code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'naver-clova-ix/donut-base-finetuned-docvqa' _UpperCAmelCase = ( 'This is a tool that answers a question about an document (pdf). It takes an input named `document` which ' 'should be the document containing the information, as well as a `question` that is the question about the ' 'document. It returns a text that contains the answer to the question.' ) _UpperCAmelCase = 'document_qa' _UpperCAmelCase = AutoProcessor _UpperCAmelCase = VisionEncoderDecoderModel _UpperCAmelCase = ['image', 'text'] _UpperCAmelCase = ['text'] def __init__( self : Union[str, Any] , *__snake_case : Tuple , **__snake_case : int ): if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*__snake_case , **__snake_case ) def snake_case ( self : Dict , __snake_case : "Image" , __snake_case : str ): lowerCamelCase :str = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' lowerCamelCase :List[str] = task_prompt.replace('''{user_input}''' , __snake_case ) lowerCamelCase :Optional[int] = self.pre_processor.tokenizer( __snake_case , add_special_tokens=__snake_case , return_tensors='''pt''' ).input_ids lowerCamelCase :str = self.pre_processor(__snake_case , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def snake_case ( self : Optional[int] , __snake_case : Tuple ): return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__snake_case , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__snake_case , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__snake_case , ).sequences def snake_case ( self : Dict , __snake_case : Optional[int] ): lowerCamelCase :Optional[int] = self.pre_processor.batch_decode(__snake_case )[0] lowerCamelCase :Optional[Any] = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) lowerCamelCase :Optional[Any] = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) lowerCamelCase :Union[str, Any] = re.sub(R'''<.*?>''' , '''''' , __snake_case , count=1 ).strip() # remove first task start token lowerCamelCase :Tuple = self.pre_processor.tokenajson(__snake_case ) return sequence["answer"]
49
def _lowerCamelCase ( a_ : int = 4_00_00_00): lowerCamelCase :Dict = [0, 1] lowerCamelCase :Optional[Any] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1]) if fib[i + 2] > n: break i += 1 lowerCamelCase :Dict = 0 for j in range(len(a_) - 1): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F'{solution() = }')
49
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { """facebook/data2vec-text-base""": """https://huggingface.co/data2vec/resolve/main/config.json""", } class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'data2vec-text' def __init__( self : str , __snake_case : Optional[Any]=30522 , __snake_case : str=768 , __snake_case : Tuple=12 , __snake_case : List[str]=12 , __snake_case : Optional[Any]=3072 , __snake_case : Any="gelu" , __snake_case : str=0.1 , __snake_case : List[str]=0.1 , __snake_case : Optional[int]=512 , __snake_case : Tuple=2 , __snake_case : int=0.0_2 , __snake_case : List[Any]=1e-1_2 , __snake_case : str=1 , __snake_case : Tuple=0 , __snake_case : int=2 , __snake_case : Tuple="absolute" , __snake_case : List[Any]=True , __snake_case : int=None , **__snake_case : Optional[int] , ): super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) lowerCamelCase :Tuple = vocab_size lowerCamelCase :Dict = hidden_size lowerCamelCase :List[Any] = num_hidden_layers lowerCamelCase :List[str] = num_attention_heads lowerCamelCase :Union[str, Any] = hidden_act lowerCamelCase :Optional[Any] = intermediate_size lowerCamelCase :str = hidden_dropout_prob lowerCamelCase :Tuple = attention_probs_dropout_prob lowerCamelCase :Any = max_position_embeddings lowerCamelCase :int = type_vocab_size lowerCamelCase :Any = initializer_range lowerCamelCase :Optional[Any] = layer_norm_eps lowerCamelCase :List[str] = position_embedding_type lowerCamelCase :Tuple = use_cache lowerCamelCase :List[Any] = classifier_dropout class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): @property def snake_case ( self : Tuple ): if self.task == "multiple-choice": lowerCamelCase :Dict = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase :Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
49
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ = { """configuration_nllb_moe""": [ """NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NllbMoeConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""", """NllbMoeForConditionalGeneration""", """NllbMoeModel""", """NllbMoePreTrainedModel""", """NllbMoeTop2Router""", """NllbMoeSparseMLP""", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
49
1
def _lowerCamelCase ( a_ : float): return 10 - x * x def _lowerCamelCase ( a_ : float , a_ : float): # Bolzano theory in order to find if there is a root between a and b if equation(a_) * equation(a_) >= 0: raise ValueError('''Wrong space!''') lowerCamelCase :List[str] = a while (b - a) >= 0.01: # Find middle point lowerCamelCase :Union[str, Any] = (a + b) / 2 # Check if middle point is root if equation(a_) == 0.0: break # Decide the side to repeat the steps if equation(a_) * equation(a_) < 0: lowerCamelCase :str = c else: lowerCamelCase :Tuple = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
49
import numpy class _lowerCAmelCase : def __init__( self : Dict , __snake_case : numpy.ndarray , __snake_case : numpy.ndarray ): lowerCamelCase :Dict = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. lowerCamelCase :Dict = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. lowerCamelCase :Dict = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. lowerCamelCase :Any = numpy.random.rand(3 , 1 ) # Real output values provided. lowerCamelCase :Union[str, Any] = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. lowerCamelCase :List[str] = numpy.zeros(output_array.shape ) def snake_case ( self : Optional[int] ): lowerCamelCase :Any = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. lowerCamelCase :Any = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. lowerCamelCase :Dict = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def snake_case ( self : Any ): lowerCamelCase :Union[str, Any] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) lowerCamelCase :Dict = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) lowerCamelCase :int = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def snake_case ( self : Dict , __snake_case : numpy.ndarray , __snake_case : int , __snake_case : bool ): for iteration in range(1 , iterations + 1 ): lowerCamelCase :Union[str, Any] = self.feedforward() self.back_propagation() if give_loss: lowerCamelCase :Tuple = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"Iteration {iteration} Loss: {loss}" ) def snake_case ( self : Optional[int] , __snake_case : numpy.ndarray ): lowerCamelCase :int = input_arr lowerCamelCase :Union[str, Any] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) lowerCamelCase :Optional[Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) lowerCamelCase :Optional[int] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def _lowerCamelCase ( a_ : numpy.ndarray): return 1 / (1 + numpy.exp(-value)) def _lowerCamelCase ( a_ : numpy.ndarray): return (value) * (1 - (value)) def _lowerCamelCase ( ): lowerCamelCase :Optional[Any] = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. lowerCamelCase :int = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa) # Calling neural network class. lowerCamelCase :List[Any] = TwoHiddenLayerNeuralNetwork( input_array=a_ , output_array=a_) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=a_ , iterations=10 , give_loss=a_) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa)) if __name__ == "__main__": example()
49
1
from __future__ import annotations A__ = 10 def _lowerCamelCase ( a_ : list[int]): lowerCamelCase :Any = 1 lowerCamelCase :List[str] = max(a_) while placement <= max_digit: # declare and initialize empty buckets lowerCamelCase :list[list] = [[] for _ in range(a_)] # split list_of_ints between the buckets for i in list_of_ints: lowerCamelCase :Tuple = int((i / placement) % RADIX) buckets[tmp].append(a_) # put each buckets' contents into list_of_ints lowerCamelCase :Optional[int] = 0 for b in range(a_): for i in buckets[b]: lowerCamelCase :List[Any] = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
49
def _lowerCamelCase ( a_ : str , a_ : str): lowerCamelCase :List[str] = len(a_) lowerCamelCase :List[str] = len(a_) lowerCamelCase :int = [[False for _ in range(m + 1)] for _ in range(n + 1)] lowerCamelCase :Optional[Any] = True for i in range(a_): for j in range(m + 1): if dp[i][j]: if j < m and a[i].upper() == b[j]: lowerCamelCase :Any = True if a[i].islower(): lowerCamelCase :List[str] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
49
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A__ = { """configuration_poolformer""": [ """POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PoolFormerConfig""", """PoolFormerOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""PoolFormerFeatureExtractor"""] A__ = ["""PoolFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PoolFormerForImageClassification""", """PoolFormerModel""", """PoolFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
49
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : def __init__( self : Any , __snake_case : Optional[int] , __snake_case : int=13 , __snake_case : str=[30, 30] , __snake_case : Tuple=2 , __snake_case : Optional[Any]=3 , __snake_case : int=True , __snake_case : Tuple=True , __snake_case : List[Any]=32 , __snake_case : int=5 , __snake_case : Optional[Any]=4 , __snake_case : Union[str, Any]=37 , __snake_case : str="gelu" , __snake_case : Tuple=0.1 , __snake_case : List[Any]=0.1 , __snake_case : Union[str, Any]=10 , __snake_case : str=0.0_2 , __snake_case : Union[str, Any]=3 , __snake_case : Union[str, Any]=None , __snake_case : List[str]=8 , __snake_case : Any=10 , ): lowerCamelCase :Optional[Any] = parent lowerCamelCase :List[Any] = batch_size lowerCamelCase :Any = image_size lowerCamelCase :Union[str, Any] = patch_size lowerCamelCase :Any = num_channels lowerCamelCase :List[Any] = is_training lowerCamelCase :Optional[Any] = use_labels lowerCamelCase :Any = hidden_size lowerCamelCase :List[Any] = num_hidden_layers lowerCamelCase :List[str] = num_attention_heads lowerCamelCase :Tuple = intermediate_size lowerCamelCase :List[str] = hidden_act lowerCamelCase :List[str] = hidden_dropout_prob lowerCamelCase :Any = attention_probs_dropout_prob lowerCamelCase :List[Any] = type_sequence_label_size lowerCamelCase :Optional[int] = initializer_range lowerCamelCase :List[Any] = num_labels lowerCamelCase :Any = scope lowerCamelCase :Union[str, Any] = n_targets lowerCamelCase :Optional[Any] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowerCamelCase :Tuple = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowerCamelCase :str = num_patches + 1 + self.num_detection_tokens def snake_case ( self : List[str] ): lowerCamelCase :str = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowerCamelCase :List[str] = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowerCamelCase :Optional[int] = [] for i in range(self.batch_size ): lowerCamelCase :List[str] = {} lowerCamelCase :Tuple = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=__snake_case ) lowerCamelCase :List[str] = torch.rand(self.n_targets , 4 , device=__snake_case ) labels.append(__snake_case ) lowerCamelCase :str = self.get_config() return config, pixel_values, labels def snake_case ( self : Union[str, Any] ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__snake_case , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def snake_case ( self : Tuple , __snake_case : Tuple , __snake_case : Tuple , __snake_case : Any ): lowerCamelCase :Optional[Any] = YolosModel(config=__snake_case ) model.to(__snake_case ) model.eval() lowerCamelCase :Union[str, Any] = model(__snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def snake_case ( self : Dict , __snake_case : str , __snake_case : Optional[int] , __snake_case : Optional[Any] ): lowerCamelCase :int = YolosForObjectDetection(__snake_case ) model.to(__snake_case ) model.eval() lowerCamelCase :str = model(pixel_values=__snake_case ) lowerCamelCase :Any = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) lowerCamelCase :int = model(pixel_values=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def snake_case ( self : int ): lowerCamelCase :List[Any] = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase :str = config_and_inputs lowerCamelCase :Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () _UpperCAmelCase = ( {'feature-extraction': YolosModel, 'object-detection': YolosForObjectDetection} if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def snake_case ( self : Any , __snake_case : List[Any] , __snake_case : Tuple , __snake_case : Dict=False ): lowerCamelCase :Optional[int] = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowerCamelCase :Dict = [] for i in range(self.model_tester.batch_size ): lowerCamelCase :Optional[Any] = {} lowerCamelCase :List[Any] = torch.ones( size=(self.model_tester.n_targets,) , device=__snake_case , dtype=torch.long ) lowerCamelCase :str = torch.ones( self.model_tester.n_targets , 4 , device=__snake_case , dtype=torch.float ) labels.append(__snake_case ) lowerCamelCase :Union[str, Any] = labels return inputs_dict def snake_case ( self : Tuple ): lowerCamelCase :Union[str, Any] = YolosModelTester(self ) lowerCamelCase :Dict = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=37 ) def snake_case ( self : Union[str, Any] ): self.config_tester.run_common_tests() def snake_case ( self : Optional[Any] ): # YOLOS does not use inputs_embeds pass def snake_case ( self : Tuple ): lowerCamelCase , lowerCamelCase :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :Optional[int] = model_class(__snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase :str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case , nn.Linear ) ) def snake_case ( self : str ): lowerCamelCase , lowerCamelCase :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :str = model_class(__snake_case ) lowerCamelCase :Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase :Tuple = [*signature.parameters.keys()] lowerCamelCase :Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __snake_case ) def snake_case ( self : int ): lowerCamelCase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def snake_case ( self : str ): lowerCamelCase , lowerCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase :int = True # in YOLOS, the seq_len is different lowerCamelCase :str = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowerCamelCase :str = True lowerCamelCase :Tuple = False lowerCamelCase :Optional[int] = True lowerCamelCase :int = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :str = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :str = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase :Optional[Any] = True lowerCamelCase :str = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :Tuple = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Tuple = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowerCamelCase :Optional[int] = len(__snake_case ) # Check attention is always last and order is fine lowerCamelCase :Union[str, Any] = True lowerCamelCase :List[Any] = True lowerCamelCase :Tuple = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :int = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Dict = 1 self.assertEqual(out_len + added_hidden_states , len(__snake_case ) ) lowerCamelCase :Dict = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def snake_case ( self : List[str] ): def check_hidden_states_output(__snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Tuple ): lowerCamelCase :Union[str, Any] = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :Any = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Optional[Any] = outputs.hidden_states lowerCamelCase :Any = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__snake_case ) , __snake_case ) # YOLOS has a different seq_length lowerCamelCase :List[str] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowerCamelCase , lowerCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :Union[str, Any] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase :Any = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*__snake_case ) @slow def snake_case ( self : Dict ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase :Tuple = YolosModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def _lowerCamelCase ( ): lowerCamelCase :int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): @cached_property def snake_case ( self : Tuple ): return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def snake_case ( self : Dict ): lowerCamelCase :Union[str, Any] = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(__snake_case ) lowerCamelCase :Optional[Any] = self.default_image_processor lowerCamelCase :str = prepare_img() lowerCamelCase :Dict = image_processor(images=__snake_case , return_tensors='''pt''' ).to(__snake_case ) # forward pass with torch.no_grad(): lowerCamelCase :Optional[Any] = model(inputs.pixel_values ) # verify outputs lowerCamelCase :int = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , __snake_case ) lowerCamelCase :Any = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=__snake_case , ) lowerCamelCase :Any = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __snake_case , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , __snake_case , atol=1e-4 ) ) # verify postprocessing lowerCamelCase :List[str] = image_processor.post_process_object_detection( __snake_case , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] lowerCamelCase :List[str] = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(__snake_case ) lowerCamelCase :str = [75, 75, 17, 63, 17] lowerCamelCase :Tuple = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(__snake_case ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , __snake_case , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , __snake_case ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , __snake_case ) )
49
1
