code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
def _lowerCamelCase ( a_ : int): # noqa: E741 lowerCamelCase :List[Any] = len(a_) lowerCamelCase :List[str] = 0 lowerCamelCase :Union[str, Any] = [0] * n lowerCamelCase :Optional[int] = [False] * n lowerCamelCase :Optional[int] = [False] * n def dfs(a_ : List[str] , a_ : Dict , a_ : Union[str, Any] , a_ : List[str]): if parent == root: out_edge_count += 1 lowerCamelCase :List[Any] = True lowerCamelCase :Optional[Any] = at for to in l[at]: if to == parent: pass elif not visited[to]: lowerCamelCase :str = dfs(a_ , a_ , a_ , a_) lowerCamelCase :List[Any] = min(low[at] , low[to]) # AP found via bridge if at < low[to]: lowerCamelCase :Optional[int] = True # AP found via cycle if at == low[to]: lowerCamelCase :str = True else: lowerCamelCase :Any = min(low[at] , a_) return out_edge_count for i in range(a_): if not visited[i]: lowerCamelCase :Any = 0 lowerCamelCase :Dict = dfs(a_ , a_ , -1 , a_) lowerCamelCase :List[str] = out_edge_count > 1 for x in range(len(a_)): if is_art[x] is True: print(a_) # Adjacency list of graph A__ = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
711
import numpy class _lowerCAmelCase : def __init__( self : Dict , __snake_case : numpy.ndarray , __snake_case : numpy.ndarray ): lowerCamelCase :Dict = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. lowerCamelCase :Dict = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. lowerCamelCase :Dict = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. lowerCamelCase :Any = numpy.random.rand(3 , 1 ) # Real output values provided. lowerCamelCase :Union[str, Any] = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. lowerCamelCase :List[str] = numpy.zeros(output_array.shape ) def snake_case ( self : Optional[int] ): lowerCamelCase :Any = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. lowerCamelCase :Any = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. lowerCamelCase :Dict = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def snake_case ( self : Any ): lowerCamelCase :Union[str, Any] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) lowerCamelCase :Dict = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) lowerCamelCase :int = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def snake_case ( self : Dict , __snake_case : numpy.ndarray , __snake_case : int , __snake_case : bool ): for iteration in range(1 , iterations + 1 ): lowerCamelCase :Union[str, Any] = self.feedforward() self.back_propagation() if give_loss: lowerCamelCase :Tuple = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"Iteration {iteration} Loss: {loss}" ) def snake_case ( self : Optional[int] , __snake_case : numpy.ndarray ): lowerCamelCase :int = input_arr lowerCamelCase :Union[str, Any] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) lowerCamelCase :Optional[Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) lowerCamelCase :Optional[int] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def _lowerCamelCase ( a_ : numpy.ndarray): return 1 / (1 + numpy.exp(-value)) def _lowerCamelCase ( a_ : numpy.ndarray): return (value) * (1 - (value)) def _lowerCamelCase ( ): lowerCamelCase :Optional[Any] = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. lowerCamelCase :int = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa) # Calling neural network class. lowerCamelCase :List[Any] = TwoHiddenLayerNeuralNetwork( input_array=a_ , output_array=a_) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=a_ , iterations=10 , give_loss=a_) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa)) if __name__ == "__main__": example()
49
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A__ = { """configuration_electra""": ["""ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ElectraConfig""", """ElectraOnnxConfig"""], """tokenization_electra""": ["""ElectraTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""ElectraTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """ElectraForCausalLM""", """ElectraForMaskedLM""", """ElectraForMultipleChoice""", """ElectraForPreTraining""", """ElectraForQuestionAnswering""", """ElectraForSequenceClassification""", """ElectraForTokenClassification""", """ElectraModel""", """ElectraPreTrainedModel""", """load_tf_weights_in_electra""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFElectraForMaskedLM""", """TFElectraForMultipleChoice""", """TFElectraForPreTraining""", """TFElectraForQuestionAnswering""", """TFElectraForSequenceClassification""", """TFElectraForTokenClassification""", """TFElectraModel""", """TFElectraPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """FlaxElectraForCausalLM""", """FlaxElectraForMaskedLM""", """FlaxElectraForMultipleChoice""", """FlaxElectraForPreTraining""", """FlaxElectraForQuestionAnswering""", """FlaxElectraForSequenceClassification""", """FlaxElectraForTokenClassification""", """FlaxElectraModel""", """FlaxElectraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
712
def _lowerCamelCase ( a_ : str , a_ : str): lowerCamelCase :List[str] = len(a_) lowerCamelCase :List[str] = len(a_) lowerCamelCase :int = [[False for _ in range(m + 1)] for _ in range(n + 1)] lowerCamelCase :Optional[Any] = True for i in range(a_): for j in range(m + 1): if dp[i][j]: if j < m and a[i].upper() == b[j]: lowerCamelCase :Any = True if a[i].islower(): lowerCamelCase :List[str] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
49
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A__ = { """configuration_graphormer""": ["""GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GraphormerConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """GraphormerForGraphClassification""", """GraphormerModel""", """GraphormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
713
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : def __init__( self : Any , __snake_case : Optional[int] , __snake_case : int=13 , __snake_case : str=[30, 30] , __snake_case : Tuple=2 , __snake_case : Optional[Any]=3 , __snake_case : int=True , __snake_case : Tuple=True , __snake_case : List[Any]=32 , __snake_case : int=5 , __snake_case : Optional[Any]=4 , __snake_case : Union[str, Any]=37 , __snake_case : str="gelu" , __snake_case : Tuple=0.1 , __snake_case : List[Any]=0.1 , __snake_case : Union[str, Any]=10 , __snake_case : str=0.0_2 , __snake_case : Union[str, Any]=3 , __snake_case : Union[str, Any]=None , __snake_case : List[str]=8 , __snake_case : Any=10 , ): lowerCamelCase :Optional[Any] = parent lowerCamelCase :List[Any] = batch_size lowerCamelCase :Any = image_size lowerCamelCase :Union[str, Any] = patch_size lowerCamelCase :Any = num_channels lowerCamelCase :List[Any] = is_training lowerCamelCase :Optional[Any] = use_labels lowerCamelCase :Any = hidden_size lowerCamelCase :List[Any] = num_hidden_layers lowerCamelCase :List[str] = num_attention_heads lowerCamelCase :Tuple = intermediate_size lowerCamelCase :List[str] = hidden_act lowerCamelCase :List[str] = hidden_dropout_prob lowerCamelCase :Any = attention_probs_dropout_prob lowerCamelCase :List[Any] = type_sequence_label_size lowerCamelCase :Optional[int] = initializer_range lowerCamelCase :List[Any] = num_labels lowerCamelCase :Any = scope lowerCamelCase :Union[str, Any] = n_targets lowerCamelCase :Optional[Any] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowerCamelCase :Tuple = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowerCamelCase :str = num_patches + 1 + self.num_detection_tokens def snake_case ( self : List[str] ): lowerCamelCase :str = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowerCamelCase :List[str] = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowerCamelCase :Optional[int] = [] for i in range(self.batch_size ): lowerCamelCase :List[str] = {} lowerCamelCase :Tuple = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=__snake_case ) lowerCamelCase :List[str] = torch.rand(self.n_targets , 4 , device=__snake_case ) labels.append(__snake_case ) lowerCamelCase :str = self.get_config() return config, pixel_values, labels def snake_case ( self : Union[str, Any] ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__snake_case , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def snake_case ( self : Tuple , __snake_case : Tuple , __snake_case : Tuple , __snake_case : Any ): lowerCamelCase :Optional[Any] = YolosModel(config=__snake_case ) model.to(__snake_case ) model.eval() lowerCamelCase :Union[str, Any] = model(__snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def snake_case ( self : Dict , __snake_case : str , __snake_case : Optional[int] , __snake_case : Optional[Any] ): lowerCamelCase :int = YolosForObjectDetection(__snake_case ) model.to(__snake_case ) model.eval() lowerCamelCase :str = model(pixel_values=__snake_case ) lowerCamelCase :Any = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) lowerCamelCase :int = model(pixel_values=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def snake_case ( self : int ): lowerCamelCase :List[Any] = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase :str = config_and_inputs lowerCamelCase :Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () _UpperCAmelCase = ( {'feature-extraction': YolosModel, 'object-detection': YolosForObjectDetection} if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def snake_case ( self : Any , __snake_case : List[Any] , __snake_case : Tuple , __snake_case : Dict=False ): lowerCamelCase :Optional[int] = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowerCamelCase :Dict = [] for i in range(self.model_tester.batch_size ): lowerCamelCase :Optional[Any] = {} lowerCamelCase :List[Any] = torch.ones( size=(self.model_tester.n_targets,) , device=__snake_case , dtype=torch.long ) lowerCamelCase :str = torch.ones( self.model_tester.n_targets , 4 , device=__snake_case , dtype=torch.float ) labels.append(__snake_case ) lowerCamelCase :Union[str, Any] = labels return inputs_dict def snake_case ( self : Tuple ): lowerCamelCase :Union[str, Any] = YolosModelTester(self ) lowerCamelCase :Dict = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=37 ) def snake_case ( self : Union[str, Any] ): self.config_tester.run_common_tests() def snake_case ( self : Optional[Any] ): # YOLOS does not use inputs_embeds pass def snake_case ( self : Tuple ): lowerCamelCase , lowerCamelCase :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :Optional[int] = model_class(__snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase :str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case , nn.Linear ) ) def snake_case ( self : str ): lowerCamelCase , lowerCamelCase :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :str = model_class(__snake_case ) lowerCamelCase :Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase :Tuple = [*signature.parameters.keys()] lowerCamelCase :Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __snake_case ) def snake_case ( self : int ): lowerCamelCase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def snake_case ( self : str ): lowerCamelCase , lowerCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase :int = True # in YOLOS, the seq_len is different lowerCamelCase :str = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowerCamelCase :str = True lowerCamelCase :Tuple = False lowerCamelCase :Optional[int] = True lowerCamelCase :int = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :str = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :str = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase :Optional[Any] = True lowerCamelCase :str = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :Tuple = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Tuple = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowerCamelCase :Optional[int] = len(__snake_case ) # Check attention is always last and order is fine lowerCamelCase :Union[str, Any] = True lowerCamelCase :List[Any] = True lowerCamelCase :Tuple = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :int = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Dict = 1 self.assertEqual(out_len + added_hidden_states , len(__snake_case ) ) lowerCamelCase :Dict = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def snake_case ( self : List[str] ): def check_hidden_states_output(__snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Tuple ): lowerCamelCase :Union[str, Any] = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :Any = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Optional[Any] = outputs.hidden_states lowerCamelCase :Any = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__snake_case ) , __snake_case ) # YOLOS has a different seq_length lowerCamelCase :List[str] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowerCamelCase , lowerCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :Union[str, Any] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase :Any = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*__snake_case ) @slow def snake_case ( self : Dict ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase :Tuple = YolosModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def _lowerCamelCase ( ): lowerCamelCase :int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): @cached_property def snake_case ( self : Tuple ): return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def snake_case ( self : Dict ): lowerCamelCase :Union[str, Any] = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(__snake_case ) lowerCamelCase :Optional[Any] = self.default_image_processor lowerCamelCase :str = prepare_img() lowerCamelCase :Dict = image_processor(images=__snake_case , return_tensors='''pt''' ).to(__snake_case ) # forward pass with torch.no_grad(): lowerCamelCase :Optional[Any] = model(inputs.pixel_values ) # verify outputs lowerCamelCase :int = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , __snake_case ) lowerCamelCase :Any = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=__snake_case , ) lowerCamelCase :Any = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __snake_case , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , __snake_case , atol=1e-4 ) ) # verify postprocessing lowerCamelCase :List[str] = image_processor.post_process_object_detection( __snake_case , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] lowerCamelCase :List[str] = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(__snake_case ) lowerCamelCase :str = [75, 75, 17, 63, 17] lowerCamelCase :Tuple = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(__snake_case ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , __snake_case , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , __snake_case ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , __snake_case ) )
49
0
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class _lowerCAmelCase ( datasets.BeamBasedBuilder ): def snake_case ( self : str ): return datasets.DatasetInfo( features=datasets.Features({'''content''': datasets.Value('''string''' )} ) , supervised_keys=__snake_case , ) def snake_case ( self : int , __snake_case : Optional[Any] , __snake_case : Optional[Any] ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_dummy_examples()} )] def snake_case ( self : int , __snake_case : int , __snake_case : Dict ): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__snake_case ) class _lowerCAmelCase ( datasets.BeamBasedBuilder ): def snake_case ( self : Union[str, Any] ): return datasets.DatasetInfo( features=datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) , supervised_keys=__snake_case , ) def snake_case ( self : Optional[int] , __snake_case : Dict , __snake_case : Union[str, Any] ): return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_nested_examples()} ) ] def snake_case ( self : int , __snake_case : Optional[Any] , __snake_case : Dict ): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__snake_case ) def _lowerCAmelCase ( ): return [(i, {"content": content}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''])] def _lowerCAmelCase ( ): return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''])] class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): @require_beam def snake_case ( self : str ): lowerCamelCase :Any = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowerCamelCase :List[str] = DummyBeamDataset(cache_dir=__snake_case , beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__snake_case , builder.name , '''default''' , '''0.0.0''' , F"{builder.name}-train.arrow" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) ) lowerCamelCase :int = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __snake_case ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __snake_case ) self.assertDictEqual(dset['''train'''][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__snake_case , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset @require_beam def snake_case ( self : Optional[int] ): import apache_beam as beam lowerCamelCase :Optional[Any] = beam.io.parquetio.WriteToParquet lowerCamelCase :Dict = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowerCamelCase :Tuple = DummyBeamDataset(cache_dir=__snake_case , beam_runner='''DirectRunner''' ) with patch('''apache_beam.io.parquetio.WriteToParquet''' ) as write_parquet_mock: lowerCamelCase :Optional[Any] = partial(__snake_case , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( __snake_case , builder.name , '''default''' , '''0.0.0''' , F"{builder.name}-train-00000-of-00002.arrow" ) ) ) self.assertTrue( os.path.exists( os.path.join( __snake_case , builder.name , '''default''' , '''0.0.0''' , F"{builder.name}-train-00000-of-00002.arrow" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) ) lowerCamelCase :int = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __snake_case ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __snake_case ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['''train''']['''content'''] ) , sorted(['''foo''', '''bar''', '''foobar'''] ) ) self.assertTrue( os.path.exists(os.path.join(__snake_case , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset @require_beam def snake_case ( self : Any ): with tempfile.TemporaryDirectory() as tmp_cache_dir: lowerCamelCase :Any = DummyBeamDataset(cache_dir=__snake_case ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def snake_case ( self : Optional[int] ): lowerCamelCase :int = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowerCamelCase :Tuple = NestedBeamDataset(cache_dir=__snake_case , beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__snake_case , builder.name , '''default''' , '''0.0.0''' , F"{builder.name}-train.arrow" ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) ) lowerCamelCase :Tuple = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __snake_case ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __snake_case ) self.assertDictEqual(dset['''train'''][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__snake_case , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset
714
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Tuple ): lowerCamelCase :List[Any] = inspect.getfile(accelerate.test_utils ) lowerCamelCase :Dict = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 lowerCamelCase :Any = test_metrics @require_cpu def snake_case ( self : Dict ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def snake_case ( self : int ): debug_launcher(self.test_metrics.main ) @require_single_gpu def snake_case ( self : Any ): self.test_metrics.main() @require_multi_gpu def snake_case ( self : Optional[int] ): print(F"Found {torch.cuda.device_count()} devices." ) lowerCamelCase :Optional[int] = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__snake_case , env=os.environ.copy() )
49
0
from typing import Any def _lowerCamelCase ( a_ : list , a_ : list , a_ : dict , a_ : dict , a_ : dict , ): _validation( a_ , a_ , a_ , a_ , a_ , ) # Creates data structures and fill initial step lowerCamelCase :dict = {} lowerCamelCase :dict = {} for state in states_space: lowerCamelCase :Dict = observations_space[0] lowerCamelCase :Optional[int] = ( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCamelCase :str = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(a_)): lowerCamelCase :Dict = observations_space[o] lowerCamelCase :Tuple = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCamelCase :Union[str, Any] = '''''' lowerCamelCase :List[str] = -1 for k_state in states_space: lowerCamelCase :List[Any] = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCamelCase :Optional[Any] = probability lowerCamelCase :Optional[int] = k_state # Update probabilities and pointers dicts lowerCamelCase :str = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCamelCase :int = arg_max # The final observation lowerCamelCase :str = observations_space[len(a_) - 1] # argmax for given final observation lowerCamelCase :str = '''''' lowerCamelCase :Optional[Any] = -1 for k_state in states_space: lowerCamelCase :Union[str, Any] = probabilities[(k_state, final_observation)] if probability > max_probability: lowerCamelCase :str = probability lowerCamelCase :List[Any] = k_state lowerCamelCase :Optional[Any] = arg_max # Process pointers backwards lowerCamelCase :List[str] = last_state lowerCamelCase :Any = [] for o in range(len(a_) - 1 , -1 , -1): result.append(a_) lowerCamelCase :List[Any] = pointers[previous, observations_space[o]] result.reverse() return result def _lowerCamelCase ( a_ : Any , a_ : Any , a_ : Any , a_ : Any , a_ : Any , ): _validate_not_empty( a_ , a_ , a_ , a_ , a_ , ) _validate_lists(a_ , a_) _validate_dicts( a_ , a_ , a_) def _lowerCamelCase ( a_ : Any , a_ : Any , a_ : Any , a_ : Any , a_ : Any , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ]): raise ValueError('''There\'s an empty parameter''') def _lowerCamelCase ( a_ : Any , a_ : Any): _validate_list(a_ , '''observations_space''') _validate_list(a_ , '''states_space''') def _lowerCamelCase ( a_ : Any , a_ : str): if not isinstance(_object , a_): lowerCamelCase :Dict = F"{var_name} must be a list" raise ValueError(a_) else: for x in _object: if not isinstance(a_ , a_): lowerCamelCase :List[str] = F"{var_name} must be a list of strings" raise ValueError(a_) def _lowerCamelCase ( a_ : Any , a_ : Any , a_ : Any , ): _validate_dict(a_ , '''initial_probabilities''' , a_) _validate_nested_dict(a_ , '''transition_probabilities''') _validate_nested_dict(a_ , '''emission_probabilities''') def _lowerCamelCase ( a_ : Any , a_ : str): _validate_dict(_object , a_ , a_) for x in _object.values(): _validate_dict(a_ , a_ , a_ , a_) def _lowerCamelCase ( a_ : Any , a_ : str , a_ : type , a_ : bool = False): if not isinstance(_object , a_): lowerCamelCase :str = F"{var_name} must be a dict" raise ValueError(a_) if not all(isinstance(a_ , a_) for x in _object): lowerCamelCase :Tuple = F"{var_name} all keys must be strings" raise ValueError(a_) if not all(isinstance(a_ , a_) for x in _object.values()): lowerCamelCase :Dict = '''nested dictionary ''' if nested else '''''' lowerCamelCase :Optional[int] = F"{var_name} {nested_text}all values must be {value_type.__name__}" raise ValueError(a_) if __name__ == "__main__": from doctest import testmod testmod()
715
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = '' _UpperCAmelCase = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) _UpperCAmelCase = None # compression type in fsspec. ex: "gzip" _UpperCAmelCase = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : str , __snake_case : str = "" , __snake_case : Optional[str] = None , __snake_case : Optional[dict] = None , **__snake_case : Dict ): super().__init__(self , **__snake_case ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode lowerCamelCase :Optional[Any] = fsspec.open( __snake_case , mode='''rb''' , protocol=__snake_case , compression=self.compression , client_kwargs={ '''requote_redirect_url''': False, # see https://github.com/huggingface/datasets/pull/5459 '''trust_env''': True, # Enable reading proxy env variables. **(target_options or {}).pop('''client_kwargs''' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) lowerCamelCase :List[str] = os.path.basename(self.file.path.split('''::''' )[0] ) lowerCamelCase :Dict = ( self.compressed_name[: self.compressed_name.rindex('''.''' )] if '''.''' in self.compressed_name else self.compressed_name ) lowerCamelCase :List[str] = None @classmethod def snake_case ( cls : Any , __snake_case : Any ): # compressed file paths are always relative to the archive root return super()._strip_protocol(__snake_case ).lstrip('''/''' ) def snake_case ( self : Any ): if self.dir_cache is None: lowerCamelCase :Optional[Any] = {**self.file.fs.info(self.file.path ), '''name''': self.uncompressed_name} lowerCamelCase :Optional[Any] = {f['''name''']: f} def snake_case ( self : Union[str, Any] , __snake_case : str ): return self.file.open().read() def snake_case ( self : Optional[int] , __snake_case : str , __snake_case : str = "rb" , __snake_case : int=None , __snake_case : Optional[int]=True , __snake_case : str=None , **__snake_case : str , ): lowerCamelCase :List[str] = self._strip_protocol(__snake_case ) if mode != "rb": raise ValueError(F"Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'" ) return self.file.open() class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'bz2' _UpperCAmelCase = 'bz2' _UpperCAmelCase = '.bz2' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'gzip' _UpperCAmelCase = 'gzip' _UpperCAmelCase = '.gz' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'lz4' _UpperCAmelCase = 'lz4' _UpperCAmelCase = '.lz4' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'xz' _UpperCAmelCase = 'xz' _UpperCAmelCase = '.xz' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'zstd' _UpperCAmelCase = 'zstd' _UpperCAmelCase = '.zst' def __init__( self : str , __snake_case : str , __snake_case : str = "rb" , __snake_case : Optional[str] = None , __snake_case : Optional[dict] = None , __snake_case : int = DEFAULT_BLOCK_SIZE , **__snake_case : int , ): super().__init__( fo=__snake_case , mode=__snake_case , target_protocol=__snake_case , target_options=__snake_case , block_size=__snake_case , **__snake_case , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 lowerCamelCase :Tuple = self.file.__enter__ class _lowerCAmelCase : def __init__( self : Dict , __snake_case : Tuple ): lowerCamelCase :Optional[int] = file_ def __enter__( self : Optional[int] ): self._file.__enter__() return self def __exit__( self : str , *__snake_case : Optional[Any] , **__snake_case : List[Any] ): self._file.__exit__(*__snake_case , **__snake_case ) def __iter__( self : Optional[Any] ): return iter(self._file ) def snake_case ( self : List[Any] ): return next(self._file ) def __getattr__( self : Any , __snake_case : str ): return getattr(self._file , __snake_case ) def fixed_enter(*__snake_case : Optional[int] , **__snake_case : str ): return WrappedFile(_enter(*__snake_case , **__snake_case ) ) lowerCamelCase :Dict = fixed_enter
49
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ = { """configuration_upernet""": ["""UperNetConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """UperNetForSemanticSegmentation""", """UperNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
716
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = LEDTokenizer _UpperCAmelCase = LEDTokenizerFast _UpperCAmelCase = True def snake_case ( self : Any ): super().setUp() lowerCamelCase :Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] lowerCamelCase :Any = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) lowerCamelCase :List[str] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCamelCase :int = {'''unk_token''': '''<unk>'''} lowerCamelCase :Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__snake_case ) ) def snake_case ( self : int , **__snake_case : int ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Dict , **__snake_case : Any ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Optional[Any] , __snake_case : Union[str, Any] ): return "lower newer", "lower newer" @cached_property def snake_case ( self : Any ): return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' ) @cached_property def snake_case ( self : int ): return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' ) @require_torch def snake_case ( self : str ): lowerCamelCase :Any = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowerCamelCase :List[Any] = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[Any] = tokenizer(__snake_case , max_length=len(__snake_case ) , padding=__snake_case , return_tensors='''pt''' ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowerCamelCase :List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(__snake_case , __snake_case ) @require_torch def snake_case ( self : Tuple ): lowerCamelCase :Dict = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Union[str, Any] = tokenizer(__snake_case , padding=__snake_case , return_tensors='''pt''' ) self.assertIn('''input_ids''' , __snake_case ) self.assertIn('''attention_mask''' , __snake_case ) self.assertNotIn('''labels''' , __snake_case ) self.assertNotIn('''decoder_attention_mask''' , __snake_case ) @require_torch def snake_case ( self : Union[str, Any] ): lowerCamelCase :Union[str, Any] = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :List[Any] = tokenizer(text_target=__snake_case , max_length=32 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) @require_torch def snake_case ( self : List[Any] ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[Any] = tokenizer( ['''I am a small frog''' * 1024, '''I am a small frog'''] , padding=__snake_case , truncation=__snake_case , return_tensors='''pt''' ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def snake_case ( self : Optional[int] ): lowerCamelCase :Union[str, Any] = ['''A long paragraph for summarization.'''] lowerCamelCase :Any = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Union[str, Any] = tokenizer(__snake_case , return_tensors='''pt''' ) lowerCamelCase :Any = tokenizer(text_target=__snake_case , return_tensors='''pt''' ) lowerCamelCase :Optional[int] = inputs['''input_ids'''] lowerCamelCase :Any = targets['''input_ids'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def snake_case ( self : Dict ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[int] = ['''Summary of the text.''', '''Another summary.'''] lowerCamelCase :List[Any] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] lowerCamelCase :Optional[int] = tokenizer(__snake_case , padding=__snake_case ) lowerCamelCase :Union[str, Any] = [[0] * len(__snake_case ) for x in encoded_output['''input_ids''']] lowerCamelCase :str = tokenizer.pad(__snake_case ) self.assertSequenceEqual(outputs['''global_attention_mask'''] , __snake_case ) def snake_case ( self : Tuple ): pass def snake_case ( self : Optional[int] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase :Optional[Any] = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :Tuple = self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :int = '''A, <mask> AllenNLP sentence.''' lowerCamelCase :str = tokenizer_r.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case ) lowerCamelCase :str = tokenizer_p.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case ) self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) lowerCamelCase :Optional[int] = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) lowerCamelCase :Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __snake_case , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __snake_case , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
49
0
from __future__ import annotations def _lowerCamelCase ( a_ : list , a_ : int): # Checks if the entire collection has been sorted if len(a_) <= 1 or n <= 1: return insert_next(a_ , n - 1) rec_insertion_sort(a_ , n - 1) def _lowerCamelCase ( a_ : list , a_ : int): # Checks order between adjacent elements if index >= len(a_) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order lowerCamelCase :int = ( collection[index], collection[index - 1], ) insert_next(a_ , index + 1) if __name__ == "__main__": A__ = input("""Enter integers separated by spaces: """) A__ = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
717
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) A__ = { """configuration_layoutlmv2""": ["""LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv2Config"""], """processing_layoutlmv2""": ["""LayoutLMv2Processor"""], """tokenization_layoutlmv2""": ["""LayoutLMv2Tokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""LayoutLMv2TokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""LayoutLMv2FeatureExtractor"""] A__ = ["""LayoutLMv2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """LayoutLMv2ForQuestionAnswering""", """LayoutLMv2ForSequenceClassification""", """LayoutLMv2ForTokenClassification""", """LayoutLMv2Layer""", """LayoutLMv2Model""", """LayoutLMv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
49
0
def _lowerCamelCase ( a_ : str = "The quick brown fox jumps over the lazy dog" , ): lowerCamelCase :Dict = set() # Replace all the whitespace in our sentence lowerCamelCase :int = input_str.replace(''' ''' , '''''') for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower()) return len(a_) == 26 def _lowerCamelCase ( a_ : str = "The quick brown fox jumps over the lazy dog" , ): lowerCamelCase :Any = [False] * 26 for char in input_str: if char.islower(): lowerCamelCase :List[Any] = True elif char.isupper(): lowerCamelCase :List[Any] = True return all(a_) def _lowerCamelCase ( a_ : str = "The quick brown fox jumps over the lazy dog" , ): return len({char for char in input_str.lower() if char.isalpha()}) == 26 def _lowerCamelCase ( ): from timeit import timeit lowerCamelCase :Union[str, Any] = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=a_)) print(timeit('''is_pangram_faster()''' , setup=a_)) print(timeit('''is_pangram_fastest()''' , setup=a_)) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
718
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _lowerCAmelCase : @staticmethod def snake_case ( *__snake_case : str , **__snake_case : str ): pass @is_pipeline_test @require_vision class _lowerCAmelCase ( unittest.TestCase ): @require_torch def snake_case ( self : Union[str, Any] ): lowerCamelCase :Optional[int] = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Dict = image_classifier(__snake_case , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__snake_case ) , [ [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}], [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}], ] , ) lowerCamelCase :Tuple = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], ] , ) @require_tf def snake_case ( self : Tuple ): lowerCamelCase :Tuple = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Optional[Any] = image_classifier(__snake_case , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(__snake_case ) , [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}] , ) lowerCamelCase :int = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], ] , ) @slow @require_torch def snake_case ( self : Any ): lowerCamelCase :str = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Optional[Any] = image_classifier(__snake_case , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) lowerCamelCase :Any = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def snake_case ( self : Optional[Any] ): lowerCamelCase :Union[str, Any] = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes lowerCamelCase :Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Dict = image_classifier(__snake_case , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) lowerCamelCase :Any = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , )
49
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A__ = { """configuration_poolformer""": [ """POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PoolFormerConfig""", """PoolFormerOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""PoolFormerFeatureExtractor"""] A__ = ["""PoolFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PoolFormerForImageClassification""", """PoolFormerModel""", """PoolFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
719
import operator as op def _lowerCamelCase ( a_ : Tuple): lowerCamelCase :int = [] lowerCamelCase :List[str] = lambda a_ , a_: int(x / y) # noqa: E731 integer division operation lowerCamelCase :Optional[int] = { '''^''': op.pow, '''*''': op.mul, '''/''': div, '''+''': op.add, '''-''': op.sub, } # operators & their respective operation # print table header print('''Symbol'''.center(8) , '''Action'''.center(12) , '''Stack''' , sep=''' | ''') print('''-''' * (30 + len(a_))) for x in post_fix: if x.isdigit(): # if x in digit stack.append(a_) # append x to stack # output in tabular format print(x.rjust(8) , ('''push(''' + x + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') else: lowerCamelCase :Optional[Any] = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8) , ('''pop(''' + b + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') lowerCamelCase :str = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8) , ('''pop(''' + a + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') stack.append( str(opr[x](int(a_) , int(a_)))) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8) , ('''push(''' + a + x + b + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''' , ) return int(stack[0]) if __name__ == "__main__": A__ = input("""\n\nEnter a Postfix Equation (space separated) = """).split(""" """) print("""\n\tResult = """, solve(Postfix))
49
0
from ..utils import DummyObject, requires_backends class _lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): _UpperCAmelCase = ['torch', 'transformers', 'onnx'] def __init__( self : Union[str, Any] , *__snake_case : Optional[Any] , **__snake_case : str ): requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def snake_case ( cls : Union[str, Any] , *__snake_case : List[str] , **__snake_case : List[str] ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def snake_case ( cls : Tuple , *__snake_case : Dict , **__snake_case : Tuple ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class _lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): _UpperCAmelCase = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *__snake_case : Any , **__snake_case : List[Any] ): requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def snake_case ( cls : Any , *__snake_case : str , **__snake_case : int ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def snake_case ( cls : Any , *__snake_case : Any , **__snake_case : Tuple ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class _lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): _UpperCAmelCase = ['torch', 'transformers', 'onnx'] def __init__( self : int , *__snake_case : Dict , **__snake_case : List[str] ): requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def snake_case ( cls : str , *__snake_case : Tuple , **__snake_case : Any ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def snake_case ( cls : Any , *__snake_case : str , **__snake_case : Any ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class _lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): _UpperCAmelCase = ['torch', 'transformers', 'onnx'] def __init__( self : Tuple , *__snake_case : Any , **__snake_case : Union[str, Any] ): requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def snake_case ( cls : Any , *__snake_case : Union[str, Any] , **__snake_case : Union[str, Any] ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def snake_case ( cls : int , *__snake_case : Dict , **__snake_case : Union[str, Any] ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class _lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): _UpperCAmelCase = ['torch', 'transformers', 'onnx'] def __init__( self : Any , *__snake_case : Any , **__snake_case : str ): requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def snake_case ( cls : Any , *__snake_case : Tuple , **__snake_case : Dict ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def snake_case ( cls : Optional[Any] , *__snake_case : Dict , **__snake_case : str ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class _lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): _UpperCAmelCase = ['torch', 'transformers', 'onnx'] def __init__( self : List[str] , *__snake_case : str , **__snake_case : int ): requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def snake_case ( cls : int , *__snake_case : Tuple , **__snake_case : Optional[Any] ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def snake_case ( cls : Dict , *__snake_case : int , **__snake_case : str ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
720
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() A__ = logging.get_logger(__name__) A__ = """Hello, World!""" A__ = """en_XX""" def _lowerCamelCase ( a_ : str , a_ : str , a_ : bool): lowerCamelCase :int = Path('''data_bin''') lowerCamelCase :Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(a_).parent) , checkpoint_file=Path(a_).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(a_) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(a_).parent / '''sentencepiece.bpe.model''') , src_dict=str(data_dir / '''dict.txt''') , ) xmod.eval() # disable dropout print(a_) lowerCamelCase :Any = xmod.model.encoder.sentence_encoder lowerCamelCase :List[str] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: lowerCamelCase :Dict = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our X-MOD config:''' , a_) lowerCamelCase :List[Any] = XmodForSequenceClassification(a_) if classification_head else XmodForMaskedLM(a_) model.eval() # Now let's copy all the weights. # Embeddings lowerCamelCase :Union[str, Any] = xmod_sent_encoder.embed_tokens.weight lowerCamelCase :Tuple = xmod_sent_encoder.embed_positions.weight lowerCamelCase :List[str] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight) # just zero them out b/c xmod doesn't use them. lowerCamelCase :List[Any] = xmod_sent_encoder.layernorm_embedding.weight lowerCamelCase :Optional[int] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers): # Encoder: start of layer lowerCamelCase :Union[str, Any] = model.roberta.encoder.layer[i] lowerCamelCase :List[str] = xmod_sent_encoder.layers[i] # self attention lowerCamelCase :Optional[int] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size)) ): raise AssertionError('''Dimensions of self-attention weights do not match.''') lowerCamelCase :Optional[int] = xmod_layer.self_attn.q_proj.weight lowerCamelCase :List[str] = xmod_layer.self_attn.q_proj.bias lowerCamelCase :str = xmod_layer.self_attn.k_proj.weight lowerCamelCase :Optional[Any] = xmod_layer.self_attn.k_proj.bias lowerCamelCase :Dict = xmod_layer.self_attn.v_proj.weight lowerCamelCase :Optional[int] = xmod_layer.self_attn.v_proj.bias # self-attention output lowerCamelCase :Optional[int] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('''Dimensions of self-attention output weights do not match.''') lowerCamelCase :List[Any] = xmod_layer.self_attn.out_proj.weight lowerCamelCase :Union[str, Any] = xmod_layer.self_attn.out_proj.bias lowerCamelCase :str = xmod_layer.self_attn_layer_norm.weight lowerCamelCase :List[Any] = xmod_layer.self_attn_layer_norm.bias # intermediate lowerCamelCase :Optional[int] = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of intermediate weights do not match.''') lowerCamelCase :int = xmod_layer.fca.weight lowerCamelCase :Union[str, Any] = xmod_layer.fca.bias # output lowerCamelCase :List[str] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of feed-forward weights do not match.''') lowerCamelCase :str = xmod_layer.fca.weight lowerCamelCase :int = xmod_layer.fca.bias lowerCamelCase :List[Any] = xmod_layer.final_layer_norm.weight lowerCamelCase :List[str] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: lowerCamelCase :List[str] = xmod_layer.adapter_layer_norm.weight lowerCamelCase :int = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys()) != sorted(xmod_layer.adapter_modules.keys()): raise AssertionError('''Lists of language adapters do not match.''') for lang_code, adapter in xmod_layer.adapter_modules.items(): lowerCamelCase :Optional[int] = bert_output.adapter_modules[lang_code] lowerCamelCase :Dict = xmod_layer.adapter_modules[lang_code] lowerCamelCase :List[Any] = from_adapter.fca.weight lowerCamelCase :List[Any] = from_adapter.fca.bias lowerCamelCase :Dict = from_adapter.fca.weight lowerCamelCase :Optional[Any] = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: lowerCamelCase :Dict = xmod_sent_encoder.layer_norm.weight lowerCamelCase :List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: lowerCamelCase :Union[str, Any] = xmod.model.classification_heads['''mnli'''].dense.weight lowerCamelCase :Tuple = xmod.model.classification_heads['''mnli'''].dense.bias lowerCamelCase :Optional[Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight lowerCamelCase :List[Any] = xmod.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head lowerCamelCase :int = xmod.model.encoder.lm_head.dense.weight lowerCamelCase :List[Any] = xmod.model.encoder.lm_head.dense.bias lowerCamelCase :Optional[int] = xmod.model.encoder.lm_head.layer_norm.weight lowerCamelCase :List[Any] = xmod.model.encoder.lm_head.layer_norm.bias lowerCamelCase :List[Any] = xmod.model.encoder.lm_head.weight lowerCamelCase :Any = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCamelCase :str = xmod.encode(a_).unsqueeze(0) # batch of size 1 model.roberta.set_default_language(a_) lowerCamelCase :Any = model(a_)[0] if classification_head: lowerCamelCase :Dict = xmod.model.classification_heads['''mnli'''](xmod.extract_features(a_)) else: lowerCamelCase :int = xmod.model(a_ , lang_id=[SAMPLE_LANGUAGE])[0] print(our_output.shape , their_output.shape) lowerCamelCase :List[str] = torch.max(torch.abs(our_output - their_output)).item() print(F"max_absolute_diff = {max_absolute_diff}") # ~ 1e-7 lowerCamelCase :str = torch.allclose(a_ , a_ , atol=1e-3) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''') if not success: raise Exception('''Something went wRoNg''') Path(a_).mkdir(parents=a_ , exist_ok=a_) print(F"Saving model to {pytorch_dump_folder_path}") model.save_pretrained(a_) if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) A__ = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
49
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() A__ : Any = logging.get_logger(__name__) def _lowerCamelCase ( a_ : Union[str, Any]): lowerCamelCase :Union[str, Any] = SwinConfig( embed_dim=1_92 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['''stage2''', '''stage3''', '''stage4'''] , ) lowerCamelCase :Dict = DetaConfig( backbone_config=a_ , num_queries=9_00 , encoder_ffn_dim=20_48 , decoder_ffn_dim=20_48 , num_feature_levels=5 , assign_first_stage=a_ , with_box_refine=a_ , two_stage=a_ , ) # set labels lowerCamelCase :Dict = '''huggingface/label-files''' if "o365" in model_name: lowerCamelCase :int = 3_66 lowerCamelCase :str = '''object365-id2label.json''' else: lowerCamelCase :List[Any] = 91 lowerCamelCase :int = '''coco-detection-id2label.json''' lowerCamelCase :List[Any] = num_labels lowerCamelCase :Union[str, Any] = json.load(open(cached_download(hf_hub_url(a_ , a_ , repo_type='''dataset''')) , '''r''')) lowerCamelCase :List[Any] = {int(a_): v for k, v in idalabel.items()} lowerCamelCase :Dict = idalabel lowerCamelCase :List[str] = {v: k for k, v in idalabel.items()} return config def _lowerCamelCase ( a_ : Optional[Any]): lowerCamelCase :Tuple = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.patch_embed.proj.weight''', '''model.backbone.model.embeddings.patch_embeddings.projection.weight''')) rename_keys.append(('''backbone.0.body.patch_embed.proj.bias''', '''model.backbone.model.embeddings.patch_embeddings.projection.bias''')) rename_keys.append(('''backbone.0.body.patch_embed.norm.weight''', '''model.backbone.model.embeddings.norm.weight''')) rename_keys.append(('''backbone.0.body.patch_embed.norm.bias''', '''model.backbone.model.embeddings.norm.bias''')) # stages for i in range(len(config.backbone_config.depths)): for j in range(config.backbone_config.depths[i]): rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm1.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight")) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm1.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias")) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table")) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index")) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight")) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias")) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm2.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight")) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm2.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias")) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight")) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias")) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight")) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias")) if i < 3: rename_keys.append((F"backbone.0.body.layers.{i}.downsample.reduction.weight", F"model.backbone.model.encoder.layers.{i}.downsample.reduction.weight")) rename_keys.append((F"backbone.0.body.layers.{i}.downsample.norm.weight", F"model.backbone.model.encoder.layers.{i}.downsample.norm.weight")) rename_keys.append((F"backbone.0.body.layers.{i}.downsample.norm.bias", F"model.backbone.model.encoder.layers.{i}.downsample.norm.bias")) rename_keys.append(('''backbone.0.body.norm1.weight''', '''model.backbone.model.hidden_states_norms.stage2.weight''')) rename_keys.append(('''backbone.0.body.norm1.bias''', '''model.backbone.model.hidden_states_norms.stage2.bias''')) rename_keys.append(('''backbone.0.body.norm2.weight''', '''model.backbone.model.hidden_states_norms.stage3.weight''')) rename_keys.append(('''backbone.0.body.norm2.bias''', '''model.backbone.model.hidden_states_norms.stage3.bias''')) rename_keys.append(('''backbone.0.body.norm3.weight''', '''model.backbone.model.hidden_states_norms.stage4.weight''')) rename_keys.append(('''backbone.0.body.norm3.bias''', '''model.backbone.model.hidden_states_norms.stage4.bias''')) # transformer encoder for i in range(config.encoder_layers): rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight", F"model.encoder.layers.{i}.self_attn.sampling_offsets.weight")) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias", F"model.encoder.layers.{i}.self_attn.sampling_offsets.bias")) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.attention_weights.weight", F"model.encoder.layers.{i}.self_attn.attention_weights.weight")) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.attention_weights.bias", F"model.encoder.layers.{i}.self_attn.attention_weights.bias")) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.value_proj.weight", F"model.encoder.layers.{i}.self_attn.value_proj.weight")) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.value_proj.bias", F"model.encoder.layers.{i}.self_attn.value_proj.bias")) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.output_proj.weight", F"model.encoder.layers.{i}.self_attn.output_proj.weight")) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.output_proj.bias", F"model.encoder.layers.{i}.self_attn.output_proj.bias")) rename_keys.append((F"transformer.encoder.layers.{i}.norm1.weight", F"model.encoder.layers.{i}.self_attn_layer_norm.weight")) rename_keys.append((F"transformer.encoder.layers.{i}.norm1.bias", F"model.encoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.weight", F"model.encoder.layers.{i}.fc1.weight")) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.bias", F"model.encoder.layers.{i}.fc1.bias")) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.weight", F"model.encoder.layers.{i}.fc2.weight")) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.bias", F"model.encoder.layers.{i}.fc2.bias")) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.weight", F"model.encoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.bias", F"model.encoder.layers.{i}.final_layer_norm.bias")) # transformer decoder for i in range(config.decoder_layers): rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight", F"model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight")) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias", F"model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias")) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.attention_weights.weight", F"model.decoder.layers.{i}.encoder_attn.attention_weights.weight")) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.attention_weights.bias", F"model.decoder.layers.{i}.encoder_attn.attention_weights.bias")) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.value_proj.weight", F"model.decoder.layers.{i}.encoder_attn.value_proj.weight")) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.value_proj.bias", F"model.decoder.layers.{i}.encoder_attn.value_proj.bias")) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.output_proj.weight", F"model.decoder.layers.{i}.encoder_attn.output_proj.weight")) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.output_proj.bias", F"model.decoder.layers.{i}.encoder_attn.output_proj.bias")) rename_keys.append((F"transformer.decoder.layers.{i}.norm1.weight", F"model.decoder.layers.{i}.encoder_attn_layer_norm.weight")) rename_keys.append((F"transformer.decoder.layers.{i}.norm1.bias", F"model.decoder.layers.{i}.encoder_attn_layer_norm.bias")) rename_keys.append((F"transformer.decoder.layers.{i}.self_attn.out_proj.weight", F"model.decoder.layers.{i}.self_attn.out_proj.weight")) rename_keys.append((F"transformer.decoder.layers.{i}.self_attn.out_proj.bias", F"model.decoder.layers.{i}.self_attn.out_proj.bias")) rename_keys.append((F"transformer.decoder.layers.{i}.norm2.weight", F"model.decoder.layers.{i}.self_attn_layer_norm.weight")) rename_keys.append((F"transformer.decoder.layers.{i}.norm2.bias", F"model.decoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.weight", F"model.decoder.layers.{i}.fc1.weight")) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.bias", F"model.decoder.layers.{i}.fc1.bias")) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.weight", F"model.decoder.layers.{i}.fc2.weight")) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.bias", F"model.decoder.layers.{i}.fc2.bias")) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.weight", F"model.decoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.bias", F"model.decoder.layers.{i}.final_layer_norm.bias")) # fmt: on return rename_keys def _lowerCamelCase ( a_ : Any , a_ : Tuple , a_ : List[Any]): lowerCamelCase :List[Any] = dct.pop(a_) lowerCamelCase :Tuple = val def _lowerCamelCase ( a_ : Dict , a_ : Optional[Any]): lowerCamelCase :Tuple = [int(backbone_config.embed_dim * 2**i) for i in range(len(backbone_config.depths))] for i in range(len(backbone_config.depths)): lowerCamelCase :Optional[int] = num_features[i] for j in range(backbone_config.depths[i]): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowerCamelCase :List[str] = state_dict.pop(F"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight") lowerCamelCase :Dict = state_dict.pop(F"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict lowerCamelCase :Tuple = in_proj_weight[:dim, :] lowerCamelCase :List[str] = in_proj_bias[: dim] lowerCamelCase :Optional[Any] = in_proj_weight[ dim : dim * 2, : ] lowerCamelCase :Optional[int] = in_proj_bias[ dim : dim * 2 ] lowerCamelCase :Dict = in_proj_weight[ -dim :, : ] lowerCamelCase :Union[str, Any] = in_proj_bias[-dim :] # fmt: on def _lowerCamelCase ( a_ : int , a_ : Optional[Any]): # transformer decoder self-attention layers lowerCamelCase :Union[str, Any] = config.d_model for i in range(config.decoder_layers): # read in weights + bias of input projection layer of self-attention lowerCamelCase :Union[str, Any] = state_dict.pop(F"transformer.decoder.layers.{i}.self_attn.in_proj_weight") lowerCamelCase :Any = state_dict.pop(F"transformer.decoder.layers.{i}.self_attn.in_proj_bias") # next, add query, keys and values (in that order) to the state dict lowerCamelCase :Dict = in_proj_weight[:hidden_size, :] lowerCamelCase :Any = in_proj_bias[:hidden_size] lowerCamelCase :Any = in_proj_weight[ hidden_size : hidden_size * 2, : ] lowerCamelCase :Any = in_proj_bias[hidden_size : hidden_size * 2] lowerCamelCase :Optional[int] = in_proj_weight[-hidden_size:, :] lowerCamelCase :Union[str, Any] = in_proj_bias[-hidden_size:] def _lowerCamelCase ( ): lowerCamelCase :Any = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase :List[Any] = Image.open(requests.get(a_ , stream=a_).raw) return im @torch.no_grad() def _lowerCamelCase ( a_ : Tuple , a_ : Tuple , a_ : Dict): lowerCamelCase :Tuple = get_deta_config(a_) # load original state dict if model_name == "deta-swin-large": lowerCamelCase :Optional[Any] = hf_hub_download(repo_id='''nielsr/deta-checkpoints''' , filename='''adet_swin_ft.pth''') elif model_name == "deta-swin-large-o365": lowerCamelCase :Optional[Any] = hf_hub_download(repo_id='''jozhang97/deta-swin-l-o365''' , filename='''deta_swin_pt_o365.pth''') else: raise ValueError(F"Model name {model_name} not supported") lowerCamelCase :int = torch.load(a_ , map_location='''cpu''')['''model'''] # original state dict for name, param in state_dict.items(): print(a_ , param.shape) # rename keys lowerCamelCase :Union[str, Any] = create_rename_keys(a_) for src, dest in rename_keys: rename_key(a_ , a_ , a_) read_in_swin_q_k_v(a_ , config.backbone_config) read_in_decoder_q_k_v(a_ , a_) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: lowerCamelCase :List[str] = state_dict.pop(a_) lowerCamelCase :List[str] = val if "input_proj" in key: lowerCamelCase :Optional[Any] = state_dict.pop(a_) lowerCamelCase :str = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: lowerCamelCase :Dict = state_dict.pop(a_) lowerCamelCase :str = val # finally, create HuggingFace model and load state dict lowerCamelCase :Tuple = DetaForObjectDetection(a_) model.load_state_dict(a_) model.eval() lowerCamelCase :Any = '''cuda''' if torch.cuda.is_available() else '''cpu''' model.to(a_) # load image processor lowerCamelCase :Tuple = DetaImageProcessor(format='''coco_detection''') # verify our conversion on image lowerCamelCase :int = prepare_img() lowerCamelCase :List[str] = processor(images=a_ , return_tensors='''pt''') lowerCamelCase :int = encoding['''pixel_values'''] lowerCamelCase :List[str] = model(pixel_values.to(a_)) # verify logits print('''Logits:''' , outputs.logits[0, :3, :3]) print('''Boxes:''' , outputs.pred_boxes[0, :3, :3]) if model_name == "deta-swin-large": lowerCamelCase :str = torch.tensor( [[-7.6_308, -2.8_485, -5.3_737], [-7.2_037, -4.5_505, -4.8_027], [-7.2_943, -4.2_611, -4.6_617]]) lowerCamelCase :Optional[int] = torch.tensor([[0.4_987, 0.4_969, 0.9_999], [0.2_549, 0.5_498, 0.4_805], [0.5_498, 0.2_757, 0.0_569]]) elif model_name == "deta-swin-large-o365": lowerCamelCase :Optional[int] = torch.tensor( [[-8.0_122, -3.5_720, -4.9_717], [-8.1_547, -3.6_886, -4.6_389], [-7.6_610, -3.6_194, -5.0_134]]) lowerCamelCase :List[Any] = torch.tensor([[0.2_523, 0.5_549, 0.4_881], [0.7_715, 0.4_149, 0.4_601], [0.5_503, 0.2_753, 0.0_575]]) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(a_) , atol=1e-4) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(a_) , atol=1e-4) print('''Everything ok!''') if pytorch_dump_folder_path: # Save model and processor logger.info(F"Saving PyTorch model and processor to {pytorch_dump_folder_path}...") Path(a_).mkdir(exist_ok=a_) model.save_pretrained(a_) processor.save_pretrained(a_) # Push to hub if push_to_hub: print('''Pushing model and processor to hub...''') model.push_to_hub(F"jozhang97/{model_name}") processor.push_to_hub(F"jozhang97/{model_name}") if __name__ == "__main__": A__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument( """--model_name""", type=str, default="""deta-swin-large""", choices=["""deta-swin-large""", """deta-swin-large-o365"""], help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) A__ : int = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
721
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { """andreasmadsen/efficient_mlm_m0.40""": ( """https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json""" ), } class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'roberta-prelayernorm' def __init__( self : str , __snake_case : List[str]=50265 , __snake_case : Union[str, Any]=768 , __snake_case : Tuple=12 , __snake_case : int=12 , __snake_case : Any=3072 , __snake_case : Optional[int]="gelu" , __snake_case : List[Any]=0.1 , __snake_case : int=0.1 , __snake_case : Union[str, Any]=512 , __snake_case : Dict=2 , __snake_case : int=0.0_2 , __snake_case : Any=1e-1_2 , __snake_case : Optional[int]=1 , __snake_case : Dict=0 , __snake_case : Optional[int]=2 , __snake_case : Any="absolute" , __snake_case : Union[str, Any]=True , __snake_case : List[str]=None , **__snake_case : Optional[int] , ): super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) lowerCamelCase :Optional[int] = vocab_size lowerCamelCase :Dict = hidden_size lowerCamelCase :Tuple = num_hidden_layers lowerCamelCase :Optional[int] = num_attention_heads lowerCamelCase :Any = hidden_act lowerCamelCase :List[Any] = intermediate_size lowerCamelCase :Union[str, Any] = hidden_dropout_prob lowerCamelCase :str = attention_probs_dropout_prob lowerCamelCase :Tuple = max_position_embeddings lowerCamelCase :int = type_vocab_size lowerCamelCase :Optional[Any] = initializer_range lowerCamelCase :Union[str, Any] = layer_norm_eps lowerCamelCase :Dict = position_embedding_type lowerCamelCase :List[Any] = use_cache lowerCamelCase :Optional[int] = classifier_dropout class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): @property def snake_case ( self : Any ): if self.task == "multiple-choice": lowerCamelCase :Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase :List[str] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
49
0
def _lowerCamelCase ( a_ : float , a_ : float): if density <= 0: raise ValueError('''Impossible fluid density''') if bulk_modulus <= 0: raise ValueError('''Impossible bulk modulus''') return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
700
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = DebertaTokenizer _UpperCAmelCase = True _UpperCAmelCase = DebertaTokenizerFast def snake_case ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase :Dict = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] lowerCamelCase :List[str] = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) lowerCamelCase :Any = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCamelCase :Dict = {'''unk_token''': '''[UNK]'''} lowerCamelCase :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase :List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__snake_case ) ) def snake_case ( self : str , **__snake_case : Dict ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Optional[Any] , __snake_case : int ): lowerCamelCase :List[Any] = '''lower newer''' lowerCamelCase :List[str] = '''lower newer''' return input_text, output_text def snake_case ( self : str ): lowerCamelCase :Optional[int] = self.get_tokenizer() lowerCamelCase :Union[str, Any] = '''lower newer''' lowerCamelCase :str = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] lowerCamelCase :Optional[int] = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) lowerCamelCase :List[str] = tokens + [tokenizer.unk_token] lowerCamelCase :Optional[int] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def snake_case ( self : Optional[int] ): lowerCamelCase :List[str] = self.get_tokenizer() lowerCamelCase :Optional[int] = tokenizer('''Hello''' , '''World''' ) lowerCamelCase :List[str] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __snake_case ) @slow def snake_case ( self : str ): lowerCamelCase :Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) lowerCamelCase :Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__snake_case ) lowerCamelCase :Tuple = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__snake_case ) lowerCamelCase :Union[str, Any] = tokenizer.encode( '''sequence builders''' , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) lowerCamelCase :str = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) lowerCamelCase :Any = tokenizer.build_inputs_with_special_tokens(__snake_case ) lowerCamelCase :Dict = tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def snake_case ( self : str ): lowerCamelCase :List[str] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: lowerCamelCase :int = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) lowerCamelCase :Tuple = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] lowerCamelCase :List[Any] = tokenizer(__snake_case , padding=__snake_case ) lowerCamelCase :Union[str, Any] = [tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) for seq in encoding['''input_ids''']] # fmt: off lowerCamelCase :Any = { '''input_ids''': [ [1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on lowerCamelCase :Optional[int] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __snake_case ) for expected, decoded in zip(__snake_case , __snake_case ): self.assertEqual(__snake_case , __snake_case )
49
0
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A__ = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = XLMRobertaTokenizer _UpperCAmelCase = XLMRobertaTokenizerFast _UpperCAmelCase = True _UpperCAmelCase = True def snake_case ( self : int ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase :List[Any] = XLMRobertaTokenizer(__snake_case , keep_accents=__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case ( self : Dict ): lowerCamelCase :List[str] = '''<pad>''' lowerCamelCase :Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) , __snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) , __snake_case ) def snake_case ( self : int ): lowerCamelCase :int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(__snake_case ) , 1002 ) def snake_case ( self : str ): self.assertEqual(self.get_tokenizer().vocab_size , 1002 ) def snake_case ( self : Tuple ): lowerCamelCase :str = XLMRobertaTokenizer(__snake_case , keep_accents=__snake_case ) lowerCamelCase :int = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCamelCase :str = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) lowerCamelCase :Tuple = tokenizer.convert_tokens_to_ids(__snake_case ) self.assertListEqual( __snake_case , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) lowerCamelCase :Any = tokenizer.convert_ids_to_tokens(__snake_case ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def snake_case ( self : str ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCamelCase :int = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase :List[str] = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :int = self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :Optional[int] = tempfile.mkdtemp() lowerCamelCase :List[Any] = tokenizer_r.save_pretrained(__snake_case ) lowerCamelCase :List[str] = tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) lowerCamelCase :Any = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way lowerCamelCase :Dict = tokenizer_r.from_pretrained(__snake_case ) lowerCamelCase :Optional[Any] = tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=True lowerCamelCase :List[str] = tempfile.mkdtemp() lowerCamelCase :Optional[Any] = tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) lowerCamelCase :Any = tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way lowerCamelCase :Any = tokenizer_r.from_pretrained(__snake_case ) lowerCamelCase :Optional[int] = tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=False lowerCamelCase :Dict = tempfile.mkdtemp() lowerCamelCase :Optional[int] = tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) lowerCamelCase :Optional[int] = tokenizer_p.save_pretrained(__snake_case ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCamelCase :Tuple = tokenizer_r.from_pretrained(__snake_case ) lowerCamelCase :str = tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) @cached_property def snake_case ( self : Optional[Any] ): return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' ) def snake_case ( self : Optional[int] ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__snake_case , f.name ) lowerCamelCase :Optional[int] = XLMRobertaTokenizer(f.name , keep_accents=__snake_case ) lowerCamelCase :Any = pickle.dumps(__snake_case ) pickle.loads(__snake_case ) def snake_case ( self : Optional[Any] ): if not self.test_rust_tokenizer: return lowerCamelCase :Optional[Any] = self.get_tokenizer() lowerCamelCase :Tuple = self.get_rust_tokenizer() lowerCamelCase :List[str] = '''I was born in 92000, and this is falsé.''' lowerCamelCase :Any = tokenizer.tokenize(__snake_case ) lowerCamelCase :Any = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) lowerCamelCase :List[str] = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) lowerCamelCase :Dict = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) lowerCamelCase :Optional[Any] = self.get_rust_tokenizer() lowerCamelCase :List[str] = tokenizer.encode(__snake_case ) lowerCamelCase :Dict = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) @slow def snake_case ( self : List[Any] ): lowerCamelCase :Tuple = '''Hello World!''' lowerCamelCase :Dict = [0, 35378, 6661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__snake_case , self.big_tokenizer.encode(__snake_case ) ) @slow def snake_case ( self : Optional[Any] ): lowerCamelCase :Any = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) lowerCamelCase :Optional[int] = [ 0, 3293, 83, 10, 4552, 4989, 7986, 678, 10, 5915, 111, 179459, 124850, 4, 6044, 237, 12, 6, 5, 6, 4, 6780, 705, 15, 1388, 44, 378, 10114, 711, 152, 20, 6, 5, 22376, 642, 1221, 15190, 34153, 450, 5608, 959, 1119, 57702, 136, 186, 47, 1098, 29367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6044, 237, 6284, 50901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__snake_case , self.big_tokenizer.encode(__snake_case ) ) @slow def snake_case ( self : str ): # fmt: off lowerCamelCase :Any = {'''input_ids''': [[0, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [0, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
