCAmelCase__) if __name__ == "__main__": main()
705
import math def _lowerCamelCase ( a_ : int): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a_) + 1) , 6): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCamelCase ( a_ : float = 0.1): lowerCamelCase :Dict = 3 lowerCamelCase :List[Any] = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1): primes += is_prime(a_) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
49
0
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin A__ = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class _lowerCAmelCase : def __init__( self : Dict , __snake_case : Tuple , __snake_case : Optional[int]=16 , __snake_case : Optional[int]=13 , __snake_case : Tuple=7 , __snake_case : Optional[Any]=14 , __snake_case : int=10 , __snake_case : Optional[int]=19 , __snake_case : int=5 , __snake_case : List[str]=4 , __snake_case : int=True , __snake_case : List[str]=16 , __snake_case : List[Any]=2 , __snake_case : Dict=4 , __snake_case : List[str]=4 , __snake_case : Dict="gelu" , __snake_case : Optional[Any]=0.1 , __snake_case : Any=0.1 , __snake_case : Union[str, Any]=[1, 2, 3, 4, 5] , __snake_case : Dict=25 , __snake_case : Optional[int]=5 , ): lowerCamelCase :int = d_model lowerCamelCase :int = parent lowerCamelCase :Optional[Any] = batch_size lowerCamelCase :str = prediction_length lowerCamelCase :Optional[int] = context_length lowerCamelCase :Optional[Any] = cardinality lowerCamelCase :str = num_time_features lowerCamelCase :Tuple = lags_sequence lowerCamelCase :Optional[Any] = embedding_dimension lowerCamelCase :Optional[Any] = is_training lowerCamelCase :Any = hidden_size lowerCamelCase :Dict = num_hidden_layers lowerCamelCase :List[Any] = num_attention_heads lowerCamelCase :Optional[Any] = intermediate_size lowerCamelCase :Optional[int] = hidden_act lowerCamelCase :int = hidden_dropout_prob lowerCamelCase :List[str] = attention_probs_dropout_prob lowerCamelCase :Tuple = context_length lowerCamelCase :List[str] = prediction_length + label_length lowerCamelCase :int = label_length lowerCamelCase :List[str] = moving_average lowerCamelCase :List[str] = autocorrelation_factor def snake_case ( self : List[str] ): return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def snake_case ( self : Tuple , __snake_case : Union[str, Any] ): lowerCamelCase :Dict = config.context_length + max(config.lags_sequence ) lowerCamelCase :Optional[int] = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) lowerCamelCase :Any = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) lowerCamelCase :Union[str, Any] = floats_tensor([self.batch_size, _past_length] ) lowerCamelCase :int = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs lowerCamelCase :Union[str, Any] = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) lowerCamelCase :List[Any] = floats_tensor([self.batch_size, config.prediction_length] ) lowerCamelCase :List[str] = { "past_values": past_values, "static_categorical_features": static_categorical_features, "past_time_features": past_time_features, "past_observed_mask": past_observed_mask, "future_time_features": future_time_features, "future_values": future_values, } return inputs_dict def snake_case ( self : Optional[Any] ): lowerCamelCase :List[str] = self.get_config() lowerCamelCase :Tuple = self.prepare_autoformer_inputs_dict(a_ ) return config, inputs_dict def snake_case ( self : Union[str, Any] ): lowerCamelCase :List[Any] = self.prepare_config_and_inputs() return config, inputs_dict def snake_case ( self : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Any ): lowerCamelCase :List[str] = AutoformerModel(config=a_ ).to(a_ ).eval() lowerCamelCase :Union[str, Any] = model(**a_ ) lowerCamelCase :List[str] = outputs.encoder_last_hidden_state lowerCamelCase :Optional[int] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase :List[str] = model.get_encoder() encoder.save_pretrained(a_ ) lowerCamelCase :Optional[Any] = AutoformerEncoder.from_pretrained(a_ ).to(a_ ) lowerCamelCase :int = model.create_network_inputs(**a_ ) lowerCamelCase :Tuple = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) lowerCamelCase :List[Any] = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) lowerCamelCase :List[Any] = encoder(inputs_embeds=a_ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) lowerCamelCase :Union[str, Any] = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) lowerCamelCase :Tuple = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) lowerCamelCase :Optional[Any] = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) lowerCamelCase :str = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase :Optional[int] = model.get_decoder() decoder.save_pretrained(a_ ) lowerCamelCase :List[str] = AutoformerDecoder.from_pretrained(a_ ).to(a_ ) lowerCamelCase :Dict = decoder( trend=a_ , inputs_embeds=a_ , encoder_hidden_states=a_ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class _lowerCAmelCase ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): _UpperCAmelCase = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _UpperCAmelCase = (AutoformerForPrediction,) if is_torch_available() else () _UpperCAmelCase = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def snake_case ( self : Dict ): lowerCamelCase :Tuple = AutoformerModelTester(self ) lowerCamelCase :Union[str, Any] = ConfigTester(self , config_class=a_ , has_text_modality=a_ ) def snake_case ( self : List[Any] ): self.config_tester.run_common_tests() def snake_case ( self : Optional[int] ): lowerCamelCase :int = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: lowerCamelCase :Dict = model_class(a_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(a_ ) lowerCamelCase :str = model_class.from_pretrained(a_ , output_loading_info=a_ ) self.assertEqual(info['''missing_keys'''] , [] ) def snake_case ( self : Union[str, Any] ): lowerCamelCase :Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*a_ ) @unittest.skip(reason='''Model has no tokens embeddings''' ) def snake_case ( self : List[Any] ): pass def snake_case ( self : Union[str, Any] ): lowerCamelCase :Union[str, Any] = inspect.signature(getattr(a_ , '''forward''' ) ) # The main input is the name of the argument after `self` lowerCamelCase :Optional[int] = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , a_ ) def snake_case ( self : Tuple ): lowerCamelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :Tuple = model_class(a_ ) lowerCamelCase :List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase :Union[str, Any] = [*signature.parameters.keys()] lowerCamelCase :List[Any] = [ "past_values", "past_time_features", "past_observed_mask", "static_categorical_features", "static_real_features", "future_values", "future_time_features", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('''future_observed_mask''' ) expected_arg_names.extend( [ '''decoder_attention_mask''', '''head_mask''', '''decoder_head_mask''', '''cross_attn_head_mask''', '''encoder_outputs''', '''past_key_values''', '''output_hidden_states''', '''output_attentions''', '''use_cache''', '''return_dict''', ] ) self.assertListEqual(arg_names[: len(a_ )] , a_ ) def snake_case ( self : Tuple ): lowerCamelCase :str = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase :Optional[Any] = True lowerCamelCase :Any = getattr(self.model_tester , '''seq_length''' , a_ ) lowerCamelCase :Union[str, Any] = getattr(self.model_tester , '''decoder_seq_length''' , a_ ) lowerCamelCase :Tuple = getattr(self.model_tester , '''encoder_seq_length''' , a_ ) lowerCamelCase :Tuple = getattr(self.model_tester , '''d_model''' , a_ ) lowerCamelCase :Optional[int] = getattr(self.model_tester , '''num_attention_heads''' , a_ ) lowerCamelCase :Dict = d_model // num_attention_heads for model_class in self.all_model_classes: lowerCamelCase :Optional[Any] = True lowerCamelCase :Dict = False lowerCamelCase :Dict = True lowerCamelCase :List[Any] = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): lowerCamelCase :Tuple = model(**self._prepare_for_class(a_ , a_ ) ) lowerCamelCase :Dict = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(a_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase :List[Any] = True lowerCamelCase :Tuple = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): lowerCamelCase :Union[str, Any] = model(**self._prepare_for_class(a_ , a_ ) ) lowerCamelCase :Optional[Any] = outputs.encoder_attentions self.assertEqual(len(a_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) lowerCamelCase :List[str] = len(a_ ) lowerCamelCase :List[Any] = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(a_ , a_ ) # decoder attentions lowerCamelCase :int = outputs.decoder_attentions self.assertIsInstance(a_ , (list, tuple) ) self.assertEqual(len(a_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions lowerCamelCase :Optional[Any] = outputs.cross_attentions self.assertIsInstance(a_ , (list, tuple) ) self.assertEqual(len(a_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine lowerCamelCase :Union[str, Any] = True lowerCamelCase :Tuple = True lowerCamelCase :str = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): lowerCamelCase :str = model(**self._prepare_for_class(a_ , a_ ) ) self.assertEqual(out_len + 2 , len(a_ ) ) lowerCamelCase :Union[str, Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(a_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def snake_case ( self : List[Any] ): super().test_retain_grad_hidden_states_attentions() def _lowerCamelCase ( a_ : Optional[Any]="train-batch.pt"): lowerCamelCase :Any = hf_hub_download(repo_id='''hf-internal-testing/tourism-monthly-batch''' , filename=lowerCAmelCase_ , repo_type='''dataset''') lowerCamelCase :Union[str, Any] = torch.load(lowerCAmelCase_ , map_location=lowerCAmelCase_) return batch @require_torch @slow class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Any ): lowerCamelCase :Union[str, Any] = AutoformerModel.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(a_ ) lowerCamelCase :Union[str, Any] = prepare_batch() with torch.no_grad(): lowerCamelCase :str = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , future_values=batch['''future_values'''] , future_time_features=batch['''future_time_features'''] , )[0] lowerCamelCase :Dict = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , a_ ) lowerCamelCase :str = torch.tensor( [[0.3_5_9_3, -1.3_3_9_8, 0.6_3_3_0], [0.2_2_7_9, 1.5_3_9_6, -0.1_7_9_2], [0.0_4_5_0, 1.3_2_2_5, -0.2_3_3_5]] , device=a_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , a_ , atol=a_ ) ) def snake_case ( self : Union[str, Any] ): lowerCamelCase :List[Any] = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(a_ ) lowerCamelCase :Union[str, Any] = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): lowerCamelCase :int = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , ).encoder_last_hidden_state lowerCamelCase :str = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , a_ ) lowerCamelCase :str = torch.tensor( [[-0.0_7_3_4, -0.9_0_3_6, 0.8_3_5_8], [4.7_1_8_6, 2.4_1_1_3, 1.9_5_8_1], [1.7_9_5_3, 2.3_5_5_8, 1.2_9_7_0]] , device=a_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , a_ , atol=a_ ) ) def snake_case ( self : str ): lowerCamelCase :Optional[int] = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(a_ ) lowerCamelCase :Optional[int] = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): lowerCamelCase :Dict = model.generate( static_categorical_features=batch['''static_categorical_features'''] , past_time_features=batch['''past_time_features'''] , past_values=batch['''past_values'''] , future_time_features=batch['''future_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , ) lowerCamelCase :Union[str, Any] = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , a_ ) lowerCamelCase :int = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=a_ ) lowerCamelCase :List[str] = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , a_ , rtol=1e-1 ) )
706
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : str ): lowerCamelCase :int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :List[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :Optional[Any] = -1 lowerCamelCase :List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Tuple = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :str = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowerCamelCase :str = TextStreamer(__snake_case ) model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case , streamer=__snake_case ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCamelCase :Optional[int] = cs.out[:-1] self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : Dict ): lowerCamelCase :Tuple = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :int = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :List[Any] = -1 lowerCamelCase :Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Tuple = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :List[Any] = tokenizer.decode(greedy_ids[0] ) lowerCamelCase :List[str] = TextIteratorStreamer(__snake_case ) lowerCamelCase :List[str] = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} lowerCamelCase :Tuple = Thread(target=model.generate , kwargs=__snake_case ) thread.start() lowerCamelCase :Any = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : str ): lowerCamelCase :int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :Dict = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :List[str] = -1 lowerCamelCase :Optional[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Optional[Any] = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :List[str] = greedy_ids[:, input_ids.shape[1] :] lowerCamelCase :Union[str, Any] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowerCamelCase :List[str] = TextStreamer(__snake_case , skip_prompt=__snake_case ) model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case , streamer=__snake_case ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCamelCase :int = cs.out[:-1] self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : Optional[int] ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them lowerCamelCase :List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) lowerCamelCase :Union[str, Any] = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(__snake_case ) lowerCamelCase :Optional[int] = -1 lowerCamelCase :Union[str, Any] = torch.ones((1, 5) , device=__snake_case ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowerCamelCase :Dict = TextStreamer(__snake_case , skip_special_tokens=__snake_case ) model.generate(__snake_case , max_new_tokens=1 , do_sample=__snake_case , streamer=__snake_case ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowerCamelCase :Tuple = cs.out[:-1] # Remove the final "\n" lowerCamelCase :int = tokenizer(__snake_case , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def snake_case ( self : List[Any] ): lowerCamelCase :List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :Optional[int] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :Optional[int] = -1 lowerCamelCase :Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :List[Any] = TextIteratorStreamer(__snake_case , timeout=0.0_0_1 ) lowerCamelCase :Dict = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} lowerCamelCase :Tuple = Thread(target=model.generate , kwargs=__snake_case ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__snake_case ): lowerCamelCase :Dict = '''''' for new_text in streamer: streamer_text += new_text
49
0
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = '' _UpperCAmelCase = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) _UpperCAmelCase = None # compression type in fsspec. ex: "gzip" _UpperCAmelCase = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : List[str] , __snake_case : str = "" , __snake_case : int = None , __snake_case : Union[str, Any] = None , **__snake_case : str ): super().__init__(self , **__snake_case ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode lowerCamelCase :int = fsspec.open( __snake_case , mode='''rb''' , protocol=__snake_case , compression=self.compression , client_kwargs={ '''requote_redirect_url''': False, # see https://github.com/huggingface/datasets/pull/5459 '''trust_env''': True, # Enable reading proxy env variables. **(target_options or {}).pop('''client_kwargs''' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) lowerCamelCase :Optional[int] = os.path.basename(self.file.path.split('''::''' )[0] ) lowerCamelCase :Union[str, Any] = ( self.compressed_name[: self.compressed_name.rindex('''.''' )] if '''.''' in self.compressed_name else self.compressed_name ) lowerCamelCase :List[str] = None @classmethod def snake_case ( cls : Any , __snake_case : str ): # compressed file paths are always relative to the archive root return super()._strip_protocol(__snake_case ).lstrip('''/''' ) def snake_case ( self : Union[str, Any] ): if self.dir_cache is None: lowerCamelCase :Union[str, Any] = {**self.file.fs.info(self.file.path ), '''name''': self.uncompressed_name} lowerCamelCase :Optional[Any] = {f['''name''']: f} def snake_case ( self : Union[str, Any] , __snake_case : Any ): return self.file.open().read() def snake_case ( self : List[Any] , __snake_case : int , __snake_case : List[str] = "rb" , __snake_case : List[str]=None , __snake_case : Union[str, Any]=True , __snake_case : Union[str, Any]=None , **__snake_case : Optional[Any] , ): lowerCamelCase :List[str] = self._strip_protocol(__snake_case ) if mode != "rb": raise ValueError(F"Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'" ) return self.file.open() class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'bz2' _UpperCAmelCase = 'bz2' _UpperCAmelCase = '.bz2' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'gzip' _UpperCAmelCase = 'gzip' _UpperCAmelCase = '.gz' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'lz4' _UpperCAmelCase = 'lz4' _UpperCAmelCase = '.lz4' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'xz' _UpperCAmelCase = 'xz' _UpperCAmelCase = '.xz' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'zstd' _UpperCAmelCase = 'zstd' _UpperCAmelCase = '.zst' def __init__( self : Tuple , __snake_case : List[str] , __snake_case : List[str] = "rb" , __snake_case : Any = None , __snake_case : str = None , __snake_case : Optional[Any] = DEFAULT_BLOCK_SIZE , **__snake_case : Optional[int] , ): super().__init__( fo=__snake_case , mode=__snake_case , target_protocol=__snake_case , target_options=__snake_case , block_size=__snake_case , **__snake_case , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 lowerCamelCase :Optional[int] = self.file.__enter__ class _lowerCAmelCase : def __init__( self : Tuple , __snake_case : List[Any] ): lowerCamelCase :Union[str, Any] = file_ def __enter__( self : List[Any] ): self._file.__enter__() return self def __exit__( self : int , *__snake_case : int , **__snake_case : Optional[int] ): self._file.__exit__(*__snake_case , **__snake_case ) def __iter__( self : Union[str, Any] ): return iter(self._file ) def snake_case ( self : str ): return next(self._file ) def __getattr__( self : Dict , __snake_case : Union[str, Any] ): return getattr(self._file , __snake_case ) def fixed_enter(*__snake_case : Any , **__snake_case : Dict ): return WrappedFile(_enter(*__snake_case , **__snake_case ) ) lowerCamelCase :Optional[Any] = fixed_enter
707
from maths.prime_factors import prime_factors def _lowerCamelCase ( a_ : int): if not isinstance(a_ , a_): lowerCamelCase :Tuple = F"Input value of [number={number}] must be an integer" raise TypeError(a_) if number < 1: raise ValueError('''Input must be a positive integer''') return -1 if len(prime_factors(a_)) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
49
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A__ = {'configuration_reformer': ['REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ReformerConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ['ReformerTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ['ReformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ 'REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ReformerAttention', 'ReformerForMaskedLM', 'ReformerForQuestionAnswering', 'ReformerForSequenceClassification', 'ReformerLayer', 'ReformerModel', 'ReformerModelWithLMHead', 'ReformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
708
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() A__ = logging.get_logger(__name__) def _lowerCamelCase ( a_ : str , a_ : str=False): lowerCamelCase :Optional[int] = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''')) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''')) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''')) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''')) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''')) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''')) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''')) for stage_idx in range(len(config.backbone_config.depths)): for layer_idx in range(config.backbone_config.depths[stage_idx]): rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias")) # transformer encoder for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight")) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias")) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight")) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias")) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight")) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias")) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight")) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias")) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight")) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias")) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ]) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCamelCase :List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''') else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ]) # fmt: on return rename_keys def _lowerCamelCase ( a_ : Any , a_ : Any , a_ : int=False): for i in range(config.num_hidden_layers): if base_model: lowerCamelCase :Union[str, Any] = '''''' else: lowerCamelCase :Optional[int] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase :Optional[Any] = state_dict.pop(F"blocks.{i}.attn.qkv.weight") lowerCamelCase :Any = state_dict.pop(F"blocks.{i}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict lowerCamelCase :Any = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase :Tuple = in_proj_bias[: config.hidden_size] lowerCamelCase :int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase :Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase :Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase :List[Any] = in_proj_bias[-config.hidden_size :] def _lowerCamelCase ( a_ : int): lowerCamelCase :Any = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(a_ , a_) def _lowerCamelCase ( a_ : int , a_ : Any , a_ : Tuple): lowerCamelCase :Optional[Any] = dct.pop(a_) lowerCamelCase :str = val def _lowerCamelCase ( ): lowerCamelCase :Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase :Tuple = Image.open(requests.get(a_ , stream=a_).raw) return im @torch.no_grad() def _lowerCamelCase ( a_ : Optional[Any] , a_ : Optional[Any] , a_ : Optional[Any]=False): lowerCamelCase :Optional[int] = BitConfig( global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=a_ , ) lowerCamelCase :Optional[int] = ViTHybridConfig(backbone_config=a_ , image_size=3_84 , num_labels=10_00) lowerCamelCase :List[Any] = False # load original model from timm lowerCamelCase :List[str] = timm.create_model(a_ , pretrained=a_) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCamelCase :List[str] = timm_model.state_dict() if base_model: remove_classification_head_(a_) lowerCamelCase :Tuple = create_rename_keys(a_ , a_) for src, dest in rename_keys: rename_key(a_ , a_ , a_) read_in_q_k_v(a_ , a_ , a_) lowerCamelCase :List[str] = '''huggingface/label-files''' lowerCamelCase :Any = '''imagenet-1k-id2label.json''' lowerCamelCase :List[Any] = json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''') , '''r''')) lowerCamelCase :Optional[Any] = {int(a_): v for k, v in idalabel.items()} lowerCamelCase :Optional[int] = idalabel lowerCamelCase :Union[str, Any] = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": lowerCamelCase :Optional[Any] = ViTHybridModel(a_).eval() else: lowerCamelCase :Dict = ViTHybridForImageClassification(a_).eval() model.load_state_dict(a_) # create image processor lowerCamelCase :Dict = create_transform(**resolve_data_config({} , model=a_)) lowerCamelCase :str = transform.transforms lowerCamelCase :int = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } lowerCamelCase :Any = ViTHybridImageProcessor( do_resize=a_ , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=a_ , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=a_ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCamelCase :Dict = prepare_img() lowerCamelCase :str = transform(a_).unsqueeze(0) lowerCamelCase :str = processor(a_ , return_tensors='''pt''').pixel_values # verify pixel values assert torch.allclose(a_ , a_) # verify logits with torch.no_grad(): lowerCamelCase :Optional[int] = model(a_) lowerCamelCase :Union[str, Any] = outputs.logits print('''Predicted class:''' , logits.argmax(-1).item()) if base_model: lowerCamelCase :Union[str, Any] = timm_model.forward_features(a_) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(a_ , outputs.pooler_output , atol=1e-3) else: lowerCamelCase :List[str] = timm_model(a_) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(a_ , outputs.logits , atol=1e-3) print('''Looks ok!''') if pytorch_dump_folder_path is not None: Path(a_).mkdir(exist_ok=a_) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}") model.save_pretrained(a_) print(F"Saving processor to {pytorch_dump_folder_path}") processor.save_pretrained(a_) if push_to_hub: print(F"Pushing model and processor to the hub {vit_name}") model.push_to_hub(F"ybelkada/{vit_name}") processor.push_to_hub(F"ybelkada/{vit_name}") if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_r50_s16_384""", type=str, help="""Name of the hybrid ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) A__ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
49
0
from __future__ import annotations from collections import Counter from random import random class _lowerCAmelCase : def __init__( self : Optional[int] ): lowerCamelCase :str = {} def snake_case ( self : Dict , __snake_case : str ): lowerCamelCase :Optional[int] = {} def snake_case ( self : Any , __snake_case : str , __snake_case : str , __snake_case : float ): if nodea not in self.connections: self.add_node(UpperCamelCase__ ) if nodea not in self.connections: self.add_node(UpperCamelCase__ ) lowerCamelCase :List[str] = probability def snake_case ( self : Optional[Any] ): return list(self.connections ) def snake_case ( self : Any , __snake_case : str ): lowerCamelCase :Optional[Any] = 0 lowerCamelCase :List[Any] = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def _lowerCamelCase ( a_ : Optional[int] , a_ : str , a_ : int): lowerCamelCase :List[Any] = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(A_ , A_ , A_) lowerCamelCase :Tuple = Counter(graph.get_nodes()) lowerCamelCase :Any = start for _ in range(A_): lowerCamelCase :Any = graph.transition(A_) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
709
def _lowerCamelCase ( a_ : int = 4_00_00_00): lowerCamelCase :Dict = [0, 1] lowerCamelCase :Optional[Any] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1]) if fib[i + 2] > n: break i += 1 lowerCamelCase :Dict = 0 for j in range(len(a_) - 1): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F'{solution() = }')
49
0
import os from datetime import datetime as dt from github import Github A__ = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''enhancement''', '''new pipeline/model''', '''new scheduler''', '''wip''', ] def _lowerCamelCase ( ): lowerCamelCase :Tuple = Github(os.environ['''GITHUB_TOKEN''']) lowerCamelCase :Tuple = g.get_repo('''huggingface/diffusers''') lowerCamelCase :Any = repo.get_issues(state='''open''') for issue in open_issues: lowerCamelCase :int = sorted(issue.get_comments() , key=lambda a_: i.created_at , reverse=a_) lowerCamelCase :Any = comments[0] if len(a_) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''') elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''') issue.remove_from_labels('''stale''') elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''') issue.add_to_labels('''stale''') if __name__ == "__main__": main()
710
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ = { """configuration_nllb_moe""": [ """NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NllbMoeConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""", """NllbMoeForConditionalGeneration""", """NllbMoeModel""", """NllbMoePreTrainedModel""", """NllbMoeTop2Router""", """NllbMoeSparseMLP""", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
49
0
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) A__ = logging.getLogger() def _lowerCamelCase ( ): lowerCamelCase :str = argparse.ArgumentParser() parser.add_argument('''-f''') lowerCamelCase :Tuple = parser.parse_args() return args.f def _lowerCamelCase ( a_ : Any): lowerCamelCase :List[Any] = {} lowerCamelCase :Tuple = os.path.join(__snake_case , '''all_results.json''') if os.path.exists(__snake_case): with open(__snake_case , '''r''') as f: lowerCamelCase :Tuple = json.load(__snake_case) else: raise ValueError(F"can\'t find {path}") return results def _lowerCamelCase ( ): lowerCamelCase :List[Any] = torch.cuda.is_available() and torch_device == '''cuda''' return is_using_cuda and is_apex_available() A__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): @classmethod def snake_case ( cls : Optional[Any] ): lowerCamelCase :List[str] = tempfile.mkdtemp() lowerCamelCase :Optional[int] = os.path.join(cls.tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) lowerCamelCase :List[str] = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def snake_case ( cls : Optional[Any] ): shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case ( self : Dict ): lowerCamelCase :int = self.get_auto_remove_tmp_dir() lowerCamelCase :Optional[int] = F"\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n ".split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) lowerCamelCase :List[Any] = get_results(__a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.7_5 ) self.assertTrue(os.path.exists(os.path.join(__a , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , '''glue_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case ( self : Tuple ): lowerCamelCase :str = self.get_auto_remove_tmp_dir() lowerCamelCase :Tuple = F"\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n ".split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) lowerCamelCase :Union[str, Any] = get_results(__a ) self.assertLess(result['''perplexity'''] , 100 ) self.assertTrue(os.path.exists(os.path.join(__a , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , '''clm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Union[str, Any] = self.get_auto_remove_tmp_dir() lowerCamelCase :List[str] = F"\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) lowerCamelCase :Optional[int] = get_results(__a ) self.assertLess(result['''perplexity'''] , 42 ) self.assertTrue(os.path.exists(os.path.join(__a , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , '''mlm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case ( self : Any ): lowerCamelCase :List[str] = 7 if get_gpu_count() > 1 else 2 lowerCamelCase :str = self.get_auto_remove_tmp_dir() lowerCamelCase :Optional[Any] = F"\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) lowerCamelCase :Dict = get_results(__a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.7_5 ) self.assertLess(result['''train_loss'''] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(__a , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , '''ner_no_trainer''' ) ) ) @unittest.skip(reason='''Fix me @muellerzr''' ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case ( self : Tuple ): lowerCamelCase :Tuple = self.get_auto_remove_tmp_dir() lowerCamelCase :Tuple = F"\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) lowerCamelCase :Union[str, Any] = get_results(__a ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['''eval_f1'''] , 28 ) self.assertGreaterEqual(result['''eval_exact'''] , 28 ) self.assertTrue(os.path.exists(os.path.join(__a , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , '''qa_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case ( self : Any ): lowerCamelCase :List[str] = self.get_auto_remove_tmp_dir() lowerCamelCase :Dict = F"\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) lowerCamelCase :Any = get_results(__a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(__a , '''swag_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case ( self : int ): lowerCamelCase :int = self.get_auto_remove_tmp_dir() lowerCamelCase :Dict = F"\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) lowerCamelCase :Optional[int] = get_results(__a ) self.assertGreaterEqual(result['''eval_rouge1'''] , 10 ) self.assertGreaterEqual(result['''eval_rouge2'''] , 2 ) self.assertGreaterEqual(result['''eval_rougeL'''] , 7 ) self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 ) self.assertTrue(os.path.exists(os.path.join(__a , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , '''summarization_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case ( self : Dict ): lowerCamelCase :List[str] = self.get_auto_remove_tmp_dir() lowerCamelCase :Union[str, Any] = F"\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) lowerCamelCase :int = get_results(__a ) self.assertGreaterEqual(result['''eval_bleu'''] , 30 ) self.assertTrue(os.path.exists(os.path.join(__a , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , '''translation_no_trainer''' ) ) ) @slow def snake_case ( self : Union[str, Any] ): lowerCamelCase :int = logging.StreamHandler(sys.stdout ) logger.addHandler(__a ) lowerCamelCase :int = self.get_auto_remove_tmp_dir() lowerCamelCase :List[str] = F"\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n ".split() run_command(self._launch_args + testargs ) lowerCamelCase :Union[str, Any] = get_results(__a ) self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.1_0 ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Union[str, Any] = self.get_auto_remove_tmp_dir() lowerCamelCase :str = F"\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n ".split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) lowerCamelCase :Optional[int] = get_results(__a ) # The base model scores a 25% self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(__a , '''step_1''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , '''image_classification_no_trainer''' ) ) )