def _lowerCamelCase ( a_ : int = 50_00_00_00): lowerCamelCase :int = set() lowerCamelCase :Union[str, Any] = int((limit - 24) ** (1 / 2)) lowerCamelCase :Optional[Any] = set(range(3 , prime_square_limit + 1 , 2)) primes.add(2) for p in range(3 , prime_square_limit + 1 , 2): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , a_))) for primea in primes: lowerCamelCase :Any = primea * primea for primea in primes: lowerCamelCase :Union[str, Any] = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: lowerCamelCase :List[Any] = primea * primea * primea * primea lowerCamelCase :Dict = square + cube + tetr if total >= limit: break ret.add(a_) return len(a_) if __name__ == "__main__": print(F'{solution() = }')
49
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Tuple ): lowerCamelCase :List[Any] = inspect.getfile(accelerate.test_utils ) lowerCamelCase :Dict = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 lowerCamelCase :Any = test_metrics @require_cpu def snake_case ( self : Dict ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def snake_case ( self : int ): debug_launcher(self.test_metrics.main ) @require_single_gpu def snake_case ( self : Any ): self.test_metrics.main() @require_multi_gpu def snake_case ( self : Optional[int] ): print(F"Found {torch.cuda.device_count()} devices." ) lowerCamelCase :Optional[int] = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__snake_case , env=os.environ.copy() )
49
1
import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def _lowerCamelCase ( a_ : Optional[Any] , a_ : str , a_ : Any , a_ : Union[str, Any] , a_ : int): # Load configuration defined in the metadata file with open(a_) as metadata_file: lowerCamelCase :Union[str, Any] = json.load(a_) lowerCamelCase :Union[str, Any] = LukeConfig(use_entity_aware_attention=a_ , **metadata['''model_config''']) # Load in the weights from the checkpoint_path lowerCamelCase :List[str] = torch.load(a_ , map_location='''cpu''') # Load the entity vocab file lowerCamelCase :List[str] = load_entity_vocab(a_) lowerCamelCase :Optional[int] = RobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name''']) # Add special tokens to the token vocabulary for downstream tasks lowerCamelCase :int = AddedToken('''<ent>''' , lstrip=a_ , rstrip=a_) lowerCamelCase :Optional[Any] = AddedToken('''<ent2>''' , lstrip=a_ , rstrip=a_) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]}) config.vocab_size += 2 print(F"Saving tokenizer to {pytorch_dump_folder_path}") tokenizer.save_pretrained(a_) with open(os.path.join(a_ , LukeTokenizer.vocab_files_names['''entity_vocab_file''']) , '''w''') as f: json.dump(a_ , a_) lowerCamelCase :str = LukeTokenizer.from_pretrained(a_) # Initialize the embeddings of the special tokens lowerCamelCase :Union[str, Any] = state_dict['''embeddings.word_embeddings.weight'''] lowerCamelCase :Any = word_emb[tokenizer.convert_tokens_to_ids(['''@'''])[0]].unsqueeze(0) lowerCamelCase :List[Any] = word_emb[tokenizer.convert_tokens_to_ids(['''#'''])[0]].unsqueeze(0) lowerCamelCase :Dict = torch.cat([word_emb, ent_emb, enta_emb]) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers): for matrix_name in ["query.weight", "query.bias"]: lowerCamelCase :Tuple = F"encoder.layer.{layer_index}.attention.self." lowerCamelCase :List[Any] = state_dict[prefix + matrix_name] lowerCamelCase :Any = state_dict[prefix + matrix_name] lowerCamelCase :str = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks lowerCamelCase :Any = state_dict['''entity_embeddings.entity_embeddings.weight'''] lowerCamelCase :List[Any] = entity_emb[entity_vocab['''[MASK]''']] lowerCamelCase :int = LukeModel(config=a_).eval() lowerCamelCase , lowerCamelCase :List[Any] = model.load_state_dict(a_ , strict=a_) if not (len(a_) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(F"Missing keys {', '.join(a_)}. Expected only missing embeddings.position_ids") if not (all(key.startswith('''entity_predictions''') or key.startswith('''lm_head''') for key in unexpected_keys)): raise ValueError( '''Unexpected keys''' F" {', '.join([key for key in unexpected_keys if not (key.startswith('entity_predictions') or key.startswith('lm_head'))])}") # Check outputs lowerCamelCase :Tuple = LukeTokenizer.from_pretrained(a_ , task='''entity_classification''') lowerCamelCase :int = ( '''Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the''' ''' new world number one avoid a humiliating second- round exit at Wimbledon .''' ) lowerCamelCase :int = (39, 42) lowerCamelCase :Optional[Any] = tokenizer(a_ , entity_spans=[span] , add_prefix_space=a_ , return_tensors='''pt''') lowerCamelCase :List[str] = model(**a_) # Verify word hidden states if model_size == "large": lowerCamelCase :List[Any] = torch.Size((1, 42, 10_24)) lowerCamelCase :Union[str, Any] = torch.tensor( [[0.0_133, 0.0_865, 0.0_095], [0.3_093, -0.2_576, -0.7_418], [-0.1_720, -0.2_117, -0.2_869]]) else: # base lowerCamelCase :Optional[Any] = torch.Size((1, 42, 7_68)) lowerCamelCase :List[Any] = torch.tensor([[0.0_037, 0.1_368, -0.0_091], [0.1_099, 0.3_329, -0.1_095], [0.0_765, 0.5_335, 0.1_179]]) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}") if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , a_ , atol=1e-4): raise ValueError # Verify entity hidden states if model_size == "large": lowerCamelCase :List[Any] = torch.Size((1, 1, 10_24)) lowerCamelCase :int = torch.tensor([[0.0_466, -0.0_106, -0.0_179]]) else: # base lowerCamelCase :Optional[int] = torch.Size((1, 1, 7_68)) lowerCamelCase :List[str] = torch.tensor([[0.1_457, 0.1_044, 0.0_174]]) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( F"Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is" F" {expected_shape}") if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , a_ , atol=1e-4): raise ValueError # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(a_)) model.save_pretrained(a_) def _lowerCamelCase ( a_ : Tuple): lowerCamelCase :Optional[Any] = {} with open(a_ , '''r''' , encoding='''utf-8''') as f: for index, line in enumerate(a_): lowerCamelCase , lowerCamelCase :Tuple = line.rstrip().split('''\t''') lowerCamelCase :str = index return entity_vocab if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) A__ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
49
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = '' _UpperCAmelCase = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) _UpperCAmelCase = None # compression type in fsspec. ex: "gzip" _UpperCAmelCase = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : str , __snake_case : str = "" , __snake_case : Optional[str] = None , __snake_case : Optional[dict] = None , **__snake_case : Dict ): super().__init__(self , **__snake_case ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode lowerCamelCase :Optional[Any] = fsspec.open( __snake_case , mode='''rb''' , protocol=__snake_case , compression=self.compression , client_kwargs={ '''requote_redirect_url''': False, # see https://github.com/huggingface/datasets/pull/5459 '''trust_env''': True, # Enable reading proxy env variables. **(target_options or {}).pop('''client_kwargs''' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) lowerCamelCase :List[str] = os.path.basename(self.file.path.split('''::''' )[0] ) lowerCamelCase :Dict = ( self.compressed_name[: self.compressed_name.rindex('''.''' )] if '''.''' in self.compressed_name else self.compressed_name ) lowerCamelCase :List[str] = None @classmethod def snake_case ( cls : Any , __snake_case : Any ): # compressed file paths are always relative to the archive root return super()._strip_protocol(__snake_case ).lstrip('''/''' ) def snake_case ( self : Any ): if self.dir_cache is None: lowerCamelCase :Optional[Any] = {**self.file.fs.info(self.file.path ), '''name''': self.uncompressed_name} lowerCamelCase :Optional[Any] = {f['''name''']: f} def snake_case ( self : Union[str, Any] , __snake_case : str ): return self.file.open().read() def snake_case ( self : Optional[int] , __snake_case : str , __snake_case : str = "rb" , __snake_case : int=None , __snake_case : Optional[int]=True , __snake_case : str=None , **__snake_case : str , ): lowerCamelCase :List[str] = self._strip_protocol(__snake_case ) if mode != "rb": raise ValueError(F"Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'" ) return self.file.open() class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'bz2' _UpperCAmelCase = 'bz2' _UpperCAmelCase = '.bz2' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'gzip' _UpperCAmelCase = 'gzip' _UpperCAmelCase = '.gz' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'lz4' _UpperCAmelCase = 'lz4' _UpperCAmelCase = '.lz4' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'xz' _UpperCAmelCase = 'xz' _UpperCAmelCase = '.xz' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'zstd' _UpperCAmelCase = 'zstd' _UpperCAmelCase = '.zst' def __init__( self : str , __snake_case : str , __snake_case : str = "rb" , __snake_case : Optional[str] = None , __snake_case : Optional[dict] = None , __snake_case : int = DEFAULT_BLOCK_SIZE , **__snake_case : int , ): super().__init__( fo=__snake_case , mode=__snake_case , target_protocol=__snake_case , target_options=__snake_case , block_size=__snake_case , **__snake_case , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 lowerCamelCase :Tuple = self.file.__enter__ class _lowerCAmelCase : def __init__( self : Dict , __snake_case : Tuple ): lowerCamelCase :Optional[int] = file_ def __enter__( self : Optional[int] ): self._file.__enter__() return self def __exit__( self : str , *__snake_case : Optional[Any] , **__snake_case : List[Any] ): self._file.__exit__(*__snake_case , **__snake_case ) def __iter__( self : Optional[Any] ): return iter(self._file ) def snake_case ( self : List[Any] ): return next(self._file ) def __getattr__( self : Any , __snake_case : str ): return getattr(self._file , __snake_case ) def fixed_enter(*__snake_case : Optional[int] , **__snake_case : str ): return WrappedFile(_enter(*__snake_case , **__snake_case ) ) lowerCamelCase :Dict = fixed_enter
49
1
from __future__ import annotations from collections.abc import MutableSequence class _lowerCAmelCase : def __init__( self : List[str] , __snake_case : int , __snake_case : MutableSequence[float] ): if len(__snake_case ) != degree + 1: raise ValueError( '''The number of coefficients should be equal to the degree + 1.''' ) lowerCamelCase :list[float] = list(__snake_case ) lowerCamelCase :Tuple = degree def __add__( self : Dict , __snake_case : Polynomial ): if self.degree > polynomial_a.degree: lowerCamelCase :Optional[Any] = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , __snake_case ) else: lowerCamelCase :List[str] = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , __snake_case ) def __sub__( self : str , __snake_case : Polynomial ): return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self : int ): return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self : List[str] , __snake_case : Polynomial ): lowerCamelCase :list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , __snake_case ) def snake_case ( self : Tuple , __snake_case : int | float ): lowerCamelCase :int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : Tuple ): lowerCamelCase :Tuple = '''''' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(__snake_case ) return polynomial def __repr__( self : Dict ): return self.__str__() def snake_case ( self : Union[str, Any] ): lowerCamelCase :list[float] = [0] * self.degree for i in range(self.degree ): lowerCamelCase :List[Any] = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , __snake_case ) def snake_case ( self : Optional[int] , __snake_case : int | float = 0 ): lowerCamelCase :list[float] = [0] * (self.degree + 2) lowerCamelCase :List[str] = constant for i in range(self.degree + 1 ): lowerCamelCase :Dict = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , __snake_case ) def __eq__( self : Union[str, Any] , __snake_case : object ): if not isinstance(__snake_case , __snake_case ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : List[str] , __snake_case : object ): return not self.__eq__(__snake_case )
49
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = LEDTokenizer _UpperCAmelCase = LEDTokenizerFast _UpperCAmelCase = True def snake_case ( self : Any ): super().setUp() lowerCamelCase :Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] lowerCamelCase :Any = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) lowerCamelCase :List[str] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCamelCase :int = {'''unk_token''': '''<unk>'''} lowerCamelCase :Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__snake_case ) ) def snake_case ( self : int , **__snake_case : int ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Dict , **__snake_case : Any ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Optional[Any] , __snake_case : Union[str, Any] ): return "lower newer", "lower newer" @cached_property def snake_case ( self : Any ): return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' ) @cached_property def snake_case ( self : int ): return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' ) @require_torch def snake_case ( self : str ): lowerCamelCase :Any = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowerCamelCase :List[Any] = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[Any] = tokenizer(__snake_case , max_length=len(__snake_case ) , padding=__snake_case , return_tensors='''pt''' ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowerCamelCase :List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(__snake_case , __snake_case ) @require_torch def snake_case ( self : Tuple ): lowerCamelCase :Dict = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Union[str, Any] = tokenizer(__snake_case , padding=__snake_case , return_tensors='''pt''' ) self.assertIn('''input_ids''' , __snake_case ) self.assertIn('''attention_mask''' , __snake_case ) self.assertNotIn('''labels''' , __snake_case ) self.assertNotIn('''decoder_attention_mask''' , __snake_case ) @require_torch def snake_case ( self : Union[str, Any] ): lowerCamelCase :Union[str, Any] = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :List[Any] = tokenizer(text_target=__snake_case , max_length=32 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) @require_torch def snake_case ( self : List[Any] ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[Any] = tokenizer( ['''I am a small frog''' * 1024, '''I am a small frog'''] , padding=__snake_case , truncation=__snake_case , return_tensors='''pt''' ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def snake_case ( self : Optional[int] ): lowerCamelCase :Union[str, Any] = ['''A long paragraph for summarization.'''] lowerCamelCase :Any = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Union[str, Any] = tokenizer(__snake_case , return_tensors='''pt''' ) lowerCamelCase :Any = tokenizer(text_target=__snake_case , return_tensors='''pt''' ) lowerCamelCase :Optional[int] = inputs['''input_ids'''] lowerCamelCase :Any = targets['''input_ids'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def snake_case ( self : Dict ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[int] = ['''Summary of the text.''', '''Another summary.'''] lowerCamelCase :List[Any] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] lowerCamelCase :Optional[int] = tokenizer(__snake_case , padding=__snake_case ) lowerCamelCase :Union[str, Any] = [[0] * len(__snake_case ) for x in encoded_output['''input_ids''']] lowerCamelCase :str = tokenizer.pad(__snake_case ) self.assertSequenceEqual(outputs['''global_attention_mask'''] , __snake_case ) def snake_case ( self : Tuple ): pass def snake_case ( self : Optional[int] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase :Optional[Any] = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :Tuple = self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :int = '''A, <mask> AllenNLP sentence.''' lowerCamelCase :str = tokenizer_r.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case ) lowerCamelCase :str = tokenizer_p.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case ) self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) lowerCamelCase :Optional[int] = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) lowerCamelCase :Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __snake_case , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __snake_case , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
49
1
import numpy class _lowerCAmelCase : def __init__( self : Dict , __snake_case : numpy.ndarray , __snake_case : numpy.ndarray ): lowerCamelCase :Dict = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. lowerCamelCase :Dict = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. lowerCamelCase :Dict = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. lowerCamelCase :Any = numpy.random.rand(3 , 1 ) # Real output values provided. lowerCamelCase :Union[str, Any] = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. lowerCamelCase :List[str] = numpy.zeros(output_array.shape ) def snake_case ( self : Optional[int] ): lowerCamelCase :Any = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. lowerCamelCase :Any = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. lowerCamelCase :Dict = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def snake_case ( self : Any ): lowerCamelCase :Union[str, Any] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) lowerCamelCase :Dict = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) lowerCamelCase :int = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def snake_case ( self : Dict , __snake_case : numpy.ndarray , __snake_case : int , __snake_case : bool ): for iteration in range(1 , iterations + 1 ): lowerCamelCase :Union[str, Any] = self.feedforward() self.back_propagation() if give_loss: lowerCamelCase :Tuple = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"Iteration {iteration} Loss: {loss}" ) def snake_case ( self : Optional[int] , __snake_case : numpy.ndarray ): lowerCamelCase :int = input_arr lowerCamelCase :Union[str, Any] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) lowerCamelCase :Optional[Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) lowerCamelCase :Optional[int] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def _lowerCamelCase ( a_ : numpy.ndarray): return 1 / (1 + numpy.exp(-value)) def _lowerCamelCase ( a_ : numpy.ndarray): return (value) * (1 - (value)) def _lowerCamelCase ( ): lowerCamelCase :Optional[Any] = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. lowerCamelCase :int = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa) # Calling neural network class. lowerCamelCase :List[Any] = TwoHiddenLayerNeuralNetwork( input_array=a_ , output_array=a_) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=a_ , iterations=10 , give_loss=a_) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa)) if __name__ == "__main__": example()