701
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) A__ = [ """cross_validation.py""", """gradient_accumulation.py""", """local_sgd.py""", """multi_process_metrics.py""", """memory.py""", """automatic_gradient_accumulation.py""", """fsdp_with_peak_mem_tracking.py""", """deepspeed_with_config_support.py""", """megatron_lm_gpt_pretraining.py""", ] class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Any , __snake_case : str , __snake_case : bool , __snake_case : str = None , __snake_case : list = None ): lowerCamelCase :Tuple = None lowerCamelCase :Tuple = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) lowerCamelCase :Optional[int] = os.path.abspath('''examples''' ) for item in os.listdir(__snake_case ): if item not in EXCLUDE_EXAMPLES: lowerCamelCase :Optional[int] = os.path.join(__snake_case , __snake_case ) if os.path.isfile(__snake_case ) and ".py" in item_path: with self.subTest( tested_script=__snake_case , feature_script=__snake_case , tested_section='''main()''' if parser_only else '''training_function()''' , ): lowerCamelCase :Union[str, Any] = compare_against_test( os.path.join(__snake_case , __snake_case ) , __snake_case , __snake_case , __snake_case ) lowerCamelCase :int = '''\n'''.join(__snake_case ) if special_strings is not None: for string in special_strings: lowerCamelCase :int = diff.replace(__snake_case , '''''' ) self.assertEqual(__snake_case , '''''' ) def snake_case ( self : Dict ): self.one_complete_example('''complete_nlp_example.py''' , __snake_case ) self.one_complete_example('''complete_nlp_example.py''' , __snake_case ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Union[str, Any] = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) lowerCamelCase :Optional[int] = [ ''' ''' * 16 + '''{\n\n''', ''' ''' * 20 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 20 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 20 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 20 + '''"epoch": epoch,\n\n''', ''' ''' * 16 + '''},\n\n''', ''' ''' * 16 + '''step=epoch,\n''', ''' ''' * 12, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , __snake_case , __snake_case , __snake_case ) self.one_complete_example('''complete_cv_example.py''' , __snake_case , __snake_case , __snake_case ) @mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '1'} ) class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = False @classmethod def snake_case ( cls : Optional[Any] ): super().setUpClass() lowerCamelCase :Any = tempfile.mkdtemp() lowerCamelCase :Optional[int] = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) lowerCamelCase :List[str] = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def snake_case ( cls : Dict ): super().tearDownClass() shutil.rmtree(cls._tmpdir ) def snake_case ( self : int ): lowerCamelCase :Any = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def snake_case ( self : List[Any] ): lowerCamelCase :Tuple = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n ".split() lowerCamelCase :List[Any] = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def snake_case ( self : List[str] ): lowerCamelCase :Dict = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}\n ".split() lowerCamelCase :Dict = run_command(self._launch_args + testargs , return_stdout=__snake_case ) self.assertNotIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) def snake_case ( self : str ): lowerCamelCase :List[Any] = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}\n ".split() lowerCamelCase :Optional[int] = run_command(self._launch_args + testargs , return_stdout=__snake_case ) if torch.cuda.is_available(): lowerCamelCase :Union[str, Any] = torch.cuda.device_count() else: lowerCamelCase :Dict = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) else: self.assertIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) @slow def snake_case ( self : Any ): lowerCamelCase :Tuple = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): lowerCamelCase :Dict = run_command(self._launch_args + testargs , return_stdout=__snake_case ) lowerCamelCase :Tuple = re.findall('''({.+})''' , __snake_case ) lowerCamelCase :Optional[Any] = [r for r in results if '''accuracy''' in r][-1] lowerCamelCase :List[str] = ast.literal_eval(__snake_case ) self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 ) def snake_case ( self : int ): lowerCamelCase :Dict = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case ( self : Any ): with tempfile.TemporaryDirectory() as tmpdir: lowerCamelCase :Tuple = F"\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__snake_case , '''tracking''' ) ) ) def snake_case ( self : Tuple ): lowerCamelCase :Tuple = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def snake_case ( self : Optional[Any] ): lowerCamelCase :int = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
49
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Any ): lowerCamelCase :List[str] = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowerCamelCase :Any = get_activation('''gelu''' ) self.assertTrue(torch.allclose(gelu_python(__snake_case ) , torch_builtin(__snake_case ) ) ) self.assertFalse(torch.allclose(gelu_python(__snake_case ) , gelu_new(__snake_case ) ) ) def snake_case ( self : List[Any] ): lowerCamelCase :int = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowerCamelCase :List[Any] = get_activation('''gelu''' ) lowerCamelCase :Any = get_activation('''gelu_10''' ) lowerCamelCase :int = torch_builtin(__snake_case ) lowerCamelCase :Any = geluaa(__snake_case ) lowerCamelCase :Dict = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(__snake_case ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def snake_case ( self : Optional[int] ): get_activation('''gelu''' ) get_activation('''gelu_10''' ) get_activation('''gelu_fast''' ) get_activation('''gelu_new''' ) get_activation('''gelu_python''' ) get_activation('''gelu_pytorch_tanh''' ) get_activation('''linear''' ) get_activation('''mish''' ) get_activation('''quick_gelu''' ) get_activation('''relu''' ) get_activation('''sigmoid''' ) get_activation('''silu''' ) get_activation('''swish''' ) get_activation('''tanh''' ) with self.assertRaises(__snake_case ): get_activation('''bogus''' ) with self.assertRaises(__snake_case ): get_activation(__snake_case ) def snake_case ( self : List[Any] ): lowerCamelCase :List[Any] = get_activation('''gelu''' ) lowerCamelCase :Optional[Any] = 1 lowerCamelCase :List[str] = get_activation('''gelu''' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(__snake_case ): lowerCamelCase :Dict = acta.a
702
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs A__ = imread(R"""digital_image_processing/image_data/lena_small.jpg""") A__ = cvtColor(img, COLOR_BGR2GRAY) def _lowerCamelCase ( ): lowerCamelCase :int = cn.convert_to_negative(a_) # assert negative_img array for at least one True assert negative_img.any() def _lowerCamelCase ( ): with Image.open('''digital_image_processing/image_data/lena_small.jpg''') as img: # Work around assertion for response assert str(cc.change_contrast(a_ , 1_10)).startswith( '''<PIL.Image.Image image mode=RGB size=100x100 at''') def _lowerCamelCase ( ): lowerCamelCase :Optional[Any] = canny.gen_gaussian_kernel(9 , sigma=1.4) # Assert ambiguous array assert resp.all() def _lowerCamelCase ( ): lowerCamelCase :str = imread('''digital_image_processing/image_data/lena_small.jpg''' , 0) # assert ambiguous array for all == True assert canny_img.all() lowerCamelCase :Optional[Any] = canny.canny(a_) # assert canny array for at least one True assert canny_array.any() def _lowerCamelCase ( ): assert gg.gaussian_filter(a_ , 5 , sigma=0.9).all() def _lowerCamelCase ( ): # laplace diagonals lowerCamelCase :List[Any] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]]) lowerCamelCase :List[Any] = conv.img_convolve(a_ , a_).astype(a_) assert res.any() def _lowerCamelCase ( ): assert med.median_filter(a_ , 3).any() def _lowerCamelCase ( ): lowerCamelCase , lowerCamelCase :Union[str, Any] = sob.sobel_filter(a_) assert grad.any() and theta.any() def _lowerCamelCase ( ): lowerCamelCase :Dict = sp.make_sepia(a_ , 20) assert sepia.all() def _lowerCamelCase ( a_ : str = "digital_image_processing/image_data/lena_small.jpg"): lowerCamelCase :Any = bs.Burkes(imread(a_ , 1) , 1_20) burkes.process() assert burkes.output_img.any() def _lowerCamelCase ( a_ : str = "digital_image_processing/image_data/lena_small.jpg" , ): lowerCamelCase :Tuple = rs.NearestNeighbour(imread(a_ , 1) , 4_00 , 2_00) nn.process() assert nn.output.any() def _lowerCamelCase ( ): lowerCamelCase :Tuple = '''digital_image_processing/image_data/lena.jpg''' # Reading the image and converting it to grayscale. lowerCamelCase :Tuple = imread(a_ , 0) # Test for get_neighbors_pixel function() return not None lowerCamelCase :Dict = 0 lowerCamelCase :Optional[Any] = 0 lowerCamelCase :str = image[x_coordinate][y_coordinate] lowerCamelCase :Any = lbp.get_neighbors_pixel( a_ , a_ , a_ , a_) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCamelCase :int = np.zeros((image.shape[0], image.shape[1])) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0]): for j in range(0 , image.shape[1]): lowerCamelCase :Optional[int] = lbp.local_binary_value(a_ , a_ , a_) assert lbp_image.any()
49
0
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline A__ = logging.get_logger(__name__) # pylint: disable=invalid-name class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self : Tuple , __snake_case : Dict , __snake_case : Tuple ): super().__init__() self.register_modules(unet=__snake_case , scheduler=__snake_case ) @torch.no_grad() def __call__( self : Any , __snake_case : int = 1 , __snake_case : int = 100 , __snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __snake_case : Optional[float] = None , __snake_case : bool = True , ): if audio_length_in_s is None: lowerCamelCase :Union[str, Any] = self.unet.config.sample_size / self.unet.config.sample_rate lowerCamelCase :List[str] = audio_length_in_s * self.unet.config.sample_rate lowerCamelCase :int = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F"{audio_length_in_s} is too small. Make sure it's bigger or equal to" F" {3 * down_scale_factor / self.unet.config.sample_rate}." ) lowerCamelCase :Union[str, Any] = int(__snake_case ) if sample_size % down_scale_factor != 0: lowerCamelCase :Dict = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F"{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled" F" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising" ''' process.''' ) lowerCamelCase :str = int(__snake_case ) lowerCamelCase :List[Any] = next(iter(self.unet.parameters() ) ).dtype lowerCamelCase :Tuple = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(__snake_case , __snake_case ) and len(__snake_case ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(__snake_case )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) lowerCamelCase :str = randn_tensor(__snake_case , generator=__snake_case , device=self.device , dtype=__snake_case ) # set step values self.scheduler.set_timesteps(__snake_case , device=audio.device ) lowerCamelCase :Optional[Any] = self.scheduler.timesteps.to(__snake_case ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCamelCase :List[Any] = self.unet(__snake_case , __snake_case ).sample # 2. compute previous image: x_t -> t_t-1 lowerCamelCase :Any = self.scheduler.step(__snake_case , __snake_case , __snake_case ).prev_sample lowerCamelCase :List[str] = audio.clamp(-1 , 1 ).float().cpu().numpy() lowerCamelCase :Optional[Any] = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=__snake_case )
703
import os from math import logaa def _lowerCamelCase ( a_ : str = "base_exp.txt"): lowerCamelCase :float = 0 lowerCamelCase :Optional[int] = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(a_) , a_))): lowerCamelCase , lowerCamelCase :Optional[int] = list(map(a_ , line.split(''','''))) if x * logaa(a_) > largest: lowerCamelCase :List[Any] = x * logaa(a_) lowerCamelCase :Any = i + 1 return result if __name__ == "__main__": print(solution())
49
0
'''simple docstring''' # Imports import numpy as np class _lowerCAmelCase : def __init__( self : List[Any] , __snake_case : List[Any]=None , __snake_case : Optional[int]=None , __snake_case : Optional[Any]=None , __snake_case : int=None , __snake_case : Union[str, Any]=None ): self.set_matricies(red=__snake_case , green=__snake_case , blue=__snake_case , red_edge=__snake_case , nir=__snake_case ) def snake_case ( self : Optional[Any] , __snake_case : Union[str, Any]=None , __snake_case : str=None , __snake_case : Optional[int]=None , __snake_case : Any=None , __snake_case : Optional[Any]=None ): if red is not None: lowerCamelCase :Union[str, Any] = red if green is not None: lowerCamelCase :Tuple = green if blue is not None: lowerCamelCase :Optional[Any] = blue if red_edge is not None: lowerCamelCase :Any = red_edge if nir is not None: lowerCamelCase :List[Any] = nir return True def snake_case ( self : Dict , __snake_case : Dict="" , __snake_case : Optional[Any]=None , __snake_case : Optional[int]=None , __snake_case : List[str]=None , __snake_case : Any=None , __snake_case : Any=None ): self.set_matricies(red=__snake_case , green=__snake_case , blue=__snake_case , red_edge=__snake_case , nir=__snake_case ) lowerCamelCase :List[Any] = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('''Index not in the list!''' ) return False def snake_case ( self : List[Any] ): return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def snake_case ( self : List[str] ): return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def snake_case ( self : Optional[int] ): return self.nir * (self.red / (self.green**2)) def snake_case ( self : List[Any] ): return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def snake_case ( self : Optional[Any] ): return (self.nir - self.red) / (self.nir + self.red) def snake_case ( self : str ): return (self.nir - self.blue) / (self.nir + self.blue) def snake_case ( self : List[Any] ): return (self.redEdge - self.red) / (self.redEdge + self.red) def snake_case ( self : List[str] ): return (self.nir - self.green) / (self.nir + self.green) def snake_case ( self : str ): return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def snake_case ( self : Optional[int] ): return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def snake_case ( self : List[str] ): return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def snake_case ( self : List[Any] ): return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def snake_case ( self : Optional[Any] , __snake_case : str=0.0_8 , __snake_case : Optional[int]=1.2_2 , __snake_case : Dict=0.0_3 ): return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def snake_case ( self : List[str] ): return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def snake_case ( self : Dict ): return (self.nir / self.green) - 1 def snake_case ( self : str ): return (self.nir / self.redEdge) - 1 def snake_case ( self : Any ): return (self.red - self.blue) / self.red def snake_case ( self : Any ): lowerCamelCase :int = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def snake_case ( self : Any ): return self.nir - self.green def snake_case ( self : Optional[Any] ): return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def snake_case ( self : Union[str, Any] ): lowerCamelCase :Dict = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def snake_case ( self : Optional[int] , __snake_case : str=0.1_6 ): return (self.nir - self.green) / (self.nir + self.green + y) def snake_case ( self : int , __snake_case : Optional[Any]=0.5 ): return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def snake_case ( self : Tuple ): return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def snake_case ( self : Tuple , __snake_case : Dict=None , __snake_case : Dict=None ): return (self.nir - b) / (a * self.red) def snake_case ( self : Dict ): return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def snake_case ( self : List[Any] ): return (self.red + self.green + self.blue) / 30.5 def snake_case ( self : int ): return self.nir / self.red def snake_case ( self : List[Any] ): return (self.rvi() - 1) / (self.rvi() + 1) def snake_case ( self : Any ): return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def snake_case ( self : Dict ): return self.green / (self.nir + self.red + self.green) def snake_case ( self : Optional[int] ): return self.nir / (self.nir + self.red + self.green) def snake_case ( self : int ): return self.red / (self.nir + self.red + self.green) def snake_case ( self : Any ): return (self.green - self.red) / (self.green + self.red) def snake_case ( self : str ): return (self.red - self.green) / (self.red + self.green) def snake_case ( self : int ): lowerCamelCase :Optional[Any] = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) lowerCamelCase :Dict = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def snake_case ( self : Optional[Any] ): return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def snake_case ( self : int ): return self.nir / self.red def snake_case ( self : Any ): return (self.ndvi() + 0.5) ** (1 / 2) def snake_case ( self : int ): return (self.nir - self.redEdge) / (self.nir + self.redEdge)
704
def _lowerCamelCase ( a_ : list): if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''') for cell_n in range(1 , len(grid[0])): grid[0][cell_n] += grid[0][cell_n - 1] lowerCamelCase :Any = grid[0] for row_n in range(1 , len(a_)): lowerCamelCase :List[str] = grid[row_n] lowerCamelCase :Union[str, Any] = fill_row(a_ , a_) lowerCamelCase :List[Any] = grid[row_n] return grid[-1][-1] def _lowerCamelCase ( a_ : list , a_ : list): current_row[0] += row_above[0] for cell_n in range(1 , len(a_)): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n]) return current_row if __name__ == "__main__": import doctest doctest.testmod()
49
0
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : str ): lowerCamelCase :int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :List[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :Optional[Any] = -1 lowerCamelCase :List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Tuple = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :str = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowerCamelCase :str = TextStreamer(__snake_case ) model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case , streamer=__snake_case ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCamelCase :Optional[int] = cs.out[:-1] self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : Dict ): lowerCamelCase :Tuple = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :int = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :List[Any] = -1 lowerCamelCase :Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Tuple = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :List[Any] = tokenizer.decode(greedy_ids[0] ) lowerCamelCase :List[str] = TextIteratorStreamer(__snake_case ) lowerCamelCase :List[str] = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} lowerCamelCase :Tuple = Thread(target=model.generate , kwargs=__snake_case ) thread.start() lowerCamelCase :Any = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : str ): lowerCamelCase :int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :Dict = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :List[str] = -1 lowerCamelCase :Optional[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Optional[Any] = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :List[str] = greedy_ids[:, input_ids.shape[1] :] lowerCamelCase :Union[str, Any] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowerCamelCase :List[str] = TextStreamer(__snake_case , skip_prompt=__snake_case ) model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case , streamer=__snake_case ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCamelCase :int = cs.out[:-1] self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : Optional[int] ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them lowerCamelCase :List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) lowerCamelCase :Union[str, Any] = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(__snake_case ) lowerCamelCase :Optional[int] = -1 lowerCamelCase :Union[str, Any] = torch.ones((1, 5) , device=__snake_case ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowerCamelCase :Dict = TextStreamer(__snake_case , skip_special_tokens=__snake_case ) model.generate(__snake_case , max_new_tokens=1 , do_sample=__snake_case , streamer=__snake_case ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowerCamelCase :Tuple = cs.out[:-1] # Remove the final "\n" lowerCamelCase :int = tokenizer(__snake_case , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def snake_case ( self : List[Any] ): lowerCamelCase :List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :Optional[int] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :Optional[int] = -1 lowerCamelCase :Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :List[Any] = TextIteratorStreamer(__snake_case , timeout=0.0_0_1 ) lowerCamelCase :Dict = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} lowerCamelCase :Tuple = Thread(target=model.generate , kwargs=__snake_case ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__snake_case ): lowerCamelCase :Dict = '''''' for new_text in streamer: streamer_text += new_text
705
import math def _lowerCamelCase ( a_ : int): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a_) + 1) , 6): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCamelCase ( a_ : float = 0.1): lowerCamelCase :Dict = 3 lowerCamelCase :List[Any] = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1): primes += is_prime(a_) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
49
0
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) A__ = [ """cross_validation.py""", """gradient_accumulation.py""", """local_sgd.py""", """multi_process_metrics.py""", """memory.py""", """automatic_gradient_accumulation.py""", """fsdp_with_peak_mem_tracking.py""", """deepspeed_with_config_support.py""", """megatron_lm_gpt_pretraining.py""", ] class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Any , __snake_case : str , __snake_case : bool , __snake_case : str = None , __snake_case : list = None ): lowerCamelCase :Tuple = None lowerCamelCase :Tuple = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) lowerCamelCase :Optional[int] = os.path.abspath('''examples''' ) for item in os.listdir(__snake_case ): if item not in EXCLUDE_EXAMPLES: lowerCamelCase :Optional[int] = os.path.join(__snake_case , __snake_case ) if os.path.isfile(__snake_case ) and ".py" in item_path: with self.subTest( tested_script=__snake_case , feature_script=__snake_case , tested_section='''main()''' if parser_only else '''training_function()''' , ): lowerCamelCase :Union[str, Any] = compare_against_test( os.path.join(__snake_case , __snake_case ) , __snake_case , __snake_case , __snake_case ) lowerCamelCase :int = '''\n'''.join(__snake_case ) if special_strings is not None: for string in special_strings: lowerCamelCase :int = diff.replace(__snake_case , '''''' ) self.assertEqual(__snake_case , '''''' ) def snake_case ( self : Dict ): self.one_complete_example('''complete_nlp_example.py''' , __snake_case ) self.one_complete_example('''complete_nlp_example.py''' , __snake_case ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Union[str, Any] = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) lowerCamelCase :Optional[int] = [ ''' ''' * 16 + '''{\n\n''', ''' ''' * 20 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 20 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 20 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 20 + '''"epoch": epoch,\n\n''', ''' ''' * 16 + '''},\n\n''', ''' ''' * 16 + '''step=epoch,\n''', ''' ''' * 12, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , __snake_case , __snake_case , __snake_case ) self.one_complete_example('''complete_cv_example.py''' , __snake_case , __snake_case , __snake_case ) @mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '1'} ) class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = False @classmethod def snake_case ( cls : Optional[Any] ): super().setUpClass() lowerCamelCase :Any = tempfile.mkdtemp() lowerCamelCase :Optional[int] = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) lowerCamelCase :List[str] = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def snake_case ( cls : Dict ): super().tearDownClass() shutil.rmtree(cls._tmpdir ) def snake_case ( self : int ): lowerCamelCase :Any = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def snake_case ( self : List[Any] ): lowerCamelCase :Tuple = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n ".split() lowerCamelCase :List[Any] = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def snake_case ( self : List[str] ): lowerCamelCase :Dict = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}\n ".split() lowerCamelCase :Dict = run_command(self._launch_args + testargs , return_stdout=__snake_case ) self.assertNotIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) def snake_case ( self : str ): lowerCamelCase :List[Any] = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}\n ".split() lowerCamelCase :Optional[int] = run_command(self._launch_args + testargs , return_stdout=__snake_case ) if torch.cuda.is_available(): lowerCamelCase :Union[str, Any] = torch.cuda.device_count() else: lowerCamelCase :Dict = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) else: self.assertIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) @slow def snake_case ( self : Any ): lowerCamelCase :Tuple = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): lowerCamelCase :Dict = run_command(self._launch_args + testargs , return_stdout=__snake_case ) lowerCamelCase :Tuple = re.findall('''({.+})''' , __snake_case ) lowerCamelCase :Optional[Any] = [r for r in results if '''accuracy''' in r][-1] lowerCamelCase :List[str] = ast.literal_eval(__snake_case ) self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 ) def snake_case ( self : int ): lowerCamelCase :Dict = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case ( self : Any ): with tempfile.TemporaryDirectory() as tmpdir: lowerCamelCase :Tuple = F"\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__snake_case , '''tracking''' ) ) ) def snake_case ( self : Tuple ): lowerCamelCase :Tuple = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def snake_case ( self : Optional[Any] ): lowerCamelCase :int = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
706
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : str ): lowerCamelCase :int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :List[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :Optional[Any] = -1 lowerCamelCase :List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Tuple = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :str = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowerCamelCase :str = TextStreamer(__snake_case ) model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case , streamer=__snake_case ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCamelCase :Optional[int] = cs.out[:-1] self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : Dict ): lowerCamelCase :Tuple = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :int = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :List[Any] = -1 lowerCamelCase :Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Tuple = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :List[Any] = tokenizer.decode(greedy_ids[0] ) lowerCamelCase :List[str] = TextIteratorStreamer(__snake_case ) lowerCamelCase :List[str] = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} lowerCamelCase :Tuple = Thread(target=model.generate , kwargs=__snake_case ) thread.start() lowerCamelCase :Any = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : str ): lowerCamelCase :int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :Dict = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :List[str] = -1 lowerCamelCase :Optional[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Optional[Any] = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :List[str] = greedy_ids[:, input_ids.shape[1] :] lowerCamelCase :Union[str, Any] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowerCamelCase :List[str] = TextStreamer(__snake_case , skip_prompt=__snake_case ) model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case , streamer=__snake_case ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCamelCase :int = cs.out[:-1] self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : Optional[int] ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them lowerCamelCase :List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) lowerCamelCase :Union[str, Any] = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(__snake_case ) lowerCamelCase :Optional[int] = -1 lowerCamelCase :Union[str, Any] = torch.ones((1, 5) , device=__snake_case ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowerCamelCase :Dict = TextStreamer(__snake_case , skip_special_tokens=__snake_case ) model.generate(__snake_case , max_new_tokens=1 , do_sample=__snake_case , streamer=__snake_case ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowerCamelCase :Tuple = cs.out[:-1] # Remove the final "\n" lowerCamelCase :int = tokenizer(__snake_case , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def snake_case ( self : List[Any] ): lowerCamelCase :List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :Optional[int] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :Optional[int] = -1 lowerCamelCase :Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :List[Any] = TextIteratorStreamer(__snake_case , timeout=0.0_0_1 ) lowerCamelCase :Dict = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} lowerCamelCase :Tuple = Thread(target=model.generate , kwargs=__snake_case ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__snake_case ): lowerCamelCase :Dict = '''''' for new_text in streamer: streamer_text += new_text
49
0
def _lowerCamelCase ( a_ : int = 50_00_00_00): lowerCamelCase :int = set() lowerCamelCase :Union[str, Any] = int((limit - 24) ** (1 / 2)) lowerCamelCase :Optional[Any] = set(range(3 , prime_square_limit + 1 , 2)) primes.add(2) for p in range(3 , prime_square_limit + 1 , 2): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , a_))) for primea in primes: lowerCamelCase :Any = primea * primea for primea in primes: lowerCamelCase :Union[str, Any] = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: lowerCamelCase :List[Any] = primea * primea * primea * primea lowerCamelCase :Dict = square + cube + tetr if total >= limit: break ret.add(a_) return len(a_) if __name__ == "__main__": print(F'{solution() = }')
707
from maths.prime_factors import prime_factors def _lowerCamelCase ( a_ : int): if not isinstance(a_ , a_): lowerCamelCase :Tuple = F"Input value of [number={number}] must be an integer" raise TypeError(a_) if number < 1: raise ValueError('''Input must be a positive integer''') return -1 if len(prime_factors(a_)) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
49
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = ['image_processor', 'tokenizer'] _UpperCAmelCase = 'CLIPImageProcessor' _UpperCAmelCase = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : List[Any] , __snake_case : Union[str, Any]=None , __snake_case : Tuple=None , **__snake_case : Dict ): lowerCamelCase :int = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __snake_case , ) lowerCamelCase :Dict = kwargs.pop('''feature_extractor''' ) lowerCamelCase :Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__snake_case , __snake_case ) def __call__( self : Tuple , __snake_case : str=None , __snake_case : Dict=None , __snake_case : int=None , **__snake_case : str ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: lowerCamelCase :Dict = self.tokenizer(__snake_case , return_tensors=__snake_case , **__snake_case ) if images is not None: lowerCamelCase :Union[str, Any] = self.image_processor(__snake_case , return_tensors=__snake_case , **__snake_case ) if text is not None and images is not None: lowerCamelCase :Optional[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__snake_case ) , tensor_type=__snake_case ) def snake_case ( self : int , *__snake_case : int , **__snake_case : List[Any] ): return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def snake_case ( self : Optional[int] , *__snake_case : int , **__snake_case : Any ): return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def snake_case ( self : int ): lowerCamelCase :int = self.tokenizer.model_input_names lowerCamelCase :Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def snake_case ( self : List[str] ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __snake_case , ) return self.image_processor_class @property def snake_case ( self : Dict ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __snake_case , ) return self.image_processor
708
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() A__ = logging.get_logger(__name__) def _lowerCamelCase ( a_ : str , a_ : str=False): lowerCamelCase :Optional[int] = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''')) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''')) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''')) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''')) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''')) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''')) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''')) for stage_idx in range(len(config.backbone_config.depths)): for layer_idx in range(config.backbone_config.depths[stage_idx]): rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias")) # transformer encoder for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight")) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias")) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight")) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias")) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight")) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias")) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight")) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias")) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight")) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias")) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ]) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCamelCase :List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''') else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ]) # fmt: on return rename_keys def _lowerCamelCase ( a_ : Any , a_ : Any , a_ : int=False): for i in range(config.num_hidden_layers): if base_model: lowerCamelCase :Union[str, Any] = '''''' else: lowerCamelCase :Optional[int] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase :Optional[Any] = state_dict.pop(F"blocks.{i}.attn.qkv.weight") lowerCamelCase :Any = state_dict.pop(F"blocks.{i}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict lowerCamelCase :Any = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase :Tuple = in_proj_bias[: config.hidden_size] lowerCamelCase :int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase :Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase :Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase :List[Any] = in_proj_bias[-config.hidden_size :] def _lowerCamelCase ( a_ : int): lowerCamelCase :Any = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(a_ , a_) def _lowerCamelCase ( a_ : int , a_ : Any , a_ : Tuple): lowerCamelCase :Optional[Any] = dct.pop(a_) lowerCamelCase :str = val def _lowerCamelCase ( ): lowerCamelCase :Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase :Tuple = Image.open(requests.get(a_ , stream=a_).raw) return im @torch.no_grad() def _lowerCamelCase ( a_ : Optional[Any] , a_ : Optional[Any] , a_ : Optional[Any]=False): lowerCamelCase :Optional[int] = BitConfig( global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=a_ , ) lowerCamelCase :Optional[int] = ViTHybridConfig(backbone_config=a_ , image_size=3_84 , num_labels=10_00) lowerCamelCase :List[Any] = False # load original model from timm lowerCamelCase :List[str] = timm.create_model(a_ , pretrained=a_) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCamelCase :List[str] = timm_model.state_dict() if base_model: remove_classification_head_(a_) lowerCamelCase :Tuple = create_rename_keys(a_ , a_) for src, dest in rename_keys: rename_key(a_ , a_ , a_) read_in_q_k_v(a_ , a_ , a_) lowerCamelCase :List[str] = '''huggingface/label-files''' lowerCamelCase :Any = '''imagenet-1k-id2label.json''' lowerCamelCase :List[Any] = json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''') , '''r''')) lowerCamelCase :Optional[Any] = {int(a_): v for k, v in idalabel.items()} lowerCamelCase :Optional[int] = idalabel lowerCamelCase :Union[str, Any] = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": lowerCamelCase :Optional[Any] = ViTHybridModel(a_).eval() else: lowerCamelCase :Dict = ViTHybridForImageClassification(a_).eval() model.load_state_dict(a_) # create image processor lowerCamelCase :Dict = create_transform(**resolve_data_config({} , model=a_)) lowerCamelCase :str = transform.transforms lowerCamelCase :int = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } lowerCamelCase :Any = ViTHybridImageProcessor( do_resize=a_ , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=a_ , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=a_ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCamelCase :Dict = prepare_img() lowerCamelCase :str = transform(a_).unsqueeze(0) lowerCamelCase :str = processor(a_ , return_tensors='''pt''').pixel_values # verify pixel values assert torch.allclose(a_ , a_) # verify logits with torch.no_grad(): lowerCamelCase :Optional[int] = model(a_) lowerCamelCase :Union[str, Any] = outputs.logits print('''Predicted class:''' , logits.argmax(-1).item()) if base_model: lowerCamelCase :Union[str, Any] = timm_model.forward_features(a_) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(a_ , outputs.pooler_output , atol=1e-3) else: lowerCamelCase :List[str] = timm_model(a_) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(a_ , outputs.logits , atol=1e-3) print('''Looks ok!''') if pytorch_dump_folder_path is not None: Path(a_).mkdir(exist_ok=a_) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}") model.save_pretrained(a_) print(F"Saving processor to {pytorch_dump_folder_path}") processor.save_pretrained(a_) if push_to_hub: print(F"Pushing model and processor to the hub {vit_name}") model.push_to_hub(F"ybelkada/{vit_name}") processor.push_to_hub(F"ybelkada/{vit_name}") if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_r50_s16_384""", type=str, help="""Name of the hybrid ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) A__ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
49
0
from __future__ import annotations def _lowerCamelCase ( a_ : list[int] , a_ : int): if len(a_) == 0: return False lowerCamelCase :Optional[int] = len(a_) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , a_) else: return binary_search(a_list[midpoint + 1 :] , a_) if __name__ == "__main__": _UpperCamelCase = input("""Enter numbers separated by comma:\n""").strip() _UpperCamelCase = [int(item.strip()) for item in user_input.split(""",""")] _UpperCamelCase = int(input("""Enter the number to be found in the list:\n""").strip()) _UpperCamelCase = """""" if binary_search(sequence, target) else """not """ print(F'{target} was {not_str}found in {sequence}')
709
def _lowerCamelCase ( a_ : int = 4_00_00_00): lowerCamelCase :Dict = [0, 1] lowerCamelCase :Optional[Any] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1]) if fib[i + 2] > n: break i += 1 lowerCamelCase :Dict = 0 for j in range(len(a_) - 1): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F'{solution() = }')
49
0
import unittest import torch from torch import nn from diffusers.models.activations import get_activation class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Union[str, Any] ): lowerCamelCase :int = get_activation('''swish''' ) self.assertIsInstance(__snake_case , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Optional[Any] = get_activation('''silu''' ) self.assertIsInstance(__snake_case , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def snake_case ( self : int ): lowerCamelCase :Dict = get_activation('''mish''' ) self.assertIsInstance(__snake_case , nn.Mish ) self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def snake_case ( self : List[str] ): lowerCamelCase :Union[str, Any] = get_activation('''gelu''' ) self.assertIsInstance(__snake_case , nn.GELU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
710
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ = { """configuration_nllb_moe""": [ """NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NllbMoeConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""", """NllbMoeForConditionalGeneration""", """NllbMoeModel""", """NllbMoePreTrainedModel""", """NllbMoeTop2Router""", """NllbMoeSparseMLP""", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
49
0
def _lowerCamelCase ( ): return [list(range(10_00 - i , -10_00 - i , -1)) for i in range(10_00)] A__ = generate_large_matrix() A__ = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def _lowerCamelCase ( a_ : list[list[int]]): assert all(row == sorted(a_ , reverse=a_) for row in grid) assert all(list(a_) == sorted(a_ , reverse=a_) for col in zip(*a_)) def _lowerCamelCase ( a_ : list[int]): lowerCamelCase :Optional[Any] = 0 lowerCamelCase :Dict = len(a_) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: lowerCamelCase :str = (left + right) // 2 lowerCamelCase :Optional[Any] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: lowerCamelCase :Any = mid + 1 else: lowerCamelCase :int = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(a_) def _lowerCamelCase ( a_ : list[list[int]]): lowerCamelCase :Dict = 0 lowerCamelCase :Optional[Any] = len(grid[0]) for i in range(len(a_)): lowerCamelCase :str = find_negative_index(grid[i][:bound]) total += bound return (len(a_) * len(grid[0])) - total def _lowerCamelCase ( a_ : list[list[int]]): return len([number for row in grid for number in row if number < 0]) def _lowerCamelCase ( a_ : list[list[int]]): lowerCamelCase :Tuple = 0 for row in grid: for i, number in enumerate(a_): if number < 0: total += len(a_) - i break return total def _lowerCamelCase ( ): from timeit import timeit print('''Running benchmarks''') lowerCamelCase :List[Any] = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): lowerCamelCase :Optional[int] = timeit(F"{func}(grid=grid)" , setup=a_ , number=5_00) print(F"{func}() took {time:0.4f} seconds") if __name__ == "__main__": import doctest doctest.testmod() benchmark()
711
import numpy class _lowerCAmelCase : def __init__( self : Dict , __snake_case : numpy.ndarray , __snake_case : numpy.ndarray ): lowerCamelCase :Dict = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. lowerCamelCase :Dict = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. lowerCamelCase :Dict = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. lowerCamelCase :Any = numpy.random.rand(3 , 1 ) # Real output values provided. lowerCamelCase :Union[str, Any] = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. lowerCamelCase :List[str] = numpy.zeros(output_array.shape ) def snake_case ( self : Optional[int] ): lowerCamelCase :Any = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. lowerCamelCase :Any = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. lowerCamelCase :Dict = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def snake_case ( self : Any ): lowerCamelCase :Union[str, Any] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) lowerCamelCase :Dict = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) lowerCamelCase :int = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def snake_case ( self : Dict , __snake_case : numpy.ndarray , __snake_case : int , __snake_case : bool ): for iteration in range(1 , iterations + 1 ): lowerCamelCase :Union[str, Any] = self.feedforward() self.back_propagation() if give_loss: lowerCamelCase :Tuple = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"Iteration {iteration} Loss: {loss}" ) def snake_case ( self : Optional[int] , __snake_case : numpy.ndarray ): lowerCamelCase :int = input_arr lowerCamelCase :Union[str, Any] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) lowerCamelCase :Optional[Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) lowerCamelCase :Optional[int] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def _lowerCamelCase ( a_ : numpy.ndarray): return 1 / (1 + numpy.exp(-value)) def _lowerCamelCase ( a_ : numpy.ndarray): return (value) * (1 - (value)) def _lowerCamelCase ( ): lowerCamelCase :Optional[Any] = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. lowerCamelCase :int = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa) # Calling neural network class. lowerCamelCase :List[Any] = TwoHiddenLayerNeuralNetwork( input_array=a_ , output_array=a_) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=a_ , iterations=10 , give_loss=a_) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa)) if __name__ == "__main__": example()
49
0
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html A__ = """platform""" import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def _lowerCamelCase ( a_ : str , a_ : Union[str, Any] , a_ : List[str]=None , a_ : Optional[Any]=None , a_ : List[str]=None , a_ : List[str]=None , a_ : Optional[Any]=None , a_ : int=None , ): if attention_mask is None: lowerCamelCase :Union[str, Any] = np.where(input_ids != config.pad_token_id , 1 , 0) if decoder_attention_mask is None: lowerCamelCase :Optional[int] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0) if head_mask is None: lowerCamelCase :List[Any] = np.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: lowerCamelCase :List[Any] = np.ones((config.decoder_layers, config.decoder_attention_heads)) if cross_attn_head_mask is None: lowerCamelCase :Optional[Any] = np.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _lowerCAmelCase : def __init__( self : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : List[Any]=13 , __snake_case : Any=7 , __snake_case : List[str]=True , __snake_case : Any=False , __snake_case : Optional[int]=99 , __snake_case : List[Any]=16 , __snake_case : str=2 , __snake_case : List[Any]=4 , __snake_case : List[Any]=4 , __snake_case : Tuple="gelu" , __snake_case : str=0.1 , __snake_case : str=0.1 , __snake_case : Optional[Any]=32 , __snake_case : int=2 , __snake_case : Optional[int]=1 , __snake_case : str=0 , __snake_case : str=0.0_2 , ): lowerCamelCase :Optional[Any] = parent lowerCamelCase :Any = batch_size lowerCamelCase :str = seq_length lowerCamelCase :Optional[Any] = is_training lowerCamelCase :Tuple = use_labels lowerCamelCase :List[str] = vocab_size lowerCamelCase :Any = hidden_size lowerCamelCase :str = num_hidden_layers lowerCamelCase :Any = num_attention_heads lowerCamelCase :Tuple = intermediate_size lowerCamelCase :List[Any] = hidden_act lowerCamelCase :Tuple = hidden_dropout_prob lowerCamelCase :Dict = attention_probs_dropout_prob lowerCamelCase :List[Any] = max_position_embeddings lowerCamelCase :List[str] = eos_token_id lowerCamelCase :Tuple = pad_token_id lowerCamelCase :Tuple = bos_token_id lowerCamelCase :int = initializer_range def snake_case ( self : str ): lowerCamelCase :str = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) lowerCamelCase :Union[str, Any] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) lowerCamelCase :List[Any] = shift_tokens_right(__snake_case , 1 , 2 ) lowerCamelCase :Optional[int] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=__snake_case , ) lowerCamelCase :Dict = prepare_blenderbot_inputs_dict(__snake_case , __snake_case , __snake_case ) return config, inputs_dict def snake_case ( self : Optional[Any] ): lowerCamelCase :Optional[int] = self.prepare_config_and_inputs() return config, inputs_dict def snake_case ( self : List[str] , __snake_case : Tuple , __snake_case : Optional[int] , __snake_case : Union[str, Any] ): lowerCamelCase :Tuple = 20 lowerCamelCase :Union[str, Any] = model_class_name(__snake_case ) lowerCamelCase :Optional[Any] = model.encode(inputs_dict['''input_ids'''] ) lowerCamelCase :Dict = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowerCamelCase :Optional[Any] = model.init_cache(decoder_input_ids.shape[0] , __snake_case , __snake_case ) lowerCamelCase :Union[str, Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) lowerCamelCase :int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase :Optional[Any] = model.decode( decoder_input_ids[:, :-1] , __snake_case , decoder_attention_mask=__snake_case , past_key_values=__snake_case , decoder_position_ids=__snake_case , ) lowerCamelCase :Optional[int] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) lowerCamelCase :str = model.decode( decoder_input_ids[:, -1:] , __snake_case , decoder_attention_mask=__snake_case , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__snake_case , ) lowerCamelCase :Optional[int] = model.decode(__snake_case , __snake_case ) lowerCamelCase :Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F"Max diff is {diff}" ) def snake_case ( self : Optional[int] , __snake_case : List[str] , __snake_case : List[Any] , __snake_case : Tuple ): lowerCamelCase :List[str] = 20 lowerCamelCase :Union[str, Any] = model_class_name(__snake_case ) lowerCamelCase :Any = model.encode(inputs_dict['''input_ids'''] ) lowerCamelCase :Optional[int] = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowerCamelCase :str = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowerCamelCase :Optional[int] = model.init_cache(decoder_input_ids.shape[0] , __snake_case , __snake_case ) lowerCamelCase :Any = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase :int = model.decode( decoder_input_ids[:, :-1] , __snake_case , decoder_attention_mask=__snake_case , past_key_values=__snake_case , decoder_position_ids=__snake_case , ) lowerCamelCase :Union[str, Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) lowerCamelCase :int = model.decode( decoder_input_ids[:, -1:] , __snake_case , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__snake_case , decoder_position_ids=__snake_case , ) lowerCamelCase :str = model.decode(__snake_case , __snake_case , decoder_attention_mask=__snake_case ) lowerCamelCase :Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F"Max diff is {diff}" ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): _UpperCAmelCase = 9_9 def snake_case ( self : Optional[Any] ): lowerCamelCase :Dict = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) lowerCamelCase :Union[str, Any] = input_ids.shape[0] lowerCamelCase :Any = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def snake_case ( self : List[str] ): lowerCamelCase :List[Any] = self._get_config_and_data() lowerCamelCase :str = FlaxBlenderbotSmallForConditionalGeneration(__snake_case ) lowerCamelCase :Any = lm_model(input_ids=__snake_case ) lowerCamelCase :Union[str, Any] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , __snake_case ) def snake_case ( self : Optional[Any] ): lowerCamelCase :int = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) lowerCamelCase :Optional[int] = FlaxBlenderbotSmallForConditionalGeneration(__snake_case ) lowerCamelCase :List[Any] = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) lowerCamelCase :List[Any] = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) lowerCamelCase :List[str] = lm_model(input_ids=__snake_case , decoder_input_ids=__snake_case ) lowerCamelCase :Tuple = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , __snake_case ) def snake_case ( self : Dict ): lowerCamelCase :Optional[Any] = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) lowerCamelCase :Union[str, Any] = shift_tokens_right(__snake_case , 1 , 2 ) lowerCamelCase :Dict = np.equal(__snake_case , 1 ).astype(np.floataa ).sum() lowerCamelCase :str = np.equal(__snake_case , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(__snake_case , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase , __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = True _UpperCAmelCase = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) _UpperCAmelCase = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def snake_case ( self : int ): lowerCamelCase :Optional[int] = FlaxBlenderbotSmallModelTester(self ) def snake_case ( self : Union[str, Any] ): lowerCamelCase :Any = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__snake_case , __snake_case , __snake_case ) def snake_case ( self : str ): lowerCamelCase :Any = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__snake_case , __snake_case , __snake_case ) def snake_case ( self : Union[str, Any] ): lowerCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase :Tuple = self._prepare_for_class(__snake_case , __snake_case ) lowerCamelCase :Optional[int] = model_class(__snake_case ) @jax.jit def encode_jitted(__snake_case : Tuple , __snake_case : Optional[int]=None , **__snake_case : Optional[Any] ): return model.encode(input_ids=__snake_case , attention_mask=__snake_case ) with self.subTest('''JIT Enabled''' ): lowerCamelCase :Optional[int] = encode_jitted(**__snake_case ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCamelCase :Any = encode_jitted(**__snake_case ).to_tuple() self.assertEqual(len(__snake_case ) , len(__snake_case ) ) for jitted_output, output in zip(__snake_case , __snake_case ): self.assertEqual(jitted_output.shape , output.shape ) def snake_case ( self : int ): lowerCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase :Tuple = model_class(__snake_case ) lowerCamelCase :Dict = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) lowerCamelCase :Tuple = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(__snake_case : Any , __snake_case : Any , __snake_case : Union[str, Any] ): return model.decode( decoder_input_ids=__snake_case , decoder_attention_mask=__snake_case , encoder_outputs=__snake_case , ) with self.subTest('''JIT Enabled''' ): lowerCamelCase :Tuple = decode_jitted(**__snake_case ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCamelCase :Optional[Any] = decode_jitted(**__snake_case ).to_tuple() self.assertEqual(len(__snake_case ) , len(__snake_case ) ) for jitted_output, output in zip(__snake_case , __snake_case ): self.assertEqual(jitted_output.shape , output.shape ) @slow def snake_case ( self : List[str] ): for model_class_name in self.all_model_classes: lowerCamelCase :Optional[Any] = model_class_name.from_pretrained('''facebook/blenderbot_small-90M''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowerCamelCase :Optional[int] = np.ones((1, 1) ) * model.config.eos_token_id lowerCamelCase :Union[str, Any] = model(__snake_case ) self.assertIsNotNone(__snake_case )
712
def _lowerCamelCase ( a_ : str , a_ : str): lowerCamelCase :List[str] = len(a_) lowerCamelCase :List[str] = len(a_) lowerCamelCase :int = [[False for _ in range(m + 1)] for _ in range(n + 1)] lowerCamelCase :Optional[Any] = True for i in range(a_): for j in range(m + 1): if dp[i][j]: if j < m and a[i].upper() == b[j]: lowerCamelCase :Any = True if a[i].islower(): lowerCamelCase :List[str] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
49
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A__ = {"""processing_layoutxlm""": ["""LayoutXLMProcessor"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""LayoutXLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""LayoutXLMTokenizerFast"""] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
713
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : def __init__( self : Any , __snake_case : Optional[int] , __snake_case : int=13 , __snake_case : str=[30, 30] , __snake_case : Tuple=2 , __snake_case : Optional[Any]=3 , __snake_case : int=True , __snake_case : Tuple=True , __snake_case : List[Any]=32 , __snake_case : int=5 , __snake_case : Optional[Any]=4 , __snake_case : Union[str, Any]=37 , __snake_case : str="gelu" , __snake_case : Tuple=0.1 , __snake_case : List[Any]=0.1 , __snake_case : Union[str, Any]=10 , __snake_case : str=0.0_2 , __snake_case : Union[str, Any]=3 , __snake_case : Union[str, Any]=None , __snake_case : List[str]=8 , __snake_case : Any=10 , ): lowerCamelCase :Optional[Any] = parent lowerCamelCase :List[Any] = batch_size lowerCamelCase :Any = image_size lowerCamelCase :Union[str, Any] = patch_size lowerCamelCase :Any = num_channels lowerCamelCase :List[Any] = is_training lowerCamelCase :Optional[Any] = use_labels lowerCamelCase :Any = hidden_size lowerCamelCase :List[Any] = num_hidden_layers lowerCamelCase :List[str] = num_attention_heads lowerCamelCase :Tuple = intermediate_size lowerCamelCase :List[str] = hidden_act lowerCamelCase :List[str] = hidden_dropout_prob lowerCamelCase :Any = attention_probs_dropout_prob lowerCamelCase :List[Any] = type_sequence_label_size lowerCamelCase :Optional[int] = initializer_range lowerCamelCase :List[Any] = num_labels lowerCamelCase :Any = scope lowerCamelCase :Union[str, Any] = n_targets lowerCamelCase :Optional[Any] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowerCamelCase :Tuple = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowerCamelCase :str = num_patches + 1 + self.num_detection_tokens def snake_case ( self : List[str] ): lowerCamelCase :str = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowerCamelCase :List[str] = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowerCamelCase :Optional[int] = [] for i in range(self.batch_size ): lowerCamelCase :List[str] = {} lowerCamelCase :Tuple = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=__snake_case ) lowerCamelCase :List[str] = torch.rand(self.n_targets , 4 , device=__snake_case ) labels.append(__snake_case ) lowerCamelCase :str = self.get_config() return config, pixel_values, labels def snake_case ( self : Union[str, Any] ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__snake_case , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def snake_case ( self : Tuple , __snake_case : Tuple , __snake_case : Tuple , __snake_case : Any ): lowerCamelCase :Optional[Any] = YolosModel(config=__snake_case ) model.to(__snake_case ) model.eval() lowerCamelCase :Union[str, Any] = model(__snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def snake_case ( self : Dict , __snake_case : str , __snake_case : Optional[int] , __snake_case : Optional[Any] ): lowerCamelCase :int = YolosForObjectDetection(__snake_case ) model.to(__snake_case ) model.eval() lowerCamelCase :str = model(pixel_values=__snake_case ) lowerCamelCase :Any = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) lowerCamelCase :int = model(pixel_values=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def snake_case ( self : int ): lowerCamelCase :List[Any] = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase :str = config_and_inputs lowerCamelCase :Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () _UpperCAmelCase = ( {'feature-extraction': YolosModel, 'object-detection': YolosForObjectDetection} if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def snake_case ( self : Any , __snake_case : List[Any] , __snake_case : Tuple , __snake_case : Dict=False ): lowerCamelCase :Optional[int] = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowerCamelCase :Dict = [] for i in range(self.model_tester.batch_size ): lowerCamelCase :Optional[Any] = {} lowerCamelCase :List[Any] = torch.ones( size=(self.model_tester.n_targets,) , device=__snake_case , dtype=torch.long ) lowerCamelCase :str = torch.ones( self.model_tester.n_targets , 4 , device=__snake_case , dtype=torch.float ) labels.append(__snake_case ) lowerCamelCase :Union[str, Any] = labels return inputs_dict def snake_case ( self : Tuple ): lowerCamelCase :Union[str, Any] = YolosModelTester(self ) lowerCamelCase :Dict = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=37 ) def snake_case ( self : Union[str, Any] ): self.config_tester.run_common_tests() def snake_case ( self : Optional[Any] ): # YOLOS does not use inputs_embeds pass def snake_case ( self : Tuple ): lowerCamelCase , lowerCamelCase :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :Optional[int] = model_class(__snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase :str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case , nn.Linear ) ) def snake_case ( self : str ): lowerCamelCase , lowerCamelCase :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :str = model_class(__snake_case ) lowerCamelCase :Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase :Tuple = [*signature.parameters.keys()] lowerCamelCase :Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __snake_case ) def snake_case ( self : int ): lowerCamelCase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def snake_case ( self : str ): lowerCamelCase , lowerCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase :int = True # in YOLOS, the seq_len is different lowerCamelCase :str = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowerCamelCase :str = True lowerCamelCase :Tuple = False lowerCamelCase :Optional[int] = True lowerCamelCase :int = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :str = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :str = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase :Optional[Any] = True lowerCamelCase :str = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :Tuple = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Tuple = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowerCamelCase :Optional[int] = len(__snake_case ) # Check attention is always last and order is fine lowerCamelCase :Union[str, Any] = True lowerCamelCase :List[Any] = True lowerCamelCase :Tuple = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :int = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Dict = 1 self.assertEqual(out_len + added_hidden_states , len(__snake_case ) ) lowerCamelCase :Dict = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def snake_case ( self : List[str] ): def check_hidden_states_output(__snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Tuple ): lowerCamelCase :Union[str, Any] = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :Any = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Optional[Any] = outputs.hidden_states lowerCamelCase :Any = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__snake_case ) , __snake_case ) # YOLOS has a different seq_length lowerCamelCase :List[str] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowerCamelCase , lowerCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :Union[str, Any] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase :Any = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*__snake_case ) @slow def snake_case ( self : Dict ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase :Tuple = YolosModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def _lowerCamelCase ( ): lowerCamelCase :int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): @cached_property def snake_case ( self : Tuple ): return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def snake_case ( self : Dict ): lowerCamelCase :Union[str, Any] = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(__snake_case ) lowerCamelCase :Optional[Any] = self.default_image_processor lowerCamelCase :str = prepare_img() lowerCamelCase :Dict = image_processor(images=__snake_case , return_tensors='''pt''' ).to(__snake_case ) # forward pass with torch.no_grad(): lowerCamelCase :Optional[Any] = model(inputs.pixel_values ) # verify outputs lowerCamelCase :int = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , __snake_case ) lowerCamelCase :Any = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=__snake_case , ) lowerCamelCase :Any = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __snake_case , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , __snake_case , atol=1e-4 ) ) # verify postprocessing lowerCamelCase :List[str] = image_processor.post_process_object_detection( __snake_case , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] lowerCamelCase :List[str] = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(__snake_case ) lowerCamelCase :str = [75, 75, 17, 63, 17] lowerCamelCase :Tuple = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(__snake_case ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , __snake_case , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , __snake_case ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , __snake_case ) )
49
0
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'char' _UpperCAmelCase = 'bpe' _UpperCAmelCase = 'wp' A__ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = ['image_processor', 'char_tokenizer'] _UpperCAmelCase = 'ViTImageProcessor' _UpperCAmelCase = 'MgpstrTokenizer' def __init__( self : List[str] , __snake_case : Dict=None , __snake_case : Tuple=None , **__snake_case : Tuple ): lowerCamelCase :Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __snake_case , ) lowerCamelCase :List[Any] = kwargs.pop('''feature_extractor''' ) lowerCamelCase :List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) lowerCamelCase :Dict = tokenizer lowerCamelCase :Any = AutoTokenizer.from_pretrained('''gpt2''' ) lowerCamelCase :Optional[int] = AutoTokenizer.from_pretrained('''bert-base-uncased''' ) super().__init__(__snake_case , __snake_case ) def __call__( self : Optional[Any] , __snake_case : Tuple=None , __snake_case : Union[str, Any]=None , __snake_case : Dict=None , **__snake_case : Tuple ): if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: lowerCamelCase :List[str] = self.image_processor(__snake_case , return_tensors=__snake_case , **__snake_case ) if text is not None: lowerCamelCase :Any = self.char_tokenizer(__snake_case , return_tensors=__snake_case , **__snake_case ) if text is None: return inputs elif images is None: return encodings else: lowerCamelCase :Tuple = encodings['''input_ids'''] return inputs def snake_case ( self : Optional[int] , __snake_case : Tuple ): lowerCamelCase :Any = sequences lowerCamelCase :Union[str, Any] = char_preds.size(0 ) lowerCamelCase :Tuple = self._decode_helper(__snake_case , '''char''' ) lowerCamelCase :Tuple = self._decode_helper(__snake_case , '''bpe''' ) lowerCamelCase :Optional[Any] = self._decode_helper(__snake_case , '''wp''' ) lowerCamelCase :Optional[Any] = [] lowerCamelCase :Dict = [] for i in range(__snake_case ): lowerCamelCase :Optional[int] = [char_scores[i], bpe_scores[i], wp_scores[i]] lowerCamelCase :Optional[int] = [char_strs[i], bpe_strs[i], wp_strs[i]] lowerCamelCase :Dict = scores.index(max(__snake_case ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) lowerCamelCase :Tuple = {} lowerCamelCase :int = final_strs lowerCamelCase :str = final_scores lowerCamelCase :Dict = char_strs lowerCamelCase :Optional[int] = bpe_strs lowerCamelCase :str = wp_strs return out def snake_case ( self : List[str] , __snake_case : Tuple , __snake_case : List[Any] ): if format == DecodeType.CHARACTER: lowerCamelCase :List[Any] = self.char_decode lowerCamelCase :List[Any] = 1 lowerCamelCase :Tuple = '''[s]''' elif format == DecodeType.BPE: lowerCamelCase :Tuple = self.bpe_decode lowerCamelCase :Dict = 2 lowerCamelCase :str = '''#''' elif format == DecodeType.WORDPIECE: lowerCamelCase :Dict = self.wp_decode lowerCamelCase :List[Any] = 102 lowerCamelCase :List[Any] = '''[SEP]''' else: raise ValueError(F"Format {format} is not supported." ) lowerCamelCase :Any = [], [] lowerCamelCase :Dict = pred_logits.size(0 ) lowerCamelCase :Any = pred_logits.size(1 ) lowerCamelCase :Dict = pred_logits.topk(1 , dim=-1 , largest=__snake_case , sorted=__snake_case ) lowerCamelCase :Optional[Any] = preds_index.view(-1 , __snake_case )[:, 1:] lowerCamelCase :int = decoder(__snake_case ) lowerCamelCase :Optional[int] = torch.nn.functional.softmax(__snake_case , dim=2 ).max(dim=2 ) lowerCamelCase :Optional[Any] = preds_max_prob[:, 1:] for index in range(__snake_case ): lowerCamelCase :str = preds_str[index].find(__snake_case ) lowerCamelCase :List[Any] = preds_str[index][:pred_eos] lowerCamelCase :Union[str, Any] = preds_index[index].cpu().tolist() lowerCamelCase :Dict = pred_index.index(__snake_case ) if eos_token in pred_index else -1 lowerCamelCase :Optional[Any] = preds_max_prob[index][: pred_eos_index + 1] lowerCamelCase :Any = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__snake_case ) conf_scores.append(__snake_case ) return dec_strs, conf_scores def snake_case ( self : Union[str, Any] , __snake_case : Dict ): lowerCamelCase :int = [seq.replace(''' ''' , '''''' ) for seq in self.char_tokenizer.batch_decode(__snake_case )] return decode_strs def snake_case ( self : List[Any] , __snake_case : Tuple ): return self.bpe_tokenizer.batch_decode(__snake_case ) def snake_case ( self : Optional[Any] , __snake_case : str ): lowerCamelCase :Dict = [seq.replace(''' ''' , '''''' ) for seq in self.wp_tokenizer.batch_decode(__snake_case )] return decode_strs