711
import numpy class _lowerCAmelCase : def __init__( self : Dict , __snake_case : numpy.ndarray , __snake_case : numpy.ndarray ): lowerCamelCase :Dict = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. lowerCamelCase :Dict = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. lowerCamelCase :Dict = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. lowerCamelCase :Any = numpy.random.rand(3 , 1 ) # Real output values provided. lowerCamelCase :Union[str, Any] = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. lowerCamelCase :List[str] = numpy.zeros(output_array.shape ) def snake_case ( self : Optional[int] ): lowerCamelCase :Any = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. lowerCamelCase :Any = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. lowerCamelCase :Dict = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def snake_case ( self : Any ): lowerCamelCase :Union[str, Any] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) lowerCamelCase :Dict = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) lowerCamelCase :int = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def snake_case ( self : Dict , __snake_case : numpy.ndarray , __snake_case : int , __snake_case : bool ): for iteration in range(1 , iterations + 1 ): lowerCamelCase :Union[str, Any] = self.feedforward() self.back_propagation() if give_loss: lowerCamelCase :Tuple = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"Iteration {iteration} Loss: {loss}" ) def snake_case ( self : Optional[int] , __snake_case : numpy.ndarray ): lowerCamelCase :int = input_arr lowerCamelCase :Union[str, Any] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) lowerCamelCase :Optional[Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) lowerCamelCase :Optional[int] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def _lowerCamelCase ( a_ : numpy.ndarray): return 1 / (1 + numpy.exp(-value)) def _lowerCamelCase ( a_ : numpy.ndarray): return (value) * (1 - (value)) def _lowerCamelCase ( ): lowerCamelCase :Optional[Any] = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. lowerCamelCase :int = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa) # Calling neural network class. lowerCamelCase :List[Any] = TwoHiddenLayerNeuralNetwork( input_array=a_ , output_array=a_) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=a_ , iterations=10 , give_loss=a_) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa)) if __name__ == "__main__": example()
49
0
from math import factorial class _lowerCAmelCase : def __init__( self : Dict , __snake_case : str , __snake_case : int ): lowerCamelCase :Optional[Any] = real if isinstance(lowerCamelCase_ , lowerCamelCase_ ): lowerCamelCase :Optional[int] = [1] * rank else: lowerCamelCase :Dict = rank def __repr__( self : Union[str, Any] ): return ( F"{self.real}+" F"{'+'.join(str(lowerCamelCase_ )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}" ) def snake_case ( self : int ): lowerCamelCase :List[str] = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , lowerCamelCase_ ) def __add__( self : Union[str, Any] , __snake_case : Dict ): if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): return Dual(self.real + other , self.duals ) lowerCamelCase :Optional[Any] = self.duals.copy() lowerCamelCase :List[Any] = other.duals.copy() if len(lowerCamelCase_ ) > len(lowerCamelCase_ ): o_dual.extend([1] * (len(lowerCamelCase_ ) - len(lowerCamelCase_ )) ) elif len(lowerCamelCase_ ) < len(lowerCamelCase_ ): s_dual.extend([1] * (len(lowerCamelCase_ ) - len(lowerCamelCase_ )) ) lowerCamelCase :Any = [] for i in range(len(lowerCamelCase_ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , lowerCamelCase_ ) _UpperCAmelCase = __add__ def __sub__( self : int , __snake_case : Union[str, Any] ): return self + other * -1 def __mul__( self : List[str] , __snake_case : int ): if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): lowerCamelCase :Union[str, Any] = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , lowerCamelCase_ ) lowerCamelCase :Tuple = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , lowerCamelCase_ ) _UpperCAmelCase = __mul__ def __truediv__( self : str , __snake_case : int ): if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): lowerCamelCase :Tuple = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , lowerCamelCase_ ) raise ValueError def __floordiv__( self : List[str] , __snake_case : Optional[Any] ): if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): lowerCamelCase :Optional[int] = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , lowerCamelCase_ ) raise ValueError def __pow__( self : int , __snake_case : List[str] ): if n < 0 or isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError('''power must be a positive integer''' ) if n == 0: return 1 if n == 1: return self lowerCamelCase :Optional[Any] = self for _ in range(n - 1 ): x *= self return x def _lowerCamelCase ( a_ : Any , a_ : Tuple , a_ : List[str]): if not callable(lowerCamelCase_): raise ValueError('''differentiate() requires a function as input for func''') if not isinstance(lowerCamelCase_ , (float, int)): raise ValueError('''differentiate() requires a float as input for position''') if not isinstance(lowerCamelCase_ , lowerCamelCase_): raise ValueError('''differentiate() requires an int as input for order''') lowerCamelCase :Optional[int] = Dual(lowerCamelCase_ , 1) lowerCamelCase :Tuple = func(lowerCamelCase_) if order == 0: return result.real return result.duals[order - 1] * factorial(lowerCamelCase_) if __name__ == "__main__": import doctest doctest.testmod() def _lowerCamelCase ( a_ : Dict): return y**2 * y**4 print(differentiate(f, 9, 2))
712
def _lowerCamelCase ( a_ : str , a_ : str): lowerCamelCase :List[str] = len(a_) lowerCamelCase :List[str] = len(a_) lowerCamelCase :int = [[False for _ in range(m + 1)] for _ in range(n + 1)] lowerCamelCase :Optional[Any] = True for i in range(a_): for j in range(m + 1): if dp[i][j]: if j < m and a[i].upper() == b[j]: lowerCamelCase :Any = True if a[i].islower(): lowerCamelCase :List[str] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
49
0
def _lowerCamelCase ( a_ : float): return 10 - x * x def _lowerCamelCase ( a_ : float , a_ : float): if equation(A__) * equation(A__) >= 0: raise ValueError('''Wrong space!''') lowerCamelCase :int = a while (b - a) >= 0.01: # Find middle point lowerCamelCase :List[str] = (a + b) / 2 # Check if middle point is root if equation(A__) == 0.0: break # Decide the side to repeat the steps if equation(A__) * equation(A__) < 0: lowerCamelCase :Optional[Any] = c else: lowerCamelCase :Optional[Any] = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
713
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : def __init__( self : Any , __snake_case : Optional[int] , __snake_case : int=13 , __snake_case : str=[30, 30] , __snake_case : Tuple=2 , __snake_case : Optional[Any]=3 , __snake_case : int=True , __snake_case : Tuple=True , __snake_case : List[Any]=32 , __snake_case : int=5 , __snake_case : Optional[Any]=4 , __snake_case : Union[str, Any]=37 , __snake_case : str="gelu" , __snake_case : Tuple=0.1 , __snake_case : List[Any]=0.1 , __snake_case : Union[str, Any]=10 , __snake_case : str=0.0_2 , __snake_case : Union[str, Any]=3 , __snake_case : Union[str, Any]=None , __snake_case : List[str]=8 , __snake_case : Any=10 , ): lowerCamelCase :Optional[Any] = parent lowerCamelCase :List[Any] = batch_size lowerCamelCase :Any = image_size lowerCamelCase :Union[str, Any] = patch_size lowerCamelCase :Any = num_channels lowerCamelCase :List[Any] = is_training lowerCamelCase :Optional[Any] = use_labels lowerCamelCase :Any = hidden_size lowerCamelCase :List[Any] = num_hidden_layers lowerCamelCase :List[str] = num_attention_heads lowerCamelCase :Tuple = intermediate_size lowerCamelCase :List[str] = hidden_act lowerCamelCase :List[str] = hidden_dropout_prob lowerCamelCase :Any = attention_probs_dropout_prob lowerCamelCase :List[Any] = type_sequence_label_size lowerCamelCase :Optional[int] = initializer_range lowerCamelCase :List[Any] = num_labels lowerCamelCase :Any = scope lowerCamelCase :Union[str, Any] = n_targets lowerCamelCase :Optional[Any] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowerCamelCase :Tuple = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowerCamelCase :str = num_patches + 1 + self.num_detection_tokens def snake_case ( self : List[str] ): lowerCamelCase :str = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowerCamelCase :List[str] = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowerCamelCase :Optional[int] = [] for i in range(self.batch_size ): lowerCamelCase :List[str] = {} lowerCamelCase :Tuple = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=__snake_case ) lowerCamelCase :List[str] = torch.rand(self.n_targets , 4 , device=__snake_case ) labels.append(__snake_case ) lowerCamelCase :str = self.get_config() return config, pixel_values, labels def snake_case ( self : Union[str, Any] ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__snake_case , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def snake_case ( self : Tuple , __snake_case : Tuple , __snake_case : Tuple , __snake_case : Any ): lowerCamelCase :Optional[Any] = YolosModel(config=__snake_case ) model.to(__snake_case ) model.eval() lowerCamelCase :Union[str, Any] = model(__snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def snake_case ( self : Dict , __snake_case : str , __snake_case : Optional[int] , __snake_case : Optional[Any] ): lowerCamelCase :int = YolosForObjectDetection(__snake_case ) model.to(__snake_case ) model.eval() lowerCamelCase :str = model(pixel_values=__snake_case ) lowerCamelCase :Any = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) lowerCamelCase :int = model(pixel_values=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def snake_case ( self : int ): lowerCamelCase :List[Any] = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase :str = config_and_inputs lowerCamelCase :Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () _UpperCAmelCase = ( {'feature-extraction': YolosModel, 'object-detection': YolosForObjectDetection} if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def snake_case ( self : Any , __snake_case : List[Any] , __snake_case : Tuple , __snake_case : Dict=False ): lowerCamelCase :Optional[int] = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowerCamelCase :Dict = [] for i in range(self.model_tester.batch_size ): lowerCamelCase :Optional[Any] = {} lowerCamelCase :List[Any] = torch.ones( size=(self.model_tester.n_targets,) , device=__snake_case , dtype=torch.long ) lowerCamelCase :str = torch.ones( self.model_tester.n_targets , 4 , device=__snake_case , dtype=torch.float ) labels.append(__snake_case ) lowerCamelCase :Union[str, Any] = labels return inputs_dict def snake_case ( self : Tuple ): lowerCamelCase :Union[str, Any] = YolosModelTester(self ) lowerCamelCase :Dict = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=37 ) def snake_case ( self : Union[str, Any] ): self.config_tester.run_common_tests() def snake_case ( self : Optional[Any] ): # YOLOS does not use inputs_embeds pass def snake_case ( self : Tuple ): lowerCamelCase , lowerCamelCase :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :Optional[int] = model_class(__snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase :str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case , nn.Linear ) ) def snake_case ( self : str ): lowerCamelCase , lowerCamelCase :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :str = model_class(__snake_case ) lowerCamelCase :Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase :Tuple = [*signature.parameters.keys()] lowerCamelCase :Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __snake_case ) def snake_case ( self : int ): lowerCamelCase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def snake_case ( self : str ): lowerCamelCase , lowerCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase :int = True # in YOLOS, the seq_len is different lowerCamelCase :str = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowerCamelCase :str = True lowerCamelCase :Tuple = False lowerCamelCase :Optional[int] = True lowerCamelCase :int = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :str = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :str = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase :Optional[Any] = True lowerCamelCase :str = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :Tuple = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Tuple = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowerCamelCase :Optional[int] = len(__snake_case ) # Check attention is always last and order is fine lowerCamelCase :Union[str, Any] = True lowerCamelCase :List[Any] = True lowerCamelCase :Tuple = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :int = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Dict = 1 self.assertEqual(out_len + added_hidden_states , len(__snake_case ) ) lowerCamelCase :Dict = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def snake_case ( self : List[str] ): def check_hidden_states_output(__snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Tuple ): lowerCamelCase :Union[str, Any] = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :Any = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Optional[Any] = outputs.hidden_states lowerCamelCase :Any = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__snake_case ) , __snake_case ) # YOLOS has a different seq_length lowerCamelCase :List[str] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowerCamelCase , lowerCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :Union[str, Any] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase :Any = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*__snake_case ) @slow def snake_case ( self : Dict ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase :Tuple = YolosModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def _lowerCamelCase ( ): lowerCamelCase :int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): @cached_property def snake_case ( self : Tuple ): return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def snake_case ( self : Dict ): lowerCamelCase :Union[str, Any] = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(__snake_case ) lowerCamelCase :Optional[Any] = self.default_image_processor lowerCamelCase :str = prepare_img() lowerCamelCase :Dict = image_processor(images=__snake_case , return_tensors='''pt''' ).to(__snake_case ) # forward pass with torch.no_grad(): lowerCamelCase :Optional[Any] = model(inputs.pixel_values ) # verify outputs lowerCamelCase :int = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , __snake_case ) lowerCamelCase :Any = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=__snake_case , ) lowerCamelCase :Any = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __snake_case , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , __snake_case , atol=1e-4 ) ) # verify postprocessing lowerCamelCase :List[str] = image_processor.post_process_object_detection( __snake_case , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] lowerCamelCase :List[str] = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(__snake_case ) lowerCamelCase :str = [75, 75, 17, 63, 17] lowerCamelCase :Tuple = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(__snake_case ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , __snake_case , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , __snake_case ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , __snake_case ) )
49
0
from math import isqrt def _lowerCAmelCase ( a_ : Any): return all(number % divisor != 0 for divisor in range(2 , isqrt(lowerCamelCase__) + 1)) def _lowerCAmelCase ( a_ : List[Any] = 10**6): lowerCamelCase :Dict = 0 lowerCamelCase :Tuple = 1 lowerCamelCase :Any = 7 while prime_candidate < max_prime: primes_count += is_prime(lowerCamelCase__) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'{solution() = }')
714
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Tuple ): lowerCamelCase :List[Any] = inspect.getfile(accelerate.test_utils ) lowerCamelCase :Dict = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 lowerCamelCase :Any = test_metrics @require_cpu def snake_case ( self : Dict ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def snake_case ( self : int ): debug_launcher(self.test_metrics.main ) @require_single_gpu def snake_case ( self : Any ): self.test_metrics.main() @require_multi_gpu def snake_case ( self : Optional[int] ): print(F"Found {torch.cuda.device_count()} devices." ) lowerCamelCase :Optional[int] = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__snake_case , env=os.environ.copy() )
49
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A__ = { """configuration_bloom""": ["""BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BloomConfig""", """BloomOnnxConfig"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""BloomTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST""", """BloomForCausalLM""", """BloomModel""", """BloomPreTrainedModel""", """BloomForSequenceClassification""", """BloomForTokenClassification""", """BloomForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
715
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = '' _UpperCAmelCase = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) _UpperCAmelCase = None # compression type in fsspec. ex: "gzip" _UpperCAmelCase = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : str , __snake_case : str = "" , __snake_case : Optional[str] = None , __snake_case : Optional[dict] = None , **__snake_case : Dict ): super().__init__(self , **__snake_case ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode lowerCamelCase :Optional[Any] = fsspec.open( __snake_case , mode='''rb''' , protocol=__snake_case , compression=self.compression , client_kwargs={ '''requote_redirect_url''': False, # see https://github.com/huggingface/datasets/pull/5459 '''trust_env''': True, # Enable reading proxy env variables. **(target_options or {}).pop('''client_kwargs''' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) lowerCamelCase :List[str] = os.path.basename(self.file.path.split('''::''' )[0] ) lowerCamelCase :Dict = ( self.compressed_name[: self.compressed_name.rindex('''.''' )] if '''.''' in self.compressed_name else self.compressed_name ) lowerCamelCase :List[str] = None @classmethod def snake_case ( cls : Any , __snake_case : Any ): # compressed file paths are always relative to the archive root return super()._strip_protocol(__snake_case ).lstrip('''/''' ) def snake_case ( self : Any ): if self.dir_cache is None: lowerCamelCase :Optional[Any] = {**self.file.fs.info(self.file.path ), '''name''': self.uncompressed_name} lowerCamelCase :Optional[Any] = {f['''name''']: f} def snake_case ( self : Union[str, Any] , __snake_case : str ): return self.file.open().read() def snake_case ( self : Optional[int] , __snake_case : str , __snake_case : str = "rb" , __snake_case : int=None , __snake_case : Optional[int]=True , __snake_case : str=None , **__snake_case : str , ): lowerCamelCase :List[str] = self._strip_protocol(__snake_case ) if mode != "rb": raise ValueError(F"Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'" ) return self.file.open() class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'bz2' _UpperCAmelCase = 'bz2' _UpperCAmelCase = '.bz2' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'gzip' _UpperCAmelCase = 'gzip' _UpperCAmelCase = '.gz' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'lz4' _UpperCAmelCase = 'lz4' _UpperCAmelCase = '.lz4' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'xz' _UpperCAmelCase = 'xz' _UpperCAmelCase = '.xz' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'zstd' _UpperCAmelCase = 'zstd' _UpperCAmelCase = '.zst' def __init__( self : str , __snake_case : str , __snake_case : str = "rb" , __snake_case : Optional[str] = None , __snake_case : Optional[dict] = None , __snake_case : int = DEFAULT_BLOCK_SIZE , **__snake_case : int , ): super().__init__( fo=__snake_case , mode=__snake_case , target_protocol=__snake_case , target_options=__snake_case , block_size=__snake_case , **__snake_case , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 lowerCamelCase :Tuple = self.file.__enter__ class _lowerCAmelCase : def __init__( self : Dict , __snake_case : Tuple ): lowerCamelCase :Optional[int] = file_ def __enter__( self : Optional[int] ): self._file.__enter__() return self def __exit__( self : str , *__snake_case : Optional[Any] , **__snake_case : List[Any] ): self._file.__exit__(*__snake_case , **__snake_case ) def __iter__( self : Optional[Any] ): return iter(self._file ) def snake_case ( self : List[Any] ): return next(self._file ) def __getattr__( self : Any , __snake_case : str ): return getattr(self._file , __snake_case ) def fixed_enter(*__snake_case : Optional[int] , **__snake_case : str ): return WrappedFile(_enter(*__snake_case , **__snake_case ) ) lowerCamelCase :Dict = fixed_enter
49
0
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Tuple ): with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights lowerCamelCase :Dict = FlaxDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ) lowerCamelCase :Optional[int] = [t[-1] for t in os.walk(os.path.join(lowerCAmelCase_ , os.listdir(lowerCAmelCase_ )[0] , '''snapshots''' ) )] lowerCamelCase :int = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('''.bin''' ) for f in files ) @slow @require_flax class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Union[str, Any] ): lowerCamelCase , lowerCamelCase :List[str] = FlaxStableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=lowerCAmelCase_ ) lowerCamelCase :int = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) lowerCamelCase :Any = jax.random.PRNGKey(0 ) lowerCamelCase :List[Any] = 4 lowerCamelCase :List[Any] = jax.device_count() lowerCamelCase :Tuple = num_samples * [prompt] lowerCamelCase :Dict = pipeline.prepare_inputs(lowerCAmelCase_ ) # shard inputs and rng lowerCamelCase :Tuple = replicate(lowerCAmelCase_ ) lowerCamelCase :Union[str, Any] = jax.random.split(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCamelCase :Dict = shard(lowerCAmelCase_ ) lowerCamelCase :List[Any] = pipeline(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , jit=lowerCAmelCase_ ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_5_1_4_7_4_5 ) < 1e-3 assert np.abs(np.abs(lowerCAmelCase_ , dtype=np.floataa ).sum() - 49947.875 ) < 5e-1 lowerCamelCase :Optional[int] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowerCAmelCase_ ) == num_samples def snake_case ( self : Optional[int] ): lowerCamelCase , lowerCamelCase :Dict = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''flax''' , safety_checker=lowerCAmelCase_ ) lowerCamelCase :Optional[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) lowerCamelCase :Any = jax.random.PRNGKey(0 ) lowerCamelCase :str = 50 lowerCamelCase :Tuple = jax.device_count() lowerCamelCase :List[str] = num_samples * [prompt] lowerCamelCase :Dict = pipeline.prepare_inputs(lowerCAmelCase_ ) # shard inputs and rng lowerCamelCase :Optional[int] = replicate(lowerCAmelCase_ ) lowerCamelCase :int = jax.random.split(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCamelCase :Union[str, Any] = shard(lowerCAmelCase_ ) lowerCamelCase :int = pipeline(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , jit=lowerCAmelCase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_5_6_5_2_4_0_1) ) < 1e-3 assert np.abs((np.abs(lowerCAmelCase_ , dtype=np.floataa ).sum() - 2383808.2) ) < 5e-1 def snake_case ( self : Any ): lowerCamelCase , lowerCamelCase :List[str] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=lowerCAmelCase_ ) lowerCamelCase :Union[str, Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) lowerCamelCase :List[Any] = jax.random.PRNGKey(0 ) lowerCamelCase :List[Any] = 50 lowerCamelCase :Optional[Any] = jax.device_count() lowerCamelCase :List[str] = num_samples * [prompt] lowerCamelCase :str = pipeline.prepare_inputs(lowerCAmelCase_ ) # shard inputs and rng lowerCamelCase :Optional[Any] = replicate(lowerCAmelCase_ ) lowerCamelCase :List[Any] = jax.random.split(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCamelCase :List[Any] = shard(lowerCAmelCase_ ) lowerCamelCase :Optional[int] = pipeline(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , jit=lowerCAmelCase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(lowerCAmelCase_ , dtype=np.floataa ).sum() - 2373516.75) ) < 5e-1 def snake_case ( self : List[str] ): lowerCamelCase , lowerCamelCase :Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa ) lowerCamelCase :List[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) lowerCamelCase :List[str] = jax.random.PRNGKey(0 ) lowerCamelCase :List[Any] = 50 lowerCamelCase :Any = jax.device_count() lowerCamelCase :Any = num_samples * [prompt] lowerCamelCase :Any = pipeline.prepare_inputs(lowerCAmelCase_ ) # shard inputs and rng lowerCamelCase :Optional[int] = replicate(lowerCAmelCase_ ) lowerCamelCase :Union[str, Any] = jax.random.split(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCamelCase :List[Any] = shard(lowerCAmelCase_ ) lowerCamelCase :Dict = pipeline(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , jit=lowerCAmelCase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(lowerCAmelCase_ , dtype=np.floataa ).sum() - 2373516.75) ) < 5e-1 def snake_case ( self : List[Any] ): lowerCamelCase :int = FlaxDDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , set_alpha_to_one=lowerCAmelCase_ , steps_offset=1 , ) lowerCamelCase , lowerCamelCase :List[Any] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , scheduler=lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , ) lowerCamelCase :Union[str, Any] = scheduler.create_state() lowerCamelCase :Optional[int] = scheduler_state lowerCamelCase :List[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) lowerCamelCase :Tuple = jax.random.PRNGKey(0 ) lowerCamelCase :Any = 50 lowerCamelCase :Any = jax.device_count() lowerCamelCase :Optional[int] = num_samples * [prompt] lowerCamelCase :Dict = pipeline.prepare_inputs(lowerCAmelCase_ ) # shard inputs and rng lowerCamelCase :Optional[Any] = replicate(lowerCAmelCase_ ) lowerCamelCase :str = jax.random.split(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCamelCase :Dict = shard(lowerCAmelCase_ ) lowerCamelCase :Any = pipeline(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , jit=lowerCAmelCase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_5_0_4_3_9_4_5) ) < 1e-3 assert np.abs((np.abs(lowerCAmelCase_ , dtype=np.floataa ).sum() - 2347693.5) ) < 5e-1 def snake_case ( self : int ): lowerCamelCase :List[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) lowerCamelCase :str = jax.device_count() lowerCamelCase :List[str] = num_samples * [prompt] lowerCamelCase :Optional[int] = jax.random.split(jax.random.PRNGKey(0 ) , lowerCAmelCase_ ) lowerCamelCase , lowerCamelCase :Optional[Any] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=lowerCAmelCase_ , ) lowerCamelCase :Tuple = replicate(lowerCAmelCase_ ) lowerCamelCase :Optional[int] = pipeline.prepare_inputs(lowerCAmelCase_ ) lowerCamelCase :Optional[Any] = shard(lowerCAmelCase_ ) lowerCamelCase :Union[str, Any] = pipeline(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , jit=lowerCAmelCase_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) lowerCamelCase :Optional[Any] = images[2, 0, 256, 10:17, 1] # With memory efficient attention lowerCamelCase , lowerCamelCase :List[str] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=lowerCAmelCase_ , use_memory_efficient_attention=lowerCAmelCase_ , ) lowerCamelCase :Optional[int] = replicate(lowerCAmelCase_ ) lowerCamelCase :Optional[int] = pipeline.prepare_inputs(lowerCAmelCase_ ) lowerCamelCase :Union[str, Any] = shard(lowerCAmelCase_ ) lowerCamelCase :Dict = pipeline(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , jit=lowerCAmelCase_ ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) lowerCamelCase :Any = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
716
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = LEDTokenizer _UpperCAmelCase = LEDTokenizerFast _UpperCAmelCase = True def snake_case ( self : Any ): super().setUp() lowerCamelCase :Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] lowerCamelCase :Any = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) lowerCamelCase :List[str] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCamelCase :int = {'''unk_token''': '''<unk>'''} lowerCamelCase :Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__snake_case ) ) def snake_case ( self : int , **__snake_case : int ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Dict , **__snake_case : Any ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Optional[Any] , __snake_case : Union[str, Any] ): return "lower newer", "lower newer" @cached_property def snake_case ( self : Any ): return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' ) @cached_property def snake_case ( self : int ): return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' ) @require_torch def snake_case ( self : str ): lowerCamelCase :Any = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowerCamelCase :List[Any] = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[Any] = tokenizer(__snake_case , max_length=len(__snake_case ) , padding=__snake_case , return_tensors='''pt''' ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowerCamelCase :List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(__snake_case , __snake_case ) @require_torch def snake_case ( self : Tuple ): lowerCamelCase :Dict = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Union[str, Any] = tokenizer(__snake_case , padding=__snake_case , return_tensors='''pt''' ) self.assertIn('''input_ids''' , __snake_case ) self.assertIn('''attention_mask''' , __snake_case ) self.assertNotIn('''labels''' , __snake_case ) self.assertNotIn('''decoder_attention_mask''' , __snake_case ) @require_torch def snake_case ( self : Union[str, Any] ): lowerCamelCase :Union[str, Any] = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :List[Any] = tokenizer(text_target=__snake_case , max_length=32 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) @require_torch def snake_case ( self : List[Any] ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[Any] = tokenizer( ['''I am a small frog''' * 1024, '''I am a small frog'''] , padding=__snake_case , truncation=__snake_case , return_tensors='''pt''' ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def snake_case ( self : Optional[int] ): lowerCamelCase :Union[str, Any] = ['''A long paragraph for summarization.'''] lowerCamelCase :Any = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Union[str, Any] = tokenizer(__snake_case , return_tensors='''pt''' ) lowerCamelCase :Any = tokenizer(text_target=__snake_case , return_tensors='''pt''' ) lowerCamelCase :Optional[int] = inputs['''input_ids'''] lowerCamelCase :Any = targets['''input_ids'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def snake_case ( self : Dict ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[int] = ['''Summary of the text.''', '''Another summary.'''] lowerCamelCase :List[Any] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] lowerCamelCase :Optional[int] = tokenizer(__snake_case , padding=__snake_case ) lowerCamelCase :Union[str, Any] = [[0] * len(__snake_case ) for x in encoded_output['''input_ids''']] lowerCamelCase :str = tokenizer.pad(__snake_case ) self.assertSequenceEqual(outputs['''global_attention_mask'''] , __snake_case ) def snake_case ( self : Tuple ): pass def snake_case ( self : Optional[int] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase :Optional[Any] = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :Tuple = self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :int = '''A, <mask> AllenNLP sentence.''' lowerCamelCase :str = tokenizer_r.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case ) lowerCamelCase :str = tokenizer_p.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case ) self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) lowerCamelCase :Optional[int] = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) lowerCamelCase :Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __snake_case , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __snake_case , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