49
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) A__ = { """configuration_layoutlmv2""": ["""LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv2Config"""], """processing_layoutlmv2""": ["""LayoutLMv2Processor"""], """tokenization_layoutlmv2""": ["""LayoutLMv2Tokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""LayoutLMv2TokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""LayoutLMv2FeatureExtractor"""] A__ = ["""LayoutLMv2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """LayoutLMv2ForQuestionAnswering""", """LayoutLMv2ForSequenceClassification""", """LayoutLMv2ForTokenClassification""", """LayoutLMv2Layer""", """LayoutLMv2Model""", """LayoutLMv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
49
1
def _lowerCamelCase ( a_ : List[str]=2_81_23): lowerCamelCase :Tuple = [1] * (limit + 1) for i in range(2 , int(limit**0.5) + 1): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1): sum_divs[k * i] += k + i lowerCamelCase :Any = set() lowerCamelCase :Union[str, Any] = 0 for n in range(1 , limit + 1): if sum_divs[n] > n: abundants.add(a_) if not any((n - a in abundants) for a in abundants): res += n return res if __name__ == "__main__": print(solution())
49
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _lowerCAmelCase : @staticmethod def snake_case ( *__snake_case : str , **__snake_case : str ): pass @is_pipeline_test @require_vision class _lowerCAmelCase ( unittest.TestCase ): @require_torch def snake_case ( self : Union[str, Any] ): lowerCamelCase :Optional[int] = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Dict = image_classifier(__snake_case , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__snake_case ) , [ [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}], [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}], ] , ) lowerCamelCase :Tuple = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], ] , ) @require_tf def snake_case ( self : Tuple ): lowerCamelCase :Tuple = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Optional[Any] = image_classifier(__snake_case , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(__snake_case ) , [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}] , ) lowerCamelCase :int = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], ] , ) @slow @require_torch def snake_case ( self : Any ): lowerCamelCase :str = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Optional[Any] = image_classifier(__snake_case , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) lowerCamelCase :Any = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def snake_case ( self : Optional[Any] ): lowerCamelCase :Union[str, Any] = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes lowerCamelCase :Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Dict = image_classifier(__snake_case , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) lowerCamelCase :Any = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , )
49
1
import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": A__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( """--original_config_file""", default=None, type=str, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--scheduler_type""", default="""pndm""", type=str, help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""", ) parser.add_argument( """--pipeline_type""", default=None, type=str, help=( """The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'""" """. If `None` pipeline will be automatically inferred.""" ), ) parser.add_argument( """--image_size""", default=None, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--prediction_type""", default=None, type=str, help=( """The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable""" """ Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") parser.add_argument( """--stable_unclip""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""", ) parser.add_argument( """--stable_unclip_prior""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""", ) parser.add_argument( """--clip_stats_path""", type=str, help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""", required=False, ) parser.add_argument( """--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint.""" ) parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--vae_path""", type=str, default=None, required=False, help="""Set to a path, hub id to an already converted vae to not convert it again.""", ) A__ = parser.parse_args() A__ = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
49
import operator as op def _lowerCamelCase ( a_ : Tuple): lowerCamelCase :int = [] lowerCamelCase :List[str] = lambda a_ , a_: int(x / y) # noqa: E731 integer division operation lowerCamelCase :Optional[int] = { '''^''': op.pow, '''*''': op.mul, '''/''': div, '''+''': op.add, '''-''': op.sub, } # operators & their respective operation # print table header print('''Symbol'''.center(8) , '''Action'''.center(12) , '''Stack''' , sep=''' | ''') print('''-''' * (30 + len(a_))) for x in post_fix: if x.isdigit(): # if x in digit stack.append(a_) # append x to stack # output in tabular format print(x.rjust(8) , ('''push(''' + x + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') else: lowerCamelCase :Optional[Any] = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8) , ('''pop(''' + b + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') lowerCamelCase :str = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8) , ('''pop(''' + a + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') stack.append( str(opr[x](int(a_) , int(a_)))) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8) , ('''push(''' + a + x + b + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''' , ) return int(stack[0]) if __name__ == "__main__": A__ = input("""\n\nEnter a Postfix Equation (space separated) = """).split(""" """) print("""\n\tResult = """, solve(Postfix))
49
1
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def snake_case ( self : Any ): lowerCamelCase :List[str] = tempfile.mkdtemp() lowerCamelCase :List[str] = 8 # DPR tok lowerCamelCase :str = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCamelCase :Dict = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(__snake_case , exist_ok=__snake_case ) lowerCamelCase :List[str] = os.path.join(__snake_case , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok lowerCamelCase :Any = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] lowerCamelCase :List[str] = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) lowerCamelCase :Any = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCamelCase :Any = {'''unk_token''': '''<unk>'''} lowerCamelCase :Tuple = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(__snake_case , exist_ok=__snake_case ) lowerCamelCase :Dict = os.path.join(__snake_case , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase :Optional[int] = os.path.join(__snake_case , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__snake_case ) ) def snake_case ( self : List[Any] ): return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def snake_case ( self : Optional[Any] ): return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def snake_case ( self : List[str] ): shutil.rmtree(self.tmpdirname ) @require_tokenizers def snake_case ( self : Optional[int] ): lowerCamelCase :Tuple = os.path.join(self.tmpdirname , '''rag_tokenizer''' ) lowerCamelCase :Union[str, Any] = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) lowerCamelCase :Union[str, Any] = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(__snake_case ) rag_tokenizer.save_pretrained(__snake_case ) lowerCamelCase :int = RagTokenizer.from_pretrained(__snake_case , config=__snake_case ) self.assertIsInstance(new_rag_tokenizer.question_encoder , __snake_case ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , __snake_case ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def snake_case ( self : Any ): lowerCamelCase :Optional[int] = RagTokenizer.from_pretrained('''facebook/rag-token-nq''' ) lowerCamelCase :Any = [ '''who got the first nobel prize in physics''', '''when is the next deadpool movie being released''', '''which mode is used for short wave broadcast service''', '''who is the owner of reading football club''', '''when is the next scandal episode coming out''', '''when is the last time the philadelphia won the superbowl''', '''what is the most current adobe flash player version''', '''how many episodes are there in dragon ball z''', '''what is the first step in the evolution of the eye''', '''where is gall bladder situated in human body''', '''what is the main mineral in lithium batteries''', '''who is the president of usa right now''', '''where do the greasers live in the outsiders''', '''panda is a national animal of which country''', '''what is the name of manchester united stadium''', ] lowerCamelCase :Dict = tokenizer(__snake_case ) self.assertIsNotNone(__snake_case ) @slow def snake_case ( self : Tuple ): lowerCamelCase :Dict = RagTokenizer.from_pretrained('''facebook/rag-sequence-nq''' ) lowerCamelCase :List[Any] = [ '''who got the first nobel prize in physics''', '''when is the next deadpool movie being released''', '''which mode is used for short wave broadcast service''', '''who is the owner of reading football club''', '''when is the next scandal episode coming out''', '''when is the last time the philadelphia won the superbowl''', '''what is the most current adobe flash player version''', '''how many episodes are there in dragon ball z''', '''what is the first step in the evolution of the eye''', '''where is gall bladder situated in human body''', '''what is the main mineral in lithium batteries''', '''who is the president of usa right now''', '''where do the greasers live in the outsiders''', '''panda is a national animal of which country''', '''what is the name of manchester united stadium''', ] lowerCamelCase :str = tokenizer(__snake_case ) self.assertIsNotNone(__snake_case )
49
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() A__ = logging.get_logger(__name__) A__ = """Hello, World!""" A__ = """en_XX""" def _lowerCamelCase ( a_ : str , a_ : str , a_ : bool): lowerCamelCase :int = Path('''data_bin''') lowerCamelCase :Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(a_).parent) , checkpoint_file=Path(a_).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(a_) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(a_).parent / '''sentencepiece.bpe.model''') , src_dict=str(data_dir / '''dict.txt''') , ) xmod.eval() # disable dropout print(a_) lowerCamelCase :Any = xmod.model.encoder.sentence_encoder lowerCamelCase :List[str] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: lowerCamelCase :Dict = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our X-MOD config:''' , a_) lowerCamelCase :List[Any] = XmodForSequenceClassification(a_) if classification_head else XmodForMaskedLM(a_) model.eval() # Now let's copy all the weights. # Embeddings lowerCamelCase :Union[str, Any] = xmod_sent_encoder.embed_tokens.weight lowerCamelCase :Tuple = xmod_sent_encoder.embed_positions.weight lowerCamelCase :List[str] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight) # just zero them out b/c xmod doesn't use them. lowerCamelCase :List[Any] = xmod_sent_encoder.layernorm_embedding.weight lowerCamelCase :Optional[int] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers): # Encoder: start of layer lowerCamelCase :Union[str, Any] = model.roberta.encoder.layer[i] lowerCamelCase :List[str] = xmod_sent_encoder.layers[i] # self attention lowerCamelCase :Optional[int] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size)) ): raise AssertionError('''Dimensions of self-attention weights do not match.''') lowerCamelCase :Optional[int] = xmod_layer.self_attn.q_proj.weight lowerCamelCase :List[str] = xmod_layer.self_attn.q_proj.bias lowerCamelCase :str = xmod_layer.self_attn.k_proj.weight lowerCamelCase :Optional[Any] = xmod_layer.self_attn.k_proj.bias lowerCamelCase :Dict = xmod_layer.self_attn.v_proj.weight lowerCamelCase :Optional[int] = xmod_layer.self_attn.v_proj.bias # self-attention output lowerCamelCase :Optional[int] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('''Dimensions of self-attention output weights do not match.''') lowerCamelCase :List[Any] = xmod_layer.self_attn.out_proj.weight lowerCamelCase :Union[str, Any] = xmod_layer.self_attn.out_proj.bias lowerCamelCase :str = xmod_layer.self_attn_layer_norm.weight lowerCamelCase :List[Any] = xmod_layer.self_attn_layer_norm.bias # intermediate lowerCamelCase :Optional[int] = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of intermediate weights do not match.''') lowerCamelCase :int = xmod_layer.fca.weight lowerCamelCase :Union[str, Any] = xmod_layer.fca.bias # output lowerCamelCase :List[str] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of feed-forward weights do not match.''') lowerCamelCase :str = xmod_layer.fca.weight lowerCamelCase :int = xmod_layer.fca.bias lowerCamelCase :List[Any] = xmod_layer.final_layer_norm.weight lowerCamelCase :List[str] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: lowerCamelCase :List[str] = xmod_layer.adapter_layer_norm.weight lowerCamelCase :int = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys()) != sorted(xmod_layer.adapter_modules.keys()): raise AssertionError('''Lists of language adapters do not match.''') for lang_code, adapter in xmod_layer.adapter_modules.items(): lowerCamelCase :Optional[int] = bert_output.adapter_modules[lang_code] lowerCamelCase :Dict = xmod_layer.adapter_modules[lang_code] lowerCamelCase :List[Any] = from_adapter.fca.weight lowerCamelCase :List[Any] = from_adapter.fca.bias lowerCamelCase :Dict = from_adapter.fca.weight lowerCamelCase :Optional[Any] = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: lowerCamelCase :Dict = xmod_sent_encoder.layer_norm.weight lowerCamelCase :List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: lowerCamelCase :Union[str, Any] = xmod.model.classification_heads['''mnli'''].dense.weight lowerCamelCase :Tuple = xmod.model.classification_heads['''mnli'''].dense.bias lowerCamelCase :Optional[Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight lowerCamelCase :List[Any] = xmod.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head lowerCamelCase :int = xmod.model.encoder.lm_head.dense.weight lowerCamelCase :List[Any] = xmod.model.encoder.lm_head.dense.bias lowerCamelCase :Optional[int] = xmod.model.encoder.lm_head.layer_norm.weight lowerCamelCase :List[Any] = xmod.model.encoder.lm_head.layer_norm.bias lowerCamelCase :List[Any] = xmod.model.encoder.lm_head.weight lowerCamelCase :Any = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCamelCase :str = xmod.encode(a_).unsqueeze(0) # batch of size 1 model.roberta.set_default_language(a_) lowerCamelCase :Any = model(a_)[0] if classification_head: lowerCamelCase :Dict = xmod.model.classification_heads['''mnli'''](xmod.extract_features(a_)) else: lowerCamelCase :int = xmod.model(a_ , lang_id=[SAMPLE_LANGUAGE])[0] print(our_output.shape , their_output.shape) lowerCamelCase :List[str] = torch.max(torch.abs(our_output - their_output)).item() print(F"max_absolute_diff = {max_absolute_diff}") # ~ 1e-7 lowerCamelCase :str = torch.allclose(a_ , a_ , atol=1e-3) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''') if not success: raise Exception('''Something went wRoNg''') Path(a_).mkdir(parents=a_ , exist_ok=a_) print(F"Saving model to {pytorch_dump_folder_path}") model.save_pretrained(a_) if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) A__ = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
49
1