714
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Tuple ): lowerCamelCase :List[Any] = inspect.getfile(accelerate.test_utils ) lowerCamelCase :Dict = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 lowerCamelCase :Any = test_metrics @require_cpu def snake_case ( self : Dict ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def snake_case ( self : int ): debug_launcher(self.test_metrics.main ) @require_single_gpu def snake_case ( self : Any ): self.test_metrics.main() @require_multi_gpu def snake_case ( self : Optional[int] ): print(F"Found {torch.cuda.device_count()} devices." ) lowerCamelCase :Optional[int] = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__snake_case , env=os.environ.copy() )
49
0
# HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers A__ = float("""nan""") class _lowerCAmelCase : def __init__( self : Union[str, Any] , __snake_case : Any ): lowerCamelCase :Optional[int] = sys.stdout lowerCamelCase :Optional[int] = open(__snake_case , '''a''' ) def __getattr__( self : str , __snake_case : List[str] ): return getattr(self.stdout , __snake_case ) def snake_case ( self : Optional[int] , __snake_case : Dict ): self.stdout.write(__snake_case ) # strip tqdm codes self.file.write(re.sub(R'''^.*\r''' , '''''' , __snake_case , 0 , re.M ) ) def _lowerCamelCase ( a_ : Tuple=80 , a_ : str=False): lowerCamelCase :Tuple = [] # deal with critical env vars lowerCamelCase :Dict = ['''CUDA_VISIBLE_DEVICES'''] for key in env_keys: lowerCamelCase :Optional[int] = os.environ.get(a_ , a_) if val is not None: cmd.append(F"{key}={val}") # python executable (not always needed if the script is executable) lowerCamelCase :str = sys.executable if full_python_path else sys.executable.split('''/''')[-1] cmd.append(a_) # now the normal args cmd += list(map(shlex.quote , sys.argv)) # split up into up to MAX_WIDTH lines with shell multi-line escapes lowerCamelCase :List[Any] = [] lowerCamelCase :Optional[int] = '''''' while len(a_) > 0: current_line += F"{cmd.pop(0)} " if len(a_) == 0 or len(a_) + len(cmd[0]) + 1 > max_width - 1: lines.append(a_) lowerCamelCase :List[Any] = '''''' return "\\\n".join(a_) def _lowerCamelCase ( a_ : str , a_ : Optional[int]): # unwrap multi-line input lowerCamelCase :Optional[int] = re.sub(R'''[\\\n]+''' , ''' ''' , args.base_cmd) # remove --output_dir if any and set our own lowerCamelCase :int = re.sub('''--output_dir\s+[^\s]+''' , '''''' , args.base_cmd) args.base_cmd += F" --output_dir {output_dir}" # ensure we have --overwrite_output_dir lowerCamelCase :Optional[Any] = re.sub('''--overwrite_output_dir\s+''' , '''''' , args.base_cmd) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd) def _lowerCamelCase ( a_ : Tuple , a_ : List[str] , a_ : str , a_ : List[Any] , a_ : List[str] , a_ : List[Any] , a_ : Tuple): # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0) return dict( {k: random.uniform(0 , 1_00) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6_666, 222.22_222_222])} , ) lowerCamelCase :Union[str, Any] = subprocess.run(a_ , capture_output=a_ , text=a_) if verbose: print('''STDOUT''' , result.stdout) print('''STDERR''' , result.stderr) # save the streams lowerCamelCase :Dict = variation.replace(''' ''' , '''-''') with open(Path(a_) / F"log.{prefix}.stdout.txt" , '''w''') as f: f.write(result.stdout) with open(Path(a_) / F"log.{prefix}.stderr.txt" , '''w''') as f: f.write(result.stderr) if result.returncode != 0: if verbose: print('''failed''') return {target_metric_key: nan} with io.open(F"{output_dir}/all_results.json" , '''r''' , encoding='''utf-8''') as f: lowerCamelCase :List[str] = json.load(a_) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def _lowerCamelCase ( a_ : List[str] , a_ : List[str] , a_ : Optional[Any] , a_ : List[Any] , a_ : Dict , a_ : int , a_ : Any , a_ : str , a_ : List[str] , a_ : int , ): lowerCamelCase :Dict = [] lowerCamelCase :List[Any] = [] lowerCamelCase :Any = F"{id}: {variation:<{longest_variation_len}}" lowerCamelCase :int = F"{preamble}: " lowerCamelCase :str = set(report_metric_keys + [target_metric_key]) for i in tqdm(range(a_) , desc=a_ , leave=a_): lowerCamelCase :Union[str, Any] = process_run_single( a_ , a_ , a_ , a_ , a_ , a_ , a_) lowerCamelCase :Optional[Any] = single_run_metrics[target_metric_key] if not math.isnan(a_): metrics.append(a_) results.append(a_) outcome += "✓" else: outcome += "✘" lowerCamelCase :List[str] = F"\33[2K\r{outcome}" if len(a_) > 0: lowerCamelCase :Tuple = {k: fmean([x[k] for x in metrics]) for k in metrics[0].keys()} lowerCamelCase :Union[str, Any] = round(mean_metrics[target_metric_key] , 2) lowerCamelCase :Optional[int] = F"{outcome} {mean_target}" if len(a_) > 1: results_str += F" {tuple(round(a_ , 2) for x in results)}" print(a_) lowerCamelCase :Union[str, Any] = variation return mean_metrics else: print(a_) return {variation_key: variation, target_metric_key: nan} def _lowerCamelCase ( ): lowerCamelCase :List[str] = torch.cuda.get_device_properties(torch.device('''cuda''')) return F"\nDatetime : {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\nSoftware:\ntransformers: {transformers.__version__}\ntorch : {torch.__version__}\ncuda : {torch.version.cuda}\npython : {platform.python_version()}\n\nHardware:\n{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB\n" def _lowerCamelCase ( a_ : int , a_ : Any , a_ : str , a_ : Optional[Any] , a_ : Optional[Any]): lowerCamelCase :Any = pd.DataFrame(a_) lowerCamelCase :Any = '''variation''' lowerCamelCase :List[Any] = '''diff_%''' lowerCamelCase :Any = nan if base_variation is not None and len(df[df[variation_key] == base_variation]): # this may still return nan lowerCamelCase :Tuple = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(a_): # as a fallback, use the minimal value as the sentinel lowerCamelCase :Optional[int] = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(a_): lowerCamelCase :Dict = df.apply( lambda a_: round(1_00 * (r[target_metric_key] - sentinel_value) / sentinel_value) if not math.isnan(r[target_metric_key]) else 0 , axis='''columns''' , ) # re-order columns lowerCamelCase :Tuple = [variation_key, target_metric_key, diff_key, *report_metric_keys] lowerCamelCase :Dict = df.reindex(a_ , axis='''columns''') # reorder cols # capitalize lowerCamelCase :List[str] = df.rename(str.capitalize , axis='''columns''') # make the cols as narrow as possible lowerCamelCase :Optional[Any] = df.rename(lambda a_: c.replace('''_''' , '''<br>''') , axis='''columns''') lowerCamelCase :Union[str, Any] = df.rename(lambda a_: c.replace('''_''' , '''\n''') , axis='''columns''') lowerCamelCase :Any = ['''''', '''Copy between the cut-here-lines and paste as is to github or a forum'''] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=a_ , floatfmt='''.2f''')] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=a_ , floatfmt='''.2f''')] print('''\n\n'''.join(a_)) def _lowerCamelCase ( ): lowerCamelCase :Dict = argparse.ArgumentParser() parser.add_argument( '''--base-cmd''' , default=a_ , type=a_ , required=a_ , help='''Base cmd''' , ) parser.add_argument( '''--variations''' , default=a_ , type=a_ , nargs='''+''' , required=a_ , help='''Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'''' , ) parser.add_argument( '''--base-variation''' , default=a_ , type=a_ , help='''Baseline variation to compare to. if None the minimal target value will be used to compare against''' , ) parser.add_argument( '''--target-metric-key''' , default=a_ , type=a_ , required=a_ , help='''Target metric key in output_dir/all_results.json, e.g., train_samples_per_second''' , ) parser.add_argument( '''--report-metric-keys''' , default='''''' , type=a_ , help='''Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples''' , ) parser.add_argument( '''--repeat-times''' , default=1 , type=a_ , help='''How many times to re-run each variation - an average will be reported''' , ) parser.add_argument( '''--output_dir''' , default='''output_benchmark''' , type=a_ , help='''The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked''' , ) parser.add_argument( '''--verbose''' , default=a_ , action='''store_true''' , help='''Whether to show the outputs of each run or just the benchmark progress''' , ) lowerCamelCase :Optional[Any] = parser.parse_args() lowerCamelCase :List[Any] = args.output_dir Path(a_).mkdir(exist_ok=a_) lowerCamelCase :List[str] = get_base_command(a_ , a_) # split each dimension into its --foo variations lowerCamelCase :int = [list(map(str.strip , re.split(R'''\|''' , a_))) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty lowerCamelCase :Optional[int] = list(map(str.strip , map(''' '''.join , itertools.product(*a_)))) lowerCamelCase :Tuple = max(len(a_) for x in variations) # split wanted keys lowerCamelCase :Tuple = args.report_metric_keys.split() # capture prints into a log file for convenience lowerCamelCase :Dict = F"benchmark-report-{datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')}.txt" print(F"\nNote: each run's output is also logged under {output_dir}/log.*.std*.txt") print(F"and this script's output is also piped into {report_fn}") lowerCamelCase :Optional[Any] = Tee(a_) print(F"\n*** Running {len(a_)} benchmarks:") print(F"Base command: {' '.join(a_)}") lowerCamelCase :Dict = '''variation''' lowerCamelCase :Optional[Any] = [] for id, variation in enumerate(tqdm(a_ , desc='''Total completion: ''' , leave=a_)): lowerCamelCase :int = base_cmd + variation.split() results.append( process_run( id + 1 , a_ , a_ , a_ , a_ , args.target_metric_key , a_ , args.repeat_times , a_ , args.verbose , )) process_results(a_ , args.target_metric_key , a_ , args.base_variation , a_) if __name__ == "__main__": main()
715
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = '' _UpperCAmelCase = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) _UpperCAmelCase = None # compression type in fsspec. ex: "gzip" _UpperCAmelCase = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : str , __snake_case : str = "" , __snake_case : Optional[str] = None , __snake_case : Optional[dict] = None , **__snake_case : Dict ): super().__init__(self , **__snake_case ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode lowerCamelCase :Optional[Any] = fsspec.open( __snake_case , mode='''rb''' , protocol=__snake_case , compression=self.compression , client_kwargs={ '''requote_redirect_url''': False, # see https://github.com/huggingface/datasets/pull/5459 '''trust_env''': True, # Enable reading proxy env variables. **(target_options or {}).pop('''client_kwargs''' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) lowerCamelCase :List[str] = os.path.basename(self.file.path.split('''::''' )[0] ) lowerCamelCase :Dict = ( self.compressed_name[: self.compressed_name.rindex('''.''' )] if '''.''' in self.compressed_name else self.compressed_name ) lowerCamelCase :List[str] = None @classmethod def snake_case ( cls : Any , __snake_case : Any ): # compressed file paths are always relative to the archive root return super()._strip_protocol(__snake_case ).lstrip('''/''' ) def snake_case ( self : Any ): if self.dir_cache is None: lowerCamelCase :Optional[Any] = {**self.file.fs.info(self.file.path ), '''name''': self.uncompressed_name} lowerCamelCase :Optional[Any] = {f['''name''']: f} def snake_case ( self : Union[str, Any] , __snake_case : str ): return self.file.open().read() def snake_case ( self : Optional[int] , __snake_case : str , __snake_case : str = "rb" , __snake_case : int=None , __snake_case : Optional[int]=True , __snake_case : str=None , **__snake_case : str , ): lowerCamelCase :List[str] = self._strip_protocol(__snake_case ) if mode != "rb": raise ValueError(F"Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'" ) return self.file.open() class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'bz2' _UpperCAmelCase = 'bz2' _UpperCAmelCase = '.bz2' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'gzip' _UpperCAmelCase = 'gzip' _UpperCAmelCase = '.gz' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'lz4' _UpperCAmelCase = 'lz4' _UpperCAmelCase = '.lz4' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'xz' _UpperCAmelCase = 'xz' _UpperCAmelCase = '.xz' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'zstd' _UpperCAmelCase = 'zstd' _UpperCAmelCase = '.zst' def __init__( self : str , __snake_case : str , __snake_case : str = "rb" , __snake_case : Optional[str] = None , __snake_case : Optional[dict] = None , __snake_case : int = DEFAULT_BLOCK_SIZE , **__snake_case : int , ): super().__init__( fo=__snake_case , mode=__snake_case , target_protocol=__snake_case , target_options=__snake_case , block_size=__snake_case , **__snake_case , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 lowerCamelCase :Tuple = self.file.__enter__ class _lowerCAmelCase : def __init__( self : Dict , __snake_case : Tuple ): lowerCamelCase :Optional[int] = file_ def __enter__( self : Optional[int] ): self._file.__enter__() return self def __exit__( self : str , *__snake_case : Optional[Any] , **__snake_case : List[Any] ): self._file.__exit__(*__snake_case , **__snake_case ) def __iter__( self : Optional[Any] ): return iter(self._file ) def snake_case ( self : List[Any] ): return next(self._file ) def __getattr__( self : Any , __snake_case : str ): return getattr(self._file , __snake_case ) def fixed_enter(*__snake_case : Optional[int] , **__snake_case : str ): return WrappedFile(_enter(*__snake_case , **__snake_case ) ) lowerCamelCase :Dict = fixed_enter
49
0
from ...configuration_utils import PretrainedConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { """google/pegasus-large""": """https://huggingface.co/google/pegasus-large/resolve/main/config.json""", # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'pegasus' _UpperCAmelCase = ['past_key_values'] _UpperCAmelCase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : List[Any] , __snake_case : List[Any]=50265 , __snake_case : Any=1024 , __snake_case : Tuple=12 , __snake_case : Union[str, Any]=4096 , __snake_case : List[str]=16 , __snake_case : Union[str, Any]=12 , __snake_case : List[Any]=4096 , __snake_case : Any=16 , __snake_case : Optional[int]=0.0 , __snake_case : List[str]=0.0 , __snake_case : Dict=True , __snake_case : Union[str, Any]=True , __snake_case : Tuple="gelu" , __snake_case : Union[str, Any]=1024 , __snake_case : List[Any]=0.1 , __snake_case : Optional[Any]=0.0 , __snake_case : Any=0.0 , __snake_case : int=0.0_2 , __snake_case : Optional[int]=0 , __snake_case : Union[str, Any]=False , __snake_case : Any=0 , __snake_case : Any=1 , __snake_case : List[Any]=1 , **__snake_case : Tuple , ): lowerCamelCase :Any = vocab_size lowerCamelCase :Tuple = max_position_embeddings lowerCamelCase :Optional[int] = d_model lowerCamelCase :int = encoder_ffn_dim lowerCamelCase :Union[str, Any] = encoder_layers lowerCamelCase :Tuple = encoder_attention_heads lowerCamelCase :List[str] = decoder_ffn_dim lowerCamelCase :Dict = decoder_layers lowerCamelCase :Tuple = decoder_attention_heads lowerCamelCase :List[Any] = dropout lowerCamelCase :List[Any] = attention_dropout lowerCamelCase :int = activation_dropout lowerCamelCase :str = activation_function lowerCamelCase :str = init_std lowerCamelCase :Any = encoder_layerdrop lowerCamelCase :Dict = decoder_layerdrop lowerCamelCase :Union[str, Any] = use_cache lowerCamelCase :int = encoder_layers lowerCamelCase :Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__snake_case , eos_token_id=__snake_case , is_encoder_decoder=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , **__snake_case , ) @property def snake_case ( self : Optional[Any] ): return self.encoder_attention_heads @property def snake_case ( self : Union[str, Any] ): return self.d_model
716
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = LEDTokenizer _UpperCAmelCase = LEDTokenizerFast _UpperCAmelCase = True def snake_case ( self : Any ): super().setUp() lowerCamelCase :Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] lowerCamelCase :Any = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) lowerCamelCase :List[str] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCamelCase :int = {'''unk_token''': '''<unk>'''} lowerCamelCase :Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__snake_case ) ) def snake_case ( self : int , **__snake_case : int ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Dict , **__snake_case : Any ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Optional[Any] , __snake_case : Union[str, Any] ): return "lower newer", "lower newer" @cached_property def snake_case ( self : Any ): return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' ) @cached_property def snake_case ( self : int ): return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' ) @require_torch def snake_case ( self : str ): lowerCamelCase :Any = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowerCamelCase :List[Any] = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[Any] = tokenizer(__snake_case , max_length=len(__snake_case ) , padding=__snake_case , return_tensors='''pt''' ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowerCamelCase :List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(__snake_case , __snake_case ) @require_torch def snake_case ( self : Tuple ): lowerCamelCase :Dict = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Union[str, Any] = tokenizer(__snake_case , padding=__snake_case , return_tensors='''pt''' ) self.assertIn('''input_ids''' , __snake_case ) self.assertIn('''attention_mask''' , __snake_case ) self.assertNotIn('''labels''' , __snake_case ) self.assertNotIn('''decoder_attention_mask''' , __snake_case ) @require_torch def snake_case ( self : Union[str, Any] ): lowerCamelCase :Union[str, Any] = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :List[Any] = tokenizer(text_target=__snake_case , max_length=32 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) @require_torch def snake_case ( self : List[Any] ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[Any] = tokenizer( ['''I am a small frog''' * 1024, '''I am a small frog'''] , padding=__snake_case , truncation=__snake_case , return_tensors='''pt''' ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def snake_case ( self : Optional[int] ): lowerCamelCase :Union[str, Any] = ['''A long paragraph for summarization.'''] lowerCamelCase :Any = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Union[str, Any] = tokenizer(__snake_case , return_tensors='''pt''' ) lowerCamelCase :Any = tokenizer(text_target=__snake_case , return_tensors='''pt''' ) lowerCamelCase :Optional[int] = inputs['''input_ids'''] lowerCamelCase :Any = targets['''input_ids'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def snake_case ( self : Dict ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[int] = ['''Summary of the text.''', '''Another summary.'''] lowerCamelCase :List[Any] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] lowerCamelCase :Optional[int] = tokenizer(__snake_case , padding=__snake_case ) lowerCamelCase :Union[str, Any] = [[0] * len(__snake_case ) for x in encoded_output['''input_ids''']] lowerCamelCase :str = tokenizer.pad(__snake_case ) self.assertSequenceEqual(outputs['''global_attention_mask'''] , __snake_case ) def snake_case ( self : Tuple ): pass def snake_case ( self : Optional[int] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase :Optional[Any] = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :Tuple = self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :int = '''A, <mask> AllenNLP sentence.''' lowerCamelCase :str = tokenizer_r.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case ) lowerCamelCase :str = tokenizer_p.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case ) self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) lowerCamelCase :Optional[int] = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) lowerCamelCase :Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __snake_case , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __snake_case , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
49
0
from ...configuration_utils import PretrainedConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { """naver-clova-ix/donut-base""": """https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json""", # See all Donut models at https://huggingface.co/models?filter=donut-swin } class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'donut-swin' _UpperCAmelCase = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Optional[int] , __snake_case : List[str]=224 , __snake_case : Optional[Any]=4 , __snake_case : List[Any]=3 , __snake_case : Optional[Any]=96 , __snake_case : Dict=[2, 2, 6, 2] , __snake_case : Optional[Any]=[3, 6, 12, 24] , __snake_case : str=7 , __snake_case : Dict=4.0 , __snake_case : List[str]=True , __snake_case : Optional[Any]=0.0 , __snake_case : List[Any]=0.0 , __snake_case : List[str]=0.1 , __snake_case : List[str]="gelu" , __snake_case : List[str]=False , __snake_case : int=0.0_2 , __snake_case : List[Any]=1e-5 , **__snake_case : Dict , ): super().__init__(**__snake_case ) lowerCamelCase :Optional[Any] = image_size lowerCamelCase :Union[str, Any] = patch_size lowerCamelCase :Optional[Any] = num_channels lowerCamelCase :Dict = embed_dim lowerCamelCase :Optional[int] = depths lowerCamelCase :List[Any] = len(__snake_case ) lowerCamelCase :Any = num_heads lowerCamelCase :int = window_size lowerCamelCase :Dict = mlp_ratio lowerCamelCase :str = qkv_bias lowerCamelCase :int = hidden_dropout_prob lowerCamelCase :List[Any] = attention_probs_dropout_prob lowerCamelCase :List[Any] = drop_path_rate lowerCamelCase :Union[str, Any] = hidden_act lowerCamelCase :str = use_absolute_embeddings lowerCamelCase :Dict = layer_norm_eps lowerCamelCase :Optional[int] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCamelCase :Optional[int] = int(embed_dim * 2 ** (len(__snake_case ) - 1) )
717
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) A__ = { """configuration_layoutlmv2""": ["""LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv2Config"""], """processing_layoutlmv2""": ["""LayoutLMv2Processor"""], """tokenization_layoutlmv2""": ["""LayoutLMv2Tokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""LayoutLMv2TokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""LayoutLMv2FeatureExtractor"""] A__ = ["""LayoutLMv2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """LayoutLMv2ForQuestionAnswering""", """LayoutLMv2ForSequenceClassification""", """LayoutLMv2ForTokenClassification""", """LayoutLMv2Layer""", """LayoutLMv2Model""", """LayoutLMv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
49
0
import unittest import numpy as np def _lowerCamelCase ( a_ : np.ndarray , a_ : np.ndarray , a_ : np.ndarray , a_ : np.ndarray | None = None , ): lowerCamelCase :List[str] = np.shape(a_) lowerCamelCase :str = np.shape(a_) lowerCamelCase :int = np.shape(a_) if shape_a[0] != shape_b[0]: lowerCamelCase :Union[str, Any] = ( '''Expected the same number of rows for A and B. ''' F"Instead found A of size {shape_a} and B of size {shape_b}" ) raise ValueError(a_) if shape_b[1] != shape_c[1]: lowerCamelCase :int = ( '''Expected the same number of columns for B and C. ''' F"Instead found B of size {shape_b} and C of size {shape_c}" ) raise ValueError(a_) lowerCamelCase :List[str] = pseudo_inv if a_inv is None: try: lowerCamelCase :Tuple = np.linalg.inv(a_) except np.linalg.LinAlgError: raise ValueError( '''Input matrix A is not invertible. Cannot compute Schur complement.''') return mat_c - mat_b.T @ a_inv @ mat_b class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Union[str, Any] ): lowerCamelCase :Tuple = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowerCamelCase :List[str] = np.array([[0, 3], [3, 0], [2, 3]] ) lowerCamelCase :List[Any] = np.array([[2, 1], [6, 3]] ) lowerCamelCase :List[Any] = schur_complement(__snake_case , __snake_case , __snake_case ) lowerCamelCase :Union[str, Any] = np.block([[a, b], [b.T, c]] ) lowerCamelCase :List[Any] = np.linalg.det(__snake_case ) lowerCamelCase :Optional[int] = np.linalg.det(__snake_case ) lowerCamelCase :str = np.linalg.det(__snake_case ) self.assertAlmostEqual(__snake_case , det_a * det_s ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Dict = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowerCamelCase :Optional[int] = np.array([[0, 3], [3, 0], [2, 3]] ) lowerCamelCase :Tuple = np.array([[2, 1], [6, 3]] ) with self.assertRaises(__snake_case ): schur_complement(__snake_case , __snake_case , __snake_case ) def snake_case ( self : int ): lowerCamelCase :Any = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowerCamelCase :Optional[Any] = np.array([[0, 3], [3, 0], [2, 3]] ) lowerCamelCase :Optional[Any] = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(__snake_case ): schur_complement(__snake_case , __snake_case , __snake_case ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
718
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _lowerCAmelCase : @staticmethod def snake_case ( *__snake_case : str , **__snake_case : str ): pass @is_pipeline_test @require_vision class _lowerCAmelCase ( unittest.TestCase ): @require_torch def snake_case ( self : Union[str, Any] ): lowerCamelCase :Optional[int] = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Dict = image_classifier(__snake_case , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__snake_case ) , [ [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}], [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}], ] , ) lowerCamelCase :Tuple = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], ] , ) @require_tf def snake_case ( self : Tuple ): lowerCamelCase :Tuple = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Optional[Any] = image_classifier(__snake_case , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(__snake_case ) , [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}] , ) lowerCamelCase :int = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], ] , ) @slow @require_torch def snake_case ( self : Any ): lowerCamelCase :str = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Optional[Any] = image_classifier(__snake_case , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) lowerCamelCase :Any = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def snake_case ( self : Optional[Any] ): lowerCamelCase :Union[str, Any] = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes lowerCamelCase :Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Dict = image_classifier(__snake_case , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) lowerCamelCase :Any = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , )
49
0
def _lowerCamelCase ( a_ : int): if not isinstance(a_ , a_): raise ValueError('''multiplicative_persistence() only accepts integral values''') if num < 0: raise ValueError('''multiplicative_persistence() does not accept negative values''') lowerCamelCase :Optional[Any] = 0 lowerCamelCase :Tuple = str(a_) while len(a_) != 1: lowerCamelCase :Dict = [int(a_) for i in num_string] lowerCamelCase :Union[str, Any] = 1 for i in range(0 , len(a_)): total *= numbers[i] lowerCamelCase :Union[str, Any] = str(a_) steps += 1 return steps def _lowerCamelCase ( a_ : int): if not isinstance(a_ , a_): raise ValueError('''additive_persistence() only accepts integral values''') if num < 0: raise ValueError('''additive_persistence() does not accept negative values''') lowerCamelCase :Dict = 0 lowerCamelCase :str = str(a_) while len(a_) != 1: lowerCamelCase :int = [int(a_) for i in num_string] lowerCamelCase :List[Any] = 0 for i in range(0 , len(a_)): total += numbers[i] lowerCamelCase :Union[str, Any] = str(a_) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
719
import operator as op def _lowerCamelCase ( a_ : Tuple): lowerCamelCase :int = [] lowerCamelCase :List[str] = lambda a_ , a_: int(x / y) # noqa: E731 integer division operation lowerCamelCase :Optional[int] = { '''^''': op.pow, '''*''': op.mul, '''/''': div, '''+''': op.add, '''-''': op.sub, } # operators & their respective operation # print table header print('''Symbol'''.center(8) , '''Action'''.center(12) , '''Stack''' , sep=''' | ''') print('''-''' * (30 + len(a_))) for x in post_fix: if x.isdigit(): # if x in digit stack.append(a_) # append x to stack # output in tabular format print(x.rjust(8) , ('''push(''' + x + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') else: lowerCamelCase :Optional[Any] = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8) , ('''pop(''' + b + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') lowerCamelCase :str = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8) , ('''pop(''' + a + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') stack.append( str(opr[x](int(a_) , int(a_)))) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8) , ('''push(''' + a + x + b + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''' , ) return int(stack[0]) if __name__ == "__main__": A__ = input("""\n\nEnter a Postfix Equation (space separated) = """).split(""" """) print("""\n\tResult = """, solve(Postfix))
49
0
def _lowerCamelCase ( a_ : str , a_ : str): lowerCamelCase :List[str] = len(a_) lowerCamelCase :List[str] = len(a_) lowerCamelCase :int = [[False for _ in range(m + 1)] for _ in range(n + 1)] lowerCamelCase :Optional[Any] = True for i in range(a_): for j in range(m + 1): if dp[i][j]: if j < m and a[i].upper() == b[j]: lowerCamelCase :Any = True if a[i].islower(): lowerCamelCase :List[str] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
720
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() A__ = logging.get_logger(__name__) A__ = """Hello, World!""" A__ = """en_XX""" def _lowerCamelCase ( a_ : str , a_ : str , a_ : bool): lowerCamelCase :int = Path('''data_bin''') lowerCamelCase :Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(a_).parent) , checkpoint_file=Path(a_).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(a_) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(a_).parent / '''sentencepiece.bpe.model''') , src_dict=str(data_dir / '''dict.txt''') , ) xmod.eval() # disable dropout print(a_) lowerCamelCase :Any = xmod.model.encoder.sentence_encoder lowerCamelCase :List[str] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: lowerCamelCase :Dict = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our X-MOD config:''' , a_) lowerCamelCase :List[Any] = XmodForSequenceClassification(a_) if classification_head else XmodForMaskedLM(a_) model.eval() # Now let's copy all the weights. # Embeddings lowerCamelCase :Union[str, Any] = xmod_sent_encoder.embed_tokens.weight lowerCamelCase :Tuple = xmod_sent_encoder.embed_positions.weight lowerCamelCase :List[str] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight) # just zero them out b/c xmod doesn't use them. lowerCamelCase :List[Any] = xmod_sent_encoder.layernorm_embedding.weight lowerCamelCase :Optional[int] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers): # Encoder: start of layer lowerCamelCase :Union[str, Any] = model.roberta.encoder.layer[i] lowerCamelCase :List[str] = xmod_sent_encoder.layers[i] # self attention lowerCamelCase :Optional[int] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size)) ): raise AssertionError('''Dimensions of self-attention weights do not match.''') lowerCamelCase :Optional[int] = xmod_layer.self_attn.q_proj.weight lowerCamelCase :List[str] = xmod_layer.self_attn.q_proj.bias lowerCamelCase :str = xmod_layer.self_attn.k_proj.weight lowerCamelCase :Optional[Any] = xmod_layer.self_attn.k_proj.bias lowerCamelCase :Dict = xmod_layer.self_attn.v_proj.weight lowerCamelCase :Optional[int] = xmod_layer.self_attn.v_proj.bias # self-attention output lowerCamelCase :Optional[int] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('''Dimensions of self-attention output weights do not match.''') lowerCamelCase :List[Any] = xmod_layer.self_attn.out_proj.weight lowerCamelCase :Union[str, Any] = xmod_layer.self_attn.out_proj.bias lowerCamelCase :str = xmod_layer.self_attn_layer_norm.weight lowerCamelCase :List[Any] = xmod_layer.self_attn_layer_norm.bias # intermediate lowerCamelCase :Optional[int] = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of intermediate weights do not match.''') lowerCamelCase :int = xmod_layer.fca.weight lowerCamelCase :Union[str, Any] = xmod_layer.fca.bias # output lowerCamelCase :List[str] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of feed-forward weights do not match.''') lowerCamelCase :str = xmod_layer.fca.weight lowerCamelCase :int = xmod_layer.fca.bias lowerCamelCase :List[Any] = xmod_layer.final_layer_norm.weight lowerCamelCase :List[str] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: lowerCamelCase :List[str] = xmod_layer.adapter_layer_norm.weight lowerCamelCase :int = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys()) != sorted(xmod_layer.adapter_modules.keys()): raise AssertionError('''Lists of language adapters do not match.''') for lang_code, adapter in xmod_layer.adapter_modules.items(): lowerCamelCase :Optional[int] = bert_output.adapter_modules[lang_code] lowerCamelCase :Dict = xmod_layer.adapter_modules[lang_code] lowerCamelCase :List[Any] = from_adapter.fca.weight lowerCamelCase :List[Any] = from_adapter.fca.bias lowerCamelCase :Dict = from_adapter.fca.weight lowerCamelCase :Optional[Any] = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: lowerCamelCase :Dict = xmod_sent_encoder.layer_norm.weight lowerCamelCase :List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: lowerCamelCase :Union[str, Any] = xmod.model.classification_heads['''mnli'''].dense.weight lowerCamelCase :Tuple = xmod.model.classification_heads['''mnli'''].dense.bias lowerCamelCase :Optional[Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight lowerCamelCase :List[Any] = xmod.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head lowerCamelCase :int = xmod.model.encoder.lm_head.dense.weight lowerCamelCase :List[Any] = xmod.model.encoder.lm_head.dense.bias lowerCamelCase :Optional[int] = xmod.model.encoder.lm_head.layer_norm.weight lowerCamelCase :List[Any] = xmod.model.encoder.lm_head.layer_norm.bias lowerCamelCase :List[Any] = xmod.model.encoder.lm_head.weight lowerCamelCase :Any = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCamelCase :str = xmod.encode(a_).unsqueeze(0) # batch of size 1 model.roberta.set_default_language(a_) lowerCamelCase :Any = model(a_)[0] if classification_head: lowerCamelCase :Dict = xmod.model.classification_heads['''mnli'''](xmod.extract_features(a_)) else: lowerCamelCase :int = xmod.model(a_ , lang_id=[SAMPLE_LANGUAGE])[0] print(our_output.shape , their_output.shape) lowerCamelCase :List[str] = torch.max(torch.abs(our_output - their_output)).item() print(F"max_absolute_diff = {max_absolute_diff}") # ~ 1e-7 lowerCamelCase :str = torch.allclose(a_ , a_ , atol=1e-3) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''') if not success: raise Exception('''Something went wRoNg''') Path(a_).mkdir(parents=a_ , exist_ok=a_) print(F"Saving model to {pytorch_dump_folder_path}") model.save_pretrained(a_) if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) A__ = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
49
0
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging A__ : Tuple = logging.get_logger(__name__) class _lowerCAmelCase : _UpperCAmelCase = 4_2 _UpperCAmelCase = None @staticmethod def snake_case ( ): raise NotImplementedError def snake_case ( self : Tuple , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : str , **__snake_case : str ): raise NotImplementedError def snake_case ( self : Union[str, Any] , __snake_case : List[str] ): raise NotImplementedError def snake_case ( self : Optional[Any] ): if not self.is_available(): raise RuntimeError( F"You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}." ) @classmethod def snake_case ( cls : Optional[Any] ): return F"`pip install {cls.pip_package or cls.name}`" class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'optuna' @staticmethod def snake_case ( ): return is_optuna_available() def snake_case ( self : Optional[int] , __snake_case : Any , __snake_case : int , __snake_case : str , **__snake_case : Dict ): return run_hp_search_optuna(__snake_case , __snake_case , __snake_case , **__snake_case ) def snake_case ( self : List[str] , __snake_case : List[str] ): return default_hp_space_optuna(__snake_case ) class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'ray' _UpperCAmelCase = '\'ray[tune]\'' @staticmethod def snake_case ( ): return is_ray_available() def snake_case ( self : Optional[int] , __snake_case : str , __snake_case : int , __snake_case : str , **__snake_case : Optional[int] ): return run_hp_search_ray(__snake_case , __snake_case , __snake_case , **__snake_case ) def snake_case ( self : Tuple , __snake_case : Any ): return default_hp_space_ray(__snake_case ) class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'sigopt' @staticmethod def snake_case ( ): return is_sigopt_available() def snake_case ( self : Any , __snake_case : str , __snake_case : int , __snake_case : str , **__snake_case : Optional[int] ): return run_hp_search_sigopt(__snake_case , __snake_case , __snake_case , **__snake_case ) def snake_case ( self : Union[str, Any] , __snake_case : List[Any] ): return default_hp_space_sigopt(__snake_case ) class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'wandb' @staticmethod def snake_case ( ): return is_wandb_available() def snake_case ( self : str , __snake_case : Any , __snake_case : int , __snake_case : str , **__snake_case : List[Any] ): return run_hp_search_wandb(__snake_case , __snake_case , __snake_case , **__snake_case ) def snake_case ( self : Optional[Any] , __snake_case : List[Any] ): return default_hp_space_wandb(__snake_case ) A__ : str = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def _lowerCamelCase ( ): lowerCamelCase :Union[str, Any] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(a_) > 0: lowerCamelCase :Optional[int] = available_backends[0].name if len(a_) > 1: logger.info( F"{len(a_)} hyperparameter search backends available. Using {name} as the default.") return name raise RuntimeError( '''No hyperparameter search backend available.\n''' + '''\n'''.join( F" - To install {backend.name} run {backend.pip_install()}" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values()))
721
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { """andreasmadsen/efficient_mlm_m0.40""": ( """https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json""" ), } class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'roberta-prelayernorm' def __init__( self : str , __snake_case : List[str]=50265 , __snake_case : Union[str, Any]=768 , __snake_case : Tuple=12 , __snake_case : int=12 , __snake_case : Any=3072 , __snake_case : Optional[int]="gelu" , __snake_case : List[Any]=0.1 , __snake_case : int=0.1 , __snake_case : Union[str, Any]=512 , __snake_case : Dict=2 , __snake_case : int=0.0_2 , __snake_case : Any=1e-1_2 , __snake_case : Optional[int]=1 , __snake_case : Dict=0 , __snake_case : Optional[int]=2 , __snake_case : Any="absolute" , __snake_case : Union[str, Any]=True , __snake_case : List[str]=None , **__snake_case : Optional[int] , ): super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) lowerCamelCase :Optional[int] = vocab_size lowerCamelCase :Dict = hidden_size lowerCamelCase :Tuple = num_hidden_layers lowerCamelCase :Optional[int] = num_attention_heads lowerCamelCase :Any = hidden_act lowerCamelCase :List[Any] = intermediate_size lowerCamelCase :Union[str, Any] = hidden_dropout_prob lowerCamelCase :str = attention_probs_dropout_prob lowerCamelCase :Tuple = max_position_embeddings lowerCamelCase :int = type_vocab_size lowerCamelCase :Optional[Any] = initializer_range lowerCamelCase :Union[str, Any] = layer_norm_eps lowerCamelCase :Dict = position_embedding_type lowerCamelCase :List[Any] = use_cache lowerCamelCase :Optional[int] = classifier_dropout class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): @property def snake_case ( self : Any ): if self.task == "multiple-choice": lowerCamelCase :Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase :List[str] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
49
0
def _lowerCamelCase ( a_ : int , a_ : int): return base * power(a_ , (exponent - 1)) if exponent else 1 if __name__ == "__main__": print("""Raise base to the power of exponent using recursion...""") A__ = int(input("""Enter the base: """).strip()) A__ = int(input("""Enter the exponent: """).strip()) A__ = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents A__ = 1 / result print(F'{base} to the power of {exponent} is {result}')
700
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = DebertaTokenizer _UpperCAmelCase = True _UpperCAmelCase = DebertaTokenizerFast def snake_case ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase :Dict = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] lowerCamelCase :List[str] = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) lowerCamelCase :Any = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCamelCase :Dict = {'''unk_token''': '''[UNK]'''} lowerCamelCase :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase :List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__snake_case ) ) def snake_case ( self : str , **__snake_case : Dict ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Optional[Any] , __snake_case : int ): lowerCamelCase :List[Any] = '''lower newer''' lowerCamelCase :List[str] = '''lower newer''' return input_text, output_text def snake_case ( self : str ): lowerCamelCase :Optional[int] = self.get_tokenizer() lowerCamelCase :Union[str, Any] = '''lower newer''' lowerCamelCase :str = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] lowerCamelCase :Optional[int] = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) lowerCamelCase :List[str] = tokens + [tokenizer.unk_token] lowerCamelCase :Optional[int] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def snake_case ( self : Optional[int] ): lowerCamelCase :List[str] = self.get_tokenizer() lowerCamelCase :Optional[int] = tokenizer('''Hello''' , '''World''' ) lowerCamelCase :List[str] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __snake_case ) @slow def snake_case ( self : str ): lowerCamelCase :Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) lowerCamelCase :Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__snake_case ) lowerCamelCase :Tuple = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__snake_case ) lowerCamelCase :Union[str, Any] = tokenizer.encode( '''sequence builders''' , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) lowerCamelCase :str = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) lowerCamelCase :Any = tokenizer.build_inputs_with_special_tokens(__snake_case ) lowerCamelCase :Dict = tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def snake_case ( self : str ): lowerCamelCase :List[str] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: lowerCamelCase :int = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) lowerCamelCase :Tuple = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] lowerCamelCase :List[Any] = tokenizer(__snake_case , padding=__snake_case ) lowerCamelCase :Union[str, Any] = [tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) for seq in encoding['''input_ids''']] # fmt: off lowerCamelCase :Any = { '''input_ids''': [ [1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on lowerCamelCase :Optional[int] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __snake_case ) for expected, decoded in zip(__snake_case , __snake_case ): self.assertEqual(__snake_case , __snake_case )
49
0
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Optional[int] , __snake_case : int , __snake_case : int ): lowerCamelCase :Dict = jnp.ones((batch_size, length) ) / length return scores def snake_case ( self : Optional[Any] ): lowerCamelCase :Union[str, Any] = None lowerCamelCase :Dict = 20 lowerCamelCase :Any = self._get_uniform_logits(batch_size=2 , length=__snake_case ) # tweak scores to not be uniform anymore lowerCamelCase :Dict = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowerCamelCase :Tuple = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowerCamelCase :Tuple = jax.nn.softmax(__snake_case , axis=-1 ) lowerCamelCase :List[str] = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase :Optional[int] = FlaxTemperatureLogitsWarper(temperature=1.3 ) lowerCamelCase :Optional[int] = jax.nn.softmax(temp_dist_warper_sharper(__snake_case , scores.copy() , cur_len=__snake_case ) , axis=-1 ) lowerCamelCase :Any = jax.nn.softmax(temp_dist_warper_smoother(__snake_case , scores.copy() , cur_len=__snake_case ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def snake_case ( self : Optional[Any] ): lowerCamelCase :int = None lowerCamelCase :Optional[int] = 10 lowerCamelCase :str = 2 # create ramp distribution lowerCamelCase :str = np.broadcast_to(np.arange(__snake_case )[None, :] , (batch_size, vocab_size) ).copy() lowerCamelCase :List[str] = ramp_logits[1:, : vocab_size // 2] + vocab_size lowerCamelCase :Optional[int] = FlaxTopKLogitsWarper(3 ) lowerCamelCase :int = top_k_warp(__snake_case , __snake_case , cur_len=__snake_case ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowerCamelCase :Union[str, Any] = 5 lowerCamelCase :List[str] = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) lowerCamelCase :Union[str, Any] = np.broadcast_to(np.arange(__snake_case )[None, :] , (batch_size, length) ).copy() lowerCamelCase :List[Any] = top_k_warp_safety_check(__snake_case , __snake_case , cur_len=__snake_case ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def snake_case ( self : Any ): lowerCamelCase :List[str] = None lowerCamelCase :Any = 10 lowerCamelCase :Tuple = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowerCamelCase :Optional[int] = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.1_5, 0.3, 0.3, 0.2_5]] ) ) lowerCamelCase :int = FlaxTopPLogitsWarper(0.8 ) lowerCamelCase :List[Any] = np.exp(top_p_warp(__snake_case , __snake_case , cur_len=__snake_case ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowerCamelCase :Any = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.2_5]] ) self.assertTrue(np.allclose(__snake_case , __snake_case , atol=1e-3 ) ) # check edge cases with negative and extreme logits lowerCamelCase :int = np.broadcast_to(np.arange(__snake_case )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowerCamelCase :int = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept lowerCamelCase :Dict = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) lowerCamelCase :List[Any] = top_p_warp(__snake_case , __snake_case , cur_len=__snake_case ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def snake_case ( self : Optional[int] ): lowerCamelCase :List[Any] = 20 lowerCamelCase :Optional[int] = 4 lowerCamelCase :List[str] = 0 lowerCamelCase :int = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__snake_case ) # check that min length is applied at length 5 lowerCamelCase :int = ids_tensor((batch_size, 20) , vocab_size=20 ) lowerCamelCase :int = 5 lowerCamelCase :List[Any] = self._get_uniform_logits(__snake_case , __snake_case ) lowerCamelCase :List[Any] = min_dist_processor(__snake_case , __snake_case , cur_len=__snake_case ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''' )] ) # check that min length is not applied anymore at length 15 lowerCamelCase :Optional[Any] = self._get_uniform_logits(__snake_case , __snake_case ) lowerCamelCase :Any = 15 lowerCamelCase :Any = min_dist_processor(__snake_case , __snake_case , cur_len=__snake_case ) self.assertFalse(jnp.isinf(__snake_case ).any() ) def snake_case ( self : str ): lowerCamelCase :Any = 20 lowerCamelCase :List[Any] = 4 lowerCamelCase :List[str] = 0 lowerCamelCase :Any = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__snake_case ) # check that all scores are -inf except the bos_token_id score lowerCamelCase :Any = ids_tensor((batch_size, 1) , vocab_size=20 ) lowerCamelCase :List[str] = 1 lowerCamelCase :Dict = self._get_uniform_logits(__snake_case , __snake_case ) lowerCamelCase :int = logits_processor(__snake_case , __snake_case , cur_len=__snake_case ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowerCamelCase :Optional[Any] = 3 lowerCamelCase :Union[str, Any] = self._get_uniform_logits(__snake_case , __snake_case ) lowerCamelCase :int = logits_processor(__snake_case , __snake_case , cur_len=__snake_case ) self.assertFalse(jnp.isinf(__snake_case ).any() ) def snake_case ( self : Dict ): lowerCamelCase :Optional[Any] = 20 lowerCamelCase :List[str] = 4 lowerCamelCase :Any = 0 lowerCamelCase :Union[str, Any] = 5 lowerCamelCase :Dict = FlaxForcedEOSTokenLogitsProcessor(max_length=__snake_case , eos_token_id=__snake_case ) # check that all scores are -inf except the eos_token_id when max_length is reached lowerCamelCase :int = ids_tensor((batch_size, 4) , vocab_size=20 ) lowerCamelCase :Tuple = 4 lowerCamelCase :List[str] = self._get_uniform_logits(__snake_case , __snake_case ) lowerCamelCase :List[str] = logits_processor(__snake_case , __snake_case , cur_len=__snake_case ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowerCamelCase :Optional[int] = 3 lowerCamelCase :str = self._get_uniform_logits(__snake_case , __snake_case ) lowerCamelCase :str = logits_processor(__snake_case , __snake_case , cur_len=__snake_case ) self.assertFalse(jnp.isinf(__snake_case ).any() ) def snake_case ( self : str ): lowerCamelCase :List[Any] = 4 lowerCamelCase :Dict = 10 lowerCamelCase :int = 15 lowerCamelCase :Any = 2 lowerCamelCase :Dict = 1 lowerCamelCase :Union[str, Any] = 15 # dummy input_ids and scores lowerCamelCase :int = ids_tensor((batch_size, sequence_length) , __snake_case ) lowerCamelCase :int = input_ids.copy() lowerCamelCase :Tuple = self._get_uniform_logits(__snake_case , __snake_case ) lowerCamelCase :str = scores.copy() # instantiate all dist processors lowerCamelCase :List[Any] = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase :str = FlaxTopKLogitsWarper(3 ) lowerCamelCase :Optional[int] = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase :int = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__snake_case ) lowerCamelCase :Any = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__snake_case ) lowerCamelCase :Any = FlaxForcedEOSTokenLogitsProcessor(max_length=__snake_case , eos_token_id=__snake_case ) lowerCamelCase :Tuple = 10 # no processor list lowerCamelCase :Dict = temp_dist_warp(__snake_case , __snake_case , cur_len=__snake_case ) lowerCamelCase :Tuple = top_k_warp(__snake_case , __snake_case , cur_len=__snake_case ) lowerCamelCase :Optional[Any] = top_p_warp(__snake_case , __snake_case , cur_len=__snake_case ) lowerCamelCase :Dict = min_dist_proc(__snake_case , __snake_case , cur_len=__snake_case ) lowerCamelCase :int = bos_dist_proc(__snake_case , __snake_case , cur_len=__snake_case ) lowerCamelCase :Union[str, Any] = eos_dist_proc(__snake_case , __snake_case , cur_len=__snake_case ) # with processor list lowerCamelCase :Dict = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase :int = processor(__snake_case , __snake_case , cur_len=__snake_case ) # scores should be equal self.assertTrue(jnp.allclose(__snake_case , __snake_case , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def snake_case ( self : Union[str, Any] ): lowerCamelCase :Optional[int] = 4 lowerCamelCase :Optional[int] = 10 lowerCamelCase :int = 15 lowerCamelCase :List[str] = 2 lowerCamelCase :Optional[int] = 1 lowerCamelCase :Tuple = 15 # dummy input_ids and scores lowerCamelCase :Tuple = ids_tensor((batch_size, sequence_length) , __snake_case ) lowerCamelCase :List[str] = input_ids.copy() lowerCamelCase :List[str] = self._get_uniform_logits(__snake_case , __snake_case ) lowerCamelCase :Dict = scores.copy() # instantiate all dist processors lowerCamelCase :List[str] = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase :Union[str, Any] = FlaxTopKLogitsWarper(3 ) lowerCamelCase :Dict = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase :Optional[Any] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__snake_case ) lowerCamelCase :Dict = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__snake_case ) lowerCamelCase :int = FlaxForcedEOSTokenLogitsProcessor(max_length=__snake_case , eos_token_id=__snake_case ) lowerCamelCase :Any = 10 # no processor list def run_no_processor_list(__snake_case : int , __snake_case : Any , __snake_case : Optional[Any] ): lowerCamelCase :Dict = temp_dist_warp(__snake_case , __snake_case , cur_len=__snake_case ) lowerCamelCase :int = top_k_warp(__snake_case , __snake_case , cur_len=__snake_case ) lowerCamelCase :str = top_p_warp(__snake_case , __snake_case , cur_len=__snake_case ) lowerCamelCase :List[Any] = min_dist_proc(__snake_case , __snake_case , cur_len=__snake_case ) lowerCamelCase :Dict = bos_dist_proc(__snake_case , __snake_case , cur_len=__snake_case ) lowerCamelCase :Optional[int] = eos_dist_proc(__snake_case , __snake_case , cur_len=__snake_case ) return scores # with processor list def run_processor_list(__snake_case : Union[str, Any] , __snake_case : int , __snake_case : Tuple ): lowerCamelCase :Union[str, Any] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase :List[str] = processor(__snake_case , __snake_case , cur_len=__snake_case ) return scores lowerCamelCase :Optional[Any] = jax.jit(__snake_case ) lowerCamelCase :Tuple = jax.jit(__snake_case ) lowerCamelCase :List[str] = jitted_run_no_processor_list(__snake_case , __snake_case , __snake_case ) lowerCamelCase :int = jitted_run_processor_list(__snake_case , __snake_case , __snake_case ) # scores should be equal self.assertTrue(jnp.allclose(__snake_case , __snake_case , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
701
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) A__ = [ """cross_validation.py""", """gradient_accumulation.py""", """local_sgd.py""", """multi_process_metrics.py""", """memory.py""", """automatic_gradient_accumulation.py""", """fsdp_with_peak_mem_tracking.py""", """deepspeed_with_config_support.py""", """megatron_lm_gpt_pretraining.py""", ] class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Any , __snake_case : str , __snake_case : bool , __snake_case : str = None , __snake_case : list = None ): lowerCamelCase :Tuple = None lowerCamelCase :Tuple = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) lowerCamelCase :Optional[int] = os.path.abspath('''examples''' ) for item in os.listdir(__snake_case ): if item not in EXCLUDE_EXAMPLES: lowerCamelCase :Optional[int] = os.path.join(__snake_case , __snake_case ) if os.path.isfile(__snake_case ) and ".py" in item_path: with self.subTest( tested_script=__snake_case , feature_script=__snake_case , tested_section='''main()''' if parser_only else '''training_function()''' , ): lowerCamelCase :Union[str, Any] = compare_against_test( os.path.join(__snake_case , __snake_case ) , __snake_case , __snake_case , __snake_case ) lowerCamelCase :int = '''\n'''.join(__snake_case ) if special_strings is not None: for string in special_strings: lowerCamelCase :int = diff.replace(__snake_case , '''''' ) self.assertEqual(__snake_case , '''''' ) def snake_case ( self : Dict ): self.one_complete_example('''complete_nlp_example.py''' , __snake_case ) self.one_complete_example('''complete_nlp_example.py''' , __snake_case ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Union[str, Any] = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) lowerCamelCase :Optional[int] = [ ''' ''' * 16 + '''{\n\n''', ''' ''' * 20 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 20 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 20 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 20 + '''"epoch": epoch,\n\n''', ''' ''' * 16 + '''},\n\n''', ''' ''' * 16 + '''step=epoch,\n''', ''' ''' * 12, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , __snake_case , __snake_case , __snake_case ) self.one_complete_example('''complete_cv_example.py''' , __snake_case , __snake_case , __snake_case ) @mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '1'} ) class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = False @classmethod def snake_case ( cls : Optional[Any] ): super().setUpClass() lowerCamelCase :Any = tempfile.mkdtemp() lowerCamelCase :Optional[int] = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) lowerCamelCase :List[str] = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def snake_case ( cls : Dict ): super().tearDownClass() shutil.rmtree(cls._tmpdir ) def snake_case ( self : int ): lowerCamelCase :Any = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def snake_case ( self : List[Any] ): lowerCamelCase :Tuple = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n ".split() lowerCamelCase :List[Any] = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def snake_case ( self : List[str] ): lowerCamelCase :Dict = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}\n ".split() lowerCamelCase :Dict = run_command(self._launch_args + testargs , return_stdout=__snake_case ) self.assertNotIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) def snake_case ( self : str ): lowerCamelCase :List[Any] = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}\n ".split() lowerCamelCase :Optional[int] = run_command(self._launch_args + testargs , return_stdout=__snake_case ) if torch.cuda.is_available(): lowerCamelCase :Union[str, Any] = torch.cuda.device_count() else: lowerCamelCase :Dict = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) else: self.assertIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) @slow def snake_case ( self : Any ): lowerCamelCase :Tuple = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): lowerCamelCase :Dict = run_command(self._launch_args + testargs , return_stdout=__snake_case ) lowerCamelCase :Tuple = re.findall('''({.+})''' , __snake_case ) lowerCamelCase :Optional[Any] = [r for r in results if '''accuracy''' in r][-1] lowerCamelCase :List[str] = ast.literal_eval(__snake_case ) self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 ) def snake_case ( self : int ): lowerCamelCase :Dict = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case ( self : Any ): with tempfile.TemporaryDirectory() as tmpdir: lowerCamelCase :Tuple = F"\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__snake_case , '''tracking''' ) ) ) def snake_case ( self : Tuple ): lowerCamelCase :Tuple = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def snake_case ( self : Optional[Any] ): lowerCamelCase :int = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
49
0
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs A__ = imread(R"""digital_image_processing/image_data/lena_small.jpg""") A__ = cvtColor(img, COLOR_BGR2GRAY) def _lowerCamelCase ( ): lowerCamelCase :int = cn.convert_to_negative(a_) # assert negative_img array for at least one True assert negative_img.any() def _lowerCamelCase ( ): with Image.open('''digital_image_processing/image_data/lena_small.jpg''') as img: # Work around assertion for response assert str(cc.change_contrast(a_ , 1_10)).startswith( '''<PIL.Image.Image image mode=RGB size=100x100 at''') def _lowerCamelCase ( ): lowerCamelCase :Optional[Any] = canny.gen_gaussian_kernel(9 , sigma=1.4) # Assert ambiguous array assert resp.all() def _lowerCamelCase ( ): lowerCamelCase :str = imread('''digital_image_processing/image_data/lena_small.jpg''' , 0) # assert ambiguous array for all == True assert canny_img.all() lowerCamelCase :Optional[Any] = canny.canny(a_) # assert canny array for at least one True assert canny_array.any() def _lowerCamelCase ( ): assert gg.gaussian_filter(a_ , 5 , sigma=0.9).all() def _lowerCamelCase ( ): # laplace diagonals lowerCamelCase :List[Any] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]]) lowerCamelCase :List[Any] = conv.img_convolve(a_ , a_).astype(a_) assert res.any() def _lowerCamelCase ( ): assert med.median_filter(a_ , 3).any() def _lowerCamelCase ( ): lowerCamelCase :Union[str, Any] = sob.sobel_filter(a_) assert grad.any() and theta.any() def _lowerCamelCase ( ): lowerCamelCase :Dict = sp.make_sepia(a_ , 20) assert sepia.all() def _lowerCamelCase ( a_ : str = "digital_image_processing/image_data/lena_small.jpg"): lowerCamelCase :Any = bs.Burkes(imread(a_ , 1) , 1_20) burkes.process() assert burkes.output_img.any() def _lowerCamelCase ( a_ : str = "digital_image_processing/image_data/lena_small.jpg" , ): lowerCamelCase :Tuple = rs.NearestNeighbour(imread(a_ , 1) , 4_00 , 2_00) nn.process() assert nn.output.any() def _lowerCamelCase ( ): lowerCamelCase :Tuple = '''digital_image_processing/image_data/lena.jpg''' # Reading the image and converting it to grayscale. lowerCamelCase :Tuple = imread(a_ , 0) # Test for get_neighbors_pixel function() return not None lowerCamelCase :Dict = 0 lowerCamelCase :Optional[Any] = 0 lowerCamelCase :str = image[x_coordinate][y_coordinate] lowerCamelCase :Any = lbp.get_neighbors_pixel( a_ , a_ , a_ , a_) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCamelCase :int = np.zeros((image.shape[0], image.shape[1])) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0]): for j in range(0 , image.shape[1]): lowerCamelCase :Optional[int] = lbp.local_binary_value(a_ , a_ , a_) assert lbp_image.any()
702
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs A__ = imread(R"""digital_image_processing/image_data/lena_small.jpg""") A__ = cvtColor(img, COLOR_BGR2GRAY) def _lowerCamelCase ( ): lowerCamelCase :int = cn.convert_to_negative(a_) # assert negative_img array for at least one True assert negative_img.any() def _lowerCamelCase ( ): with Image.open('''digital_image_processing/image_data/lena_small.jpg''') as img: # Work around assertion for response assert str(cc.change_contrast(a_ , 1_10)).startswith( '''<PIL.Image.Image image mode=RGB size=100x100 at''') def _lowerCamelCase ( ): lowerCamelCase :Optional[Any] = canny.gen_gaussian_kernel(9 , sigma=1.4) # Assert ambiguous array assert resp.all() def _lowerCamelCase ( ): lowerCamelCase :str = imread('''digital_image_processing/image_data/lena_small.jpg''' , 0) # assert ambiguous array for all == True assert canny_img.all() lowerCamelCase :Optional[Any] = canny.canny(a_) # assert canny array for at least one True assert canny_array.any() def _lowerCamelCase ( ): assert gg.gaussian_filter(a_ , 5 , sigma=0.9).all() def _lowerCamelCase ( ): # laplace diagonals lowerCamelCase :List[Any] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]]) lowerCamelCase :List[Any] = conv.img_convolve(a_ , a_).astype(a_) assert res.any() def _lowerCamelCase ( ): assert med.median_filter(a_ , 3).any() def _lowerCamelCase ( ): lowerCamelCase , lowerCamelCase :Union[str, Any] = sob.sobel_filter(a_) assert grad.any() and theta.any() def _lowerCamelCase ( ): lowerCamelCase :Dict = sp.make_sepia(a_ , 20) assert sepia.all() def _lowerCamelCase ( a_ : str = "digital_image_processing/image_data/lena_small.jpg"): lowerCamelCase :Any = bs.Burkes(imread(a_ , 1) , 1_20) burkes.process() assert burkes.output_img.any() def _lowerCamelCase ( a_ : str = "digital_image_processing/image_data/lena_small.jpg" , ): lowerCamelCase :Tuple = rs.NearestNeighbour(imread(a_ , 1) , 4_00 , 2_00) nn.process() assert nn.output.any() def _lowerCamelCase ( ): lowerCamelCase :Tuple = '''digital_image_processing/image_data/lena.jpg''' # Reading the image and converting it to grayscale. lowerCamelCase :Tuple = imread(a_ , 0) # Test for get_neighbors_pixel function() return not None lowerCamelCase :Dict = 0 lowerCamelCase :Optional[Any] = 0 lowerCamelCase :str = image[x_coordinate][y_coordinate] lowerCamelCase :Any = lbp.get_neighbors_pixel( a_ , a_ , a_ , a_) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCamelCase :int = np.zeros((image.shape[0], image.shape[1])) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0]): for j in range(0 , image.shape[1]): lowerCamelCase :Optional[int] = lbp.local_binary_value(a_ , a_ , a_) assert lbp_image.any()
49
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.g4dn.xlarge', 'results': {'train_runtime': 6_5_0, 'eval_accuracy': 0.6, 'eval_loss': 0.9}, }, { 'framework': 'tensorflow', 'script': 'run_tf.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.g4dn.xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.3, 'eval_loss': 0.9}, }, ] ) class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Any ): if self.framework == "pytorch": subprocess.run( F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding='''utf-8''' , check=__snake_case , ) assert hasattr(self , '''env''' ) def snake_case ( self : List[str] , __snake_case : List[str]=1 ): # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"{self.env.base_job_name}-single" , instance_count=__snake_case , instance_type=self.instance_type , debugger_hook_config=__snake_case , hyperparameters={**self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='''py36''' , ) def snake_case ( self : str , __snake_case : Tuple ): TrainingJobAnalytics(__snake_case ).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv" ) def snake_case ( self : Union[str, Any] ): # create estimator lowerCamelCase :List[str] = self.create_estimator() # run training estimator.fit() # result dataframe lowerCamelCase :Any = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCamelCase :Tuple = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) lowerCamelCase :int = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCamelCase :Tuple = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"{estimator.latest_training_job.name}.json" , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , __snake_case )
703
import os from math import logaa def _lowerCamelCase ( a_ : str = "base_exp.txt"): lowerCamelCase :float = 0 lowerCamelCase :Optional[int] = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(a_) , a_))): lowerCamelCase , lowerCamelCase :Optional[int] = list(map(a_ , line.split(''','''))) if x * logaa(a_) > largest: lowerCamelCase :List[Any] = x * logaa(a_) lowerCamelCase :Any = i + 1 return result if __name__ == "__main__": print(solution())
49
0
'''simple docstring''' def _lowerCamelCase ( a_ : list): if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''') for cell_n in range(1 , len(grid[0])): grid[0][cell_n] += grid[0][cell_n - 1] lowerCamelCase :Any = grid[0] for row_n in range(1 , len(a_)): lowerCamelCase :List[str] = grid[row_n] lowerCamelCase :Union[str, Any] = fill_row(a_ , a_) lowerCamelCase :List[Any] = grid[row_n] return grid[-1][-1] def _lowerCamelCase ( a_ : list , a_ : list): current_row[0] += row_above[0] for cell_n in range(1 , len(a_)): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n]) return current_row if __name__ == "__main__": import doctest doctest.testmod()
704
def _lowerCamelCase ( a_ : list): if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''') for cell_n in range(1 , len(grid[0])): grid[0][cell_n] += grid[0][cell_n - 1] lowerCamelCase :Any = grid[0] for row_n in range(1 , len(a_)): lowerCamelCase :List[str] = grid[row_n] lowerCamelCase :Union[str, Any] = fill_row(a_ , a_) lowerCamelCase :List[Any] = grid[row_n] return grid[-1][-1] def _lowerCamelCase ( a_ : list , a_ : list): current_row[0] += row_above[0] for cell_n in range(1 , len(a_)): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n]) return current_row if __name__ == "__main__": import doctest doctest.testmod()
49
0