49
0
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging A__ = logging.get_logger(__name__) logging.set_verbosity_info() def _lowerCamelCase ( a_ : int , a_ : Any): if "xprophetnet" in prophetnet_checkpoint_path: lowerCamelCase :Dict = XLMProphetNetForConditionalGenerationOld.from_pretrained(a_) lowerCamelCase :List[str] = XLMProphetNetForConditionalGeneration.from_pretrained( a_ , output_loading_info=a_) else: lowerCamelCase :List[Any] = ProphetNetForConditionalGenerationOld.from_pretrained(a_) lowerCamelCase :List[str] = ProphetNetForConditionalGeneration.from_pretrained( a_ , output_loading_info=a_) lowerCamelCase :Tuple = ['''key_proj''', '''value_proj''', '''query_proj'''] lowerCamelCase :List[Any] = { '''self_attn''': '''ngram_self_attn''', '''cross_attn''': '''encoder_attn''', '''cross_attn_layer_norm''': '''encoder_attn_layer_norm''', '''feed_forward_layer_norm''': '''final_layer_norm''', '''feed_forward''': '''''', '''intermediate''': '''fc1''', '''output''': '''fc2''', '''key_proj''': '''k_proj''', '''query_proj''': '''q_proj''', '''value_proj''': '''v_proj''', '''word_embeddings''': '''embed_tokens''', '''embeddings_layer_norm''': '''emb_layer_norm''', '''relative_pos_embeddings''': '''relative_linear''', '''ngram_embeddings''': '''ngram_input_embed''', '''position_embeddings''': '''embed_positions''', } for key in loading_info["missing_keys"]: lowerCamelCase :Optional[int] = key.split('''.''') if attributes[0] == "lm_head": lowerCamelCase :Optional[Any] = prophet lowerCamelCase :int = prophet_old else: lowerCamelCase :List[str] = prophet.prophetnet lowerCamelCase :str = prophet_old.model lowerCamelCase :Any = False for attribute in attributes: if attribute in mapping: lowerCamelCase :Optional[Any] = mapping[attribute] if not hasattr(a_ , a_) and len(a_) > 0: lowerCamelCase :Union[str, Any] = attribute elif hasattr(a_ , a_): lowerCamelCase :Optional[int] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" lowerCamelCase :str = old_model.weight logger.info(F"{attribute} is initialized.") lowerCamelCase :List[Any] = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" lowerCamelCase :Union[str, Any] = old_model.bias logger.info(F"{attribute} is initialized") lowerCamelCase :Dict = True break elif attribute in special_keys and hasattr(a_ , '''in_proj_weight'''): lowerCamelCase :List[Any] = old_model.in_proj_weight.shape[0] // 3 lowerCamelCase :Optional[int] = getattr(a_ , a_) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": lowerCamelCase :str = nn.Parameter(old_model.in_proj_weight[:embed_dim, :]) lowerCamelCase :Any = nn.Parameter(old_model.in_proj_bias[:embed_dim]) elif attribute == "key_proj": lowerCamelCase :Any = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :]) lowerCamelCase :List[str] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim]) elif attribute == "value_proj": lowerCamelCase :Dict = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :]) lowerCamelCase :str = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :]) lowerCamelCase :List[Any] = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." lowerCamelCase :Dict = nn.Parameter(old_model.embed_positions.weight[:5_12, :]) lowerCamelCase :Union[str, Any] = True break if attribute.isdigit(): lowerCamelCase :Dict = model[int(a_)] lowerCamelCase :Optional[int] = old_model[int(a_)] else: lowerCamelCase :Any = getattr(a_ , a_) if old_attribute == "": lowerCamelCase :Tuple = old_model else: if not hasattr(a_ , a_): raise ValueError(F"{old_model} does not have {old_attribute}") lowerCamelCase :str = getattr(a_ , a_) if not is_key_init: raise ValueError(F"{key} was not correctly initialized!") print(F"Saving model to {pytorch_dump_folder_path}") prophet.save_pretrained(a_) if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--prophetnet_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) A__ = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
717
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) A__ = { """configuration_layoutlmv2""": ["""LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv2Config"""], """processing_layoutlmv2""": ["""LayoutLMv2Processor"""], """tokenization_layoutlmv2""": ["""LayoutLMv2Tokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""LayoutLMv2TokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""LayoutLMv2FeatureExtractor"""] A__ = ["""LayoutLMv2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """LayoutLMv2ForQuestionAnswering""", """LayoutLMv2ForSequenceClassification""", """LayoutLMv2ForTokenClassification""", """LayoutLMv2Layer""", """LayoutLMv2Model""", """LayoutLMv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
49
0
def _lowerCamelCase ( a_ : Tuple = 1_00): lowerCamelCase :List[str] = set() lowerCamelCase :Optional[Any] = 0 lowerCamelCase :Any = n + 1 # maximum limit for a in range(2 , a_): for b in range(2 , a_): lowerCamelCase :Any = a**b # calculates the current power collect_powers.add(a_) # adds the result to the set return len(a_) if __name__ == "__main__": print("""Number of terms """, solution(int(str(input()).strip())))
718
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _lowerCAmelCase : @staticmethod def snake_case ( *__snake_case : str , **__snake_case : str ): pass @is_pipeline_test @require_vision class _lowerCAmelCase ( unittest.TestCase ): @require_torch def snake_case ( self : Union[str, Any] ): lowerCamelCase :Optional[int] = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Dict = image_classifier(__snake_case , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__snake_case ) , [ [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}], [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}], ] , ) lowerCamelCase :Tuple = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], ] , ) @require_tf def snake_case ( self : Tuple ): lowerCamelCase :Tuple = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Optional[Any] = image_classifier(__snake_case , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(__snake_case ) , [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}] , ) lowerCamelCase :int = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], ] , ) @slow @require_torch def snake_case ( self : Any ): lowerCamelCase :str = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Optional[Any] = image_classifier(__snake_case , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) lowerCamelCase :Any = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def snake_case ( self : Optional[Any] ): lowerCamelCase :Union[str, Any] = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes lowerCamelCase :Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Dict = image_classifier(__snake_case , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) lowerCamelCase :Any = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , )
49
0
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py A__ = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. A__ = direct_transformers_import(PATH_TO_TRANSFORMERS) A__ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` A__ = re.compile(R"""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") A__ = { """DecisionTransformerConfig""", """EncoderDecoderConfig""", """MusicgenConfig""", """RagConfig""", """SpeechEncoderDecoderConfig""", """TimmBackboneConfig""", """VisionEncoderDecoderConfig""", """VisionTextDualEncoderConfig""", """LlamaConfig""", } def _lowerCamelCase ( a_ : Optional[Any]): lowerCamelCase :Union[str, Any] = None # source code of `config_class` lowerCamelCase :str = inspect.getsource(__a) lowerCamelCase :List[Any] = _re_checkpoint.findall(__a) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('''/'''): lowerCamelCase :List[Any] = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link lowerCamelCase :Optional[Any] = F"https://huggingface.co/{ckpt_name}" if ckpt_link == ckpt_link_from_name: lowerCamelCase :Dict = ckpt_name break return checkpoint def _lowerCamelCase ( ): lowerCamelCase :Optional[Any] = [] for config_class in list(CONFIG_MAPPING.values()): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue lowerCamelCase :Optional[int] = get_checkpoint_from_config_class(__a) lowerCamelCase :str = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__a) if len(__a) > 0: lowerCamelCase :Dict = '''\n'''.join(sorted(__a)) raise ValueError(F"The following configurations don't contain any valid checkpoint:\n{message}") if __name__ == "__main__": check_config_docstrings_have_checkpoints()
719
import operator as op def _lowerCamelCase ( a_ : Tuple): lowerCamelCase :int = [] lowerCamelCase :List[str] = lambda a_ , a_: int(x / y) # noqa: E731 integer division operation lowerCamelCase :Optional[int] = { '''^''': op.pow, '''*''': op.mul, '''/''': div, '''+''': op.add, '''-''': op.sub, } # operators & their respective operation # print table header print('''Symbol'''.center(8) , '''Action'''.center(12) , '''Stack''' , sep=''' | ''') print('''-''' * (30 + len(a_))) for x in post_fix: if x.isdigit(): # if x in digit stack.append(a_) # append x to stack # output in tabular format print(x.rjust(8) , ('''push(''' + x + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') else: lowerCamelCase :Optional[Any] = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8) , ('''pop(''' + b + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') lowerCamelCase :str = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8) , ('''pop(''' + a + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') stack.append( str(opr[x](int(a_) , int(a_)))) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8) , ('''push(''' + a + x + b + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''' , ) return int(stack[0]) if __name__ == "__main__": A__ = input("""\n\nEnter a Postfix Equation (space separated) = """).split(""" """) print("""\n\tResult = """, solve(Postfix))
49
0
from ...configuration_utils import PretrainedConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { """microsoft/cvt-13""": """https://huggingface.co/microsoft/cvt-13/resolve/main/config.json""", # See all Cvt models at https://huggingface.co/models?filter=cvt } class _lowerCAmelCase ( _snake_case ): _UpperCAmelCase = """cvt""" def __init__( self : Optional[Any] , __snake_case : Any=3 , __snake_case : List[str]=[7, 3, 3] , __snake_case : List[Any]=[4, 2, 2] , __snake_case : Optional[Any]=[2, 1, 1] , __snake_case : int=[64, 192, 384] , __snake_case : Union[str, Any]=[1, 3, 6] , __snake_case : int=[1, 2, 10] , __snake_case : str=[4.0, 4.0, 4.0] , __snake_case : List[Any]=[0.0, 0.0, 0.0] , __snake_case : Optional[Any]=[0.0, 0.0, 0.0] , __snake_case : Tuple=[0.0, 0.0, 0.1] , __snake_case : Any=[True, True, True] , __snake_case : Optional[Any]=[False, False, True] , __snake_case : List[Any]=["dw_bn", "dw_bn", "dw_bn"] , __snake_case : Optional[Any]=[3, 3, 3] , __snake_case : List[str]=[1, 1, 1] , __snake_case : Optional[int]=[2, 2, 2] , __snake_case : Any=[1, 1, 1] , __snake_case : Tuple=[1, 1, 1] , __snake_case : int=0.0_2 , __snake_case : Union[str, Any]=1e-1_2 , **__snake_case : str , ): super().__init__(**snake_case_ ) lowerCamelCase :Optional[Any] = num_channels lowerCamelCase :str = patch_sizes lowerCamelCase :Union[str, Any] = patch_stride lowerCamelCase :Tuple = patch_padding lowerCamelCase :Tuple = embed_dim lowerCamelCase :Optional[Any] = num_heads lowerCamelCase :Optional[int] = depth lowerCamelCase :List[str] = mlp_ratio lowerCamelCase :str = attention_drop_rate lowerCamelCase :Optional[int] = drop_rate lowerCamelCase :str = drop_path_rate lowerCamelCase :Dict = qkv_bias lowerCamelCase :Union[str, Any] = cls_token lowerCamelCase :Any = qkv_projection_method lowerCamelCase :Union[str, Any] = kernel_qkv lowerCamelCase :List[str] = padding_kv lowerCamelCase :Tuple = stride_kv lowerCamelCase :List[Any] = padding_q lowerCamelCase :Dict = stride_q lowerCamelCase :Optional[Any] = initializer_range lowerCamelCase :int = layer_norm_eps
720
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() A__ = logging.get_logger(__name__) A__ = """Hello, World!""" A__ = """en_XX""" def _lowerCamelCase ( a_ : str , a_ : str , a_ : bool): lowerCamelCase :int = Path('''data_bin''') lowerCamelCase :Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(a_).parent) , checkpoint_file=Path(a_).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(a_) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(a_).parent / '''sentencepiece.bpe.model''') , src_dict=str(data_dir / '''dict.txt''') , ) xmod.eval() # disable dropout print(a_) lowerCamelCase :Any = xmod.model.encoder.sentence_encoder lowerCamelCase :List[str] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: lowerCamelCase :Dict = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our X-MOD config:''' , a_) lowerCamelCase :List[Any] = XmodForSequenceClassification(a_) if classification_head else XmodForMaskedLM(a_) model.eval() # Now let's copy all the weights. # Embeddings lowerCamelCase :Union[str, Any] = xmod_sent_encoder.embed_tokens.weight lowerCamelCase :Tuple = xmod_sent_encoder.embed_positions.weight lowerCamelCase :List[str] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight) # just zero them out b/c xmod doesn't use them. lowerCamelCase :List[Any] = xmod_sent_encoder.layernorm_embedding.weight lowerCamelCase :Optional[int] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers): # Encoder: start of layer lowerCamelCase :Union[str, Any] = model.roberta.encoder.layer[i] lowerCamelCase :List[str] = xmod_sent_encoder.layers[i] # self attention lowerCamelCase :Optional[int] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size)) ): raise AssertionError('''Dimensions of self-attention weights do not match.''') lowerCamelCase :Optional[int] = xmod_layer.self_attn.q_proj.weight lowerCamelCase :List[str] = xmod_layer.self_attn.q_proj.bias lowerCamelCase :str = xmod_layer.self_attn.k_proj.weight lowerCamelCase :Optional[Any] = xmod_layer.self_attn.k_proj.bias lowerCamelCase :Dict = xmod_layer.self_attn.v_proj.weight lowerCamelCase :Optional[int] = xmod_layer.self_attn.v_proj.bias # self-attention output lowerCamelCase :Optional[int] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('''Dimensions of self-attention output weights do not match.''') lowerCamelCase :List[Any] = xmod_layer.self_attn.out_proj.weight lowerCamelCase :Union[str, Any] = xmod_layer.self_attn.out_proj.bias lowerCamelCase :str = xmod_layer.self_attn_layer_norm.weight lowerCamelCase :List[Any] = xmod_layer.self_attn_layer_norm.bias # intermediate lowerCamelCase :Optional[int] = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of intermediate weights do not match.''') lowerCamelCase :int = xmod_layer.fca.weight lowerCamelCase :Union[str, Any] = xmod_layer.fca.bias # output lowerCamelCase :List[str] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of feed-forward weights do not match.''') lowerCamelCase :str = xmod_layer.fca.weight lowerCamelCase :int = xmod_layer.fca.bias lowerCamelCase :List[Any] = xmod_layer.final_layer_norm.weight lowerCamelCase :List[str] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: lowerCamelCase :List[str] = xmod_layer.adapter_layer_norm.weight lowerCamelCase :int = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys()) != sorted(xmod_layer.adapter_modules.keys()): raise AssertionError('''Lists of language adapters do not match.''') for lang_code, adapter in xmod_layer.adapter_modules.items(): lowerCamelCase :Optional[int] = bert_output.adapter_modules[lang_code] lowerCamelCase :Dict = xmod_layer.adapter_modules[lang_code] lowerCamelCase :List[Any] = from_adapter.fca.weight lowerCamelCase :List[Any] = from_adapter.fca.bias lowerCamelCase :Dict = from_adapter.fca.weight lowerCamelCase :Optional[Any] = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: lowerCamelCase :Dict = xmod_sent_encoder.layer_norm.weight lowerCamelCase :List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: lowerCamelCase :Union[str, Any] = xmod.model.classification_heads['''mnli'''].dense.weight lowerCamelCase :Tuple = xmod.model.classification_heads['''mnli'''].dense.bias lowerCamelCase :Optional[Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight lowerCamelCase :List[Any] = xmod.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head lowerCamelCase :int = xmod.model.encoder.lm_head.dense.weight lowerCamelCase :List[Any] = xmod.model.encoder.lm_head.dense.bias lowerCamelCase :Optional[int] = xmod.model.encoder.lm_head.layer_norm.weight lowerCamelCase :List[Any] = xmod.model.encoder.lm_head.layer_norm.bias lowerCamelCase :List[Any] = xmod.model.encoder.lm_head.weight lowerCamelCase :Any = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCamelCase :str = xmod.encode(a_).unsqueeze(0) # batch of size 1 model.roberta.set_default_language(a_) lowerCamelCase :Any = model(a_)[0] if classification_head: lowerCamelCase :Dict = xmod.model.classification_heads['''mnli'''](xmod.extract_features(a_)) else: lowerCamelCase :int = xmod.model(a_ , lang_id=[SAMPLE_LANGUAGE])[0] print(our_output.shape , their_output.shape) lowerCamelCase :List[str] = torch.max(torch.abs(our_output - their_output)).item() print(F"max_absolute_diff = {max_absolute_diff}") # ~ 1e-7 lowerCamelCase :str = torch.allclose(a_ , a_ , atol=1e-3) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''') if not success: raise Exception('''Something went wRoNg''') Path(a_).mkdir(parents=a_ , exist_ok=a_) print(F"Saving model to {pytorch_dump_folder_path}") model.save_pretrained(a_) if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) A__ = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
49
0
from __future__ import annotations def _lowerCamelCase ( a_ : list[int] , a_ : int): lowerCamelCase :Optional[Any] = 0 lowerCamelCase :str = len(a_) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: lowerCamelCase :Optional[Any] = i + 1 else: lowerCamelCase :Any = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F'{two_pointer([2, 7, 11, 15], 9) = }')
721
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { """andreasmadsen/efficient_mlm_m0.40""": ( """https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json""" ), } class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'roberta-prelayernorm' def __init__( self : str , __snake_case : List[str]=50265 , __snake_case : Union[str, Any]=768 , __snake_case : Tuple=12 , __snake_case : int=12 , __snake_case : Any=3072 , __snake_case : Optional[int]="gelu" , __snake_case : List[Any]=0.1 , __snake_case : int=0.1 , __snake_case : Union[str, Any]=512 , __snake_case : Dict=2 , __snake_case : int=0.0_2 , __snake_case : Any=1e-1_2 , __snake_case : Optional[int]=1 , __snake_case : Dict=0 , __snake_case : Optional[int]=2 , __snake_case : Any="absolute" , __snake_case : Union[str, Any]=True , __snake_case : List[str]=None , **__snake_case : Optional[int] , ): super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) lowerCamelCase :Optional[int] = vocab_size lowerCamelCase :Dict = hidden_size lowerCamelCase :Tuple = num_hidden_layers lowerCamelCase :Optional[int] = num_attention_heads lowerCamelCase :Any = hidden_act lowerCamelCase :List[Any] = intermediate_size lowerCamelCase :Union[str, Any] = hidden_dropout_prob lowerCamelCase :str = attention_probs_dropout_prob lowerCamelCase :Tuple = max_position_embeddings lowerCamelCase :int = type_vocab_size lowerCamelCase :Optional[Any] = initializer_range lowerCamelCase :Union[str, Any] = layer_norm_eps lowerCamelCase :Dict = position_embedding_type lowerCamelCase :List[Any] = use_cache lowerCamelCase :Optional[int] = classifier_dropout class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): @property def snake_case ( self : Any ): if self.task == "multiple-choice": lowerCamelCase :Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase :List[str] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
49
0
import re import string import numpy as np import datasets A__ = """ Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. """ A__ = """ Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 25.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 50.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 75.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results[\"exact_match\"], 1)) 100.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"] >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 33.3 """ A__ = """ """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): def snake_case ( self : Optional[int] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , reference_urls=[] , ) def snake_case ( self : Tuple , __snake_case : int , __snake_case : int , __snake_case : Tuple=None , __snake_case : str=False , __snake_case : List[str]=False , __snake_case : List[str]=False , ): if regexes_to_ignore is not None: for s in regexes_to_ignore: lowerCamelCase :List[str] = np.array([re.sub(_lowerCamelCase , '''''' , _lowerCamelCase ) for x in predictions] ) lowerCamelCase :Optional[Any] = np.array([re.sub(_lowerCamelCase , '''''' , _lowerCamelCase ) for x in references] ) else: lowerCamelCase :Dict = np.asarray(_lowerCamelCase ) lowerCamelCase :Optional[Any] = np.asarray(_lowerCamelCase ) if ignore_case: lowerCamelCase :Dict = np.char.lower(_lowerCamelCase ) lowerCamelCase :Union[str, Any] = np.char.lower(_lowerCamelCase ) if ignore_punctuation: lowerCamelCase :List[Any] = string.punctuation.maketrans('''''' , '''''' , string.punctuation ) lowerCamelCase :Any = np.char.translate(_lowerCamelCase , table=_lowerCamelCase ) lowerCamelCase :Dict = np.char.translate(_lowerCamelCase , table=_lowerCamelCase ) if ignore_numbers: lowerCamelCase :Optional[Any] = string.digits.maketrans('''''' , '''''' , string.digits ) lowerCamelCase :str = np.char.translate(_lowerCamelCase , table=_lowerCamelCase ) lowerCamelCase :Tuple = np.char.translate(_lowerCamelCase , table=_lowerCamelCase ) lowerCamelCase :List[str] = predictions == references return {"exact_match": np.mean(_lowerCamelCase ) * 100}
700
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = DebertaTokenizer _UpperCAmelCase = True _UpperCAmelCase = DebertaTokenizerFast def snake_case ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase :Dict = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] lowerCamelCase :List[str] = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) lowerCamelCase :Any = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCamelCase :Dict = {'''unk_token''': '''[UNK]'''} lowerCamelCase :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase :List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__snake_case ) ) def snake_case ( self : str , **__snake_case : Dict ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Optional[Any] , __snake_case : int ): lowerCamelCase :List[Any] = '''lower newer''' lowerCamelCase :List[str] = '''lower newer''' return input_text, output_text def snake_case ( self : str ): lowerCamelCase :Optional[int] = self.get_tokenizer() lowerCamelCase :Union[str, Any] = '''lower newer''' lowerCamelCase :str = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] lowerCamelCase :Optional[int] = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) lowerCamelCase :List[str] = tokens + [tokenizer.unk_token] lowerCamelCase :Optional[int] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def snake_case ( self : Optional[int] ): lowerCamelCase :List[str] = self.get_tokenizer() lowerCamelCase :Optional[int] = tokenizer('''Hello''' , '''World''' ) lowerCamelCase :List[str] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __snake_case ) @slow def snake_case ( self : str ): lowerCamelCase :Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) lowerCamelCase :Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__snake_case ) lowerCamelCase :Tuple = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__snake_case ) lowerCamelCase :Union[str, Any] = tokenizer.encode( '''sequence builders''' , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) lowerCamelCase :str = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) lowerCamelCase :Any = tokenizer.build_inputs_with_special_tokens(__snake_case ) lowerCamelCase :Dict = tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def snake_case ( self : str ): lowerCamelCase :List[str] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: lowerCamelCase :int = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) lowerCamelCase :Tuple = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] lowerCamelCase :List[Any] = tokenizer(__snake_case , padding=__snake_case ) lowerCamelCase :Union[str, Any] = [tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) for seq in encoding['''input_ids''']] # fmt: off lowerCamelCase :Any = { '''input_ids''': [ [1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on lowerCamelCase :Optional[int] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __snake_case ) for expected, decoded in zip(__snake_case , __snake_case ): self.assertEqual(__snake_case , __snake_case )
49
0
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch A__ = random.Random() def _lowerCamelCase ( a_ : Optional[Any] , a_ : Optional[Any]=1.0 , a_ : List[Any]=None , a_ : Union[str, Any]=None): if rng is None: lowerCamelCase :Any = global_rng lowerCamelCase :List[str] = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values @require_torch class _lowerCAmelCase ( unittest.TestCase ): def __init__( self : List[Any] , __snake_case : Dict , __snake_case : Optional[Any]=7 , __snake_case : Any=400 , __snake_case : Tuple=2000 , __snake_case : Optional[Any]=1 , __snake_case : Tuple=0.0 , __snake_case : int=16000 , __snake_case : List[str]=True , __snake_case : str=80 , __snake_case : Union[str, Any]=16 , __snake_case : str=64 , __snake_case : Optional[Any]="hann_window" , __snake_case : Any=80 , __snake_case : int=7600 , __snake_case : Optional[int]=1e-1_0 , __snake_case : int=True , ): lowerCamelCase :int = parent lowerCamelCase :Dict = batch_size lowerCamelCase :List[Any] = min_seq_length lowerCamelCase :List[Any] = max_seq_length lowerCamelCase :Optional[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCamelCase :Optional[Any] = feature_size lowerCamelCase :Optional[Any] = padding_value lowerCamelCase :Union[str, Any] = sampling_rate lowerCamelCase :Optional[Any] = do_normalize lowerCamelCase :Tuple = num_mel_bins lowerCamelCase :List[str] = hop_length lowerCamelCase :Any = win_length lowerCamelCase :Union[str, Any] = win_function lowerCamelCase :List[str] = fmin lowerCamelCase :Union[str, Any] = fmax lowerCamelCase :List[Any] = mel_floor lowerCamelCase :Optional[int] = return_attention_mask def snake_case ( self : List[str] ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def snake_case ( self : List[Any] , __snake_case : int=False , __snake_case : Tuple=False ): def _flatten(__snake_case : Dict ): return list(itertools.chain(*__lowerCamelCase ) ) if equal_length: lowerCamelCase :Union[str, Any] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowerCamelCase :Optional[Any] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCamelCase :Dict = [np.asarray(__lowerCamelCase ) for x in speech_inputs] return speech_inputs def snake_case ( self : int , __snake_case : Tuple=False , __snake_case : Union[str, Any]=False ): if equal_length: lowerCamelCase :Union[str, Any] = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowerCamelCase :Optional[Any] = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCamelCase :Tuple = [np.asarray(__lowerCamelCase ) for x in speech_inputs] return speech_inputs @require_torch class _lowerCAmelCase ( lowerCamelCase__ , unittest.TestCase ): _UpperCAmelCase = SpeechTaFeatureExtractor def snake_case ( self : str ): lowerCamelCase :Tuple = SpeechTaFeatureExtractionTester(self ) def snake_case ( self : Union[str, Any] , __snake_case : Union[str, Any] ): self.assertTrue(np.all(np.mean(__lowerCamelCase , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(__lowerCamelCase , axis=0 ) - 1 ) < 1e-3 ) ) def snake_case ( self : Any ): lowerCamelCase :Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCamelCase :Union[str, Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowerCamelCase :Optional[int] = [np.asarray(__lowerCamelCase ) for speech_input in speech_inputs] # Test not batched input lowerCamelCase :Dict = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values lowerCamelCase :Any = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) ) # Test batched lowerCamelCase :int = feat_extract(__lowerCamelCase , return_tensors='''np''' ).input_values lowerCamelCase :str = feat_extract(__lowerCamelCase , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(__lowerCamelCase , __lowerCamelCase ): self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) ) def snake_case ( self : int ): lowerCamelCase :str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase :Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowerCamelCase :List[str] = ['''longest''', '''max_length''', '''do_not_pad'''] lowerCamelCase :Optional[Any] = [None, 1600, None] for max_length, padding in zip(__lowerCamelCase , __lowerCamelCase ): lowerCamelCase :Any = feat_extract(__lowerCamelCase , padding=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors='''np''' ) lowerCamelCase :Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def snake_case ( self : List[Any] ): lowerCamelCase :List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase :List[str] = range(800 , 1400 , 200 ) lowerCamelCase :Optional[Any] = [floats_list((1, x) )[0] for x in lengths] lowerCamelCase :Union[str, Any] = ['''longest''', '''max_length''', '''do_not_pad'''] lowerCamelCase :int = [None, 1600, None] for max_length, padding in zip(__lowerCamelCase , __lowerCamelCase ): lowerCamelCase :str = feat_extract(__lowerCamelCase , max_length=__lowerCamelCase , padding=__lowerCamelCase ) lowerCamelCase :Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def snake_case ( self : List[str] ): lowerCamelCase :Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase :Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowerCamelCase :Optional[int] = feat_extract( __lowerCamelCase , truncation=__lowerCamelCase , max_length=1000 , padding='''max_length''' , return_tensors='''np''' ) lowerCamelCase :List[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def snake_case ( self : int ): lowerCamelCase :List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase :List[str] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowerCamelCase :Union[str, Any] = feat_extract( __lowerCamelCase , truncation=__lowerCamelCase , max_length=1000 , padding='''longest''' , return_tensors='''np''' ) lowerCamelCase :Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) lowerCamelCase :Tuple = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowerCamelCase :Optional[int] = feat_extract( __lowerCamelCase , truncation=__lowerCamelCase , max_length=2000 , padding='''longest''' , return_tensors='''np''' ) lowerCamelCase :Optional[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) def snake_case ( self : Optional[int] ): lowerCamelCase :List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase :Union[str, Any] = np.random.rand(100 ).astype(np.floataa ) lowerCamelCase :Any = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCamelCase :str = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowerCamelCase :int = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def snake_case ( self : Optional[Any] ): lowerCamelCase :str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCamelCase :Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowerCamelCase :Optional[Any] = [np.asarray(__lowerCamelCase ) for speech_input in speech_inputs] # Test feature size lowerCamelCase :List[str] = feature_extractor(audio_target=__lowerCamelCase , padding=__lowerCamelCase , return_tensors='''np''' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input lowerCamelCase :List[str] = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_values lowerCamelCase :Optional[int] = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) ) # Test batched lowerCamelCase :Dict = feature_extractor(__lowerCamelCase , return_tensors='''np''' ).input_values lowerCamelCase :List[Any] = feature_extractor(__lowerCamelCase , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(__lowerCamelCase , __lowerCamelCase ): self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. lowerCamelCase :Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowerCamelCase :Optional[int] = np.asarray(__lowerCamelCase ) lowerCamelCase :Dict = feature_extractor(__lowerCamelCase , return_tensors='''np''' ).input_values lowerCamelCase :Dict = feature_extractor(__lowerCamelCase , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(__lowerCamelCase , __lowerCamelCase ): self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) ) def snake_case ( self : int ): lowerCamelCase :Tuple = self.feat_extract_tester.prepare_inputs_for_target() lowerCamelCase :Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) lowerCamelCase :Optional[int] = feat_extract.model_input_names[0] lowerCamelCase :Dict = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(__lowerCamelCase ) == len(__lowerCamelCase ) for x, y in zip(__lowerCamelCase , processed_features[input_name] ) ) ) lowerCamelCase :str = self.feat_extract_tester.prepare_inputs_for_target(equal_length=__lowerCamelCase ) lowerCamelCase :List[Any] = BatchFeature({input_name: speech_inputs} , tensor_type='''np''' ) lowerCamelCase :int = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowerCamelCase :List[str] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def snake_case ( self : List[Any] ): lowerCamelCase :List[Any] = self.feat_extract_tester.prepare_inputs_for_target(equal_length=__lowerCamelCase ) lowerCamelCase :List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) lowerCamelCase :int = feat_extract.model_input_names[0] lowerCamelCase :Union[str, Any] = BatchFeature({input_name: speech_inputs} , tensor_type='''pt''' ) lowerCamelCase :Optional[int] = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowerCamelCase :Optional[int] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def snake_case ( self : str ): lowerCamelCase :Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) lowerCamelCase :List[str] = self.feat_extract_tester.prepare_inputs_for_target() lowerCamelCase :Optional[int] = feat_extract.model_input_names[0] lowerCamelCase :Union[str, Any] = BatchFeature({input_name: speech_inputs} ) lowerCamelCase :Optional[int] = feat_extract.num_mel_bins # hack! lowerCamelCase :List[str] = feat_extract.pad(__lowerCamelCase , padding='''longest''' , return_tensors='''np''' )[input_name] lowerCamelCase :Any = feat_extract.pad(__lowerCamelCase , padding='''longest''' , return_tensors='''pt''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def snake_case ( self : int ): lowerCamelCase :List[str] = self.feat_extract_dict lowerCamelCase :Optional[Any] = True lowerCamelCase :Optional[Any] = self.feature_extraction_class(**__lowerCamelCase ) lowerCamelCase :int = self.feat_extract_tester.prepare_inputs_for_target() lowerCamelCase :Optional[int] = [len(__lowerCamelCase ) for x in speech_inputs] lowerCamelCase :Union[str, Any] = feat_extract.model_input_names[0] lowerCamelCase :Tuple = BatchFeature({input_name: speech_inputs} ) lowerCamelCase :str = feat_extract.num_mel_bins # hack! lowerCamelCase :List[Any] = feat_extract.pad(__lowerCamelCase , padding='''longest''' , return_tensors='''np''' ) self.assertIn('''attention_mask''' , __lowerCamelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , __lowerCamelCase ) def snake_case ( self : Any ): lowerCamelCase :List[Any] = self.feat_extract_dict lowerCamelCase :Any = True lowerCamelCase :List[str] = self.feature_extraction_class(**__lowerCamelCase ) lowerCamelCase :Any = self.feat_extract_tester.prepare_inputs_for_target() lowerCamelCase :Tuple = [len(__lowerCamelCase ) for x in speech_inputs] lowerCamelCase :str = feat_extract.model_input_names[0] lowerCamelCase :int = BatchFeature({input_name: speech_inputs} ) lowerCamelCase :Optional[int] = min(__lowerCamelCase ) lowerCamelCase :Dict = feat_extract.num_mel_bins # hack! lowerCamelCase :Union[str, Any] = feat_extract.pad( __lowerCamelCase , padding='''max_length''' , max_length=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors='''np''' ) self.assertIn('''attention_mask''' , __lowerCamelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def snake_case ( self : Any , __snake_case : List[Any] ): from datasets import load_dataset lowerCamelCase :Tuple = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech lowerCamelCase :Tuple = ds.sort('''id''' ).select(range(__lowerCamelCase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def snake_case ( self : Dict ): lowerCamelCase :Tuple = torch.tensor( [2.3_8_0_4e-0_3, 2.0_7_5_2e-0_3, 1.9_8_3_6e-0_3, 2.1_0_5_7e-0_3, 1.6_1_7_4e-0_3, 3.0_5_1_8e-0_4, 9.1_5_5_3e-0_5, 3.3_5_6_9e-0_4, 9.7_6_5_6e-0_4, 1.8_3_1_1e-0_3, 2.0_1_4_2e-0_3, 2.1_0_5_7e-0_3, 1.7_3_9_5e-0_3, 4.5_7_7_6e-0_4, -3.9_6_7_3e-0_4, 4.5_7_7_6e-0_4, 1.0_0_7_1e-0_3, 9.1_5_5_3e-0_5, 4.8_8_2_8e-0_4, 1.1_5_9_7e-0_3, 7.3_2_4_2e-0_4, 9.4_6_0_4e-0_4, 1.8_0_0_5e-0_3, 1.8_3_1_1e-0_3, 8.8_5_0_1e-0_4, 4.2_7_2_5e-0_4, 4.8_8_2_8e-0_4, 7.3_2_4_2e-0_4, 1.0_9_8_6e-0_3, 2.1_0_5_7e-0_3] ) # fmt: on lowerCamelCase :Dict = self._load_datasamples(1 ) lowerCamelCase :Any = SpeechTaFeatureExtractor() lowerCamelCase :Dict = feature_extractor(__lowerCamelCase , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 93680) ) self.assertTrue(torch.allclose(input_values[0, :30] , __lowerCamelCase , atol=1e-6 ) ) def snake_case ( self : Optional[int] ): lowerCamelCase :Union[str, Any] = torch.tensor( [-2.6_8_7_0, -3.0_1_0_4, -3.1_3_5_6, -3.5_3_5_2, -3.0_0_4_4, -3.0_3_5_3, -3.4_7_1_9, -3.6_7_7_7, -3.1_5_2_0, -2.9_4_3_5, -2.6_5_5_3, -2.8_7_9_5, -2.9_9_4_4, -2.5_9_2_1, -3.0_2_7_9, -3.0_3_8_6, -3.0_8_6_4, -3.1_2_9_1, -3.2_3_5_3, -2.7_4_4_4, -2.6_8_3_1, -2.7_2_8_7, -3.1_7_6_1, -3.1_5_7_1, -3.2_7_2_6, -3.0_5_8_2, -3.1_0_0_7, -3.4_5_3_3, -3.4_6_9_5, -3.0_9_9_8] ) # fmt: on lowerCamelCase :Tuple = self._load_datasamples(1 ) lowerCamelCase :Optional[Any] = SpeechTaFeatureExtractor() lowerCamelCase :Any = feature_extractor(audio_target=__lowerCamelCase , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , __lowerCamelCase , atol=1e-4 ) )
701
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) A__ = [ """cross_validation.py""", """gradient_accumulation.py""", """local_sgd.py""", """multi_process_metrics.py""", """memory.py""", """automatic_gradient_accumulation.py""", """fsdp_with_peak_mem_tracking.py""", """deepspeed_with_config_support.py""", """megatron_lm_gpt_pretraining.py""", ] class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Any , __snake_case : str , __snake_case : bool , __snake_case : str = None , __snake_case : list = None ): lowerCamelCase :Tuple = None lowerCamelCase :Tuple = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) lowerCamelCase :Optional[int] = os.path.abspath('''examples''' ) for item in os.listdir(__snake_case ): if item not in EXCLUDE_EXAMPLES: lowerCamelCase :Optional[int] = os.path.join(__snake_case , __snake_case ) if os.path.isfile(__snake_case ) and ".py" in item_path: with self.subTest( tested_script=__snake_case , feature_script=__snake_case , tested_section='''main()''' if parser_only else '''training_function()''' , ): lowerCamelCase :Union[str, Any] = compare_against_test( os.path.join(__snake_case , __snake_case ) , __snake_case , __snake_case , __snake_case ) lowerCamelCase :int = '''\n'''.join(__snake_case ) if special_strings is not None: for string in special_strings: lowerCamelCase :int = diff.replace(__snake_case , '''''' ) self.assertEqual(__snake_case , '''''' ) def snake_case ( self : Dict ): self.one_complete_example('''complete_nlp_example.py''' , __snake_case ) self.one_complete_example('''complete_nlp_example.py''' , __snake_case ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Union[str, Any] = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) lowerCamelCase :Optional[int] = [ ''' ''' * 16 + '''{\n\n''', ''' ''' * 20 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 20 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 20 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 20 + '''"epoch": epoch,\n\n''', ''' ''' * 16 + '''},\n\n''', ''' ''' * 16 + '''step=epoch,\n''', ''' ''' * 12, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , __snake_case , __snake_case , __snake_case ) self.one_complete_example('''complete_cv_example.py''' , __snake_case , __snake_case , __snake_case ) @mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '1'} ) class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = False @classmethod def snake_case ( cls : Optional[Any] ): super().setUpClass() lowerCamelCase :Any = tempfile.mkdtemp() lowerCamelCase :Optional[int] = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) lowerCamelCase :List[str] = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def snake_case ( cls : Dict ): super().tearDownClass() shutil.rmtree(cls._tmpdir ) def snake_case ( self : int ): lowerCamelCase :Any = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def snake_case ( self : List[Any] ): lowerCamelCase :Tuple = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n ".split() lowerCamelCase :List[Any] = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def snake_case ( self : List[str] ): lowerCamelCase :Dict = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}\n ".split() lowerCamelCase :Dict = run_command(self._launch_args + testargs , return_stdout=__snake_case ) self.assertNotIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) def snake_case ( self : str ): lowerCamelCase :List[Any] = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}\n ".split() lowerCamelCase :Optional[int] = run_command(self._launch_args + testargs , return_stdout=__snake_case ) if torch.cuda.is_available(): lowerCamelCase :Union[str, Any] = torch.cuda.device_count() else: lowerCamelCase :Dict = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) else: self.assertIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) @slow def snake_case ( self : Any ): lowerCamelCase :Tuple = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): lowerCamelCase :Dict = run_command(self._launch_args + testargs , return_stdout=__snake_case ) lowerCamelCase :Tuple = re.findall('''({.+})''' , __snake_case ) lowerCamelCase :Optional[Any] = [r for r in results if '''accuracy''' in r][-1] lowerCamelCase :List[str] = ast.literal_eval(__snake_case ) self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 ) def snake_case ( self : int ): lowerCamelCase :Dict = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case ( self : Any ): with tempfile.TemporaryDirectory() as tmpdir: lowerCamelCase :Tuple = F"\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__snake_case , '''tracking''' ) ) ) def snake_case ( self : Tuple ): lowerCamelCase :Tuple = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def snake_case ( self : Optional[Any] ): lowerCamelCase :int = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
49
0
from __future__ import annotations def _lowerCamelCase ( a_ : Optional[Any] , a_ : Union[str, Any] = None , a_ : List[str] = None): if start is None: lowerCamelCase :Optional[int] = 0 if end is None: lowerCamelCase :Tuple = len(UpperCamelCase__) - 1 if start >= end: return lowerCamelCase :List[str] = (start + end) // 2 slowsort(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__) slowsort(UpperCamelCase__ , mid + 1 , UpperCamelCase__) if sequence[end] < sequence[mid]: lowerCamelCase , lowerCamelCase :Union[str, Any] = sequence[mid], sequence[end] slowsort(UpperCamelCase__ , UpperCamelCase__ , end - 1) if __name__ == "__main__": from doctest import testmod testmod()
702
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs A__ = imread(R"""digital_image_processing/image_data/lena_small.jpg""") A__ = cvtColor(img, COLOR_BGR2GRAY) def _lowerCamelCase ( ): lowerCamelCase :int = cn.convert_to_negative(a_) # assert negative_img array for at least one True assert negative_img.any() def _lowerCamelCase ( ): with Image.open('''digital_image_processing/image_data/lena_small.jpg''') as img: # Work around assertion for response assert str(cc.change_contrast(a_ , 1_10)).startswith( '''<PIL.Image.Image image mode=RGB size=100x100 at''') def _lowerCamelCase ( ): lowerCamelCase :Optional[Any] = canny.gen_gaussian_kernel(9 , sigma=1.4) # Assert ambiguous array assert resp.all() def _lowerCamelCase ( ): lowerCamelCase :str = imread('''digital_image_processing/image_data/lena_small.jpg''' , 0) # assert ambiguous array for all == True assert canny_img.all() lowerCamelCase :Optional[Any] = canny.canny(a_) # assert canny array for at least one True assert canny_array.any() def _lowerCamelCase ( ): assert gg.gaussian_filter(a_ , 5 , sigma=0.9).all() def _lowerCamelCase ( ): # laplace diagonals lowerCamelCase :List[Any] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]]) lowerCamelCase :List[Any] = conv.img_convolve(a_ , a_).astype(a_) assert res.any() def _lowerCamelCase ( ): assert med.median_filter(a_ , 3).any() def _lowerCamelCase ( ): lowerCamelCase , lowerCamelCase :Union[str, Any] = sob.sobel_filter(a_) assert grad.any() and theta.any() def _lowerCamelCase ( ): lowerCamelCase :Dict = sp.make_sepia(a_ , 20) assert sepia.all() def _lowerCamelCase ( a_ : str = "digital_image_processing/image_data/lena_small.jpg"): lowerCamelCase :Any = bs.Burkes(imread(a_ , 1) , 1_20) burkes.process() assert burkes.output_img.any() def _lowerCamelCase ( a_ : str = "digital_image_processing/image_data/lena_small.jpg" , ): lowerCamelCase :Tuple = rs.NearestNeighbour(imread(a_ , 1) , 4_00 , 2_00) nn.process() assert nn.output.any() def _lowerCamelCase ( ): lowerCamelCase :Tuple = '''digital_image_processing/image_data/lena.jpg''' # Reading the image and converting it to grayscale. lowerCamelCase :Tuple = imread(a_ , 0) # Test for get_neighbors_pixel function() return not None lowerCamelCase :Dict = 0 lowerCamelCase :Optional[Any] = 0 lowerCamelCase :str = image[x_coordinate][y_coordinate] lowerCamelCase :Any = lbp.get_neighbors_pixel( a_ , a_ , a_ , a_) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCamelCase :int = np.zeros((image.shape[0], image.shape[1])) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0]): for j in range(0 , image.shape[1]): lowerCamelCase :Optional[int] = lbp.local_binary_value(a_ , a_ , a_) assert lbp_image.any()
49
0
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class _lowerCAmelCase : def __init__( self : Any , __snake_case : int , ): lowerCamelCase :Tuple = parent lowerCamelCase :List[str] = 13 lowerCamelCase :Tuple = 7 lowerCamelCase :List[Any] = 30 lowerCamelCase :Optional[int] = self.seq_length + self.mem_len lowerCamelCase :List[str] = 15 lowerCamelCase :Union[str, Any] = True lowerCamelCase :Dict = True lowerCamelCase :List[Any] = 99 lowerCamelCase :List[Any] = [10, 50, 80] lowerCamelCase :int = 32 lowerCamelCase :Tuple = 32 lowerCamelCase :List[Any] = 4 lowerCamelCase :Any = 8 lowerCamelCase :str = 128 lowerCamelCase :Any = 2 lowerCamelCase :List[str] = 2 lowerCamelCase :Dict = None lowerCamelCase :List[Any] = 1 lowerCamelCase :List[str] = 0 lowerCamelCase :str = 3 lowerCamelCase :Union[str, Any] = self.vocab_size - 1 lowerCamelCase :str = 0.0_1 def snake_case ( self : Tuple ): lowerCamelCase :int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase :Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase :Dict = None if self.use_labels: lowerCamelCase :int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase :str = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def snake_case ( self : Any ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def snake_case ( self : List[Any] , __snake_case : Optional[int] , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : Any ): lowerCamelCase :List[Any] = TFTransfoXLModel(lowercase_ ) lowerCamelCase :Union[str, Any] = model(lowercase_ ).to_tuple() lowerCamelCase :Optional[int] = {"input_ids": input_ids_a, "mems": mems_a} lowerCamelCase :Dict = model(lowercase_ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def snake_case ( self : Dict , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Any ): lowerCamelCase :str = TFTransfoXLLMHeadModel(lowercase_ ) lowerCamelCase :int = model(lowercase_ ).to_tuple() lowerCamelCase :List[str] = {"input_ids": input_ids_a, "labels": lm_labels} lowerCamelCase :List[Any] = model(lowercase_ ).to_tuple() lowerCamelCase :str = model([input_ids_a, mems_a] ).to_tuple() lowerCamelCase :List[Any] = {"input_ids": input_ids_a, "mems": mems_a, "labels": lm_labels} lowerCamelCase :Dict = model(lowercase_ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def snake_case ( self : Optional[Any] , __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Any , __snake_case : Any ): lowerCamelCase :Tuple = TFTransfoXLForSequenceClassification(lowercase_ ) lowerCamelCase :Any = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self : str ): lowerCamelCase :Any = self.prepare_config_and_inputs() (lowerCamelCase) :Union[str, Any] = config_and_inputs lowerCamelCase :int = {"input_ids": input_ids_a} return config, inputs_dict @require_tf class _lowerCAmelCase ( snake_case__ , snake_case__ , unittest.TestCase ): _UpperCAmelCase = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) _UpperCAmelCase = () if is_tf_available() else () _UpperCAmelCase = ( { 'feature-extraction': TFTransfoXLModel, 'text-classification': TFTransfoXLForSequenceClassification, 'text-generation': TFTransfoXLLMHeadModel, 'zero-shot': TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def snake_case ( self : Union[str, Any] , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : Any ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def snake_case ( self : Any ): lowerCamelCase :int = TFTransfoXLModelTester(self ) lowerCamelCase :Any = ConfigTester(self , config_class=lowercase_ , d_embed=37 ) def snake_case ( self : Tuple ): self.config_tester.run_common_tests() def snake_case ( self : Any ): self.model_tester.set_seed() lowerCamelCase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*lowercase_ ) def snake_case ( self : str ): self.model_tester.set_seed() lowerCamelCase :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*lowercase_ ) def snake_case ( self : int ): lowerCamelCase :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*lowercase_ ) def snake_case ( self : Union[str, Any] ): lowerCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase :str = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: lowerCamelCase :Dict = model_class(lowercase_ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: lowerCamelCase :Union[str, Any] = model.get_output_embeddings() assert isinstance(lowercase_ , tf.keras.layers.Layer ) lowerCamelCase :Union[str, Any] = model.get_bias() assert name is None else: lowerCamelCase :Dict = model.get_output_embeddings() assert x is None lowerCamelCase :str = model.get_bias() assert name is None def snake_case ( self : Optional[int] ): # TODO JP: Make TransfoXL XLA compliant pass @slow def snake_case ( self : int ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase :int = TFTransfoXLModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @unittest.skip(reason='''This model doesn\'t play well with fit() due to not returning a single loss.''' ) def snake_case ( self : Dict ): pass @require_tf class _lowerCAmelCase ( unittest.TestCase ): @unittest.skip('''Skip test until #12651 is resolved.''' ) @slow def snake_case ( self : Tuple ): lowerCamelCase :List[str] = TFTransfoXLLMHeadModel.from_pretrained('''transfo-xl-wt103''' ) # fmt: off lowerCamelCase :Union[str, Any] = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off lowerCamelCase :Union[str, Any] = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> lowerCamelCase :Dict = model.generate(lowercase_ , max_length=200 , do_sample=lowercase_ ) self.assertListEqual(output_ids[0].numpy().tolist() , lowercase_ )
703
import os from math import logaa def _lowerCamelCase ( a_ : str = "base_exp.txt"): lowerCamelCase :float = 0 lowerCamelCase :Optional[int] = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(a_) , a_))): lowerCamelCase , lowerCamelCase :Optional[int] = list(map(a_ , line.split(''','''))) if x * logaa(a_) > largest: lowerCamelCase :List[Any] = x * logaa(a_) lowerCamelCase :Any = i + 1 return result if __name__ == "__main__": print(solution())
49
0
'''simple docstring''' from __future__ import annotations def _lowerCamelCase ( a_ : int): if not nums: raise ValueError('''List is empty''') return sum(a_) / len(a_) if __name__ == "__main__": import doctest doctest.testmod()
704
def _lowerCamelCase ( a_ : list): if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''') for cell_n in range(1 , len(grid[0])): grid[0][cell_n] += grid[0][cell_n - 1] lowerCamelCase :Any = grid[0] for row_n in range(1 , len(a_)): lowerCamelCase :List[str] = grid[row_n] lowerCamelCase :Union[str, Any] = fill_row(a_ , a_) lowerCamelCase :List[Any] = grid[row_n] return grid[-1][-1] def _lowerCamelCase ( a_ : list , a_ : list): current_row[0] += row_above[0] for cell_n in range(1 , len(a_)): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n]) return current_row if __name__ == "__main__": import doctest doctest.testmod()
49
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch A__ = logging.get_logger(__name__) @dataclass class _lowerCAmelCase : def __init__( self : Any , __snake_case : Union[str, Any]=False , __snake_case : Dict=False , __snake_case : Tuple=6.0 , __snake_case : Union[str, Any]=None , __snake_case : Optional[int]=False , __snake_case : Optional[int]=False , __snake_case : Dict=None , __snake_case : Tuple="fp4" , __snake_case : Union[str, Any]=False , **__snake_case : Union[str, Any] , ): lowerCamelCase :Tuple = load_in_abit lowerCamelCase :Dict = load_in_abit lowerCamelCase :List[Any] = llm_inta_threshold lowerCamelCase :Tuple = llm_inta_skip_modules lowerCamelCase :List[Any] = llm_inta_enable_fpaa_cpu_offload lowerCamelCase :Optional[Any] = llm_inta_has_fpaa_weight lowerCamelCase :List[Any] = bnb_abit_quant_type lowerCamelCase :Any = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: lowerCamelCase :List[Any] = torch.floataa elif isinstance(__snake_case , __snake_case ): lowerCamelCase :Optional[int] = getattr(__snake_case , __snake_case ) elif isinstance(__snake_case , torch.dtype ): lowerCamelCase :List[str] = bnb_abit_compute_dtype else: raise ValueError('''bnb_4bit_compute_dtype must be a string or a torch.dtype''' ) self.post_init() def snake_case ( self : Union[str, Any] ): if not isinstance(self.llm_inta_threshold , __snake_case ): raise ValueError('''llm_int8_threshold must be a float''' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , __snake_case ): raise ValueError('''llm_int8_skip_modules must be a list of strings''' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , __snake_case ): raise ValueError('''llm_int8_enable_fp32_cpu_offload must be a boolean''' ) if not isinstance(self.llm_inta_has_fpaa_weight , __snake_case ): raise ValueError('''llm_int8_has_fp16_weight must be a boolean''' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError('''bnb_4bit_compute_dtype must be torch.dtype''' ) if not isinstance(self.bnb_abit_quant_type , __snake_case ): raise ValueError('''bnb_4bit_quant_type must be a string''' ) if not isinstance(self.bnb_abit_use_double_quant , __snake_case ): raise ValueError('''bnb_4bit_use_double_quant must be a boolean''' ) if self.load_in_abit and not version.parse(importlib.metadata.version('''bitsandbytes''' ) ) >= version.parse( '''0.39.0''' ): raise ValueError( '''4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version''' ) def snake_case ( self : Optional[Any] ): return self.load_in_abit or self.load_in_abit def snake_case ( self : Tuple ): if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def snake_case ( cls : Union[str, Any] , __snake_case : str , __snake_case : List[Any] , **__snake_case : int ): lowerCamelCase :Any = cls(**__snake_case ) lowerCamelCase :Tuple = [] for key, value in kwargs.items(): if hasattr(__snake_case , __snake_case ): setattr(__snake_case , __snake_case , __snake_case ) to_remove.append(__snake_case ) for key in to_remove: kwargs.pop(__snake_case , __snake_case ) if return_unused_kwargs: return config, kwargs else: return config def snake_case ( self : List[Any] , __snake_case : Union[str, os.PathLike] ): with open(__snake_case , '''w''' , encoding='''utf-8''' ) as writer: lowerCamelCase :int = self.to_dict() lowerCamelCase :Dict = json.dumps(__snake_case , indent=2 , sort_keys=__snake_case ) + "\n" writer.write(__snake_case ) def snake_case ( self : Tuple ): lowerCamelCase :int = copy.deepcopy(self.__dict__ ) lowerCamelCase :Dict = str(output['''bnb_4bit_compute_dtype'''] ).split('''.''' )[1] return output def __repr__( self : Tuple ): return F"{self.__class__.__name__} {self.to_json_string()}" def snake_case ( self : Any , __snake_case : bool = True ): if use_diff is True: lowerCamelCase :Optional[Any] = self.to_diff_dict() else: lowerCamelCase :Tuple = self.to_dict() return json.dumps(__snake_case , indent=2 , sort_keys=__snake_case ) + "\n" def snake_case ( self : Union[str, Any] ): lowerCamelCase :List[str] = self.to_dict() # get the default config dict lowerCamelCase :Optional[Any] = BitsAndBytesConfig().to_dict() lowerCamelCase :Optional[int] = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: lowerCamelCase :List[Any] = value return serializable_config_dict
705
import math def _lowerCamelCase ( a_ : int): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a_) + 1) , 6): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCamelCase ( a_ : float = 0.1): lowerCamelCase :Dict = 3 lowerCamelCase :List[Any] = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1): primes += is_prime(a_) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
49
0
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING A__ = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self : Dict , **__snake_case : List[str] ): super().__init__(**__UpperCamelCase ) if self.framework == "tf": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) requires_backends(self , '''vision''' ) self.check_model_type(__UpperCamelCase ) def __call__( self : List[str] , __snake_case : Union[str, "Image.Image", List[Dict[str, Any]]] , __snake_case : Union[str, List[str]] = None , **__snake_case : List[Any] , ): if "text_queries" in kwargs: lowerCamelCase :Any = kwargs.pop('''text_queries''' ) if isinstance(__UpperCamelCase , (str, Image.Image) ): lowerCamelCase :List[Any] = {'''image''': image, '''candidate_labels''': candidate_labels} else: lowerCamelCase :Tuple = image lowerCamelCase :Dict = super().__call__(__UpperCamelCase , **__UpperCamelCase ) return results def snake_case ( self : Tuple , **__snake_case : Union[str, Any] ): lowerCamelCase :Optional[int] = {} if "threshold" in kwargs: lowerCamelCase :Tuple = kwargs['''threshold'''] if "top_k" in kwargs: lowerCamelCase :List[Any] = kwargs['''top_k'''] return {}, {}, postprocess_params def snake_case ( self : List[Any] , __snake_case : str ): lowerCamelCase :Any = load_image(inputs['''image'''] ) lowerCamelCase :Dict = inputs['''candidate_labels'''] if isinstance(__UpperCamelCase , __UpperCamelCase ): lowerCamelCase :Any = candidate_labels.split(''',''' ) lowerCamelCase :str = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(__UpperCamelCase ): lowerCamelCase :int = self.tokenizer(__UpperCamelCase , return_tensors=self.framework ) lowerCamelCase :Union[str, Any] = self.image_processor(__UpperCamelCase , return_tensors=self.framework ) yield { "is_last": i == len(__UpperCamelCase ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def snake_case ( self : Dict , __snake_case : str ): lowerCamelCase :int = model_inputs.pop('''target_size''' ) lowerCamelCase :Any = model_inputs.pop('''candidate_label''' ) lowerCamelCase :int = model_inputs.pop('''is_last''' ) lowerCamelCase :Any = self.model(**__UpperCamelCase ) lowerCamelCase :int = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs} return model_outputs def snake_case ( self : Any , __snake_case : Dict , __snake_case : Union[str, Any]=0.1 , __snake_case : int=None ): lowerCamelCase :str = [] for model_output in model_outputs: lowerCamelCase :List[Any] = model_output['''candidate_label'''] lowerCamelCase :str = BaseModelOutput(__UpperCamelCase ) lowerCamelCase :Union[str, Any] = self.image_processor.post_process_object_detection( outputs=__UpperCamelCase , threshold=__UpperCamelCase , target_sizes=model_output['''target_size'''] )[0] for index in outputs["scores"].nonzero(): lowerCamelCase :str = outputs['''scores'''][index].item() lowerCamelCase :List[str] = self._get_bounding_box(outputs['''boxes'''][index][0] ) lowerCamelCase :Optional[Any] = {'''score''': score, '''label''': label, '''box''': box} results.append(__UpperCamelCase ) lowerCamelCase :List[str] = sorted(__UpperCamelCase , key=lambda __snake_case : x["score"] , reverse=__UpperCamelCase ) if top_k: lowerCamelCase :Optional[int] = results[:top_k] return results def snake_case ( self : Optional[Any] , __snake_case : "torch.Tensor" ): if self.framework != "pt": raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' ) lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase :List[Any] = box.int().tolist() lowerCamelCase :Any = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
706
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : str ): lowerCamelCase :int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :List[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :Optional[Any] = -1 lowerCamelCase :List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Tuple = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :str = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowerCamelCase :str = TextStreamer(__snake_case ) model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case , streamer=__snake_case ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCamelCase :Optional[int] = cs.out[:-1] self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : Dict ): lowerCamelCase :Tuple = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :int = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :List[Any] = -1 lowerCamelCase :Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Tuple = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :List[Any] = tokenizer.decode(greedy_ids[0] ) lowerCamelCase :List[str] = TextIteratorStreamer(__snake_case ) lowerCamelCase :List[str] = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} lowerCamelCase :Tuple = Thread(target=model.generate , kwargs=__snake_case ) thread.start() lowerCamelCase :Any = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : str ): lowerCamelCase :int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :Dict = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :List[str] = -1 lowerCamelCase :Optional[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Optional[Any] = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :List[str] = greedy_ids[:, input_ids.shape[1] :] lowerCamelCase :Union[str, Any] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowerCamelCase :List[str] = TextStreamer(__snake_case , skip_prompt=__snake_case ) model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case , streamer=__snake_case ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCamelCase :int = cs.out[:-1] self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : Optional[int] ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them lowerCamelCase :List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) lowerCamelCase :Union[str, Any] = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(__snake_case ) lowerCamelCase :Optional[int] = -1 lowerCamelCase :Union[str, Any] = torch.ones((1, 5) , device=__snake_case ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowerCamelCase :Dict = TextStreamer(__snake_case , skip_special_tokens=__snake_case ) model.generate(__snake_case , max_new_tokens=1 , do_sample=__snake_case , streamer=__snake_case ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowerCamelCase :Tuple = cs.out[:-1] # Remove the final "\n" lowerCamelCase :int = tokenizer(__snake_case , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def snake_case ( self : List[Any] ): lowerCamelCase :List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :Optional[int] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :Optional[int] = -1 lowerCamelCase :Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :List[Any] = TextIteratorStreamer(__snake_case , timeout=0.0_0_1 ) lowerCamelCase :Dict = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} lowerCamelCase :Tuple = Thread(target=model.generate , kwargs=__snake_case ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__snake_case ): lowerCamelCase :Dict = '''''' for new_text in streamer: streamer_text += new_text
49
0
def _lowerCamelCase ( a_ : int = 1_00): lowerCamelCase :str = 0 lowerCamelCase :Optional[int] = 0 for i in range(1 , n + 1): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(F'{solution() = }')
707
from maths.prime_factors import prime_factors def _lowerCamelCase ( a_ : int): if not isinstance(a_ , a_): lowerCamelCase :Tuple = F"Input value of [number={number}] must be an integer" raise TypeError(a_) if number < 1: raise ValueError('''Input must be a positive integer''') return -1 if len(prime_factors(a_)) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
49
0
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
708