# Imports import numpy as np class _lowerCAmelCase : def __init__( self : List[Any] , __snake_case : List[Any]=None , __snake_case : Optional[int]=None , __snake_case : Optional[Any]=None , __snake_case : int=None , __snake_case : Union[str, Any]=None ): self.set_matricies(red=__snake_case , green=__snake_case , blue=__snake_case , red_edge=__snake_case , nir=__snake_case ) def snake_case ( self : Optional[Any] , __snake_case : Union[str, Any]=None , __snake_case : str=None , __snake_case : Optional[int]=None , __snake_case : Any=None , __snake_case : Optional[Any]=None ): if red is not None: lowerCamelCase :Union[str, Any] = red if green is not None: lowerCamelCase :Tuple = green if blue is not None: lowerCamelCase :Optional[Any] = blue if red_edge is not None: lowerCamelCase :Any = red_edge if nir is not None: lowerCamelCase :List[Any] = nir return True def snake_case ( self : Dict , __snake_case : Dict="" , __snake_case : Optional[Any]=None , __snake_case : Optional[int]=None , __snake_case : List[str]=None , __snake_case : Any=None , __snake_case : Any=None ): self.set_matricies(red=__snake_case , green=__snake_case , blue=__snake_case , red_edge=__snake_case , nir=__snake_case ) lowerCamelCase :List[Any] = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('''Index not in the list!''' ) return False def snake_case ( self : List[Any] ): return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def snake_case ( self : List[str] ): return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def snake_case ( self : Optional[int] ): return self.nir * (self.red / (self.green**2)) def snake_case ( self : List[Any] ): return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def snake_case ( self : Optional[Any] ): return (self.nir - self.red) / (self.nir + self.red) def snake_case ( self : str ): return (self.nir - self.blue) / (self.nir + self.blue) def snake_case ( self : List[Any] ): return (self.redEdge - self.red) / (self.redEdge + self.red) def snake_case ( self : List[str] ): return (self.nir - self.green) / (self.nir + self.green) def snake_case ( self : str ): return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def snake_case ( self : Optional[int] ): return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def snake_case ( self : List[str] ): return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def snake_case ( self : List[Any] ): return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def snake_case ( self : Optional[Any] , __snake_case : str=0.0_8 , __snake_case : Optional[int]=1.2_2 , __snake_case : Dict=0.0_3 ): return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def snake_case ( self : List[str] ): return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def snake_case ( self : Dict ): return (self.nir / self.green) - 1 def snake_case ( self : str ): return (self.nir / self.redEdge) - 1 def snake_case ( self : Any ): return (self.red - self.blue) / self.red def snake_case ( self : Any ): lowerCamelCase :int = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def snake_case ( self : Any ): return self.nir - self.green def snake_case ( self : Optional[Any] ): return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def snake_case ( self : Union[str, Any] ): lowerCamelCase :Dict = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def snake_case ( self : Optional[int] , __snake_case : str=0.1_6 ): return (self.nir - self.green) / (self.nir + self.green + y) def snake_case ( self : int , __snake_case : Optional[Any]=0.5 ): return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def snake_case ( self : Tuple ): return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def snake_case ( self : Tuple , __snake_case : Dict=None , __snake_case : Dict=None ): return (self.nir - b) / (a * self.red) def snake_case ( self : Dict ): return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def snake_case ( self : List[Any] ): return (self.red + self.green + self.blue) / 3_0.5 def snake_case ( self : int ): return self.nir / self.red def snake_case ( self : List[Any] ): return (self.rvi() - 1) / (self.rvi() + 1) def snake_case ( self : Any ): return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def snake_case ( self : Dict ): return self.green / (self.nir + self.red + self.green) def snake_case ( self : Optional[int] ): return self.nir / (self.nir + self.red + self.green) def snake_case ( self : int ): return self.red / (self.nir + self.red + self.green) def snake_case ( self : Any ): return (self.green - self.red) / (self.green + self.red) def snake_case ( self : str ): return (self.red - self.green) / (self.red + self.green) def snake_case ( self : int ): lowerCamelCase :Optional[Any] = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) lowerCamelCase :Dict = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def snake_case ( self : Optional[Any] ): return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def snake_case ( self : int ): return self.nir / self.red def snake_case ( self : Any ): return (self.ndvi() + 0.5) ** (1 / 2) def snake_case ( self : int ): return (self.nir - self.redEdge) / (self.nir + self.redEdge)
49
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { """andreasmadsen/efficient_mlm_m0.40""": ( """https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json""" ), } class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'roberta-prelayernorm' def __init__( self : str , __snake_case : List[str]=50265 , __snake_case : Union[str, Any]=768 , __snake_case : Tuple=12 , __snake_case : int=12 , __snake_case : Any=3072 , __snake_case : Optional[int]="gelu" , __snake_case : List[Any]=0.1 , __snake_case : int=0.1 , __snake_case : Union[str, Any]=512 , __snake_case : Dict=2 , __snake_case : int=0.0_2 , __snake_case : Any=1e-1_2 , __snake_case : Optional[int]=1 , __snake_case : Dict=0 , __snake_case : Optional[int]=2 , __snake_case : Any="absolute" , __snake_case : Union[str, Any]=True , __snake_case : List[str]=None , **__snake_case : Optional[int] , ): super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) lowerCamelCase :Optional[int] = vocab_size lowerCamelCase :Dict = hidden_size lowerCamelCase :Tuple = num_hidden_layers lowerCamelCase :Optional[int] = num_attention_heads lowerCamelCase :Any = hidden_act lowerCamelCase :List[Any] = intermediate_size lowerCamelCase :Union[str, Any] = hidden_dropout_prob lowerCamelCase :str = attention_probs_dropout_prob lowerCamelCase :Tuple = max_position_embeddings lowerCamelCase :int = type_vocab_size lowerCamelCase :Optional[Any] = initializer_range lowerCamelCase :Union[str, Any] = layer_norm_eps lowerCamelCase :Dict = position_embedding_type lowerCamelCase :List[Any] = use_cache lowerCamelCase :Optional[int] = classifier_dropout class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): @property def snake_case ( self : Any ): if self.task == "multiple-choice": lowerCamelCase :Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase :List[str] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
49
1
def _lowerCamelCase ( a_ : str): lowerCamelCase :Optional[int] = hex_num.strip() if not hex_num: raise ValueError('''No value was passed to the function''') lowerCamelCase :str = hex_num[0] == '''-''' if is_negative: lowerCamelCase :int = hex_num[1:] try: lowerCamelCase :int = int(a_ , 16) except ValueError: raise ValueError('''Invalid value was passed to the function''') lowerCamelCase :List[Any] = '''''' while int_num > 0: lowerCamelCase :Optional[Any] = str(int_num % 2) + bin_str int_num >>= 1 return int(('''-''' + bin_str) if is_negative else bin_str) if __name__ == "__main__": import doctest doctest.testmod()
49
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = DebertaTokenizer _UpperCAmelCase = True _UpperCAmelCase = DebertaTokenizerFast def snake_case ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase :Dict = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] lowerCamelCase :List[str] = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) lowerCamelCase :Any = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCamelCase :Dict = {'''unk_token''': '''[UNK]'''} lowerCamelCase :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase :List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__snake_case ) ) def snake_case ( self : str , **__snake_case : Dict ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Optional[Any] , __snake_case : int ): lowerCamelCase :List[Any] = '''lower newer''' lowerCamelCase :List[str] = '''lower newer''' return input_text, output_text def snake_case ( self : str ): lowerCamelCase :Optional[int] = self.get_tokenizer() lowerCamelCase :Union[str, Any] = '''lower newer''' lowerCamelCase :str = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] lowerCamelCase :Optional[int] = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) lowerCamelCase :List[str] = tokens + [tokenizer.unk_token] lowerCamelCase :Optional[int] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def snake_case ( self : Optional[int] ): lowerCamelCase :List[str] = self.get_tokenizer() lowerCamelCase :Optional[int] = tokenizer('''Hello''' , '''World''' ) lowerCamelCase :List[str] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __snake_case ) @slow def snake_case ( self : str ): lowerCamelCase :Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) lowerCamelCase :Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__snake_case ) lowerCamelCase :Tuple = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__snake_case ) lowerCamelCase :Union[str, Any] = tokenizer.encode( '''sequence builders''' , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) lowerCamelCase :str = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) lowerCamelCase :Any = tokenizer.build_inputs_with_special_tokens(__snake_case ) lowerCamelCase :Dict = tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def snake_case ( self : str ): lowerCamelCase :List[str] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: lowerCamelCase :int = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) lowerCamelCase :Tuple = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] lowerCamelCase :List[Any] = tokenizer(__snake_case , padding=__snake_case ) lowerCamelCase :Union[str, Any] = [tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) for seq in encoding['''input_ids''']] # fmt: off lowerCamelCase :Any = { '''input_ids''': [ [1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on lowerCamelCase :Optional[int] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __snake_case ) for expected, decoded in zip(__snake_case , __snake_case ): self.assertEqual(__snake_case , __snake_case )
49
1
from __future__ import annotations from random import random from typing import Generic, TypeVar A__ = TypeVar("""KT""") A__ = TypeVar("""VT""") class _lowerCAmelCase ( Generic[KT, VT] ): def __init__( self : List[str] , __snake_case : KT | str = "root" , __snake_case : VT | None = None ): lowerCamelCase :int = key lowerCamelCase :List[str] = value lowerCamelCase :list[Node[KT, VT]] = [] def __repr__( self : str ): return F"Node({self.key}: {self.value})" @property def snake_case ( self : int ): return len(self.forward ) class _lowerCAmelCase ( Generic[KT, VT] ): def __init__( self : List[str] , __snake_case : float = 0.5 , __snake_case : int = 16 ): lowerCamelCase :Node[KT, VT] = Node[KT, VT]() lowerCamelCase :List[str] = 0 lowerCamelCase :Tuple = p lowerCamelCase :List[str] = max_level def __str__( self : Tuple ): lowerCamelCase :Optional[Any] = list(self ) if len(__snake_case ) == 0: return F"SkipList(level={self.level})" lowerCamelCase :Dict = max((len(str(__snake_case ) ) for item in items) , default=4 ) lowerCamelCase :Union[str, Any] = max(__snake_case , 4 ) + 4 lowerCamelCase :Optional[Any] = self.head lowerCamelCase :Dict = [] lowerCamelCase :Optional[Any] = node.forward.copy() lines.append(F"[{node.key}]".ljust(__snake_case , '''-''' ) + '''* ''' * len(__snake_case ) ) lines.append(''' ''' * label_size + '''| ''' * len(__snake_case ) ) while len(node.forward ) != 0: lowerCamelCase :int = node.forward[0] lines.append( F"[{node.key}]".ljust(__snake_case , '''-''' ) + ''' '''.join(str(n.key ) if n.key == node.key else '''|''' for n in forwards ) ) lines.append(''' ''' * label_size + '''| ''' * len(__snake_case ) ) lowerCamelCase :Tuple = node.forward lines.append('''None'''.ljust(__snake_case ) + '''* ''' * len(__snake_case ) ) return F"SkipList(level={self.level})\n" + "\n".join(__snake_case ) def __iter__( self : Optional[int] ): lowerCamelCase :Tuple = self.head while len(node.forward ) != 0: yield node.forward[0].key lowerCamelCase :int = node.forward[0] def snake_case ( self : List[Any] ): lowerCamelCase :int = 1 while random() < self.p and level < self.max_level: level += 1 return level def snake_case ( self : int , __snake_case : Any ): lowerCamelCase :List[Any] = [] lowerCamelCase :Union[str, Any] = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: lowerCamelCase :Tuple = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(__snake_case ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def snake_case ( self : int , __snake_case : KT ): lowerCamelCase , lowerCamelCase :Tuple = self._locate_node(__snake_case ) if node is not None: for i, update_node in enumerate(__snake_case ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: lowerCamelCase :str = node.forward[i] else: lowerCamelCase :Union[str, Any] = update_node.forward[:i] def snake_case ( self : Dict , __snake_case : KT , __snake_case : VT ): lowerCamelCase , lowerCamelCase :Any = self._locate_node(__snake_case ) if node is not None: lowerCamelCase :Union[str, Any] = value else: lowerCamelCase :Union[str, Any] = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , __snake_case ): update_vector.append(self.head ) lowerCamelCase :Union[str, Any] = level lowerCamelCase :Any = Node(__snake_case , __snake_case ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(__snake_case ) else: lowerCamelCase :Optional[int] = new_node def snake_case ( self : Optional[Any] , __snake_case : VT ): lowerCamelCase , lowerCamelCase :List[str] = self._locate_node(__snake_case ) if node is not None: return node.value return None def _lowerCamelCase ( ): lowerCamelCase :Optional[Any] = SkipList() skip_list.insert('''Key1''' , 3) skip_list.insert('''Key2''' , 12) skip_list.insert('''Key3''' , 41) skip_list.insert('''Key4''' , -19) lowerCamelCase :Any = skip_list.head lowerCamelCase :List[Any] = {} while node.level != 0: lowerCamelCase :List[Any] = node.forward[0] lowerCamelCase :Optional[int] = node.value assert len(a_) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def _lowerCamelCase ( ): lowerCamelCase :Optional[int] = SkipList() skip_list.insert('''Key1''' , 10) skip_list.insert('''Key1''' , 12) skip_list.insert('''Key5''' , 7) skip_list.insert('''Key7''' , 10) skip_list.insert('''Key10''' , 5) skip_list.insert('''Key7''' , 7) skip_list.insert('''Key5''' , 5) skip_list.insert('''Key10''' , 10) lowerCamelCase :Tuple = skip_list.head lowerCamelCase :int = {} while node.level != 0: lowerCamelCase :Tuple = node.forward[0] lowerCamelCase :Dict = node.value if len(a_) != 4: print() assert len(a_) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def _lowerCamelCase ( ): lowerCamelCase :List[str] = SkipList() assert skip_list.find('''Some key''') is None def _lowerCamelCase ( ): lowerCamelCase :Optional[int] = SkipList() skip_list.insert('''Key2''' , 20) assert skip_list.find('''Key2''') == 20 skip_list.insert('''Some Key''' , 10) skip_list.insert('''Key2''' , 8) skip_list.insert('''V''' , 13) assert skip_list.find('''Y''') is None assert skip_list.find('''Key2''') == 8 assert skip_list.find('''Some Key''') == 10 assert skip_list.find('''V''') == 13 def _lowerCamelCase ( ): lowerCamelCase :Union[str, Any] = SkipList() skip_list.delete('''Some key''') assert len(skip_list.head.forward) == 0 def _lowerCamelCase ( ): lowerCamelCase :str = SkipList() skip_list.insert('''Key1''' , 12) skip_list.insert('''V''' , 13) skip_list.insert('''X''' , 14) skip_list.insert('''Key2''' , 15) skip_list.delete('''V''') skip_list.delete('''Key2''') assert skip_list.find('''V''') is None assert skip_list.find('''Key2''') is None def _lowerCamelCase ( ): lowerCamelCase :Tuple = SkipList() skip_list.insert('''Key1''' , 12) skip_list.insert('''V''' , 13) skip_list.insert('''X''' , 14) skip_list.insert('''Key2''' , 15) skip_list.delete('''V''') assert skip_list.find('''V''') is None assert skip_list.find('''X''') == 14 assert skip_list.find('''Key1''') == 12 assert skip_list.find('''Key2''') == 15 skip_list.delete('''X''') assert skip_list.find('''V''') is None assert skip_list.find('''X''') is None assert skip_list.find('''Key1''') == 12 assert skip_list.find('''Key2''') == 15 skip_list.delete('''Key1''') assert skip_list.find('''V''') is None assert skip_list.find('''X''') is None assert skip_list.find('''Key1''') is None assert skip_list.find('''Key2''') == 15 skip_list.delete('''Key2''') assert skip_list.find('''V''') is None assert skip_list.find('''X''') is None assert skip_list.find('''Key1''') is None assert skip_list.find('''Key2''') is None def _lowerCamelCase ( ): lowerCamelCase :Union[str, Any] = SkipList() skip_list.insert('''Key1''' , 12) skip_list.insert('''V''' , 13) skip_list.insert('''X''' , 1_42) skip_list.insert('''Key2''' , 15) skip_list.delete('''X''') def traverse_keys(a_ : Dict): yield node.key for forward_node in node.forward: yield from traverse_keys(a_) assert len(set(traverse_keys(skip_list.head))) == 4 def _lowerCamelCase ( ): def is_sorted(a_ : List[str]): return all(next_item >= item for item, next_item in zip(a_ , lst[1:])) lowerCamelCase :str = SkipList() for i in range(10): skip_list.insert(a_ , a_) assert is_sorted(list(a_)) skip_list.delete(5) skip_list.delete(8) skip_list.delete(2) assert is_sorted(list(a_)) skip_list.insert(-12 , -12) skip_list.insert(77 , 77) assert is_sorted(list(a_)) def _lowerCamelCase ( ): for _ in range(1_00): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def _lowerCamelCase ( ): lowerCamelCase :Any = SkipList() skip_list.insert(2 , '''2''') skip_list.insert(4 , '''4''') skip_list.insert(6 , '''4''') skip_list.insert(4 , '''5''') skip_list.insert(8 , '''4''') skip_list.insert(9 , '''4''') skip_list.delete(4) print(a_) if __name__ == "__main__": import doctest doctest.testmod() main()
49