from __future__ import annotations class _lowerCAmelCase : def __init__( self : Dict , __snake_case : int ): lowerCamelCase :Tuple = order # a_{0} ... a_{k} lowerCamelCase :Dict = [1.0] + [0.0] * order # b_{0} ... b_{k} lowerCamelCase :Optional[int] = [1.0] + [0.0] * order # x[n-1] ... x[n-k] lowerCamelCase :Union[str, Any] = [0.0] * self.order # y[n-1] ... y[n-k] lowerCamelCase :Any = [0.0] * self.order def snake_case ( self : List[str] , __snake_case : list[float] , __snake_case : list[float] ): if len(__snake_case ) < self.order: lowerCamelCase :int = [1.0, *a_coeffs] if len(__snake_case ) != self.order + 1: lowerCamelCase :str = ( F"Expected a_coeffs to have {self.order + 1} elements " F"for {self.order}-order filter, got {len(__snake_case )}" ) raise ValueError(__snake_case ) if len(__snake_case ) != self.order + 1: lowerCamelCase :str = ( F"Expected b_coeffs to have {self.order + 1} elements " F"for {self.order}-order filter, got {len(__snake_case )}" ) raise ValueError(__snake_case ) lowerCamelCase :Optional[int] = a_coeffs lowerCamelCase :Tuple = b_coeffs def snake_case ( self : Tuple , __snake_case : float ): lowerCamelCase :int = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) lowerCamelCase :Union[str, Any] = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] lowerCamelCase :Optional[Any] = self.input_history[:-1] lowerCamelCase :Union[str, Any] = self.output_history[:-1] lowerCamelCase :int = sample lowerCamelCase :int = result return result
705
import math def _lowerCamelCase ( a_ : int): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a_) + 1) , 6): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCamelCase ( a_ : float = 0.1): lowerCamelCase :Dict = 3 lowerCamelCase :List[Any] = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1): primes += is_prime(a_) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
49
0
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor A__ = logging.get_logger(__name__) class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self : List[Any] , *__snake_case : Optional[int] , **__snake_case : Optional[Any] ): warnings.warn( '''The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use BeitImageProcessor instead.''' , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
706
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : str ): lowerCamelCase :int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :List[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :Optional[Any] = -1 lowerCamelCase :List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Tuple = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :str = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowerCamelCase :str = TextStreamer(__snake_case ) model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case , streamer=__snake_case ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCamelCase :Optional[int] = cs.out[:-1] self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : Dict ): lowerCamelCase :Tuple = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :int = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :List[Any] = -1 lowerCamelCase :Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Tuple = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :List[Any] = tokenizer.decode(greedy_ids[0] ) lowerCamelCase :List[str] = TextIteratorStreamer(__snake_case ) lowerCamelCase :List[str] = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} lowerCamelCase :Tuple = Thread(target=model.generate , kwargs=__snake_case ) thread.start() lowerCamelCase :Any = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : str ): lowerCamelCase :int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :Dict = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :List[str] = -1 lowerCamelCase :Optional[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Optional[Any] = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :List[str] = greedy_ids[:, input_ids.shape[1] :] lowerCamelCase :Union[str, Any] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowerCamelCase :List[str] = TextStreamer(__snake_case , skip_prompt=__snake_case ) model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case , streamer=__snake_case ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCamelCase :int = cs.out[:-1] self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : Optional[int] ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them lowerCamelCase :List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) lowerCamelCase :Union[str, Any] = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(__snake_case ) lowerCamelCase :Optional[int] = -1 lowerCamelCase :Union[str, Any] = torch.ones((1, 5) , device=__snake_case ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowerCamelCase :Dict = TextStreamer(__snake_case , skip_special_tokens=__snake_case ) model.generate(__snake_case , max_new_tokens=1 , do_sample=__snake_case , streamer=__snake_case ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowerCamelCase :Tuple = cs.out[:-1] # Remove the final "\n" lowerCamelCase :int = tokenizer(__snake_case , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def snake_case ( self : List[Any] ): lowerCamelCase :List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :Optional[int] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :Optional[int] = -1 lowerCamelCase :Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :List[Any] = TextIteratorStreamer(__snake_case , timeout=0.0_0_1 ) lowerCamelCase :Dict = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} lowerCamelCase :Tuple = Thread(target=model.generate , kwargs=__snake_case ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__snake_case ): lowerCamelCase :Dict = '''''' for new_text in streamer: streamer_text += new_text
49
0
from collections import deque class _lowerCAmelCase : def __init__( self : Union[str, Any] , __snake_case : str , __snake_case : int , __snake_case : int ): lowerCamelCase :List[Any] = process_name # process name lowerCamelCase :int = arrival_time # arrival time of the process # completion time of finished process or last interrupted time lowerCamelCase :int = arrival_time lowerCamelCase :int = burst_time # remaining burst time lowerCamelCase :Tuple = 0 # total time of the process wait in ready queue lowerCamelCase :Any = 0 # time from arrival time to completion time class _lowerCAmelCase : def __init__( self : List[str] , __snake_case : int , __snake_case : list[int] , __snake_case : deque[Process] , __snake_case : int , ): # total number of mlfq's queues lowerCamelCase :List[Any] = number_of_queues # time slice of queues that round robin algorithm applied lowerCamelCase :int = time_slices # unfinished process is in this ready_queue lowerCamelCase :str = queue # current time lowerCamelCase :Optional[Any] = current_time # finished process is in this sequence queue lowerCamelCase :deque[Process] = deque() def snake_case ( self : str ): lowerCamelCase :Union[str, Any] = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def snake_case ( self : List[str] , __snake_case : list[Process] ): lowerCamelCase :str = [] for i in range(len(__snake_case ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def snake_case ( self : Union[str, Any] , __snake_case : list[Process] ): lowerCamelCase :Optional[Any] = [] for i in range(len(__snake_case ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def snake_case ( self : Any , __snake_case : list[Process] ): lowerCamelCase :List[str] = [] for i in range(len(__snake_case ) ): completion_times.append(queue[i].stop_time ) return completion_times def snake_case ( self : int , __snake_case : deque[Process] ): return [q.burst_time for q in queue] def snake_case ( self : Optional[Any] , __snake_case : Process ): process.waiting_time += self.current_time - process.stop_time return process.waiting_time def snake_case ( self : List[str] , __snake_case : deque[Process] ): lowerCamelCase :deque[Process] = deque() # sequence deque of finished process while len(__snake_case ) != 0: lowerCamelCase :Tuple = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(__snake_case ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 lowerCamelCase :Dict = 0 # set the process's turnaround time because it is finished lowerCamelCase :Any = self.current_time - cp.arrival_time # set the completion time lowerCamelCase :Dict = self.current_time # add the process to queue that has finished queue finished.append(__snake_case ) self.finish_queue.extend(__snake_case ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def snake_case ( self : Tuple , __snake_case : deque[Process] , __snake_case : int ): lowerCamelCase :deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(__snake_case ) ): lowerCamelCase :List[str] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(__snake_case ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time lowerCamelCase :List[Any] = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(__snake_case ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished lowerCamelCase :Optional[Any] = 0 # set the finish time lowerCamelCase :Optional[int] = self.current_time # update the process' turnaround time because it is finished lowerCamelCase :Tuple = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(__snake_case ) self.finish_queue.extend(__snake_case ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def snake_case ( self : str ): # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): lowerCamelCase :Union[str, Any] = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest A__ = Process("""P1""", 0, 53) A__ = Process("""P2""", 0, 17) A__ = Process("""P3""", 0, 68) A__ = Process("""P4""", 0, 24) A__ = 3 A__ = [17, 25] A__ = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"""queue""": deque([Pa, Pa, Pa, Pa])}) A__ = Process("""P1""", 0, 53) A__ = Process("""P2""", 0, 17) A__ = Process("""P3""", 0, 68) A__ = Process("""P4""", 0, 24) A__ = 3 A__ = [17, 25] A__ = deque([Pa, Pa, Pa, Pa]) A__ = MLFQ(number_of_queues, time_slices, queue, 0) A__ = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print completion times of processes(P1, P2, P3, P4) print( F'completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print sequence of finished processes print( F'sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}' )
707
from maths.prime_factors import prime_factors def _lowerCamelCase ( a_ : int): if not isinstance(a_ , a_): lowerCamelCase :Tuple = F"Input value of [number={number}] must be an integer" raise TypeError(a_) if number < 1: raise ValueError('''Input must be a positive integer''') return -1 if len(prime_factors(a_)) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
49
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class _lowerCAmelCase ( unittest.TestCase ): def __init__( self : Optional[int] , __snake_case : Tuple , __snake_case : Any=7 , __snake_case : List[str]=3 , __snake_case : int=10 , __snake_case : Tuple=18 , __snake_case : List[Any]=30 , __snake_case : Optional[int]=400 , __snake_case : str=True , __snake_case : List[str]=None , __snake_case : Tuple=True , __snake_case : Union[str, Any]=[0.5, 0.5, 0.5] , __snake_case : Optional[int]=[0.5, 0.5, 0.5] , __snake_case : Optional[int]=None , ): lowerCamelCase :str = size if size is not None else {'''shortest_edge''': 18} lowerCamelCase :Tuple = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} lowerCamelCase :int = parent lowerCamelCase :Union[str, Any] = batch_size lowerCamelCase :Union[str, Any] = num_channels lowerCamelCase :Optional[int] = num_frames lowerCamelCase :List[str] = image_size lowerCamelCase :Tuple = min_resolution lowerCamelCase :Optional[int] = max_resolution lowerCamelCase :Optional[Any] = do_resize lowerCamelCase :Optional[int] = size lowerCamelCase :Optional[Any] = do_normalize lowerCamelCase :str = image_mean lowerCamelCase :List[str] = image_std lowerCamelCase :Tuple = crop_size def snake_case ( self : List[str] ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = VivitImageProcessor if is_vision_available() else None def snake_case ( self : Union[str, Any] ): lowerCamelCase :Tuple = VivitImageProcessingTester(self ) @property def snake_case ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def snake_case ( self : Union[str, Any] ): lowerCamelCase :Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , '''image_mean''' ) ) self.assertTrue(hasattr(__snake_case , '''image_std''' ) ) self.assertTrue(hasattr(__snake_case , '''do_normalize''' ) ) self.assertTrue(hasattr(__snake_case , '''do_resize''' ) ) self.assertTrue(hasattr(__snake_case , '''do_center_crop''' ) ) self.assertTrue(hasattr(__snake_case , '''size''' ) ) def snake_case ( self : List[str] ): lowerCamelCase :Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) lowerCamelCase :Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def snake_case ( self : List[str] ): # Initialize image_processing lowerCamelCase :str = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos lowerCamelCase :Tuple = prepare_video_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for video in video_inputs: self.assertIsInstance(__snake_case , __snake_case ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input lowerCamelCase :List[str] = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowerCamelCase :Tuple = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case ( self : Dict ): # Initialize image_processing lowerCamelCase :List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase :str = prepare_video_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for video in video_inputs: self.assertIsInstance(__snake_case , __snake_case ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input lowerCamelCase :List[Any] = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowerCamelCase :int = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case ( self : Tuple ): # Initialize image_processing lowerCamelCase :Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase :List[Any] = prepare_video_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for video in video_inputs: self.assertIsInstance(__snake_case , __snake_case ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input lowerCamelCase :Dict = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowerCamelCase :Tuple = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
708
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() A__ = logging.get_logger(__name__) def _lowerCamelCase ( a_ : str , a_ : str=False): lowerCamelCase :Optional[int] = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''')) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''')) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''')) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''')) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''')) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''')) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''')) for stage_idx in range(len(config.backbone_config.depths)): for layer_idx in range(config.backbone_config.depths[stage_idx]): rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias")) # transformer encoder for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight")) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias")) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight")) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias")) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight")) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias")) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight")) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias")) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight")) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias")) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ]) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCamelCase :List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''') else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ]) # fmt: on return rename_keys def _lowerCamelCase ( a_ : Any , a_ : Any , a_ : int=False): for i in range(config.num_hidden_layers): if base_model: lowerCamelCase :Union[str, Any] = '''''' else: lowerCamelCase :Optional[int] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase :Optional[Any] = state_dict.pop(F"blocks.{i}.attn.qkv.weight") lowerCamelCase :Any = state_dict.pop(F"blocks.{i}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict lowerCamelCase :Any = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase :Tuple = in_proj_bias[: config.hidden_size] lowerCamelCase :int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase :Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase :Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase :List[Any] = in_proj_bias[-config.hidden_size :] def _lowerCamelCase ( a_ : int): lowerCamelCase :Any = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(a_ , a_) def _lowerCamelCase ( a_ : int , a_ : Any , a_ : Tuple): lowerCamelCase :Optional[Any] = dct.pop(a_) lowerCamelCase :str = val def _lowerCamelCase ( ): lowerCamelCase :Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase :Tuple = Image.open(requests.get(a_ , stream=a_).raw) return im @torch.no_grad() def _lowerCamelCase ( a_ : Optional[Any] , a_ : Optional[Any] , a_ : Optional[Any]=False): lowerCamelCase :Optional[int] = BitConfig( global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=a_ , ) lowerCamelCase :Optional[int] = ViTHybridConfig(backbone_config=a_ , image_size=3_84 , num_labels=10_00) lowerCamelCase :List[Any] = False # load original model from timm lowerCamelCase :List[str] = timm.create_model(a_ , pretrained=a_) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCamelCase :List[str] = timm_model.state_dict() if base_model: remove_classification_head_(a_) lowerCamelCase :Tuple = create_rename_keys(a_ , a_) for src, dest in rename_keys: rename_key(a_ , a_ , a_) read_in_q_k_v(a_ , a_ , a_) lowerCamelCase :List[str] = '''huggingface/label-files''' lowerCamelCase :Any = '''imagenet-1k-id2label.json''' lowerCamelCase :List[Any] = json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''') , '''r''')) lowerCamelCase :Optional[Any] = {int(a_): v for k, v in idalabel.items()} lowerCamelCase :Optional[int] = idalabel lowerCamelCase :Union[str, Any] = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": lowerCamelCase :Optional[Any] = ViTHybridModel(a_).eval() else: lowerCamelCase :Dict = ViTHybridForImageClassification(a_).eval() model.load_state_dict(a_) # create image processor lowerCamelCase :Dict = create_transform(**resolve_data_config({} , model=a_)) lowerCamelCase :str = transform.transforms lowerCamelCase :int = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } lowerCamelCase :Any = ViTHybridImageProcessor( do_resize=a_ , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=a_ , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=a_ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCamelCase :Dict = prepare_img() lowerCamelCase :str = transform(a_).unsqueeze(0) lowerCamelCase :str = processor(a_ , return_tensors='''pt''').pixel_values # verify pixel values assert torch.allclose(a_ , a_) # verify logits with torch.no_grad(): lowerCamelCase :Optional[int] = model(a_) lowerCamelCase :Union[str, Any] = outputs.logits print('''Predicted class:''' , logits.argmax(-1).item()) if base_model: lowerCamelCase :Union[str, Any] = timm_model.forward_features(a_) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(a_ , outputs.pooler_output , atol=1e-3) else: lowerCamelCase :List[str] = timm_model(a_) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(a_ , outputs.logits , atol=1e-3) print('''Looks ok!''') if pytorch_dump_folder_path is not None: Path(a_).mkdir(exist_ok=a_) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}") model.save_pretrained(a_) print(F"Saving processor to {pytorch_dump_folder_path}") processor.save_pretrained(a_) if push_to_hub: print(F"Pushing model and processor to the hub {vit_name}") model.push_to_hub(F"ybelkada/{vit_name}") processor.push_to_hub(F"ybelkada/{vit_name}") if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_r50_s16_384""", type=str, help="""Name of the hybrid ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) A__ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
49
0
from __future__ import annotations class _lowerCAmelCase : def __init__( self : Union[str, Any] , __snake_case : List[str]=None ): lowerCamelCase :List[str] = data lowerCamelCase :str = None def __repr__( self : int ): lowerCamelCase :Union[str, Any] = [] lowerCamelCase :Optional[Any] = self while temp: string_rep.append(F"{temp.data}" ) lowerCamelCase :str = temp.next return "->".join(__snake_case ) def _lowerCamelCase ( a_ : list): if not elements_list: raise Exception('''The Elements List is empty''') lowerCamelCase :Optional[int] = Node(elements_list[0]) for i in range(1 , len(a_)): lowerCamelCase :List[str] = Node(elements_list[i]) lowerCamelCase :str = current.next return head def _lowerCamelCase ( a_ : Node): if head_node is not None and isinstance(a_ , a_): print_reverse(head_node.next) print(head_node.data) def _lowerCamelCase ( ): from doctest import testmod testmod() lowerCamelCase :List[Any] = make_linked_list([14, 52, 14, 12, 43]) print('''Linked List:''') print(a_) print('''Elements in Reverse:''') print_reverse(a_) if __name__ == "__main__": main()
709
def _lowerCamelCase ( a_ : int = 4_00_00_00): lowerCamelCase :Dict = [0, 1] lowerCamelCase :Optional[Any] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1]) if fib[i + 2] > n: break i += 1 lowerCamelCase :Dict = 0 for j in range(len(a_) - 1): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F'{solution() = }')
49
0
class _lowerCAmelCase : def __init__( self : int , __snake_case : int , __snake_case : List[Any]=None , __snake_case : List[str]=None ): lowerCamelCase :Union[str, Any] = data lowerCamelCase :str = previous lowerCamelCase :Optional[int] = next_node def __str__( self : List[Any] ): return F"{self.data}" def snake_case ( self : List[str] ): return self.data def snake_case ( self : int ): return self.next def snake_case ( self : str ): return self.previous class _lowerCAmelCase : def __init__( self : Union[str, Any] , __snake_case : Any ): lowerCamelCase :str = head def __iter__( self : Union[str, Any] ): return self def snake_case ( self : Any ): if not self.current: raise StopIteration else: lowerCamelCase :Dict = self.current.get_data() lowerCamelCase :Union[str, Any] = self.current.get_next() return value class _lowerCAmelCase : def __init__( self : str ): lowerCamelCase :Optional[Any] = None # First node in list lowerCamelCase :Union[str, Any] = None # Last node in list def __str__( self : Dict ): lowerCamelCase :Tuple = self.head lowerCamelCase :Any = [] while current is not None: nodes.append(current.get_data() ) lowerCamelCase :Optional[Any] = current.get_next() return " ".join(str(__snake_case ) for node in nodes ) def __contains__( self : List[Any] , __snake_case : int ): lowerCamelCase :Optional[int] = self.head while current: if current.get_data() == value: return True lowerCamelCase :Union[str, Any] = current.get_next() return False def __iter__( self : Any ): return LinkedListIterator(self.head ) def snake_case ( self : Union[str, Any] ): if self.head: return self.head.get_data() return None def snake_case ( self : List[str] ): if self.tail: return self.tail.get_data() return None def snake_case ( self : Optional[Any] , __snake_case : Node ): if self.head is None: lowerCamelCase :Optional[int] = node lowerCamelCase :Dict = node else: self.insert_before_node(self.head , __snake_case ) def snake_case ( self : List[str] , __snake_case : Node ): if self.head is None: self.set_head(__snake_case ) else: self.insert_after_node(self.tail , __snake_case ) def snake_case ( self : int , __snake_case : int ): lowerCamelCase :List[Any] = Node(__snake_case ) if self.head is None: self.set_head(__snake_case ) else: self.set_tail(__snake_case ) def snake_case ( self : Tuple , __snake_case : Node , __snake_case : Node ): lowerCamelCase :Any = node lowerCamelCase :Dict = node.previous if node.get_previous() is None: lowerCamelCase :Optional[Any] = node_to_insert else: lowerCamelCase :Optional[Any] = node_to_insert lowerCamelCase :int = node_to_insert def snake_case ( self : Optional[Any] , __snake_case : Node , __snake_case : Node ): lowerCamelCase :Dict = node lowerCamelCase :Optional[int] = node.next if node.get_next() is None: lowerCamelCase :Union[str, Any] = node_to_insert else: lowerCamelCase :Dict = node_to_insert lowerCamelCase :List[str] = node_to_insert def snake_case ( self : int , __snake_case : int , __snake_case : int ): lowerCamelCase :Tuple = 1 lowerCamelCase :int = Node(__snake_case ) lowerCamelCase :List[Any] = self.head while node: if current_position == position: self.insert_before_node(__snake_case , __snake_case ) return current_position += 1 lowerCamelCase :str = node.next self.insert_after_node(self.tail , __snake_case ) def snake_case ( self : Any , __snake_case : int ): lowerCamelCase :Dict = self.head while node: if node.get_data() == item: return node lowerCamelCase :List[Any] = node.get_next() raise Exception('''Node not found''' ) def snake_case ( self : Any , __snake_case : Tuple ): if (node := self.get_node(__snake_case )) is not None: if node == self.head: lowerCamelCase :Optional[Any] = self.head.get_next() if node == self.tail: lowerCamelCase :Optional[Any] = self.tail.get_previous() self.remove_node_pointers(__snake_case ) @staticmethod def snake_case ( __snake_case : Node ): if node.get_next(): lowerCamelCase :Any = node.previous if node.get_previous(): lowerCamelCase :Any = node.next lowerCamelCase :Any = None lowerCamelCase :Tuple = None def snake_case ( self : List[str] ): return self.head is None def _lowerCamelCase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
710
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ = { """configuration_nllb_moe""": [ """NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NllbMoeConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""", """NllbMoeForConditionalGeneration""", """NllbMoeModel""", """NllbMoePreTrainedModel""", """NllbMoeTop2Router""", """NllbMoeSparseMLP""", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
49
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { """facebook/data2vec-text-base""": """https://huggingface.co/data2vec/resolve/main/config.json""", } class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'data2vec-text' def __init__( self : str , __snake_case : Optional[Any]=30522 , __snake_case : str=768 , __snake_case : Tuple=12 , __snake_case : List[str]=12 , __snake_case : Optional[Any]=3072 , __snake_case : Any="gelu" , __snake_case : str=0.1 , __snake_case : List[str]=0.1 , __snake_case : Optional[int]=512 , __snake_case : Tuple=2 , __snake_case : int=0.0_2 , __snake_case : List[Any]=1e-1_2 , __snake_case : str=1 , __snake_case : Tuple=0 , __snake_case : int=2 , __snake_case : Tuple="absolute" , __snake_case : List[Any]=True , __snake_case : int=None , **__snake_case : Optional[int] , ): super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) lowerCamelCase :Tuple = vocab_size lowerCamelCase :Dict = hidden_size lowerCamelCase :List[Any] = num_hidden_layers lowerCamelCase :List[str] = num_attention_heads lowerCamelCase :Union[str, Any] = hidden_act lowerCamelCase :Optional[Any] = intermediate_size lowerCamelCase :str = hidden_dropout_prob lowerCamelCase :Tuple = attention_probs_dropout_prob lowerCamelCase :Any = max_position_embeddings lowerCamelCase :int = type_vocab_size lowerCamelCase :Any = initializer_range lowerCamelCase :Optional[Any] = layer_norm_eps lowerCamelCase :List[str] = position_embedding_type lowerCamelCase :Tuple = use_cache lowerCamelCase :List[Any] = classifier_dropout class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): @property def snake_case ( self : Tuple ): if self.task == "multiple-choice": lowerCamelCase :Dict = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase :Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
711
import numpy class _lowerCAmelCase : def __init__( self : Dict , __snake_case : numpy.ndarray , __snake_case : numpy.ndarray ): lowerCamelCase :Dict = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. lowerCamelCase :Dict = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. lowerCamelCase :Dict = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. lowerCamelCase :Any = numpy.random.rand(3 , 1 ) # Real output values provided. lowerCamelCase :Union[str, Any] = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. lowerCamelCase :List[str] = numpy.zeros(output_array.shape ) def snake_case ( self : Optional[int] ): lowerCamelCase :Any = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. lowerCamelCase :Any = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. lowerCamelCase :Dict = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def snake_case ( self : Any ): lowerCamelCase :Union[str, Any] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) lowerCamelCase :Dict = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) lowerCamelCase :int = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def snake_case ( self : Dict , __snake_case : numpy.ndarray , __snake_case : int , __snake_case : bool ): for iteration in range(1 , iterations + 1 ): lowerCamelCase :Union[str, Any] = self.feedforward() self.back_propagation() if give_loss: lowerCamelCase :Tuple = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"Iteration {iteration} Loss: {loss}" ) def snake_case ( self : Optional[int] , __snake_case : numpy.ndarray ): lowerCamelCase :int = input_arr lowerCamelCase :Union[str, Any] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) lowerCamelCase :Optional[Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) lowerCamelCase :Optional[int] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def _lowerCamelCase ( a_ : numpy.ndarray): return 1 / (1 + numpy.exp(-value)) def _lowerCamelCase ( a_ : numpy.ndarray): return (value) * (1 - (value)) def _lowerCamelCase ( ): lowerCamelCase :Optional[Any] = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. lowerCamelCase :int = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa) # Calling neural network class. lowerCamelCase :List[Any] = TwoHiddenLayerNeuralNetwork( input_array=a_ , output_array=a_) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=a_ , iterations=10 , give_loss=a_) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa)) if __name__ == "__main__": example()
49
0
from __future__ import annotations import math def _lowerCamelCase ( a_ : int): if num <= 0: lowerCamelCase :Union[str, Any] = F"{num}: Invalid input, please enter a positive integer." raise ValueError(a_) lowerCamelCase :Any = [True] * (num + 1) lowerCamelCase :Union[str, Any] = [] lowerCamelCase :List[Any] = 2 lowerCamelCase :Dict = int(math.sqrt(a_)) while start <= end: # If start is a prime if sieve[start] is True: prime.append(a_) # Set multiples of start be False for i in range(start * start , num + 1 , a_): if sieve[i] is True: lowerCamelCase :Optional[int] = False start += 1 for j in range(end + 1 , num + 1): if sieve[j] is True: prime.append(a_) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
712
def _lowerCamelCase ( a_ : str , a_ : str): lowerCamelCase :List[str] = len(a_) lowerCamelCase :List[str] = len(a_) lowerCamelCase :int = [[False for _ in range(m + 1)] for _ in range(n + 1)] lowerCamelCase :Optional[Any] = True for i in range(a_): for j in range(m + 1): if dp[i][j]: if j < m and a[i].upper() == b[j]: lowerCamelCase :Any = True if a[i].islower(): lowerCamelCase :List[str] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
49
0
from ...configuration_utils import PretrainedConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { """sayakpaul/vit-msn-base""": """https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json""", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'vit_msn' def __init__( self : List[str] , __snake_case : Union[str, Any]=768 , __snake_case : Any=12 , __snake_case : List[str]=12 , __snake_case : Any=3072 , __snake_case : Any="gelu" , __snake_case : int=0.0 , __snake_case : str=0.0 , __snake_case : List[Any]=0.0_2 , __snake_case : int=1e-0_6 , __snake_case : Any=224 , __snake_case : Dict=16 , __snake_case : Dict=3 , __snake_case : Union[str, Any]=True , **__snake_case : Union[str, Any] , ): super().__init__(**__snake_case ) lowerCamelCase :Optional[int] = hidden_size lowerCamelCase :int = num_hidden_layers lowerCamelCase :int = num_attention_heads lowerCamelCase :List[Any] = intermediate_size lowerCamelCase :Tuple = hidden_act lowerCamelCase :Union[str, Any] = hidden_dropout_prob lowerCamelCase :Any = attention_probs_dropout_prob lowerCamelCase :List[str] = initializer_range lowerCamelCase :Tuple = layer_norm_eps lowerCamelCase :Tuple = image_size lowerCamelCase :List[str] = patch_size lowerCamelCase :Dict = num_channels lowerCamelCase :Union[str, Any] = qkv_bias
713
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : def __init__( self : Any , __snake_case : Optional[int] , __snake_case : int=13 , __snake_case : str=[30, 30] , __snake_case : Tuple=2 , __snake_case : Optional[Any]=3 , __snake_case : int=True , __snake_case : Tuple=True , __snake_case : List[Any]=32 , __snake_case : int=5 , __snake_case : Optional[Any]=4 , __snake_case : Union[str, Any]=37 , __snake_case : str="gelu" , __snake_case : Tuple=0.1 , __snake_case : List[Any]=0.1 , __snake_case : Union[str, Any]=10 , __snake_case : str=0.0_2 , __snake_case : Union[str, Any]=3 , __snake_case : Union[str, Any]=None , __snake_case : List[str]=8 , __snake_case : Any=10 , ): lowerCamelCase :Optional[Any] = parent lowerCamelCase :List[Any] = batch_size lowerCamelCase :Any = image_size lowerCamelCase :Union[str, Any] = patch_size lowerCamelCase :Any = num_channels lowerCamelCase :List[Any] = is_training lowerCamelCase :Optional[Any] = use_labels lowerCamelCase :Any = hidden_size lowerCamelCase :List[Any] = num_hidden_layers lowerCamelCase :List[str] = num_attention_heads lowerCamelCase :Tuple = intermediate_size lowerCamelCase :List[str] = hidden_act lowerCamelCase :List[str] = hidden_dropout_prob lowerCamelCase :Any = attention_probs_dropout_prob lowerCamelCase :List[Any] = type_sequence_label_size lowerCamelCase :Optional[int] = initializer_range lowerCamelCase :List[Any] = num_labels lowerCamelCase :Any = scope lowerCamelCase :Union[str, Any] = n_targets lowerCamelCase :Optional[Any] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowerCamelCase :Tuple = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowerCamelCase :str = num_patches + 1 + self.num_detection_tokens def snake_case ( self : List[str] ): lowerCamelCase :str = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowerCamelCase :List[str] = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowerCamelCase :Optional[int] = [] for i in range(self.batch_size ): lowerCamelCase :List[str] = {} lowerCamelCase :Tuple = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=__snake_case ) lowerCamelCase :List[str] = torch.rand(self.n_targets , 4 , device=__snake_case ) labels.append(__snake_case ) lowerCamelCase :str = self.get_config() return config, pixel_values, labels def snake_case ( self : Union[str, Any] ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__snake_case , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def snake_case ( self : Tuple , __snake_case : Tuple , __snake_case : Tuple , __snake_case : Any ): lowerCamelCase :Optional[Any] = YolosModel(config=__snake_case ) model.to(__snake_case ) model.eval() lowerCamelCase :Union[str, Any] = model(__snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def snake_case ( self : Dict , __snake_case : str , __snake_case : Optional[int] , __snake_case : Optional[Any] ): lowerCamelCase :int = YolosForObjectDetection(__snake_case ) model.to(__snake_case ) model.eval() lowerCamelCase :str = model(pixel_values=__snake_case ) lowerCamelCase :Any = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) lowerCamelCase :int = model(pixel_values=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def snake_case ( self : int ): lowerCamelCase :List[Any] = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase :str = config_and_inputs lowerCamelCase :Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () _UpperCAmelCase = ( {'feature-extraction': YolosModel, 'object-detection': YolosForObjectDetection} if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def snake_case ( self : Any , __snake_case : List[Any] , __snake_case : Tuple , __snake_case : Dict=False ): lowerCamelCase :Optional[int] = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowerCamelCase :Dict = [] for i in range(self.model_tester.batch_size ): lowerCamelCase :Optional[Any] = {} lowerCamelCase :List[Any] = torch.ones( size=(self.model_tester.n_targets,) , device=__snake_case , dtype=torch.long ) lowerCamelCase :str = torch.ones( self.model_tester.n_targets , 4 , device=__snake_case , dtype=torch.float ) labels.append(__snake_case ) lowerCamelCase :Union[str, Any] = labels return inputs_dict def snake_case ( self : Tuple ): lowerCamelCase :Union[str, Any] = YolosModelTester(self ) lowerCamelCase :Dict = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=37 ) def snake_case ( self : Union[str, Any] ): self.config_tester.run_common_tests() def snake_case ( self : Optional[Any] ): # YOLOS does not use inputs_embeds pass def snake_case ( self : Tuple ): lowerCamelCase , lowerCamelCase :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :Optional[int] = model_class(__snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase :str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case , nn.Linear ) ) def snake_case ( self : str ): lowerCamelCase , lowerCamelCase :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :str = model_class(__snake_case ) lowerCamelCase :Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase :Tuple = [*signature.parameters.keys()] lowerCamelCase :Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __snake_case ) def snake_case ( self : int ): lowerCamelCase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def snake_case ( self : str ): lowerCamelCase , lowerCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase :int = True # in YOLOS, the seq_len is different lowerCamelCase :str = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowerCamelCase :str = True lowerCamelCase :Tuple = False lowerCamelCase :Optional[int] = True lowerCamelCase :int = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :str = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :str = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase :Optional[Any] = True lowerCamelCase :str = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :Tuple = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Tuple = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowerCamelCase :Optional[int] = len(__snake_case ) # Check attention is always last and order is fine lowerCamelCase :Union[str, Any] = True lowerCamelCase :List[Any] = True lowerCamelCase :Tuple = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :int = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Dict = 1 self.assertEqual(out_len + added_hidden_states , len(__snake_case ) ) lowerCamelCase :Dict = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def snake_case ( self : List[str] ): def check_hidden_states_output(__snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Tuple ): lowerCamelCase :Union[str, Any] = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :Any = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Optional[Any] = outputs.hidden_states lowerCamelCase :Any = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__snake_case ) , __snake_case ) # YOLOS has a different seq_length lowerCamelCase :List[str] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowerCamelCase , lowerCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :Union[str, Any] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase :Any = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*__snake_case ) @slow def snake_case ( self : Dict ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase :Tuple = YolosModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def _lowerCamelCase ( ): lowerCamelCase :int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): @cached_property def snake_case ( self : Tuple ): return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def snake_case ( self : Dict ): lowerCamelCase :Union[str, Any] = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(__snake_case ) lowerCamelCase :Optional[Any] = self.default_image_processor lowerCamelCase :str = prepare_img() lowerCamelCase :Dict = image_processor(images=__snake_case , return_tensors='''pt''' ).to(__snake_case ) # forward pass with torch.no_grad(): lowerCamelCase :Optional[Any] = model(inputs.pixel_values ) # verify outputs lowerCamelCase :int = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , __snake_case ) lowerCamelCase :Any = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=__snake_case , ) lowerCamelCase :Any = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __snake_case , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , __snake_case , atol=1e-4 ) ) # verify postprocessing lowerCamelCase :List[str] = image_processor.post_process_object_detection( __snake_case , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] lowerCamelCase :List[str] = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(__snake_case ) lowerCamelCase :str = [75, 75, 17, 63, 17] lowerCamelCase :Tuple = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(__snake_case ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , __snake_case , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , __snake_case ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , __snake_case ) )
49
0
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() A__ = logging.get_logger(__name__) def _lowerCAmelCase ( a_ : Union[str, Any] , a_ : Union[str, Any]): lowerCamelCase :Dict = [] for i in range(encoder_config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"encoder.deit.blocks.{i}.norm1.weight", F"encoder.encoder.layer.{i}.layernorm_before.weight")) rename_keys.append((F"encoder.deit.blocks.{i}.norm1.bias", F"encoder.encoder.layer.{i}.layernorm_before.bias")) rename_keys.append( (F"encoder.deit.blocks.{i}.attn.proj.weight", F"encoder.encoder.layer.{i}.attention.output.dense.weight")) rename_keys.append( (F"encoder.deit.blocks.{i}.attn.proj.bias", F"encoder.encoder.layer.{i}.attention.output.dense.bias")) rename_keys.append( (F"encoder.deit.blocks.{i}.norm2.weight", F"encoder.encoder.layer.{i}.layernorm_after.weight")) rename_keys.append((F"encoder.deit.blocks.{i}.norm2.bias", F"encoder.encoder.layer.{i}.layernorm_after.bias")) rename_keys.append( (F"encoder.deit.blocks.{i}.mlp.fc1.weight", F"encoder.encoder.layer.{i}.intermediate.dense.weight")) rename_keys.append( (F"encoder.deit.blocks.{i}.mlp.fc1.bias", F"encoder.encoder.layer.{i}.intermediate.dense.bias")) rename_keys.append( (F"encoder.deit.blocks.{i}.mlp.fc2.weight", F"encoder.encoder.layer.{i}.output.dense.weight")) rename_keys.append((F"encoder.deit.blocks.{i}.mlp.fc2.bias", F"encoder.encoder.layer.{i}.output.dense.bias")) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ]) return rename_keys def _lowerCAmelCase ( a_ : Dict , a_ : Tuple): for i in range(encoder_config.num_hidden_layers): # queries, keys and values (only weights, no biases) lowerCamelCase :int = state_dict.pop(F"encoder.deit.blocks.{i}.attn.qkv.weight") lowerCamelCase :Optional[Any] = in_proj_weight[ : encoder_config.hidden_size, : ] lowerCamelCase :Optional[Any] = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] lowerCamelCase :Any = in_proj_weight[ -encoder_config.hidden_size :, : ] def _lowerCAmelCase ( a_ : Union[str, Any] , a_ : Dict , a_ : Optional[int]): lowerCamelCase :Optional[int] = dct.pop(a_) lowerCamelCase :List[Any] = val def _lowerCAmelCase ( a_ : Any): if "handwritten" in checkpoint_url: lowerCamelCase :str = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: lowerCamelCase :List[str] = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' lowerCamelCase :Tuple = Image.open(requests.get(a_ , stream=a_).raw).convert('''RGB''') return im @torch.no_grad() def _lowerCAmelCase ( a_ : List[str] , a_ : str): lowerCamelCase :Union[str, Any] = ViTConfig(image_size=3_84 , qkv_bias=a_) lowerCamelCase :Union[str, Any] = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: lowerCamelCase :str = 7_68 elif "large" in checkpoint_url: # use ViT-large encoder lowerCamelCase :List[Any] = 10_24 lowerCamelCase :Optional[Any] = 40_96 lowerCamelCase :Optional[Any] = 24 lowerCamelCase :int = 16 lowerCamelCase :Any = 10_24 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''') # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: lowerCamelCase :Optional[Any] = False lowerCamelCase :Tuple = '''relu''' lowerCamelCase :Optional[int] = 10_24 lowerCamelCase :Dict = True lowerCamelCase :Optional[int] = False lowerCamelCase :List[Any] = False # load HuggingFace model lowerCamelCase :Any = ViTModel(a_ , add_pooling_layer=a_) lowerCamelCase :Optional[Any] = TrOCRForCausalLM(a_) lowerCamelCase :Union[str, Any] = VisionEncoderDecoderModel(encoder=a_ , decoder=a_) model.eval() # load state_dict of original model, rename some keys lowerCamelCase :Union[str, Any] = torch.hub.load_state_dict_from_url(a_ , map_location='''cpu''' , check_hash=a_)['''model'''] lowerCamelCase :Any = create_rename_keys(a_ , a_) for src, dest in rename_keys: rename_key(a_ , a_ , a_) read_in_q_k_v(a_ , a_) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): lowerCamelCase :int = state_dict.pop(a_) if key.startswith('''decoder''') and "output_projection" not in key: lowerCamelCase :Optional[int] = val else: lowerCamelCase :Any = val # load state dict model.load_state_dict(a_) # Check outputs on an image lowerCamelCase :int = ViTImageProcessor(size=encoder_config.image_size) lowerCamelCase :Any = RobertaTokenizer.from_pretrained('''roberta-large''') lowerCamelCase :List[Any] = TrOCRProcessor(a_ , a_) lowerCamelCase :int = processor(images=prepare_img(a_) , return_tensors='''pt''').pixel_values # verify logits lowerCamelCase :List[Any] = torch.tensor([[model.config.decoder.decoder_start_token_id]]) lowerCamelCase :str = model(pixel_values=a_ , decoder_input_ids=a_) lowerCamelCase :Optional[Any] = outputs.logits lowerCamelCase :Optional[Any] = torch.Size([1, 1, 5_02_65]) if "trocr-base-handwritten" in checkpoint_url: lowerCamelCase :Dict = torch.tensor( [-1.4_502, -4.6_683, -0.5_347, -2.9_291, 9.1_435, -3.0_571, 8.9_764, 1.7_560, 8.7_358, -1.5_311]) elif "trocr-large-handwritten" in checkpoint_url: lowerCamelCase :Optional[int] = torch.tensor( [-2.6_437, -1.3_129, -2.2_596, -5.3_455, 6.3_539, 1.7_604, 5.4_991, 1.4_702, 5.6_113, 2.0_170]) elif "trocr-base-printed" in checkpoint_url: lowerCamelCase :str = torch.tensor( [-5.6_816, -5.8_388, 1.1_398, -6.9_034, 6.8_505, -2.4_393, 1.2_284, -1.0_232, -1.9_661, -3.9_210]) elif "trocr-large-printed" in checkpoint_url: lowerCamelCase :Tuple = torch.tensor( [-6.0_162, -7.0_959, 4.4_155, -5.1_063, 7.0_468, -3.1_631, 2.6_466, -0.3_081, -0.8_106, -1.7_535]) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , a_ , atol=1e-3), "First elements of logits not as expected" Path(a_).mkdir(exist_ok=a_) print(F"Saving model to {pytorch_dump_folder_path}") model.save_pretrained(a_) print(F"Saving processor to {pytorch_dump_folder_path}") processor.save_pretrained(a_) if __name__ == "__main__": A__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) A__ = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
714
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Tuple ): lowerCamelCase :List[Any] = inspect.getfile(accelerate.test_utils ) lowerCamelCase :Dict = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 lowerCamelCase :Any = test_metrics @require_cpu def snake_case ( self : Dict ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def snake_case ( self : int ): debug_launcher(self.test_metrics.main ) @require_single_gpu def snake_case ( self : Any ): self.test_metrics.main() @require_multi_gpu def snake_case ( self : Optional[int] ): print(F"Found {torch.cuda.device_count()} devices." ) lowerCamelCase :Optional[int] = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__snake_case , env=os.environ.copy() )
49
0
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def _lowerCamelCase ( a_ : ndarray): return np.dot(a_ , a_) class _lowerCAmelCase : def __init__( self : Any , *, __snake_case : float = np.inf , __snake_case : str = "linear" , __snake_case : float = 0.0 , ): lowerCamelCase :Optional[int] = regularization lowerCamelCase :Optional[Any] = gamma if kernel == "linear": lowerCamelCase :Tuple = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('''rbf kernel requires gamma''' ) if not isinstance(self.gamma , (float, int) ): raise ValueError('''gamma must be float or int''' ) if not self.gamma > 0: raise ValueError('''gamma must be > 0''' ) lowerCamelCase :Tuple = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: lowerCamelCase :str = F"Unknown kernel: {kernel}" raise ValueError(__snake_case ) def snake_case ( self : Union[str, Any] , __snake_case : ndarray , __snake_case : ndarray ): return np.dot(__snake_case , __snake_case ) def snake_case ( self : List[Any] , __snake_case : ndarray , __snake_case : ndarray ): return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def snake_case ( self : List[str] , __snake_case : list[ndarray] , __snake_case : ndarray ): lowerCamelCase :str = observations lowerCamelCase :Optional[Any] = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations (lowerCamelCase ) :str = np.shape(__snake_case ) def to_minimize(__snake_case : ndarray ) -> float: lowerCamelCase :Dict = 0 (lowerCamelCase ) :Dict = np.shape(__snake_case ) for i in range(__snake_case ): for j in range(__snake_case ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(__snake_case ) lowerCamelCase :Tuple = LinearConstraint(__snake_case , 0 , 0 ) lowerCamelCase :Dict = Bounds(0 , self.regularization ) lowerCamelCase :Union[str, Any] = minimize( __snake_case , np.ones(__snake_case ) , bounds=__snake_case , constraints=[ly_contraint] ).x lowerCamelCase :List[str] = l_star # calculating mean offset of separation plane to points lowerCamelCase :Union[str, Any] = 0 for i in range(__snake_case ): for j in range(__snake_case ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) lowerCamelCase :Any = s / n def snake_case ( self : str , __snake_case : ndarray ): lowerCamelCase :List[Any] = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , __snake_case ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
715
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = '' _UpperCAmelCase = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) _UpperCAmelCase = None # compression type in fsspec. ex: "gzip" _UpperCAmelCase = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : str , __snake_case : str = "" , __snake_case : Optional[str] = None , __snake_case : Optional[dict] = None , **__snake_case : Dict ): super().__init__(self , **__snake_case ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode lowerCamelCase :Optional[Any] = fsspec.open( __snake_case , mode='''rb''' , protocol=__snake_case , compression=self.compression , client_kwargs={ '''requote_redirect_url''': False, # see https://github.com/huggingface/datasets/pull/5459 '''trust_env''': True, # Enable reading proxy env variables. **(target_options or {}).pop('''client_kwargs''' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) lowerCamelCase :List[str] = os.path.basename(self.file.path.split('''::''' )[0] ) lowerCamelCase :Dict = ( self.compressed_name[: self.compressed_name.rindex('''.''' )] if '''.''' in self.compressed_name else self.compressed_name ) lowerCamelCase :List[str] = None @classmethod def snake_case ( cls : Any , __snake_case : Any ): # compressed file paths are always relative to the archive root return super()._strip_protocol(__snake_case ).lstrip('''/''' ) def snake_case ( self : Any ): if self.dir_cache is None: lowerCamelCase :Optional[Any] = {**self.file.fs.info(self.file.path ), '''name''': self.uncompressed_name} lowerCamelCase :Optional[Any] = {f['''name''']: f} def snake_case ( self : Union[str, Any] , __snake_case : str ): return self.file.open().read() def snake_case ( self : Optional[int] , __snake_case : str , __snake_case : str = "rb" , __snake_case : int=None , __snake_case : Optional[int]=True , __snake_case : str=None , **__snake_case : str , ): lowerCamelCase :List[str] = self._strip_protocol(__snake_case ) if mode != "rb": raise ValueError(F"Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'" ) return self.file.open() class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'bz2' _UpperCAmelCase = 'bz2' _UpperCAmelCase = '.bz2' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'gzip' _UpperCAmelCase = 'gzip' _UpperCAmelCase = '.gz' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'lz4' _UpperCAmelCase = 'lz4' _UpperCAmelCase = '.lz4' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'xz' _UpperCAmelCase = 'xz' _UpperCAmelCase = '.xz' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'zstd' _UpperCAmelCase = 'zstd' _UpperCAmelCase = '.zst' def __init__( self : str , __snake_case : str , __snake_case : str = "rb" , __snake_case : Optional[str] = None , __snake_case : Optional[dict] = None , __snake_case : int = DEFAULT_BLOCK_SIZE , **__snake_case : int , ): super().__init__( fo=__snake_case , mode=__snake_case , target_protocol=__snake_case , target_options=__snake_case , block_size=__snake_case , **__snake_case , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 lowerCamelCase :Tuple = self.file.__enter__ class _lowerCAmelCase : def __init__( self : Dict , __snake_case : Tuple ): lowerCamelCase :Optional[int] = file_ def __enter__( self : Optional[int] ): self._file.__enter__() return self def __exit__( self : str , *__snake_case : Optional[Any] , **__snake_case : List[Any] ): self._file.__exit__(*__snake_case , **__snake_case ) def __iter__( self : Optional[Any] ): return iter(self._file ) def snake_case ( self : List[Any] ): return next(self._file ) def __getattr__( self : Any , __snake_case : str ): return getattr(self._file , __snake_case ) def fixed_enter(*__snake_case : Optional[int] , **__snake_case : str ): return WrappedFile(_enter(*__snake_case , **__snake_case ) ) lowerCamelCase :Dict = fixed_enter
49
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A__ = {"""configuration_opt""": ["""OPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """OPTConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """OPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """OPTForCausalLM""", """OPTModel""", """OPTPreTrainedModel""", """OPTForSequenceClassification""", """OPTForQuestionAnswering""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""TFOPTForCausalLM""", """TFOPTModel""", """TFOPTPreTrainedModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """FlaxOPTForCausalLM""", """FlaxOPTModel""", """FlaxOPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
716
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = LEDTokenizer _UpperCAmelCase = LEDTokenizerFast _UpperCAmelCase = True def snake_case ( self : Any ): super().setUp() lowerCamelCase :Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] lowerCamelCase :Any = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) lowerCamelCase :List[str] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCamelCase :int = {'''unk_token''': '''<unk>'''} lowerCamelCase :Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__snake_case ) ) def snake_case ( self : int , **__snake_case : int ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Dict , **__snake_case : Any ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Optional[Any] , __snake_case : Union[str, Any] ): return "lower newer", "lower newer" @cached_property def snake_case ( self : Any ): return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' ) @cached_property def snake_case ( self : int ): return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' ) @require_torch def snake_case ( self : str ): lowerCamelCase :Any = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowerCamelCase :List[Any] = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[Any] = tokenizer(__snake_case , max_length=len(__snake_case ) , padding=__snake_case , return_tensors='''pt''' ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowerCamelCase :List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(__snake_case , __snake_case ) @require_torch def snake_case ( self : Tuple ): lowerCamelCase :Dict = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Union[str, Any] = tokenizer(__snake_case , padding=__snake_case , return_tensors='''pt''' ) self.assertIn('''input_ids''' , __snake_case ) self.assertIn('''attention_mask''' , __snake_case ) self.assertNotIn('''labels''' , __snake_case ) self.assertNotIn('''decoder_attention_mask''' , __snake_case ) @require_torch def snake_case ( self : Union[str, Any] ): lowerCamelCase :Union[str, Any] = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :List[Any] = tokenizer(text_target=__snake_case , max_length=32 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) @require_torch def snake_case ( self : List[Any] ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[Any] = tokenizer( ['''I am a small frog''' * 1024, '''I am a small frog'''] , padding=__snake_case , truncation=__snake_case , return_tensors='''pt''' ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def snake_case ( self : Optional[int] ): lowerCamelCase :Union[str, Any] = ['''A long paragraph for summarization.'''] lowerCamelCase :Any = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Union[str, Any] = tokenizer(__snake_case , return_tensors='''pt''' ) lowerCamelCase :Any = tokenizer(text_target=__snake_case , return_tensors='''pt''' ) lowerCamelCase :Optional[int] = inputs['''input_ids'''] lowerCamelCase :Any = targets['''input_ids'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def snake_case ( self : Dict ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[int] = ['''Summary of the text.''', '''Another summary.'''] lowerCamelCase :List[Any] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] lowerCamelCase :Optional[int] = tokenizer(__snake_case , padding=__snake_case ) lowerCamelCase :Union[str, Any] = [[0] * len(__snake_case ) for x in encoded_output['''input_ids''']] lowerCamelCase :str = tokenizer.pad(__snake_case ) self.assertSequenceEqual(outputs['''global_attention_mask'''] , __snake_case ) def snake_case ( self : Tuple ): pass def snake_case ( self : Optional[int] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase :Optional[Any] = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :Tuple = self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :int = '''A, <mask> AllenNLP sentence.''' lowerCamelCase :str = tokenizer_r.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case ) lowerCamelCase :str = tokenizer_p.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case ) self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) lowerCamelCase :Optional[int] = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) lowerCamelCase :Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __snake_case , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __snake_case , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
49
0
import os from typing import Dict, List, Tuple, TypeVar, Union A__ = TypeVar("""T""") A__ = Union[List[T], Tuple[T, ...]] A__ = Union[T, List[T], Dict[str, T]] A__ = Union[str, bytes, os.PathLike]
717
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) A__ = { """configuration_layoutlmv2""": ["""LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv2Config"""], """processing_layoutlmv2""": ["""LayoutLMv2Processor"""], """tokenization_layoutlmv2""": ["""LayoutLMv2Tokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""LayoutLMv2TokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""LayoutLMv2FeatureExtractor"""] A__ = ["""LayoutLMv2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """LayoutLMv2ForQuestionAnswering""", """LayoutLMv2ForSequenceClassification""", """LayoutLMv2ForTokenClassification""", """LayoutLMv2Layer""", """LayoutLMv2Model""", """LayoutLMv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
49
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { """andreasmadsen/efficient_mlm_m0.40""": ( """https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json""" ), } class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'roberta-prelayernorm' def __init__( self : str , __snake_case : List[str]=50265 , __snake_case : Union[str, Any]=768 , __snake_case : Tuple=12 , __snake_case : int=12 , __snake_case : Any=3072 , __snake_case : Optional[int]="gelu" , __snake_case : List[Any]=0.1 , __snake_case : int=0.1 , __snake_case : Union[str, Any]=512 , __snake_case : Dict=2 , __snake_case : int=0.0_2 , __snake_case : Any=1e-1_2 , __snake_case : Optional[int]=1 , __snake_case : Dict=0 , __snake_case : Optional[int]=2 , __snake_case : Any="absolute" , __snake_case : Union[str, Any]=True , __snake_case : List[str]=None , **__snake_case : Optional[int] , ): super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) lowerCamelCase :Optional[int] = vocab_size lowerCamelCase :Dict = hidden_size lowerCamelCase :Tuple = num_hidden_layers lowerCamelCase :Optional[int] = num_attention_heads lowerCamelCase :Any = hidden_act lowerCamelCase :List[Any] = intermediate_size lowerCamelCase :Union[str, Any] = hidden_dropout_prob lowerCamelCase :str = attention_probs_dropout_prob lowerCamelCase :Tuple = max_position_embeddings lowerCamelCase :int = type_vocab_size lowerCamelCase :Optional[Any] = initializer_range lowerCamelCase :Union[str, Any] = layer_norm_eps lowerCamelCase :Dict = position_embedding_type lowerCamelCase :List[Any] = use_cache lowerCamelCase :Optional[int] = classifier_dropout class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): @property def snake_case ( self : Any ): if self.task == "multiple-choice": lowerCamelCase :Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase :List[str] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
718
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _lowerCAmelCase : @staticmethod def snake_case ( *__snake_case : str , **__snake_case : str ): pass @is_pipeline_test @require_vision class _lowerCAmelCase ( unittest.TestCase ): @require_torch def snake_case ( self : Union[str, Any] ): lowerCamelCase :Optional[int] = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Dict = image_classifier(__snake_case , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__snake_case ) , [ [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}], [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}], ] , ) lowerCamelCase :Tuple = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], ] , ) @require_tf def snake_case ( self : Tuple ): lowerCamelCase :Tuple = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Optional[Any] = image_classifier(__snake_case , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(__snake_case ) , [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}] , ) lowerCamelCase :int = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], ] , ) @slow @require_torch def snake_case ( self : Any ): lowerCamelCase :str = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Optional[Any] = image_classifier(__snake_case , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) lowerCamelCase :Any = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def snake_case ( self : Optional[Any] ): lowerCamelCase :Union[str, Any] = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes lowerCamelCase :Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Dict = image_classifier(__snake_case , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) lowerCamelCase :Any = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , )
49
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = KandinskyInpaintPipeline _UpperCAmelCase = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image'] _UpperCAmelCase = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] _UpperCAmelCase = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] _UpperCAmelCase = False @property def snake_case ( self : Tuple ): return 32 @property def snake_case ( self : str ): return 32 @property def snake_case ( self : List[Any] ): return self.time_input_dim @property def snake_case ( self : str ): return self.time_input_dim * 4 @property def snake_case ( self : Dict ): return 100 @property def snake_case ( self : List[Any] ): lowerCamelCase :str = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def snake_case ( self : Union[str, Any] ): torch.manual_seed(0 ) lowerCamelCase :Any = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) lowerCamelCase :List[str] = MultilingualCLIP(__snake_case ) lowerCamelCase :List[Any] = text_encoder.eval() return text_encoder @property def snake_case ( self : str ): torch.manual_seed(0 ) lowerCamelCase :List[Any] = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } lowerCamelCase :Dict = UNetaDConditionModel(**__snake_case ) return model @property def snake_case ( self : List[Any] ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def snake_case ( self : Union[str, Any] ): torch.manual_seed(0 ) lowerCamelCase :str = VQModel(**self.dummy_movq_kwargs ) return model def snake_case ( self : Optional[Any] ): lowerCamelCase :Union[str, Any] = self.dummy_text_encoder lowerCamelCase :int = self.dummy_tokenizer lowerCamelCase :Optional[Any] = self.dummy_unet lowerCamelCase :str = self.dummy_movq lowerCamelCase :Optional[Any] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='''linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__snake_case , set_alpha_to_one=__snake_case , steps_offset=1 , prediction_type='''epsilon''' , thresholding=__snake_case , ) lowerCamelCase :Optional[int] = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def snake_case ( self : List[Any] , __snake_case : List[Any] , __snake_case : str=0 ): lowerCamelCase :Union[str, Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__snake_case ) ).to(__snake_case ) lowerCamelCase :Tuple = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__snake_case ) # create init_image lowerCamelCase :Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) lowerCamelCase :str = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase :Tuple = Image.fromarray(np.uinta(__snake_case ) ).convert('''RGB''' ).resize((256, 256) ) # create mask lowerCamelCase :Tuple = np.ones((64, 64) , dtype=np.floataa ) lowerCamelCase :Tuple = 0 if str(__snake_case ).startswith('''mps''' ): lowerCamelCase :Tuple = torch.manual_seed(__snake_case ) else: lowerCamelCase :Dict = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) lowerCamelCase :Optional[int] = { '''prompt''': '''horse''', '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def snake_case ( self : str ): lowerCamelCase :Dict = '''cpu''' lowerCamelCase :List[str] = self.get_dummy_components() lowerCamelCase :Tuple = self.pipeline_class(**__snake_case ) lowerCamelCase :str = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) lowerCamelCase :Optional[int] = pipe(**self.get_dummy_inputs(__snake_case ) ) lowerCamelCase :Optional[Any] = output.images lowerCamelCase :Tuple = pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] lowerCamelCase :Optional[Any] = image[0, -3:, -3:, -1] lowerCamelCase :List[Any] = image_from_tuple[0, -3:, -3:, -1] print(F"image.shape {image.shape}" ) assert image.shape == (1, 64, 64, 3) lowerCamelCase :Optional[Any] = np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def snake_case ( self : Dict ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self : Optional[Any] ): lowerCamelCase :Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy''' ) lowerCamelCase :List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) lowerCamelCase :str = np.ones((768, 768) , dtype=np.floataa ) lowerCamelCase :Optional[int] = 0 lowerCamelCase :Dict = '''a hat''' lowerCamelCase :str = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) lowerCamelCase :Optional[int] = KandinskyInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-inpaint''' , torch_dtype=torch.floataa ) lowerCamelCase :List[str] = pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) lowerCamelCase :Any = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowerCamelCase :Dict = pipe_prior( __snake_case , generator=__snake_case , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() lowerCamelCase :Optional[int] = pipeline( __snake_case , image=__snake_case , mask_image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , generator=__snake_case , num_inference_steps=100 , height=768 , width=768 , output_type='''np''' , ) lowerCamelCase :List[Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
719
import operator as op def _lowerCamelCase ( a_ : Tuple): lowerCamelCase :int = [] lowerCamelCase :List[str] = lambda a_ , a_: int(x / y) # noqa: E731 integer division operation lowerCamelCase :Optional[int] = { '''^''': op.pow, '''*''': op.mul, '''/''': div, '''+''': op.add, '''-''': op.sub, } # operators & their respective operation # print table header print('''Symbol'''.center(8) , '''Action'''.center(12) , '''Stack''' , sep=''' | ''') print('''-''' * (30 + len(a_))) for x in post_fix: if x.isdigit(): # if x in digit stack.append(a_) # append x to stack # output in tabular format print(x.rjust(8) , ('''push(''' + x + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') else: lowerCamelCase :Optional[Any] = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8) , ('''pop(''' + b + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') lowerCamelCase :str = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8) , ('''pop(''' + a + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') stack.append( str(opr[x](int(a_) , int(a_)))) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8) , ('''push(''' + a + x + b + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''' , ) return int(stack[0]) if __name__ == "__main__": A__ = input("""\n\nEnter a Postfix Equation (space separated) = """).split(""" """) print("""\n\tResult = """, solve(Postfix))