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() A__ = logging.get_logger(__name__) def _lowerCamelCase ( a_ : str , a_ : str=False): lowerCamelCase :Optional[int] = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''')) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''')) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''')) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''')) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''')) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''')) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''')) for stage_idx in range(len(config.backbone_config.depths)): for layer_idx in range(config.backbone_config.depths[stage_idx]): rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias")) # transformer encoder for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight")) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias")) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight")) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias")) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight")) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias")) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight")) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias")) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight")) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias")) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ]) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCamelCase :List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''') else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ]) # fmt: on return rename_keys def _lowerCamelCase ( a_ : Any , a_ : Any , a_ : int=False): for i in range(config.num_hidden_layers): if base_model: lowerCamelCase :Union[str, Any] = '''''' else: lowerCamelCase :Optional[int] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase :Optional[Any] = state_dict.pop(F"blocks.{i}.attn.qkv.weight") lowerCamelCase :Any = state_dict.pop(F"blocks.{i}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict lowerCamelCase :Any = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase :Tuple = in_proj_bias[: config.hidden_size] lowerCamelCase :int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase :Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase :Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase :List[Any] = in_proj_bias[-config.hidden_size :] def _lowerCamelCase ( a_ : int): lowerCamelCase :Any = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(a_ , a_) def _lowerCamelCase ( a_ : int , a_ : Any , a_ : Tuple): lowerCamelCase :Optional[Any] = dct.pop(a_) lowerCamelCase :str = val def _lowerCamelCase ( ): lowerCamelCase :Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase :Tuple = Image.open(requests.get(a_ , stream=a_).raw) return im @torch.no_grad() def _lowerCamelCase ( a_ : Optional[Any] , a_ : Optional[Any] , a_ : Optional[Any]=False): lowerCamelCase :Optional[int] = BitConfig( global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=a_ , ) lowerCamelCase :Optional[int] = ViTHybridConfig(backbone_config=a_ , image_size=3_84 , num_labels=10_00) lowerCamelCase :List[Any] = False # load original model from timm lowerCamelCase :List[str] = timm.create_model(a_ , pretrained=a_) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCamelCase :List[str] = timm_model.state_dict() if base_model: remove_classification_head_(a_) lowerCamelCase :Tuple = create_rename_keys(a_ , a_) for src, dest in rename_keys: rename_key(a_ , a_ , a_) read_in_q_k_v(a_ , a_ , a_) lowerCamelCase :List[str] = '''huggingface/label-files''' lowerCamelCase :Any = '''imagenet-1k-id2label.json''' lowerCamelCase :List[Any] = json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''') , '''r''')) lowerCamelCase :Optional[Any] = {int(a_): v for k, v in idalabel.items()} lowerCamelCase :Optional[int] = idalabel lowerCamelCase :Union[str, Any] = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": lowerCamelCase :Optional[Any] = ViTHybridModel(a_).eval() else: lowerCamelCase :Dict = ViTHybridForImageClassification(a_).eval() model.load_state_dict(a_) # create image processor lowerCamelCase :Dict = create_transform(**resolve_data_config({} , model=a_)) lowerCamelCase :str = transform.transforms lowerCamelCase :int = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } lowerCamelCase :Any = ViTHybridImageProcessor( do_resize=a_ , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=a_ , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=a_ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCamelCase :Dict = prepare_img() lowerCamelCase :str = transform(a_).unsqueeze(0) lowerCamelCase :str = processor(a_ , return_tensors='''pt''').pixel_values # verify pixel values assert torch.allclose(a_ , a_) # verify logits with torch.no_grad(): lowerCamelCase :Optional[int] = model(a_) lowerCamelCase :Union[str, Any] = outputs.logits print('''Predicted class:''' , logits.argmax(-1).item()) if base_model: lowerCamelCase :Union[str, Any] = timm_model.forward_features(a_) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(a_ , outputs.pooler_output , atol=1e-3) else: lowerCamelCase :List[str] = timm_model(a_) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(a_ , outputs.logits , atol=1e-3) print('''Looks ok!''') if pytorch_dump_folder_path is not None: Path(a_).mkdir(exist_ok=a_) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}") model.save_pretrained(a_) print(F"Saving processor to {pytorch_dump_folder_path}") processor.save_pretrained(a_) if push_to_hub: print(F"Pushing model and processor to the hub {vit_name}") model.push_to_hub(F"ybelkada/{vit_name}") processor.push_to_hub(F"ybelkada/{vit_name}") if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_r50_s16_384""", type=str, help="""Name of the hybrid ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) A__ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
49
0
import math def _lowerCamelCase ( a_ : List[str] , a_ : int): lowerCamelCase :Any = len(a_) lowerCamelCase :Tuple = int(math.floor(math.sqrt(a_))) lowerCamelCase :Optional[int] = 0 while arr[min(a_ , a_) - 1] < x: lowerCamelCase :Any = step step += int(math.floor(math.sqrt(a_))) if prev >= n: return -1 while arr[prev] < x: lowerCamelCase :Optional[Any] = prev + 1 if prev == min(a_ , a_): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": _UpperCamelCase = input("""Enter numbers separated by a comma:\n""").strip() _UpperCamelCase = [int(item) for item in user_input.split(""",""")] _UpperCamelCase = int(input("""Enter the number to be searched:\n""")) _UpperCamelCase = jump_search(arr, x) if res == -1: print("""Number not found!""") else: print(F'Number {x} is at index {res}')
709
def _lowerCamelCase ( a_ : int = 4_00_00_00): lowerCamelCase :Dict = [0, 1] lowerCamelCase :Optional[Any] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1]) if fib[i + 2] > n: break i += 1 lowerCamelCase :Dict = 0 for j in range(len(a_) - 1): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F'{solution() = }')
49
0
import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class _lowerCAmelCase ( unittest.TestCase ): @slow def snake_case ( self : Optional[int] ): lowerCamelCase :int = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) lowerCamelCase :int = AutoTokenizer.from_pretrained('''xlm-roberta-base''' ) lowerCamelCase :Dict = '''The dog is cute and lives in the garden house''' lowerCamelCase :Tuple = jnp.array([tokenizer.encode(UpperCamelCase__ )] ) lowerCamelCase :int = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim lowerCamelCase :Union[str, Any] = jnp.array( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]] ) lowerCamelCase :Union[str, Any] = model(UpperCamelCase__ )['''last_hidden_state'''] self.assertEqual(output.shape , UpperCamelCase__ ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , UpperCamelCase__ , atol=1e-3 ) )
710
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ = { """configuration_nllb_moe""": [ """NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NllbMoeConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""", """NllbMoeForConditionalGeneration""", """NllbMoeModel""", """NllbMoePreTrainedModel""", """NllbMoeTop2Router""", """NllbMoeSparseMLP""", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
49
0
import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def _lowerCamelCase ( a_ : int): return EnvironmentCommand() def _lowerCamelCase ( a_ : List[str]): return EnvironmentCommand(args.accelerate_config_file) class _lowerCAmelCase ( __UpperCAmelCase ): @staticmethod def snake_case ( __snake_case : ArgumentParser ): lowerCamelCase :Union[str, Any] = parser.add_parser('''env''' ) download_parser.set_defaults(func=lowerCAmelCase_ ) download_parser.add_argument( '''--accelerate-config_file''' , default=lowerCAmelCase_ , help='''The accelerate config file to use for the default values in the launching script.''' , ) download_parser.set_defaults(func=lowerCAmelCase_ ) def __init__( self : Any , __snake_case : Optional[Any] , *__snake_case : Optional[Any] ): lowerCamelCase :List[Any] = accelerate_config_file def snake_case ( self : Union[str, Any] ): lowerCamelCase :Tuple = '''not installed''' if is_safetensors_available(): import safetensors lowerCamelCase :Optional[Any] = safetensors.__version__ elif importlib.util.find_spec('''safetensors''' ) is not None: import safetensors lowerCamelCase :Any = F"{safetensors.__version__} but is ignored because of PyTorch version too old." lowerCamelCase :Tuple = '''not installed''' lowerCamelCase :int = '''not found''' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file lowerCamelCase :str = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(lowerCAmelCase_ ): lowerCamelCase :int = load_config_from_file(self._accelerate_config_file ).to_dict() lowerCamelCase :Optional[int] = ( '''\n'''.join([F"\t- {prop}: {val}" for prop, val in accelerate_config.items()] ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else F"\t{accelerate_config}" ) lowerCamelCase :List[str] = '''not installed''' lowerCamelCase :str = '''NA''' if is_torch_available(): import torch lowerCamelCase :int = torch.__version__ lowerCamelCase :int = torch.cuda.is_available() lowerCamelCase :List[str] = '''not installed''' lowerCamelCase :Any = '''NA''' if is_tf_available(): import tensorflow as tf lowerCamelCase :str = tf.__version__ try: # deprecated in v2.1 lowerCamelCase :str = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool lowerCamelCase :List[Any] = bool(tf.config.list_physical_devices('''GPU''' ) ) lowerCamelCase :List[Any] = '''not installed''' lowerCamelCase :Dict = '''not installed''' lowerCamelCase :Optional[int] = '''not installed''' lowerCamelCase :Tuple = '''NA''' if is_flax_available(): import flax import jax import jaxlib lowerCamelCase :Dict = flax.__version__ lowerCamelCase :Tuple = jax.__version__ lowerCamelCase :Any = jaxlib.__version__ lowerCamelCase :Dict = jax.lib.xla_bridge.get_backend().platform lowerCamelCase :Any = { '''`transformers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Huggingface_hub version''': huggingface_hub.__version__, '''Safetensors version''': F"{safetensors_version}", '''Accelerate version''': F"{accelerate_version}", '''Accelerate config''': F"{accelerate_config_str}", '''PyTorch version (GPU?)''': F"{pt_version} ({pt_cuda_available})", '''Tensorflow version (GPU?)''': F"{tf_version} ({tf_cuda_available})", '''Flax version (CPU?/GPU?/TPU?)''': F"{flax_version} ({jax_backend})", '''Jax version''': F"{jax_version}", '''JaxLib version''': F"{jaxlib_version}", '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(lowerCAmelCase_ ) ) return info @staticmethod def snake_case ( __snake_case : Union[str, Any] ): return "\n".join([F"- {prop}: {val}" for prop, val in d.items()] ) + "\n"
711
import numpy class _lowerCAmelCase : def __init__( self : Dict , __snake_case : numpy.ndarray , __snake_case : numpy.ndarray ): lowerCamelCase :Dict = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. lowerCamelCase :Dict = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. lowerCamelCase :Dict = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. lowerCamelCase :Any = numpy.random.rand(3 , 1 ) # Real output values provided. lowerCamelCase :Union[str, Any] = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. lowerCamelCase :List[str] = numpy.zeros(output_array.shape ) def snake_case ( self : Optional[int] ): lowerCamelCase :Any = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. lowerCamelCase :Any = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. lowerCamelCase :Dict = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def snake_case ( self : Any ): lowerCamelCase :Union[str, Any] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) lowerCamelCase :Dict = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) lowerCamelCase :int = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def snake_case ( self : Dict , __snake_case : numpy.ndarray , __snake_case : int , __snake_case : bool ): for iteration in range(1 , iterations + 1 ): lowerCamelCase :Union[str, Any] = self.feedforward() self.back_propagation() if give_loss: lowerCamelCase :Tuple = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"Iteration {iteration} Loss: {loss}" ) def snake_case ( self : Optional[int] , __snake_case : numpy.ndarray ): lowerCamelCase :int = input_arr lowerCamelCase :Union[str, Any] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) lowerCamelCase :Optional[Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) lowerCamelCase :Optional[int] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def _lowerCamelCase ( a_ : numpy.ndarray): return 1 / (1 + numpy.exp(-value)) def _lowerCamelCase ( a_ : numpy.ndarray): return (value) * (1 - (value)) def _lowerCamelCase ( ): lowerCamelCase :Optional[Any] = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. lowerCamelCase :int = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa) # Calling neural network class. lowerCamelCase :List[Any] = TwoHiddenLayerNeuralNetwork( input_array=a_ , output_array=a_) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=a_ , iterations=10 , give_loss=a_) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa)) if __name__ == "__main__": example()
49
0
def _lowerCamelCase ( a_ : int , a_ : int): if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''') lowerCamelCase :Any = str(bin(a_))[2:] # remove the leading "0b" lowerCamelCase :Optional[Any] = str(bin(a_))[2:] # remove the leading "0b" lowerCamelCase :int = max(len(a_) , len(a_)) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''')) for char_a, char_b in zip(a_binary.zfill(a_) , b_binary.zfill(a_))) if __name__ == "__main__": import doctest doctest.testmod()
712
def _lowerCamelCase ( a_ : str , a_ : str): lowerCamelCase :List[str] = len(a_) lowerCamelCase :List[str] = len(a_) lowerCamelCase :int = [[False for _ in range(m + 1)] for _ in range(n + 1)] lowerCamelCase :Optional[Any] = True for i in range(a_): for j in range(m + 1): if dp[i][j]: if j < m and a[i].upper() == b[j]: lowerCamelCase :Any = True if a[i].islower(): lowerCamelCase :List[str] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
49
0
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) A__ = logging.get_logger(__name__) # pylint: disable=invalid-name A__ = """ Examples: ```py >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline >>> from diffusers.utils import load_image >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior.to(\"cuda\") >>> prompt = \"A red cartoon frog, 4k\" >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16 ... ) >>> pipe.to(\"cuda\") >>> init_image = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/frog.png\" ... ) >>> image = pipe( ... image=init_image, ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... strength=0.2, ... ).images >>> image[0].save(\"red_frog.png\") ``` """ def _lowerCamelCase ( a_ : int , a_ : Optional[int] , a_ : int=8): lowerCamelCase :Union[str, Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowerCamelCase :Dict = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def _lowerCamelCase ( a_ : Dict , a_ : Union[str, Any]=5_12 , a_ : Optional[int]=5_12): lowerCamelCase :str = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1) lowerCamelCase :Optional[int] = np.array(pil_image.convert('''RGB''')) lowerCamelCase :Any = arr.astype(np.floataa) / 127.5 - 1 lowerCamelCase :Optional[Any] = np.transpose(UpperCAmelCase__ , [2, 0, 1]) lowerCamelCase :Optional[int] = torch.from_numpy(UpperCAmelCase__).unsqueeze(0) return image class _lowerCAmelCase ( _a ): def __init__( self : Dict , __snake_case : int , __snake_case : str , __snake_case : str , ): super().__init__() self.register_modules( unet=_A , scheduler=_A , movq=_A , ) lowerCamelCase :Optional[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def snake_case ( self : List[Any] , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Dict ): # get the original timestep using init_timestep lowerCamelCase :Dict = min(int(num_inference_steps * strength ) , _A ) lowerCamelCase :Union[str, Any] = max(num_inference_steps - init_timestep , 0 ) lowerCamelCase :Any = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def snake_case ( self : Dict , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : str , __snake_case : Optional[int] , __snake_case : Any , __snake_case : List[Any] , __snake_case : List[str]=None ): if not isinstance(_A , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_A )}" ) lowerCamelCase :Tuple = image.to(device=_A , dtype=_A ) lowerCamelCase :Any = batch_size * num_images_per_prompt if image.shape[1] == 4: lowerCamelCase :str = image else: if isinstance(_A , _A ) and len(_A ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(_A )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(_A , _A ): lowerCamelCase :List[str] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_A ) ] lowerCamelCase :Tuple = torch.cat(_A , dim=0 ) else: lowerCamelCase :Optional[int] = self.movq.encode(_A ).latent_dist.sample(_A ) lowerCamelCase :int = self.movq.config.scaling_factor * init_latents lowerCamelCase :Union[str, Any] = torch.cat([init_latents] , dim=0 ) lowerCamelCase :List[str] = init_latents.shape lowerCamelCase :str = randn_tensor(_A , generator=_A , device=_A , dtype=_A ) # get latents lowerCamelCase :int = self.scheduler.add_noise(_A , _A , _A ) lowerCamelCase :Dict = init_latents return latents def snake_case ( self : str , __snake_case : List[Any]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) lowerCamelCase :Optional[int] = torch.device(F"cuda:{gpu_id}" ) lowerCamelCase :Optional[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_A , _A ) def snake_case ( self : List[Any] , __snake_case : Union[str, Any]=0 ): if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) lowerCamelCase :Optional[Any] = torch.device(F"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=_A ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowerCamelCase :Any = None for cpu_offloaded_model in [self.unet, self.movq]: lowerCamelCase , lowerCamelCase :Optional[Any] = cpu_offload_with_hook(_A , _A , prev_module_hook=_A ) # We'll offload the last model manually. lowerCamelCase :int = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def snake_case ( self : List[str] ): if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(_A , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_A ) def __call__( self : Optional[int] , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : Union[str, Any] = 512 , __snake_case : Optional[int] = 512 , __snake_case : List[str] = 100 , __snake_case : Optional[int] = 4.0 , __snake_case : Any = 0.3 , __snake_case : Union[str, Any] = 1 , __snake_case : Any = None , __snake_case : str = "pil" , __snake_case : Optional[int] = True , ): lowerCamelCase :Dict = self._execution_device lowerCamelCase :int = guidance_scale > 1.0 if isinstance(_A , _A ): lowerCamelCase :Union[str, Any] = torch.cat(_A , dim=0 ) lowerCamelCase :str = image_embeds.shape[0] if isinstance(_A , _A ): lowerCamelCase :Dict = torch.cat(_A , dim=0 ) if do_classifier_free_guidance: lowerCamelCase :List[Any] = image_embeds.repeat_interleave(_A , dim=0 ) lowerCamelCase :Dict = negative_image_embeds.repeat_interleave(_A , dim=0 ) lowerCamelCase :Optional[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_A ) if not isinstance(_A , _A ): lowerCamelCase :Tuple = [image] if not all(isinstance(_A , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"Input is in incorrect format: {[type(_A ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) lowerCamelCase :List[str] = torch.cat([prepare_image(_A , _A , _A ) for i in image] , dim=0 ) lowerCamelCase :Tuple = image.to(dtype=image_embeds.dtype , device=_A ) lowerCamelCase :Dict = self.movq.encode(_A )['''latents'''] lowerCamelCase :Dict = latents.repeat_interleave(_A , dim=0 ) self.scheduler.set_timesteps(_A , device=_A ) lowerCamelCase , lowerCamelCase :Tuple = self.get_timesteps(_A , _A , _A ) lowerCamelCase :List[str] = timesteps[:1].repeat(batch_size * num_images_per_prompt ) lowerCamelCase , lowerCamelCase :Tuple = downscale_height_and_width(_A , _A , self.movq_scale_factor ) lowerCamelCase :int = self.prepare_latents( _A , _A , _A , _A , image_embeds.dtype , _A , _A ) for i, t in enumerate(self.progress_bar(_A ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase :List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase :Any = {'''image_embeds''': image_embeds} lowerCamelCase :List[Any] = self.unet( sample=_A , timestep=_A , encoder_hidden_states=_A , added_cond_kwargs=_A , return_dict=_A , )[0] if do_classifier_free_guidance: lowerCamelCase , lowerCamelCase :Union[str, Any] = noise_pred.split(latents.shape[1] , dim=1 ) lowerCamelCase , lowerCamelCase :str = noise_pred.chunk(2 ) lowerCamelCase , lowerCamelCase :List[str] = variance_pred.chunk(2 ) lowerCamelCase :str = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowerCamelCase :Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowerCamelCase , lowerCamelCase :Optional[int] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase :Any = self.scheduler.step( _A , _A , _A , generator=_A , )[0] # post-processing lowerCamelCase :Dict = self.movq.decode(_A , force_not_quantize=_A )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: lowerCamelCase :int = image * 0.5 + 0.5 lowerCamelCase :Dict = image.clamp(0 , 1 ) lowerCamelCase :int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCamelCase :Union[str, Any] = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A )
713
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : def __init__( self : Any , __snake_case : Optional[int] , __snake_case : int=13 , __snake_case : str=[30, 30] , __snake_case : Tuple=2 , __snake_case : Optional[Any]=3 , __snake_case : int=True , __snake_case : Tuple=True , __snake_case : List[Any]=32 , __snake_case : int=5 , __snake_case : Optional[Any]=4 , __snake_case : Union[str, Any]=37 , __snake_case : str="gelu" , __snake_case : Tuple=0.1 , __snake_case : List[Any]=0.1 , __snake_case : Union[str, Any]=10 , __snake_case : str=0.0_2 , __snake_case : Union[str, Any]=3 , __snake_case : Union[str, Any]=None , __snake_case : List[str]=8 , __snake_case : Any=10 , ): lowerCamelCase :Optional[Any] = parent lowerCamelCase :List[Any] = batch_size lowerCamelCase :Any = image_size lowerCamelCase :Union[str, Any] = patch_size lowerCamelCase :Any = num_channels lowerCamelCase :List[Any] = is_training lowerCamelCase :Optional[Any] = use_labels lowerCamelCase :Any = hidden_size lowerCamelCase :List[Any] = num_hidden_layers lowerCamelCase :List[str] = num_attention_heads lowerCamelCase :Tuple = intermediate_size lowerCamelCase :List[str] = hidden_act lowerCamelCase :List[str] = hidden_dropout_prob lowerCamelCase :Any = attention_probs_dropout_prob lowerCamelCase :List[Any] = type_sequence_label_size lowerCamelCase :Optional[int] = initializer_range lowerCamelCase :List[Any] = num_labels lowerCamelCase :Any = scope lowerCamelCase :Union[str, Any] = n_targets lowerCamelCase :Optional[Any] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowerCamelCase :Tuple = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowerCamelCase :str = num_patches + 1 + self.num_detection_tokens def snake_case ( self : List[str] ): lowerCamelCase :str = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowerCamelCase :List[str] = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowerCamelCase :Optional[int] = [] for i in range(self.batch_size ): lowerCamelCase :List[str] = {} lowerCamelCase :Tuple = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=__snake_case ) lowerCamelCase :List[str] = torch.rand(self.n_targets , 4 , device=__snake_case ) labels.append(__snake_case ) lowerCamelCase :str = self.get_config() return config, pixel_values, labels def snake_case ( self : Union[str, Any] ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__snake_case , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def snake_case ( self : Tuple , __snake_case : Tuple , __snake_case : Tuple , __snake_case : Any ): lowerCamelCase :Optional[Any] = YolosModel(config=__snake_case ) model.to(__snake_case ) model.eval() lowerCamelCase :Union[str, Any] = model(__snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def snake_case ( self : Dict , __snake_case : str , __snake_case : Optional[int] , __snake_case : Optional[Any] ): lowerCamelCase :int = YolosForObjectDetection(__snake_case ) model.to(__snake_case ) model.eval() lowerCamelCase :str = model(pixel_values=__snake_case ) lowerCamelCase :Any = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) lowerCamelCase :int = model(pixel_values=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def snake_case ( self : int ): lowerCamelCase :List[Any] = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase :str = config_and_inputs lowerCamelCase :Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () _UpperCAmelCase = ( {'feature-extraction': YolosModel, 'object-detection': YolosForObjectDetection} if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def snake_case ( self : Any , __snake_case : List[Any] , __snake_case : Tuple , __snake_case : Dict=False ): lowerCamelCase :Optional[int] = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowerCamelCase :Dict = [] for i in range(self.model_tester.batch_size ): lowerCamelCase :Optional[Any] = {} lowerCamelCase :List[Any] = torch.ones( size=(self.model_tester.n_targets,) , device=__snake_case , dtype=torch.long ) lowerCamelCase :str = torch.ones( self.model_tester.n_targets , 4 , device=__snake_case , dtype=torch.float ) labels.append(__snake_case ) lowerCamelCase :Union[str, Any] = labels return inputs_dict def snake_case ( self : Tuple ): lowerCamelCase :Union[str, Any] = YolosModelTester(self ) lowerCamelCase :Dict = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=37 ) def snake_case ( self : Union[str, Any] ): self.config_tester.run_common_tests() def snake_case ( self : Optional[Any] ): # YOLOS does not use inputs_embeds pass def snake_case ( self : Tuple ): lowerCamelCase , lowerCamelCase :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :Optional[int] = model_class(__snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase :str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case , nn.Linear ) ) def snake_case ( self : str ): lowerCamelCase , lowerCamelCase :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :str = model_class(__snake_case ) lowerCamelCase :Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase :Tuple = [*signature.parameters.keys()] lowerCamelCase :Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __snake_case ) def snake_case ( self : int ): lowerCamelCase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def snake_case ( self : str ): lowerCamelCase , lowerCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase :int = True # in YOLOS, the seq_len is different lowerCamelCase :str = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowerCamelCase :str = True lowerCamelCase :Tuple = False lowerCamelCase :Optional[int] = True lowerCamelCase :int = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :str = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :str = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase :Optional[Any] = True lowerCamelCase :str = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :Tuple = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Tuple = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowerCamelCase :Optional[int] = len(__snake_case ) # Check attention is always last and order is fine lowerCamelCase :Union[str, Any] = True lowerCamelCase :List[Any] = True lowerCamelCase :Tuple = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :int = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Dict = 1 self.assertEqual(out_len + added_hidden_states , len(__snake_case ) ) lowerCamelCase :Dict = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def snake_case ( self : List[str] ): def check_hidden_states_output(__snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Tuple ): lowerCamelCase :Union[str, Any] = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :Any = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Optional[Any] = outputs.hidden_states lowerCamelCase :Any = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__snake_case ) , __snake_case ) # YOLOS has a different seq_length lowerCamelCase :List[str] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowerCamelCase , lowerCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :Union[str, Any] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase :Any = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*__snake_case ) @slow def snake_case ( self : Dict ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase :Tuple = YolosModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def _lowerCamelCase ( ): lowerCamelCase :int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): @cached_property def snake_case ( self : Tuple ): return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def snake_case ( self : Dict ): lowerCamelCase :Union[str, Any] = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(__snake_case ) lowerCamelCase :Optional[Any] = self.default_image_processor lowerCamelCase :str = prepare_img() lowerCamelCase :Dict = image_processor(images=__snake_case , return_tensors='''pt''' ).to(__snake_case ) # forward pass with torch.no_grad(): lowerCamelCase :Optional[Any] = model(inputs.pixel_values ) # verify outputs lowerCamelCase :int = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , __snake_case ) lowerCamelCase :Any = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=__snake_case , ) lowerCamelCase :Any = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __snake_case , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , __snake_case , atol=1e-4 ) ) # verify postprocessing lowerCamelCase :List[str] = image_processor.post_process_object_detection( __snake_case , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] lowerCamelCase :List[str] = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(__snake_case ) lowerCamelCase :str = [75, 75, 17, 63, 17] lowerCamelCase :Tuple = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(__snake_case ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , __snake_case , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , __snake_case ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , __snake_case ) )
49
0
A__ = { """a""": """AAAAA""", """b""": """AAAAB""", """c""": """AAABA""", """d""": """AAABB""", """e""": """AABAA""", """f""": """AABAB""", """g""": """AABBA""", """h""": """AABBB""", """i""": """ABAAA""", """j""": """BBBAA""", """k""": """ABAAB""", """l""": """ABABA""", """m""": """ABABB""", """n""": """ABBAA""", """o""": """ABBAB""", """p""": """ABBBA""", """q""": """ABBBB""", """r""": """BAAAA""", """s""": """BAAAB""", """t""": """BAABA""", """u""": """BAABB""", """v""": """BBBAB""", """w""": """BABAA""", """x""": """BABAB""", """y""": """BABBA""", """z""": """BABBB""", """ """: """ """, } A__ = {value: key for key, value in encode_dict.items()} def _lowerCAmelCase ( a_ : str): lowerCamelCase :List[str] = '''''' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('''encode() accepts only letters of the alphabet and spaces''') return encoded def _lowerCAmelCase ( a_ : str): if set(UpperCAmelCase__) - {"A", "B", " "} != set(): raise Exception('''decode() accepts only \'A\', \'B\' and spaces''') lowerCamelCase :Optional[Any] = '''''' for word in coded.split(): while len(UpperCAmelCase__) != 0: decoded += decode_dict[word[:5]] lowerCamelCase :Tuple = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
714
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Tuple ): lowerCamelCase :List[Any] = inspect.getfile(accelerate.test_utils ) lowerCamelCase :Dict = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 lowerCamelCase :Any = test_metrics @require_cpu def snake_case ( self : Dict ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def snake_case ( self : int ): debug_launcher(self.test_metrics.main ) @require_single_gpu def snake_case ( self : Any ): self.test_metrics.main() @require_multi_gpu def snake_case ( self : Optional[int] ): print(F"Found {torch.cuda.device_count()} devices." ) lowerCamelCase :Optional[int] = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__snake_case , env=os.environ.copy() )
49
0