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) A__ = [ """cross_validation.py""", """gradient_accumulation.py""", """local_sgd.py""", """multi_process_metrics.py""", """memory.py""", """automatic_gradient_accumulation.py""", """fsdp_with_peak_mem_tracking.py""", """deepspeed_with_config_support.py""", """megatron_lm_gpt_pretraining.py""", ] class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Any , __snake_case : str , __snake_case : bool , __snake_case : str = None , __snake_case : list = None ): lowerCamelCase :Tuple = None lowerCamelCase :Tuple = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) lowerCamelCase :Optional[int] = os.path.abspath('''examples''' ) for item in os.listdir(__snake_case ): if item not in EXCLUDE_EXAMPLES: lowerCamelCase :Optional[int] = os.path.join(__snake_case , __snake_case ) if os.path.isfile(__snake_case ) and ".py" in item_path: with self.subTest( tested_script=__snake_case , feature_script=__snake_case , tested_section='''main()''' if parser_only else '''training_function()''' , ): lowerCamelCase :Union[str, Any] = compare_against_test( os.path.join(__snake_case , __snake_case ) , __snake_case , __snake_case , __snake_case ) lowerCamelCase :int = '''\n'''.join(__snake_case ) if special_strings is not None: for string in special_strings: lowerCamelCase :int = diff.replace(__snake_case , '''''' ) self.assertEqual(__snake_case , '''''' ) def snake_case ( self : Dict ): self.one_complete_example('''complete_nlp_example.py''' , __snake_case ) self.one_complete_example('''complete_nlp_example.py''' , __snake_case ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Union[str, Any] = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) lowerCamelCase :Optional[int] = [ ''' ''' * 16 + '''{\n\n''', ''' ''' * 20 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 20 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 20 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 20 + '''"epoch": epoch,\n\n''', ''' ''' * 16 + '''},\n\n''', ''' ''' * 16 + '''step=epoch,\n''', ''' ''' * 12, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , __snake_case , __snake_case , __snake_case ) self.one_complete_example('''complete_cv_example.py''' , __snake_case , __snake_case , __snake_case ) @mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '1'} ) class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = False @classmethod def snake_case ( cls : Optional[Any] ): super().setUpClass() lowerCamelCase :Any = tempfile.mkdtemp() lowerCamelCase :Optional[int] = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) lowerCamelCase :List[str] = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def snake_case ( cls : Dict ): super().tearDownClass() shutil.rmtree(cls._tmpdir ) def snake_case ( self : int ): lowerCamelCase :Any = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def snake_case ( self : List[Any] ): lowerCamelCase :Tuple = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n ".split() lowerCamelCase :List[Any] = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def snake_case ( self : List[str] ): lowerCamelCase :Dict = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}\n ".split() lowerCamelCase :Dict = run_command(self._launch_args + testargs , return_stdout=__snake_case ) self.assertNotIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) def snake_case ( self : str ): lowerCamelCase :List[Any] = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}\n ".split() lowerCamelCase :Optional[int] = run_command(self._launch_args + testargs , return_stdout=__snake_case ) if torch.cuda.is_available(): lowerCamelCase :Union[str, Any] = torch.cuda.device_count() else: lowerCamelCase :Dict = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) else: self.assertIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) @slow def snake_case ( self : Any ): lowerCamelCase :Tuple = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): lowerCamelCase :Dict = run_command(self._launch_args + testargs , return_stdout=__snake_case ) lowerCamelCase :Tuple = re.findall('''({.+})''' , __snake_case ) lowerCamelCase :Optional[Any] = [r for r in results if '''accuracy''' in r][-1] lowerCamelCase :List[str] = ast.literal_eval(__snake_case ) self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 ) def snake_case ( self : int ): lowerCamelCase :Dict = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case ( self : Any ): with tempfile.TemporaryDirectory() as tmpdir: lowerCamelCase :Tuple = F"\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__snake_case , '''tracking''' ) ) ) def snake_case ( self : Tuple ): lowerCamelCase :Tuple = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def snake_case ( self : Optional[Any] ): lowerCamelCase :int = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
49
1
def _lowerCamelCase ( a_ : str = "The quick brown fox jumps over the lazy dog" , ): lowerCamelCase :Dict = set() # Replace all the whitespace in our sentence lowerCamelCase :int = input_str.replace(''' ''' , '''''') for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower()) return len(a_) == 26 def _lowerCamelCase ( a_ : str = "The quick brown fox jumps over the lazy dog" , ): lowerCamelCase :Any = [False] * 26 for char in input_str: if char.islower(): lowerCamelCase :List[Any] = True elif char.isupper(): lowerCamelCase :List[Any] = True return all(a_) def _lowerCamelCase ( a_ : str = "The quick brown fox jumps over the lazy dog" , ): return len({char for char in input_str.lower() if char.isalpha()}) == 26 def _lowerCamelCase ( ): from timeit import timeit lowerCamelCase :Union[str, Any] = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=a_)) print(timeit('''is_pangram_faster()''' , setup=a_)) print(timeit('''is_pangram_fastest()''' , setup=a_)) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
49
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs A__ = imread(R"""digital_image_processing/image_data/lena_small.jpg""") A__ = cvtColor(img, COLOR_BGR2GRAY) def _lowerCamelCase ( ): lowerCamelCase :int = cn.convert_to_negative(a_) # assert negative_img array for at least one True assert negative_img.any() def _lowerCamelCase ( ): with Image.open('''digital_image_processing/image_data/lena_small.jpg''') as img: # Work around assertion for response assert str(cc.change_contrast(a_ , 1_10)).startswith( '''<PIL.Image.Image image mode=RGB size=100x100 at''') def _lowerCamelCase ( ): lowerCamelCase :Optional[Any] = canny.gen_gaussian_kernel(9 , sigma=1.4) # Assert ambiguous array assert resp.all() def _lowerCamelCase ( ): lowerCamelCase :str = imread('''digital_image_processing/image_data/lena_small.jpg''' , 0) # assert ambiguous array for all == True assert canny_img.all() lowerCamelCase :Optional[Any] = canny.canny(a_) # assert canny array for at least one True assert canny_array.any() def _lowerCamelCase ( ): assert gg.gaussian_filter(a_ , 5 , sigma=0.9).all() def _lowerCamelCase ( ): # laplace diagonals lowerCamelCase :List[Any] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]]) lowerCamelCase :List[Any] = conv.img_convolve(a_ , a_).astype(a_) assert res.any() def _lowerCamelCase ( ): assert med.median_filter(a_ , 3).any() def _lowerCamelCase ( ): lowerCamelCase , lowerCamelCase :Union[str, Any] = sob.sobel_filter(a_) assert grad.any() and theta.any() def _lowerCamelCase ( ): lowerCamelCase :Dict = sp.make_sepia(a_ , 20) assert sepia.all() def _lowerCamelCase ( a_ : str = "digital_image_processing/image_data/lena_small.jpg"): lowerCamelCase :Any = bs.Burkes(imread(a_ , 1) , 1_20) burkes.process() assert burkes.output_img.any() def _lowerCamelCase ( a_ : str = "digital_image_processing/image_data/lena_small.jpg" , ): lowerCamelCase :Tuple = rs.NearestNeighbour(imread(a_ , 1) , 4_00 , 2_00) nn.process() assert nn.output.any() def _lowerCamelCase ( ): lowerCamelCase :Tuple = '''digital_image_processing/image_data/lena.jpg''' # Reading the image and converting it to grayscale. lowerCamelCase :Tuple = imread(a_ , 0) # Test for get_neighbors_pixel function() return not None lowerCamelCase :Dict = 0 lowerCamelCase :Optional[Any] = 0 lowerCamelCase :str = image[x_coordinate][y_coordinate] lowerCamelCase :Any = lbp.get_neighbors_pixel( a_ , a_ , a_ , a_) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCamelCase :int = np.zeros((image.shape[0], image.shape[1])) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0]): for j in range(0 , image.shape[1]): lowerCamelCase :Optional[int] = lbp.local_binary_value(a_ , a_ , a_) assert lbp_image.any()
49
1
from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self : Tuple , __snake_case : Distribution , __snake_case : Any=None , __snake_case : Any=None , __snake_case : List[Any]=0 ): lowerCamelCase :Dict = 1.0 if scale is None else scale lowerCamelCase :Any = 0.0 if loc is None else loc super().__init__(__snake_case , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__snake_case )] ) @property def snake_case ( self : Optional[Any] ): return self.base_dist.mean * self.scale + self.loc @property def snake_case ( self : Tuple ): return self.base_dist.variance * self.scale**2 @property def snake_case ( self : Dict ): return self.variance.sqrt() class _lowerCAmelCase ( nn.Module ): def __init__( self : str , __snake_case : int , __snake_case : Dict[str, int] , __snake_case : Callable[..., Tuple[torch.Tensor]] , **__snake_case : str ): super().__init__(**__snake_case ) lowerCamelCase :List[Any] = args_dim lowerCamelCase :Any = nn.ModuleList([nn.Linear(__snake_case , __snake_case ) for dim in args_dim.values()] ) lowerCamelCase :Optional[int] = domain_map def snake_case ( self : int , __snake_case : torch.Tensor ): lowerCamelCase :int = [proj(__snake_case ) for proj in self.proj] return self.domain_map(*__snake_case ) class _lowerCAmelCase ( nn.Module ): def __init__( self : str , __snake_case : Optional[int] ): super().__init__() lowerCamelCase :Union[str, Any] = function def snake_case ( self : List[str] , __snake_case : List[str] , *__snake_case : str ): return self.function(__snake_case , *__snake_case ) class _lowerCAmelCase : _UpperCAmelCase = 42 _UpperCAmelCase = 42 _UpperCAmelCase = 42 def __init__( self : Tuple , __snake_case : int = 1 ): lowerCamelCase :Any = dim lowerCamelCase :Tuple = {k: dim * self.args_dim[k] for k in self.args_dim} def snake_case ( self : Optional[int] , __snake_case : List[str] ): if self.dim == 1: return self.distribution_class(*__snake_case ) else: return Independent(self.distribution_class(*__snake_case ) , 1 ) def snake_case ( self : str , __snake_case : Tuple , __snake_case : Optional[torch.Tensor] = None , __snake_case : Optional[torch.Tensor] = None , ): lowerCamelCase :Dict = self._base_distribution(__snake_case ) if loc is None and scale is None: return distr else: return AffineTransformed(__snake_case , loc=__snake_case , scale=__snake_case , event_dim=self.event_dim ) @property def snake_case ( self : str ): return () if self.dim == 1 else (self.dim,) @property def snake_case ( self : Any ): return len(self.event_shape ) @property def snake_case ( self : Optional[Any] ): return 0.0 def snake_case ( self : Tuple , __snake_case : int ): return ParameterProjection( in_features=__snake_case , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def snake_case ( self : Optional[int] , *__snake_case : torch.Tensor ): raise NotImplementedError() @staticmethod def snake_case ( __snake_case : torch.Tensor ): return (x + torch.sqrt(torch.square(__snake_case ) + 4.0 )) / 2.0 class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = {"df": 1, "loc": 1, "scale": 1} _UpperCAmelCase = StudentT @classmethod def snake_case ( cls : Any , __snake_case : torch.Tensor , __snake_case : torch.Tensor , __snake_case : torch.Tensor ): lowerCamelCase :List[str] = cls.squareplus(__snake_case ).clamp_min(torch.finfo(scale.dtype ).eps ) lowerCamelCase :Dict = 2.0 + cls.squareplus(__snake_case ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = {"loc": 1, "scale": 1} _UpperCAmelCase = Normal @classmethod def snake_case ( cls : Optional[int] , __snake_case : torch.Tensor , __snake_case : torch.Tensor ): lowerCamelCase :Union[str, Any] = cls.squareplus(__snake_case ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = {"total_count": 1, "logits": 1} _UpperCAmelCase = NegativeBinomial @classmethod def snake_case ( cls : List[Any] , __snake_case : torch.Tensor , __snake_case : torch.Tensor ): lowerCamelCase :Dict = cls.squareplus(__snake_case ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def snake_case ( self : Tuple , __snake_case : Optional[int] ): lowerCamelCase , lowerCamelCase :Tuple = distr_args if self.dim == 1: return self.distribution_class(total_count=__snake_case , logits=__snake_case ) else: return Independent(self.distribution_class(total_count=__snake_case , logits=__snake_case ) , 1 ) def snake_case ( self : int , __snake_case : str , __snake_case : Optional[torch.Tensor] = None , __snake_case : Optional[torch.Tensor] = None ): lowerCamelCase , lowerCamelCase :int = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
49
import os from math import logaa def _lowerCamelCase ( a_ : str = "base_exp.txt"): lowerCamelCase :float = 0 lowerCamelCase :Optional[int] = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(a_) , a_))): lowerCamelCase , lowerCamelCase :Optional[int] = list(map(a_ , line.split(''','''))) if x * logaa(a_) > largest: lowerCamelCase :List[Any] = x * logaa(a_) lowerCamelCase :Any = i + 1 return result if __name__ == "__main__": print(solution())
49
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { """google/pegasus-large""": """https://huggingface.co/google/pegasus-large/resolve/main/config.json""", # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'pegasus' _UpperCAmelCase = ['past_key_values'] _UpperCAmelCase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : List[Any] , __snake_case : List[Any]=50265 , __snake_case : Any=1024 , __snake_case : Tuple=12 , __snake_case : Union[str, Any]=4096 , __snake_case : List[str]=16 , __snake_case : Union[str, Any]=12 , __snake_case : List[Any]=4096 , __snake_case : Any=16 , __snake_case : Optional[int]=0.0 , __snake_case : List[str]=0.0 , __snake_case : Dict=True , __snake_case : Union[str, Any]=True , __snake_case : Tuple="gelu" , __snake_case : Union[str, Any]=1024 , __snake_case : List[Any]=0.1 , __snake_case : Optional[Any]=0.0 , __snake_case : Any=0.0 , __snake_case : int=0.0_2 , __snake_case : Optional[int]=0 , __snake_case : Union[str, Any]=False , __snake_case : Any=0 , __snake_case : Any=1 , __snake_case : List[Any]=1 , **__snake_case : Tuple , ): lowerCamelCase :Any = vocab_size lowerCamelCase :Tuple = max_position_embeddings lowerCamelCase :Optional[int] = d_model lowerCamelCase :int = encoder_ffn_dim lowerCamelCase :Union[str, Any] = encoder_layers lowerCamelCase :Tuple = encoder_attention_heads lowerCamelCase :List[str] = decoder_ffn_dim lowerCamelCase :Dict = decoder_layers lowerCamelCase :Tuple = decoder_attention_heads lowerCamelCase :List[Any] = dropout lowerCamelCase :List[Any] = attention_dropout lowerCamelCase :int = activation_dropout lowerCamelCase :str = activation_function lowerCamelCase :str = init_std lowerCamelCase :Any = encoder_layerdrop lowerCamelCase :Dict = decoder_layerdrop lowerCamelCase :Union[str, Any] = use_cache lowerCamelCase :int = encoder_layers lowerCamelCase :Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__snake_case , eos_token_id=__snake_case , is_encoder_decoder=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , **__snake_case , ) @property def snake_case ( self : Optional[Any] ): return self.encoder_attention_heads @property def snake_case ( self : Union[str, Any] ): return self.d_model
49
def _lowerCamelCase ( a_ : list): if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''') for cell_n in range(1 , len(grid[0])): grid[0][cell_n] += grid[0][cell_n - 1] lowerCamelCase :Any = grid[0] for row_n in range(1 , len(a_)): lowerCamelCase :List[str] = grid[row_n] lowerCamelCase :Union[str, Any] = fill_row(a_ , a_) lowerCamelCase :List[Any] = grid[row_n] return grid[-1][-1] def _lowerCamelCase ( a_ : list , a_ : list): current_row[0] += row_above[0] for cell_n in range(1 , len(a_)): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n]) return current_row if __name__ == "__main__": import doctest doctest.testmod()
49
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/config.json""", """umberto-commoncrawl-cased-v1""": ( """https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json""" ), """umberto-wikipedia-uncased-v1""": ( """https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json""" ), } class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'camembert' def __init__( self : int , __snake_case : Union[str, Any]=30522 , __snake_case : Optional[int]=768 , __snake_case : List[Any]=12 , __snake_case : Tuple=12 , __snake_case : Union[str, Any]=3072 , __snake_case : Any="gelu" , __snake_case : Optional[int]=0.1 , __snake_case : Any=0.1 , __snake_case : int=512 , __snake_case : Any=2 , __snake_case : List[str]=0.0_2 , __snake_case : List[str]=1e-1_2 , __snake_case : Optional[int]=1 , __snake_case : int=0 , __snake_case : Union[str, Any]=2 , __snake_case : Union[str, Any]="absolute" , __snake_case : Any=True , __snake_case : Optional[int]=None , **__snake_case : Any , ): super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) lowerCamelCase :Optional[Any] = vocab_size lowerCamelCase :List[str] = hidden_size lowerCamelCase :str = num_hidden_layers lowerCamelCase :str = num_attention_heads lowerCamelCase :Optional[Any] = hidden_act lowerCamelCase :Optional[Any] = intermediate_size lowerCamelCase :Tuple = hidden_dropout_prob lowerCamelCase :Dict = attention_probs_dropout_prob lowerCamelCase :Union[str, Any] = max_position_embeddings lowerCamelCase :Optional[int] = type_vocab_size lowerCamelCase :Any = initializer_range lowerCamelCase :List[Any] = layer_norm_eps lowerCamelCase :Tuple = position_embedding_type lowerCamelCase :Tuple = use_cache lowerCamelCase :Dict = classifier_dropout class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): @property def snake_case ( self : Dict ): if self.task == "multiple-choice": lowerCamelCase :List[str] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase :Dict = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
49
import math def _lowerCamelCase ( a_ : int): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a_) + 1) , 6): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCamelCase ( a_ : float = 0.1): lowerCamelCase :Dict = 3 lowerCamelCase :List[Any] = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1): primes += is_prime(a_) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
49
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A__ = { """configuration_graphormer""": ["""GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GraphormerConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """GraphormerForGraphClassification""", """GraphormerModel""", """GraphormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
49