49
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: A__ = None A__ = logging.get_logger(__name__) A__ = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} A__ = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", }, """tokenizer_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json""", }, } A__ = { """albert-base-v1""": 512, """albert-large-v1""": 512, """albert-xlarge-v1""": 512, """albert-xxlarge-v1""": 512, """albert-base-v2""": 512, """albert-large-v2""": 512, """albert-xlarge-v2""": 512, """albert-xxlarge-v2""": 512, } A__ = """▁""" class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = AlbertTokenizer def __init__( self : int , __snake_case : Optional[Any]=None , __snake_case : Dict=None , __snake_case : Optional[int]=True , __snake_case : str=True , __snake_case : Any=False , __snake_case : Union[str, Any]="[CLS]" , __snake_case : str="[SEP]" , __snake_case : Union[str, Any]="<unk>" , __snake_case : Union[str, Any]="[SEP]" , __snake_case : List[Any]="<pad>" , __snake_case : Optional[Any]="[CLS]" , __snake_case : Optional[Any]="[MASK]" , **__snake_case : List[Any] , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. lowerCamelCase :Optional[Any] = ( AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case , normalized=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token ) super().__init__( __snake_case , tokenizer_file=__snake_case , do_lower_case=__snake_case , remove_space=__snake_case , keep_accents=__snake_case , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , **__snake_case , ) lowerCamelCase :List[Any] = do_lower_case lowerCamelCase :str = remove_space lowerCamelCase :Dict = keep_accents lowerCamelCase :Union[str, Any] = vocab_file lowerCamelCase :str = False if not self.vocab_file else True def snake_case ( self : List[Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): lowerCamelCase :List[str] = [self.sep_token_id] lowerCamelCase :int = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def snake_case ( self : Tuple , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): lowerCamelCase :List[Any] = [self.sep_token_id] lowerCamelCase :Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case ( self : Optional[int] , __snake_case : str , __snake_case : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__snake_case ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return lowerCamelCase :Optional[Any] = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) return (out_vocab_file,)
720
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() A__ = logging.get_logger(__name__) A__ = """Hello, World!""" A__ = """en_XX""" def _lowerCamelCase ( a_ : str , a_ : str , a_ : bool): lowerCamelCase :int = Path('''data_bin''') lowerCamelCase :Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(a_).parent) , checkpoint_file=Path(a_).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(a_) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(a_).parent / '''sentencepiece.bpe.model''') , src_dict=str(data_dir / '''dict.txt''') , ) xmod.eval() # disable dropout print(a_) lowerCamelCase :Any = xmod.model.encoder.sentence_encoder lowerCamelCase :List[str] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: lowerCamelCase :Dict = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our X-MOD config:''' , a_) lowerCamelCase :List[Any] = XmodForSequenceClassification(a_) if classification_head else XmodForMaskedLM(a_) model.eval() # Now let's copy all the weights. # Embeddings lowerCamelCase :Union[str, Any] = xmod_sent_encoder.embed_tokens.weight lowerCamelCase :Tuple = xmod_sent_encoder.embed_positions.weight lowerCamelCase :List[str] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight) # just zero them out b/c xmod doesn't use them. lowerCamelCase :List[Any] = xmod_sent_encoder.layernorm_embedding.weight lowerCamelCase :Optional[int] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers): # Encoder: start of layer lowerCamelCase :Union[str, Any] = model.roberta.encoder.layer[i] lowerCamelCase :List[str] = xmod_sent_encoder.layers[i] # self attention lowerCamelCase :Optional[int] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size)) ): raise AssertionError('''Dimensions of self-attention weights do not match.''') lowerCamelCase :Optional[int] = xmod_layer.self_attn.q_proj.weight lowerCamelCase :List[str] = xmod_layer.self_attn.q_proj.bias lowerCamelCase :str = xmod_layer.self_attn.k_proj.weight lowerCamelCase :Optional[Any] = xmod_layer.self_attn.k_proj.bias lowerCamelCase :Dict = xmod_layer.self_attn.v_proj.weight lowerCamelCase :Optional[int] = xmod_layer.self_attn.v_proj.bias # self-attention output lowerCamelCase :Optional[int] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('''Dimensions of self-attention output weights do not match.''') lowerCamelCase :List[Any] = xmod_layer.self_attn.out_proj.weight lowerCamelCase :Union[str, Any] = xmod_layer.self_attn.out_proj.bias lowerCamelCase :str = xmod_layer.self_attn_layer_norm.weight lowerCamelCase :List[Any] = xmod_layer.self_attn_layer_norm.bias # intermediate lowerCamelCase :Optional[int] = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of intermediate weights do not match.''') lowerCamelCase :int = xmod_layer.fca.weight lowerCamelCase :Union[str, Any] = xmod_layer.fca.bias # output lowerCamelCase :List[str] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of feed-forward weights do not match.''') lowerCamelCase :str = xmod_layer.fca.weight lowerCamelCase :int = xmod_layer.fca.bias lowerCamelCase :List[Any] = xmod_layer.final_layer_norm.weight lowerCamelCase :List[str] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: lowerCamelCase :List[str] = xmod_layer.adapter_layer_norm.weight lowerCamelCase :int = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys()) != sorted(xmod_layer.adapter_modules.keys()): raise AssertionError('''Lists of language adapters do not match.''') for lang_code, adapter in xmod_layer.adapter_modules.items(): lowerCamelCase :Optional[int] = bert_output.adapter_modules[lang_code] lowerCamelCase :Dict = xmod_layer.adapter_modules[lang_code] lowerCamelCase :List[Any] = from_adapter.fca.weight lowerCamelCase :List[Any] = from_adapter.fca.bias lowerCamelCase :Dict = from_adapter.fca.weight lowerCamelCase :Optional[Any] = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: lowerCamelCase :Dict = xmod_sent_encoder.layer_norm.weight lowerCamelCase :List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: lowerCamelCase :Union[str, Any] = xmod.model.classification_heads['''mnli'''].dense.weight lowerCamelCase :Tuple = xmod.model.classification_heads['''mnli'''].dense.bias lowerCamelCase :Optional[Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight lowerCamelCase :List[Any] = xmod.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head lowerCamelCase :int = xmod.model.encoder.lm_head.dense.weight lowerCamelCase :List[Any] = xmod.model.encoder.lm_head.dense.bias lowerCamelCase :Optional[int] = xmod.model.encoder.lm_head.layer_norm.weight lowerCamelCase :List[Any] = xmod.model.encoder.lm_head.layer_norm.bias lowerCamelCase :List[Any] = xmod.model.encoder.lm_head.weight lowerCamelCase :Any = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCamelCase :str = xmod.encode(a_).unsqueeze(0) # batch of size 1 model.roberta.set_default_language(a_) lowerCamelCase :Any = model(a_)[0] if classification_head: lowerCamelCase :Dict = xmod.model.classification_heads['''mnli'''](xmod.extract_features(a_)) else: lowerCamelCase :int = xmod.model(a_ , lang_id=[SAMPLE_LANGUAGE])[0] print(our_output.shape , their_output.shape) lowerCamelCase :List[str] = torch.max(torch.abs(our_output - their_output)).item() print(F"max_absolute_diff = {max_absolute_diff}") # ~ 1e-7 lowerCamelCase :str = torch.allclose(a_ , a_ , atol=1e-3) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''') if not success: raise Exception('''Something went wRoNg''') Path(a_).mkdir(parents=a_ , exist_ok=a_) print(F"Saving model to {pytorch_dump_folder_path}") model.save_pretrained(a_) if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) A__ = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
49
0
def _lowerCamelCase ( a_ : list): lowerCamelCase :Union[str, Any] = 0 while len(a_) > 1: lowerCamelCase :List[Any] = 0 # Consider two files with minimum cost to be merged for _ in range(2): lowerCamelCase :int = files.index(min(a_)) temp += files[min_index] files.pop(a_) files.append(a_) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
721
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { """andreasmadsen/efficient_mlm_m0.40""": ( """https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json""" ), } class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'roberta-prelayernorm' def __init__( self : str , __snake_case : List[str]=50265 , __snake_case : Union[str, Any]=768 , __snake_case : Tuple=12 , __snake_case : int=12 , __snake_case : Any=3072 , __snake_case : Optional[int]="gelu" , __snake_case : List[Any]=0.1 , __snake_case : int=0.1 , __snake_case : Union[str, Any]=512 , __snake_case : Dict=2 , __snake_case : int=0.0_2 , __snake_case : Any=1e-1_2 , __snake_case : Optional[int]=1 , __snake_case : Dict=0 , __snake_case : Optional[int]=2 , __snake_case : Any="absolute" , __snake_case : Union[str, Any]=True , __snake_case : List[str]=None , **__snake_case : Optional[int] , ): super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) lowerCamelCase :Optional[int] = vocab_size lowerCamelCase :Dict = hidden_size lowerCamelCase :Tuple = num_hidden_layers lowerCamelCase :Optional[int] = num_attention_heads lowerCamelCase :Any = hidden_act lowerCamelCase :List[Any] = intermediate_size lowerCamelCase :Union[str, Any] = hidden_dropout_prob lowerCamelCase :str = attention_probs_dropout_prob lowerCamelCase :Tuple = max_position_embeddings lowerCamelCase :int = type_vocab_size lowerCamelCase :Optional[Any] = initializer_range lowerCamelCase :Union[str, Any] = layer_norm_eps lowerCamelCase :Dict = position_embedding_type lowerCamelCase :List[Any] = use_cache lowerCamelCase :Optional[int] = classifier_dropout class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): @property def snake_case ( self : Any ): if self.task == "multiple-choice": lowerCamelCase :Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase :List[str] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
49
0
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler A__ = 16 A__ = 32 def _lowerCamelCase ( a_ : Accelerator , a_ : int = 16 , a_ : str = "bert-base-cased"): lowerCamelCase :Union[str, Any] = AutoTokenizer.from_pretrained(a_) lowerCamelCase :Optional[int] = load_dataset('''glue''' , '''mrpc''') def tokenize_function(a_ : Optional[Any]): # max_length=None => use the model max length (it's actually the default) lowerCamelCase :Optional[Any] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=a_ , max_length=a_) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCamelCase :List[str] = datasets.map( a_ , batched=a_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=a_) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase :str = tokenized_datasets.rename_column('''label''' , '''labels''') def collate_fn(a_ : str): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(a_ , padding='''max_length''' , max_length=1_28 , return_tensors='''pt''') return tokenizer.pad(a_ , padding='''longest''' , return_tensors='''pt''') # Instantiate dataloaders. lowerCamelCase :Tuple = DataLoader( tokenized_datasets['''train'''] , shuffle=a_ , collate_fn=a_ , batch_size=a_) lowerCamelCase :Any = DataLoader( tokenized_datasets['''validation'''] , shuffle=a_ , collate_fn=a_ , batch_size=a_) return train_dataloader, eval_dataloader def _lowerCamelCase ( a_ : Optional[int] , a_ : Optional[int] , a_ : Union[str, Any] , a_ : Dict): model.eval() lowerCamelCase :Any = 0 for step, batch in enumerate(a_): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): lowerCamelCase :List[str] = model(**a_) lowerCamelCase :Optional[int] = outputs.logits.argmax(dim=-1) # It is slightly faster to call this once, than multiple times lowerCamelCase :Any = accelerator.gather( (predictions, batch['''labels'''])) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(a_) - 1: lowerCamelCase :List[str] = predictions[: len(eval_dataloader.dataset) - samples_seen] lowerCamelCase :str = references[: len(eval_dataloader.dataset) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=a_ , references=a_ , ) lowerCamelCase :Union[str, Any] = metric.compute() return eval_metric["accuracy"] def _lowerCamelCase ( a_ : Tuple , a_ : int): # Initialize accelerator lowerCamelCase :Union[str, Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase :Tuple = config['''lr'''] lowerCamelCase :Optional[int] = int(config['''num_epochs''']) lowerCamelCase :int = int(config['''seed''']) lowerCamelCase :int = int(config['''batch_size''']) lowerCamelCase :Union[str, Any] = args.model_name_or_path set_seed(a_) lowerCamelCase :Union[str, Any] = get_dataloaders(a_ , a_ , a_) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase :List[Any] = AutoModelForSequenceClassification.from_pretrained(a_ , return_dict=a_) # Instantiate optimizer lowerCamelCase :Tuple = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowerCamelCase :int = optimizer_cls(params=model.parameters() , lr=a_) if accelerator.state.deepspeed_plugin is not None: lowerCamelCase :str = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: lowerCamelCase :Tuple = 1 lowerCamelCase :List[Any] = (len(a_) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowerCamelCase :List[str] = get_linear_schedule_with_warmup( optimizer=a_ , num_warmup_steps=0 , num_training_steps=a_ , ) else: lowerCamelCase :List[str] = DummyScheduler(a_ , total_num_steps=a_ , warmup_num_steps=0) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase :str = accelerator.prepare( a_ , a_ , a_ , a_ , a_) # We need to keep track of how many total steps we have iterated over lowerCamelCase :List[Any] = 0 # We also need to keep track of the stating epoch so files are named properly lowerCamelCase :int = 0 lowerCamelCase :List[Any] = evaluate.load('''glue''' , '''mrpc''') lowerCamelCase :Any = num_epochs if args.partial_train_epoch is not None: lowerCamelCase :int = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint) lowerCamelCase :Tuple = args.resume_from_checkpoint.split('''epoch_''')[1] lowerCamelCase :str = '''''' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break lowerCamelCase :Optional[Any] = int(a_) + 1 lowerCamelCase :Optional[int] = evaluation_loop(a_ , a_ , a_ , a_) accelerator.print('''resumed checkpoint performance:''' , a_) accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''' , lr_scheduler.get_lr()[0]) accelerator.print('''resumed optimizers\'s lr:''' , optimizer.param_groups[0]['''lr''']) with open(os.path.join(args.output_dir , F"state_{starting_epoch-1}.json") , '''r''') as f: lowerCamelCase :Any = json.load(a_) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model lowerCamelCase :Optional[int] = {} for epoch in range(a_ , a_): model.train() for step, batch in enumerate(a_): lowerCamelCase :List[str] = model(**a_) lowerCamelCase :int = outputs.loss lowerCamelCase :int = loss / gradient_accumulation_steps accelerator.backward(a_) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 lowerCamelCase :List[Any] = F"epoch_{epoch}" lowerCamelCase :Tuple = os.path.join(args.output_dir , a_) accelerator.save_state(a_) lowerCamelCase :Tuple = evaluation_loop(a_ , a_ , a_ , a_) lowerCamelCase :int = accuracy lowerCamelCase :Union[str, Any] = lr_scheduler.get_lr()[0] lowerCamelCase :Any = optimizer.param_groups[0]['''lr'''] lowerCamelCase :List[Any] = epoch lowerCamelCase :Optional[Any] = overall_step accelerator.print(F"epoch {epoch}:" , a_) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F"state_{epoch}.json") , '''w''') as f: json.dump(a_ , a_) def _lowerCamelCase ( ): lowerCamelCase :List[str] = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''') parser.add_argument( '''--model_name_or_path''' , type=a_ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=a_ , ) parser.add_argument( '''--output_dir''' , type=a_ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--resume_from_checkpoint''' , type=a_ , default=a_ , help='''If the training should continue from a checkpoint folder.''' , ) parser.add_argument( '''--partial_train_epoch''' , type=a_ , default=a_ , help='''If passed, the training will stop after this number of epochs.''' , ) parser.add_argument( '''--num_epochs''' , type=a_ , default=2 , help='''Number of train epochs.''' , ) lowerCamelCase :str = parser.parse_args() lowerCamelCase :Tuple = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(a_ , a_) if __name__ == "__main__": main()
700
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = DebertaTokenizer _UpperCAmelCase = True _UpperCAmelCase = DebertaTokenizerFast def snake_case ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase :Dict = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] lowerCamelCase :List[str] = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) lowerCamelCase :Any = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCamelCase :Dict = {'''unk_token''': '''[UNK]'''} lowerCamelCase :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase :List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__snake_case ) ) def snake_case ( self : str , **__snake_case : Dict ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Optional[Any] , __snake_case : int ): lowerCamelCase :List[Any] = '''lower newer''' lowerCamelCase :List[str] = '''lower newer''' return input_text, output_text def snake_case ( self : str ): lowerCamelCase :Optional[int] = self.get_tokenizer() lowerCamelCase :Union[str, Any] = '''lower newer''' lowerCamelCase :str = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] lowerCamelCase :Optional[int] = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) lowerCamelCase :List[str] = tokens + [tokenizer.unk_token] lowerCamelCase :Optional[int] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def snake_case ( self : Optional[int] ): lowerCamelCase :List[str] = self.get_tokenizer() lowerCamelCase :Optional[int] = tokenizer('''Hello''' , '''World''' ) lowerCamelCase :List[str] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __snake_case ) @slow def snake_case ( self : str ): lowerCamelCase :Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) lowerCamelCase :Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__snake_case ) lowerCamelCase :Tuple = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__snake_case ) lowerCamelCase :Union[str, Any] = tokenizer.encode( '''sequence builders''' , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) lowerCamelCase :str = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) lowerCamelCase :Any = tokenizer.build_inputs_with_special_tokens(__snake_case ) lowerCamelCase :Dict = tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def snake_case ( self : str ): lowerCamelCase :List[str] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: lowerCamelCase :int = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) lowerCamelCase :Tuple = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] lowerCamelCase :List[Any] = tokenizer(__snake_case , padding=__snake_case ) lowerCamelCase :Union[str, Any] = [tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) for seq in encoding['''input_ids''']] # fmt: off lowerCamelCase :Any = { '''input_ids''': [ [1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on lowerCamelCase :Optional[int] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __snake_case ) for expected, decoded in zip(__snake_case , __snake_case ): self.assertEqual(__snake_case , __snake_case )
49
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def _lowerCamelCase ( a_ : Union[str, Any]): lowerCamelCase :Dict = 3_84 if "tiny" in model_name: lowerCamelCase :Optional[int] = [3, 3, 9, 3] lowerCamelCase :int = [96, 1_92, 3_84, 7_68] if "small" in model_name: lowerCamelCase :Any = [3, 3, 27, 3] lowerCamelCase :Any = [96, 1_92, 3_84, 7_68] if "base" in model_name: lowerCamelCase :List[str] = [3, 3, 27, 3] lowerCamelCase :Optional[Any] = [1_28, 2_56, 5_12, 10_24] lowerCamelCase :Any = 5_12 if "large" in model_name: lowerCamelCase :int = [3, 3, 27, 3] lowerCamelCase :Any = [1_92, 3_84, 7_68, 15_36] lowerCamelCase :int = 7_68 if "xlarge" in model_name: lowerCamelCase :int = [3, 3, 27, 3] lowerCamelCase :Union[str, Any] = [2_56, 5_12, 10_24, 20_48] lowerCamelCase :Any = 10_24 # set label information lowerCamelCase :Optional[Any] = 1_50 lowerCamelCase :str = '''huggingface/label-files''' lowerCamelCase :List[str] = '''ade20k-id2label.json''' lowerCamelCase :Any = json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''') , '''r''')) lowerCamelCase :Optional[Any] = {int(a_): v for k, v in idalabel.items()} lowerCamelCase :Union[str, Any] = {v: k for k, v in idalabel.items()} lowerCamelCase :List[Any] = ConvNextConfig( depths=a_ , hidden_sizes=a_ , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4''']) lowerCamelCase :List[Any] = UperNetConfig( backbone_config=a_ , auxiliary_in_channels=a_ , num_labels=a_ , idalabel=a_ , labelaid=a_ , ) return config def _lowerCamelCase ( a_ : List[Any]): lowerCamelCase :str = [] # fmt: off # stem rename_keys.append(('''backbone.downsample_layers.0.0.weight''', '''backbone.embeddings.patch_embeddings.weight''')) rename_keys.append(('''backbone.downsample_layers.0.0.bias''', '''backbone.embeddings.patch_embeddings.bias''')) rename_keys.append(('''backbone.downsample_layers.0.1.weight''', '''backbone.embeddings.layernorm.weight''')) rename_keys.append(('''backbone.downsample_layers.0.1.bias''', '''backbone.embeddings.layernorm.bias''')) # stages for i in range(len(config.backbone_config.depths)): for j in range(config.backbone_config.depths[i]): rename_keys.append((F"backbone.stages.{i}.{j}.gamma", F"backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter")) rename_keys.append((F"backbone.stages.{i}.{j}.depthwise_conv.weight", F"backbone.encoder.stages.{i}.layers.{j}.dwconv.weight")) rename_keys.append((F"backbone.stages.{i}.{j}.depthwise_conv.bias", F"backbone.encoder.stages.{i}.layers.{j}.dwconv.bias")) rename_keys.append((F"backbone.stages.{i}.{j}.norm.weight", F"backbone.encoder.stages.{i}.layers.{j}.layernorm.weight")) rename_keys.append((F"backbone.stages.{i}.{j}.norm.bias", F"backbone.encoder.stages.{i}.layers.{j}.layernorm.bias")) rename_keys.append((F"backbone.stages.{i}.{j}.pointwise_conv1.weight", F"backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight")) rename_keys.append((F"backbone.stages.{i}.{j}.pointwise_conv1.bias", F"backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias")) rename_keys.append((F"backbone.stages.{i}.{j}.pointwise_conv2.weight", F"backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight")) rename_keys.append((F"backbone.stages.{i}.{j}.pointwise_conv2.bias", F"backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias")) if i > 0: rename_keys.append((F"backbone.downsample_layers.{i}.0.weight", F"backbone.encoder.stages.{i}.downsampling_layer.0.weight")) rename_keys.append((F"backbone.downsample_layers.{i}.0.bias", F"backbone.encoder.stages.{i}.downsampling_layer.0.bias")) rename_keys.append((F"backbone.downsample_layers.{i}.1.weight", F"backbone.encoder.stages.{i}.downsampling_layer.1.weight")) rename_keys.append((F"backbone.downsample_layers.{i}.1.bias", F"backbone.encoder.stages.{i}.downsampling_layer.1.bias")) rename_keys.append((F"backbone.norm{i}.weight", F"backbone.hidden_states_norms.stage{i+1}.weight")) rename_keys.append((F"backbone.norm{i}.bias", F"backbone.hidden_states_norms.stage{i+1}.bias")) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ]) # fmt: on return rename_keys def _lowerCamelCase ( a_ : int , a_ : List[str] , a_ : int): lowerCamelCase :List[Any] = dct.pop(a_) lowerCamelCase :List[str] = val def _lowerCamelCase ( a_ : Union[str, Any] , a_ : Optional[Any] , a_ : int): lowerCamelCase :Optional[int] = { '''upernet-convnext-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth''', '''upernet-convnext-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth''', '''upernet-convnext-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth''', '''upernet-convnext-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth''', '''upernet-convnext-xlarge''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth''', } lowerCamelCase :List[Any] = model_name_to_url[model_name] lowerCamelCase :Any = torch.hub.load_state_dict_from_url(a_ , map_location='''cpu''')['''state_dict'''] lowerCamelCase :Tuple = get_upernet_config(a_) lowerCamelCase :Optional[int] = UperNetForSemanticSegmentation(a_) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): lowerCamelCase :List[Any] = state_dict.pop(a_) if "bn" in key: lowerCamelCase :List[Any] = key.replace('''bn''' , '''batch_norm''') lowerCamelCase :Optional[int] = val # rename keys lowerCamelCase :str = create_rename_keys(a_) for src, dest in rename_keys: rename_key(a_ , a_ , a_) model.load_state_dict(a_) # verify on image lowerCamelCase :Tuple = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' lowerCamelCase :Tuple = Image.open(requests.get(a_ , stream=a_).raw).convert('''RGB''') lowerCamelCase :List[str] = SegformerImageProcessor() lowerCamelCase :Any = processor(a_ , return_tensors='''pt''').pixel_values with torch.no_grad(): lowerCamelCase :Any = model(a_) if model_name == "upernet-convnext-tiny": lowerCamelCase :Optional[Any] = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]]) elif model_name == "upernet-convnext-small": lowerCamelCase :Any = torch.tensor( [[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]]) elif model_name == "upernet-convnext-base": lowerCamelCase :Any = torch.tensor( [[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]]) elif model_name == "upernet-convnext-large": lowerCamelCase :List[Any] = torch.tensor( [[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]]) elif model_name == "upernet-convnext-xlarge": lowerCamelCase :Dict = torch.tensor( [[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]]) print('''Logits:''' , outputs.logits[0, 0, :3, :3]) assert torch.allclose(outputs.logits[0, 0, :3, :3] , a_ , atol=1e-4) print('''Looks ok!''') if pytorch_dump_folder_path is not None: print(F"Saving model {model_name} to {pytorch_dump_folder_path}") model.save_pretrained(a_) print(F"Saving processor to {pytorch_dump_folder_path}") processor.save_pretrained(a_) if push_to_hub: print(F"Pushing model and processor for {model_name} to hub") model.push_to_hub(F"openmmlab/{model_name}") processor.push_to_hub(F"openmmlab/{model_name}") if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-convnext-tiny""", type=str, choices=[F'upernet-convnext-{size}' for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]], help="""Name of the ConvNext UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) A__ = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
701
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) A__ = [ """cross_validation.py""", """gradient_accumulation.py""", """local_sgd.py""", """multi_process_metrics.py""", """memory.py""", """automatic_gradient_accumulation.py""", """fsdp_with_peak_mem_tracking.py""", """deepspeed_with_config_support.py""", """megatron_lm_gpt_pretraining.py""", ] class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Any , __snake_case : str , __snake_case : bool , __snake_case : str = None , __snake_case : list = None ): lowerCamelCase :Tuple = None lowerCamelCase :Tuple = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) lowerCamelCase :Optional[int] = os.path.abspath('''examples''' ) for item in os.listdir(__snake_case ): if item not in EXCLUDE_EXAMPLES: lowerCamelCase :Optional[int] = os.path.join(__snake_case , __snake_case ) if os.path.isfile(__snake_case ) and ".py" in item_path: with self.subTest( tested_script=__snake_case , feature_script=__snake_case , tested_section='''main()''' if parser_only else '''training_function()''' , ): lowerCamelCase :Union[str, Any] = compare_against_test( os.path.join(__snake_case , __snake_case ) , __snake_case , __snake_case , __snake_case ) lowerCamelCase :int = '''\n'''.join(__snake_case ) if special_strings is not None: for string in special_strings: lowerCamelCase :int = diff.replace(__snake_case , '''''' ) self.assertEqual(__snake_case , '''''' ) def snake_case ( self : Dict ): self.one_complete_example('''complete_nlp_example.py''' , __snake_case ) self.one_complete_example('''complete_nlp_example.py''' , __snake_case ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Union[str, Any] = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) lowerCamelCase :Optional[int] = [ ''' ''' * 16 + '''{\n\n''', ''' ''' * 20 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 20 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 20 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 20 + '''"epoch": epoch,\n\n''', ''' ''' * 16 + '''},\n\n''', ''' ''' * 16 + '''step=epoch,\n''', ''' ''' * 12, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , __snake_case , __snake_case , __snake_case ) self.one_complete_example('''complete_cv_example.py''' , __snake_case , __snake_case , __snake_case ) @mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '1'} ) class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = False @classmethod def snake_case ( cls : Optional[Any] ): super().setUpClass() lowerCamelCase :Any = tempfile.mkdtemp() lowerCamelCase :Optional[int] = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) lowerCamelCase :List[str] = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def snake_case ( cls : Dict ): super().tearDownClass() shutil.rmtree(cls._tmpdir ) def snake_case ( self : int ): lowerCamelCase :Any = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def snake_case ( self : List[Any] ): lowerCamelCase :Tuple = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n ".split() lowerCamelCase :List[Any] = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def snake_case ( self : List[str] ): lowerCamelCase :Dict = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}\n ".split() lowerCamelCase :Dict = run_command(self._launch_args + testargs , return_stdout=__snake_case ) self.assertNotIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) def snake_case ( self : str ): lowerCamelCase :List[Any] = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}\n ".split() lowerCamelCase :Optional[int] = run_command(self._launch_args + testargs , return_stdout=__snake_case ) if torch.cuda.is_available(): lowerCamelCase :Union[str, Any] = torch.cuda.device_count() else: lowerCamelCase :Dict = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) else: self.assertIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) @slow def snake_case ( self : Any ): lowerCamelCase :Tuple = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): lowerCamelCase :Dict = run_command(self._launch_args + testargs , return_stdout=__snake_case ) lowerCamelCase :Tuple = re.findall('''({.+})''' , __snake_case ) lowerCamelCase :Optional[Any] = [r for r in results if '''accuracy''' in r][-1] lowerCamelCase :List[str] = ast.literal_eval(__snake_case ) self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 ) def snake_case ( self : int ): lowerCamelCase :Dict = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case ( self : Any ): with tempfile.TemporaryDirectory() as tmpdir: lowerCamelCase :Tuple = F"\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__snake_case , '''tracking''' ) ) ) def snake_case ( self : Tuple ): lowerCamelCase :Tuple = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def snake_case ( self : Optional[Any] ): lowerCamelCase :int = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
49
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ = { """configuration_nllb_moe""": [ """NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NllbMoeConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""", """NllbMoeForConditionalGeneration""", """NllbMoeModel""", """NllbMoePreTrainedModel""", """NllbMoeTop2Router""", """NllbMoeSparseMLP""", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
702
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs A__ = imread(R"""digital_image_processing/image_data/lena_small.jpg""") A__ = cvtColor(img, COLOR_BGR2GRAY) def _lowerCamelCase ( ): lowerCamelCase :int = cn.convert_to_negative(a_) # assert negative_img array for at least one True assert negative_img.any() def _lowerCamelCase ( ): with Image.open('''digital_image_processing/image_data/lena_small.jpg''') as img: # Work around assertion for response assert str(cc.change_contrast(a_ , 1_10)).startswith( '''<PIL.Image.Image image mode=RGB size=100x100 at''') def _lowerCamelCase ( ): lowerCamelCase :Optional[Any] = canny.gen_gaussian_kernel(9 , sigma=1.4) # Assert ambiguous array assert resp.all() def _lowerCamelCase ( ): lowerCamelCase :str = imread('''digital_image_processing/image_data/lena_small.jpg''' , 0) # assert ambiguous array for all == True assert canny_img.all() lowerCamelCase :Optional[Any] = canny.canny(a_) # assert canny array for at least one True assert canny_array.any() def _lowerCamelCase ( ): assert gg.gaussian_filter(a_ , 5 , sigma=0.9).all() def _lowerCamelCase ( ): # laplace diagonals lowerCamelCase :List[Any] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]]) lowerCamelCase :List[Any] = conv.img_convolve(a_ , a_).astype(a_) assert res.any() def _lowerCamelCase ( ): assert med.median_filter(a_ , 3).any() def _lowerCamelCase ( ): lowerCamelCase , lowerCamelCase :Union[str, Any] = sob.sobel_filter(a_) assert grad.any() and theta.any() def _lowerCamelCase ( ): lowerCamelCase :Dict = sp.make_sepia(a_ , 20) assert sepia.all() def _lowerCamelCase ( a_ : str = "digital_image_processing/image_data/lena_small.jpg"): lowerCamelCase :Any = bs.Burkes(imread(a_ , 1) , 1_20) burkes.process() assert burkes.output_img.any() def _lowerCamelCase ( a_ : str = "digital_image_processing/image_data/lena_small.jpg" , ): lowerCamelCase :Tuple = rs.NearestNeighbour(imread(a_ , 1) , 4_00 , 2_00) nn.process() assert nn.output.any() def _lowerCamelCase ( ): lowerCamelCase :Tuple = '''digital_image_processing/image_data/lena.jpg''' # Reading the image and converting it to grayscale. lowerCamelCase :Tuple = imread(a_ , 0) # Test for get_neighbors_pixel function() return not None lowerCamelCase :Dict = 0 lowerCamelCase :Optional[Any] = 0 lowerCamelCase :str = image[x_coordinate][y_coordinate] lowerCamelCase :Any = lbp.get_neighbors_pixel( a_ , a_ , a_ , a_) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCamelCase :int = np.zeros((image.shape[0], image.shape[1])) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0]): for j in range(0 , image.shape[1]): lowerCamelCase :Optional[int] = lbp.local_binary_value(a_ , a_ , a_) assert lbp_image.any()
49
0
import heapq import sys import numpy as np A__ = tuple[int, int] class _lowerCAmelCase : def __init__( self : str ): lowerCamelCase :int = [] lowerCamelCase :List[str] = set() def snake_case ( self : List[str] ): if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def snake_case ( self : int ): return len(self.elements ) == 0 def snake_case ( self : str , __snake_case : Union[str, Any] , __snake_case : Any ): if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(__snake_case ) else: # update # print("update", item) lowerCamelCase :Union[str, Any] = [] (lowerCamelCase) :str = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) (lowerCamelCase) :Tuple = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def snake_case ( self : List[str] , __snake_case : str ): if item in self.set: self.set.remove(__snake_case ) lowerCamelCase :Any = [] (lowerCamelCase) :Optional[Any] = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) (lowerCamelCase) :int = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def snake_case ( self : str ): return self.elements[0][1] def snake_case ( self : List[str] ): (lowerCamelCase) :str = heapq.heappop(self.elements ) self.set.remove(__snake_case ) return (priority, item) def _lowerCamelCase ( a_ : TPos , a_ : TPos): # euclidean distance lowerCamelCase :Optional[int] = np.array(a_) lowerCamelCase :Union[str, Any] = np.array(a_) return np.linalg.norm(a - b) def _lowerCamelCase ( a_ : TPos , a_ : TPos): # integer division by time variable return consistent_heuristic(a_ , a_) // t def _lowerCamelCase ( a_ : TPos , a_ : TPos): # manhattan distance return abs(p[0] - goal[0]) + abs(p[1] - goal[1]) def _lowerCamelCase ( a_ : TPos , a_ : int , a_ : TPos , a_ : dict[TPos, float]): lowerCamelCase :Optional[int] = g_function[start] + Wa * heuristics[i](a_ , a_) return ans def _lowerCamelCase ( a_ : Optional[Any] , a_ : Tuple , a_ : str): lowerCamelCase :List[str] = np.chararray((n, n)) for i in range(a_): for j in range(a_): lowerCamelCase :Dict = '''*''' for i in range(a_): for j in range(a_): if (j, (n - 1) - i) in blocks: lowerCamelCase :str = '''#''' lowerCamelCase :Tuple = '''-''' lowerCamelCase :Optional[int] = back_pointer[goal] while x != start: (lowerCamelCase) :List[str] = x # print(x) lowerCamelCase :int = '''-''' lowerCamelCase :Dict = back_pointer[x] lowerCamelCase :Optional[Any] = '''-''' for i in range(a_): for j in range(a_): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''') print('''<-- End position''' , end=''' ''') else: print(grid[i][j] , end=''' ''') print() print('''^''') print('''Start position''') print() print('''# is an obstacle''') print('''- is the path taken by algorithm''') print('''PATH TAKEN BY THE ALGORITHM IS:-''') lowerCamelCase :str = back_pointer[goal] while x != start: print(a_ , end=''' ''') lowerCamelCase :List[str] = back_pointer[x] print(a_) sys.exit() def _lowerCamelCase ( a_ : TPos): if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def _lowerCamelCase ( a_ : Any , a_ : Optional[int] , a_ : Optional[int] , a_ : Dict , a_ : Dict , a_ : Tuple , a_ : str , a_ : Any , ): for itera in range(a_): open_list[itera].remove_element(a_) # print("s", s) # print("j", j) (lowerCamelCase) :List[str] = s lowerCamelCase :Tuple = (x - 1, y) lowerCamelCase :Union[str, Any] = (x + 1, y) lowerCamelCase :Optional[Any] = (x, y + 1) lowerCamelCase :int = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(a_) and neighbours not in visited: # print("neighbour", neighbours) visited.add(a_) lowerCamelCase :Optional[int] = -1 lowerCamelCase :List[Any] = float('''inf''') if valid(a_) and g_function[neighbours] > g_function[s] + 1: lowerCamelCase :Dict = g_function[s] + 1 lowerCamelCase :Any = s if neighbours not in close_list_anchor: open_list[0].put(a_ , key(a_ , 0 , a_ , a_)) if neighbours not in close_list_inad: for var in range(1 , a_): if key(a_ , a_ , a_ , a_) <= Wa * key( a_ , 0 , a_ , a_): open_list[j].put( a_ , key(a_ , a_ , a_ , a_)) def _lowerCamelCase ( ): lowerCamelCase :int = [] for x in range(1 , 5): for y in range(1 , 6): some_list.append((x, y)) for x in range(15 , 20): some_list.append((x, 17)) for x in range(10 , 19): for y in range(1 , 15): some_list.append((x, y)) # L block for x in range(1 , 4): for y in range(12 , 19): some_list.append((x, y)) for x in range(3 , 13): for y in range(16 , 19): some_list.append((x, y)) return some_list A__ = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} A__ = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] A__ = make_common_ground() A__ = blocks_blk # hyper parameters A__ = 1 A__ = 1 A__ = 20 A__ = 3 # one consistent and two other inconsistent # start and end destination A__ = (0, 0) A__ = (n - 1, n - 1) A__ = 1 def _lowerCamelCase ( a_ : TPos , a_ : TPos , a_ : int): lowerCamelCase :Dict = {start: 0, goal: float('''inf''')} lowerCamelCase :Optional[Any] = {start: -1, goal: -1} lowerCamelCase :Optional[Any] = [] lowerCamelCase :Any = set() for i in range(a_): open_list.append(PriorityQueue()) open_list[i].put(a_ , key(a_ , a_ , a_ , a_)) lowerCamelCase :list[int] = [] lowerCamelCase :list[int] = [] while open_list[0].minkey() < float('''inf'''): for i in range(1 , a_): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf'''): do_something(a_ , a_ , a_) else: lowerCamelCase :Optional[int] = open_list[i].top_show() visited.add(a_) expand_state( a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ) close_list_inad.append(a_) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf'''): do_something(a_ , a_ , a_) else: lowerCamelCase :List[Any] = open_list[0].top_show() visited.add(a_) expand_state( a_ , 0 , a_ , a_ , a_ , a_ , a_ , a_ , ) close_list_anchor.append(a_) print('''No path found to goal''') print() for i in range(n - 1 , -1 , -1): for j in range(a_): if (j, i) in blocks: print('''#''' , end=''' ''') elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''') else: print('''-''' , end=''' ''') else: print('''*''' , end=''' ''') if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''') print() print('''^''') print('''Start position''') print() print('''# is an obstacle''') print('''- is the path taken by algorithm''') if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
703
import os from math import logaa def _lowerCamelCase ( a_ : str = "base_exp.txt"): lowerCamelCase :float = 0 lowerCamelCase :Optional[int] = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(a_) , a_))): lowerCamelCase , lowerCamelCase :Optional[int] = list(map(a_ , line.split(''','''))) if x * logaa(a_) > largest: lowerCamelCase :List[Any] = x * logaa(a_) lowerCamelCase :Any = i + 1 return result if __name__ == "__main__": print(solution())
49
0
'''simple docstring''' from collections import deque from math import floor from random import random from time import time class _lowerCAmelCase : def __init__( self : Any ): lowerCamelCase :Union[str, Any] = {} def snake_case ( self : Any , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : str=1 ): if self.graph.get(__snake_case ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: lowerCamelCase :Dict = [[w, v]] if not self.graph.get(__snake_case ): lowerCamelCase :List[Any] = [] def snake_case ( self : int ): return list(self.graph ) def snake_case ( self : Union[str, Any] , __snake_case : List[Any] , __snake_case : Optional[Any] ): if self.graph.get(__snake_case ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__snake_case ) def snake_case ( self : Optional[int] , __snake_case : Tuple=-2 , __snake_case : int=-1 ): if s == d: return [] lowerCamelCase :int = [] lowerCamelCase :Tuple = [] if s == -2: lowerCamelCase :str = list(self.graph )[0] stack.append(__snake_case ) visited.append(__snake_case ) lowerCamelCase :Dict = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase :Tuple = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__snake_case ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase :int = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__snake_case ) != 0: lowerCamelCase :List[str] = stack[len(__snake_case ) - 1] else: lowerCamelCase :Optional[Any] = ss # check if se have reached the starting point if len(__snake_case ) == 0: return visited def snake_case ( self : Union[str, Any] , __snake_case : List[Any]=-1 ): if c == -1: lowerCamelCase :str = floor(random() * 10000 ) + 10 for i in range(__snake_case ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowerCamelCase :Dict = floor(random() * c ) + 1 if n != i: self.add_pair(__snake_case , __snake_case , 1 ) def snake_case ( self : Optional[Any] , __snake_case : str=-2 ): lowerCamelCase :List[str] = deque() lowerCamelCase :List[str] = [] if s == -2: lowerCamelCase :Any = list(self.graph )[0] d.append(__snake_case ) visited.append(__snake_case ) while d: lowerCamelCase :Optional[int] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def snake_case ( self : str , __snake_case : str ): lowerCamelCase :Union[str, Any] = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def snake_case ( self : int , __snake_case : List[str] ): return len(self.graph[u] ) def snake_case ( self : str , __snake_case : List[Any]=-2 ): lowerCamelCase :List[Any] = [] lowerCamelCase :Dict = [] if s == -2: lowerCamelCase :Union[str, Any] = list(self.graph )[0] stack.append(__snake_case ) visited.append(__snake_case ) lowerCamelCase :Optional[int] = s lowerCamelCase :List[Any] = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase :Dict = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase :Optional[int] = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(__snake_case ) != 0: lowerCamelCase :Optional[int] = stack[len(__snake_case ) - 1] else: lowerCamelCase :Union[str, Any] = ss # check if se have reached the starting point if len(__snake_case ) == 0: return sorted_nodes def snake_case ( self : int ): lowerCamelCase :Any = [] lowerCamelCase :Optional[int] = [] lowerCamelCase :Any = list(self.graph )[0] stack.append(__snake_case ) visited.append(__snake_case ) lowerCamelCase :int = -2 lowerCamelCase :Union[str, Any] = [] lowerCamelCase :str = s lowerCamelCase :str = False lowerCamelCase :int = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase :Dict = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCamelCase :str = len(__snake_case ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase :Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCamelCase :Tuple = True if len(__snake_case ) != 0: lowerCamelCase :int = stack[len(__snake_case ) - 1] else: lowerCamelCase :Tuple = False indirect_parents.append(__snake_case ) lowerCamelCase :Tuple = s lowerCamelCase :str = ss # check if se have reached the starting point if len(__snake_case ) == 0: return list(__snake_case ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Union[str, Any] = [] lowerCamelCase :str = [] lowerCamelCase :List[str] = list(self.graph )[0] stack.append(__snake_case ) visited.append(__snake_case ) lowerCamelCase :List[str] = -2 lowerCamelCase :Optional[Any] = [] lowerCamelCase :Optional[Any] = s lowerCamelCase :Tuple = False lowerCamelCase :Optional[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase :str = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCamelCase :List[Any] = len(__snake_case ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase :Tuple = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCamelCase :Tuple = True if len(__snake_case ) != 0: lowerCamelCase :int = stack[len(__snake_case ) - 1] else: lowerCamelCase :Tuple = False indirect_parents.append(__snake_case ) lowerCamelCase :int = s lowerCamelCase :Tuple = ss # check if se have reached the starting point if len(__snake_case ) == 0: return False def snake_case ( self : List[Any] , __snake_case : List[str]=-2 , __snake_case : Optional[Any]=-1 ): lowerCamelCase :Union[str, Any] = time() self.dfs(__snake_case , __snake_case ) lowerCamelCase :Optional[Any] = time() return end - begin def snake_case ( self : int , __snake_case : int=-2 ): lowerCamelCase :List[Any] = time() self.bfs(__snake_case ) lowerCamelCase :Tuple = time() return end - begin class _lowerCAmelCase : def __init__( self : Union[str, Any] ): lowerCamelCase :Any = {} def snake_case ( self : Union[str, Any] , __snake_case : int , __snake_case : Dict , __snake_case : List[str]=1 ): # check if the u exists if self.graph.get(__snake_case ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist lowerCamelCase :int = [[w, v]] # add the other way if self.graph.get(__snake_case ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist lowerCamelCase :str = [[w, u]] def snake_case ( self : Tuple , __snake_case : Optional[int] , __snake_case : Tuple ): if self.graph.get(__snake_case ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__snake_case ) # the other way round if self.graph.get(__snake_case ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(__snake_case ) def snake_case ( self : int , __snake_case : int=-2 , __snake_case : List[Any]=-1 ): if s == d: return [] lowerCamelCase :int = [] lowerCamelCase :str = [] if s == -2: lowerCamelCase :Dict = list(self.graph )[0] stack.append(__snake_case ) visited.append(__snake_case ) lowerCamelCase :Optional[int] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase :List[str] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__snake_case ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase :Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__snake_case ) != 0: lowerCamelCase :Optional[int] = stack[len(__snake_case ) - 1] else: lowerCamelCase :Any = ss # check if se have reached the starting point if len(__snake_case ) == 0: return visited def snake_case ( self : Dict , __snake_case : List[str]=-1 ): if c == -1: lowerCamelCase :str = floor(random() * 10000 ) + 10 for i in range(__snake_case ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowerCamelCase :Optional[int] = floor(random() * c ) + 1 if n != i: self.add_pair(__snake_case , __snake_case , 1 ) def snake_case ( self : int , __snake_case : str=-2 ): lowerCamelCase :Optional[int] = deque() lowerCamelCase :List[Any] = [] if s == -2: lowerCamelCase :Union[str, Any] = list(self.graph )[0] d.append(__snake_case ) visited.append(__snake_case ) while d: lowerCamelCase :str = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def snake_case ( self : int , __snake_case : Any ): return len(self.graph[u] ) def snake_case ( self : Tuple ): lowerCamelCase :Optional[int] = [] lowerCamelCase :Optional[Any] = [] lowerCamelCase :Any = list(self.graph )[0] stack.append(__snake_case ) visited.append(__snake_case ) lowerCamelCase :Optional[Any] = -2 lowerCamelCase :Optional[int] = [] lowerCamelCase :int = s lowerCamelCase :str = False lowerCamelCase :List[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase :List[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCamelCase :Tuple = len(__snake_case ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase :Any = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCamelCase :str = True if len(__snake_case ) != 0: lowerCamelCase :Dict = stack[len(__snake_case ) - 1] else: lowerCamelCase :Tuple = False indirect_parents.append(__snake_case ) lowerCamelCase :Union[str, Any] = s lowerCamelCase :Any = ss # check if se have reached the starting point if len(__snake_case ) == 0: return list(__snake_case ) def snake_case ( self : Any ): lowerCamelCase :Optional[Any] = [] lowerCamelCase :Union[str, Any] = [] lowerCamelCase :Any = list(self.graph )[0] stack.append(__snake_case ) visited.append(__snake_case ) lowerCamelCase :Any = -2 lowerCamelCase :Dict = [] lowerCamelCase :Dict = s lowerCamelCase :Union[str, Any] = False lowerCamelCase :List[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase :Union[str, Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCamelCase :int = len(__snake_case ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase :Dict = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCamelCase :Optional[Any] = True if len(__snake_case ) != 0: lowerCamelCase :Any = stack[len(__snake_case ) - 1] else: lowerCamelCase :List[Any] = False indirect_parents.append(__snake_case ) lowerCamelCase :Any = s lowerCamelCase :Any = ss # check if se have reached the starting point if len(__snake_case ) == 0: return False def snake_case ( self : List[Any] ): return list(self.graph ) def snake_case ( self : Optional[int] , __snake_case : Dict=-2 , __snake_case : int=-1 ): lowerCamelCase :str = time() self.dfs(__snake_case , __snake_case ) lowerCamelCase :Tuple = time() return end - begin def snake_case ( self : List[str] , __snake_case : Union[str, Any]=-2 ): lowerCamelCase :List[Any] = time() self.bfs(__snake_case ) lowerCamelCase :Tuple = time() return end - begin
704
def _lowerCamelCase ( a_ : list): if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''') for cell_n in range(1 , len(grid[0])): grid[0][cell_n] += grid[0][cell_n - 1] lowerCamelCase :Any = grid[0] for row_n in range(1 , len(a_)): lowerCamelCase :List[str] = grid[row_n] lowerCamelCase :Union[str, Any] = fill_row(a_ , a_) lowerCamelCase :List[Any] = grid[row_n] return grid[-1][-1] def _lowerCamelCase ( a_ : list , a_ : list): current_row[0] += row_above[0] for cell_n in range(1 , len(a_)): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n]) return current_row if __name__ == "__main__": import doctest doctest.testmod()
49
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { """kssteven/ibert-roberta-base""": """https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json""", """kssteven/ibert-roberta-large""": """https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json""", """kssteven/ibert-roberta-large-mnli""": ( """https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json""" ), } class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'ibert' def __init__( self : Tuple , __snake_case : Optional[int]=30522 , __snake_case : List[Any]=768 , __snake_case : Union[str, Any]=12 , __snake_case : Tuple=12 , __snake_case : List[str]=3072 , __snake_case : int="gelu" , __snake_case : int=0.1 , __snake_case : Tuple=0.1 , __snake_case : Optional[Any]=512 , __snake_case : Any=2 , __snake_case : Union[str, Any]=0.0_2 , __snake_case : Optional[Any]=1e-1_2 , __snake_case : List[str]=1 , __snake_case : Optional[Any]=0 , __snake_case : List[Any]=2 , __snake_case : Optional[int]="absolute" , __snake_case : Union[str, Any]=False , __snake_case : List[str]="none" , **__snake_case : Dict , ): super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) lowerCamelCase :Tuple = vocab_size lowerCamelCase :List[str] = hidden_size lowerCamelCase :Optional[int] = num_hidden_layers lowerCamelCase :int = num_attention_heads lowerCamelCase :Tuple = hidden_act lowerCamelCase :Optional[Any] = intermediate_size lowerCamelCase :Optional[int] = hidden_dropout_prob lowerCamelCase :Any = attention_probs_dropout_prob lowerCamelCase :int = max_position_embeddings lowerCamelCase :Any = type_vocab_size lowerCamelCase :int = initializer_range lowerCamelCase :Optional[Any] = layer_norm_eps lowerCamelCase :Union[str, Any] = position_embedding_type lowerCamelCase :List[Any] = quant_mode lowerCamelCase :Union[str, Any] = force_dequant class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): @property def snake_case ( self : List[Any] ): if self.task == "multiple-choice": lowerCamelCase :List[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase :Tuple = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
705
import math def _lowerCamelCase ( a_ : int): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a_) + 1) , 6): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCamelCase ( a_ : float = 0.1): lowerCamelCase :Dict = 3 lowerCamelCase :List[Any] = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1): primes += is_prime(a_) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
49
0
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : int ): lowerCamelCase :Optional[int] = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() lowerCamelCase :Any = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) lowerCamelCase :Optional[Any] = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } lowerCamelCase :List[Any] = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 16000, '''return_attention_mask''': False, '''do_normalize''': True, } lowerCamelCase :int = tempfile.mkdtemp() lowerCamelCase :List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase :Tuple = os.path.join(self.tmpdirname , __snake_case ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) # load decoder from hub lowerCamelCase :Dict = '''hf-internal-testing/ngram-beam-search-decoder''' def snake_case ( self : Optional[int] , **__snake_case : Any ): lowerCamelCase :Dict = self.add_kwargs_tokens_map.copy() kwargs.update(__snake_case ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Optional[int] , **__snake_case : List[Any] ): return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Union[str, Any] , **__snake_case : List[Any] ): return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__snake_case ) def snake_case ( self : Any ): shutil.rmtree(self.tmpdirname ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Dict = self.get_tokenizer() lowerCamelCase :Tuple = self.get_feature_extractor() lowerCamelCase :Optional[int] = self.get_decoder() lowerCamelCase :str = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase :Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __snake_case ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __snake_case ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __snake_case ) def snake_case ( self : List[str] ): lowerCamelCase :Dict = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match lowerCamelCase :Any = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def snake_case ( self : Optional[int] ): lowerCamelCase :Optional[Any] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(__snake_case , '''include''' ): WavaVecaProcessorWithLM( tokenizer=__snake_case , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def snake_case ( self : str ): lowerCamelCase :Optional[Any] = self.get_feature_extractor() lowerCamelCase :List[Any] = self.get_tokenizer() lowerCamelCase :Any = self.get_decoder() lowerCamelCase :Any = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) lowerCamelCase :Tuple = floats_list((3, 1000) ) lowerCamelCase :Union[str, Any] = feature_extractor(__snake_case , return_tensors='''np''' ) lowerCamelCase :Optional[Any] = processor(__snake_case , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def snake_case ( self : Any ): lowerCamelCase :Union[str, Any] = self.get_feature_extractor() lowerCamelCase :List[Any] = self.get_tokenizer() lowerCamelCase :Optional[Any] = self.get_decoder() lowerCamelCase :List[str] = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) lowerCamelCase :Union[str, Any] = '''This is a test string''' lowerCamelCase :Optional[int] = processor(text=__snake_case ) lowerCamelCase :Dict = tokenizer(__snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case ( self : Dict , __snake_case : List[str]=(2, 10, 16) , __snake_case : Tuple=77 ): np.random.seed(__snake_case ) return np.random.rand(*__snake_case ) def snake_case ( self : Any ): lowerCamelCase :Any = self.get_feature_extractor() lowerCamelCase :int = self.get_tokenizer() lowerCamelCase :int = self.get_decoder() lowerCamelCase :int = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) lowerCamelCase :Dict = self._get_dummy_logits(shape=(10, 16) , seed=13 ) lowerCamelCase :Optional[Any] = processor.decode(__snake_case ) lowerCamelCase :Optional[int] = decoder.decode_beams(__snake_case )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def snake_case ( self : Any , __snake_case : str ): lowerCamelCase :str = self.get_feature_extractor() lowerCamelCase :str = self.get_tokenizer() lowerCamelCase :Any = self.get_decoder() lowerCamelCase :Any = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) lowerCamelCase :Tuple = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: lowerCamelCase :int = processor.batch_decode(__snake_case ) else: with get_context(__snake_case ).Pool() as pool: lowerCamelCase :List[str] = processor.batch_decode(__snake_case , __snake_case ) lowerCamelCase :List[Any] = list(__snake_case ) with get_context('''fork''' ).Pool() as p: lowerCamelCase :int = decoder.decode_beams_batch(__snake_case , __snake_case ) lowerCamelCase :Optional[int] = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(__snake_case , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(__snake_case , decoded_processor.logit_score ) self.assertListEqual(__snake_case , decoded_processor.lm_score ) def snake_case ( self : Dict ): lowerCamelCase :str = self.get_feature_extractor() lowerCamelCase :int = self.get_tokenizer() lowerCamelCase :List[Any] = self.get_decoder() lowerCamelCase :str = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) lowerCamelCase :Dict = self._get_dummy_logits() lowerCamelCase :Optional[int] = 15 lowerCamelCase :Optional[Any] = -20.0 lowerCamelCase :int = -4.0 lowerCamelCase :int = processor.batch_decode( __snake_case , beam_width=__snake_case , beam_prune_logp=__snake_case , token_min_logp=__snake_case , ) lowerCamelCase :List[str] = decoded_processor_out.text lowerCamelCase :List[str] = list(__snake_case ) with get_context('''fork''' ).Pool() as pool: lowerCamelCase :List[Any] = decoder.decode_beams_batch( __snake_case , __snake_case , beam_width=__snake_case , beam_prune_logp=__snake_case , token_min_logp=__snake_case , ) lowerCamelCase :Dict = [d[0][0] for d in decoded_decoder_out] lowerCamelCase :Optional[int] = [d[0][2] for d in decoded_decoder_out] lowerCamelCase :Tuple = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__snake_case , __snake_case ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , __snake_case ) self.assertTrue(np.array_equal(__snake_case , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , __snake_case , atol=1e-3 ) ) self.assertTrue(np.array_equal(__snake_case , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , __snake_case , atol=1e-3 ) ) def snake_case ( self : Dict ): lowerCamelCase :List[str] = self.get_feature_extractor() lowerCamelCase :List[Any] = self.get_tokenizer() lowerCamelCase :List[str] = self.get_decoder() lowerCamelCase :str = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) lowerCamelCase :Dict = self._get_dummy_logits() lowerCamelCase :str = 2.0 lowerCamelCase :Any = 5.0 lowerCamelCase :Optional[Any] = -20.0 lowerCamelCase :List[Any] = True lowerCamelCase :List[Any] = processor.batch_decode( __snake_case , alpha=__snake_case , beta=__snake_case , unk_score_offset=__snake_case , lm_score_boundary=__snake_case , ) lowerCamelCase :Dict = decoded_processor_out.text lowerCamelCase :List[Any] = list(__snake_case ) decoder.reset_params( alpha=__snake_case , beta=__snake_case , unk_score_offset=__snake_case , lm_score_boundary=__snake_case , ) with get_context('''fork''' ).Pool() as pool: lowerCamelCase :Dict = decoder.decode_beams_batch( __snake_case , __snake_case , ) lowerCamelCase :Optional[Any] = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__snake_case , __snake_case ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , __snake_case ) lowerCamelCase :List[Any] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , __snake_case ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Dict = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) lowerCamelCase :Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] lowerCamelCase :Tuple = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() lowerCamelCase :Any = os.listdir(__snake_case ) lowerCamelCase :Tuple = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__snake_case , __snake_case ) def snake_case ( self : Any ): lowerCamelCase :Union[str, Any] = snapshot_download('''hf-internal-testing/processor_with_lm''' ) lowerCamelCase :Tuple = WavaVecaProcessorWithLM.from_pretrained(__snake_case ) lowerCamelCase :Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] lowerCamelCase :Union[str, Any] = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() lowerCamelCase :List[Any] = os.listdir(__snake_case ) lowerCamelCase :Any = os.listdir(__snake_case ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__snake_case , __snake_case ) def snake_case ( self : Union[str, Any] ): lowerCamelCase :Tuple = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) lowerCamelCase :List[Any] = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) lowerCamelCase :List[Any] = floats_list((3, 1000) ) lowerCamelCase :Optional[Any] = processor_wavaveca(__snake_case , return_tensors='''np''' ) lowerCamelCase :int = processor_auto(__snake_case , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) lowerCamelCase :Union[str, Any] = self._get_dummy_logits() lowerCamelCase :Optional[Any] = processor_wavaveca.batch_decode(__snake_case ) lowerCamelCase :Optional[Any] = processor_auto.batch_decode(__snake_case ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def snake_case ( self : List[str] ): lowerCamelCase :Optional[int] = self.get_feature_extractor() lowerCamelCase :int = self.get_tokenizer() lowerCamelCase :Dict = self.get_decoder() lowerCamelCase :str = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def snake_case ( __snake_case : Optional[Any] , __snake_case : Union[str, Any] ): lowerCamelCase :Union[str, Any] = [d[key] for d in offsets] return retrieved_list def snake_case ( self : Optional[Any] ): lowerCamelCase :Dict = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) lowerCamelCase :List[str] = self._get_dummy_logits()[0] lowerCamelCase :Any = processor.decode(__snake_case , output_word_offsets=__snake_case ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(__snake_case , __snake_case ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def snake_case ( self : List[str] ): lowerCamelCase :List[str] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) lowerCamelCase :Optional[int] = self._get_dummy_logits() lowerCamelCase :List[str] = processor.batch_decode(__snake_case , output_word_offsets=__snake_case ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(__snake_case , __snake_case ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(__snake_case , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def snake_case ( self : Dict ): import torch lowerCamelCase :Union[str, Any] = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=__snake_case ) lowerCamelCase :Optional[Any] = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=16000 ) ) lowerCamelCase :Dict = iter(__snake_case ) lowerCamelCase :Tuple = next(__snake_case ) lowerCamelCase :str = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) lowerCamelCase :Dict = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train lowerCamelCase :Optional[Any] = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): lowerCamelCase :Dict = model(__snake_case ).logits.cpu().numpy() lowerCamelCase :Dict = processor.decode(logits[0] , output_word_offsets=__snake_case ) lowerCamelCase :str = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate lowerCamelCase :Tuple = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] lowerCamelCase :Dict = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(__snake_case , '''word''' ) ) , __snake_case ) self.assertEqual(''' '''.join(self.get_from_offsets(__snake_case , '''word''' ) ) , output.text ) # output times lowerCamelCase :List[Any] = torch.tensor(self.get_from_offsets(__snake_case , '''start_time''' ) ) lowerCamelCase :Any = torch.tensor(self.get_from_offsets(__snake_case , '''end_time''' ) ) # fmt: off lowerCamelCase :Union[str, Any] = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) lowerCamelCase :Optional[Any] = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=0.0_1 ) ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=0.0_1 ) )
706
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : str ): lowerCamelCase :int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :List[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :Optional[Any] = -1 lowerCamelCase :List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Tuple = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :str = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowerCamelCase :str = TextStreamer(__snake_case ) model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case , streamer=__snake_case ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCamelCase :Optional[int] = cs.out[:-1] self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : Dict ): lowerCamelCase :Tuple = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :int = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :List[Any] = -1 lowerCamelCase :Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Tuple = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :List[Any] = tokenizer.decode(greedy_ids[0] ) lowerCamelCase :List[str] = TextIteratorStreamer(__snake_case ) lowerCamelCase :List[str] = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} lowerCamelCase :Tuple = Thread(target=model.generate , kwargs=__snake_case ) thread.start() lowerCamelCase :Any = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : str ): lowerCamelCase :int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :Dict = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :List[str] = -1 lowerCamelCase :Optional[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Optional[Any] = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :List[str] = greedy_ids[:, input_ids.shape[1] :] lowerCamelCase :Union[str, Any] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowerCamelCase :List[str] = TextStreamer(__snake_case , skip_prompt=__snake_case ) model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case , streamer=__snake_case ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCamelCase :int = cs.out[:-1] self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : Optional[int] ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them lowerCamelCase :List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) lowerCamelCase :Union[str, Any] = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(__snake_case ) lowerCamelCase :Optional[int] = -1 lowerCamelCase :Union[str, Any] = torch.ones((1, 5) , device=__snake_case ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowerCamelCase :Dict = TextStreamer(__snake_case , skip_special_tokens=__snake_case ) model.generate(__snake_case , max_new_tokens=1 , do_sample=__snake_case , streamer=__snake_case ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowerCamelCase :Tuple = cs.out[:-1] # Remove the final "\n" lowerCamelCase :int = tokenizer(__snake_case , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def snake_case ( self : List[Any] ): lowerCamelCase :List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :Optional[int] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :Optional[int] = -1 lowerCamelCase :Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :List[Any] = TextIteratorStreamer(__snake_case , timeout=0.0_0_1 ) lowerCamelCase :Dict = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} lowerCamelCase :Tuple = Thread(target=model.generate , kwargs=__snake_case ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__snake_case ): lowerCamelCase :Dict = '''''' for new_text in streamer: streamer_text += new_text