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def _lowerCamelCase ( a_ : str , a_ : int , a_ : List[str] , a_ : str=10_24): lowerCamelCase , lowerCamelCase :Tuple = [], [] lowerCamelCase :List[Any] = list(zip(_UpperCamelCase , _UpperCamelCase)) lowerCamelCase , lowerCamelCase :List[Any] = sorted_examples[0] def is_too_big(a_ : Tuple): return tok(_UpperCamelCase , return_tensors='''pt''').input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:]): lowerCamelCase :List[str] = new_src + ''' ''' + src lowerCamelCase :Optional[Any] = new_tgt + ''' ''' + tgt if is_too_big(_UpperCamelCase) or is_too_big(_UpperCamelCase): # cant fit, finalize example finished_src.append(_UpperCamelCase) finished_tgt.append(_UpperCamelCase) lowerCamelCase , lowerCamelCase :Any = src, tgt else: # can fit, keep adding lowerCamelCase , lowerCamelCase :List[Any] = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(_UpperCamelCase) finished_tgt.append(_UpperCamelCase) return finished_src, finished_tgt def _lowerCamelCase ( a_ : List[str] , a_ : Path , a_ : Optional[int] , a_ : Any): lowerCamelCase :Optional[int] = Path(_UpperCamelCase) save_path.mkdir(exist_ok=_UpperCamelCase) for split in ["train"]: lowerCamelCase , lowerCamelCase :Any = data_dir / F"{split}.source", data_dir / F"{split}.target" lowerCamelCase :Optional[int] = [x.rstrip() for x in Path(_UpperCamelCase).open().readlines()] lowerCamelCase :List[Any] = [x.rstrip() for x in Path(_UpperCamelCase).open().readlines()] lowerCamelCase , lowerCamelCase :Any = pack_examples(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) print(F"packed {split} split from {len(_UpperCamelCase)} examples -> {len(_UpperCamelCase)}.") Path(save_path / F"{split}.source").open('''w''').write('''\n'''.join(_UpperCamelCase)) Path(save_path / F"{split}.target").open('''w''').write('''\n'''.join(_UpperCamelCase)) for split in ["val", "test"]: lowerCamelCase , lowerCamelCase :Dict = data_dir / F"{split}.source", data_dir / F"{split}.target" shutil.copyfile(_UpperCamelCase , save_path / F"{split}.source") shutil.copyfile(_UpperCamelCase , save_path / F"{split}.target") def _lowerCamelCase ( ): lowerCamelCase :Dict = argparse.ArgumentParser() parser.add_argument('''--tok_name''' , type=_UpperCamelCase , help='''like facebook/bart-large-cnn,t5-base, etc.''') parser.add_argument('''--max_seq_len''' , type=_UpperCamelCase , default=1_28) parser.add_argument('''--data_dir''' , type=_UpperCamelCase) parser.add_argument('''--save_path''' , type=_UpperCamelCase) lowerCamelCase :Union[str, Any] = parser.parse_args() lowerCamelCase :Any = AutoTokenizer.from_pretrained(args.tok_name) return pack_data_dir(_UpperCamelCase , Path(args.data_dir) , args.max_seq_len , args.save_path) if __name__ == "__main__": packer_cli()
715
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = '' _UpperCAmelCase = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) _UpperCAmelCase = None # compression type in fsspec. ex: "gzip" _UpperCAmelCase = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : str , __snake_case : str = "" , __snake_case : Optional[str] = None , __snake_case : Optional[dict] = None , **__snake_case : Dict ): super().__init__(self , **__snake_case ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode lowerCamelCase :Optional[Any] = fsspec.open( __snake_case , mode='''rb''' , protocol=__snake_case , compression=self.compression , client_kwargs={ '''requote_redirect_url''': False, # see https://github.com/huggingface/datasets/pull/5459 '''trust_env''': True, # Enable reading proxy env variables. **(target_options or {}).pop('''client_kwargs''' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) lowerCamelCase :List[str] = os.path.basename(self.file.path.split('''::''' )[0] ) lowerCamelCase :Dict = ( self.compressed_name[: self.compressed_name.rindex('''.''' )] if '''.''' in self.compressed_name else self.compressed_name ) lowerCamelCase :List[str] = None @classmethod def snake_case ( cls : Any , __snake_case : Any ): # compressed file paths are always relative to the archive root return super()._strip_protocol(__snake_case ).lstrip('''/''' ) def snake_case ( self : Any ): if self.dir_cache is None: lowerCamelCase :Optional[Any] = {**self.file.fs.info(self.file.path ), '''name''': self.uncompressed_name} lowerCamelCase :Optional[Any] = {f['''name''']: f} def snake_case ( self : Union[str, Any] , __snake_case : str ): return self.file.open().read() def snake_case ( self : Optional[int] , __snake_case : str , __snake_case : str = "rb" , __snake_case : int=None , __snake_case : Optional[int]=True , __snake_case : str=None , **__snake_case : str , ): lowerCamelCase :List[str] = self._strip_protocol(__snake_case ) if mode != "rb": raise ValueError(F"Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'" ) return self.file.open() class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'bz2' _UpperCAmelCase = 'bz2' _UpperCAmelCase = '.bz2' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'gzip' _UpperCAmelCase = 'gzip' _UpperCAmelCase = '.gz' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'lz4' _UpperCAmelCase = 'lz4' _UpperCAmelCase = '.lz4' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'xz' _UpperCAmelCase = 'xz' _UpperCAmelCase = '.xz' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'zstd' _UpperCAmelCase = 'zstd' _UpperCAmelCase = '.zst' def __init__( self : str , __snake_case : str , __snake_case : str = "rb" , __snake_case : Optional[str] = None , __snake_case : Optional[dict] = None , __snake_case : int = DEFAULT_BLOCK_SIZE , **__snake_case : int , ): super().__init__( fo=__snake_case , mode=__snake_case , target_protocol=__snake_case , target_options=__snake_case , block_size=__snake_case , **__snake_case , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 lowerCamelCase :Tuple = self.file.__enter__ class _lowerCAmelCase : def __init__( self : Dict , __snake_case : Tuple ): lowerCamelCase :Optional[int] = file_ def __enter__( self : Optional[int] ): self._file.__enter__() return self def __exit__( self : str , *__snake_case : Optional[Any] , **__snake_case : List[Any] ): self._file.__exit__(*__snake_case , **__snake_case ) def __iter__( self : Optional[Any] ): return iter(self._file ) def snake_case ( self : List[Any] ): return next(self._file ) def __getattr__( self : Any , __snake_case : str ): return getattr(self._file , __snake_case ) def fixed_enter(*__snake_case : Optional[int] , **__snake_case : str ): return WrappedFile(_enter(*__snake_case , **__snake_case ) ) lowerCamelCase :Dict = fixed_enter
49
0
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): _UpperCAmelCase = LongformerTokenizer _UpperCAmelCase = True _UpperCAmelCase = LongformerTokenizerFast _UpperCAmelCase = True def snake_case ( self : Dict ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase :Any = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] lowerCamelCase :Union[str, Any] = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) lowerCamelCase :Tuple = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCamelCase :Any = {'''unk_token''': '''<unk>'''} lowerCamelCase :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase :List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__snake_case ) ) def snake_case ( self : Optional[Any] , **__snake_case : List[str] ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Optional[int] , **__snake_case : Union[str, Any] ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Union[str, Any] , __snake_case : List[str] ): lowerCamelCase :Optional[Any] = '''lower newer''' lowerCamelCase :Any = '''lower newer''' return input_text, output_text def snake_case ( self : Optional[int] ): lowerCamelCase :Any = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCamelCase :int = '''lower newer''' lowerCamelCase :Union[str, Any] = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] lowerCamelCase :Optional[int] = tokenizer.tokenize(__snake_case ) # , add_prefix_space=True) self.assertListEqual(__snake_case , __snake_case ) lowerCamelCase :Union[str, Any] = tokens + [tokenizer.unk_token] lowerCamelCase :Optional[int] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def snake_case ( self : Tuple ): lowerCamelCase :Union[str, Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=__snake_case ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=__snake_case ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def snake_case ( self : List[str] ): lowerCamelCase :Union[str, Any] = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) lowerCamelCase :Tuple = tokenizer.encode('''sequence builders''' , add_special_tokens=__snake_case ) lowerCamelCase :int = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__snake_case ) lowerCamelCase :Union[str, Any] = tokenizer.encode( '''sequence builders''' , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) lowerCamelCase :List[str] = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) lowerCamelCase :Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__snake_case ) lowerCamelCase :Optional[int] = tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def snake_case ( self : List[Any] ): lowerCamelCase :str = self.get_tokenizer() lowerCamelCase :Union[str, Any] = '''Encode this sequence.''' lowerCamelCase :List[Any] = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments lowerCamelCase :Union[str, Any] = tokenizer.encode(__snake_case , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) lowerCamelCase :Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__snake_case , __snake_case ) lowerCamelCase :Dict = tokenizer.encode(__snake_case , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) lowerCamelCase :Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__snake_case , __snake_case ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) lowerCamelCase :Optional[int] = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) lowerCamelCase :Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__snake_case , __snake_case ) # Testing spaces after special tokens lowerCamelCase :Optional[Any] = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case )} ) # mask token has a left space lowerCamelCase :Optional[int] = tokenizer.convert_tokens_to_ids(__snake_case ) lowerCamelCase :Tuple = '''Encode <mask> sequence''' lowerCamelCase :Tuple = '''Encode <mask>sequence''' lowerCamelCase :Any = tokenizer.encode(__snake_case ) lowerCamelCase :Optional[Any] = encoded.index(__snake_case ) lowerCamelCase :List[str] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__snake_case , __snake_case ) lowerCamelCase :List[Any] = tokenizer.encode(__snake_case ) lowerCamelCase :int = encoded.index(__snake_case ) lowerCamelCase :Dict = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__snake_case , __snake_case ) def snake_case ( self : List[Any] ): pass def snake_case ( self : List[Any] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase :Union[str, Any] = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :Union[str, Any] = self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :Dict = '''A, <mask> AllenNLP sentence.''' lowerCamelCase :Dict = tokenizer_r.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case ) lowerCamelCase :List[Any] = tokenizer_p.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) lowerCamelCase :Optional[Any] = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) lowerCamelCase :str = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __snake_case , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __snake_case , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def snake_case ( self : Optional[Any] ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): lowerCamelCase :int = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__snake_case , add_prefix_space=__snake_case , trim_offsets=__snake_case ) lowerCamelCase :int = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) lowerCamelCase :Optional[Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , __snake_case ) self.assertEqual(post_processor_state['''add_prefix_space'''] , __snake_case ) self.assertEqual(post_processor_state['''trim_offsets'''] , __snake_case ) def snake_case ( self : str ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase :Optional[int] = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` lowerCamelCase :int = F"{text_of_1_token} {text_of_1_token}" lowerCamelCase :List[str] = self.rust_tokenizer_class.from_pretrained( __snake_case , use_fast=__snake_case , add_prefix_space=__snake_case , trim_offsets=__snake_case ) lowerCamelCase :Dict = tokenizer_r(__snake_case , return_offsets_mapping=__snake_case , add_special_tokens=__snake_case ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__snake_case ) + 1, len(__snake_case ) + 1 + len(__snake_case )) , ) lowerCamelCase :Dict = self.rust_tokenizer_class.from_pretrained( __snake_case , use_fast=__snake_case , add_prefix_space=__snake_case , trim_offsets=__snake_case ) lowerCamelCase :str = tokenizer_r(__snake_case , return_offsets_mapping=__snake_case , add_special_tokens=__snake_case ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__snake_case ) + 1, len(__snake_case ) + 1 + len(__snake_case )) , ) lowerCamelCase :Tuple = self.rust_tokenizer_class.from_pretrained( __snake_case , use_fast=__snake_case , add_prefix_space=__snake_case , trim_offsets=__snake_case ) lowerCamelCase :Optional[Any] = tokenizer_r(__snake_case , return_offsets_mapping=__snake_case , add_special_tokens=__snake_case ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__snake_case ), len(__snake_case ) + 1 + len(__snake_case )) , ) lowerCamelCase :Tuple = self.rust_tokenizer_class.from_pretrained( __snake_case , use_fast=__snake_case , add_prefix_space=__snake_case , trim_offsets=__snake_case ) lowerCamelCase :Dict = tokenizer_r(__snake_case , return_offsets_mapping=__snake_case , add_special_tokens=__snake_case ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__snake_case ), len(__snake_case ) + 1 + len(__snake_case )) , ) lowerCamelCase :List[str] = F" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) lowerCamelCase :Optional[Any] = self.rust_tokenizer_class.from_pretrained( __snake_case , use_fast=__snake_case , add_prefix_space=__snake_case , trim_offsets=__snake_case ) lowerCamelCase :Optional[Any] = tokenizer_r(__snake_case , return_offsets_mapping=__snake_case , add_special_tokens=__snake_case ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__snake_case ) + 1, 1 + len(__snake_case ) + 1 + len(__snake_case )) , ) lowerCamelCase :Optional[int] = self.rust_tokenizer_class.from_pretrained( __snake_case , use_fast=__snake_case , add_prefix_space=__snake_case , trim_offsets=__snake_case ) lowerCamelCase :List[str] = tokenizer_r(__snake_case , return_offsets_mapping=__snake_case , add_special_tokens=__snake_case ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__snake_case ), 1 + len(__snake_case ) + 1 + len(__snake_case )) , ) lowerCamelCase :Dict = self.rust_tokenizer_class.from_pretrained( __snake_case , use_fast=__snake_case , add_prefix_space=__snake_case , trim_offsets=__snake_case ) lowerCamelCase :str = tokenizer_r(__snake_case , return_offsets_mapping=__snake_case , add_special_tokens=__snake_case ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__snake_case ), 1 + len(__snake_case ) + 1 + len(__snake_case )) , )
716
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = LEDTokenizer _UpperCAmelCase = LEDTokenizerFast _UpperCAmelCase = True def snake_case ( self : Any ): super().setUp() lowerCamelCase :Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] lowerCamelCase :Any = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) lowerCamelCase :List[str] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCamelCase :int = {'''unk_token''': '''<unk>'''} lowerCamelCase :Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__snake_case ) ) def snake_case ( self : int , **__snake_case : int ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Dict , **__snake_case : Any ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Optional[Any] , __snake_case : Union[str, Any] ): return "lower newer", "lower newer" @cached_property def snake_case ( self : Any ): return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' ) @cached_property def snake_case ( self : int ): return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' ) @require_torch def snake_case ( self : str ): lowerCamelCase :Any = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowerCamelCase :List[Any] = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[Any] = tokenizer(__snake_case , max_length=len(__snake_case ) , padding=__snake_case , return_tensors='''pt''' ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowerCamelCase :List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(__snake_case , __snake_case ) @require_torch def snake_case ( self : Tuple ): lowerCamelCase :Dict = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Union[str, Any] = tokenizer(__snake_case , padding=__snake_case , return_tensors='''pt''' ) self.assertIn('''input_ids''' , __snake_case ) self.assertIn('''attention_mask''' , __snake_case ) self.assertNotIn('''labels''' , __snake_case ) self.assertNotIn('''decoder_attention_mask''' , __snake_case ) @require_torch def snake_case ( self : Union[str, Any] ): lowerCamelCase :Union[str, Any] = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :List[Any] = tokenizer(text_target=__snake_case , max_length=32 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) @require_torch def snake_case ( self : List[Any] ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[Any] = tokenizer( ['''I am a small frog''' * 1024, '''I am a small frog'''] , padding=__snake_case , truncation=__snake_case , return_tensors='''pt''' ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def snake_case ( self : Optional[int] ): lowerCamelCase :Union[str, Any] = ['''A long paragraph for summarization.'''] lowerCamelCase :Any = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Union[str, Any] = tokenizer(__snake_case , return_tensors='''pt''' ) lowerCamelCase :Any = tokenizer(text_target=__snake_case , return_tensors='''pt''' ) lowerCamelCase :Optional[int] = inputs['''input_ids'''] lowerCamelCase :Any = targets['''input_ids'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def snake_case ( self : Dict ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[int] = ['''Summary of the text.''', '''Another summary.'''] lowerCamelCase :List[Any] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] lowerCamelCase :Optional[int] = tokenizer(__snake_case , padding=__snake_case ) lowerCamelCase :Union[str, Any] = [[0] * len(__snake_case ) for x in encoded_output['''input_ids''']] lowerCamelCase :str = tokenizer.pad(__snake_case ) self.assertSequenceEqual(outputs['''global_attention_mask'''] , __snake_case ) def snake_case ( self : Tuple ): pass def snake_case ( self : Optional[int] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase :Optional[Any] = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :Tuple = self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :int = '''A, <mask> AllenNLP sentence.''' lowerCamelCase :str = tokenizer_r.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case ) lowerCamelCase :str = tokenizer_p.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case ) self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) lowerCamelCase :Optional[int] = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) lowerCamelCase :Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __snake_case , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __snake_case , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
49
0
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup A__ = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def _lowerCamelCase ( a_ : str = "mumbai"): lowerCamelCase :Optional[int] = BeautifulSoup(requests.get(url + location).content , '''html.parser''') # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''}): lowerCamelCase :Optional[Any] = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''}).text.strip() lowerCamelCase :Union[str, Any] = job.find('''span''' , {'''class''': '''company'''}).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("""Bangalore"""), 1): print(F'Job {i:>2} is {job[0]} at {job[1]}')
717
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) A__ = { """configuration_layoutlmv2""": ["""LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv2Config"""], """processing_layoutlmv2""": ["""LayoutLMv2Processor"""], """tokenization_layoutlmv2""": ["""LayoutLMv2Tokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""LayoutLMv2TokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""LayoutLMv2FeatureExtractor"""] A__ = ["""LayoutLMv2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """LayoutLMv2ForQuestionAnswering""", """LayoutLMv2ForSequenceClassification""", """LayoutLMv2ForTokenClassification""", """LayoutLMv2Layer""", """LayoutLMv2Model""", """LayoutLMv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
49
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version A__ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt""") @dataclass class _lowerCAmelCase : _UpperCAmelCase = field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} ) _UpperCAmelCase = field( default=UpperCamelCase_ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) _UpperCAmelCase = field( default=UpperCamelCase_ , metadata={'help': 'The column name of the images in the files.'} ) _UpperCAmelCase = field(default=UpperCamelCase_ , metadata={'help': 'A folder containing the training data.'} ) _UpperCAmelCase = field(default=UpperCamelCase_ , metadata={'help': 'A folder containing the validation data.'} ) _UpperCAmelCase = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) _UpperCAmelCase = field( default=UpperCamelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) _UpperCAmelCase = field( default=UpperCamelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def snake_case ( self : Tuple ): lowerCamelCase :Optional[Any] = {} if self.train_dir is not None: lowerCamelCase :List[str] = self.train_dir if self.validation_dir is not None: lowerCamelCase :str = self.validation_dir lowerCamelCase :Union[str, Any] = data_files if data_files else None @dataclass class _lowerCAmelCase : _UpperCAmelCase = field( default=UpperCamelCase_ , metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) } , ) _UpperCAmelCase = field( default=UpperCamelCase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name_or_path'} ) _UpperCAmelCase = field( default=UpperCamelCase_ , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) _UpperCAmelCase = field( default=UpperCamelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) _UpperCAmelCase = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) _UpperCAmelCase = field(default=UpperCamelCase_ , metadata={'help': 'Name or path of preprocessor config.'} ) _UpperCAmelCase = field( default=UpperCamelCase_ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) _UpperCAmelCase = field( default=0.75 , metadata={'help': 'The ratio of the number of masked tokens in the input sequence.'} ) _UpperCAmelCase = field( default=UpperCamelCase_ , metadata={'help': 'Whether or not to train with normalized pixel values as target.'} ) @dataclass class _lowerCAmelCase ( UpperCamelCase_ ): _UpperCAmelCase = field( default=1E-3 , metadata={'help': 'Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'} ) def _lowerCamelCase ( a_ : int): lowerCamelCase :Optional[int] = torch.stack([example['''pixel_values'''] for example in examples]) return {"pixel_values": pixel_values} def _lowerCamelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase :List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith('''.json'''): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase :Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: lowerCamelCase :Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_mae''' , snake_case_ , snake_case_) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout)] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase :Optional[Any] = training_args.get_process_log_level() logger.setLevel(snake_case_) transformers.utils.logging.set_verbosity(snake_case_) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fpaa}") logger.info(F"Training/evaluation parameters {training_args}") # Detecting last checkpoint. lowerCamelCase :List[str] = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase :Tuple = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''') elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''') # Initialize our dataset. lowerCamelCase :str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowerCamelCase :Any = None if '''validation''' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , snake_case_) and data_args.train_val_split > 0.0: lowerCamelCase :List[Any] = ds['''train'''].train_test_split(data_args.train_val_split) lowerCamelCase :int = split['''train'''] lowerCamelCase :Optional[int] = split['''test'''] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase :Optional[int] = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: lowerCamelCase :Dict = ViTMAEConfig.from_pretrained(model_args.config_name , **snake_case_) elif model_args.model_name_or_path: lowerCamelCase :Any = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **snake_case_) else: lowerCamelCase :Any = ViTMAEConfig() logger.warning('''You are instantiating a new config instance from scratch.''') if model_args.config_overrides is not None: logger.info(F"Overriding config: {model_args.config_overrides}") config.update_from_string(model_args.config_overrides) logger.info(F"New config: {config}") # adapt config config.update( { '''mask_ratio''': model_args.mask_ratio, '''norm_pix_loss''': model_args.norm_pix_loss, }) # create image processor if model_args.image_processor_name: lowerCamelCase :List[str] = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **snake_case_) elif model_args.model_name_or_path: lowerCamelCase :Optional[Any] = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **snake_case_) else: lowerCamelCase :Any = ViTImageProcessor() # create model if model_args.model_name_or_path: lowerCamelCase :int = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path) , config=snake_case_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''') lowerCamelCase :Union[str, Any] = ViTMAEForPreTraining(snake_case_) if training_args.do_train: lowerCamelCase :int = ds['''train'''].column_names else: lowerCamelCase :Optional[Any] = ds['''validation'''].column_names if data_args.image_column_name is not None: lowerCamelCase :Optional[int] = data_args.image_column_name elif "image" in column_names: lowerCamelCase :List[Any] = '''image''' elif "img" in column_names: lowerCamelCase :Dict = '''img''' else: lowerCamelCase :List[str] = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: lowerCamelCase :Optional[int] = image_processor.size['''shortest_edge'''] else: lowerCamelCase :Union[str, Any] = (image_processor.size['''height'''], image_processor.size['''width''']) lowerCamelCase :Union[str, Any] = Compose( [ Lambda(lambda a_: img.convert('''RGB''') if img.mode != "RGB" else img), RandomResizedCrop(snake_case_ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std), ]) def preprocess_images(a_ : List[Any]): lowerCamelCase :Any = [transforms(snake_case_) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('''--do_train requires a train dataset''') if data_args.max_train_samples is not None: lowerCamelCase :Any = ds['''train'''].shuffle(seed=training_args.seed).select(range(data_args.max_train_samples)) # Set the training transforms ds["train"].set_transform(snake_case_) if training_args.do_eval: if "validation" not in ds: raise ValueError('''--do_eval requires a validation dataset''') if data_args.max_eval_samples is not None: lowerCamelCase :Union[str, Any] = ( ds['''validation'''].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples)) ) # Set the validation transforms ds["validation"].set_transform(snake_case_) # Compute absolute learning rate lowerCamelCase :Dict = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: lowerCamelCase :int = training_args.base_learning_rate * total_train_batch_size / 2_56 # Initialize our trainer lowerCamelCase :Dict = Trainer( model=snake_case_ , args=snake_case_ , train_dataset=ds['''train'''] if training_args.do_train else None , eval_dataset=ds['''validation'''] if training_args.do_eval else None , tokenizer=snake_case_ , data_collator=snake_case_ , ) # Training if training_args.do_train: lowerCamelCase :Optional[Any] = None if training_args.resume_from_checkpoint is not None: lowerCamelCase :List[str] = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase :List[str] = last_checkpoint lowerCamelCase :Any = trainer.train(resume_from_checkpoint=snake_case_) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics) trainer.save_metrics('''train''' , train_result.metrics) trainer.save_state() # Evaluation if training_args.do_eval: lowerCamelCase :Dict = trainer.evaluate() trainer.log_metrics('''eval''' , snake_case_) trainer.save_metrics('''eval''' , snake_case_) # Write model card and (optionally) push to hub lowerCamelCase :int = { '''tasks''': '''masked-auto-encoding''', '''dataset''': data_args.dataset_name, '''tags''': ['''masked-auto-encoding'''], } if training_args.push_to_hub: trainer.push_to_hub(**snake_case_) else: trainer.create_model_card(**snake_case_) def _lowerCamelCase ( a_ : Tuple): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
718
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _lowerCAmelCase : @staticmethod def snake_case ( *__snake_case : str , **__snake_case : str ): pass @is_pipeline_test @require_vision class _lowerCAmelCase ( unittest.TestCase ): @require_torch def snake_case ( self : Union[str, Any] ): lowerCamelCase :Optional[int] = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Dict = image_classifier(__snake_case , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__snake_case ) , [ [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}], [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}], ] , ) lowerCamelCase :Tuple = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], ] , ) @require_tf def snake_case ( self : Tuple ): lowerCamelCase :Tuple = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Optional[Any] = image_classifier(__snake_case , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(__snake_case ) , [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}] , ) lowerCamelCase :int = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], ] , ) @slow @require_torch def snake_case ( self : Any ): lowerCamelCase :str = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Optional[Any] = image_classifier(__snake_case , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) lowerCamelCase :Any = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def snake_case ( self : Optional[Any] ): lowerCamelCase :Union[str, Any] = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes lowerCamelCase :Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Dict = image_classifier(__snake_case , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) lowerCamelCase :Any = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , )
49
0
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _lowerCAmelCase ( lowercase_ , unittest.TestCase ): _UpperCAmelCase = TransfoXLTokenizer _UpperCAmelCase = False _UpperCAmelCase = False def snake_case ( self : List[Any] ): super().setUp() lowerCamelCase :Any = [ '''<unk>''', '''[CLS]''', '''[SEP]''', '''want''', '''unwanted''', '''wa''', '''un''', '''running''', ''',''', '''low''', '''l''', ] lowerCamelCase :Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def snake_case ( self : Union[str, Any] , **__snake_case : Tuple ): lowerCamelCase :List[Any] = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Tuple , __snake_case : Optional[Any] ): lowerCamelCase :Optional[Any] = '''<unk> UNwanted , running''' lowerCamelCase :Tuple = '''<unk> unwanted, running''' return input_text, output_text def snake_case ( self : Union[str, Any] ): lowerCamelCase :str = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=__snake_case ) lowerCamelCase :str = tokenizer.tokenize('''<unk> UNwanted , running''' ) self.assertListEqual(__snake_case , ['''<unk>''', '''unwanted''', ''',''', '''running'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , [0, 4, 8, 7] ) def snake_case ( self : List[Any] ): lowerCamelCase :Any = TransfoXLTokenizer(lower_case=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) def snake_case ( self : Union[str, Any] ): lowerCamelCase :List[str] = TransfoXLTokenizer(lower_case=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def snake_case ( self : str ): lowerCamelCase :Dict = TransfoXLTokenizer(lower_case=__snake_case ) lowerCamelCase :List[str] = '''Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?''' lowerCamelCase :Any = [ '''Hello''', '''(''', '''bracket''', ''')''', '''and''', '''side''', '''@-@''', '''scrolled''', '''[''', '''and''', ''']''', '''Henry''', '''\'s''', '''$''', '''5''', '''@,@''', '''000''', '''with''', '''3''', '''@.@''', '''34''', '''m''', '''.''', '''What''', '''\'s''', '''up''', '''!''', '''?''', ] self.assertListEqual(tokenizer.tokenize(__snake_case ) , __snake_case ) self.assertEqual(tokenizer.convert_tokens_to_string(__snake_case ) , __snake_case ) def snake_case ( self : List[str] ): lowerCamelCase :Optional[int] = self.get_tokenizer() lowerCamelCase :List[str] = len(__snake_case ) tokenizer.add_tokens(['''new1''', '''new2'''] ) tokenizer.move_added_token('''new1''' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(__snake_case ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('''new1''' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , '''new1''' )
719