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : str ): lowerCamelCase :int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :List[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :Optional[Any] = -1 lowerCamelCase :List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Tuple = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :str = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowerCamelCase :str = TextStreamer(__snake_case ) model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case , streamer=__snake_case ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCamelCase :Optional[int] = cs.out[:-1] self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : Dict ): lowerCamelCase :Tuple = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :int = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :List[Any] = -1 lowerCamelCase :Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Tuple = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :List[Any] = tokenizer.decode(greedy_ids[0] ) lowerCamelCase :List[str] = TextIteratorStreamer(__snake_case ) lowerCamelCase :List[str] = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} lowerCamelCase :Tuple = Thread(target=model.generate , kwargs=__snake_case ) thread.start() lowerCamelCase :Any = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : str ): lowerCamelCase :int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :Dict = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :List[str] = -1 lowerCamelCase :Optional[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Optional[Any] = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :List[str] = greedy_ids[:, input_ids.shape[1] :] lowerCamelCase :Union[str, Any] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowerCamelCase :List[str] = TextStreamer(__snake_case , skip_prompt=__snake_case ) model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case , streamer=__snake_case ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCamelCase :int = cs.out[:-1] self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : Optional[int] ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them lowerCamelCase :List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) lowerCamelCase :Union[str, Any] = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(__snake_case ) lowerCamelCase :Optional[int] = -1 lowerCamelCase :Union[str, Any] = torch.ones((1, 5) , device=__snake_case ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowerCamelCase :Dict = TextStreamer(__snake_case , skip_special_tokens=__snake_case ) model.generate(__snake_case , max_new_tokens=1 , do_sample=__snake_case , streamer=__snake_case ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowerCamelCase :Tuple = cs.out[:-1] # Remove the final "\n" lowerCamelCase :int = tokenizer(__snake_case , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def snake_case ( self : List[Any] ): lowerCamelCase :List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :Optional[int] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :Optional[int] = -1 lowerCamelCase :Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :List[Any] = TextIteratorStreamer(__snake_case , timeout=0.0_0_1 ) lowerCamelCase :Dict = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} lowerCamelCase :Tuple = Thread(target=model.generate , kwargs=__snake_case ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__snake_case ): lowerCamelCase :Dict = '''''' for new_text in streamer: streamer_text += new_text
49
1
def _lowerCamelCase ( a_ : int = 60_08_51_47_51_43): try: lowerCamelCase :Optional[Any] = int(a_) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''') if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''') lowerCamelCase :List[str] = 2 lowerCamelCase :Tuple = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 lowerCamelCase :Optional[Any] = i while n % i == 0: lowerCamelCase :Union[str, Any] = n // i i += 1 return int(a_) if __name__ == "__main__": print(F'{solution() = }')
49
from maths.prime_factors import prime_factors def _lowerCamelCase ( a_ : int): if not isinstance(a_ , a_): lowerCamelCase :Tuple = F"Input value of [number={number}] must be an integer" raise TypeError(a_) if number < 1: raise ValueError('''Input must be a positive integer''') return -1 if len(prime_factors(a_)) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
49
1
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging A__ = logging.get_logger(__name__) class _lowerCAmelCase : _UpperCAmelCase = 42 _UpperCAmelCase = None @staticmethod def snake_case ( ): raise NotImplementedError def snake_case ( self : Tuple , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : str , **__snake_case : str ): raise NotImplementedError def snake_case ( self : Union[str, Any] , __snake_case : List[str] ): raise NotImplementedError def snake_case ( self : Optional[Any] ): if not self.is_available(): raise RuntimeError( F"You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}." ) @classmethod def snake_case ( cls : Optional[Any] ): return F"`pip install {cls.pip_package or cls.name}`" class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'optuna' @staticmethod def snake_case ( ): return is_optuna_available() def snake_case ( self : Optional[int] , __snake_case : Any , __snake_case : int , __snake_case : str , **__snake_case : Dict ): return run_hp_search_optuna(__snake_case , __snake_case , __snake_case , **__snake_case ) def snake_case ( self : List[str] , __snake_case : List[str] ): return default_hp_space_optuna(__snake_case ) class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'ray' _UpperCAmelCase = '\'ray[tune]\'' @staticmethod def snake_case ( ): return is_ray_available() def snake_case ( self : Optional[int] , __snake_case : str , __snake_case : int , __snake_case : str , **__snake_case : Optional[int] ): return run_hp_search_ray(__snake_case , __snake_case , __snake_case , **__snake_case ) def snake_case ( self : Tuple , __snake_case : Any ): return default_hp_space_ray(__snake_case ) class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'sigopt' @staticmethod def snake_case ( ): return is_sigopt_available() def snake_case ( self : Any , __snake_case : str , __snake_case : int , __snake_case : str , **__snake_case : Optional[int] ): return run_hp_search_sigopt(__snake_case , __snake_case , __snake_case , **__snake_case ) def snake_case ( self : Union[str, Any] , __snake_case : List[Any] ): return default_hp_space_sigopt(__snake_case ) class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'wandb' @staticmethod def snake_case ( ): return is_wandb_available() def snake_case ( self : str , __snake_case : Any , __snake_case : int , __snake_case : str , **__snake_case : List[Any] ): return run_hp_search_wandb(__snake_case , __snake_case , __snake_case , **__snake_case ) def snake_case ( self : Optional[Any] , __snake_case : List[Any] ): return default_hp_space_wandb(__snake_case ) A__ = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def _lowerCamelCase ( ): lowerCamelCase :Union[str, Any] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(a_) > 0: lowerCamelCase :Optional[int] = available_backends[0].name if len(a_) > 1: logger.info( F"{len(a_)} hyperparameter search backends available. Using {name} as the default.") return name raise RuntimeError( '''No hyperparameter search backend available.\n''' + '''\n'''.join( F" - To install {backend.name} run {backend.pip_install()}" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values()))
49
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() A__ = logging.get_logger(__name__) def _lowerCamelCase ( a_ : str , a_ : str=False): lowerCamelCase :Optional[int] = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''')) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''')) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''')) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''')) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''')) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''')) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''')) for stage_idx in range(len(config.backbone_config.depths)): for layer_idx in range(config.backbone_config.depths[stage_idx]): rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias")) # transformer encoder for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight")) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias")) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight")) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias")) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight")) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias")) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight")) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias")) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight")) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias")) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ]) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCamelCase :List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''') else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ]) # fmt: on return rename_keys def _lowerCamelCase ( a_ : Any , a_ : Any , a_ : int=False): for i in range(config.num_hidden_layers): if base_model: lowerCamelCase :Union[str, Any] = '''''' else: lowerCamelCase :Optional[int] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase :Optional[Any] = state_dict.pop(F"blocks.{i}.attn.qkv.weight") lowerCamelCase :Any = state_dict.pop(F"blocks.{i}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict lowerCamelCase :Any = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase :Tuple = in_proj_bias[: config.hidden_size] lowerCamelCase :int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase :Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase :Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase :List[Any] = in_proj_bias[-config.hidden_size :] def _lowerCamelCase ( a_ : int): lowerCamelCase :Any = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(a_ , a_) def _lowerCamelCase ( a_ : int , a_ : Any , a_ : Tuple): lowerCamelCase :Optional[Any] = dct.pop(a_) lowerCamelCase :str = val def _lowerCamelCase ( ): lowerCamelCase :Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase :Tuple = Image.open(requests.get(a_ , stream=a_).raw) return im @torch.no_grad() def _lowerCamelCase ( a_ : Optional[Any] , a_ : Optional[Any] , a_ : Optional[Any]=False): lowerCamelCase :Optional[int] = BitConfig( global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=a_ , ) lowerCamelCase :Optional[int] = ViTHybridConfig(backbone_config=a_ , image_size=3_84 , num_labels=10_00) lowerCamelCase :List[Any] = False # load original model from timm lowerCamelCase :List[str] = timm.create_model(a_ , pretrained=a_) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCamelCase :List[str] = timm_model.state_dict() if base_model: remove_classification_head_(a_) lowerCamelCase :Tuple = create_rename_keys(a_ , a_) for src, dest in rename_keys: rename_key(a_ , a_ , a_) read_in_q_k_v(a_ , a_ , a_) lowerCamelCase :List[str] = '''huggingface/label-files''' lowerCamelCase :Any = '''imagenet-1k-id2label.json''' lowerCamelCase :List[Any] = json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''') , '''r''')) lowerCamelCase :Optional[Any] = {int(a_): v for k, v in idalabel.items()} lowerCamelCase :Optional[int] = idalabel lowerCamelCase :Union[str, Any] = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": lowerCamelCase :Optional[Any] = ViTHybridModel(a_).eval() else: lowerCamelCase :Dict = ViTHybridForImageClassification(a_).eval() model.load_state_dict(a_) # create image processor lowerCamelCase :Dict = create_transform(**resolve_data_config({} , model=a_)) lowerCamelCase :str = transform.transforms lowerCamelCase :int = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } lowerCamelCase :Any = ViTHybridImageProcessor( do_resize=a_ , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=a_ , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=a_ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCamelCase :Dict = prepare_img() lowerCamelCase :str = transform(a_).unsqueeze(0) lowerCamelCase :str = processor(a_ , return_tensors='''pt''').pixel_values # verify pixel values assert torch.allclose(a_ , a_) # verify logits with torch.no_grad(): lowerCamelCase :Optional[int] = model(a_) lowerCamelCase :Union[str, Any] = outputs.logits print('''Predicted class:''' , logits.argmax(-1).item()) if base_model: lowerCamelCase :Union[str, Any] = timm_model.forward_features(a_) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(a_ , outputs.pooler_output , atol=1e-3) else: lowerCamelCase :List[str] = timm_model(a_) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(a_ , outputs.logits , atol=1e-3) print('''Looks ok!''') if pytorch_dump_folder_path is not None: Path(a_).mkdir(exist_ok=a_) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}") model.save_pretrained(a_) print(F"Saving processor to {pytorch_dump_folder_path}") processor.save_pretrained(a_) if push_to_hub: print(F"Pushing model and processor to the hub {vit_name}") model.push_to_hub(F"ybelkada/{vit_name}") processor.push_to_hub(F"ybelkada/{vit_name}") if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_r50_s16_384""", type=str, help="""Name of the hybrid ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) A__ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
49
1
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='''session''') def _lowerCamelCase ( ): lowerCamelCase :int = 10 lowerCamelCase :Tuple = datasets.Features( { '''tokens''': datasets.Sequence(datasets.Value('''string''')), '''labels''': datasets.Sequence(datasets.ClassLabel(names=['''negative''', '''positive'''])), '''answers''': datasets.Sequence( { '''text''': datasets.Value('''string'''), '''answer_start''': datasets.Value('''int32'''), }), '''id''': datasets.Value('''int64'''), }) lowerCamelCase :Tuple = datasets.Dataset.from_dict( { '''tokens''': [['''foo'''] * 5] * n, '''labels''': [[1] * 5] * n, '''answers''': [{'''answer_start''': [97], '''text''': ['''1976''']}] * 10, '''id''': list(range(a_)), } , features=a_ , ) return dataset @pytest.fixture(scope='''session''') def _lowerCamelCase ( a_ : List[Any] , a_ : List[str]): lowerCamelCase :Optional[Any] = str(tmp_path_factory.mktemp('''data''') / '''file.arrow''') dataset.map(cache_file_name=a_) return filename # FILE_CONTENT + files A__ = """\ Text data. Second line of data.""" @pytest.fixture(scope='''session''') def _lowerCamelCase ( a_ : Dict): lowerCamelCase :int = tmp_path_factory.mktemp('''data''') / '''file.txt''' lowerCamelCase :Optional[int] = FILE_CONTENT with open(a_ , '''w''') as f: f.write(a_) return filename @pytest.fixture(scope='''session''') def _lowerCamelCase ( a_ : Optional[int]): import bza lowerCamelCase :List[Any] = tmp_path_factory.mktemp('''data''') / '''file.txt.bz2''' lowerCamelCase :Any = bytes(a_ , '''utf-8''') with bza.open(a_ , '''wb''') as f: f.write(a_) return path @pytest.fixture(scope='''session''') def _lowerCamelCase ( a_ : Any): import gzip lowerCamelCase :Any = str(tmp_path_factory.mktemp('''data''') / '''file.txt.gz''') lowerCamelCase :str = bytes(a_ , '''utf-8''') with gzip.open(a_ , '''wb''') as f: f.write(a_) return path @pytest.fixture(scope='''session''') def _lowerCamelCase ( a_ : Tuple): if datasets.config.LZ4_AVAILABLE: import lza.frame lowerCamelCase :Union[str, Any] = tmp_path_factory.mktemp('''data''') / '''file.txt.lz4''' lowerCamelCase :List[Any] = bytes(a_ , '''utf-8''') with lza.frame.open(a_ , '''wb''') as f: f.write(a_) return path @pytest.fixture(scope='''session''') def _lowerCamelCase ( a_ : Union[str, Any] , a_ : str): if datasets.config.PY7ZR_AVAILABLE: import pyazr lowerCamelCase :Dict = tmp_path_factory.mktemp('''data''') / '''file.txt.7z''' with pyazr.SevenZipFile(a_ , '''w''') as archive: archive.write(a_ , arcname=os.path.basename(a_)) return path @pytest.fixture(scope='''session''') def _lowerCamelCase ( a_ : int , a_ : Any): import tarfile lowerCamelCase :Tuple = tmp_path_factory.mktemp('''data''') / '''file.txt.tar''' with tarfile.TarFile(a_ , '''w''') as f: f.add(a_ , arcname=os.path.basename(a_)) return path @pytest.fixture(scope='''session''') def _lowerCamelCase ( a_ : int): import lzma lowerCamelCase :int = tmp_path_factory.mktemp('''data''') / '''file.txt.xz''' lowerCamelCase :Tuple = bytes(a_ , '''utf-8''') with lzma.open(a_ , '''wb''') as f: f.write(a_) return path @pytest.fixture(scope='''session''') def _lowerCamelCase ( a_ : List[Any] , a_ : int): import zipfile lowerCamelCase :Dict = tmp_path_factory.mktemp('''data''') / '''file.txt.zip''' with zipfile.ZipFile(a_ , '''w''') as f: f.write(a_ , arcname=os.path.basename(a_)) return path @pytest.fixture(scope='''session''') def _lowerCamelCase ( a_ : Dict): if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd lowerCamelCase :str = tmp_path_factory.mktemp('''data''') / '''file.txt.zst''' lowerCamelCase :Tuple = bytes(a_ , '''utf-8''') with zstd.open(a_ , '''wb''') as f: f.write(a_) return path @pytest.fixture(scope='''session''') def _lowerCamelCase ( a_ : Tuple): lowerCamelCase :str = tmp_path_factory.mktemp('''data''') / '''file.xml''' lowerCamelCase :int = textwrap.dedent( '''\ <?xml version="1.0" encoding="UTF-8" ?