49
0
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def _lowerCamelCase ( a_ : Optional[int]=32 , a_ : Any=10 , a_ : Dict=1_00 , a_ : int=10_26 , a_ : List[str]=True , a_ : Dict="data/tokenized_stories_train_wikitext103.jbl" , a_ : int="igf_context_pairs.jbl" , ): set_seed(3) # generate train_data and objective_set lowerCamelCase :Any = generate_datasets( a_ , a_ , number=a_ , min_len=10_26 , trim=a_) # keeps model same across runs set_seed(4) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? lowerCamelCase :Tuple = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''') # load pretrained model lowerCamelCase :List[str] = load_gpta('''gpt2''').to(a_) print('''computing perplexity on objective set''') lowerCamelCase :Tuple = compute_perplexity(a_ , a_ , a_).item() print('''perplexity on objective set:''' , a_) # collect igf pairs and save to file demo.jbl collect_objective_set(a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def _lowerCamelCase ( a_ : Optional[Any] , a_ : List[Any]=15 , a_ : List[Any]=1_28 , a_ : Optional[Any]=1_00 , a_ : Tuple="igf_model.pt" , ): set_seed(42) # Load pre-trained model lowerCamelCase :Tuple = GPTaLMHeadModel.from_pretrained('''gpt2''') # Initialize secondary learner to use embedding weights of model lowerCamelCase :List[Any] = SecondaryLearner(a_) # Train secondary learner lowerCamelCase :Tuple = train_secondary_learner( a_ , a_ , max_epochs=a_ , batch_size=a_ , eval_freq=1_00 , igf_model_path=a_ , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def _lowerCamelCase ( a_ : Union[str, Any] , a_ : int , a_ : Optional[Any] , a_ : List[Any]=32 , a_ : Tuple=10_00 , a_ : List[Any]=16 , a_ : List[str]=1.0 , a_ : Tuple=recopy_gpta , a_ : Tuple=None , a_ : List[Any]=10 , a_ : str="gpt2_finetuned.pt" , ): lowerCamelCase :int = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''') lowerCamelCase :Any = RandomSampler(a_) lowerCamelCase :Any = DataLoader(a_ , sampler=a_) lowerCamelCase :Optional[Any] = max_steps // (len(a_)) + 1 lowerCamelCase :Optional[Any] = 0 lowerCamelCase :str = torch.zeros((1, context_len) , dtype=torch.long , device=a_) lowerCamelCase :List[str] = recopy_model(a_ , a_ , a_) model.train() if secondary_learner is not None: secondary_learner.to(a_) secondary_learner.eval() lowerCamelCase :Optional[int] = [] lowerCamelCase :Any = 0 lowerCamelCase :Optional[Any] = [] lowerCamelCase :Union[str, Any] = [] # Compute the performance of the transformer model at the beginning lowerCamelCase :Optional[Any] = compute_perplexity(a_ , a_ , a_) test_perps.append(a_) print('''Test perplexity, step''' , a_ , ''':''' , a_) for epoch in range(int(a_)): for step, example in enumerate(a_): torch.cuda.empty_cache() lowerCamelCase :List[str] = random.randint(0 , example.size(2) - context_len - 1) lowerCamelCase :Dict = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() lowerCamelCase :Optional[Any] = model(a_ , labels=a_) lowerCamelCase :Optional[Any] = True if secondary_learner is not None: lowerCamelCase :Optional[Any] = secondary_learner.forward( torch.tensor(a_ , dtype=torch.long , device=a_).unsqueeze(0))[0].item() observed_qs.append(float(a_)) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: lowerCamelCase :str = -1 if predicted_q < threshold: lowerCamelCase :Tuple = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu())) lowerCamelCase :int = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() lowerCamelCase :Optional[int] = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: lowerCamelCase :int = compute_perplexity(a_ , a_ , a_) test_perps.append(a_) print('''Test perplexity, step''' , a_ , ''':''' , a_) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , a_) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def _lowerCamelCase ( ): lowerCamelCase :Optional[Any] = argparse.ArgumentParser(description='''Fine-tune a transformer model with IGF on a language modeling task''') # Required parameters parser.add_argument( '''--data_dir''' , default=a_ , type=a_ , required=a_ , help='''The input data dir. Should contain data files for WikiText.''' , ) parser.add_argument( '''--model_name_or_path''' , default=a_ , type=a_ , required=a_ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--data_file''' , type=a_ , default=a_ , help=( '''A jbl file containing tokenized data which can be split as objective dataset, ''' '''train_dataset and test_dataset.''' ) , ) parser.add_argument( '''--igf_data_file''' , type=a_ , default=a_ , help='''A jbl file containing the context and information gain pairs to train secondary learner.''' , ) parser.add_argument( '''--output_dir''' , default=a_ , type=a_ , required=a_ , help='''The output directory where the final fine-tuned model is stored.''' , ) parser.add_argument( '''--tokenizer_name''' , default=a_ , type=a_ , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument('''--seed''' , type=a_ , default=a_ , help='''A seed for reproducible training.''') parser.add_argument( '''--context_len''' , default=32 , type=a_ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--size_objective_set''' , default=1_00 , type=a_ , help='''number of articles that are long enough to be used as our objective set''' , ) parser.add_argument( '''--eval_freq''' , default=1_00 , type=a_ , help='''secondary model evaluation is triggered at eval_freq''') parser.add_argument('''--max_steps''' , default=10_00 , type=a_ , help='''To calculate training epochs''') parser.add_argument( '''--secondary_learner_batch_size''' , default=1_28 , type=a_ , help='''batch size of training data for secondary learner''' , ) parser.add_argument( '''--batch_size''' , default=16 , type=a_ , help='''batch size of training data of language model(gpt2) ''') parser.add_argument( '''--eval_interval''' , default=10 , type=a_ , help=( '''decay the selectivity of our secondary learner filter from''' '''1 standard deviation above average to 1 below average after 10 batches''' ) , ) parser.add_argument( '''--number''' , default=1_00 , type=a_ , help='''The number of examples split to be used as objective_set/test_data''') parser.add_argument( '''--min_len''' , default=10_26 , type=a_ , help='''The minimum length of the article to be used as objective set''') parser.add_argument( '''--secondary_learner_max_epochs''' , default=15 , type=a_ , help='''number of epochs to train secondary learner''') parser.add_argument('''--trim''' , default=a_ , type=a_ , help='''truncate the example if it exceeds context length''') parser.add_argument( '''--threshold''' , default=1.0 , type=a_ , help=( '''The threshold value used by secondary learner to filter the train_data and allow only''' ''' informative data as input to the model''' ) , ) parser.add_argument('''--finetuned_model_name''' , default='''gpt2_finetuned.pt''' , type=a_ , help='''finetuned_model_name''') parser.add_argument( '''--recopy_model''' , default=a_ , type=a_ , help='''Reset the model to the original pretrained GPT-2 weights after each iteration''' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=1_00 , min_len=10_26 , trim=a_ , data_file='''data/tokenized_stories_train_wikitext103.jbl''' , igf_data_file='''igf_context_pairs.jbl''' , ) # Load train data for secondary learner lowerCamelCase :str = joblib.load('''data/IGF_values.jbl''') # Train secondary learner lowerCamelCase :Tuple = training_secondary_learner( a_ , secondary_learner_max_epochs=15 , secondary_learner_batch_size=1_28 , eval_freq=1_00 , igf_model_path='''igf_model.pt''' , ) # load pretrained gpt2 model lowerCamelCase :Union[str, Any] = GPTaLMHeadModel.from_pretrained('''gpt2''') set_seed(42) # Generate train and test data to train and evaluate gpt2 model lowerCamelCase :int = generate_datasets( context_len=32 , file='''data/tokenized_stories_train_wikitext103.jbl''' , number=1_00 , min_len=10_26 , trim=a_) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( a_ , a_ , a_ , context_len=32 , max_steps=10_00 , batch_size=16 , threshold=1.0 , recopy_model=a_ , secondary_learner=a_ , eval_interval=10 , finetuned_model_name='''gpt2_finetuned.pt''' , ) if __name__ == "__main__": main()
707
from maths.prime_factors import prime_factors def _lowerCamelCase ( a_ : int): if not isinstance(a_ , a_): lowerCamelCase :Tuple = F"Input value of [number={number}] must be an integer" raise TypeError(a_) if number < 1: raise ValueError('''Input must be a positive integer''') return -1 if len(prime_factors(a_)) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
49
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = KandinskyImgaImgPipeline _UpperCAmelCase = ['prompt', 'image_embeds', 'negative_image_embeds', 'image'] _UpperCAmelCase = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', ] _UpperCAmelCase = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] _UpperCAmelCase = False @property def snake_case ( self : Optional[int] ): return 32 @property def snake_case ( self : Union[str, Any] ): return 32 @property def snake_case ( self : Union[str, Any] ): return self.time_input_dim @property def snake_case ( self : List[str] ): return self.time_input_dim * 4 @property def snake_case ( self : List[str] ): return 100 @property def snake_case ( self : List[str] ): lowerCamelCase :int = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def snake_case ( self : int ): torch.manual_seed(0 ) lowerCamelCase :Union[str, Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) lowerCamelCase :Tuple = MultilingualCLIP(__snake_case ) lowerCamelCase :Dict = text_encoder.eval() return text_encoder @property def snake_case ( self : Optional[Any] ): torch.manual_seed(0 ) lowerCamelCase :Tuple = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } lowerCamelCase :Dict = UNetaDConditionModel(**__snake_case ) return model @property def snake_case ( self : Dict ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def snake_case ( self : int ): torch.manual_seed(0 ) lowerCamelCase :Union[str, Any] = VQModel(**self.dummy_movq_kwargs ) return model def snake_case ( self : Optional[Any] ): lowerCamelCase :Union[str, Any] = self.dummy_text_encoder lowerCamelCase :Any = self.dummy_tokenizer lowerCamelCase :Optional[int] = self.dummy_unet lowerCamelCase :Union[str, Any] = self.dummy_movq lowerCamelCase :int = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0_0_8_5, '''beta_end''': 0.0_1_2, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } lowerCamelCase :List[str] = DDIMScheduler(**__snake_case ) lowerCamelCase :Tuple = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def snake_case ( self : Tuple , __snake_case : str , __snake_case : Tuple=0 ): lowerCamelCase :Optional[int] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__snake_case ) ).to(__snake_case ) lowerCamelCase :str = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__snake_case ) # create init_image lowerCamelCase :List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) lowerCamelCase :Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase :Optional[int] = Image.fromarray(np.uinta(__snake_case ) ).convert('''RGB''' ).resize((256, 256) ) if str(__snake_case ).startswith('''mps''' ): lowerCamelCase :Any = torch.manual_seed(__snake_case ) else: lowerCamelCase :Dict = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) lowerCamelCase :Union[str, Any] = { '''prompt''': '''horse''', '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def snake_case ( self : Tuple ): lowerCamelCase :List[Any] = '''cpu''' lowerCamelCase :List[str] = self.get_dummy_components() lowerCamelCase :Any = self.pipeline_class(**__snake_case ) lowerCamelCase :Union[str, Any] = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) lowerCamelCase :Dict = pipe(**self.get_dummy_inputs(__snake_case ) ) lowerCamelCase :List[str] = output.images lowerCamelCase :Any = pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] lowerCamelCase :Tuple = image[0, -3:, -3:, -1] lowerCamelCase :Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase :Dict = np.array( [0.6_1_4_7_4_9_4_3, 0.6_0_7_3_5_3_9, 0.4_3_3_0_8_5_4_4, 0.5_9_2_8_2_6_9, 0.4_7_4_9_3_5_9_5, 0.4_6_7_5_5_9_7_3, 0.4_6_1_3_8_3_8, 0.4_5_3_6_8_7_9_7, 0.5_0_1_1_9_2_3_3] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self : Any ): lowerCamelCase :Union[str, Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_img2img_frog.npy''' ) lowerCamelCase :int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) lowerCamelCase :int = '''A red cartoon frog, 4k''' lowerCamelCase :Dict = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) lowerCamelCase :Optional[Any] = KandinskyImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1''' , torch_dtype=torch.floataa ) lowerCamelCase :Optional[Any] = pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) lowerCamelCase :int = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowerCamelCase :int = pipe_prior( __snake_case , generator=__snake_case , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() lowerCamelCase :int = pipeline( __snake_case , image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , generator=__snake_case , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , ) lowerCamelCase :Dict = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
708
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() A__ = logging.get_logger(__name__) def _lowerCamelCase ( a_ : str , a_ : str=False): lowerCamelCase :Optional[int] = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''')) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''')) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''')) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''')) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''')) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''')) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''')) for stage_idx in range(len(config.backbone_config.depths)): for layer_idx in range(config.backbone_config.depths[stage_idx]): rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias")) # transformer encoder for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight")) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias")) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight")) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias")) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight")) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias")) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight")) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias")) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight")) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias")) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ]) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCamelCase :List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''') else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ]) # fmt: on return rename_keys def _lowerCamelCase ( a_ : Any , a_ : Any , a_ : int=False): for i in range(config.num_hidden_layers): if base_model: lowerCamelCase :Union[str, Any] = '''''' else: lowerCamelCase :Optional[int] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase :Optional[Any] = state_dict.pop(F"blocks.{i}.attn.qkv.weight") lowerCamelCase :Any = state_dict.pop(F"blocks.{i}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict lowerCamelCase :Any = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase :Tuple = in_proj_bias[: config.hidden_size] lowerCamelCase :int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase :Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase :Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase :List[Any] = in_proj_bias[-config.hidden_size :] def _lowerCamelCase ( a_ : int): lowerCamelCase :Any = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(a_ , a_) def _lowerCamelCase ( a_ : int , a_ : Any , a_ : Tuple): lowerCamelCase :Optional[Any] = dct.pop(a_) lowerCamelCase :str = val def _lowerCamelCase ( ): lowerCamelCase :Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase :Tuple = Image.open(requests.get(a_ , stream=a_).raw) return im @torch.no_grad() def _lowerCamelCase ( a_ : Optional[Any] , a_ : Optional[Any] , a_ : Optional[Any]=False): lowerCamelCase :Optional[int] = BitConfig( global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=a_ , ) lowerCamelCase :Optional[int] = ViTHybridConfig(backbone_config=a_ , image_size=3_84 , num_labels=10_00) lowerCamelCase :List[Any] = False # load original model from timm lowerCamelCase :List[str] = timm.create_model(a_ , pretrained=a_) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCamelCase :List[str] = timm_model.state_dict() if base_model: remove_classification_head_(a_) lowerCamelCase :Tuple = create_rename_keys(a_ , a_) for src, dest in rename_keys: rename_key(a_ , a_ , a_) read_in_q_k_v(a_ , a_ , a_) lowerCamelCase :List[str] = '''huggingface/label-files''' lowerCamelCase :Any = '''imagenet-1k-id2label.json''' lowerCamelCase :List[Any] = json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''') , '''r''')) lowerCamelCase :Optional[Any] = {int(a_): v for k, v in idalabel.items()} lowerCamelCase :Optional[int] = idalabel lowerCamelCase :Union[str, Any] = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": lowerCamelCase :Optional[Any] = ViTHybridModel(a_).eval() else: lowerCamelCase :Dict = ViTHybridForImageClassification(a_).eval() model.load_state_dict(a_) # create image processor lowerCamelCase :Dict = create_transform(**resolve_data_config({} , model=a_)) lowerCamelCase :str = transform.transforms lowerCamelCase :int = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } lowerCamelCase :Any = ViTHybridImageProcessor( do_resize=a_ , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=a_ , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=a_ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCamelCase :Dict = prepare_img() lowerCamelCase :str = transform(a_).unsqueeze(0) lowerCamelCase :str = processor(a_ , return_tensors='''pt''').pixel_values # verify pixel values assert torch.allclose(a_ , a_) # verify logits with torch.no_grad(): lowerCamelCase :Optional[int] = model(a_) lowerCamelCase :Union[str, Any] = outputs.logits print('''Predicted class:''' , logits.argmax(-1).item()) if base_model: lowerCamelCase :Union[str, Any] = timm_model.forward_features(a_) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(a_ , outputs.pooler_output , atol=1e-3) else: lowerCamelCase :List[str] = timm_model(a_) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(a_ , outputs.logits , atol=1e-3) print('''Looks ok!''') if pytorch_dump_folder_path is not None: Path(a_).mkdir(exist_ok=a_) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}") model.save_pretrained(a_) print(F"Saving processor to {pytorch_dump_folder_path}") processor.save_pretrained(a_) if push_to_hub: print(F"Pushing model and processor to the hub {vit_name}") model.push_to_hub(F"ybelkada/{vit_name}") processor.push_to_hub(F"ybelkada/{vit_name}") if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_r50_s16_384""", type=str, help="""Name of the hybrid ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) A__ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
49
0
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = StableUnCLIPPipeline _UpperCAmelCase = TEXT_TO_IMAGE_PARAMS _UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false _UpperCAmelCase = False def snake_case ( self : Union[str, Any] ): lowerCamelCase :List[str] = 32 lowerCamelCase :List[Any] = embedder_hidden_size # prior components torch.manual_seed(0 ) lowerCamelCase :Any = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) lowerCamelCase :Union[str, Any] = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__snake_case , projection_dim=__snake_case , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowerCamelCase :Optional[int] = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=__snake_case , num_layers=1 , ) torch.manual_seed(0 ) lowerCamelCase :List[Any] = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=__snake_case , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) lowerCamelCase :Dict = StableUnCLIPImageNormalizer(embedding_dim=__snake_case ) lowerCamelCase :Union[str, Any] = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) lowerCamelCase :Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) lowerCamelCase :Any = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__snake_case , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowerCamelCase :List[str] = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__snake_case , layers_per_block=1 , upcast_attention=__snake_case , use_linear_projection=__snake_case , ) torch.manual_seed(0 ) lowerCamelCase :List[str] = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type='''v_prediction''' , set_alpha_to_one=__snake_case , steps_offset=1 , ) torch.manual_seed(0 ) lowerCamelCase :Union[str, Any] = AutoencoderKL() lowerCamelCase :int = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def snake_case ( self : int , __snake_case : Tuple , __snake_case : str=0 ): if str(__snake_case ).startswith('''mps''' ): lowerCamelCase :int = torch.manual_seed(__snake_case ) else: lowerCamelCase :str = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) lowerCamelCase :int = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def snake_case ( self : Optional[Any] ): lowerCamelCase :List[Any] = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=__snake_case ) def snake_case ( self : Dict ): lowerCamelCase :Dict = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=__snake_case ) @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self : Any ): lowerCamelCase :List[str] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) lowerCamelCase :List[str] = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCamelCase :Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowerCamelCase :Optional[Any] = pipe('''anime turle''' , generator=__snake_case , output_type='''np''' ) lowerCamelCase :Any = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__snake_case , __snake_case ) def snake_case ( self : Optional[int] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCamelCase :str = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) lowerCamelCase :Union[str, Any] = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCamelCase :Optional[int] = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) lowerCamelCase :str = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
709
def _lowerCamelCase ( a_ : int = 4_00_00_00): lowerCamelCase :Dict = [0, 1] lowerCamelCase :Optional[Any] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1]) if fib[i + 2] > n: break i += 1 lowerCamelCase :Dict = 0 for j in range(len(a_) - 1): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F'{solution() = }')
49
0
def _lowerCamelCase ( a_ : str): assert column_title.isupper() lowerCamelCase :List[Any] = 0 lowerCamelCase :int = len(a_) - 1 lowerCamelCase :Dict = 0 while index >= 0: lowerCamelCase :List[Any] = (ord(column_title[index]) - 64) * pow(26 , a_) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
710
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ = { """configuration_nllb_moe""": [ """NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NllbMoeConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""", """NllbMoeForConditionalGeneration""", """NllbMoeModel""", """NllbMoePreTrainedModel""", """NllbMoeTop2Router""", """NllbMoeSparseMLP""", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
49
0
from typing import TYPE_CHECKING from ...utils import _LazyModule A__ = {"""tokenization_bertweet""": ["""BertweetTokenizer"""]} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
711
import numpy class _lowerCAmelCase : def __init__( self : Dict , __snake_case : numpy.ndarray , __snake_case : numpy.ndarray ): lowerCamelCase :Dict = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. lowerCamelCase :Dict = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. lowerCamelCase :Dict = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. lowerCamelCase :Any = numpy.random.rand(3 , 1 ) # Real output values provided. lowerCamelCase :Union[str, Any] = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. lowerCamelCase :List[str] = numpy.zeros(output_array.shape ) def snake_case ( self : Optional[int] ): lowerCamelCase :Any = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. lowerCamelCase :Any = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. lowerCamelCase :Dict = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def snake_case ( self : Any ): lowerCamelCase :Union[str, Any] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) lowerCamelCase :Dict = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) lowerCamelCase :int = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def snake_case ( self : Dict , __snake_case : numpy.ndarray , __snake_case : int , __snake_case : bool ): for iteration in range(1 , iterations + 1 ): lowerCamelCase :Union[str, Any] = self.feedforward() self.back_propagation() if give_loss: lowerCamelCase :Tuple = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"Iteration {iteration} Loss: {loss}" ) def snake_case ( self : Optional[int] , __snake_case : numpy.ndarray ): lowerCamelCase :int = input_arr lowerCamelCase :Union[str, Any] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) lowerCamelCase :Optional[Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) lowerCamelCase :Optional[int] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def _lowerCamelCase ( a_ : numpy.ndarray): return 1 / (1 + numpy.exp(-value)) def _lowerCamelCase ( a_ : numpy.ndarray): return (value) * (1 - (value)) def _lowerCamelCase ( ): lowerCamelCase :Optional[Any] = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. lowerCamelCase :int = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa) # Calling neural network class. lowerCamelCase :List[Any] = TwoHiddenLayerNeuralNetwork( input_array=a_ , output_array=a_) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=a_ , iterations=10 , give_loss=a_) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa)) if __name__ == "__main__": example()
49
0
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def _lowerCamelCase ( a_ : List[Any] , a_ : List[str] , a_ : Optional[Any]): lowerCamelCase :List[Any] = 1.5 lowerCamelCase :Any = int(factor * num_class_images) lowerCamelCase :List[str] = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=a_ , aesthetic_weight=0.1) os.makedirs(F"{class_data_dir}/images" , exist_ok=a_) if len(list(Path(F"{class_data_dir}/images").iterdir())) >= num_class_images: return while True: lowerCamelCase :Dict = client.query(text=a_) if len(a_) >= factor * num_class_images or num_images > 1e4: break else: lowerCamelCase :Tuple = int(factor * num_images) lowerCamelCase :Optional[int] = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=a_ , aesthetic_weight=0.1 , ) lowerCamelCase :List[str] = 0 lowerCamelCase :Tuple = 0 lowerCamelCase :Union[str, Any] = tqdm(desc='''downloading real regularization images''' , total=a_) with open(F"{class_data_dir}/caption.txt" , '''w''') as fa, open(F"{class_data_dir}/urls.txt" , '''w''') as fa, open( F"{class_data_dir}/images.txt" , '''w''') as fa: while total < num_class_images: lowerCamelCase :List[Any] = class_images[count] count += 1 try: lowerCamelCase :Dict = requests.get(images['''url''']) if img.status_code == 2_00: lowerCamelCase :Any = Image.open(BytesIO(img.content)) with open(F"{class_data_dir}/images/{total}.jpg" , '''wb''') as f: f.write(img.content) fa.write(images['''caption'''] + '''\n''') fa.write(images['''url'''] + '''\n''') fa.write(F"{class_data_dir}/images/{total}.jpg" + '''\n''') total += 1 pbar.update(1) else: continue except Exception: continue return def _lowerCamelCase ( ): lowerCamelCase :List[Any] = argparse.ArgumentParser('''''' , add_help=a_) parser.add_argument('''--class_prompt''' , help='''text prompt to retrieve images''' , required=a_ , type=a_) parser.add_argument('''--class_data_dir''' , help='''path to save images''' , required=a_ , type=a_) parser.add_argument('''--num_class_images''' , help='''number of images to download''' , default=2_00 , type=a_) return parser.parse_args() if __name__ == "__main__": A__ = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
712
def _lowerCamelCase ( a_ : str , a_ : str): lowerCamelCase :List[str] = len(a_) lowerCamelCase :List[str] = len(a_) lowerCamelCase :int = [[False for _ in range(m + 1)] for _ in range(n + 1)] lowerCamelCase :Optional[Any] = True for i in range(a_): for j in range(m + 1): if dp[i][j]: if j < m and a[i].upper() == b[j]: lowerCamelCase :Any = True if a[i].islower(): lowerCamelCase :List[str] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
49
0
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. A__ = {"""LayoutLMv2Config""", """LayoutLMv3Config"""} @is_pipeline_test class _lowerCAmelCase ( unittest.TestCase ): _UpperCAmelCase = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _UpperCAmelCase = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: _UpperCAmelCase = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: _UpperCAmelCase = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def snake_case ( self : Dict , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : Dict ): lowerCamelCase :Any = ZeroShotClassificationPipeline( model=__snake_case , tokenizer=__snake_case , candidate_labels=['''polics''', '''health'''] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def snake_case ( self : int , __snake_case : str , __snake_case : List[Any] ): lowerCamelCase :List[str] = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics''' ) self.assertEqual(__snake_case , {'''sequence''': ANY(__snake_case ), '''labels''': [ANY(__snake_case )], '''scores''': [ANY(__snake_case )]} ) # No kwarg lowerCamelCase :Any = classifier('''Who are you voting for in 2020?''' , ['''politics'''] ) self.assertEqual(__snake_case , {'''sequence''': ANY(__snake_case ), '''labels''': [ANY(__snake_case )], '''scores''': [ANY(__snake_case )]} ) lowerCamelCase :Any = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics'''] ) self.assertEqual(__snake_case , {'''sequence''': ANY(__snake_case ), '''labels''': [ANY(__snake_case )], '''scores''': [ANY(__snake_case )]} ) lowerCamelCase :int = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics, public health''' ) self.assertEqual( __snake_case , {'''sequence''': ANY(__snake_case ), '''labels''': [ANY(__snake_case ), ANY(__snake_case )], '''scores''': [ANY(__snake_case ), ANY(__snake_case )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) , 1.0 ) lowerCamelCase :Dict = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health'''] ) self.assertEqual( __snake_case , {'''sequence''': ANY(__snake_case ), '''labels''': [ANY(__snake_case ), ANY(__snake_case )], '''scores''': [ANY(__snake_case ), ANY(__snake_case )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) , 1.0 ) lowerCamelCase :Optional[Any] = classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''This text is about {}''' ) self.assertEqual(__snake_case , {'''sequence''': ANY(__snake_case ), '''labels''': [ANY(__snake_case )], '''scores''': [ANY(__snake_case )]} ) # https://github.com/huggingface/transformers/issues/13846 lowerCamelCase :List[str] = classifier(['''I am happy'''] , ['''positive''', '''negative'''] ) self.assertEqual( __snake_case , [ {'''sequence''': ANY(__snake_case ), '''labels''': [ANY(__snake_case ), ANY(__snake_case )], '''scores''': [ANY(__snake_case ), ANY(__snake_case )]} for i in range(1 ) ] , ) lowerCamelCase :str = classifier(['''I am happy''', '''I am sad'''] , ['''positive''', '''negative'''] ) self.assertEqual( __snake_case , [ {'''sequence''': ANY(__snake_case ), '''labels''': [ANY(__snake_case ), ANY(__snake_case )], '''scores''': [ANY(__snake_case ), ANY(__snake_case )]} for i in range(2 ) ] , ) with self.assertRaises(__snake_case ): classifier('''''' , candidate_labels='''politics''' ) with self.assertRaises(__snake_case ): classifier(__snake_case , candidate_labels='''politics''' ) with self.assertRaises(__snake_case ): classifier('''Who are you voting for in 2020?''' , candidate_labels='''''' ) with self.assertRaises(__snake_case ): classifier('''Who are you voting for in 2020?''' , candidate_labels=__snake_case ) with self.assertRaises(__snake_case ): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''Not formatting template''' , ) with self.assertRaises(__snake_case ): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template=__snake_case , ) self.run_entailment_id(__snake_case ) def snake_case ( self : Dict , __snake_case : Pipeline ): lowerCamelCase :int = zero_shot_classifier.model.config lowerCamelCase :Optional[int] = config.labelaid lowerCamelCase :Optional[Any] = zero_shot_classifier.entailment_id lowerCamelCase :List[Any] = {'''LABEL_0''': 0, '''LABEL_1''': 1, '''LABEL_2''': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) lowerCamelCase :Any = {'''entailment''': 0, '''neutral''': 1, '''contradiction''': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) lowerCamelCase :Tuple = {'''ENTAIL''': 0, '''NON-ENTAIL''': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) lowerCamelCase :List[Any] = {'''ENTAIL''': 2, '''NEUTRAL''': 1, '''CONTR''': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) lowerCamelCase :Any = original_labelaid self.assertEqual(__snake_case , zero_shot_classifier.entailment_id ) @require_torch def snake_case ( self : str ): lowerCamelCase :str = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( '''Who are you voting for in 2020?''' * 100 , candidate_labels=['''politics''', '''public health''', '''science'''] ) @require_torch def snake_case ( self : Optional[Any] ): lowerCamelCase :Optional[int] = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) lowerCamelCase :Optional[int] = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(__snake_case ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @require_tf def snake_case ( self : Union[str, Any] ): lowerCamelCase :Any = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''tf''' , ) lowerCamelCase :Union[str, Any] = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(__snake_case ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @slow @require_torch def snake_case ( self : Dict ): lowerCamelCase :Union[str, Any] = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''pt''' ) lowerCamelCase :Optional[int] = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(__snake_case ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) lowerCamelCase :List[str] = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=__snake_case , ) self.assertEqual( nested_simplify(__snake_case ) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , ) @slow @require_tf def snake_case ( self : Tuple ): lowerCamelCase :Optional[Any] = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''tf''' ) lowerCamelCase :Optional[Any] = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(__snake_case ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) lowerCamelCase :int = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=__snake_case , ) self.assertEqual( nested_simplify(__snake_case ) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , )
713
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : def __init__( self : Any , __snake_case : Optional[int] , __snake_case : int=13 , __snake_case : str=[30, 30] , __snake_case : Tuple=2 , __snake_case : Optional[Any]=3 , __snake_case : int=True , __snake_case : Tuple=True , __snake_case : List[Any]=32 , __snake_case : int=5 , __snake_case : Optional[Any]=4 , __snake_case : Union[str, Any]=37 , __snake_case : str="gelu" , __snake_case : Tuple=0.1 , __snake_case : List[Any]=0.1 , __snake_case : Union[str, Any]=10 , __snake_case : str=0.0_2 , __snake_case : Union[str, Any]=3 , __snake_case : Union[str, Any]=None , __snake_case : List[str]=8 , __snake_case : Any=10 , ): lowerCamelCase :Optional[Any] = parent lowerCamelCase :List[Any] = batch_size lowerCamelCase :Any = image_size lowerCamelCase :Union[str, Any] = patch_size lowerCamelCase :Any = num_channels lowerCamelCase :List[Any] = is_training lowerCamelCase :Optional[Any] = use_labels lowerCamelCase :Any = hidden_size lowerCamelCase :List[Any] = num_hidden_layers lowerCamelCase :List[str] = num_attention_heads lowerCamelCase :Tuple = intermediate_size lowerCamelCase :List[str] = hidden_act lowerCamelCase :List[str] = hidden_dropout_prob lowerCamelCase :Any = attention_probs_dropout_prob lowerCamelCase :List[Any] = type_sequence_label_size lowerCamelCase :Optional[int] = initializer_range lowerCamelCase :List[Any] = num_labels lowerCamelCase :Any = scope lowerCamelCase :Union[str, Any] = n_targets lowerCamelCase :Optional[Any] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowerCamelCase :Tuple = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowerCamelCase :str = num_patches + 1 + self.num_detection_tokens def snake_case ( self : List[str] ): lowerCamelCase :str = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowerCamelCase :List[str] = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowerCamelCase :Optional[int] = [] for i in range(self.batch_size ): lowerCamelCase :List[str] = {} lowerCamelCase :Tuple = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=__snake_case ) lowerCamelCase :List[str] = torch.rand(self.n_targets , 4 , device=__snake_case ) labels.append(__snake_case ) lowerCamelCase :str = self.get_config() return config, pixel_values, labels def snake_case ( self : Union[str, Any] ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__snake_case , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def snake_case ( self : Tuple , __snake_case : Tuple , __snake_case : Tuple , __snake_case : Any ): lowerCamelCase :Optional[Any] = YolosModel(config=__snake_case ) model.to(__snake_case ) model.eval() lowerCamelCase :Union[str, Any] = model(__snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def snake_case ( self : Dict , __snake_case : str , __snake_case : Optional[int] , __snake_case : Optional[Any] ): lowerCamelCase :int = YolosForObjectDetection(__snake_case ) model.to(__snake_case ) model.eval() lowerCamelCase :str = model(pixel_values=__snake_case ) lowerCamelCase :Any = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) lowerCamelCase :int = model(pixel_values=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def snake_case ( self : int ): lowerCamelCase :List[Any] = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase :str = config_and_inputs lowerCamelCase :Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () _UpperCAmelCase = ( {'feature-extraction': YolosModel, 'object-detection': YolosForObjectDetection} if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def snake_case ( self : Any , __snake_case : List[Any] , __snake_case : Tuple , __snake_case : Dict=False ): lowerCamelCase :Optional[int] = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowerCamelCase :Dict = [] for i in range(self.model_tester.batch_size ): lowerCamelCase :Optional[Any] = {} lowerCamelCase :List[Any] = torch.ones( size=(self.model_tester.n_targets,) , device=__snake_case , dtype=torch.long ) lowerCamelCase :str = torch.ones( self.model_tester.n_targets , 4 , device=__snake_case , dtype=torch.float ) labels.append(__snake_case ) lowerCamelCase :Union[str, Any] = labels return inputs_dict def snake_case ( self : Tuple ): lowerCamelCase :Union[str, Any] = YolosModelTester(self ) lowerCamelCase :Dict = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=37 ) def snake_case ( self : Union[str, Any] ): self.config_tester.run_common_tests() def snake_case ( self : Optional[Any] ): # YOLOS does not use inputs_embeds pass def snake_case ( self : Tuple ): lowerCamelCase , lowerCamelCase :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :Optional[int] = model_class(__snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase :str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case , nn.Linear ) ) def snake_case ( self : str ): lowerCamelCase , lowerCamelCase :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :str = model_class(__snake_case ) lowerCamelCase :Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase :Tuple = [*signature.parameters.keys()] lowerCamelCase :Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __snake_case ) def snake_case ( self : int ): lowerCamelCase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def snake_case ( self : str ): lowerCamelCase , lowerCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase :int = True # in YOLOS, the seq_len is different lowerCamelCase :str = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowerCamelCase :str = True lowerCamelCase :Tuple = False lowerCamelCase :Optional[int] = True lowerCamelCase :int = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :str = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :str = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase :Optional[Any] = True lowerCamelCase :str = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :Tuple = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Tuple = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowerCamelCase :Optional[int] = len(__snake_case ) # Check attention is always last and order is fine lowerCamelCase :Union[str, Any] = True lowerCamelCase :List[Any] = True lowerCamelCase :Tuple = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :int = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Dict = 1 self.assertEqual(out_len + added_hidden_states , len(__snake_case ) ) lowerCamelCase :Dict = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def snake_case ( self : List[str] ): def check_hidden_states_output(__snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Tuple ): lowerCamelCase :Union[str, Any] = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :Any = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Optional[Any] = outputs.hidden_states lowerCamelCase :Any = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__snake_case ) , __snake_case ) # YOLOS has a different seq_length lowerCamelCase :List[str] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowerCamelCase , lowerCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :Union[str, Any] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase :Any = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*__snake_case ) @slow def snake_case ( self : Dict ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase :Tuple = YolosModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def _lowerCamelCase ( ): lowerCamelCase :int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): @cached_property def snake_case ( self : Tuple ): return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def snake_case ( self : Dict ): lowerCamelCase :Union[str, Any] = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(__snake_case ) lowerCamelCase :Optional[Any] = self.default_image_processor lowerCamelCase :str = prepare_img() lowerCamelCase :Dict = image_processor(images=__snake_case , return_tensors='''pt''' ).to(__snake_case ) # forward pass with torch.no_grad(): lowerCamelCase :Optional[Any] = model(inputs.pixel_values ) # verify outputs lowerCamelCase :int = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , __snake_case ) lowerCamelCase :Any = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=__snake_case , ) lowerCamelCase :Any = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __snake_case , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , __snake_case , atol=1e-4 ) ) # verify postprocessing lowerCamelCase :List[str] = image_processor.post_process_object_detection( __snake_case , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] lowerCamelCase :List[str] = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(__snake_case ) lowerCamelCase :str = [75, 75, 17, 63, 17] lowerCamelCase :Tuple = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(__snake_case ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , __snake_case , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , __snake_case ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , __snake_case ) )
49
0
def _lowerCAmelCase ( a_ : int = 4_00_00_00): lowerCamelCase :Dict = [0, 1] lowerCamelCase :Optional[Any] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1]) if fib[i + 2] > n: break i += 1 lowerCamelCase :Dict = 0 for j in range(len(a_) - 1): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F'{solution() = }')
714
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Tuple ): lowerCamelCase :List[Any] = inspect.getfile(accelerate.test_utils ) lowerCamelCase :Dict = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 lowerCamelCase :Any = test_metrics @require_cpu def snake_case ( self : Dict ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def snake_case ( self : int ): debug_launcher(self.test_metrics.main ) @require_single_gpu def snake_case ( self : Any ): self.test_metrics.main() @require_multi_gpu def snake_case ( self : Optional[int] ): print(F"Found {torch.cuda.device_count()} devices." ) lowerCamelCase :Optional[int] = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__snake_case , env=os.environ.copy() )
49
0
from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self : Tuple , __snake_case : Distribution , __snake_case : Any=None , __snake_case : Any=None , __snake_case : List[Any]=0 ): lowerCamelCase :Dict = 1.0 if scale is None else scale lowerCamelCase :Any = 0.0 if loc is None else loc super().__init__(__snake_case , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__snake_case )] ) @property def snake_case ( self : Optional[Any] ): return self.base_dist.mean * self.scale + self.loc @property def snake_case ( self : Tuple ): return self.base_dist.variance * self.scale**2 @property def snake_case ( self : Dict ): return self.variance.sqrt() class _lowerCAmelCase ( nn.Module ): def __init__( self : str , __snake_case : int , __snake_case : Dict[str, int] , __snake_case : Callable[..., Tuple[torch.Tensor]] , **__snake_case : str ): super().__init__(**__snake_case ) lowerCamelCase :List[Any] = args_dim lowerCamelCase :Any = nn.ModuleList([nn.Linear(__snake_case , __snake_case ) for dim in args_dim.values()] ) lowerCamelCase :Optional[int] = domain_map def snake_case ( self : int , __snake_case : torch.Tensor ): lowerCamelCase :int = [proj(__snake_case ) for proj in self.proj] return self.domain_map(*__snake_case ) class _lowerCAmelCase ( nn.Module ): def __init__( self : str , __snake_case : Optional[int] ): super().__init__() lowerCamelCase :Union[str, Any] = function def snake_case ( self : List[str] , __snake_case : List[str] , *__snake_case : str ): return self.function(__snake_case , *__snake_case ) class _lowerCAmelCase : _UpperCAmelCase = 4_2 _UpperCAmelCase = 4_2 _UpperCAmelCase = 4_2 def __init__( self : Tuple , __snake_case : int = 1 ): lowerCamelCase :Any = dim lowerCamelCase :Tuple = {k: dim * self.args_dim[k] for k in self.args_dim} def snake_case ( self : Optional[int] , __snake_case : List[str] ): if self.dim == 1: return self.distribution_class(*__snake_case ) else: return Independent(self.distribution_class(*__snake_case ) , 1 ) def snake_case ( self : str , __snake_case : Tuple , __snake_case : Optional[torch.Tensor] = None , __snake_case : Optional[torch.Tensor] = None , ): lowerCamelCase :Dict = self._base_distribution(__snake_case ) if loc is None and scale is None: return distr else: return AffineTransformed(__snake_case , loc=__snake_case , scale=__snake_case , event_dim=self.event_dim ) @property def snake_case ( self : str ): return () if self.dim == 1 else (self.dim,) @property def snake_case ( self : Any ): return len(self.event_shape ) @property def snake_case ( self : Optional[Any] ): return 0.0 def snake_case ( self : Tuple , __snake_case : int ): return ParameterProjection( in_features=__snake_case , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def snake_case ( self : Optional[int] , *__snake_case : torch.Tensor ): raise NotImplementedError() @staticmethod def snake_case ( __snake_case : torch.Tensor ): return (x + torch.sqrt(torch.square(__snake_case ) + 4.0 )) / 2.0 class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = {'df': 1, 'loc': 1, 'scale': 1} _UpperCAmelCase = StudentT @classmethod def snake_case ( cls : Any , __snake_case : torch.Tensor , __snake_case : torch.Tensor , __snake_case : torch.Tensor ): lowerCamelCase :List[str] = cls.squareplus(__snake_case ).clamp_min(torch.finfo(scale.dtype ).eps ) lowerCamelCase :Dict = 2.0 + cls.squareplus(__snake_case ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = {'loc': 1, 'scale': 1} _UpperCAmelCase = Normal @classmethod def snake_case ( cls : Optional[int] , __snake_case : torch.Tensor , __snake_case : torch.Tensor ): lowerCamelCase :Union[str, Any] = cls.squareplus(__snake_case ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = {'total_count': 1, 'logits': 1} _UpperCAmelCase = NegativeBinomial @classmethod def snake_case ( cls : List[Any] , __snake_case : torch.Tensor , __snake_case : torch.Tensor ): lowerCamelCase :Dict = cls.squareplus(__snake_case ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def snake_case ( self : Tuple , __snake_case : Optional[int] ): lowerCamelCase :Tuple = distr_args if self.dim == 1: return self.distribution_class(total_count=__snake_case , logits=__snake_case ) else: return Independent(self.distribution_class(total_count=__snake_case , logits=__snake_case ) , 1 ) def snake_case ( self : int , __snake_case : str , __snake_case : Optional[torch.Tensor] = None , __snake_case : Optional[torch.Tensor] = None ): lowerCamelCase :int = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
715
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = '' _UpperCAmelCase = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) _UpperCAmelCase = None # compression type in fsspec. ex: "gzip" _UpperCAmelCase = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : str , __snake_case : str = "" , __snake_case : Optional[str] = None , __snake_case : Optional[dict] = None , **__snake_case : Dict ): super().__init__(self , **__snake_case ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode lowerCamelCase :Optional[Any] = fsspec.open( __snake_case , mode='''rb''' , protocol=__snake_case , compression=self.compression , client_kwargs={ '''requote_redirect_url''': False, # see https://github.com/huggingface/datasets/pull/5459 '''trust_env''': True, # Enable reading proxy env variables. **(target_options or {}).pop('''client_kwargs''' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) lowerCamelCase :List[str] = os.path.basename(self.file.path.split('''::''' )[0] ) lowerCamelCase :Dict = ( self.compressed_name[: self.compressed_name.rindex('''.''' )] if '''.''' in self.compressed_name else self.compressed_name ) lowerCamelCase :List[str] = None @classmethod def snake_case ( cls : Any , __snake_case : Any ): # compressed file paths are always relative to the archive root return super()._strip_protocol(__snake_case ).lstrip('''/''' ) def snake_case ( self : Any ): if self.dir_cache is None: lowerCamelCase :Optional[Any] = {**self.file.fs.info(self.file.path ), '''name''': self.uncompressed_name} lowerCamelCase :Optional[Any] = {f['''name''']: f} def snake_case ( self : Union[str, Any] , __snake_case : str ): return self.file.open().read() def snake_case ( self : Optional[int] , __snake_case : str , __snake_case : str = "rb" , __snake_case : int=None , __snake_case : Optional[int]=True , __snake_case : str=None , **__snake_case : str , ): lowerCamelCase :List[str] = self._strip_protocol(__snake_case ) if mode != "rb": raise ValueError(F"Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'" ) return self.file.open() class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'bz2' _UpperCAmelCase = 'bz2' _UpperCAmelCase = '.bz2' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'gzip' _UpperCAmelCase = 'gzip' _UpperCAmelCase = '.gz' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'lz4' _UpperCAmelCase = 'lz4' _UpperCAmelCase = '.lz4' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'xz' _UpperCAmelCase = 'xz' _UpperCAmelCase = '.xz' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'zstd' _UpperCAmelCase = 'zstd' _UpperCAmelCase = '.zst' def __init__( self : str , __snake_case : str , __snake_case : str = "rb" , __snake_case : Optional[str] = None , __snake_case : Optional[dict] = None , __snake_case : int = DEFAULT_BLOCK_SIZE , **__snake_case : int , ): super().__init__( fo=__snake_case , mode=__snake_case , target_protocol=__snake_case , target_options=__snake_case , block_size=__snake_case , **__snake_case , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 lowerCamelCase :Tuple = self.file.__enter__ class _lowerCAmelCase : def __init__( self : Dict , __snake_case : Tuple ): lowerCamelCase :Optional[int] = file_ def __enter__( self : Optional[int] ): self._file.__enter__() return self def __exit__( self : str , *__snake_case : Optional[Any] , **__snake_case : List[Any] ): self._file.__exit__(*__snake_case , **__snake_case ) def __iter__( self : Optional[Any] ): return iter(self._file ) def snake_case ( self : List[Any] ): return next(self._file ) def __getattr__( self : Any , __snake_case : str ): return getattr(self._file , __snake_case ) def fixed_enter(*__snake_case : Optional[int] , **__snake_case : str ): return WrappedFile(_enter(*__snake_case , **__snake_case ) ) lowerCamelCase :Dict = fixed_enter
49
0
from __future__ import annotations A__ = 10 def _lowerCamelCase ( a_ : list[int]): lowerCamelCase :Any = 1 lowerCamelCase :List[str] = max(a_) while placement <= max_digit: # declare and initialize empty buckets lowerCamelCase :list[list] = [[] for _ in range(a_)] # split list_of_ints between the buckets for i in list_of_ints: lowerCamelCase :Tuple = int((i / placement) % RADIX) buckets[tmp].append(a_) # put each buckets' contents into list_of_ints lowerCamelCase :Optional[int] = 0 for b in range(a_): for i in buckets[b]: lowerCamelCase :List[Any] = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
716
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = LEDTokenizer _UpperCAmelCase = LEDTokenizerFast _UpperCAmelCase = True def snake_case ( self : Any ): super().setUp() lowerCamelCase :Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] lowerCamelCase :Any = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) lowerCamelCase :List[str] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCamelCase :int = {'''unk_token''': '''<unk>'''} lowerCamelCase :Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__snake_case ) ) def snake_case ( self : int , **__snake_case : int ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Dict , **__snake_case : Any ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Optional[Any] , __snake_case : Union[str, Any] ): return "lower newer", "lower newer" @cached_property def snake_case ( self : Any ): return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' ) @cached_property def snake_case ( self : int ): return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' ) @require_torch def snake_case ( self : str ): lowerCamelCase :Any = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowerCamelCase :List[Any] = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[Any] = tokenizer(__snake_case , max_length=len(__snake_case ) , padding=__snake_case , return_tensors='''pt''' ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowerCamelCase :List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(__snake_case , __snake_case ) @require_torch def snake_case ( self : Tuple ): lowerCamelCase :Dict = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Union[str, Any] = tokenizer(__snake_case , padding=__snake_case , return_tensors='''pt''' ) self.assertIn('''input_ids''' , __snake_case ) self.assertIn('''attention_mask''' , __snake_case ) self.assertNotIn('''labels''' , __snake_case ) self.assertNotIn('''decoder_attention_mask''' , __snake_case ) @require_torch def snake_case ( self : Union[str, Any] ): lowerCamelCase :Union[str, Any] = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :List[Any] = tokenizer(text_target=__snake_case , max_length=32 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) @require_torch def snake_case ( self : List[Any] ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[Any] = tokenizer( ['''I am a small frog''' * 1024, '''I am a small frog'''] , padding=__snake_case , truncation=__snake_case , return_tensors='''pt''' ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def snake_case ( self : Optional[int] ): lowerCamelCase :Union[str, Any] = ['''A long paragraph for summarization.'''] lowerCamelCase :Any = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Union[str, Any] = tokenizer(__snake_case , return_tensors='''pt''' ) lowerCamelCase :Any = tokenizer(text_target=__snake_case , return_tensors='''pt''' ) lowerCamelCase :Optional[int] = inputs['''input_ids'''] lowerCamelCase :Any = targets['''input_ids'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def snake_case ( self : Dict ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[int] = ['''Summary of the text.''', '''Another summary.'''] lowerCamelCase :List[Any] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] lowerCamelCase :Optional[int] = tokenizer(__snake_case , padding=__snake_case ) lowerCamelCase :Union[str, Any] = [[0] * len(__snake_case ) for x in encoded_output['''input_ids''']] lowerCamelCase :str = tokenizer.pad(__snake_case ) self.assertSequenceEqual(outputs['''global_attention_mask'''] , __snake_case ) def snake_case ( self : Tuple ): pass def snake_case ( self : Optional[int] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase :Optional[Any] = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :Tuple = self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :int = '''A, <mask> AllenNLP sentence.''' lowerCamelCase :str = tokenizer_r.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case ) lowerCamelCase :str = tokenizer_p.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case ) self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) lowerCamelCase :Optional[int] = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) lowerCamelCase :Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __snake_case , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __snake_case , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
49
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A__ = { """configuration_mvp""": ["""MVP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MvpConfig""", """MvpOnnxConfig"""], """tokenization_mvp""": ["""MvpTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""MvpTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """MVP_PRETRAINED_MODEL_ARCHIVE_LIST""", """MvpForCausalLM""", """MvpForConditionalGeneration""", """MvpForQuestionAnswering""", """MvpForSequenceClassification""", """MvpModel""", """MvpPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
717
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) A__ = { """configuration_layoutlmv2""": ["""LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv2Config"""], """processing_layoutlmv2""": ["""LayoutLMv2Processor"""], """tokenization_layoutlmv2""": ["""LayoutLMv2Tokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""LayoutLMv2TokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""LayoutLMv2FeatureExtractor"""] A__ = ["""LayoutLMv2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """LayoutLMv2ForQuestionAnswering""", """LayoutLMv2ForSequenceClassification""", """LayoutLMv2ForTokenClassification""", """LayoutLMv2Layer""", """LayoutLMv2Model""", """LayoutLMv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
49
0
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = DebertaTokenizer _UpperCAmelCase = True _UpperCAmelCase = DebertaTokenizerFast def snake_case ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase :Dict = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] lowerCamelCase :List[str] = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) lowerCamelCase :Any = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCamelCase :Dict = {'''unk_token''': '''[UNK]'''} lowerCamelCase :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase :List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__snake_case ) ) def snake_case ( self : str , **__snake_case : Dict ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Optional[Any] , __snake_case : int ): lowerCamelCase :List[Any] = '''lower newer''' lowerCamelCase :List[str] = '''lower newer''' return input_text, output_text def snake_case ( self : str ): lowerCamelCase :Optional[int] = self.get_tokenizer() lowerCamelCase :Union[str, Any] = '''lower newer''' lowerCamelCase :str = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] lowerCamelCase :Optional[int] = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) lowerCamelCase :List[str] = tokens + [tokenizer.unk_token] lowerCamelCase :Optional[int] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def snake_case ( self : Optional[int] ): lowerCamelCase :List[str] = self.get_tokenizer() lowerCamelCase :Optional[int] = tokenizer('''Hello''' , '''World''' ) lowerCamelCase :List[str] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __snake_case ) @slow def snake_case ( self : str ): lowerCamelCase :Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) lowerCamelCase :Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__snake_case ) lowerCamelCase :Tuple = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__snake_case ) lowerCamelCase :Union[str, Any] = tokenizer.encode( '''sequence builders''' , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) lowerCamelCase :str = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) lowerCamelCase :Any = tokenizer.build_inputs_with_special_tokens(__snake_case ) lowerCamelCase :Dict = tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def snake_case ( self : str ): lowerCamelCase :List[str] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: lowerCamelCase :int = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) lowerCamelCase :Tuple = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] lowerCamelCase :List[Any] = tokenizer(__snake_case , padding=__snake_case ) lowerCamelCase :Union[str, Any] = [tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) for seq in encoding['''input_ids''']] # fmt: off lowerCamelCase :Any = { '''input_ids''': [ [1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on lowerCamelCase :Optional[int] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __snake_case ) for expected, decoded in zip(__snake_case , __snake_case ): self.assertEqual(__snake_case , __snake_case )
718
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _lowerCAmelCase : @staticmethod def snake_case ( *__snake_case : str , **__snake_case : str ): pass @is_pipeline_test @require_vision class _lowerCAmelCase ( unittest.TestCase ): @require_torch def snake_case ( self : Union[str, Any] ): lowerCamelCase :Optional[int] = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Dict = image_classifier(__snake_case , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__snake_case ) , [ [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}], [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}], ] , ) lowerCamelCase :Tuple = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], ] , ) @require_tf def snake_case ( self : Tuple ): lowerCamelCase :Tuple = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Optional[Any] = image_classifier(__snake_case , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(__snake_case ) , [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}] , ) lowerCamelCase :int = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], ] , ) @slow @require_torch def snake_case ( self : Any ): lowerCamelCase :str = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Optional[Any] = image_classifier(__snake_case , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) lowerCamelCase :Any = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def snake_case ( self : Optional[Any] ): lowerCamelCase :Union[str, Any] = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes lowerCamelCase :Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Dict = image_classifier(__snake_case , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) lowerCamelCase :Any = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , )
49
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""NllbTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""NllbTokenizerFast"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
719
import operator as op def _lowerCamelCase ( a_ : Tuple): lowerCamelCase :int = [] lowerCamelCase :List[str] = lambda a_ , a_: int(x / y) # noqa: E731 integer division operation lowerCamelCase :Optional[int] = { '''^''': op.pow, '''*''': op.mul, '''/''': div, '''+''': op.add, '''-''': op.sub, } # operators & their respective operation # print table header print('''Symbol'''.center(8) , '''Action'''.center(12) , '''Stack''' , sep=''' | ''') print('''-''' * (30 + len(a_))) for x in post_fix: if x.isdigit(): # if x in digit stack.append(a_) # append x to stack # output in tabular format print(x.rjust(8) , ('''push(''' + x + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') else: lowerCamelCase :Optional[Any] = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8) , ('''pop(''' + b + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') lowerCamelCase :str = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8) , ('''pop(''' + a + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') stack.append( str(opr[x](int(a_) , int(a_)))) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8) , ('''push(''' + a + x + b + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''' , ) return int(stack[0]) if __name__ == "__main__": A__ = input("""\n\nEnter a Postfix Equation (space separated) = """).split(""" """) print("""\n\tResult = """, solve(Postfix))
49
0