import operator as op def _lowerCamelCase ( a_ : Tuple): lowerCamelCase :int = [] lowerCamelCase :List[str] = lambda a_ , a_: int(x / y) # noqa: E731 integer division operation lowerCamelCase :Optional[int] = { '''^''': op.pow, '''*''': op.mul, '''/''': div, '''+''': op.add, '''-''': op.sub, } # operators & their respective operation # print table header print('''Symbol'''.center(8) , '''Action'''.center(12) , '''Stack''' , sep=''' | ''') print('''-''' * (30 + len(a_))) for x in post_fix: if x.isdigit(): # if x in digit stack.append(a_) # append x to stack # output in tabular format print(x.rjust(8) , ('''push(''' + x + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') else: lowerCamelCase :Optional[Any] = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8) , ('''pop(''' + b + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') lowerCamelCase :str = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8) , ('''pop(''' + a + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') stack.append( str(opr[x](int(a_) , int(a_)))) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8) , ('''push(''' + a + x + b + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''' , ) return int(stack[0]) if __name__ == "__main__": A__ = input("""\n\nEnter a Postfix Equation (space separated) = """).split(""" """) print("""\n\tResult = """, solve(Postfix))
49
0
from __future__ import annotations import requests A__ = set( """approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports""".split() ) def _lowerCamelCase ( a_ : str , a_ : Optional[Any] = 1 , a_ : List[str] = "new" , a_ : Dict = None): lowerCamelCase :Union[str, Any] = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(lowerCamelCase__) - valid_terms)): lowerCamelCase :List[str] = F"Invalid search term: {invalid_search_terms}" raise ValueError(lowerCamelCase__) lowerCamelCase :List[str] = requests.get( F"https://reddit.com/r/{subreddit}/{age}.json?limit={limit}" , headers={'''User-agent''': '''A random string'''} , ) if response.status_code == 4_29: raise requests.HTTPError lowerCamelCase :Optional[int] = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(lowerCamelCase__)} lowerCamelCase :int = {} for id_ in range(lowerCamelCase__): lowerCamelCase :Tuple = { item: data['''data''']['''children'''][id_]['''data'''][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data("""learnpython""", wanted_data=["""title""", """url""", """selftext"""]))
720
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() A__ = logging.get_logger(__name__) A__ = """Hello, World!""" A__ = """en_XX""" def _lowerCamelCase ( a_ : str , a_ : str , a_ : bool): lowerCamelCase :int = Path('''data_bin''') lowerCamelCase :Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(a_).parent) , checkpoint_file=Path(a_).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(a_) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(a_).parent / '''sentencepiece.bpe.model''') , src_dict=str(data_dir / '''dict.txt''') , ) xmod.eval() # disable dropout print(a_) lowerCamelCase :Any = xmod.model.encoder.sentence_encoder lowerCamelCase :List[str] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: lowerCamelCase :Dict = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our X-MOD config:''' , a_) lowerCamelCase :List[Any] = XmodForSequenceClassification(a_) if classification_head else XmodForMaskedLM(a_) model.eval() # Now let's copy all the weights. # Embeddings lowerCamelCase :Union[str, Any] = xmod_sent_encoder.embed_tokens.weight lowerCamelCase :Tuple = xmod_sent_encoder.embed_positions.weight lowerCamelCase :List[str] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight) # just zero them out b/c xmod doesn't use them. lowerCamelCase :List[Any] = xmod_sent_encoder.layernorm_embedding.weight lowerCamelCase :Optional[int] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers): # Encoder: start of layer lowerCamelCase :Union[str, Any] = model.roberta.encoder.layer[i] lowerCamelCase :List[str] = xmod_sent_encoder.layers[i] # self attention lowerCamelCase :Optional[int] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size)) ): raise AssertionError('''Dimensions of self-attention weights do not match.''') lowerCamelCase :Optional[int] = xmod_layer.self_attn.q_proj.weight lowerCamelCase :List[str] = xmod_layer.self_attn.q_proj.bias lowerCamelCase :str = xmod_layer.self_attn.k_proj.weight lowerCamelCase :Optional[Any] = xmod_layer.self_attn.k_proj.bias lowerCamelCase :Dict = xmod_layer.self_attn.v_proj.weight lowerCamelCase :Optional[int] = xmod_layer.self_attn.v_proj.bias # self-attention output lowerCamelCase :Optional[int] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('''Dimensions of self-attention output weights do not match.''') lowerCamelCase :List[Any] = xmod_layer.self_attn.out_proj.weight lowerCamelCase :Union[str, Any] = xmod_layer.self_attn.out_proj.bias lowerCamelCase :str = xmod_layer.self_attn_layer_norm.weight lowerCamelCase :List[Any] = xmod_layer.self_attn_layer_norm.bias # intermediate lowerCamelCase :Optional[int] = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of intermediate weights do not match.''') lowerCamelCase :int = xmod_layer.fca.weight lowerCamelCase :Union[str, Any] = xmod_layer.fca.bias # output lowerCamelCase :List[str] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of feed-forward weights do not match.''') lowerCamelCase :str = xmod_layer.fca.weight lowerCamelCase :int = xmod_layer.fca.bias lowerCamelCase :List[Any] = xmod_layer.final_layer_norm.weight lowerCamelCase :List[str] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: lowerCamelCase :List[str] = xmod_layer.adapter_layer_norm.weight lowerCamelCase :int = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys()) != sorted(xmod_layer.adapter_modules.keys()): raise AssertionError('''Lists of language adapters do not match.''') for lang_code, adapter in xmod_layer.adapter_modules.items(): lowerCamelCase :Optional[int] = bert_output.adapter_modules[lang_code] lowerCamelCase :Dict = xmod_layer.adapter_modules[lang_code] lowerCamelCase :List[Any] = from_adapter.fca.weight lowerCamelCase :List[Any] = from_adapter.fca.bias lowerCamelCase :Dict = from_adapter.fca.weight lowerCamelCase :Optional[Any] = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: lowerCamelCase :Dict = xmod_sent_encoder.layer_norm.weight lowerCamelCase :List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: lowerCamelCase :Union[str, Any] = xmod.model.classification_heads['''mnli'''].dense.weight lowerCamelCase :Tuple = xmod.model.classification_heads['''mnli'''].dense.bias lowerCamelCase :Optional[Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight lowerCamelCase :List[Any] = xmod.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head lowerCamelCase :int = xmod.model.encoder.lm_head.dense.weight lowerCamelCase :List[Any] = xmod.model.encoder.lm_head.dense.bias lowerCamelCase :Optional[int] = xmod.model.encoder.lm_head.layer_norm.weight lowerCamelCase :List[Any] = xmod.model.encoder.lm_head.layer_norm.bias lowerCamelCase :List[Any] = xmod.model.encoder.lm_head.weight lowerCamelCase :Any = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCamelCase :str = xmod.encode(a_).unsqueeze(0) # batch of size 1 model.roberta.set_default_language(a_) lowerCamelCase :Any = model(a_)[0] if classification_head: lowerCamelCase :Dict = xmod.model.classification_heads['''mnli'''](xmod.extract_features(a_)) else: lowerCamelCase :int = xmod.model(a_ , lang_id=[SAMPLE_LANGUAGE])[0] print(our_output.shape , their_output.shape) lowerCamelCase :List[str] = torch.max(torch.abs(our_output - their_output)).item() print(F"max_absolute_diff = {max_absolute_diff}") # ~ 1e-7 lowerCamelCase :str = torch.allclose(a_ , a_ , atol=1e-3) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''') if not success: raise Exception('''Something went wRoNg''') Path(a_).mkdir(parents=a_ , exist_ok=a_) print(F"Saving model to {pytorch_dump_folder_path}") model.save_pretrained(a_) if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) A__ = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
49
0
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def _lowerCamelCase ( a_ : List[Any]): if "model" in orig_key: lowerCamelCase :Dict = orig_key.replace('''model.''' , '''''') if "norm1" in orig_key: lowerCamelCase :Optional[Any] = orig_key.replace('''norm1''' , '''attention.output.LayerNorm''') if "norm2" in orig_key: lowerCamelCase :int = orig_key.replace('''norm2''' , '''output.LayerNorm''') if "norm" in orig_key: lowerCamelCase :Optional[Any] = orig_key.replace('''norm''' , '''LayerNorm''') if "transformer" in orig_key: lowerCamelCase :Tuple = orig_key.split('''.''')[0].split('''_''')[-1] lowerCamelCase :str = orig_key.replace(F"transformer_{layer_num}" , F"encoder.layer.{layer_num}") if "mha.attn" in orig_key: lowerCamelCase :Optional[Any] = orig_key.replace('''mha.attn''' , '''attention.self''') if "mha" in orig_key: lowerCamelCase :Optional[Any] = orig_key.replace('''mha''' , '''attention''') if "W_q" in orig_key: lowerCamelCase :str = orig_key.replace('''W_q''' , '''self.query''') if "W_k" in orig_key: lowerCamelCase :Union[str, Any] = orig_key.replace('''W_k''' , '''self.key''') if "W_v" in orig_key: lowerCamelCase :Optional[Any] = orig_key.replace('''W_v''' , '''self.value''') if "ff1" in orig_key: lowerCamelCase :Optional[Any] = orig_key.replace('''ff1''' , '''intermediate.dense''') if "ff2" in orig_key: lowerCamelCase :Any = orig_key.replace('''ff2''' , '''output.dense''') if "ff" in orig_key: lowerCamelCase :str = orig_key.replace('''ff''' , '''output.dense''') if "mlm_class" in orig_key: lowerCamelCase :Union[str, Any] = orig_key.replace('''mlm.mlm_class''' , '''cls.predictions.decoder''') if "mlm" in orig_key: lowerCamelCase :List[str] = orig_key.replace('''mlm''' , '''cls.predictions.transform''') if "cls" not in orig_key: lowerCamelCase :Dict = '''yoso.''' + orig_key return orig_key def _lowerCamelCase ( a_ : Tuple , a_ : str): for key in orig_state_dict.copy().keys(): lowerCamelCase :Any = orig_state_dict.pop(a_) if ("pooler" in key) or ("sen_class" in key): continue else: lowerCamelCase :str = val lowerCamelCase :Optional[int] = orig_state_dict['''cls.predictions.decoder.bias'''] lowerCamelCase :List[str] = torch.arange(a_).expand((1, -1)) + 2 return orig_state_dict def _lowerCamelCase ( a_ : int , a_ : Union[str, Any] , a_ : str): lowerCamelCase :Optional[Any] = torch.load(a_ , map_location='''cpu''')['''model_state_dict'''] lowerCamelCase :Dict = YosoConfig.from_json_file(a_) lowerCamelCase :List[str] = YosoForMaskedLM(a_) lowerCamelCase :Optional[int] = convert_checkpoint_helper(config.max_position_embeddings , a_) print(model.load_state_dict(a_)) model.eval() model.save_pretrained(a_) print(F"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}") if __name__ == "__main__": A__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--pytorch_model_path""", default=None, type=str, required=True, help="""Path to YOSO pytorch checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The json file for YOSO model config.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) A__ : Dict = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
721
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { """andreasmadsen/efficient_mlm_m0.40""": ( """https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json""" ), } class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'roberta-prelayernorm' def __init__( self : str , __snake_case : List[str]=50265 , __snake_case : Union[str, Any]=768 , __snake_case : Tuple=12 , __snake_case : int=12 , __snake_case : Any=3072 , __snake_case : Optional[int]="gelu" , __snake_case : List[Any]=0.1 , __snake_case : int=0.1 , __snake_case : Union[str, Any]=512 , __snake_case : Dict=2 , __snake_case : int=0.0_2 , __snake_case : Any=1e-1_2 , __snake_case : Optional[int]=1 , __snake_case : Dict=0 , __snake_case : Optional[int]=2 , __snake_case : Any="absolute" , __snake_case : Union[str, Any]=True , __snake_case : List[str]=None , **__snake_case : Optional[int] , ): super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) lowerCamelCase :Optional[int] = vocab_size lowerCamelCase :Dict = hidden_size lowerCamelCase :Tuple = num_hidden_layers lowerCamelCase :Optional[int] = num_attention_heads lowerCamelCase :Any = hidden_act lowerCamelCase :List[Any] = intermediate_size lowerCamelCase :Union[str, Any] = hidden_dropout_prob lowerCamelCase :str = attention_probs_dropout_prob lowerCamelCase :Tuple = max_position_embeddings lowerCamelCase :int = type_vocab_size lowerCamelCase :Optional[Any] = initializer_range lowerCamelCase :Union[str, Any] = layer_norm_eps lowerCamelCase :Dict = position_embedding_type lowerCamelCase :List[Any] = use_cache lowerCamelCase :Optional[int] = classifier_dropout class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): @property def snake_case ( self : Any ): if self.task == "multiple-choice": lowerCamelCase :Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase :List[str] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
49
0
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def snake_case ( self : Any ): lowerCamelCase :List[str] = tempfile.mkdtemp() lowerCamelCase :List[str] = 8 # DPR tok lowerCamelCase :str = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCamelCase :Dict = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(__snake_case , exist_ok=__snake_case ) lowerCamelCase :List[str] = os.path.join(__snake_case , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok lowerCamelCase :Any = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] lowerCamelCase :List[str] = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) lowerCamelCase :Any = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCamelCase :Any = {'''unk_token''': '''<unk>'''} lowerCamelCase :Tuple = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(__snake_case , exist_ok=__snake_case ) lowerCamelCase :Dict = os.path.join(__snake_case , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase :Optional[int] = os.path.join(__snake_case , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__snake_case ) ) def snake_case ( self : List[Any] ): return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def snake_case ( self : Optional[Any] ): return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def snake_case ( self : List[str] ): shutil.rmtree(self.tmpdirname ) @require_tokenizers def snake_case ( self : Optional[int] ): lowerCamelCase :Tuple = os.path.join(self.tmpdirname , '''rag_tokenizer''' ) lowerCamelCase :Union[str, Any] = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) lowerCamelCase :Union[str, Any] = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(__snake_case ) rag_tokenizer.save_pretrained(__snake_case ) lowerCamelCase :int = RagTokenizer.from_pretrained(__snake_case , config=__snake_case ) self.assertIsInstance(new_rag_tokenizer.question_encoder , __snake_case ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , __snake_case ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def snake_case ( self : Any ): lowerCamelCase :Optional[int] = RagTokenizer.from_pretrained('''facebook/rag-token-nq''' ) lowerCamelCase :Any = [ '''who got the first nobel prize in physics''', '''when is the next deadpool movie being released''', '''which mode is used for short wave broadcast service''', '''who is the owner of reading football club''', '''when is the next scandal episode coming out''', '''when is the last time the philadelphia won the superbowl''', '''what is the most current adobe flash player version''', '''how many episodes are there in dragon ball z''', '''what is the first step in the evolution of the eye''', '''where is gall bladder situated in human body''', '''what is the main mineral in lithium batteries''', '''who is the president of usa right now''', '''where do the greasers live in the outsiders''', '''panda is a national animal of which country''', '''what is the name of manchester united stadium''', ] lowerCamelCase :Dict = tokenizer(__snake_case ) self.assertIsNotNone(__snake_case ) @slow def snake_case ( self : Tuple ): lowerCamelCase :Dict = RagTokenizer.from_pretrained('''facebook/rag-sequence-nq''' ) lowerCamelCase :List[Any] = [ '''who got the first nobel prize in physics''', '''when is the next deadpool movie being released''', '''which mode is used for short wave broadcast service''', '''who is the owner of reading football club''', '''when is the next scandal episode coming out''', '''when is the last time the philadelphia won the superbowl''', '''what is the most current adobe flash player version''', '''how many episodes are there in dragon ball z''', '''what is the first step in the evolution of the eye''', '''where is gall bladder situated in human body''', '''what is the main mineral in lithium batteries''', '''who is the president of usa right now''', '''where do the greasers live in the outsiders''', '''panda is a national animal of which country''', '''what is the name of manchester united stadium''', ] lowerCamelCase :str = tokenizer(__snake_case ) self.assertIsNotNone(__snake_case )
700
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = DebertaTokenizer _UpperCAmelCase = True _UpperCAmelCase = DebertaTokenizerFast def snake_case ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase :Dict = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] lowerCamelCase :List[str] = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) lowerCamelCase :Any = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCamelCase :Dict = {'''unk_token''': '''[UNK]'''} lowerCamelCase :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase :List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__snake_case ) ) def snake_case ( self : str , **__snake_case : Dict ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Optional[Any] , __snake_case : int ): lowerCamelCase :List[Any] = '''lower newer''' lowerCamelCase :List[str] = '''lower newer''' return input_text, output_text def snake_case ( self : str ): lowerCamelCase :Optional[int] = self.get_tokenizer() lowerCamelCase :Union[str, Any] = '''lower newer''' lowerCamelCase :str = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] lowerCamelCase :Optional[int] = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) lowerCamelCase :List[str] = tokens + [tokenizer.unk_token] lowerCamelCase :Optional[int] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def snake_case ( self : Optional[int] ): lowerCamelCase :List[str] = self.get_tokenizer() lowerCamelCase :Optional[int] = tokenizer('''Hello''' , '''World''' ) lowerCamelCase :List[str] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __snake_case ) @slow def snake_case ( self : str ): lowerCamelCase :Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) lowerCamelCase :Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__snake_case ) lowerCamelCase :Tuple = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__snake_case ) lowerCamelCase :Union[str, Any] = tokenizer.encode( '''sequence builders''' , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) lowerCamelCase :str = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) lowerCamelCase :Any = tokenizer.build_inputs_with_special_tokens(__snake_case ) lowerCamelCase :Dict = tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def snake_case ( self : str ): lowerCamelCase :List[str] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: lowerCamelCase :int = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) lowerCamelCase :Tuple = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] lowerCamelCase :List[Any] = tokenizer(__snake_case , padding=__snake_case ) lowerCamelCase :Union[str, Any] = [tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) for seq in encoding['''input_ids''']] # fmt: off lowerCamelCase :Any = { '''input_ids''': [ [1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on lowerCamelCase :Optional[int] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __snake_case ) for expected, decoded in zip(__snake_case , __snake_case ): self.assertEqual(__snake_case , __snake_case )
49
0
A__ = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100_000)] def _lowerCamelCase ( a_ : int): lowerCamelCase :str = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_00_00] number //= 10_00_00 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution A__ = [None] * 10_000_000 A__ = True A__ = False def _lowerCamelCase ( a_ : int): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore lowerCamelCase :List[Any] = chain(next_number(a_)) lowerCamelCase :List[Any] = number_chain while number < 10_00_00_00: lowerCamelCase :List[Any] = number_chain number *= 10 return number_chain def _lowerCamelCase ( a_ : int = 10_00_00_00): for i in range(1 , a_): if CHAINS[i] is None: chain(i + 1) return CHAINS[:number].count(a_) if __name__ == "__main__": import doctest doctest.testmod() print(F'{solution() = }')
701
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) A__ = [ """cross_validation.py""", """gradient_accumulation.py""", """local_sgd.py""", """multi_process_metrics.py""", """memory.py""", """automatic_gradient_accumulation.py""", """fsdp_with_peak_mem_tracking.py""", """deepspeed_with_config_support.py""", """megatron_lm_gpt_pretraining.py""", ] class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Any , __snake_case : str , __snake_case : bool , __snake_case : str = None , __snake_case : list = None ): lowerCamelCase :Tuple = None lowerCamelCase :Tuple = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) lowerCamelCase :Optional[int] = os.path.abspath('''examples''' ) for item in os.listdir(__snake_case ): if item not in EXCLUDE_EXAMPLES: lowerCamelCase :Optional[int] = os.path.join(__snake_case , __snake_case ) if os.path.isfile(__snake_case ) and ".py" in item_path: with self.subTest( tested_script=__snake_case , feature_script=__snake_case , tested_section='''main()''' if parser_only else '''training_function()''' , ): lowerCamelCase :Union[str, Any] = compare_against_test( os.path.join(__snake_case , __snake_case ) , __snake_case , __snake_case , __snake_case ) lowerCamelCase :int = '''\n'''.join(__snake_case ) if special_strings is not None: for string in special_strings: lowerCamelCase :int = diff.replace(__snake_case , '''''' ) self.assertEqual(__snake_case , '''''' ) def snake_case ( self : Dict ): self.one_complete_example('''complete_nlp_example.py''' , __snake_case ) self.one_complete_example('''complete_nlp_example.py''' , __snake_case ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Union[str, Any] = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) lowerCamelCase :Optional[int] = [ ''' ''' * 16 + '''{\n\n''', ''' ''' * 20 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 20 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 20 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 20 + '''"epoch": epoch,\n\n''', ''' ''' * 16 + '''},\n\n''', ''' ''' * 16 + '''step=epoch,\n''', ''' ''' * 12, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , __snake_case , __snake_case , __snake_case ) self.one_complete_example('''complete_cv_example.py''' , __snake_case , __snake_case , __snake_case ) @mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '1'} ) class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = False @classmethod def snake_case ( cls : Optional[Any] ): super().setUpClass() lowerCamelCase :Any = tempfile.mkdtemp() lowerCamelCase :Optional[int] = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) lowerCamelCase :List[str] = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def snake_case ( cls : Dict ): super().tearDownClass() shutil.rmtree(cls._tmpdir ) def snake_case ( self : int ): lowerCamelCase :Any = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def snake_case ( self : List[Any] ): lowerCamelCase :Tuple = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n ".split() lowerCamelCase :List[Any] = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def snake_case ( self : List[str] ): lowerCamelCase :Dict = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}\n ".split() lowerCamelCase :Dict = run_command(self._launch_args + testargs , return_stdout=__snake_case ) self.assertNotIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) def snake_case ( self : str ): lowerCamelCase :List[Any] = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}\n ".split() lowerCamelCase :Optional[int] = run_command(self._launch_args + testargs , return_stdout=__snake_case ) if torch.cuda.is_available(): lowerCamelCase :Union[str, Any] = torch.cuda.device_count() else: lowerCamelCase :Dict = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) else: self.assertIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) @slow def snake_case ( self : Any ): lowerCamelCase :Tuple = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): lowerCamelCase :Dict = run_command(self._launch_args + testargs , return_stdout=__snake_case ) lowerCamelCase :Tuple = re.findall('''({.+})''' , __snake_case ) lowerCamelCase :Optional[Any] = [r for r in results if '''accuracy''' in r][-1] lowerCamelCase :List[str] = ast.literal_eval(__snake_case ) self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 ) def snake_case ( self : int ): lowerCamelCase :Dict = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case ( self : Any ): with tempfile.TemporaryDirectory() as tmpdir: lowerCamelCase :Tuple = F"\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__snake_case , '''tracking''' ) ) ) def snake_case ( self : Tuple ): lowerCamelCase :Tuple = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def snake_case ( self : Optional[Any] ): lowerCamelCase :int = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
49
0
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP A__ = False try: A__ = _is_package_available("""google.colab""") except ModuleNotFoundError: pass @input.register class _lowerCAmelCase : def __init__( self : int , __snake_case : str = None , __snake_case : list = [] ): lowerCamelCase :Optional[Any] = 0 lowerCamelCase :Any = choices lowerCamelCase :List[Any] = prompt if sys.platform == "win32": lowerCamelCase :Optional[Any] = '''*''' else: lowerCamelCase :List[Any] = '''➔ ''' def snake_case ( self : int , __snake_case : Optional[Any] , __snake_case : str = "" ): if sys.platform != "win32": writeColor(self.choices[index] , 32 , __snake_case ) else: forceWrite(self.choices[index] , __snake_case ) def snake_case ( self : Union[str, Any] , __snake_case : int ): if index == self.position: forceWrite(F" {self.arrow_char} " ) self.write_choice(__snake_case ) else: forceWrite(F" {self.choices[index]}" ) reset_cursor() def snake_case ( self : Union[str, Any] , __snake_case : Direction , __snake_case : int = 1 ): lowerCamelCase :int = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(__snake_case ) move_cursor(__snake_case , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['''up'''] ) def snake_case ( self : Dict ): self.move_direction(Direction.UP ) @input.mark(KEYMAP['''down'''] ) def snake_case ( self : List[str] ): self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['''newline'''] ) def snake_case ( self : List[str] ): move_cursor(len(self.choices ) - self.position , '''DOWN''' ) return self.position @input.mark(KEYMAP['''interrupt'''] ) def snake_case ( self : List[str] ): move_cursor(len(self.choices ) - self.position , '''DOWN''' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(__snake_case )] for number in range(10 )] ) def snake_case ( self : str ): lowerCamelCase :Dict = int(chr(self.current_selection ) ) lowerCamelCase :Union[str, Any] = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , __snake_case ) else: return else: return def snake_case ( self : int , __snake_case : int = 0 ): if self.prompt: linebreak() forceWrite(self.prompt , '''\n''' ) if in_colab: forceWrite('''Please input a choice index (starting from 0), and press enter''' , '''\n''' ) else: forceWrite('''Please select a choice using the arrow or number keys, and selecting with enter''' , '''\n''' ) lowerCamelCase :Tuple = default_choice for i in range(len(self.choices ) ): self.print_choice(__snake_case ) forceWrite('''\n''' ) move_cursor(len(self.choices ) - self.position , '''UP''' ) with cursor.hide(): while True: if in_colab: try: lowerCamelCase :List[Any] = int(builtins.input() ) except ValueError: lowerCamelCase :List[Any] = default_choice else: lowerCamelCase :Optional[int] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , '''UP''' ) clear_line() self.write_choice(__snake_case , '''\n''' ) return choice
702
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs A__ = imread(R"""digital_image_processing/image_data/lena_small.jpg""") A__ = cvtColor(img, COLOR_BGR2GRAY) def _lowerCamelCase ( ): lowerCamelCase :int = cn.convert_to_negative(a_) # assert negative_img array for at least one True assert negative_img.any() def _lowerCamelCase ( ): with Image.open('''digital_image_processing/image_data/lena_small.jpg''') as img: # Work around assertion for response assert str(cc.change_contrast(a_ , 1_10)).startswith( '''<PIL.Image.Image image mode=RGB size=100x100 at''') def _lowerCamelCase ( ): lowerCamelCase :Optional[Any] = canny.gen_gaussian_kernel(9 , sigma=1.4) # Assert ambiguous array assert resp.all() def _lowerCamelCase ( ): lowerCamelCase :str = imread('''digital_image_processing/image_data/lena_small.jpg''' , 0) # assert ambiguous array for all == True assert canny_img.all() lowerCamelCase :Optional[Any] = canny.canny(a_) # assert canny array for at least one True assert canny_array.any() def _lowerCamelCase ( ): assert gg.gaussian_filter(a_ , 5 , sigma=0.9).all() def _lowerCamelCase ( ): # laplace diagonals lowerCamelCase :List[Any] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]]) lowerCamelCase :List[Any] = conv.img_convolve(a_ , a_).astype(a_) assert res.any() def _lowerCamelCase ( ): assert med.median_filter(a_ , 3).any() def _lowerCamelCase ( ): lowerCamelCase , lowerCamelCase :Union[str, Any] = sob.sobel_filter(a_) assert grad.any() and theta.any() def _lowerCamelCase ( ): lowerCamelCase :Dict = sp.make_sepia(a_ , 20) assert sepia.all() def _lowerCamelCase ( a_ : str = "digital_image_processing/image_data/lena_small.jpg"): lowerCamelCase :Any = bs.Burkes(imread(a_ , 1) , 1_20) burkes.process() assert burkes.output_img.any() def _lowerCamelCase ( a_ : str = "digital_image_processing/image_data/lena_small.jpg" , ): lowerCamelCase :Tuple = rs.NearestNeighbour(imread(a_ , 1) , 4_00 , 2_00) nn.process() assert nn.output.any() def _lowerCamelCase ( ): lowerCamelCase :Tuple = '''digital_image_processing/image_data/lena.jpg''' # Reading the image and converting it to grayscale. lowerCamelCase :Tuple = imread(a_ , 0) # Test for get_neighbors_pixel function() return not None lowerCamelCase :Dict = 0 lowerCamelCase :Optional[Any] = 0 lowerCamelCase :str = image[x_coordinate][y_coordinate] lowerCamelCase :Any = lbp.get_neighbors_pixel( a_ , a_ , a_ , a_) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCamelCase :int = np.zeros((image.shape[0], image.shape[1])) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0]): for j in range(0 , image.shape[1]): lowerCamelCase :Optional[int] = lbp.local_binary_value(a_ , a_ , a_) assert lbp_image.any()
49