> <tmx version="1.4"> <header segtype="sentence" srclang="ca" /> <body> <tu> <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv> <tuv xml:lang="en"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv> <tuv xml:lang="en"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv> <tuv xml:lang="en"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv> <tuv xml:lang="en"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv> <tuv xml:lang="en"><seg>Content 5</seg></tuv> </tu> </body> </tmx>''') with open(a_ , '''w''') as f: f.write(a_) return filename A__ = [ {"""col_1""": """0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """3""", """col_2""": 3, """col_3""": 3.0}, ] A__ = [ {"""col_1""": """4""", """col_2""": 4, """col_3""": 4.0}, {"""col_1""": """5""", """col_2""": 5, """col_3""": 5.0}, ] A__ = { """col_1""": ["""0""", """1""", """2""", """3"""], """col_2""": [0, 1, 2, 3], """col_3""": [0.0, 1.0, 2.0, 3.0], } A__ = [ {"""col_3""": 0.0, """col_1""": """0""", """col_2""": 0}, {"""col_3""": 1.0, """col_1""": """1""", """col_2""": 1}, ] A__ = [ {"""col_1""": """s0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """s1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """s2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """s3""", """col_2""": 3, """col_3""": 3.0}, ] @pytest.fixture(scope='''session''') def _lowerCamelCase ( ): return DATA_DICT_OF_LISTS @pytest.fixture(scope='''session''') def _lowerCamelCase ( a_ : List[Any]): lowerCamelCase :List[str] = datasets.Dataset.from_dict(a_) lowerCamelCase :Tuple = str(tmp_path_factory.mktemp('''data''') / '''dataset.arrow''') dataset.map(cache_file_name=a_) return path @pytest.fixture(scope='''session''') def _lowerCamelCase ( a_ : str): lowerCamelCase :int = str(tmp_path_factory.mktemp('''data''') / '''dataset.sqlite''') with contextlib.closing(sqlitea.connect(a_)) as con: lowerCamelCase :Union[str, Any] = con.cursor() cur.execute('''CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)''') for item in DATA: cur.execute('''INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)''' , tuple(item.values())) con.commit() return path @pytest.fixture(scope='''session''') def _lowerCamelCase ( a_ : Optional[int]): lowerCamelCase :Any = str(tmp_path_factory.mktemp('''data''') / '''dataset.csv''') with open(a_ , '''w''' , newline='''''') as f: lowerCamelCase :Optional[int] = csv.DictWriter(a_ , fieldnames=['''col_1''', '''col_2''', '''col_3''']) writer.writeheader() for item in DATA: writer.writerow(a_) return path @pytest.fixture(scope='''session''') def _lowerCamelCase ( a_ : Tuple): lowerCamelCase :Optional[Any] = str(tmp_path_factory.mktemp('''data''') / '''dataset2.csv''') with open(a_ , '''w''' , newline='''''') as f: lowerCamelCase :Dict = csv.DictWriter(a_ , fieldnames=['''col_1''', '''col_2''', '''col_3''']) writer.writeheader() for item in DATA: writer.writerow(a_) return path @pytest.fixture(scope='''session''') def _lowerCamelCase ( a_ : str , a_ : Optional[int]): import bza lowerCamelCase :Optional[Any] = tmp_path_factory.mktemp('''data''') / '''dataset.csv.bz2''' with open(a_ , '''rb''') as f: lowerCamelCase :Union[str, Any] = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(a_ , '''wb''') as f: f.write(a_) return path @pytest.fixture(scope='''session''') def _lowerCamelCase ( a_ : Dict , a_ : List[str] , a_ : str): lowerCamelCase :Optional[Any] = tmp_path_factory.mktemp('''data''') / '''dataset.csv.zip''' with zipfile.ZipFile(a_ , '''w''') as f: f.write(a_ , arcname=os.path.basename(a_)) f.write(a_ , arcname=os.path.basename(a_)) return path @pytest.fixture(scope='''session''') def _lowerCamelCase ( a_ : Dict , a_ : Optional[Any] , a_ : List[str]): lowerCamelCase :Any = tmp_path_factory.mktemp('''data''') / '''dataset.csv.zip''' with zipfile.ZipFile(a_ , '''w''') as f: f.write(a_ , arcname=os.path.basename(csv_path.replace('''.csv''' , '''.CSV'''))) f.write(a_ , arcname=os.path.basename(csva_path.replace('''.csv''' , '''.CSV'''))) return path @pytest.fixture(scope='''session''') def _lowerCamelCase ( a_ : Any , a_ : str , a_ : str): lowerCamelCase :List[str] = tmp_path_factory.mktemp('''data''') / '''dataset_with_dir.csv.zip''' with zipfile.ZipFile(a_ , '''w''') as f: f.write(a_ , arcname=os.path.join('''main_dir''' , os.path.basename(a_))) f.write(a_ , arcname=os.path.join('''main_dir''' , os.path.basename(a_))) return path @pytest.fixture(scope='''session''') def _lowerCamelCase ( a_ : Optional[int]): lowerCamelCase :Tuple = str(tmp_path_factory.mktemp('''data''') / '''dataset.parquet''') lowerCamelCase :Any = pa.schema( { '''col_1''': pa.string(), '''col_2''': pa.intaa(), '''col_3''': pa.floataa(), }) with open(a_ , '''wb''') as f: lowerCamelCase :Dict = pq.ParquetWriter(a_ , schema=a_) lowerCamelCase :Tuple = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(a_))] for k in DATA[0]} , schema=a_) writer.write_table(a_) writer.close() return path @pytest.fixture(scope='''session''') def _lowerCamelCase ( a_ : str): lowerCamelCase :List[str] = str(tmp_path_factory.mktemp('''data''') / '''dataset.json''') lowerCamelCase :int = {'''data''': DATA} with open(a_ , '''w''') as f: json.dump(a_ , a_) return path @pytest.fixture(scope='''session''') def _lowerCamelCase ( a_ : int): lowerCamelCase :Optional[int] = str(tmp_path_factory.mktemp('''data''') / '''dataset.json''') lowerCamelCase :str = {'''data''': DATA_DICT_OF_LISTS} with open(a_ , '''w''') as f: json.dump(a_ , a_) return path @pytest.fixture(scope='''session''') def _lowerCamelCase ( a_ : int): lowerCamelCase :Optional[Any] = str(tmp_path_factory.mktemp('''data''') / '''dataset.jsonl''') with open(a_ , '''w''') as f: for item in DATA: f.write(json.dumps(a_) + '''\n''') return path @pytest.fixture(scope='''session''') def _lowerCamelCase ( a_ : List[str]): lowerCamelCase :int = str(tmp_path_factory.mktemp('''data''') / '''dataset2.jsonl''') with open(a_ , '''w''') as f: for item in DATA: f.write(json.dumps(a_) + '''\n''') return path @pytest.fixture(scope='''session''') def _lowerCamelCase ( a_ : Union[str, Any]): lowerCamelCase :Dict = str(tmp_path_factory.mktemp('''data''') / '''dataset_312.jsonl''') with open(a_ , '''w''') as f: for item in DATA_312: f.write(json.dumps(a_) + '''\n''') return path @pytest.fixture(scope='''session''') def _lowerCamelCase ( a_ : List[Any]): lowerCamelCase :Dict = str(tmp_path_factory.mktemp('''data''') / '''dataset-str.jsonl''') with open(a_ , '''w''') as f: for item in DATA_STR: f.write(json.dumps(a_) + '''\n''') return path @pytest.fixture(scope='''session''') def _lowerCamelCase ( a_ : Any , a_ : str): import gzip lowerCamelCase :int = str(tmp_path_factory.mktemp('''data''') / '''dataset.txt.gz''') with open(a_ , '''rb''') as orig_file: with gzip.open(a_ , '''wb''') as zipped_file: zipped_file.writelines(a_) return path @pytest.fixture(scope='''session''') def _lowerCamelCase ( a_ : List[str] , a_ : str): import gzip lowerCamelCase :List[Any] = str(tmp_path_factory.mktemp('''data''') / '''dataset.jsonl.gz''') with open(a_ , '''rb''') as orig_file: with gzip.open(a_ , '''wb''') as zipped_file: zipped_file.writelines(a_) return path @pytest.fixture(scope='''session''') def _lowerCamelCase ( a_ : str , a_ : Optional[Any] , a_ : Optional[int]): lowerCamelCase :Dict = tmp_path_factory.mktemp('''data''') / '''dataset.jsonl.zip''' with zipfile.ZipFile(a_ , '''w''') as f: f.write(a_ , arcname=os.path.basename(a_)) f.write(a_ , arcname=os.path.basename(a_)) return path @pytest.fixture(scope='''session''') def _lowerCamelCase ( a_ : Any , a_ : List[str] , a_ : Tuple , a_ : Tuple): lowerCamelCase :List[str] = tmp_path_factory.mktemp('''data''') / '''dataset_nested.jsonl.zip''' with zipfile.ZipFile(a_ , '''w''') as f: f.write(a_ , arcname=os.path.join('''nested''' , os.path.basename(a_))) return path @pytest.fixture(scope='''session''') def _lowerCamelCase ( a_ : Optional[int] , a_ : List[str] , a_ : Dict): lowerCamelCase :List[Any] = tmp_path_factory.mktemp('''data''') / '''dataset_with_dir.jsonl.zip''' with zipfile.ZipFile(a_ , '''w''') as f: f.write(a_ , arcname=os.path.join('''main_dir''' , os.path.basename(a_))) f.write(a_ , arcname=os.path.join('''main_dir''' , os.path.basename(a_))) return path @pytest.fixture(scope='''session''') def _lowerCamelCase ( a_ : List[Any] , a_ : Any , a_ : Optional[Any]): lowerCamelCase :List[Any] = tmp_path_factory.mktemp('''data''') / '''dataset.jsonl.tar''' with tarfile.TarFile(a_ , '''w''') as f: f.add(a_ , arcname=os.path.basename(a_)) f.add(a_ , arcname=os.path.basename(a_)) return path @pytest.fixture(scope='''session''') def _lowerCamelCase ( a_ : Union[str, Any] , a_ : List[Any] , a_ : Optional[int] , a_ : Union[str, Any]): lowerCamelCase :Union[str, Any] = tmp_path_factory.mktemp('''data''') / '''dataset_nested.jsonl.tar''' with tarfile.TarFile(a_ , '''w''') as f: f.add(a_ , arcname=os.path.join('''nested''' , os.path.basename(a_))) return path @pytest.fixture(scope='''session''') def _lowerCamelCase ( a_ : Dict): lowerCamelCase :List[str] = ['''0''', '''1''', '''2''', '''3'''] lowerCamelCase :str = str(tmp_path_factory.mktemp('''data''') / '''dataset.txt''') with open(a_ , '''w''') as f: for item in data: f.write(item + '''\n''') return path @pytest.fixture(scope='''session''') def _lowerCamelCase ( a_ : int): lowerCamelCase :Optional[int] = ['''0''', '''1''', '''2''', '''3'''] lowerCamelCase :Any = str(tmp_path_factory.mktemp('''data''') / '''dataset2.txt''') with open(a_ , '''w''') as f: for item in data: f.write(item + '''\n''') return path @pytest.fixture(scope='''session''') def _lowerCamelCase ( a_ : List[Any]): lowerCamelCase :Optional[Any] = ['''0''', '''1''', '''2''', '''3'''] lowerCamelCase :Any = tmp_path_factory.mktemp('''data''') / '''dataset.abc''' with open(a_ , '''w''') as f: for item in data: f.write(item + '''\n''') return path @pytest.fixture(scope='''session''') def _lowerCamelCase ( a_ : Optional[Any] , a_ : Optional[int] , a_ : Optional[int]): lowerCamelCase :Dict = tmp_path_factory.mktemp('''data''') / '''dataset.text.zip''' with zipfile.ZipFile(a_ , '''w''') as f: f.write(a_ , arcname=os.path.basename(a_)) f.write(a_ , arcname=os.path.basename(a_)) return path @pytest.fixture(scope='''session''') def _lowerCamelCase ( a_ : List[str] , a_ : Union[str, Any] , a_ : Optional[int]): lowerCamelCase :int = tmp_path_factory.mktemp('''data''') / '''dataset_with_dir.text.zip''' with zipfile.ZipFile(a_ , '''w''') as f: f.write(a_ , arcname=os.path.join('''main_dir''' , os.path.basename(a_))) f.write(a_ , arcname=os.path.join('''main_dir''' , os.path.basename(a_))) return path @pytest.fixture(scope='''session''') def _lowerCamelCase ( a_ : int , a_ : Optional[int] , a_ : Union[str, Any]): lowerCamelCase :int = tmp_path_factory.mktemp('''data''') / '''dataset.ext.zip''' with zipfile.ZipFile(a_ , '''w''') as f: f.write(a_ , arcname=os.path.basename('''unsupported.ext''')) f.write(a_ , arcname=os.path.basename('''unsupported_2.ext''')) return path @pytest.fixture(scope='''session''') def _lowerCamelCase ( a_ : Dict): lowerCamelCase :Optional[int] = '''\n'''.join(['''First''', '''Second\u2029with Unicode new line''', '''Third''']) lowerCamelCase :int = str(tmp_path_factory.mktemp('''data''') / '''dataset_with_unicode_new_lines.txt''') with open(a_ , '''w''' , encoding='''utf-8''') as f: f.write(a_) return path @pytest.fixture(scope='''session''') def _lowerCamelCase ( ): return os.path.join('''tests''' , '''features''' , '''data''' , '''test_image_rgb.jpg''') @pytest.fixture(scope='''session''') def _lowerCamelCase ( ): return os.path.join('''tests''' , '''features''' , '''data''' , '''test_audio_44100.wav''') @pytest.fixture(scope='''session''') def _lowerCamelCase ( a_ : Tuple , a_ : Union[str, Any]): lowerCamelCase :Any = tmp_path_factory.mktemp('''data''') / '''dataset.img.zip''' with zipfile.ZipFile(a_ , '''w''') as f: f.write(a_ , arcname=os.path.basename(a_)) f.write(a_ , arcname=os.path.basename(a_).replace('''.jpg''' , '''2.jpg''')) return path @pytest.fixture(scope='''session''') def _lowerCamelCase ( a_ : List[Any]): lowerCamelCase :List[str] = tmp_path_factory.mktemp('''data_dir''') (data_dir / "subdir").mkdir() with open(data_dir / '''subdir''' / '''train.txt''' , '''w''') as f: f.write('''foo\n''' * 10) with open(data_dir / '''subdir''' / '''test.txt''' , '''w''') as f: f.write('''bar\n''' * 10) # hidden file with open(data_dir / '''subdir''' / '''.test.txt''' , '''w''') as f: f.write('''bar\n''' * 10) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '''.subdir''' / '''train.txt''' , '''w''') as f: f.write('''foo\n''' * 10) with open(data_dir / '''.subdir''' / '''test.txt''' , '''w''') as f: f.write('''bar\n''' * 10) return data_dir
49
def _lowerCamelCase ( a_ : int = 4_00_00_00): lowerCamelCase :Dict = [0, 1] lowerCamelCase :Optional[Any] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1]) if fib[i + 2] > n: break i += 1 lowerCamelCase :Dict = 0 for j in range(len(a_) - 1): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F'{solution() = }')
49
1
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class _lowerCAmelCase : def __init__( self : Dict , __snake_case : int , __snake_case : Optional[int]=14 , __snake_case : Dict=7 , __snake_case : str=True , __snake_case : int=True , __snake_case : Optional[int]=True , __snake_case : Optional[int]=True , __snake_case : List[Any]=True , __snake_case : Union[str, Any]=99 , __snake_case : Dict=32 , __snake_case : List[Any]=5 , __snake_case : Tuple=4 , __snake_case : List[str]=37 , __snake_case : str="gelu" , __snake_case : List[Any]=0.1 , __snake_case : int=0.1 , __snake_case : List[Any]=512 , __snake_case : Any=16 , __snake_case : int=2 , __snake_case : Union[str, Any]=0.0_2 , __snake_case : Optional[int]=3 , __snake_case : Any=4 , __snake_case : str=None , ): lowerCamelCase :Any = parent lowerCamelCase :List[str] = batch_size lowerCamelCase :Union[str, Any] = seq_length lowerCamelCase :int = is_training lowerCamelCase :Optional[int] = use_token_type_ids lowerCamelCase :Optional[int] = use_input_mask lowerCamelCase :Dict = use_labels lowerCamelCase :Any = use_mc_token_ids lowerCamelCase :str = vocab_size lowerCamelCase :Optional[int] = hidden_size lowerCamelCase :str = num_hidden_layers lowerCamelCase :Union[str, Any] = num_attention_heads lowerCamelCase :Optional[Any] = intermediate_size lowerCamelCase :Dict = hidden_act lowerCamelCase :List[str] = hidden_dropout_prob lowerCamelCase :Optional[Any] = attention_probs_dropout_prob lowerCamelCase :Optional[int] = max_position_embeddings lowerCamelCase :Tuple = type_vocab_size lowerCamelCase :int = type_sequence_label_size lowerCamelCase :Any = initializer_range lowerCamelCase :List[str] = num_labels lowerCamelCase :Any = num_choices lowerCamelCase :Union[str, Any] = scope lowerCamelCase :int = self.vocab_size - 1 def snake_case ( self : int ): lowerCamelCase :Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase :str = None if self.use_input_mask: lowerCamelCase :List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase :int = None if self.use_token_type_ids: lowerCamelCase :Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase :Tuple = None if self.use_mc_token_ids: lowerCamelCase :Tuple = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) lowerCamelCase :List[str] = None lowerCamelCase :Any = None lowerCamelCase :List[Any] = None if self.use_labels: lowerCamelCase :Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase :Dict = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase :Tuple = self.get_config() lowerCamelCase :List[str] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def snake_case ( self : Any ): return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def snake_case ( self : str , __snake_case : List[str] , __snake_case : int , __snake_case : Any , __snake_case : List[str] , __snake_case : Dict , *__snake_case : List[str] ): lowerCamelCase :Dict = CTRLModel(config=__snake_case ) model.to(__snake_case ) model.eval() model(__snake_case , token_type_ids=__snake_case , head_mask=__snake_case ) model(__snake_case , token_type_ids=__snake_case ) lowerCamelCase :Dict = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def snake_case ( self : str , __snake_case : Dict , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : Dict , *__snake_case : str ): lowerCamelCase :List[str] = CTRLLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() lowerCamelCase :Optional[Any] = model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self : List[Any] ): lowerCamelCase :List[str] = self.prepare_config_and_inputs() ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) :Optional[int] = config_and_inputs lowerCamelCase :str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask} return config, inputs_dict def snake_case ( self : int , __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : int , __snake_case : List[Any] , *__snake_case : str ): lowerCamelCase :Tuple = self.num_labels lowerCamelCase :Optional[int] = CTRLForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() lowerCamelCase :Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase :List[str] = model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () _UpperCAmelCase = (CTRLLMHeadModel,) if is_torch_available() else () _UpperCAmelCase = ( { 'feature-extraction': CTRLModel, 'text-classification': CTRLForSequenceClassification, 'text-generation': CTRLLMHeadModel, 'zero-shot': CTRLForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = False def snake_case ( self : str , __snake_case : int , __snake_case : int , __snake_case : str , __snake_case : List[str] , __snake_case : Optional[int] ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def snake_case ( self : str ): lowerCamelCase :List[str] = CTRLModelTester(self ) lowerCamelCase :Tuple = ConfigTester(self , config_class=__snake_case , n_embd=37 ) def snake_case ( self : str ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def snake_case ( self : List[Any] ): self.config_tester.run_common_tests() def snake_case ( self : List[str] ): lowerCamelCase :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*__snake_case ) def snake_case ( self : Union[str, Any] ): lowerCamelCase :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__snake_case ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def snake_case ( self : Union[str, Any] ): pass @slow def snake_case ( self : Union[str, Any] ): for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase :Dict = CTRLModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def snake_case ( self : List[str] ): pass @require_torch class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Dict ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def snake_case ( self : Union[str, Any] ): lowerCamelCase :Tuple = CTRLLMHeadModel.from_pretrained('''ctrl''' ) model.to(__snake_case ) lowerCamelCase :Any = torch.tensor( [[11859, 0, 1611, 8]] , dtype=torch.long , device=__snake_case ) # Legal the president is lowerCamelCase :List[str] = [ 11859, 0, 1611, 8, 5, 150, 26449, 2, 19, 348, 469, 3, 2595, 48, 20740, 246533, 246533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a lowerCamelCase :int = model.generate(__snake_case , do_sample=__snake_case ) self.assertListEqual(output_ids[0].tolist() , __snake_case )
49
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ = { """configuration_nllb_moe""": [ """NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NllbMoeConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""", """NllbMoeForConditionalGeneration""", """NllbMoeModel""", """NllbMoePreTrainedModel""", """NllbMoeTop2Router""", """NllbMoeSparseMLP""", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
49
1
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : List[str] ): lowerCamelCase :int = torch.nn.Linear(10 , 10 ) lowerCamelCase :str = torch.optim.SGD(model.parameters() , 0.1 ) lowerCamelCase :List[str] = Accelerator() lowerCamelCase :Union[str, Any] = accelerator.prepare(__snake_case ) try: pickle.loads(pickle.dumps(__snake_case ) ) except Exception as e: self.fail(F"Accelerated optimizer pickling failed with {e}" ) AcceleratorState._reset_state()
49