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( 'The RoBERTa Model transformer with early exiting (DeeRoBERTa). ' , __SCREAMING_SNAKE_CASE , ) class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = RobertaConfig _UpperCAmelCase = 'roberta' def __init__( self : Dict , __snake_case : Optional[int] ): super().__init__(__snake_case ) lowerCamelCase :Optional[int] = RobertaEmbeddings(__snake_case ) self.init_weights() @add_start_docstrings( 'RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. ' , __SCREAMING_SNAKE_CASE , ) class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = RobertaConfig _UpperCAmelCase = 'roberta' def __init__( self : List[str] , __snake_case : Optional[Any] ): super().__init__(__snake_case ) lowerCamelCase :Any = config.num_labels lowerCamelCase :Union[str, Any] = config.num_hidden_layers lowerCamelCase :Optional[int] = DeeRobertaModel(__snake_case ) lowerCamelCase :Dict = nn.Dropout(config.hidden_dropout_prob ) lowerCamelCase :Optional[Any] = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(__snake_case ) def snake_case ( self : int , __snake_case : Optional[int]=None , __snake_case : int=None , __snake_case : Optional[Any]=None , __snake_case : Union[str, Any]=None , __snake_case : Any=None , __snake_case : int=None , __snake_case : Union[str, Any]=None , __snake_case : Dict=-1 , __snake_case : Optional[Any]=False , ): lowerCamelCase :List[str] = self.num_layers try: lowerCamelCase :Tuple = self.roberta( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , position_ids=__snake_case , head_mask=__snake_case , inputs_embeds=__snake_case , ) lowerCamelCase :int = outputs[1] lowerCamelCase :str = self.dropout(__snake_case ) lowerCamelCase :List[Any] = self.classifier(__snake_case ) lowerCamelCase :Optional[int] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: lowerCamelCase :Union[str, Any] = e.message lowerCamelCase :List[Any] = e.exit_layer lowerCamelCase :Union[str, Any] = outputs[0] if not self.training: lowerCamelCase :List[str] = entropy(__snake_case ) lowerCamelCase :Union[str, Any] = [] lowerCamelCase :Dict = [] if labels is not None: if self.num_labels == 1: # We are doing regression lowerCamelCase :List[str] = MSELoss() lowerCamelCase :Tuple = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: lowerCamelCase :List[str] = CrossEntropyLoss() lowerCamelCase :Dict = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits lowerCamelCase :List[Any] = [] for highway_exit in outputs[-1]: lowerCamelCase :Optional[int] = highway_exit[0] if not self.training: highway_logits_all.append(__snake_case ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression lowerCamelCase :Dict = MSELoss() lowerCamelCase :int = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: lowerCamelCase :int = CrossEntropyLoss() lowerCamelCase :List[Any] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(__snake_case ) if train_highway: lowerCamelCase :Dict = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: lowerCamelCase :Union[str, Any] = (loss,) + outputs if not self.training: lowerCamelCase :List[str] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: lowerCamelCase :Union[str, Any] = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
720
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() A__ = logging.get_logger(__name__) A__ = """Hello, World!""" A__ = """en_XX""" def _lowerCamelCase ( a_ : str , a_ : str , a_ : bool): lowerCamelCase :int = Path('''data_bin''') lowerCamelCase :Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(a_).parent) , checkpoint_file=Path(a_).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(a_) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(a_).parent / '''sentencepiece.bpe.model''') , src_dict=str(data_dir / '''dict.txt''') , ) xmod.eval() # disable dropout print(a_) lowerCamelCase :Any = xmod.model.encoder.sentence_encoder lowerCamelCase :List[str] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: lowerCamelCase :Dict = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our X-MOD config:''' , a_) lowerCamelCase :List[Any] = XmodForSequenceClassification(a_) if classification_head else XmodForMaskedLM(a_) model.eval() # Now let's copy all the weights. # Embeddings lowerCamelCase :Union[str, Any] = xmod_sent_encoder.embed_tokens.weight lowerCamelCase :Tuple = xmod_sent_encoder.embed_positions.weight lowerCamelCase :List[str] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight) # just zero them out b/c xmod doesn't use them. lowerCamelCase :List[Any] = xmod_sent_encoder.layernorm_embedding.weight lowerCamelCase :Optional[int] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers): # Encoder: start of layer lowerCamelCase :Union[str, Any] = model.roberta.encoder.layer[i] lowerCamelCase :List[str] = xmod_sent_encoder.layers[i] # self attention lowerCamelCase :Optional[int] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size)) ): raise AssertionError('''Dimensions of self-attention weights do not match.''') lowerCamelCase :Optional[int] = xmod_layer.self_attn.q_proj.weight lowerCamelCase :List[str] = xmod_layer.self_attn.q_proj.bias lowerCamelCase :str = xmod_layer.self_attn.k_proj.weight lowerCamelCase :Optional[Any] = xmod_layer.self_attn.k_proj.bias lowerCamelCase :Dict = xmod_layer.self_attn.v_proj.weight lowerCamelCase :Optional[int] = xmod_layer.self_attn.v_proj.bias # self-attention output lowerCamelCase :Optional[int] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('''Dimensions of self-attention output weights do not match.''') lowerCamelCase :List[Any] = xmod_layer.self_attn.out_proj.weight lowerCamelCase :Union[str, Any] = xmod_layer.self_attn.out_proj.bias lowerCamelCase :str = xmod_layer.self_attn_layer_norm.weight lowerCamelCase :List[Any] = xmod_layer.self_attn_layer_norm.bias # intermediate lowerCamelCase :Optional[int] = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of intermediate weights do not match.''') lowerCamelCase :int = xmod_layer.fca.weight lowerCamelCase :Union[str, Any] = xmod_layer.fca.bias # output lowerCamelCase :List[str] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of feed-forward weights do not match.''') lowerCamelCase :str = xmod_layer.fca.weight lowerCamelCase :int = xmod_layer.fca.bias lowerCamelCase :List[Any] = xmod_layer.final_layer_norm.weight lowerCamelCase :List[str] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: lowerCamelCase :List[str] = xmod_layer.adapter_layer_norm.weight lowerCamelCase :int = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys()) != sorted(xmod_layer.adapter_modules.keys()): raise AssertionError('''Lists of language adapters do not match.''') for lang_code, adapter in xmod_layer.adapter_modules.items(): lowerCamelCase :Optional[int] = bert_output.adapter_modules[lang_code] lowerCamelCase :Dict = xmod_layer.adapter_modules[lang_code] lowerCamelCase :List[Any] = from_adapter.fca.weight lowerCamelCase :List[Any] = from_adapter.fca.bias lowerCamelCase :Dict = from_adapter.fca.weight lowerCamelCase :Optional[Any] = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: lowerCamelCase :Dict = xmod_sent_encoder.layer_norm.weight lowerCamelCase :List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: lowerCamelCase :Union[str, Any] = xmod.model.classification_heads['''mnli'''].dense.weight lowerCamelCase :Tuple = xmod.model.classification_heads['''mnli'''].dense.bias lowerCamelCase :Optional[Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight lowerCamelCase :List[Any] = xmod.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head lowerCamelCase :int = xmod.model.encoder.lm_head.dense.weight lowerCamelCase :List[Any] = xmod.model.encoder.lm_head.dense.bias lowerCamelCase :Optional[int] = xmod.model.encoder.lm_head.layer_norm.weight lowerCamelCase :List[Any] = xmod.model.encoder.lm_head.layer_norm.bias lowerCamelCase :List[Any] = xmod.model.encoder.lm_head.weight lowerCamelCase :Any = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCamelCase :str = xmod.encode(a_).unsqueeze(0) # batch of size 1 model.roberta.set_default_language(a_) lowerCamelCase :Any = model(a_)[0] if classification_head: lowerCamelCase :Dict = xmod.model.classification_heads['''mnli'''](xmod.extract_features(a_)) else: lowerCamelCase :int = xmod.model(a_ , lang_id=[SAMPLE_LANGUAGE])[0] print(our_output.shape , their_output.shape) lowerCamelCase :List[str] = torch.max(torch.abs(our_output - their_output)).item() print(F"max_absolute_diff = {max_absolute_diff}") # ~ 1e-7 lowerCamelCase :str = torch.allclose(a_ , a_ , atol=1e-3) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''') if not success: raise Exception('''Something went wRoNg''') Path(a_).mkdir(parents=a_ , exist_ok=a_) print(F"Saving model to {pytorch_dump_folder_path}") model.save_pretrained(a_) if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) A__ = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
49
0
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin A__ : Optional[int] = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right A__ : int = 250_004 A__ : Optional[Any] = 250_020 @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = MBartaaTokenizer _UpperCAmelCase = MBartaaTokenizerFast _UpperCAmelCase = True _UpperCAmelCase = True def snake_case ( self : Union[str, Any] ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase :Optional[int] = MBartaaTokenizer(__snake_case , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case ( self : Dict ): lowerCamelCase :int = '''<s>''' lowerCamelCase :int = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) , __snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) , __snake_case ) def snake_case ( self : Union[str, Any] ): lowerCamelCase :Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(__snake_case ) , 1054 ) def snake_case ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 1054 ) def snake_case ( self : List[Any] ): lowerCamelCase :List[Any] = MBartaaTokenizer(__snake_case , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=__snake_case ) lowerCamelCase :List[str] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCamelCase :List[str] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __snake_case , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , ) lowerCamelCase :Tuple = tokenizer.convert_tokens_to_ids(__snake_case ) self.assertListEqual( __snake_case , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowerCamelCase :str = tokenizer.convert_ids_to_tokens(__snake_case ) self.assertListEqual( __snake_case , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , ) @slow def snake_case ( self : Union[str, Any] ): # fmt: off lowerCamelCase :Optional[Any] = {'''input_ids''': [[250004, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [250004, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [250004, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , ) def snake_case ( self : Optional[Any] ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCamelCase :Optional[Any] = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase :Tuple = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :Tuple = self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :int = tempfile.mkdtemp() lowerCamelCase :Union[str, Any] = tokenizer_r.save_pretrained(__snake_case ) lowerCamelCase :List[Any] = tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) lowerCamelCase :Union[str, Any] = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way lowerCamelCase :Any = tokenizer_r.from_pretrained(__snake_case ) lowerCamelCase :Any = tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=True lowerCamelCase :Union[str, Any] = tempfile.mkdtemp() lowerCamelCase :List[Any] = tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) lowerCamelCase :List[str] = tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way lowerCamelCase :Union[str, Any] = tokenizer_r.from_pretrained(__snake_case ) lowerCamelCase :Tuple = tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=False lowerCamelCase :Optional[Any] = tempfile.mkdtemp() lowerCamelCase :Optional[Any] = tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) lowerCamelCase :Optional[Any] = tokenizer_p.save_pretrained(__snake_case ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCamelCase :Dict = tokenizer_r.from_pretrained(__snake_case ) lowerCamelCase :List[Any] = tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) @require_torch @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( unittest.TestCase ): _UpperCAmelCase = 'facebook/mbart-large-50-one-to-many-mmt' _UpperCAmelCase = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] _UpperCAmelCase = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] _UpperCAmelCase = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2] @classmethod def snake_case ( cls : Any ): lowerCamelCase :MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) lowerCamelCase :str = 1 return cls def snake_case ( self : Union[str, Any] ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 250020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 250038 ) def snake_case ( self : Optional[int] ): lowerCamelCase :Dict = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) def snake_case ( self : Optional[int] ): self.assertIn(__snake_case , self.tokenizer.all_special_ids ) lowerCamelCase :Tuple = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] lowerCamelCase :List[str] = self.tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) lowerCamelCase :Any = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertNotIn(self.tokenizer.eos_token , __snake_case ) def snake_case ( self : Tuple ): lowerCamelCase :Any = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , __snake_case ) lowerCamelCase :Any = 10 lowerCamelCase :List[str] = self.tokenizer(__snake_case , max_length=__snake_case , truncation=__snake_case ).input_ids[0] self.assertEqual(ids[0] , __snake_case ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(__snake_case ) , __snake_case ) def snake_case ( self : Dict ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [250053, 250001] ) def snake_case ( self : Any ): lowerCamelCase :Any = tempfile.mkdtemp() lowerCamelCase :List[Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__snake_case ) lowerCamelCase :List[str] = MBartaaTokenizer.from_pretrained(__snake_case ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __snake_case ) @require_torch def snake_case ( self : List[Any] ): lowerCamelCase :Dict = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__snake_case , return_tensors='''pt''' ) lowerCamelCase :Optional[Any] = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def snake_case ( self : Union[str, Any] ): lowerCamelCase :Union[str, Any] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) lowerCamelCase :Any = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) lowerCamelCase :Union[str, Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def snake_case ( self : Optional[Any] ): lowerCamelCase :int = self.tokenizer(self.src_text , padding=__snake_case , truncation=__snake_case , max_length=3 , return_tensors='''pt''' ) lowerCamelCase :Tuple = self.tokenizer( text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=10 , return_tensors='''pt''' ) lowerCamelCase :Optional[Any] = targets['''input_ids'''] lowerCamelCase :List[str] = shift_tokens_right(__snake_case , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def snake_case ( self : List[str] ): lowerCamelCase :Tuple = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(__snake_case ) , { # en_XX, A, test, EOS '''input_ids''': [[250004, 62, 3034, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 250001, } , )
721
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { """andreasmadsen/efficient_mlm_m0.40""": ( """https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json""" ), } class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'roberta-prelayernorm' def __init__( self : str , __snake_case : List[str]=50265 , __snake_case : Union[str, Any]=768 , __snake_case : Tuple=12 , __snake_case : int=12 , __snake_case : Any=3072 , __snake_case : Optional[int]="gelu" , __snake_case : List[Any]=0.1 , __snake_case : int=0.1 , __snake_case : Union[str, Any]=512 , __snake_case : Dict=2 , __snake_case : int=0.0_2 , __snake_case : Any=1e-1_2 , __snake_case : Optional[int]=1 , __snake_case : Dict=0 , __snake_case : Optional[int]=2 , __snake_case : Any="absolute" , __snake_case : Union[str, Any]=True , __snake_case : List[str]=None , **__snake_case : Optional[int] , ): super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) lowerCamelCase :Optional[int] = vocab_size lowerCamelCase :Dict = hidden_size lowerCamelCase :Tuple = num_hidden_layers lowerCamelCase :Optional[int] = num_attention_heads lowerCamelCase :Any = hidden_act lowerCamelCase :List[Any] = intermediate_size lowerCamelCase :Union[str, Any] = hidden_dropout_prob lowerCamelCase :str = attention_probs_dropout_prob lowerCamelCase :Tuple = max_position_embeddings lowerCamelCase :int = type_vocab_size lowerCamelCase :Optional[Any] = initializer_range lowerCamelCase :Union[str, Any] = layer_norm_eps lowerCamelCase :Dict = position_embedding_type lowerCamelCase :List[Any] = use_cache lowerCamelCase :Optional[int] = classifier_dropout class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): @property def snake_case ( self : Any ): if self.task == "multiple-choice": lowerCamelCase :Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase :List[str] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
49
0
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def _lowerCamelCase ( a_ : Any): lowerCamelCase :Any = int(a_) lowerCamelCase :Optional[int] = t // 36_00, (t // 60) % 60, t % 60 return F"{h}:{m:02d}:{s:02d}" if h != 0 else F"{m:02d}:{s:02d}" def _lowerCamelCase ( a_ : Any , a_ : Union[str, Any] , a_ : Dict , a_ : List[str] , a_ : List[str]=3_00): # docstyle-ignore return F"\n <div>\n {prefix}\n <progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress>\n {label}\n </div>\n " def _lowerCamelCase ( a_ : int): lowerCamelCase :int = '''<table border="1" class="dataframe">\n''' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += F" <th>{i}</th>\n" html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: lowerCamelCase :List[str] = F"{elt:.6f}" if isinstance(a_ , a_) else str(a_) html_code += F" <td>{elt}</td>\n" html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class _lowerCAmelCase : _UpperCAmelCase = 5 _UpperCAmelCase = 0.2 def __init__( self : Union[str, Any] , __snake_case : int , __snake_case : Optional[str] = None , __snake_case : bool = True , __snake_case : Optional["NotebookTrainingTracker"] = None , __snake_case : int = 300 , ): lowerCamelCase :Dict = total lowerCamelCase :Tuple = '''''' if prefix is None else prefix lowerCamelCase :Tuple = leave lowerCamelCase :List[Any] = parent lowerCamelCase :int = width lowerCamelCase :Optional[Any] = None lowerCamelCase :str = None lowerCamelCase :List[Any] = None def snake_case ( self : Optional[int] , __snake_case : int , __snake_case : bool = False , __snake_case : str = None ): lowerCamelCase :Tuple = value if comment is not None: lowerCamelCase :int = comment if self.last_value is None: lowerCamelCase :Dict = time.time() lowerCamelCase :List[str] = value lowerCamelCase :Dict = None lowerCamelCase :Tuple = self.warmup lowerCamelCase :Dict = 1 self.update_bar(__snake_case ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 lowerCamelCase :Dict = time.time() lowerCamelCase :int = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: lowerCamelCase :Optional[int] = self.elapsed_time / (value - self.start_value) else: lowerCamelCase :Optional[int] = None if value >= self.total: lowerCamelCase :List[str] = self.total lowerCamelCase :List[str] = None if not self.leave: self.close() elif self.average_time_per_item is not None: lowerCamelCase :List[str] = self.average_time_per_item * (self.total - value) self.update_bar(__snake_case ) lowerCamelCase :Optional[Any] = value lowerCamelCase :Tuple = current_time if self.average_time_per_item is None: lowerCamelCase :Optional[int] = 1 else: lowerCamelCase :Union[str, Any] = max(int(self.update_every / self.average_time_per_item ) , 1 ) def snake_case ( self : Optional[Any] , __snake_case : Tuple , __snake_case : List[Any]=None ): lowerCamelCase :List[Any] = ''' ''' * (len(str(self.total ) ) - len(str(__snake_case ) )) + str(__snake_case ) if self.elapsed_time is None: lowerCamelCase :str = F"[{spaced_value}/{self.total} : < :" elif self.predicted_remaining is None: lowerCamelCase :Optional[Any] = F"[{spaced_value}/{self.total} {format_time(self.elapsed_time )}" else: lowerCamelCase :str = ( F"[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <" F" {format_time(self.predicted_remaining )}" ) self.label += F", {1/self.average_time_per_item:.2f} it/s" self.label += "]" if self.comment is None or len(self.comment ) == 0 else F", {self.comment}]" self.display() def snake_case ( self : Union[str, Any] ): lowerCamelCase :Dict = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: lowerCamelCase :Union[str, Any] = disp.display(disp.HTML(self.html_code ) , display_id=__snake_case ) else: self.output.update(disp.HTML(self.html_code ) ) def snake_case ( self : str ): if self.parent is None and self.output is not None: self.output.update(disp.HTML('''''' ) ) class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self : int , __snake_case : Optional[int] , __snake_case : List[Any]=None ): super().__init__(__snake_case ) lowerCamelCase :List[Any] = None if column_names is None else [column_names] lowerCamelCase :Optional[int] = None def snake_case ( self : List[Any] ): lowerCamelCase :int = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: lowerCamelCase :List[Any] = disp.display(disp.HTML(self.html_code ) , display_id=__snake_case ) else: self.output.update(disp.HTML(self.html_code ) ) def snake_case ( self : Union[str, Any] , __snake_case : Tuple ): if self.inner_table is None: lowerCamelCase :Union[str, Any] = [list(values.keys() ), list(values.values() )] else: lowerCamelCase :Optional[int] = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(__snake_case ) lowerCamelCase :List[Any] = columns self.inner_table.append([values[c] for c in columns] ) def snake_case ( self : Union[str, Any] , __snake_case : List[str] , __snake_case : List[Any]=None , __snake_case : Tuple=300 ): lowerCamelCase :Any = NotebookProgressBar(__snake_case , prefix=__snake_case , parent=self , width=__snake_case ) return self.child_bar def snake_case ( self : Optional[Any] ): lowerCamelCase :int = None self.display() class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self : Any ): lowerCamelCase :Optional[Any] = None lowerCamelCase :int = None lowerCamelCase :Optional[int] = False def snake_case ( self : Any , __snake_case : Tuple , __snake_case : Optional[int] , __snake_case : Any , **__snake_case : Optional[int] ): lowerCamelCase :int = '''Epoch''' if args.evaluation_strategy == IntervalStrategy.EPOCH else '''Step''' lowerCamelCase :List[Any] = 0 lowerCamelCase :List[str] = 0 lowerCamelCase :Tuple = [self.first_column] + ['''Training Loss'''] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('''Validation Loss''' ) lowerCamelCase :Optional[Any] = NotebookTrainingTracker(state.max_steps , __snake_case ) def snake_case ( self : Optional[Any] , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Dict , **__snake_case : Any ): lowerCamelCase :List[Any] = int(state.epoch ) if int(state.epoch ) == state.epoch else F"{state.epoch:.2f}" self.training_tracker.update( state.global_step + 1 , comment=F"Epoch {epoch}/{state.num_train_epochs}" , force_update=self._force_next_update , ) lowerCamelCase :Optional[int] = False def snake_case ( self : Tuple , __snake_case : Tuple , __snake_case : List[Any] , __snake_case : str , __snake_case : int=None , **__snake_case : Optional[Any] ): if not has_length(__snake_case ): return if self.prediction_bar is None: if self.training_tracker is not None: lowerCamelCase :List[str] = self.training_tracker.add_child(len(__snake_case ) ) else: lowerCamelCase :str = NotebookProgressBar(len(__snake_case ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def snake_case ( self : List[str] , __snake_case : Dict , __snake_case : Any , __snake_case : str , **__snake_case : List[Any] ): if self.prediction_bar is not None: self.prediction_bar.close() lowerCamelCase :List[str] = None def snake_case ( self : int , __snake_case : str , __snake_case : int , __snake_case : str , __snake_case : Any=None , **__snake_case : Tuple ): # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: lowerCamelCase :Tuple = {'''Training Loss''': logs['''loss''']} # First column is necessarily Step sine we're not in epoch eval strategy lowerCamelCase :Dict = state.global_step self.training_tracker.write_line(__snake_case ) def snake_case ( self : int , __snake_case : List[str] , __snake_case : List[str] , __snake_case : str , __snake_case : Union[str, Any]=None , **__snake_case : str ): if self.training_tracker is not None: lowerCamelCase :Optional[Any] = {'''Training Loss''': '''No log''', '''Validation Loss''': '''No log'''} for log in reversed(state.log_history ): if "loss" in log: lowerCamelCase :Any = log['''loss'''] break if self.first_column == "Epoch": lowerCamelCase :Tuple = int(state.epoch ) else: lowerCamelCase :Optional[int] = state.global_step lowerCamelCase :Tuple = '''eval''' for k in metrics: if k.endswith('''_loss''' ): lowerCamelCase :Union[str, Any] = re.sub(R'''\_loss$''' , '''''' , __snake_case ) lowerCamelCase :List[Any] = metrics.pop('''total_flos''' , __snake_case ) lowerCamelCase :Union[str, Any] = metrics.pop('''epoch''' , __snake_case ) lowerCamelCase :List[Any] = metrics.pop(F"{metric_key_prefix}_runtime" , __snake_case ) lowerCamelCase :Dict = metrics.pop(F"{metric_key_prefix}_samples_per_second" , __snake_case ) lowerCamelCase :List[Any] = metrics.pop(F"{metric_key_prefix}_steps_per_second" , __snake_case ) lowerCamelCase :List[str] = metrics.pop(F"{metric_key_prefix}_jit_compilation_time" , __snake_case ) for k, v in metrics.items(): if k == F"{metric_key_prefix}_loss": lowerCamelCase :List[str] = v else: lowerCamelCase :Any = k.split('''_''' ) lowerCamelCase :Optional[Any] = ''' '''.join([part.capitalize() for part in splits[1:]] ) lowerCamelCase :Union[str, Any] = v self.training_tracker.write_line(__snake_case ) self.training_tracker.remove_child() lowerCamelCase :Dict = None # Evaluation takes a long time so we should force the next update. lowerCamelCase :List[Any] = True def snake_case ( self : Optional[int] , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Tuple , **__snake_case : Tuple ): self.training_tracker.update( state.global_step , comment=F"Epoch {int(state.epoch )}/{state.num_train_epochs}" , force_update=__snake_case ) lowerCamelCase :Any = None
700
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = DebertaTokenizer _UpperCAmelCase = True _UpperCAmelCase = DebertaTokenizerFast def snake_case ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase :Dict = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] lowerCamelCase :List[str] = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) lowerCamelCase :Any = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCamelCase :Dict = {'''unk_token''': '''[UNK]'''} lowerCamelCase :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase :List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__snake_case ) ) def snake_case ( self : str , **__snake_case : Dict ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Optional[Any] , __snake_case : int ): lowerCamelCase :List[Any] = '''lower newer''' lowerCamelCase :List[str] = '''lower newer''' return input_text, output_text def snake_case ( self : str ): lowerCamelCase :Optional[int] = self.get_tokenizer() lowerCamelCase :Union[str, Any] = '''lower newer''' lowerCamelCase :str = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] lowerCamelCase :Optional[int] = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) lowerCamelCase :List[str] = tokens + [tokenizer.unk_token] lowerCamelCase :Optional[int] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def snake_case ( self : Optional[int] ): lowerCamelCase :List[str] = self.get_tokenizer() lowerCamelCase :Optional[int] = tokenizer('''Hello''' , '''World''' ) lowerCamelCase :List[str] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __snake_case ) @slow def snake_case ( self : str ): lowerCamelCase :Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) lowerCamelCase :Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__snake_case ) lowerCamelCase :Tuple = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__snake_case ) lowerCamelCase :Union[str, Any] = tokenizer.encode( '''sequence builders''' , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) lowerCamelCase :str = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) lowerCamelCase :Any = tokenizer.build_inputs_with_special_tokens(__snake_case ) lowerCamelCase :Dict = tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def snake_case ( self : str ): lowerCamelCase :List[str] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: lowerCamelCase :int = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) lowerCamelCase :Tuple = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] lowerCamelCase :List[Any] = tokenizer(__snake_case , padding=__snake_case ) lowerCamelCase :Union[str, Any] = [tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) for seq in encoding['''input_ids''']] # fmt: off lowerCamelCase :Any = { '''input_ids''': [ [1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on lowerCamelCase :Optional[int] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __snake_case ) for expected, decoded in zip(__snake_case , __snake_case ): self.assertEqual(__snake_case , __snake_case )
49
0
from __future__ import annotations def _lowerCamelCase ( a_ : int): lowerCamelCase :Union[str, Any] = [True] * limit lowerCamelCase :Tuple = False lowerCamelCase :List[str] = False lowerCamelCase :List[Any] = True for i in range(3 , int(limit**0.5 + 1) , 2): lowerCamelCase :List[Any] = i * 2 while index < limit: lowerCamelCase :Union[str, Any] = False lowerCamelCase :List[Any] = index + i lowerCamelCase :List[str] = [2] for i in range(3 , a_ , 2): if is_prime[i]: primes.append(a_) return primes def _lowerCamelCase ( a_ : int = 1_00_00_00): lowerCamelCase :Tuple = prime_sieve(a_) lowerCamelCase :str = 0 lowerCamelCase :Dict = 0 for i in range(len(a_)): for j in range(i + length , len(a_)): lowerCamelCase :Dict = sum(primes[i:j]) if sol >= ceiling: break if sol in primes: lowerCamelCase :str = j - i lowerCamelCase :Optional[int] = sol return largest if __name__ == "__main__": print(F'{solution() = }')
701
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) A__ = [ """cross_validation.py""", """gradient_accumulation.py""", """local_sgd.py""", """multi_process_metrics.py""", """memory.py""", """automatic_gradient_accumulation.py""", """fsdp_with_peak_mem_tracking.py""", """deepspeed_with_config_support.py""", """megatron_lm_gpt_pretraining.py""", ] class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Any , __snake_case : str , __snake_case : bool , __snake_case : str = None , __snake_case : list = None ): lowerCamelCase :Tuple = None lowerCamelCase :Tuple = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) lowerCamelCase :Optional[int] = os.path.abspath('''examples''' ) for item in os.listdir(__snake_case ): if item not in EXCLUDE_EXAMPLES: lowerCamelCase :Optional[int] = os.path.join(__snake_case , __snake_case ) if os.path.isfile(__snake_case ) and ".py" in item_path: with self.subTest( tested_script=__snake_case , feature_script=__snake_case , tested_section='''main()''' if parser_only else '''training_function()''' , ): lowerCamelCase :Union[str, Any] = compare_against_test( os.path.join(__snake_case , __snake_case ) , __snake_case , __snake_case , __snake_case ) lowerCamelCase :int = '''\n'''.join(__snake_case ) if special_strings is not None: for string in special_strings: lowerCamelCase :int = diff.replace(__snake_case , '''''' ) self.assertEqual(__snake_case , '''''' ) def snake_case ( self : Dict ): self.one_complete_example('''complete_nlp_example.py''' , __snake_case ) self.one_complete_example('''complete_nlp_example.py''' , __snake_case ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Union[str, Any] = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) lowerCamelCase :Optional[int] = [ ''' ''' * 16 + '''{\n\n''', ''' ''' * 20 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 20 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 20 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 20 + '''"epoch": epoch,\n\n''', ''' ''' * 16 + '''},\n\n''', ''' ''' * 16 + '''step=epoch,\n''', ''' ''' * 12, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , __snake_case , __snake_case , __snake_case ) self.one_complete_example('''complete_cv_example.py''' , __snake_case , __snake_case , __snake_case ) @mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '1'} ) class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = False @classmethod def snake_case ( cls : Optional[Any] ): super().setUpClass() lowerCamelCase :Any = tempfile.mkdtemp() lowerCamelCase :Optional[int] = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) lowerCamelCase :List[str] = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def snake_case ( cls : Dict ): super().tearDownClass() shutil.rmtree(cls._tmpdir ) def snake_case ( self : int ): lowerCamelCase :Any = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def snake_case ( self : List[Any] ): lowerCamelCase :Tuple = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n ".split() lowerCamelCase :List[Any] = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def snake_case ( self : List[str] ): lowerCamelCase :Dict = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}\n ".split() lowerCamelCase :Dict = run_command(self._launch_args + testargs , return_stdout=__snake_case ) self.assertNotIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) def snake_case ( self : str ): lowerCamelCase :List[Any] = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}\n ".split() lowerCamelCase :Optional[int] = run_command(self._launch_args + testargs , return_stdout=__snake_case ) if torch.cuda.is_available(): lowerCamelCase :Union[str, Any] = torch.cuda.device_count() else: lowerCamelCase :Dict = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) else: self.assertIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) @slow def snake_case ( self : Any ): lowerCamelCase :Tuple = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): lowerCamelCase :Dict = run_command(self._launch_args + testargs , return_stdout=__snake_case ) lowerCamelCase :Tuple = re.findall('''({.+})''' , __snake_case ) lowerCamelCase :Optional[Any] = [r for r in results if '''accuracy''' in r][-1] lowerCamelCase :List[str] = ast.literal_eval(__snake_case ) self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 ) def snake_case ( self : int ): lowerCamelCase :Dict = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case ( self : Any ): with tempfile.TemporaryDirectory() as tmpdir: lowerCamelCase :Tuple = F"\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__snake_case , '''tracking''' ) ) ) def snake_case ( self : Tuple ): lowerCamelCase :Tuple = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def snake_case ( self : Optional[Any] ): lowerCamelCase :int = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
49
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A__ = logging.get_logger(__name__) A__ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} A__ = { """tokenizer_file""": { """EleutherAI/gpt-neox-20b""": """https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json""", }, } A__ = { """gpt-neox-20b""": 2_048, } class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ['input_ids', 'attention_mask'] def __init__( self : int , __snake_case : Optional[Any]=None , __snake_case : int=None , __snake_case : Tuple=None , __snake_case : str="<|endoftext|>" , __snake_case : Dict="<|endoftext|>" , __snake_case : Optional[int]="<|endoftext|>" , __snake_case : Any=False , **__snake_case : Optional[int] , ): super().__init__( __snake_case , __snake_case , tokenizer_file=__snake_case , unk_token=__snake_case , bos_token=__snake_case , eos_token=__snake_case , add_prefix_space=__snake_case , **__snake_case , ) lowerCamelCase :List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , __snake_case ) != add_prefix_space: lowerCamelCase :int = getattr(__snake_case , pre_tok_state.pop('''type''' ) ) lowerCamelCase :str = add_prefix_space lowerCamelCase :str = pre_tok_class(**__snake_case ) lowerCamelCase :Optional[int] = add_prefix_space def snake_case ( self : List[str] , __snake_case : str , __snake_case : Optional[str] = None ): lowerCamelCase :Any = self._tokenizer.model.save(__snake_case , name=__snake_case ) return tuple(__snake_case ) def snake_case ( self : Tuple , __snake_case : "Conversation" ): lowerCamelCase :Any = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__snake_case , add_special_tokens=__snake_case ) + [self.eos_token_id] ) if len(__snake_case ) > self.model_max_length: lowerCamelCase :Optional[Any] = input_ids[-self.model_max_length :] return input_ids
702
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs A__ = imread(R"""digital_image_processing/image_data/lena_small.jpg""") A__ = cvtColor(img, COLOR_BGR2GRAY) def _lowerCamelCase ( ): lowerCamelCase :int = cn.convert_to_negative(a_) # assert negative_img array for at least one True assert negative_img.any() def _lowerCamelCase ( ): with Image.open('''digital_image_processing/image_data/lena_small.jpg''') as img: # Work around assertion for response assert str(cc.change_contrast(a_ , 1_10)).startswith( '''<PIL.Image.Image image mode=RGB size=100x100 at''') def _lowerCamelCase ( ): lowerCamelCase :Optional[Any] = canny.gen_gaussian_kernel(9 , sigma=1.4) # Assert ambiguous array assert resp.all() def _lowerCamelCase ( ): lowerCamelCase :str = imread('''digital_image_processing/image_data/lena_small.jpg''' , 0) # assert ambiguous array for all == True assert canny_img.all() lowerCamelCase :Optional[Any] = canny.canny(a_) # assert canny array for at least one True assert canny_array.any() def _lowerCamelCase ( ): assert gg.gaussian_filter(a_ , 5 , sigma=0.9).all() def _lowerCamelCase ( ): # laplace diagonals lowerCamelCase :List[Any] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]]) lowerCamelCase :List[Any] = conv.img_convolve(a_ , a_).astype(a_) assert res.any() def _lowerCamelCase ( ): assert med.median_filter(a_ , 3).any() def _lowerCamelCase ( ): lowerCamelCase , lowerCamelCase :Union[str, Any] = sob.sobel_filter(a_) assert grad.any() and theta.any() def _lowerCamelCase ( ): lowerCamelCase :Dict = sp.make_sepia(a_ , 20) assert sepia.all() def _lowerCamelCase ( a_ : str = "digital_image_processing/image_data/lena_small.jpg"): lowerCamelCase :Any = bs.Burkes(imread(a_ , 1) , 1_20) burkes.process() assert burkes.output_img.any() def _lowerCamelCase ( a_ : str = "digital_image_processing/image_data/lena_small.jpg" , ): lowerCamelCase :Tuple = rs.NearestNeighbour(imread(a_ , 1) , 4_00 , 2_00) nn.process() assert nn.output.any() def _lowerCamelCase ( ): lowerCamelCase :Tuple = '''digital_image_processing/image_data/lena.jpg''' # Reading the image and converting it to grayscale. lowerCamelCase :Tuple = imread(a_ , 0) # Test for get_neighbors_pixel function() return not None lowerCamelCase :Dict = 0 lowerCamelCase :Optional[Any] = 0 lowerCamelCase :str = image[x_coordinate][y_coordinate] lowerCamelCase :Any = lbp.get_neighbors_pixel( a_ , a_ , a_ , a_) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCamelCase :int = np.zeros((image.shape[0], image.shape[1])) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0]): for j in range(0 , image.shape[1]): lowerCamelCase :Optional[int] = lbp.local_binary_value(a_ , a_ , a_) assert lbp_image.any()
49
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 4_2 class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): @register_to_config def __init__( self : Union[str, Any] , __snake_case : int = 3 , __snake_case : int = 3 , __snake_case : Tuple[str] = ("DownEncoderBlock2D",) , __snake_case : Tuple[str] = ("UpDecoderBlock2D",) , __snake_case : Tuple[int] = (64,) , __snake_case : int = 1 , __snake_case : str = "silu" , __snake_case : int = 3 , __snake_case : int = 32 , __snake_case : int = 256 , __snake_case : int = 32 , __snake_case : Optional[int] = None , __snake_case : float = 0.1_8_2_1_5 , __snake_case : str = "group" , ): super().__init__() # pass init params to Encoder lowerCamelCase :Tuple = Encoder( in_channels=__snake_case , out_channels=__snake_case , down_block_types=__snake_case , block_out_channels=__snake_case , layers_per_block=__snake_case , act_fn=__snake_case , norm_num_groups=__snake_case , double_z=__snake_case , ) lowerCamelCase :str = vq_embed_dim if vq_embed_dim is not None else latent_channels lowerCamelCase :List[Any] = nn.Convad(__snake_case , __snake_case , 1 ) lowerCamelCase :str = VectorQuantizer(__snake_case , __snake_case , beta=0.2_5 , remap=__snake_case , sane_index_shape=__snake_case ) lowerCamelCase :List[str] = nn.Convad(__snake_case , __snake_case , 1 ) # pass init params to Decoder lowerCamelCase :str = Decoder( in_channels=__snake_case , out_channels=__snake_case , up_block_types=__snake_case , block_out_channels=__snake_case , layers_per_block=__snake_case , act_fn=__snake_case , norm_num_groups=__snake_case , norm_type=__snake_case , ) @apply_forward_hook def snake_case ( self : Tuple , __snake_case : torch.FloatTensor , __snake_case : bool = True ): lowerCamelCase :str = self.encoder(__snake_case ) lowerCamelCase :int = self.quant_conv(__snake_case ) if not return_dict: return (h,) return VQEncoderOutput(latents=__snake_case ) @apply_forward_hook def snake_case ( self : Tuple , __snake_case : torch.FloatTensor , __snake_case : bool = False , __snake_case : bool = True ): # also go through quantization layer if not force_not_quantize: lowerCamelCase :List[str] = self.quantize(__snake_case ) else: lowerCamelCase :Any = h lowerCamelCase :List[str] = self.post_quant_conv(__snake_case ) lowerCamelCase :int = self.decoder(__snake_case , quant if self.config.norm_type == '''spatial''' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=__snake_case ) def snake_case ( self : str , __snake_case : torch.FloatTensor , __snake_case : bool = True ): lowerCamelCase :Union[str, Any] = sample lowerCamelCase :Optional[int] = self.encode(__snake_case ).latents lowerCamelCase :List[Any] = self.decode(__snake_case ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__snake_case )
703
import os from math import logaa def _lowerCamelCase ( a_ : str = "base_exp.txt"): lowerCamelCase :float = 0 lowerCamelCase :Optional[int] = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(a_) , a_))): lowerCamelCase , lowerCamelCase :Optional[int] = list(map(a_ , line.split(''','''))) if x * logaa(a_) > largest: lowerCamelCase :List[Any] = x * logaa(a_) lowerCamelCase :Any = i + 1 return result if __name__ == "__main__": print(solution())
49
0
'''simple docstring''' from __future__ import annotations def _lowerCamelCase ( a_ : list[int]): # This function is recursive lowerCamelCase :Union[str, Any] = len(a_) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowerCamelCase :Optional[Any] = array[0] lowerCamelCase :Any = False lowerCamelCase :Tuple = 1 lowerCamelCase :list[int] = [] while not is_found and i < array_length: if array[i] < pivot: lowerCamelCase :Any = True lowerCamelCase :Optional[int] = [element for element in array[i:] if element >= array[i]] lowerCamelCase :List[Any] = longest_subsequence(a_) if len(a_) > len(a_): lowerCamelCase :int = temp_array else: i += 1 lowerCamelCase :Optional[int] = [element for element in array[1:] if element >= pivot] lowerCamelCase :Union[str, Any] = [pivot, *longest_subsequence(a_)] if len(a_) > len(a_): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
704
def _lowerCamelCase ( a_ : list): if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''') for cell_n in range(1 , len(grid[0])): grid[0][cell_n] += grid[0][cell_n - 1] lowerCamelCase :Any = grid[0] for row_n in range(1 , len(a_)): lowerCamelCase :List[str] = grid[row_n] lowerCamelCase :Union[str, Any] = fill_row(a_ , a_) lowerCamelCase :List[Any] = grid[row_n] return grid[-1][-1] def _lowerCamelCase ( a_ : list , a_ : list): current_row[0] += row_above[0] for cell_n in range(1 , len(a_)): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n]) return current_row if __name__ == "__main__": import doctest doctest.testmod()
49
0
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _lowerCAmelCase : def __init__( self : Optional[Any] , __snake_case : Tuple , __snake_case : Union[str, Any]=13 , __snake_case : int=10 , __snake_case : Optional[Any]=3 , __snake_case : Union[str, Any]=2 , __snake_case : Tuple=2 , __snake_case : Union[str, Any]=2 , __snake_case : int=True , __snake_case : Dict=True , __snake_case : Optional[int]=32 , __snake_case : int=5 , __snake_case : List[Any]=4 , __snake_case : Union[str, Any]=37 , __snake_case : List[str]="gelu" , __snake_case : int=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : str=10 , __snake_case : Dict=0.0_2 , __snake_case : Union[str, Any]=0.9 , __snake_case : Any=None , ): lowerCamelCase :Dict = parent lowerCamelCase :List[Any] = batch_size lowerCamelCase :str = image_size lowerCamelCase :int = num_channels lowerCamelCase :Any = patch_size lowerCamelCase :Tuple = tubelet_size lowerCamelCase :int = num_frames lowerCamelCase :Any = is_training lowerCamelCase :List[str] = use_labels lowerCamelCase :Dict = hidden_size lowerCamelCase :int = num_hidden_layers lowerCamelCase :List[str] = num_attention_heads lowerCamelCase :Optional[int] = intermediate_size lowerCamelCase :Union[str, Any] = hidden_act lowerCamelCase :Dict = hidden_dropout_prob lowerCamelCase :Tuple = attention_probs_dropout_prob lowerCamelCase :List[Any] = type_sequence_label_size lowerCamelCase :List[Any] = initializer_range lowerCamelCase :Any = mask_ratio lowerCamelCase :Optional[Any] = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame lowerCamelCase :Optional[Any] = (image_size // patch_size) ** 2 lowerCamelCase :List[Any] = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos lowerCamelCase :Optional[Any] = int(mask_ratio * self.seq_length ) def snake_case ( self : Any ): lowerCamelCase :str = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase :Any = None if self.use_labels: lowerCamelCase :List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase :Any = self.get_config() return config, pixel_values, labels def snake_case ( self : List[Any] ): return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def snake_case ( self : List[Any] , __snake_case : int , __snake_case : List[Any] , __snake_case : List[Any] ): lowerCamelCase :str = VideoMAEModel(config=__snake_case ) model.to(__snake_case ) model.eval() lowerCamelCase :Optional[int] = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self : Tuple , __snake_case : List[Any] , __snake_case : Any , __snake_case : List[Any] ): lowerCamelCase :Any = VideoMAEForPreTraining(__snake_case ) model.to(__snake_case ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowerCamelCase :int = torch.ones((self.num_masks,) ) lowerCamelCase :Dict = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) lowerCamelCase :Optional[Any] = mask.expand(self.batch_size , -1 ).bool() lowerCamelCase :int = model(__snake_case , __snake_case ) # model only returns predictions for masked patches lowerCamelCase :Optional[Any] = mask.sum().item() lowerCamelCase :Any = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Tuple = self.prepare_config_and_inputs() lowerCamelCase :Optional[Any] = config_and_inputs lowerCamelCase :Optional[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) _UpperCAmelCase = ( {'feature-extraction': VideoMAEModel, 'video-classification': VideoMAEForVideoClassification} if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def snake_case ( self : str ): lowerCamelCase :Union[str, Any] = VideoMAEModelTester(self ) lowerCamelCase :Tuple = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=37 ) def snake_case ( self : Tuple , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : int=False ): lowerCamelCase :Optional[Any] = copy.deepcopy(__snake_case ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowerCamelCase :Optional[int] = torch.ones((self.model_tester.num_masks,) ) lowerCamelCase :Tuple = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) lowerCamelCase :Optional[int] = mask.expand(self.model_tester.batch_size , -1 ).bool() lowerCamelCase :Tuple = bool_masked_pos.to(__snake_case ) if return_labels: if model_class in [ *get_values(__snake_case ), ]: lowerCamelCase :str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def snake_case ( self : Tuple ): self.config_tester.run_common_tests() @unittest.skip(reason='''VideoMAE does not use inputs_embeds''' ) def snake_case ( self : Dict ): pass def snake_case ( self : Optional[Any] ): lowerCamelCase :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :List[str] = model_class(__snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase :int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case , nn.Linear ) ) def snake_case ( self : List[str] ): lowerCamelCase :Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :Union[str, Any] = model_class(__snake_case ) lowerCamelCase :Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase :Any = [*signature.parameters.keys()] lowerCamelCase :Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __snake_case ) def snake_case ( self : Tuple ): lowerCamelCase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def snake_case ( self : List[Any] ): lowerCamelCase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__snake_case ) @slow def snake_case ( self : Dict ): for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase :Dict = VideoMAEModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def snake_case ( self : str ): if not self.has_attentions: pass else: lowerCamelCase :int = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase :Any = True for model_class in self.all_model_classes: lowerCamelCase :Any = self.model_tester.seq_length - self.model_tester.num_masks lowerCamelCase :List[str] = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) lowerCamelCase :List[str] = True lowerCamelCase :Any = False lowerCamelCase :Optional[Any] = True lowerCamelCase :Any = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :List[Any] = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Dict = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase :Tuple = True lowerCamelCase :Dict = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :Optional[int] = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :List[Any] = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowerCamelCase :Any = len(__snake_case ) # Check attention is always last and order is fine lowerCamelCase :List[str] = True lowerCamelCase :Optional[Any] = True lowerCamelCase :Optional[int] = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :Any = model(**self._prepare_for_class(__snake_case , __snake_case ) ) self.assertEqual(out_len + 1 , len(__snake_case ) ) lowerCamelCase :Any = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def snake_case ( self : List[Any] ): def check_hidden_states_output(__snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Optional[int] ): lowerCamelCase :List[str] = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :List[Any] = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :List[Any] = outputs.hidden_states lowerCamelCase :Optional[Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__snake_case ) , __snake_case ) lowerCamelCase :Union[str, Any] = self.model_tester.seq_length - self.model_tester.num_masks lowerCamelCase :Optional[Any] = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowerCamelCase :Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :Tuple = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase :Dict = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def snake_case ( self : Optional[Any] ): pass def _lowerCamelCase ( ): lowerCamelCase :List[str] = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''') lowerCamelCase :List[str] = np.load(a_) return list(a_) @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): @cached_property def snake_case ( self : str ): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def snake_case ( self : Optional[Any] ): lowerCamelCase :List[str] = VideoMAEForVideoClassification.from_pretrained('''MCG-NJU/videomae-base-finetuned-kinetics''' ).to( __snake_case ) lowerCamelCase :Optional[Any] = self.default_image_processor lowerCamelCase :int = prepare_video() lowerCamelCase :Dict = image_processor(__snake_case , return_tensors='''pt''' ).to(__snake_case ) # forward pass with torch.no_grad(): lowerCamelCase :List[str] = model(**__snake_case ) # verify the logits lowerCamelCase :Dict = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , __snake_case ) lowerCamelCase :List[str] = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1e-4 ) ) @slow def snake_case ( self : Dict ): lowerCamelCase :str = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' ).to(__snake_case ) lowerCamelCase :str = self.default_image_processor lowerCamelCase :Any = prepare_video() lowerCamelCase :List[Any] = image_processor(__snake_case , return_tensors='''pt''' ).to(__snake_case ) # add boolean mask, indicating which patches to mask lowerCamelCase :int = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' , filename='''bool_masked_pos.pt''' ) lowerCamelCase :Optional[Any] = torch.load(__snake_case ) # forward pass with torch.no_grad(): lowerCamelCase :Union[str, Any] = model(**__snake_case ) # verify the logits lowerCamelCase :List[Any] = torch.Size([1, 1408, 1536] ) lowerCamelCase :List[str] = torch.tensor( [[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] , device=__snake_case ) self.assertEqual(outputs.logits.shape , __snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __snake_case , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) lowerCamelCase :str = torch.tensor([0.5_1_4_2] , device=__snake_case ) self.assertTrue(torch.allclose(outputs.loss , __snake_case , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) lowerCamelCase :List[Any] = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' , norm_pix_loss=__snake_case ).to( __snake_case ) with torch.no_grad(): lowerCamelCase :Optional[int] = model(**__snake_case ) lowerCamelCase :Any = torch.tensor(torch.tensor([0.6_4_6_9] ) , device=__snake_case ) self.assertTrue(torch.allclose(outputs.loss , __snake_case , atol=1e-4 ) )
705
import math def _lowerCamelCase ( a_ : int): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a_) + 1) , 6): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCamelCase ( a_ : float = 0.1): lowerCamelCase :Dict = 3 lowerCamelCase :List[Any] = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1): primes += is_prime(a_) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
49
0
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = (EulerDiscreteScheduler,) _UpperCAmelCase = 1_0 def snake_case ( self : Dict , **__snake_case : Tuple ): lowerCamelCase :List[Any] = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', } config.update(**__snake_case ) return config def snake_case ( self : Any ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=__snake_case ) def snake_case ( self : List[str] ): for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=__snake_case , beta_end=__snake_case ) def snake_case ( self : Dict ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__snake_case ) def snake_case ( self : int ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__snake_case ) def snake_case ( self : List[Any] ): lowerCamelCase :int = self.scheduler_classes[0] lowerCamelCase :List[Any] = self.get_scheduler_config() lowerCamelCase :List[str] = scheduler_class(**__snake_case ) scheduler.set_timesteps(self.num_inference_steps ) lowerCamelCase :Optional[Any] = torch.manual_seed(0 ) lowerCamelCase :List[str] = self.dummy_model() lowerCamelCase :List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCamelCase :List[str] = sample.to(__snake_case ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase :Optional[int] = scheduler.scale_model_input(__snake_case , __snake_case ) lowerCamelCase :Dict = model(__snake_case , __snake_case ) lowerCamelCase :List[str] = scheduler.step(__snake_case , __snake_case , __snake_case , generator=__snake_case ) lowerCamelCase :Any = output.prev_sample lowerCamelCase :Optional[int] = torch.sum(torch.abs(__snake_case ) ) lowerCamelCase :Tuple = torch.mean(torch.abs(__snake_case ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0_1_3_1 ) < 1e-3 def snake_case ( self : str ): lowerCamelCase :Optional[Any] = self.scheduler_classes[0] lowerCamelCase :List[Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowerCamelCase :Dict = scheduler_class(**__snake_case ) scheduler.set_timesteps(self.num_inference_steps ) lowerCamelCase :Optional[int] = torch.manual_seed(0 ) lowerCamelCase :Union[str, Any] = self.dummy_model() lowerCamelCase :str = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCamelCase :int = sample.to(__snake_case ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase :int = scheduler.scale_model_input(__snake_case , __snake_case ) lowerCamelCase :List[str] = model(__snake_case , __snake_case ) lowerCamelCase :Optional[Any] = scheduler.step(__snake_case , __snake_case , __snake_case , generator=__snake_case ) lowerCamelCase :str = output.prev_sample lowerCamelCase :List[Any] = torch.sum(torch.abs(__snake_case ) ) lowerCamelCase :str = torch.mean(torch.abs(__snake_case ) ) assert abs(result_sum.item() - 0.0_0_0_2 ) < 1e-2 assert abs(result_mean.item() - 2.2_6_7_6e-0_6 ) < 1e-3 def snake_case ( self : Optional[int] ): lowerCamelCase :Optional[int] = self.scheduler_classes[0] lowerCamelCase :Any = self.get_scheduler_config() lowerCamelCase :List[str] = scheduler_class(**__snake_case ) scheduler.set_timesteps(self.num_inference_steps , device=__snake_case ) lowerCamelCase :Union[str, Any] = torch.manual_seed(0 ) lowerCamelCase :str = self.dummy_model() lowerCamelCase :int = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() lowerCamelCase :List[Any] = sample.to(__snake_case ) for t in scheduler.timesteps: lowerCamelCase :Union[str, Any] = scheduler.scale_model_input(__snake_case , __snake_case ) lowerCamelCase :int = model(__snake_case , __snake_case ) lowerCamelCase :Any = scheduler.step(__snake_case , __snake_case , __snake_case , generator=__snake_case ) lowerCamelCase :Tuple = output.prev_sample lowerCamelCase :List[str] = torch.sum(torch.abs(__snake_case ) ) lowerCamelCase :Tuple = torch.mean(torch.abs(__snake_case ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0_1_3_1 ) < 1e-3 def snake_case ( self : int ): lowerCamelCase :Union[str, Any] = self.scheduler_classes[0] lowerCamelCase :Tuple = self.get_scheduler_config() lowerCamelCase :List[str] = scheduler_class(**__snake_case , use_karras_sigmas=__snake_case ) scheduler.set_timesteps(self.num_inference_steps , device=__snake_case ) lowerCamelCase :int = torch.manual_seed(0 ) lowerCamelCase :List[str] = self.dummy_model() lowerCamelCase :Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() lowerCamelCase :Optional[int] = sample.to(__snake_case ) for t in scheduler.timesteps: lowerCamelCase :str = scheduler.scale_model_input(__snake_case , __snake_case ) lowerCamelCase :Optional[int] = model(__snake_case , __snake_case ) lowerCamelCase :int = scheduler.step(__snake_case , __snake_case , __snake_case , generator=__snake_case ) lowerCamelCase :Optional[Any] = output.prev_sample lowerCamelCase :str = torch.sum(torch.abs(__snake_case ) ) lowerCamelCase :List[str] = torch.mean(torch.abs(__snake_case ) ) assert abs(result_sum.item() - 124.52299499511719 ) < 1e-2 assert abs(result_mean.item() - 0.1_6_2_1_3_9_3_2_6_3_3_3_9_9_9_6_3 ) < 1e-3
706
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : str ): lowerCamelCase :int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :List[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :Optional[Any] = -1 lowerCamelCase :List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Tuple = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :str = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowerCamelCase :str = TextStreamer(__snake_case ) model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case , streamer=__snake_case ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCamelCase :Optional[int] = cs.out[:-1] self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : Dict ): lowerCamelCase :Tuple = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :int = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :List[Any] = -1 lowerCamelCase :Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Tuple = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :List[Any] = tokenizer.decode(greedy_ids[0] ) lowerCamelCase :List[str] = TextIteratorStreamer(__snake_case ) lowerCamelCase :List[str] = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} lowerCamelCase :Tuple = Thread(target=model.generate , kwargs=__snake_case ) thread.start() lowerCamelCase :Any = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : str ): lowerCamelCase :int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :Dict = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :List[str] = -1 lowerCamelCase :Optional[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Optional[Any] = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :List[str] = greedy_ids[:, input_ids.shape[1] :] lowerCamelCase :Union[str, Any] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowerCamelCase :List[str] = TextStreamer(__snake_case , skip_prompt=__snake_case ) model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case , streamer=__snake_case ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCamelCase :int = cs.out[:-1] self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : Optional[int] ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them lowerCamelCase :List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) lowerCamelCase :Union[str, Any] = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(__snake_case ) lowerCamelCase :Optional[int] = -1 lowerCamelCase :Union[str, Any] = torch.ones((1, 5) , device=__snake_case ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowerCamelCase :Dict = TextStreamer(__snake_case , skip_special_tokens=__snake_case ) model.generate(__snake_case , max_new_tokens=1 , do_sample=__snake_case , streamer=__snake_case ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowerCamelCase :Tuple = cs.out[:-1] # Remove the final "\n" lowerCamelCase :int = tokenizer(__snake_case , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def snake_case ( self : List[Any] ): lowerCamelCase :List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :Optional[int] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :Optional[int] = -1 lowerCamelCase :Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :List[Any] = TextIteratorStreamer(__snake_case , timeout=0.0_0_1 ) lowerCamelCase :Dict = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} lowerCamelCase :Tuple = Thread(target=model.generate , kwargs=__snake_case ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__snake_case ): lowerCamelCase :Dict = '''''' for new_text in streamer: streamer_text += new_text
49
0
import argparse import math import traceback import dateutil.parser as date_parser import requests def _lowerCamelCase ( a_ : Dict): lowerCamelCase :Dict = {} lowerCamelCase :Dict = job['''started_at'''] lowerCamelCase :List[str] = job['''completed_at'''] lowerCamelCase :int = date_parser.parse(a_) lowerCamelCase :List[Any] = date_parser.parse(a_) lowerCamelCase :int = round((end_datetime - start_datetime).total_seconds() / 60.0) lowerCamelCase :Any = start lowerCamelCase :Optional[Any] = end lowerCamelCase :List[str] = duration_in_min return job_info def _lowerCamelCase ( a_ : Optional[Any] , a_ : Optional[int]=None): lowerCamelCase :List[str] = None if token is not None: lowerCamelCase :List[Any] = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F"Bearer {token}"} lowerCamelCase :Dict = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" lowerCamelCase :int = requests.get(a_ , headers=a_).json() lowerCamelCase :Any = {} try: job_time.update({job['''name''']: extract_time_from_single_job(a_) for job in result['''jobs''']}) lowerCamelCase :int = math.ceil((result['''total_count'''] - 1_00) / 1_00) for i in range(a_): lowerCamelCase :List[Any] = requests.get(url + F"&page={i + 2}" , headers=a_).json() job_time.update({job['''name''']: extract_time_from_single_job(a_) for job in result['''jobs''']}) return job_time except Exception: print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}") return {} if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") A__ = parser.parse_args() A__ = get_job_time(args.workflow_run_id) A__ = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(F'{k}: {v["duration"]}')
707
from maths.prime_factors import prime_factors def _lowerCamelCase ( a_ : int): if not isinstance(a_ , a_): lowerCamelCase :Tuple = F"Input value of [number={number}] must be an integer" raise TypeError(a_) if number < 1: raise ValueError('''Input must be a positive integer''') return -1 if len(prime_factors(a_)) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
49
0
def _lowerCamelCase ( a_ : Optional[Any] , a_ : int): print('''\nThe shortest path matrix using Floyd Warshall algorithm\n''') for i in range(a_): for j in range(a_): if dist[i][j] != float('''inf'''): print(int(dist[i][j]) , end='''\t''') else: print('''INF''' , end='''\t''') print() def _lowerCamelCase ( a_ : Optional[Any] , a_ : Optional[int]): lowerCamelCase :str = [[float('''inf''') for _ in range(a_)] for _ in range(a_)] for i in range(a_): for j in range(a_): lowerCamelCase :Tuple = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(a_): # looping through rows of graph array for i in range(a_): # looping through columns of graph array for j in range(a_): if ( dist[i][k] != float('''inf''') and dist[k][j] != float('''inf''') and dist[i][k] + dist[k][j] < dist[i][j] ): lowerCamelCase :List[str] = dist[i][k] + dist[k][j] _print_dist(a_ , a_) return dist, v if __name__ == "__main__": A__ = int(input("""Enter number of vertices: """)) A__ = int(input("""Enter number of edges: """)) A__ = [[float("""inf""") for i in range(v)] for j in range(v)] for i in range(v): A__ = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("""\nEdge """, i + 1) A__ = int(input("""Enter source:""")) A__ = int(input("""Enter destination:""")) A__ = float(input("""Enter weight:""")) A__ = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
708
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() A__ = logging.get_logger(__name__) def _lowerCamelCase ( a_ : str , a_ : str=False): lowerCamelCase :Optional[int] = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''')) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''')) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''')) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''')) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''')) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''')) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''')) for stage_idx in range(len(config.backbone_config.depths)): for layer_idx in range(config.backbone_config.depths[stage_idx]): rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias")) # transformer encoder for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight")) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias")) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight")) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias")) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight")) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias")) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight")) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias")) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight")) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias")) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ]) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCamelCase :List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''') else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ]) # fmt: on return rename_keys def _lowerCamelCase ( a_ : Any , a_ : Any , a_ : int=False): for i in range(config.num_hidden_layers): if base_model: lowerCamelCase :Union[str, Any] = '''''' else: lowerCamelCase :Optional[int] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase :Optional[Any] = state_dict.pop(F"blocks.{i}.attn.qkv.weight") lowerCamelCase :Any = state_dict.pop(F"blocks.{i}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict lowerCamelCase :Any = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase :Tuple = in_proj_bias[: config.hidden_size] lowerCamelCase :int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase :Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase :Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase :List[Any] = in_proj_bias[-config.hidden_size :] def _lowerCamelCase ( a_ : int): lowerCamelCase :Any = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(a_ , a_) def _lowerCamelCase ( a_ : int , a_ : Any , a_ : Tuple): lowerCamelCase :Optional[Any] = dct.pop(a_) lowerCamelCase :str = val def _lowerCamelCase ( ): lowerCamelCase :Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase :Tuple = Image.open(requests.get(a_ , stream=a_).raw) return im @torch.no_grad() def _lowerCamelCase ( a_ : Optional[Any] , a_ : Optional[Any] , a_ : Optional[Any]=False): lowerCamelCase :Optional[int] = BitConfig( global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=a_ , ) lowerCamelCase :Optional[int] = ViTHybridConfig(backbone_config=a_ , image_size=3_84 , num_labels=10_00) lowerCamelCase :List[Any] = False # load original model from timm lowerCamelCase :List[str] = timm.create_model(a_ , pretrained=a_) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCamelCase :List[str] = timm_model.state_dict() if base_model: remove_classification_head_(a_) lowerCamelCase :Tuple = create_rename_keys(a_ , a_) for src, dest in rename_keys: rename_key(a_ , a_ , a_) read_in_q_k_v(a_ , a_ , a_) lowerCamelCase :List[str] = '''huggingface/label-files''' lowerCamelCase :Any = '''imagenet-1k-id2label.json''' lowerCamelCase :List[Any] = json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''') , '''r''')) lowerCamelCase :Optional[Any] = {int(a_): v for k, v in idalabel.items()} lowerCamelCase :Optional[int] = idalabel lowerCamelCase :Union[str, Any] = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": lowerCamelCase :Optional[Any] = ViTHybridModel(a_).eval() else: lowerCamelCase :Dict = ViTHybridForImageClassification(a_).eval() model.load_state_dict(a_) # create image processor lowerCamelCase :Dict = create_transform(**resolve_data_config({} , model=a_)) lowerCamelCase :str = transform.transforms lowerCamelCase :int = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } lowerCamelCase :Any = ViTHybridImageProcessor( do_resize=a_ , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=a_ , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=a_ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCamelCase :Dict = prepare_img() lowerCamelCase :str = transform(a_).unsqueeze(0) lowerCamelCase :str = processor(a_ , return_tensors='''pt''').pixel_values # verify pixel values assert torch.allclose(a_ , a_) # verify logits with torch.no_grad(): lowerCamelCase :Optional[int] = model(a_) lowerCamelCase :Union[str, Any] = outputs.logits print('''Predicted class:''' , logits.argmax(-1).item()) if base_model: lowerCamelCase :Union[str, Any] = timm_model.forward_features(a_) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(a_ , outputs.pooler_output , atol=1e-3) else: lowerCamelCase :List[str] = timm_model(a_) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(a_ , outputs.logits , atol=1e-3) print('''Looks ok!''') if pytorch_dump_folder_path is not None: Path(a_).mkdir(exist_ok=a_) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}") model.save_pretrained(a_) print(F"Saving processor to {pytorch_dump_folder_path}") processor.save_pretrained(a_) if push_to_hub: print(F"Pushing model and processor to the hub {vit_name}") model.push_to_hub(F"ybelkada/{vit_name}") processor.push_to_hub(F"ybelkada/{vit_name}") if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_r50_s16_384""", type=str, help="""Name of the hybrid ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) A__ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