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() A__ = logging.get_logger(__name__) def _lowerCamelCase ( a_ : str , a_ : str=False): lowerCamelCase :Optional[int] = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''')) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''')) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''')) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''')) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''')) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''')) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''')) for stage_idx in range(len(config.backbone_config.depths)): for layer_idx in range(config.backbone_config.depths[stage_idx]): rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias")) # transformer encoder for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight")) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias")) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight")) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias")) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight")) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias")) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight")) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias")) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight")) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias")) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ]) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCamelCase :List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''') else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ]) # fmt: on return rename_keys def _lowerCamelCase ( a_ : Any , a_ : Any , a_ : int=False): for i in range(config.num_hidden_layers): if base_model: lowerCamelCase :Union[str, Any] = '''''' else: lowerCamelCase :Optional[int] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase :Optional[Any] = state_dict.pop(F"blocks.{i}.attn.qkv.weight") lowerCamelCase :Any = state_dict.pop(F"blocks.{i}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict lowerCamelCase :Any = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase :Tuple = in_proj_bias[: config.hidden_size] lowerCamelCase :int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase :Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase :Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase :List[Any] = in_proj_bias[-config.hidden_size :] def _lowerCamelCase ( a_ : int): lowerCamelCase :Any = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(a_ , a_) def _lowerCamelCase ( a_ : int , a_ : Any , a_ : Tuple): lowerCamelCase :Optional[Any] = dct.pop(a_) lowerCamelCase :str = val def _lowerCamelCase ( ): lowerCamelCase :Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase :Tuple = Image.open(requests.get(a_ , stream=a_).raw) return im @torch.no_grad() def _lowerCamelCase ( a_ : Optional[Any] , a_ : Optional[Any] , a_ : Optional[Any]=False): lowerCamelCase :Optional[int] = BitConfig( global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=a_ , ) lowerCamelCase :Optional[int] = ViTHybridConfig(backbone_config=a_ , image_size=3_84 , num_labels=10_00) lowerCamelCase :List[Any] = False # load original model from timm lowerCamelCase :List[str] = timm.create_model(a_ , pretrained=a_) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCamelCase :List[str] = timm_model.state_dict() if base_model: remove_classification_head_(a_) lowerCamelCase :Tuple = create_rename_keys(a_ , a_) for src, dest in rename_keys: rename_key(a_ , a_ , a_) read_in_q_k_v(a_ , a_ , a_) lowerCamelCase :List[str] = '''huggingface/label-files''' lowerCamelCase :Any = '''imagenet-1k-id2label.json''' lowerCamelCase :List[Any] = json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''') , '''r''')) lowerCamelCase :Optional[Any] = {int(a_): v for k, v in idalabel.items()} lowerCamelCase :Optional[int] = idalabel lowerCamelCase :Union[str, Any] = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": lowerCamelCase :Optional[Any] = ViTHybridModel(a_).eval() else: lowerCamelCase :Dict = ViTHybridForImageClassification(a_).eval() model.load_state_dict(a_) # create image processor lowerCamelCase :Dict = create_transform(**resolve_data_config({} , model=a_)) lowerCamelCase :str = transform.transforms lowerCamelCase :int = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } lowerCamelCase :Any = ViTHybridImageProcessor( do_resize=a_ , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=a_ , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=a_ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCamelCase :Dict = prepare_img() lowerCamelCase :str = transform(a_).unsqueeze(0) lowerCamelCase :str = processor(a_ , return_tensors='''pt''').pixel_values # verify pixel values assert torch.allclose(a_ , a_) # verify logits with torch.no_grad(): lowerCamelCase :Optional[int] = model(a_) lowerCamelCase :Union[str, Any] = outputs.logits print('''Predicted class:''' , logits.argmax(-1).item()) if base_model: lowerCamelCase :Union[str, Any] = timm_model.forward_features(a_) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(a_ , outputs.pooler_output , atol=1e-3) else: lowerCamelCase :List[str] = timm_model(a_) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(a_ , outputs.logits , atol=1e-3) print('''Looks ok!''') if pytorch_dump_folder_path is not None: Path(a_).mkdir(exist_ok=a_) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}") model.save_pretrained(a_) print(F"Saving processor to {pytorch_dump_folder_path}") processor.save_pretrained(a_) if push_to_hub: print(F"Pushing model and processor to the hub {vit_name}") model.push_to_hub(F"ybelkada/{vit_name}") processor.push_to_hub(F"ybelkada/{vit_name}") if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_r50_s16_384""", type=str, help="""Name of the hybrid ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) A__ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
703
import os from math import logaa def _lowerCamelCase ( a_ : str = "base_exp.txt"): lowerCamelCase :float = 0 lowerCamelCase :Optional[int] = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(a_) , a_))): lowerCamelCase , lowerCamelCase :Optional[int] = list(map(a_ , line.split(''','''))) if x * logaa(a_) > largest: lowerCamelCase :List[Any] = x * logaa(a_) lowerCamelCase :Any = i + 1 return result if __name__ == "__main__": print(solution())
49
0
'''simple docstring''' import numpy class _lowerCAmelCase : def __init__( self : Dict , __snake_case : numpy.ndarray , __snake_case : numpy.ndarray ): lowerCamelCase :Dict = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. lowerCamelCase :Dict = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. lowerCamelCase :Dict = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. lowerCamelCase :Any = numpy.random.rand(3 , 1 ) # Real output values provided. lowerCamelCase :Union[str, Any] = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. lowerCamelCase :List[str] = numpy.zeros(output_array.shape ) def snake_case ( self : Optional[int] ): lowerCamelCase :Any = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. lowerCamelCase :Any = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. lowerCamelCase :Dict = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def snake_case ( self : Any ): lowerCamelCase :Union[str, Any] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) lowerCamelCase :Dict = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) lowerCamelCase :int = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def snake_case ( self : Dict , __snake_case : numpy.ndarray , __snake_case : int , __snake_case : bool ): for iteration in range(1 , iterations + 1 ): lowerCamelCase :Union[str, Any] = self.feedforward() self.back_propagation() if give_loss: lowerCamelCase :Tuple = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"Iteration {iteration} Loss: {loss}" ) def snake_case ( self : Optional[int] , __snake_case : numpy.ndarray ): lowerCamelCase :int = input_arr lowerCamelCase :Union[str, Any] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) lowerCamelCase :Optional[Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) lowerCamelCase :Optional[int] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def _lowerCamelCase ( a_ : numpy.ndarray): return 1 / (1 + numpy.exp(-value)) def _lowerCamelCase ( a_ : numpy.ndarray): return (value) * (1 - (value)) def _lowerCamelCase ( ): lowerCamelCase :Optional[Any] = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. lowerCamelCase :int = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa) # Calling neural network class. lowerCamelCase :List[Any] = TwoHiddenLayerNeuralNetwork( input_array=a_ , output_array=a_) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=a_ , iterations=10 , give_loss=a_) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa)) if __name__ == "__main__": example()
704
def _lowerCamelCase ( a_ : list): if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''') for cell_n in range(1 , len(grid[0])): grid[0][cell_n] += grid[0][cell_n - 1] lowerCamelCase :Any = grid[0] for row_n in range(1 , len(a_)): lowerCamelCase :List[str] = grid[row_n] lowerCamelCase :Union[str, Any] = fill_row(a_ , a_) lowerCamelCase :List[Any] = grid[row_n] return grid[-1][-1] def _lowerCamelCase ( a_ : list , a_ : list): current_row[0] += row_above[0] for cell_n in range(1 , len(a_)): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n]) return current_row if __name__ == "__main__": import doctest doctest.testmod()
49
0
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): @property def snake_case ( self : Any ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case ( self : str ): lowerCamelCase :int = ort.SessionOptions() lowerCamelCase :Dict = False return options def snake_case ( self : Dict ): lowerCamelCase :int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) lowerCamelCase :List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) lowerCamelCase :Optional[int] = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=__snake_case , feature_extractor=__snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__snake_case ) lowerCamelCase :Optional[int] = '''A red cat sitting on a park bench''' lowerCamelCase :Optional[int] = np.random.RandomState(0 ) lowerCamelCase :int = pipe( prompt=__snake_case , image=__snake_case , mask_image=__snake_case , guidance_scale=7.5 , num_inference_steps=10 , generator=__snake_case , output_type='''np''' , ) lowerCamelCase :str = output.images lowerCamelCase :Tuple = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) lowerCamelCase :Tuple = np.array([0.2_5_1_4, 0.3_0_0_7, 0.3_5_1_7, 0.1_7_9_0, 0.2_3_8_2, 0.3_1_6_7, 0.1_9_4_4, 0.2_2_7_3, 0.2_4_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def snake_case ( self : List[Any] ): lowerCamelCase :Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) lowerCamelCase :Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) lowerCamelCase :int = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) lowerCamelCase :Any = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=__snake_case , safety_checker=__snake_case , feature_extractor=__snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__snake_case ) lowerCamelCase :Any = '''A red cat sitting on a park bench''' lowerCamelCase :Optional[int] = np.random.RandomState(0 ) lowerCamelCase :str = pipe( prompt=__snake_case , image=__snake_case , mask_image=__snake_case , guidance_scale=7.5 , num_inference_steps=20 , generator=__snake_case , output_type='''np''' , ) lowerCamelCase :str = output.images lowerCamelCase :Any = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) lowerCamelCase :Optional[Any] = np.array([0.0_0_8_6, 0.0_0_7_7, 0.0_0_8_3, 0.0_0_9_3, 0.0_1_0_7, 0.0_1_3_9, 0.0_0_9_4, 0.0_0_9_7, 0.0_1_2_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
705
import math def _lowerCamelCase ( a_ : int): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a_) + 1) , 6): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCamelCase ( a_ : float = 0.1): lowerCamelCase :Dict = 3 lowerCamelCase :List[Any] = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1): primes += is_prime(a_) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
49
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) A__ = { """configuration_lxmert""": ["""LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LxmertConfig"""], """tokenization_lxmert""": ["""LxmertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""LxmertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """LxmertEncoder""", """LxmertForPreTraining""", """LxmertForQuestionAnswering""", """LxmertModel""", """LxmertPreTrainedModel""", """LxmertVisualFeatureEncoder""", """LxmertXLayer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFLxmertForPreTraining""", """TFLxmertMainLayer""", """TFLxmertModel""", """TFLxmertPreTrainedModel""", """TFLxmertVisualFeatureEncoder""", ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
706
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : str ): lowerCamelCase :int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :List[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :Optional[Any] = -1 lowerCamelCase :List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Tuple = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :str = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowerCamelCase :str = TextStreamer(__snake_case ) model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case , streamer=__snake_case ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCamelCase :Optional[int] = cs.out[:-1] self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : Dict ): lowerCamelCase :Tuple = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :int = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :List[Any] = -1 lowerCamelCase :Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Tuple = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :List[Any] = tokenizer.decode(greedy_ids[0] ) lowerCamelCase :List[str] = TextIteratorStreamer(__snake_case ) lowerCamelCase :List[str] = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} lowerCamelCase :Tuple = Thread(target=model.generate , kwargs=__snake_case ) thread.start() lowerCamelCase :Any = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : str ): lowerCamelCase :int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :Dict = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :List[str] = -1 lowerCamelCase :Optional[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Optional[Any] = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :List[str] = greedy_ids[:, input_ids.shape[1] :] lowerCamelCase :Union[str, Any] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowerCamelCase :List[str] = TextStreamer(__snake_case , skip_prompt=__snake_case ) model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case , streamer=__snake_case ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCamelCase :int = cs.out[:-1] self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : Optional[int] ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them lowerCamelCase :List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) lowerCamelCase :Union[str, Any] = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(__snake_case ) lowerCamelCase :Optional[int] = -1 lowerCamelCase :Union[str, Any] = torch.ones((1, 5) , device=__snake_case ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowerCamelCase :Dict = TextStreamer(__snake_case , skip_special_tokens=__snake_case ) model.generate(__snake_case , max_new_tokens=1 , do_sample=__snake_case , streamer=__snake_case ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowerCamelCase :Tuple = cs.out[:-1] # Remove the final "\n" lowerCamelCase :int = tokenizer(__snake_case , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def snake_case ( self : List[Any] ): lowerCamelCase :List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :Optional[int] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :Optional[int] = -1 lowerCamelCase :Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :List[Any] = TextIteratorStreamer(__snake_case , timeout=0.0_0_1 ) lowerCamelCase :Dict = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} lowerCamelCase :Tuple = Thread(target=model.generate , kwargs=__snake_case ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__snake_case ): lowerCamelCase :Dict = '''''' for new_text in streamer: streamer_text += new_text
49
0
from ...configuration_utils import PretrainedConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = {"""openai-gpt""": """https://huggingface.co/openai-gpt/resolve/main/config.json"""} class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'openai-gpt' _UpperCAmelCase = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Dict , __snake_case : str=40478 , __snake_case : Any=512 , __snake_case : Tuple=768 , __snake_case : Any=12 , __snake_case : Tuple=12 , __snake_case : Union[str, Any]="gelu" , __snake_case : Dict=0.1 , __snake_case : Tuple=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Union[str, Any]=1e-5 , __snake_case : str=0.0_2 , __snake_case : Optional[int]="cls_index" , __snake_case : int=True , __snake_case : List[Any]=None , __snake_case : int=True , __snake_case : Any=0.1 , **__snake_case : Any , ): lowerCamelCase :List[str] = vocab_size lowerCamelCase :str = n_positions lowerCamelCase :Any = n_embd lowerCamelCase :str = n_layer lowerCamelCase :Optional[Any] = n_head lowerCamelCase :Tuple = afn lowerCamelCase :int = resid_pdrop lowerCamelCase :Optional[Any] = embd_pdrop lowerCamelCase :Any = attn_pdrop lowerCamelCase :Optional[Any] = layer_norm_epsilon lowerCamelCase :str = initializer_range lowerCamelCase :str = summary_type lowerCamelCase :int = summary_use_proj lowerCamelCase :int = summary_activation lowerCamelCase :Optional[Any] = summary_first_dropout lowerCamelCase :int = summary_proj_to_labels super().__init__(**__snake_case )
707
from maths.prime_factors import prime_factors def _lowerCamelCase ( a_ : int): if not isinstance(a_ , a_): lowerCamelCase :Tuple = F"Input value of [number={number}] must be an integer" raise TypeError(a_) if number < 1: raise ValueError('''Input must be a positive integer''') return -1 if len(prime_factors(a_)) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
49
0
from collections import defaultdict from math import gcd def _lowerCamelCase ( a_ : int = 1_50_00_00): lowerCamelCase :defaultdict = defaultdict(a_) lowerCamelCase :Optional[Any] = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , a_ , 2): if gcd(a_ , a_) > 1: continue lowerCamelCase :Dict = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(a_ , limit + 1 , a_): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1) if __name__ == "__main__": print(F'{solution() = }')
708
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() A__ = logging.get_logger(__name__) def _lowerCamelCase ( a_ : str , a_ : str=False): lowerCamelCase :Optional[int] = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''')) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''')) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''')) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''')) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''')) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''')) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''')) for stage_idx in range(len(config.backbone_config.depths)): for layer_idx in range(config.backbone_config.depths[stage_idx]): rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias")) # transformer encoder for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight")) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias")) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight")) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias")) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight")) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias")) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight")) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias")) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight")) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias")) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ]) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCamelCase :List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''') else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ]) # fmt: on return rename_keys def _lowerCamelCase ( a_ : Any , a_ : Any , a_ : int=False): for i in range(config.num_hidden_layers): if base_model: lowerCamelCase :Union[str, Any] = '''''' else: lowerCamelCase :Optional[int] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase :Optional[Any] = state_dict.pop(F"blocks.{i}.attn.qkv.weight") lowerCamelCase :Any = state_dict.pop(F"blocks.{i}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict lowerCamelCase :Any = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase :Tuple = in_proj_bias[: config.hidden_size] lowerCamelCase :int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase :Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase :Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase :List[Any] = in_proj_bias[-config.hidden_size :] def _lowerCamelCase ( a_ : int): lowerCamelCase :Any = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(a_ , a_) def _lowerCamelCase ( a_ : int , a_ : Any , a_ : Tuple): lowerCamelCase :Optional[Any] = dct.pop(a_) lowerCamelCase :str = val def _lowerCamelCase ( ): lowerCamelCase :Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase :Tuple = Image.open(requests.get(a_ , stream=a_).raw) return im @torch.no_grad() def _lowerCamelCase ( a_ : Optional[Any] , a_ : Optional[Any] , a_ : Optional[Any]=False): lowerCamelCase :Optional[int] = BitConfig( global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=a_ , ) lowerCamelCase :Optional[int] = ViTHybridConfig(backbone_config=a_ , image_size=3_84 , num_labels=10_00) lowerCamelCase :List[Any] = False # load original model from timm lowerCamelCase :List[str] = timm.create_model(a_ , pretrained=a_) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCamelCase :List[str] = timm_model.state_dict() if base_model: remove_classification_head_(a_) lowerCamelCase :Tuple = create_rename_keys(a_ , a_) for src, dest in rename_keys: rename_key(a_ , a_ , a_) read_in_q_k_v(a_ , a_ , a_) lowerCamelCase :List[str] = '''huggingface/label-files''' lowerCamelCase :Any = '''imagenet-1k-id2label.json''' lowerCamelCase :List[Any] = json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''') , '''r''')) lowerCamelCase :Optional[Any] = {int(a_): v for k, v in idalabel.items()} lowerCamelCase :Optional[int] = idalabel lowerCamelCase :Union[str, Any] = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": lowerCamelCase :Optional[Any] = ViTHybridModel(a_).eval() else: lowerCamelCase :Dict = ViTHybridForImageClassification(a_).eval() model.load_state_dict(a_) # create image processor lowerCamelCase :Dict = create_transform(**resolve_data_config({} , model=a_)) lowerCamelCase :str = transform.transforms lowerCamelCase :int = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } lowerCamelCase :Any = ViTHybridImageProcessor( do_resize=a_ , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=a_ , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=a_ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCamelCase :Dict = prepare_img() lowerCamelCase :str = transform(a_).unsqueeze(0) lowerCamelCase :str = processor(a_ , return_tensors='''pt''').pixel_values # verify pixel values assert torch.allclose(a_ , a_) # verify logits with torch.no_grad(): lowerCamelCase :Optional[int] = model(a_) lowerCamelCase :Union[str, Any] = outputs.logits print('''Predicted class:''' , logits.argmax(-1).item()) if base_model: lowerCamelCase :Union[str, Any] = timm_model.forward_features(a_) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(a_ , outputs.pooler_output , atol=1e-3) else: lowerCamelCase :List[str] = timm_model(a_) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(a_ , outputs.logits , atol=1e-3) print('''Looks ok!''') if pytorch_dump_folder_path is not None: Path(a_).mkdir(exist_ok=a_) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}") model.save_pretrained(a_) print(F"Saving processor to {pytorch_dump_folder_path}") processor.save_pretrained(a_) if push_to_hub: print(F"Pushing model and processor to the hub {vit_name}") model.push_to_hub(F"ybelkada/{vit_name}") processor.push_to_hub(F"ybelkada/{vit_name}") if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_r50_s16_384""", type=str, help="""Name of the hybrid ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) A__ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
49
0
_UpperCamelCase = """ # Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git """ _UpperCamelCase = [{"""type""": """code""", """content""": INSTALL_CONTENT}] _UpperCamelCase = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
709
def _lowerCamelCase ( a_ : int = 4_00_00_00): lowerCamelCase :Dict = [0, 1] lowerCamelCase :Optional[Any] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1]) if fib[i + 2] > n: break i += 1 lowerCamelCase :Dict = 0 for j in range(len(a_) - 1): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F'{solution() = }')
49
0
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): A__ = """pt""" elif is_tf_available(): A__ = """tf""" else: A__ = """jax""" class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = ByTaTokenizer _UpperCAmelCase = False def snake_case ( self : Dict ): super().setUp() lowerCamelCase :Optional[Any] = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def snake_case ( self : Dict ): return ByTaTokenizer.from_pretrained('''google/byt5-small''' ) def snake_case ( self : Any , **__snake_case : List[Any] ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Optional[int] , __snake_case : Union[str, Any] , __snake_case : int=False , __snake_case : Union[str, Any]=20 , __snake_case : Tuple=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. lowerCamelCase :Optional[int] = [] for i in range(len(__snake_case ) ): try: lowerCamelCase :List[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=__snake_case ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowerCamelCase :Optional[int] = list(filter(lambda __snake_case : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , __snake_case ) ) lowerCamelCase :List[str] = list(filter(lambda __snake_case : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=__snake_case ) , __snake_case ) ) if max_length is not None and len(__snake_case ) > max_length: lowerCamelCase :List[Any] = toks[:max_length] if min_length is not None and len(__snake_case ) < min_length and len(__snake_case ) > 0: while len(__snake_case ) < min_length: lowerCamelCase :Optional[int] = toks + toks # toks_str = [t[1] for t in toks] lowerCamelCase :List[str] = [t[0] for t in toks] # Ensure consistency lowerCamelCase :Any = tokenizer.decode(__snake_case , clean_up_tokenization_spaces=__snake_case ) if " " not in output_txt and len(__snake_case ) > 1: lowerCamelCase :List[str] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__snake_case ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__snake_case ) ) if with_prefix_space: lowerCamelCase :List[str] = ''' ''' + output_txt lowerCamelCase :Optional[int] = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) return output_txt, output_ids def snake_case ( self : List[str] ): lowerCamelCase :List[str] = self.ta_base_tokenizer lowerCamelCase :List[str] = tokenizer(['''hi</s>''', '''I went to the gym</s>''', '''</s>'''] ) lowerCamelCase :Optional[int] = tokenizer(['''hi''', '''I went to the gym''', ''''''] ) self.assertListEqual(batch_with_eos_added['''input_ids'''] , batch_without_eos_added['''input_ids'''] ) def snake_case ( self : Optional[int] ): lowerCamelCase :Union[str, Any] = self.ta_base_tokenizer lowerCamelCase :Union[str, Any] = '''Unicode €.''' lowerCamelCase :Optional[Any] = tokenizer(__snake_case ) lowerCamelCase :Union[str, Any] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['''input_ids'''] , __snake_case ) # decoding lowerCamelCase :Union[str, Any] = tokenizer.decode(__snake_case ) self.assertEqual(__snake_case , '''Unicode €.</s>''' ) lowerCamelCase :str = tokenizer('''e è é ê ë''' ) lowerCamelCase :Dict = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['''input_ids'''] , __snake_case ) # decoding lowerCamelCase :Optional[Any] = tokenizer.decode(__snake_case ) self.assertEqual(__snake_case , '''e è é ê ë</s>''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''e è é ê ë</s>''' ) def snake_case ( self : Any ): lowerCamelCase :Tuple = self.ta_base_tokenizer lowerCamelCase :Any = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off lowerCamelCase :Optional[Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on lowerCamelCase :Any = tokenizer(__snake_case , padding=__snake_case , return_tensors=__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) if FRAMEWORK != "jax": lowerCamelCase :str = list(batch.input_ids.numpy()[0] ) else: lowerCamelCase :Optional[int] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(__snake_case , __snake_case ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Optional[Any] = self.ta_base_tokenizer lowerCamelCase :Tuple = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowerCamelCase :Tuple = tokenizer(__snake_case , padding=__snake_case , return_tensors=__snake_case ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , __snake_case ) self.assertIn('''attention_mask''' , __snake_case ) self.assertNotIn('''decoder_input_ids''' , __snake_case ) self.assertNotIn('''decoder_attention_mask''' , __snake_case ) def snake_case ( self : Optional[int] ): lowerCamelCase :Dict = self.ta_base_tokenizer lowerCamelCase :int = [ '''Summary of the text.''', '''Another summary.''', ] lowerCamelCase :List[str] = tokenizer( text_target=__snake_case , max_length=32 , padding='''max_length''' , truncation=__snake_case , return_tensors=__snake_case ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def snake_case ( self : List[str] ): lowerCamelCase :Union[str, Any] = self.ta_base_tokenizer lowerCamelCase :int = ['''A long paragraph for summarization. </s>'''] lowerCamelCase :Tuple = ['''Summary of the text. </s>'''] # fmt: off lowerCamelCase :Dict = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] lowerCamelCase :Tuple = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on lowerCamelCase :Optional[int] = tokenizer(__snake_case , text_target=__snake_case ) self.assertEqual(__snake_case , batch['''input_ids'''][0] ) self.assertEqual(__snake_case , batch['''labels'''][0] ) def snake_case ( self : List[str] ): # safety check on max_len default value so we are sure the test works lowerCamelCase :Tuple = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test lowerCamelCase :List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase :List[Any] = tempfile.mkdtemp() lowerCamelCase :Optional[Any] = ''' He is very happy, UNwant\u00E9d,running''' lowerCamelCase :int = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) tokenizer.save_pretrained(__snake_case ) lowerCamelCase :int = tokenizer.__class__.from_pretrained(__snake_case ) lowerCamelCase :Optional[Any] = after_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) shutil.rmtree(__snake_case ) lowerCamelCase :Any = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase :int = tempfile.mkdtemp() lowerCamelCase :Union[str, Any] = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) lowerCamelCase :List[Any] = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) lowerCamelCase :int = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) tokenizer.save_pretrained(__snake_case ) lowerCamelCase :int = tokenizer.__class__.from_pretrained(__snake_case ) lowerCamelCase :Any = after_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) lowerCamelCase :Optional[int] = tokenizer.__class__.from_pretrained(__snake_case , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__snake_case ) def snake_case ( self : List[Any] ): lowerCamelCase :Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__snake_case ) with open(os.path.join(__snake_case , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: lowerCamelCase :List[Any] = json.load(__snake_case ) with open(os.path.join(__snake_case , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: lowerCamelCase :Any = json.load(__snake_case ) lowerCamelCase :Optional[int] = [F"<extra_id_{i}>" for i in range(125 )] lowerCamelCase :Optional[Any] = added_tokens_extra_ids + [ '''an_additional_special_token''' ] lowerCamelCase :Union[str, Any] = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(__snake_case , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(__snake_case , __snake_case ) with open(os.path.join(__snake_case , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(__snake_case , __snake_case ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCamelCase :List[Any] = tokenizer_class.from_pretrained( __snake_case , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCamelCase :Any = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=__snake_case )] lowerCamelCase :Optional[int] = tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def snake_case ( self : Optional[int] ): lowerCamelCase :Any = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__snake_case ) lowerCamelCase :Tuple = tokenizer_class.from_pretrained(__snake_case ) self.assertTrue(tokenizer.decode([255] ) == '''''' ) def snake_case ( self : Tuple ): pass def snake_case ( self : Dict ): pass def snake_case ( self : Optional[Any] ): pass def snake_case ( self : Union[str, Any] ): pass def snake_case ( self : int ): # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens lowerCamelCase :Any = self.get_tokenizers(fast=__snake_case , do_lower_case=__snake_case ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): lowerCamelCase :str = ['''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''x''', '''t''', '''</s>'''] lowerCamelCase :Tuple = tokenizer.convert_tokens_to_string(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def snake_case ( self : Tuple ): lowerCamelCase :Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): lowerCamelCase :Union[str, Any] = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] lowerCamelCase :Dict = 0 lowerCamelCase :List[Any] = tokenizer.convert_ids_to_tokens( __snake_case , skip_special_tokens=__snake_case ) for attr in attributes_list: setattr(__snake_case , attr + '''_id''' , __snake_case ) self.assertEqual(getattr(__snake_case , __snake_case ) , __snake_case ) self.assertEqual(getattr(__snake_case , attr + '''_id''' ) , __snake_case ) setattr(__snake_case , attr + '''_id''' , __snake_case ) self.assertEqual(getattr(__snake_case , __snake_case ) , __snake_case ) self.assertEqual(getattr(__snake_case , attr + '''_id''' ) , __snake_case ) setattr(__snake_case , '''additional_special_tokens_ids''' , [] ) self.assertListEqual(getattr(__snake_case , '''additional_special_tokens''' ) , [] ) self.assertListEqual(getattr(__snake_case , '''additional_special_tokens_ids''' ) , [] ) setattr(__snake_case , '''additional_special_tokens_ids''' , [token_id_to_test_setters] ) self.assertListEqual(getattr(__snake_case , '''additional_special_tokens''' ) , [token_to_test_setters] ) self.assertListEqual(getattr(__snake_case , '''additional_special_tokens_ids''' ) , [token_id_to_test_setters] )
710
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ = { """configuration_nllb_moe""": [ """NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NllbMoeConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""", """NllbMoeForConditionalGeneration""", """NllbMoeModel""", """NllbMoePreTrainedModel""", """NllbMoeTop2Router""", """NllbMoeSparseMLP""", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
49
0