49
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'naver-clova-ix/donut-base-finetuned-docvqa' _UpperCAmelCase = ( 'This is a tool that answers a question about an document (pdf). It takes an input named `document` which ' 'should be the document containing the information, as well as a `question` that is the question about the ' 'document. It returns a text that contains the answer to the question.' ) _UpperCAmelCase = 'document_qa' _UpperCAmelCase = AutoProcessor _UpperCAmelCase = VisionEncoderDecoderModel _UpperCAmelCase = ['image', 'text'] _UpperCAmelCase = ['text'] def __init__( self : Union[str, Any] , *__snake_case : Tuple , **__snake_case : int ): if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*__snake_case , **__snake_case ) def snake_case ( self : Dict , __snake_case : "Image" , __snake_case : str ): lowerCamelCase :str = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' lowerCamelCase :List[str] = task_prompt.replace('''{user_input}''' , __snake_case ) lowerCamelCase :Optional[int] = self.pre_processor.tokenizer( __snake_case , add_special_tokens=__snake_case , return_tensors='''pt''' ).input_ids lowerCamelCase :str = self.pre_processor(__snake_case , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def snake_case ( self : Optional[int] , __snake_case : Tuple ): return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__snake_case , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__snake_case , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__snake_case , ).sequences def snake_case ( self : Dict , __snake_case : Optional[int] ): lowerCamelCase :Optional[int] = self.pre_processor.batch_decode(__snake_case )[0] lowerCamelCase :Optional[Any] = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) lowerCamelCase :Optional[Any] = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) lowerCamelCase :Union[str, Any] = re.sub(R'''<.*?>''' , '''''' , __snake_case , count=1 ).strip() # remove first task start token lowerCamelCase :Tuple = self.pre_processor.tokenajson(__snake_case ) return sequence["answer"]
709
def _lowerCamelCase ( a_ : int = 4_00_00_00): lowerCamelCase :Dict = [0, 1] lowerCamelCase :Optional[Any] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1]) if fib[i + 2] > n: break i += 1 lowerCamelCase :Dict = 0 for j in range(len(a_) - 1): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F'{solution() = }')
49
0
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/config.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/config.json""", } class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'xlnet' _UpperCAmelCase = ['mems'] _UpperCAmelCase = { 'n_token': 'vocab_size', # Backward compatibility 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : List[str] , __snake_case : List[str]=32000 , __snake_case : List[Any]=1024 , __snake_case : List[str]=24 , __snake_case : Union[str, Any]=16 , __snake_case : Tuple=4096 , __snake_case : Any="gelu" , __snake_case : Dict=True , __snake_case : Tuple="bi" , __snake_case : Tuple=0.0_2 , __snake_case : Dict=1e-1_2 , __snake_case : Union[str, Any]=0.1 , __snake_case : str=512 , __snake_case : int=None , __snake_case : Optional[int]=True , __snake_case : Optional[int]=False , __snake_case : Optional[Any]=False , __snake_case : Any=-1 , __snake_case : Any=False , __snake_case : Optional[int]="last" , __snake_case : int=True , __snake_case : Any="tanh" , __snake_case : Any=0.1 , __snake_case : int=5 , __snake_case : str=5 , __snake_case : Optional[int]=5 , __snake_case : Dict=1 , __snake_case : Optional[int]=2 , **__snake_case : Union[str, Any] , ): lowerCamelCase :Optional[int] = vocab_size lowerCamelCase :Any = d_model lowerCamelCase :Union[str, Any] = n_layer lowerCamelCase :Union[str, Any] = n_head if d_model % n_head != 0: raise ValueError(F"'d_model % n_head' ({d_model % n_head}) should be equal to 0" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" ) lowerCamelCase :str = d_model // n_head lowerCamelCase :int = ff_activation lowerCamelCase :Dict = d_inner lowerCamelCase :int = untie_r lowerCamelCase :Optional[int] = attn_type lowerCamelCase :Optional[Any] = initializer_range lowerCamelCase :Dict = layer_norm_eps lowerCamelCase :Union[str, Any] = dropout lowerCamelCase :Union[str, Any] = mem_len lowerCamelCase :Optional[int] = reuse_len lowerCamelCase :List[str] = bi_data lowerCamelCase :Any = clamp_len lowerCamelCase :Dict = same_length lowerCamelCase :Optional[Any] = summary_type lowerCamelCase :Union[str, Any] = summary_use_proj lowerCamelCase :Optional[Any] = summary_activation lowerCamelCase :Optional[Any] = summary_last_dropout lowerCamelCase :List[str] = start_n_top lowerCamelCase :int = end_n_top lowerCamelCase :Any = bos_token_id lowerCamelCase :Optional[Any] = pad_token_id lowerCamelCase :Union[str, Any] = eos_token_id if "use_cache" in kwargs: warnings.warn( '''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`''' ''' instead.''' , __snake_case , ) lowerCamelCase :Optional[int] = kwargs['''use_cache'''] lowerCamelCase :Optional[int] = use_mems_eval lowerCamelCase :Optional[int] = use_mems_train super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) @property def snake_case ( self : Dict ): logger.info(F"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def snake_case ( self : Optional[Any] , __snake_case : int ): # Message copied from Transformer-XL documentation raise NotImplementedError( F"The model {self.model_type} is one of the few models that has no sequence length limit." )
710
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ = { """configuration_nllb_moe""": [ """NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NllbMoeConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""", """NllbMoeForConditionalGeneration""", """NllbMoeModel""", """NllbMoePreTrainedModel""", """NllbMoeTop2Router""", """NllbMoeSparseMLP""", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
49
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ = { """configuration_table_transformer""": [ """TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TableTransformerConfig""", """TableTransformerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TableTransformerForObjectDetection""", """TableTransformerModel""", """TableTransformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
711
import numpy class _lowerCAmelCase : def __init__( self : Dict , __snake_case : numpy.ndarray , __snake_case : numpy.ndarray ): lowerCamelCase :Dict = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. lowerCamelCase :Dict = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. lowerCamelCase :Dict = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. lowerCamelCase :Any = numpy.random.rand(3 , 1 ) # Real output values provided. lowerCamelCase :Union[str, Any] = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. lowerCamelCase :List[str] = numpy.zeros(output_array.shape ) def snake_case ( self : Optional[int] ): lowerCamelCase :Any = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. lowerCamelCase :Any = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. lowerCamelCase :Dict = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def snake_case ( self : Any ): lowerCamelCase :Union[str, Any] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) lowerCamelCase :Dict = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) lowerCamelCase :int = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def snake_case ( self : Dict , __snake_case : numpy.ndarray , __snake_case : int , __snake_case : bool ): for iteration in range(1 , iterations + 1 ): lowerCamelCase :Union[str, Any] = self.feedforward() self.back_propagation() if give_loss: lowerCamelCase :Tuple = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"Iteration {iteration} Loss: {loss}" ) def snake_case ( self : Optional[int] , __snake_case : numpy.ndarray ): lowerCamelCase :int = input_arr lowerCamelCase :Union[str, Any] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) lowerCamelCase :Optional[Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) lowerCamelCase :Optional[int] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def _lowerCamelCase ( a_ : numpy.ndarray): return 1 / (1 + numpy.exp(-value)) def _lowerCamelCase ( a_ : numpy.ndarray): return (value) * (1 - (value)) def _lowerCamelCase ( ): lowerCamelCase :Optional[Any] = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. lowerCamelCase :int = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa) # Calling neural network class. lowerCamelCase :List[Any] = TwoHiddenLayerNeuralNetwork( input_array=a_ , output_array=a_) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=a_ , iterations=10 , give_loss=a_) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa)) if __name__ == "__main__": example()
49
0
def _lowerCamelCase ( a_ : str): lowerCamelCase :Optional[int] = hex_num.strip() if not hex_num: raise ValueError('''No value was passed to the function''') lowerCamelCase :str = hex_num[0] == '''-''' if is_negative: lowerCamelCase :int = hex_num[1:] try: lowerCamelCase :int = int(a_ , 16) except ValueError: raise ValueError('''Invalid value was passed to the function''') lowerCamelCase :List[Any] = '''''' while int_num > 0: lowerCamelCase :Optional[Any] = str(int_num % 2) + bin_str int_num >>= 1 return int(('''-''' + bin_str) if is_negative else bin_str) if __name__ == "__main__": import doctest doctest.testmod()
712
def _lowerCamelCase ( a_ : str , a_ : str): lowerCamelCase :List[str] = len(a_) lowerCamelCase :List[str] = len(a_) lowerCamelCase :int = [[False for _ in range(m + 1)] for _ in range(n + 1)] lowerCamelCase :Optional[Any] = True for i in range(a_): for j in range(m + 1): if dp[i][j]: if j < m and a[i].upper() == b[j]: lowerCamelCase :Any = True if a[i].islower(): lowerCamelCase :List[str] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
49
0
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A__ = logging.get_logger(__name__) A__ = """▁""" A__ = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", } A__ = { """vocab_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json""" ), }, """spm_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model""" ) }, } A__ = { """facebook/s2t-small-librispeech-asr""": 1_024, } A__ = ["""pt""", """fr""", """ru""", """nl""", """ro""", """it""", """es""", """de"""] A__ = {"""mustc""": MUSTC_LANGS} class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = MAX_MODEL_INPUT_SIZES _UpperCAmelCase = ['input_ids', 'attention_mask'] _UpperCAmelCase = [] def __init__( self : Tuple , __snake_case : Optional[Any] , __snake_case : str , __snake_case : Tuple="<s>" , __snake_case : Dict="</s>" , __snake_case : List[str]="<pad>" , __snake_case : Optional[Any]="<unk>" , __snake_case : Optional[Any]=False , __snake_case : Tuple=False , __snake_case : int=None , __snake_case : List[str]=None , __snake_case : Optional[Dict[str, Any]] = None , **__snake_case : str , ): lowerCamelCase :Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , do_upper_case=__snake_case , do_lower_case=__snake_case , tgt_lang=__snake_case , lang_codes=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) lowerCamelCase :Optional[int] = do_upper_case lowerCamelCase :int = do_lower_case lowerCamelCase :Dict = load_json(__snake_case ) lowerCamelCase :Tuple = {v: k for k, v in self.encoder.items()} lowerCamelCase :List[Any] = spm_file lowerCamelCase :Union[str, Any] = load_spm(__snake_case , self.sp_model_kwargs ) if lang_codes is not None: lowerCamelCase :List[str] = lang_codes lowerCamelCase :int = LANGUAGES[lang_codes] lowerCamelCase :Tuple = [F"<lang:{lang}>" for lang in self.langs] lowerCamelCase :Optional[int] = {lang: self.sp_model.PieceToId(F"<lang:{lang}>" ) for lang in self.langs} lowerCamelCase :str = self.lang_tokens lowerCamelCase :List[Any] = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: lowerCamelCase :int = {} @property def snake_case ( self : Optional[Any] ): return len(self.encoder ) @property def snake_case ( self : int ): return self._tgt_lang @tgt_lang.setter def snake_case ( self : List[str] , __snake_case : Union[str, Any] ): lowerCamelCase :Dict = new_tgt_lang self.set_tgt_lang_special_tokens(__snake_case ) def snake_case ( self : Tuple , __snake_case : str ): lowerCamelCase :Any = self.lang_code_to_id[tgt_lang] lowerCamelCase :List[str] = [lang_code_id] def snake_case ( self : Any , __snake_case : str ): return self.sp_model.encode(__snake_case , out_type=__snake_case ) def snake_case ( self : Tuple , __snake_case : int ): return self.encoder.get(__snake_case , self.encoder[self.unk_token] ) def snake_case ( self : Dict , __snake_case : int ): return self.decoder.get(__snake_case , self.unk_token ) def snake_case ( self : Optional[int] , __snake_case : List[str] ): lowerCamelCase :Any = [] lowerCamelCase :int = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: lowerCamelCase :int = self.sp_model.decode(__snake_case ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " lowerCamelCase :Any = [] else: current_sub_tokens.append(__snake_case ) lowerCamelCase :int = self.sp_model.decode(__snake_case ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def snake_case ( self : int , __snake_case : Tuple , __snake_case : Any=None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def snake_case ( self : Any , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) lowerCamelCase :List[str] = [1] * len(self.prefix_tokens ) lowerCamelCase :Union[str, Any] = [1] if token_ids_a is None: return prefix_ones + ([0] * len(__snake_case )) + suffix_ones return prefix_ones + ([0] * len(__snake_case )) + ([0] * len(__snake_case )) + suffix_ones def snake_case ( self : Tuple ): lowerCamelCase :List[str] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ): lowerCamelCase :Any = self.__dict__.copy() lowerCamelCase :str = None return state def __setstate__( self : Any , __snake_case : Dict ): lowerCamelCase :int = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowerCamelCase :List[str] = {} lowerCamelCase :Tuple = load_spm(self.spm_file , self.sp_model_kwargs ) def snake_case ( self : Optional[Any] , __snake_case : str , __snake_case : Optional[str] = None ): lowerCamelCase :int = Path(__snake_case ) assert save_dir.is_dir(), F"{save_directory} should be a directory" lowerCamelCase :List[Any] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) lowerCamelCase :Optional[Any] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , __snake_case ) if os.path.abspath(self.spm_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __snake_case ) elif not os.path.isfile(self.spm_file ): with open(__snake_case , '''wb''' ) as fi: lowerCamelCase :List[str] = self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (str(__snake_case ), str(__snake_case )) def _lowerCamelCase ( a_ : str , a_ : Dict[str, Any]): lowerCamelCase :Tuple = sentencepiece.SentencePieceProcessor(**a_) spm.Load(str(a_)) return spm def _lowerCamelCase ( a_ : str): with open(a_ , '''r''') as f: return json.load(a_) def _lowerCamelCase ( a_ : List[str] , a_ : str): with open(a_ , '''w''') as f: json.dump(a_ , a_ , indent=2)
713
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : def __init__( self : Any , __snake_case : Optional[int] , __snake_case : int=13 , __snake_case : str=[30, 30] , __snake_case : Tuple=2 , __snake_case : Optional[Any]=3 , __snake_case : int=True , __snake_case : Tuple=True , __snake_case : List[Any]=32 , __snake_case : int=5 , __snake_case : Optional[Any]=4 , __snake_case : Union[str, Any]=37 , __snake_case : str="gelu" , __snake_case : Tuple=0.1 , __snake_case : List[Any]=0.1 , __snake_case : Union[str, Any]=10 , __snake_case : str=0.0_2 , __snake_case : Union[str, Any]=3 , __snake_case : Union[str, Any]=None , __snake_case : List[str]=8 , __snake_case : Any=10 , ): lowerCamelCase :Optional[Any] = parent lowerCamelCase :List[Any] = batch_size lowerCamelCase :Any = image_size lowerCamelCase :Union[str, Any] = patch_size lowerCamelCase :Any = num_channels lowerCamelCase :List[Any] = is_training lowerCamelCase :Optional[Any] = use_labels lowerCamelCase :Any = hidden_size lowerCamelCase :List[Any] = num_hidden_layers lowerCamelCase :List[str] = num_attention_heads lowerCamelCase :Tuple = intermediate_size lowerCamelCase :List[str] = hidden_act lowerCamelCase :List[str] = hidden_dropout_prob lowerCamelCase :Any = attention_probs_dropout_prob lowerCamelCase :List[Any] = type_sequence_label_size lowerCamelCase :Optional[int] = initializer_range lowerCamelCase :List[Any] = num_labels lowerCamelCase :Any = scope lowerCamelCase :Union[str, Any] = n_targets lowerCamelCase :Optional[Any] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowerCamelCase :Tuple = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowerCamelCase :str = num_patches + 1 + self.num_detection_tokens def snake_case ( self : List[str] ): lowerCamelCase :str = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowerCamelCase :List[str] = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowerCamelCase :Optional[int] = [] for i in range(self.batch_size ): lowerCamelCase :List[str] = {} lowerCamelCase :Tuple = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=__snake_case ) lowerCamelCase :List[str] = torch.rand(self.n_targets , 4 , device=__snake_case ) labels.append(__snake_case ) lowerCamelCase :str = self.get_config() return config, pixel_values, labels def snake_case ( self : Union[str, Any] ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__snake_case , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def snake_case ( self : Tuple , __snake_case : Tuple , __snake_case : Tuple , __snake_case : Any ): lowerCamelCase :Optional[Any] = YolosModel(config=__snake_case ) model.to(__snake_case ) model.eval() lowerCamelCase :Union[str, Any] = model(__snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def snake_case ( self : Dict , __snake_case : str , __snake_case : Optional[int] , __snake_case : Optional[Any] ): lowerCamelCase :int = YolosForObjectDetection(__snake_case ) model.to(__snake_case ) model.eval() lowerCamelCase :str = model(pixel_values=__snake_case ) lowerCamelCase :Any = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) lowerCamelCase :int = model(pixel_values=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def snake_case ( self : int ): lowerCamelCase :List[Any] = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase :str = config_and_inputs lowerCamelCase :Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () _UpperCAmelCase = ( {'feature-extraction': YolosModel, 'object-detection': YolosForObjectDetection} if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def snake_case ( self : Any , __snake_case : List[Any] , __snake_case : Tuple , __snake_case : Dict=False ): lowerCamelCase :Optional[int] = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowerCamelCase :Dict = [] for i in range(self.model_tester.batch_size ): lowerCamelCase :Optional[Any] = {} lowerCamelCase :List[Any] = torch.ones( size=(self.model_tester.n_targets,) , device=__snake_case , dtype=torch.long ) lowerCamelCase :str = torch.ones( self.model_tester.n_targets , 4 , device=__snake_case , dtype=torch.float ) labels.append(__snake_case ) lowerCamelCase :Union[str, Any] = labels return inputs_dict def snake_case ( self : Tuple ): lowerCamelCase :Union[str, Any] = YolosModelTester(self ) lowerCamelCase :Dict = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=37 ) def snake_case ( self : Union[str, Any] ): self.config_tester.run_common_tests() def snake_case ( self : Optional[Any] ): # YOLOS does not use inputs_embeds pass def snake_case ( self : Tuple ): lowerCamelCase , lowerCamelCase :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :Optional[int] = model_class(__snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase :str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case , nn.Linear ) ) def snake_case ( self : str ): lowerCamelCase , lowerCamelCase :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :str = model_class(__snake_case ) lowerCamelCase :Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase :Tuple = [*signature.parameters.keys()] lowerCamelCase :Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __snake_case ) def snake_case ( self : int ): lowerCamelCase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def snake_case ( self : str ): lowerCamelCase , lowerCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase :int = True # in YOLOS, the seq_len is different lowerCamelCase :str = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowerCamelCase :str = True lowerCamelCase :Tuple = False lowerCamelCase :Optional[int] = True lowerCamelCase :int = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :str = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :str = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase :Optional[Any] = True lowerCamelCase :str = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :Tuple = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Tuple = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowerCamelCase :Optional[int] = len(__snake_case ) # Check attention is always last and order is fine lowerCamelCase :Union[str, Any] = True lowerCamelCase :List[Any] = True lowerCamelCase :Tuple = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :int = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Dict = 1 self.assertEqual(out_len + added_hidden_states , len(__snake_case ) ) lowerCamelCase :Dict = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def snake_case ( self : List[str] ): def check_hidden_states_output(__snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Tuple ): lowerCamelCase :Union[str, Any] = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :Any = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Optional[Any] = outputs.hidden_states lowerCamelCase :Any = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__snake_case ) , __snake_case ) # YOLOS has a different seq_length lowerCamelCase :List[str] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowerCamelCase , lowerCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :Union[str, Any] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase :Any = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*__snake_case ) @slow def snake_case ( self : Dict ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase :Tuple = YolosModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def _lowerCamelCase ( ): lowerCamelCase :int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): @cached_property def snake_case ( self : Tuple ): return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def snake_case ( self : Dict ): lowerCamelCase :Union[str, Any] = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(__snake_case ) lowerCamelCase :Optional[Any] = self.default_image_processor lowerCamelCase :str = prepare_img() lowerCamelCase :Dict = image_processor(images=__snake_case , return_tensors='''pt''' ).to(__snake_case ) # forward pass with torch.no_grad(): lowerCamelCase :Optional[Any] = model(inputs.pixel_values ) # verify outputs lowerCamelCase :int = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , __snake_case ) lowerCamelCase :Any = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=__snake_case , ) lowerCamelCase :Any = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __snake_case , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , __snake_case , atol=1e-4 ) ) # verify postprocessing lowerCamelCase :List[str] = image_processor.post_process_object_detection( __snake_case , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] lowerCamelCase :List[str] = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(__snake_case ) lowerCamelCase :str = [75, 75, 17, 63, 17] lowerCamelCase :Tuple = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(__snake_case ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , __snake_case , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , __snake_case ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , __snake_case ) )
49
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ = {"""configuration_sew""": ["""SEW_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SEWConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """SEW_PRETRAINED_MODEL_ARCHIVE_LIST""", """SEWForCTC""", """SEWForSequenceClassification""", """SEWModel""", """SEWPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
714
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Tuple ): lowerCamelCase :List[Any] = inspect.getfile(accelerate.test_utils ) lowerCamelCase :Dict = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 lowerCamelCase :Any = test_metrics @require_cpu def snake_case ( self : Dict ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def snake_case ( self : int ): debug_launcher(self.test_metrics.main ) @require_single_gpu def snake_case ( self : Any ): self.test_metrics.main() @require_multi_gpu def snake_case ( self : Optional[int] ): print(F"Found {torch.cuda.device_count()} devices." ) lowerCamelCase :Optional[int] = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__snake_case , env=os.environ.copy() )
49
0
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def _lowerCamelCase ( a_ : List[str]): lowerCamelCase :List[str] = args.pruning_method lowerCamelCase :Tuple = args.threshold lowerCamelCase :List[str] = args.model_name_or_path.rstrip('''/''') lowerCamelCase :Optional[int] = args.target_model_path print(F"Load fine-pruned model from {model_name_or_path}") lowerCamelCase :Optional[int] = torch.load(os.path.join(a_ , '''pytorch_model.bin''')) lowerCamelCase :List[str] = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: lowerCamelCase :int = tensor print(F"Copied layer {name}") elif "classifier" in name or "qa_output" in name: lowerCamelCase :int = tensor print(F"Copied layer {name}") elif "bias" in name: lowerCamelCase :Optional[int] = tensor print(F"Copied layer {name}") else: if pruning_method == "magnitude": lowerCamelCase :List[Any] = MagnitudeBinarizer.apply(inputs=a_ , threshold=a_) lowerCamelCase :Optional[Any] = tensor * mask print(F"Pruned layer {name}") elif pruning_method == "topK": if "mask_scores" in name: continue lowerCamelCase :Any = name[:-6] lowerCamelCase :int = model[F"{prefix_}mask_scores"] lowerCamelCase :List[str] = TopKBinarizer.apply(a_ , a_) lowerCamelCase :Optional[int] = tensor * mask print(F"Pruned layer {name}") elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue lowerCamelCase :List[Any] = name[:-6] lowerCamelCase :Optional[Any] = model[F"{prefix_}mask_scores"] lowerCamelCase :Any = ThresholdBinarizer.apply(a_ , a_ , a_) lowerCamelCase :Optional[int] = tensor * mask print(F"Pruned layer {name}") elif pruning_method == "l0": if "mask_scores" in name: continue lowerCamelCase :List[str] = name[:-6] lowerCamelCase :Optional[Any] = model[F"{prefix_}mask_scores"] lowerCamelCase :Optional[Any] = -0.1, 1.1 lowerCamelCase :int = torch.sigmoid(a_) lowerCamelCase :Any = s * (r - l) + l lowerCamelCase :List[str] = s_bar.clamp(min=0.0 , max=1.0) lowerCamelCase :Optional[Any] = tensor * mask print(F"Pruned layer {name}") else: raise ValueError('''Unknown pruning method''') if target_model_path is None: lowerCamelCase :int = os.path.join( os.path.dirname(a_) , F"bertarized_{os.path.basename(a_)}") if not os.path.isdir(a_): shutil.copytree(a_ , a_) print(F"\nCreated folder {target_model_path}") torch.save(a_ , os.path.join(a_ , '''pytorch_model.bin''')) print('''\nPruned model saved! See you later!''') if __name__ == "__main__": A__ = argparse.ArgumentParser() parser.add_argument( """--pruning_method""", choices=["""l0""", """magnitude""", """topK""", """sigmoied_threshold"""], type=str, required=True, help=( """Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,""" """ sigmoied_threshold = Soft movement pruning)""" ), ) parser.add_argument( """--threshold""", type=float, required=False, help=( """For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.""" """For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.""" """Not needed for `l0`""" ), ) parser.add_argument( """--model_name_or_path""", type=str, required=True, help="""Folder containing the model that was previously fine-pruned""", ) parser.add_argument( """--target_model_path""", default=None, type=str, required=False, help="""Folder containing the model that was previously fine-pruned""", ) A__ = parser.parse_args() main(args)
715
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = '' _UpperCAmelCase = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) _UpperCAmelCase = None # compression type in fsspec. ex: "gzip" _UpperCAmelCase = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : str , __snake_case : str = "" , __snake_case : Optional[str] = None , __snake_case : Optional[dict] = None , **__snake_case : Dict ): super().__init__(self , **__snake_case ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode lowerCamelCase :Optional[Any] = fsspec.open( __snake_case , mode='''rb''' , protocol=__snake_case , compression=self.compression , client_kwargs={ '''requote_redirect_url''': False, # see https://github.com/huggingface/datasets/pull/5459 '''trust_env''': True, # Enable reading proxy env variables. **(target_options or {}).pop('''client_kwargs''' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) lowerCamelCase :List[str] = os.path.basename(self.file.path.split('''::''' )[0] ) lowerCamelCase :Dict = ( self.compressed_name[: self.compressed_name.rindex('''.''' )] if '''.''' in self.compressed_name else self.compressed_name ) lowerCamelCase :List[str] = None @classmethod def snake_case ( cls : Any , __snake_case : Any ): # compressed file paths are always relative to the archive root return super()._strip_protocol(__snake_case ).lstrip('''/''' ) def snake_case ( self : Any ): if self.dir_cache is None: lowerCamelCase :Optional[Any] = {**self.file.fs.info(self.file.path ), '''name''': self.uncompressed_name} lowerCamelCase :Optional[Any] = {f['''name''']: f} def snake_case ( self : Union[str, Any] , __snake_case : str ): return self.file.open().read() def snake_case ( self : Optional[int] , __snake_case : str , __snake_case : str = "rb" , __snake_case : int=None , __snake_case : Optional[int]=True , __snake_case : str=None , **__snake_case : str , ): lowerCamelCase :List[str] = self._strip_protocol(__snake_case ) if mode != "rb": raise ValueError(F"Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'" ) return self.file.open() class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'bz2' _UpperCAmelCase = 'bz2' _UpperCAmelCase = '.bz2' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'gzip' _UpperCAmelCase = 'gzip' _UpperCAmelCase = '.gz' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'lz4' _UpperCAmelCase = 'lz4' _UpperCAmelCase = '.lz4' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'xz' _UpperCAmelCase = 'xz' _UpperCAmelCase = '.xz' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'zstd' _UpperCAmelCase = 'zstd' _UpperCAmelCase = '.zst' def __init__( self : str , __snake_case : str , __snake_case : str = "rb" , __snake_case : Optional[str] = None , __snake_case : Optional[dict] = None , __snake_case : int = DEFAULT_BLOCK_SIZE , **__snake_case : int , ): super().__init__( fo=__snake_case , mode=__snake_case , target_protocol=__snake_case , target_options=__snake_case , block_size=__snake_case , **__snake_case , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 lowerCamelCase :Tuple = self.file.__enter__ class _lowerCAmelCase : def __init__( self : Dict , __snake_case : Tuple ): lowerCamelCase :Optional[int] = file_ def __enter__( self : Optional[int] ): self._file.__enter__() return self def __exit__( self : str , *__snake_case : Optional[Any] , **__snake_case : List[Any] ): self._file.__exit__(*__snake_case , **__snake_case ) def __iter__( self : Optional[Any] ): return iter(self._file ) def snake_case ( self : List[Any] ): return next(self._file ) def __getattr__( self : Any , __snake_case : str ): return getattr(self._file , __snake_case ) def fixed_enter(*__snake_case : Optional[int] , **__snake_case : str ): return WrappedFile(_enter(*__snake_case , **__snake_case ) ) lowerCamelCase :Dict = fixed_enter
49
0
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList A__ = ["""\nclass""", """\ndef""", """\n#""", """\n@""", """\nprint""", """\nif"""] class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self : List[Any] , __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : Any=None , __snake_case : int=1 ): lowerCamelCase :Optional[Any] = tokenizer lowerCamelCase :Dict = dataset lowerCamelCase :Tuple = len(__snake_case ) if n_tasks is None else n_tasks lowerCamelCase :List[str] = n_copies def __iter__( self : Tuple ): lowerCamelCase :Dict = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() ) lowerCamelCase :List[str] = self.tokenizer(__snake_case , padding=__snake_case , return_tensors='''pt''' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self : Optional[int] , __snake_case : Union[str, Any] , __snake_case : str , __snake_case : int ): lowerCamelCase :Dict = start_length lowerCamelCase :Any = eof_strings lowerCamelCase :int = tokenizer def __call__( self : Any , __snake_case : str , __snake_case : Dict , **__snake_case : List[str] ): lowerCamelCase :Union[str, Any] = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) lowerCamelCase :Optional[Any] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(__snake_case ) def _lowerCamelCase ( a_ : Tuple): lowerCamelCase :Tuple = re.split('''(%s)''' % '''|'''.join(a_) , a_) # last string should be "" return "".join(string_list[:-2]) def _lowerCamelCase ( a_ : List[str] , a_ : str , a_ : Optional[int] , a_ : str , a_ : Optional[int] , a_ : Tuple=20 , **a_ : int): lowerCamelCase :Dict = defaultdict(a_) # dict of list of generated tokens for step, batch in tqdm(enumerate(a_)): with torch.no_grad(): lowerCamelCase :Optional[int] = batch['''ids'''].shape[-1] lowerCamelCase :Union[str, Any] = accelerator.unwrap_model(a_).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=a_ , **a_) # each task is generated batch_size times lowerCamelCase :Any = batch['''task_id'''].repeat(a_) lowerCamelCase :Tuple = accelerator.pad_across_processes( a_ , dim=1 , pad_index=tokenizer.pad_token_id) lowerCamelCase :List[str] = accelerator.gather((generated_tokens, generated_tasks)) lowerCamelCase :Tuple = generated_tokens.cpu().numpy() lowerCamelCase :Tuple = generated_tasks.cpu().numpy() for task, generated_tokens in zip(a_ , a_): gen_token_dict[task].append(a_) lowerCamelCase :Optional[Any] = [[] for _ in range(a_)] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: lowerCamelCase :List[str] = tokenizer.decode(a_ , skip_special_tokens=a_ , clean_up_tokenization_spaces=a_) code_gens[task].append(remove_last_block(a_)) return code_gens def _lowerCamelCase ( ): # Setup configuration lowerCamelCase :int = HfArgumentParser(a_) lowerCamelCase :Union[str, Any] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric lowerCamelCase :Optional[int] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing lowerCamelCase :str = '''false''' if args.num_workers is None: lowerCamelCase :Tuple = multiprocessing.cpu_count() # Use dataset load to feed to accelerate lowerCamelCase :Union[str, Any] = Accelerator() set_seed(args.seed , device_specific=a_) # Load model and tokenizer lowerCamelCase :Union[str, Any] = AutoTokenizer.from_pretrained(args.model_ckpt) lowerCamelCase :str = tokenizer.eos_token lowerCamelCase :str = AutoModelForCausalLM.from_pretrained(args.model_ckpt) # Generation settings lowerCamelCase :Any = { '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , a_ , a_)]), } # Load evaluation dataset and metric lowerCamelCase :int = load_dataset('''openai_humaneval''') lowerCamelCase :Dict = load_metric('''code_eval''') lowerCamelCase :Optional[Any] = args.num_tasks if args.num_tasks is not None else len(human_eval['''test''']) lowerCamelCase :Union[str, Any] = args.n_samples // args.batch_size lowerCamelCase :Union[str, Any] = TokenizedDataset(a_ , human_eval['''test'''] , n_copies=a_ , n_tasks=a_) # do not confuse args.batch_size, which is actually the num_return_sequences lowerCamelCase :Dict = DataLoader(a_ , batch_size=1) # Run a quick test to see if code evaluation is enabled try: lowerCamelCase :Optional[int] = code_eval_metric.compute(references=[''''''] , predictions=[['''''']]) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''') raise exception lowerCamelCase :Union[str, Any] = accelerator.prepare(a_ , a_) lowerCamelCase :int = complete_code( a_ , a_ , a_ , a_ , n_tasks=a_ , batch_size=args.batch_size , **a_ , ) if accelerator.is_main_process: lowerCamelCase :Dict = [] for task in tqdm(range(a_)): lowerCamelCase :Tuple = human_eval['''test'''][task]['''test'''] lowerCamelCase :int = F"check({human_eval['test'][task]['entry_point']})" references.append('''\n''' + test_func + '''\n''' + entry_point) # Evaluate completions with "code_eval" metric lowerCamelCase :Any = code_eval_metric.compute( references=a_ , predictions=a_ , num_workers=args.num_workers) print(F"Results: {pass_at_k}") # Save results to json file with open(args.output_file , '''w''') as fp: json.dump(a_ , a_) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
716
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = LEDTokenizer _UpperCAmelCase = LEDTokenizerFast _UpperCAmelCase = True def snake_case ( self : Any ): super().setUp() lowerCamelCase :Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] lowerCamelCase :Any = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) lowerCamelCase :List[str] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCamelCase :int = {'''unk_token''': '''<unk>'''} lowerCamelCase :Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__snake_case ) ) def snake_case ( self : int , **__snake_case : int ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Dict , **__snake_case : Any ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Optional[Any] , __snake_case : Union[str, Any] ): return "lower newer", "lower newer" @cached_property def snake_case ( self : Any ): return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' ) @cached_property def snake_case ( self : int ): return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' ) @require_torch def snake_case ( self : str ): lowerCamelCase :Any = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowerCamelCase :List[Any] = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[Any] = tokenizer(__snake_case , max_length=len(__snake_case ) , padding=__snake_case , return_tensors='''pt''' ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowerCamelCase :List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(__snake_case , __snake_case ) @require_torch def snake_case ( self : Tuple ): lowerCamelCase :Dict = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Union[str, Any] = tokenizer(__snake_case , padding=__snake_case , return_tensors='''pt''' ) self.assertIn('''input_ids''' , __snake_case ) self.assertIn('''attention_mask''' , __snake_case ) self.assertNotIn('''labels''' , __snake_case ) self.assertNotIn('''decoder_attention_mask''' , __snake_case ) @require_torch def snake_case ( self : Union[str, Any] ): lowerCamelCase :Union[str, Any] = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :List[Any] = tokenizer(text_target=__snake_case , max_length=32 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) @require_torch def snake_case ( self : List[Any] ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[Any] = tokenizer( ['''I am a small frog''' * 1024, '''I am a small frog'''] , padding=__snake_case , truncation=__snake_case , return_tensors='''pt''' ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def snake_case ( self : Optional[int] ): lowerCamelCase :Union[str, Any] = ['''A long paragraph for summarization.'''] lowerCamelCase :Any = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Union[str, Any] = tokenizer(__snake_case , return_tensors='''pt''' ) lowerCamelCase :Any = tokenizer(text_target=__snake_case , return_tensors='''pt''' ) lowerCamelCase :Optional[int] = inputs['''input_ids'''] lowerCamelCase :Any = targets['''input_ids'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def snake_case ( self : Dict ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[int] = ['''Summary of the text.''', '''Another summary.'''] lowerCamelCase :List[Any] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] lowerCamelCase :Optional[int] = tokenizer(__snake_case , padding=__snake_case ) lowerCamelCase :Union[str, Any] = [[0] * len(__snake_case ) for x in encoded_output['''input_ids''']] lowerCamelCase :str = tokenizer.pad(__snake_case ) self.assertSequenceEqual(outputs['''global_attention_mask'''] , __snake_case ) def snake_case ( self : Tuple ): pass def snake_case ( self : Optional[int] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase :Optional[Any] = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :Tuple = self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :int = '''A, <mask> AllenNLP sentence.''' lowerCamelCase :str = tokenizer_r.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case ) lowerCamelCase :str = tokenizer_p.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case ) self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) lowerCamelCase :Optional[int] = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) lowerCamelCase :Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __snake_case , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __snake_case , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
49
0
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = MobileBertTokenizer _UpperCAmelCase = MobileBertTokenizerFast _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = filter_non_english _UpperCAmelCase = 'google/mobilebert-uncased' def snake_case ( self : int ): super().setUp() lowerCamelCase :Tuple = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCamelCase :Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowerCamelCase :List[str] = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def snake_case ( self : str , __snake_case : List[Any] ): lowerCamelCase :Dict = '''UNwant\u00E9d,running''' lowerCamelCase :Any = '''unwanted, running''' return input_text, output_text def snake_case ( self : List[str] ): lowerCamelCase :int = self.tokenizer_class(self.vocab_file ) lowerCamelCase :Any = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(__snake_case , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , [9, 6, 7, 12, 10, 11] ) def snake_case ( self : str ): if not self.test_rust_tokenizer: return lowerCamelCase :List[Any] = self.get_tokenizer() lowerCamelCase :Union[str, Any] = self.get_rust_tokenizer() lowerCamelCase :Union[str, Any] = '''UNwant\u00E9d,running''' lowerCamelCase :List[Any] = tokenizer.tokenize(__snake_case ) lowerCamelCase :str = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) lowerCamelCase :str = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) lowerCamelCase :Any = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) lowerCamelCase :int = self.get_rust_tokenizer() lowerCamelCase :List[Any] = tokenizer.encode(__snake_case ) lowerCamelCase :Optional[int] = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # With lower casing lowerCamelCase :Tuple = self.get_tokenizer(do_lower_case=__snake_case ) lowerCamelCase :str = self.get_rust_tokenizer(do_lower_case=__snake_case ) lowerCamelCase :Optional[Any] = '''UNwant\u00E9d,running''' lowerCamelCase :int = tokenizer.tokenize(__snake_case ) lowerCamelCase :Optional[Any] = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) lowerCamelCase :Optional[int] = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) lowerCamelCase :Tuple = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) lowerCamelCase :Dict = self.get_rust_tokenizer() lowerCamelCase :Tuple = tokenizer.encode(__snake_case ) lowerCamelCase :Optional[Any] = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) def snake_case ( self : Optional[int] ): lowerCamelCase :Optional[int] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def snake_case ( self : Dict ): lowerCamelCase :Optional[int] = BasicTokenizer(do_lower_case=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def snake_case ( self : List[str] ): lowerCamelCase :Optional[Any] = BasicTokenizer(do_lower_case=__snake_case , strip_accents=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def snake_case ( self : str ): lowerCamelCase :Optional[int] = BasicTokenizer(do_lower_case=__snake_case , strip_accents=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def snake_case ( self : str ): lowerCamelCase :Tuple = BasicTokenizer(do_lower_case=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def snake_case ( self : int ): lowerCamelCase :Union[str, Any] = BasicTokenizer(do_lower_case=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def snake_case ( self : Optional[Any] ): lowerCamelCase :List[Any] = BasicTokenizer(do_lower_case=__snake_case , strip_accents=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def snake_case ( self : List[Any] ): lowerCamelCase :Optional[Any] = BasicTokenizer(do_lower_case=__snake_case , strip_accents=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def snake_case ( self : Dict ): lowerCamelCase :Tuple = BasicTokenizer(do_lower_case=__snake_case , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Any = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] lowerCamelCase :Optional[Any] = {} for i, token in enumerate(__snake_case ): lowerCamelCase :List[Any] = i lowerCamelCase :int = WordpieceTokenizer(vocab=__snake_case , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def snake_case ( self : str ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def snake_case ( self : Optional[int] ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def snake_case ( self : List[Any] ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Optional[Any] = self.get_tokenizer() lowerCamelCase :str = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__snake_case ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(__snake_case ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def snake_case ( self : int ): lowerCamelCase :str = self.tokenizer_class.from_pretrained('''google/mobilebert-uncased''' ) lowerCamelCase :Dict = tokenizer.encode('''sequence builders''' , add_special_tokens=__snake_case ) lowerCamelCase :List[Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__snake_case ) lowerCamelCase :Any = tokenizer.build_inputs_with_special_tokens(__snake_case ) lowerCamelCase :Tuple = tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def snake_case ( self : Dict ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase :int = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :Union[str, Any] = F"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." lowerCamelCase :Optional[int] = tokenizer_r.encode_plus( __snake_case , return_attention_mask=__snake_case , return_token_type_ids=__snake_case , return_offsets_mapping=__snake_case , add_special_tokens=__snake_case , ) lowerCamelCase :Tuple = tokenizer_r.do_lower_case if hasattr(__snake_case , '''do_lower_case''' ) else False lowerCamelCase :Union[str, Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def snake_case ( self : Any ): lowerCamelCase :Optional[int] = ['''的''', '''人''', '''有'''] lowerCamelCase :List[Any] = ''''''.join(__snake_case ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase :Optional[Any] = True lowerCamelCase :List[str] = self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :List[str] = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :Union[str, Any] = tokenizer_p.encode(__snake_case , add_special_tokens=__snake_case ) lowerCamelCase :Union[str, Any] = tokenizer_r.encode(__snake_case , add_special_tokens=__snake_case ) lowerCamelCase :List[str] = tokenizer_r.convert_ids_to_tokens(__snake_case ) lowerCamelCase :Tuple = tokenizer_p.convert_ids_to_tokens(__snake_case ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__snake_case , __snake_case ) self.assertListEqual(__snake_case , __snake_case ) lowerCamelCase :Optional[Any] = False lowerCamelCase :Tuple = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :Tuple = self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :str = tokenizer_r.encode(__snake_case , add_special_tokens=__snake_case ) lowerCamelCase :Union[str, Any] = tokenizer_p.encode(__snake_case , add_special_tokens=__snake_case ) lowerCamelCase :Dict = tokenizer_r.convert_ids_to_tokens(__snake_case ) lowerCamelCase :Any = tokenizer_p.convert_ids_to_tokens(__snake_case ) # it is expected that only the first Chinese character is not preceded by "##". lowerCamelCase :List[str] = [ F"##{token}" if idx != 0 else token for idx, token in enumerate(__snake_case ) ] self.assertListEqual(__snake_case , __snake_case ) self.assertListEqual(__snake_case , __snake_case )
717
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) A__ = { """configuration_layoutlmv2""": ["""LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv2Config"""], """processing_layoutlmv2""": ["""LayoutLMv2Processor"""], """tokenization_layoutlmv2""": ["""LayoutLMv2Tokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""LayoutLMv2TokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""LayoutLMv2FeatureExtractor"""] A__ = ["""LayoutLMv2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """LayoutLMv2ForQuestionAnswering""", """LayoutLMv2ForSequenceClassification""", """LayoutLMv2ForTokenClassification""", """LayoutLMv2Layer""", """LayoutLMv2Model""", """LayoutLMv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
49
0
from math import ceil def _lowerCamelCase ( a_ : int = 10_01): lowerCamelCase :Union[str, Any] = 1 for i in range(1 , int(ceil(n / 2.0))): lowerCamelCase :Any = 2 * i + 1 lowerCamelCase :str = 2 * i lowerCamelCase :Tuple = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: A__ = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number""")
718
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _lowerCAmelCase : @staticmethod def snake_case ( *__snake_case : str , **__snake_case : str ): pass @is_pipeline_test @require_vision class _lowerCAmelCase ( unittest.TestCase ): @require_torch def snake_case ( self : Union[str, Any] ): lowerCamelCase :Optional[int] = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Dict = image_classifier(__snake_case , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__snake_case ) , [ [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}], [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}], ] , ) lowerCamelCase :Tuple = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], ] , ) @require_tf def snake_case ( self : Tuple ): lowerCamelCase :Tuple = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Optional[Any] = image_classifier(__snake_case , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(__snake_case ) , [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}] , ) lowerCamelCase :int = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], ] , ) @slow @require_torch def snake_case ( self : Any ): lowerCamelCase :str = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Optional[Any] = image_classifier(__snake_case , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) lowerCamelCase :Any = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def snake_case ( self : Optional[Any] ): lowerCamelCase :Union[str, Any] = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes lowerCamelCase :Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Dict = image_classifier(__snake_case , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) lowerCamelCase :Any = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , )
49
0
from __future__ import annotations def _lowerCamelCase ( a_ : int | float | str , a_ : int | float | str): if nth_term == "": return [""] lowerCamelCase :List[str] = int(a_) lowerCamelCase :List[Any] = int(a_) lowerCamelCase :list[str] = [] for temp in range(int(a_)): series.append(F"1 / {pow(temp + 1 , int(a_))}" if series else '''1''') return series if __name__ == "__main__": import doctest doctest.testmod() A__ = int(input("""Enter the last number (nth term) of the P-Series""")) A__ = int(input("""Enter the power for P-Series""")) print("""Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p""") print(p_series(nth_term, power))
719
import operator as op def _lowerCamelCase ( a_ : Tuple): lowerCamelCase :int = [] lowerCamelCase :List[str] = lambda a_ , a_: int(x / y) # noqa: E731 integer division operation lowerCamelCase :Optional[int] = { '''^''': op.pow, '''*''': op.mul, '''/''': div, '''+''': op.add, '''-''': op.sub, } # operators & their respective operation # print table header print('''Symbol'''.center(8) , '''Action'''.center(12) , '''Stack''' , sep=''' | ''') print('''-''' * (30 + len(a_))) for x in post_fix: if x.isdigit(): # if x in digit stack.append(a_) # append x to stack # output in tabular format print(x.rjust(8) , ('''push(''' + x + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') else: lowerCamelCase :Optional[Any] = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8) , ('''pop(''' + b + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') lowerCamelCase :str = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8) , ('''pop(''' + a + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') stack.append( str(opr[x](int(a_) , int(a_)))) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8) , ('''push(''' + a + x + b + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''' , ) return int(stack[0]) if __name__ == "__main__": A__ = input("""\n\nEnter a Postfix Equation (space separated) = """).split(""" """) print("""\n\tResult = """, solve(Postfix))
49
0
from math import sqrt def _lowerCamelCase ( a_ : int): lowerCamelCase :List[Any] = 0 for i in range(1 , int(sqrt(a_) + 1)): if n % i == 0 and i != sqrt(a_): total += i + n // i elif i == sqrt(a_): total += i return total - n def _lowerCamelCase ( a_ : int = 1_00_00): lowerCamelCase :int = sum( i for i in range(1 , a_) if sum_of_divisors(sum_of_divisors(a_)) == i and sum_of_divisors(a_) != i) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
720
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() A__ = logging.get_logger(__name__) A__ = """Hello, World!""" A__ = """en_XX""" def _lowerCamelCase ( a_ : str , a_ : str , a_ : bool): lowerCamelCase :int = Path('''data_bin''') lowerCamelCase :Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(a_).parent) , checkpoint_file=Path(a_).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(a_) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(a_).parent / '''sentencepiece.bpe.model''') , src_dict=str(data_dir / '''dict.txt''') , ) xmod.eval() # disable dropout print(a_) lowerCamelCase :Any = xmod.model.encoder.sentence_encoder lowerCamelCase :List[str] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: lowerCamelCase :Dict = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our X-MOD config:''' , a_) lowerCamelCase :List[Any] = XmodForSequenceClassification(a_) if classification_head else XmodForMaskedLM(a_) model.eval() # Now let's copy all the weights. # Embeddings lowerCamelCase :Union[str, Any] = xmod_sent_encoder.embed_tokens.weight lowerCamelCase :Tuple = xmod_sent_encoder.embed_positions.weight lowerCamelCase :List[str] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight) # just zero them out b/c xmod doesn't use them. lowerCamelCase :List[Any] = xmod_sent_encoder.layernorm_embedding.weight lowerCamelCase :Optional[int] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers): # Encoder: start of layer lowerCamelCase :Union[str, Any] = model.roberta.encoder.layer[i] lowerCamelCase :List[str] = xmod_sent_encoder.layers[i] # self attention lowerCamelCase :Optional[int] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size)) ): raise AssertionError('''Dimensions of self-attention weights do not match.''') lowerCamelCase :Optional[int] = xmod_layer.self_attn.q_proj.weight lowerCamelCase :List[str] = xmod_layer.self_attn.q_proj.bias lowerCamelCase :str = xmod_layer.self_attn.k_proj.weight lowerCamelCase :Optional[Any] = xmod_layer.self_attn.k_proj.bias lowerCamelCase :Dict = xmod_layer.self_attn.v_proj.weight lowerCamelCase :Optional[int] = xmod_layer.self_attn.v_proj.bias # self-attention output lowerCamelCase :Optional[int] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('''Dimensions of self-attention output weights do not match.''') lowerCamelCase :List[Any] = xmod_layer.self_attn.out_proj.weight lowerCamelCase :Union[str, Any] = xmod_layer.self_attn.out_proj.bias lowerCamelCase :str = xmod_layer.self_attn_layer_norm.weight lowerCamelCase :List[Any] = xmod_layer.self_attn_layer_norm.bias # intermediate lowerCamelCase :Optional[int] = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of intermediate weights do not match.''') lowerCamelCase :int = xmod_layer.fca.weight lowerCamelCase :Union[str, Any] = xmod_layer.fca.bias # output lowerCamelCase :List[str] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of feed-forward weights do not match.''') lowerCamelCase :str = xmod_layer.fca.weight lowerCamelCase :int = xmod_layer.fca.bias lowerCamelCase :List[Any] = xmod_layer.final_layer_norm.weight lowerCamelCase :List[str] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: lowerCamelCase :List[str] = xmod_layer.adapter_layer_norm.weight lowerCamelCase :int = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys()) != sorted(xmod_layer.adapter_modules.keys()): raise AssertionError('''Lists of language adapters do not match.''') for lang_code, adapter in xmod_layer.adapter_modules.items(): lowerCamelCase :Optional[int] = bert_output.adapter_modules[lang_code] lowerCamelCase :Dict = xmod_layer.adapter_modules[lang_code] lowerCamelCase :List[Any] = from_adapter.fca.weight lowerCamelCase :List[Any] = from_adapter.fca.bias lowerCamelCase :Dict = from_adapter.fca.weight lowerCamelCase :Optional[Any] = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: lowerCamelCase :Dict = xmod_sent_encoder.layer_norm.weight lowerCamelCase :List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: lowerCamelCase :Union[str, Any] = xmod.model.classification_heads['''mnli'''].dense.weight lowerCamelCase :Tuple = xmod.model.classification_heads['''mnli'''].dense.bias lowerCamelCase :Optional[Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight lowerCamelCase :List[Any] = xmod.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head lowerCamelCase :int = xmod.model.encoder.lm_head.dense.weight lowerCamelCase :List[Any] = xmod.model.encoder.lm_head.dense.bias lowerCamelCase :Optional[int] = xmod.model.encoder.lm_head.layer_norm.weight lowerCamelCase :List[Any] = xmod.model.encoder.lm_head.layer_norm.bias lowerCamelCase :List[Any] = xmod.model.encoder.lm_head.weight lowerCamelCase :Any = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCamelCase :str = xmod.encode(a_).unsqueeze(0) # batch of size 1 model.roberta.set_default_language(a_) lowerCamelCase :Any = model(a_)[0] if classification_head: lowerCamelCase :Dict = xmod.model.classification_heads['''mnli'''](xmod.extract_features(a_)) else: lowerCamelCase :int = xmod.model(a_ , lang_id=[SAMPLE_LANGUAGE])[0] print(our_output.shape , their_output.shape) lowerCamelCase :List[str] = torch.max(torch.abs(our_output - their_output)).item() print(F"max_absolute_diff = {max_absolute_diff}") # ~ 1e-7 lowerCamelCase :str = torch.allclose(a_ , a_ , atol=1e-3) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''') if not success: raise Exception('''Something went wRoNg''') Path(a_).mkdir(parents=a_ , exist_ok=a_) print(F"Saving model to {pytorch_dump_folder_path}") model.save_pretrained(a_) if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) A__ = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
49
0
def _lowerCamelCase ( a_ : dict): lowerCamelCase :set[int] = set() # To detect a back edge, keep track of vertices currently in the recursion stack lowerCamelCase :set[int] = set() return any( node not in visited and depth_first_search(a_ , a_ , a_ , a_) for node in graph) def _lowerCamelCase ( a_ : dict , a_ : int , a_ : set , a_ : set): visited.add(a_) rec_stk.add(a_) for node in graph[vertex]: if node not in visited: if depth_first_search(a_ , a_ , a_ , a_): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(a_) return False if __name__ == "__main__": from doctest import testmod testmod()
721
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { """andreasmadsen/efficient_mlm_m0.40""": ( """https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json""" ), } class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'roberta-prelayernorm' def __init__( self : str , __snake_case : List[str]=50265 , __snake_case : Union[str, Any]=768 , __snake_case : Tuple=12 , __snake_case : int=12 , __snake_case : Any=3072 , __snake_case : Optional[int]="gelu" , __snake_case : List[Any]=0.1 , __snake_case : int=0.1 , __snake_case : Union[str, Any]=512 , __snake_case : Dict=2 , __snake_case : int=0.0_2 , __snake_case : Any=1e-1_2 , __snake_case : Optional[int]=1 , __snake_case : Dict=0 , __snake_case : Optional[int]=2 , __snake_case : Any="absolute" , __snake_case : Union[str, Any]=True , __snake_case : List[str]=None , **__snake_case : Optional[int] , ): super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) lowerCamelCase :Optional[int] = vocab_size lowerCamelCase :Dict = hidden_size lowerCamelCase :Tuple = num_hidden_layers lowerCamelCase :Optional[int] = num_attention_heads lowerCamelCase :Any = hidden_act lowerCamelCase :List[Any] = intermediate_size lowerCamelCase :Union[str, Any] = hidden_dropout_prob lowerCamelCase :str = attention_probs_dropout_prob lowerCamelCase :Tuple = max_position_embeddings lowerCamelCase :int = type_vocab_size lowerCamelCase :Optional[Any] = initializer_range lowerCamelCase :Union[str, Any] = layer_norm_eps lowerCamelCase :Dict = position_embedding_type lowerCamelCase :List[Any] = use_cache lowerCamelCase :Optional[int] = classifier_dropout class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): @property def snake_case ( self : Any ): if self.task == "multiple-choice": lowerCamelCase :Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase :List[str] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
49
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowercase : List[Any] = { """configuration_blenderbot""": [ """BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlenderbotConfig""", """BlenderbotOnnxConfig""", ], """tokenization_blenderbot""": ["""BlenderbotTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[str] = ["""BlenderbotTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict = [ """BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlenderbotForCausalLM""", """BlenderbotForConditionalGeneration""", """BlenderbotModel""", """BlenderbotPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = [ """TFBlenderbotForConditionalGeneration""", """TFBlenderbotModel""", """TFBlenderbotPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict = [ """FlaxBlenderbotForConditionalGeneration""", """FlaxBlenderbotModel""", """FlaxBlenderbotPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys _lowercase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__( unittest.TestCase ): def __init__( self : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Tuple=32 , lowerCAmelCase : Optional[int]=3 , lowerCAmelCase : Optional[Any]=10 , lowerCAmelCase : Optional[Any]=[10, 20, 30, 40] , lowerCAmelCase : Optional[int]=[1, 1, 2, 1] , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Tuple=True , lowerCAmelCase : List[Any]="relu" , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Union[str, Any]=None , )-> Optional[int]: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = num_channels UpperCAmelCase = embeddings_size UpperCAmelCase = hidden_sizes UpperCAmelCase = depths UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_act UpperCAmelCase = num_labels UpperCAmelCase = scope UpperCAmelCase = len(lowerCAmelCase ) def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = self.get_config() return config, pixel_values def a__( self : str )-> Optional[Any]: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def a__( self : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Any )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = FlaxRegNetModel(config=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__( self : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] )-> List[str]: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = FlaxRegNetForImageClassification(config=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__( self : List[str] )-> Any: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__( lowerCAmelCase , unittest.TestCase ): __magic_name__ : Optional[int] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __magic_name__ : Optional[int] = False __magic_name__ : List[str] = False __magic_name__ : Dict = False def a__( self : Union[str, Any] )-> None: """simple docstring""" UpperCAmelCase = FlaxRegNetModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase ) def a__( self : List[str] )-> List[str]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__( self : Tuple )-> Tuple: """simple docstring""" return def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def a__( self : str )-> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def a__( self : Any )-> List[str]: """simple docstring""" pass def a__( self : Any )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def a__( self : Tuple )-> int: """simple docstring""" def check_hidden_states_output(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int ): UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase ) , expected_num_stages + 1 ) UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = model_class(lowerCAmelCase ) @jax.jit def model_jitted(lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple ): return model(pixel_values=lowerCAmelCase , **lowerCAmelCase ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple() self.assertEqual(len(lowerCAmelCase ) , len(lowerCAmelCase ) ) for jitted_output, output in zip(lowerCAmelCase , lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCamelCase__( unittest.TestCase ): @cached_property def a__( self : Dict )-> int: """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def a__( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=lowerCAmelCase , return_tensors='''np''' ) UpperCAmelCase = model(**lowerCAmelCase ) # verify the logits UpperCAmelCase = (1, 1000) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) UpperCAmelCase = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
50
1