import numpy class _lowerCAmelCase : def __init__( self : Dict , __snake_case : numpy.ndarray , __snake_case : numpy.ndarray ): lowerCamelCase :Dict = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. lowerCamelCase :Dict = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. lowerCamelCase :Dict = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. lowerCamelCase :Any = numpy.random.rand(3 , 1 ) # Real output values provided. lowerCamelCase :Union[str, Any] = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. lowerCamelCase :List[str] = numpy.zeros(output_array.shape ) def snake_case ( self : Optional[int] ): lowerCamelCase :Any = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. lowerCamelCase :Any = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. lowerCamelCase :Dict = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def snake_case ( self : Any ): lowerCamelCase :Union[str, Any] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) lowerCamelCase :Dict = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) lowerCamelCase :int = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def snake_case ( self : Dict , __snake_case : numpy.ndarray , __snake_case : int , __snake_case : bool ): for iteration in range(1 , iterations + 1 ): lowerCamelCase :Union[str, Any] = self.feedforward() self.back_propagation() if give_loss: lowerCamelCase :Tuple = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"Iteration {iteration} Loss: {loss}" ) def snake_case ( self : Optional[int] , __snake_case : numpy.ndarray ): lowerCamelCase :int = input_arr lowerCamelCase :Union[str, Any] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) lowerCamelCase :Optional[Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) lowerCamelCase :Optional[int] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def _lowerCamelCase ( a_ : numpy.ndarray): return 1 / (1 + numpy.exp(-value)) def _lowerCamelCase ( a_ : numpy.ndarray): return (value) * (1 - (value)) def _lowerCamelCase ( ): lowerCamelCase :Optional[Any] = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. lowerCamelCase :int = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa) # Calling neural network class. lowerCamelCase :List[Any] = TwoHiddenLayerNeuralNetwork( input_array=a_ , output_array=a_) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=a_ , iterations=10 , give_loss=a_) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa)) if __name__ == "__main__": example()
49
1
from typing import TYPE_CHECKING from ...utils import _LazyModule A__ = {"""tokenization_bertweet""": ["""BertweetTokenizer"""]} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
49
def _lowerCamelCase ( a_ : str , a_ : str): lowerCamelCase :List[str] = len(a_) lowerCamelCase :List[str] = len(a_) lowerCamelCase :int = [[False for _ in range(m + 1)] for _ in range(n + 1)] lowerCamelCase :Optional[Any] = True for i in range(a_): for j in range(m + 1): if dp[i][j]: if j < m and a[i].upper() == b[j]: lowerCamelCase :Any = True if a[i].islower(): lowerCamelCase :List[str] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
49
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = CycleDiffusionPipeline _UpperCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'negative_prompt', 'height', 'width', 'negative_prompt_embeds', } _UpperCAmelCase = PipelineTesterMixin.required_optional_params - {'latents'} _UpperCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'source_prompt'} ) _UpperCAmelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS _UpperCAmelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS def snake_case ( self : Union[str, Any] ): torch.manual_seed(0 ) lowerCamelCase :Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) lowerCamelCase :str = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , num_train_timesteps=1000 , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) torch.manual_seed(0 ) lowerCamelCase :Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCamelCase :List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCamelCase :Optional[int] = CLIPTextModel(__snake_case ) lowerCamelCase :Optional[int] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowerCamelCase :Dict = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def snake_case ( self : Tuple , __snake_case : Tuple , __snake_case : Any=0 ): lowerCamelCase :Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(__snake_case ) ).to(__snake_case ) lowerCamelCase :int = image / 2 + 0.5 if str(__snake_case ).startswith('''mps''' ): lowerCamelCase :Union[str, Any] = torch.manual_seed(__snake_case ) else: lowerCamelCase :List[str] = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) lowerCamelCase :str = { '''prompt''': '''An astronaut riding an elephant''', '''source_prompt''': '''An astronaut riding a horse''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''eta''': 0.1, '''strength''': 0.8, '''guidance_scale''': 3, '''source_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def snake_case ( self : Union[str, Any] ): lowerCamelCase :Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCamelCase :int = self.get_dummy_components() lowerCamelCase :Optional[int] = CycleDiffusionPipeline(**__snake_case ) lowerCamelCase :Tuple = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) lowerCamelCase :int = self.get_dummy_inputs(__snake_case ) lowerCamelCase :Optional[Any] = pipe(**__snake_case ) lowerCamelCase :int = output.images lowerCamelCase :Tuple = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) lowerCamelCase :Any = np.array([0.4_4_5_9, 0.4_9_4_3, 0.4_5_4_4, 0.6_6_4_3, 0.5_4_7_4, 0.4_3_2_7, 0.5_7_0_1, 0.5_9_5_9, 0.5_1_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def snake_case ( self : List[Any] ): lowerCamelCase :Union[str, Any] = self.get_dummy_components() for name, module in components.items(): if hasattr(__snake_case , '''half''' ): lowerCamelCase :Tuple = module.half() lowerCamelCase :List[str] = CycleDiffusionPipeline(**__snake_case ) lowerCamelCase :Any = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) lowerCamelCase :List[Any] = self.get_dummy_inputs(__snake_case ) lowerCamelCase :Any = pipe(**__snake_case ) lowerCamelCase :Dict = output.images lowerCamelCase :List[str] = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) lowerCamelCase :Optional[int] = np.array([0.3_5_0_6, 0.4_5_4_3, 0.4_4_6, 0.4_5_7_5, 0.5_1_9_5, 0.4_1_5_5, 0.5_2_7_3, 0.5_1_8, 0.4_1_1_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def snake_case ( self : Optional[Any] ): return super().test_save_load_local() @unittest.skip('''non-deterministic pipeline''' ) def snake_case ( self : Optional[Any] ): return super().test_inference_batch_single_identical() @skip_mps def snake_case ( self : Union[str, Any] ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def snake_case ( self : str ): return super().test_save_load_optional_components() @skip_mps def snake_case ( self : Any ): return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self : Dict ): lowerCamelCase :Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) lowerCamelCase :Union[str, Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy''' ) lowerCamelCase :Optional[Any] = init_image.resize((512, 512) ) lowerCamelCase :List[Any] = '''CompVis/stable-diffusion-v1-4''' lowerCamelCase :List[Any] = DDIMScheduler.from_pretrained(__snake_case , subfolder='''scheduler''' ) lowerCamelCase :Dict = CycleDiffusionPipeline.from_pretrained( __snake_case , scheduler=__snake_case , safety_checker=__snake_case , torch_dtype=torch.floataa , revision='''fp16''' ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() lowerCamelCase :Union[str, Any] = '''A black colored car''' lowerCamelCase :List[Any] = '''A blue colored car''' lowerCamelCase :Optional[Any] = torch.manual_seed(0 ) lowerCamelCase :str = pipe( prompt=__snake_case , source_prompt=__snake_case , image=__snake_case , num_inference_steps=100 , eta=0.1 , strength=0.8_5 , guidance_scale=3 , source_guidance_scale=1 , generator=__snake_case , output_type='''np''' , ) lowerCamelCase :Optional[Any] = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5e-1 def snake_case ( self : str ): lowerCamelCase :List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) lowerCamelCase :Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy''' ) lowerCamelCase :Tuple = init_image.resize((512, 512) ) lowerCamelCase :List[str] = '''CompVis/stable-diffusion-v1-4''' lowerCamelCase :Any = DDIMScheduler.from_pretrained(__snake_case , subfolder='''scheduler''' ) lowerCamelCase :Optional[Any] = CycleDiffusionPipeline.from_pretrained(__snake_case , scheduler=__snake_case , safety_checker=__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() lowerCamelCase :Optional[int] = '''A black colored car''' lowerCamelCase :Optional[int] = '''A blue colored car''' lowerCamelCase :Optional[Any] = torch.manual_seed(0 ) lowerCamelCase :str = pipe( prompt=__snake_case , source_prompt=__snake_case , image=__snake_case , num_inference_steps=100 , eta=0.1 , strength=0.8_5 , guidance_scale=3 , source_guidance_scale=1 , generator=__snake_case , output_type='''np''' , ) lowerCamelCase :Optional[Any] = output.images assert np.abs(image - expected_image ).max() < 2e-2
49
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : def __init__( self : Any , __snake_case : Optional[int] , __snake_case : int=13 , __snake_case : str=[30, 30] , __snake_case : Tuple=2 , __snake_case : Optional[Any]=3 , __snake_case : int=True , __snake_case : Tuple=True , __snake_case : List[Any]=32 , __snake_case : int=5 , __snake_case : Optional[Any]=4 , __snake_case : Union[str, Any]=37 , __snake_case : str="gelu" , __snake_case : Tuple=0.1 , __snake_case : List[Any]=0.1 , __snake_case : Union[str, Any]=10 , __snake_case : str=0.0_2 , __snake_case : Union[str, Any]=3 , __snake_case : Union[str, Any]=None , __snake_case : List[str]=8 , __snake_case : Any=10 , ): lowerCamelCase :Optional[Any] = parent lowerCamelCase :List[Any] = batch_size lowerCamelCase :Any = image_size lowerCamelCase :Union[str, Any] = patch_size lowerCamelCase :Any = num_channels lowerCamelCase :List[Any] = is_training lowerCamelCase :Optional[Any] = use_labels lowerCamelCase :Any = hidden_size lowerCamelCase :List[Any] = num_hidden_layers lowerCamelCase :List[str] = num_attention_heads lowerCamelCase :Tuple = intermediate_size lowerCamelCase :List[str] = hidden_act lowerCamelCase :List[str] = hidden_dropout_prob lowerCamelCase :Any = attention_probs_dropout_prob lowerCamelCase :List[Any] = type_sequence_label_size lowerCamelCase :Optional[int] = initializer_range lowerCamelCase :List[Any] = num_labels lowerCamelCase :Any = scope lowerCamelCase :Union[str, Any] = n_targets lowerCamelCase :Optional[Any] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowerCamelCase :Tuple = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowerCamelCase :str = num_patches + 1 + self.num_detection_tokens def snake_case ( self : List[str] ): lowerCamelCase :str = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowerCamelCase :List[str] = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowerCamelCase :Optional[int] = [] for i in range(self.batch_size ): lowerCamelCase :List[str] = {} lowerCamelCase :Tuple = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=__snake_case ) lowerCamelCase :List[str] = torch.rand(self.n_targets , 4 , device=__snake_case ) labels.append(__snake_case ) lowerCamelCase :str = self.get_config() return config, pixel_values, labels def snake_case ( self : Union[str, Any] ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__snake_case , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def snake_case ( self : Tuple , __snake_case : Tuple , __snake_case : Tuple , __snake_case : Any ): lowerCamelCase :Optional[Any] = YolosModel(config=__snake_case ) model.to(__snake_case ) model.eval() lowerCamelCase :Union[str, Any] = model(__snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def snake_case ( self : Dict , __snake_case : str , __snake_case : Optional[int] , __snake_case : Optional[Any] ): lowerCamelCase :int = YolosForObjectDetection(__snake_case ) model.to(__snake_case ) model.eval() lowerCamelCase :str = model(pixel_values=__snake_case ) lowerCamelCase :Any = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) lowerCamelCase :int = model(pixel_values=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def snake_case ( self : int ): lowerCamelCase :List[Any] = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase :str = config_and_inputs lowerCamelCase :Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () _UpperCAmelCase = ( {'feature-extraction': YolosModel, 'object-detection': YolosForObjectDetection} if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def snake_case ( self : Any , __snake_case : List[Any] , __snake_case : Tuple , __snake_case : Dict=False ): lowerCamelCase :Optional[int] = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowerCamelCase :Dict = [] for i in range(self.model_tester.batch_size ): lowerCamelCase :Optional[Any] = {} lowerCamelCase :List[Any] = torch.ones( size=(self.model_tester.n_targets,) , device=__snake_case , dtype=torch.long ) lowerCamelCase :str = torch.ones( self.model_tester.n_targets , 4 , device=__snake_case , dtype=torch.float ) labels.append(__snake_case ) lowerCamelCase :Union[str, Any] = labels return inputs_dict def snake_case ( self : Tuple ): lowerCamelCase :Union[str, Any] = YolosModelTester(self ) lowerCamelCase :Dict = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=37 ) def snake_case ( self : Union[str, Any] ): self.config_tester.run_common_tests() def snake_case ( self : Optional[Any] ): # YOLOS does not use inputs_embeds pass def snake_case ( self : Tuple ): lowerCamelCase , lowerCamelCase :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :Optional[int] = model_class(__snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase :str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case , nn.Linear ) ) def snake_case ( self : str ): lowerCamelCase , lowerCamelCase :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :str = model_class(__snake_case ) lowerCamelCase :Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase :Tuple = [*signature.parameters.keys()] lowerCamelCase :Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __snake_case ) def snake_case ( self : int ): lowerCamelCase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def snake_case ( self : str ): lowerCamelCase , lowerCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase :int = True # in YOLOS, the seq_len is different lowerCamelCase :str = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowerCamelCase :str = True lowerCamelCase :Tuple = False lowerCamelCase :Optional[int] = True lowerCamelCase :int = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :str = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :str = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase :Optional[Any] = True lowerCamelCase :str = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :Tuple = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Tuple = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowerCamelCase :Optional[int] = len(__snake_case ) # Check attention is always last and order is fine lowerCamelCase :Union[str, Any] = True lowerCamelCase :List[Any] = True lowerCamelCase :Tuple = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :int = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Dict = 1 self.assertEqual(out_len + added_hidden_states , len(__snake_case ) ) lowerCamelCase :Dict = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def snake_case ( self : List[str] ): def check_hidden_states_output(__snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Tuple ): lowerCamelCase :Union[str, Any] = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :Any = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Optional[Any] = outputs.hidden_states lowerCamelCase :Any = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__snake_case ) , __snake_case ) # YOLOS has a different seq_length lowerCamelCase :List[str] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowerCamelCase , lowerCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :Union[str, Any] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase :Any = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*__snake_case ) @slow def snake_case ( self : Dict ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase :Tuple = YolosModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def _lowerCamelCase ( ): lowerCamelCase :int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): @cached_property def snake_case ( self : Tuple ): return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def snake_case ( self : Dict ): lowerCamelCase :Union[str, Any] = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(__snake_case ) lowerCamelCase :Optional[Any] = self.default_image_processor lowerCamelCase :str = prepare_img() lowerCamelCase :Dict = image_processor(images=__snake_case , return_tensors='''pt''' ).to(__snake_case ) # forward pass with torch.no_grad(): lowerCamelCase :Optional[Any] = model(inputs.pixel_values ) # verify outputs lowerCamelCase :int = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , __snake_case ) lowerCamelCase :Any = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=__snake_case , ) lowerCamelCase :Any = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __snake_case , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , __snake_case , atol=1e-4 ) ) # verify postprocessing lowerCamelCase :List[str] = image_processor.post_process_object_detection( __snake_case , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] lowerCamelCase :List[str] = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(__snake_case ) lowerCamelCase :str = [75, 75, 17, 63, 17] lowerCamelCase :Tuple = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(__snake_case ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , __snake_case , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , __snake_case ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , __snake_case ) )
49
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A__ = logging.get_logger(__name__) A__ = { """microsoft/resnet-50""": """https://huggingface.co/microsoft/resnet-50/blob/main/config.json""", } class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'resnet' _UpperCAmelCase = ['basic', 'bottleneck'] def __init__( self : Optional[int] , __snake_case : List[Any]=3 , __snake_case : Union[str, Any]=64 , __snake_case : List[Any]=[256, 512, 1024, 2048] , __snake_case : List[Any]=[3, 4, 6, 3] , __snake_case : int="bottleneck" , __snake_case : Optional[int]="relu" , __snake_case : str=False , __snake_case : int=None , __snake_case : Optional[Any]=None , **__snake_case : str , ): super().__init__(**__snake_case ) if layer_type not in self.layer_types: raise ValueError(F"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) lowerCamelCase :List[str] = num_channels lowerCamelCase :Dict = embedding_size lowerCamelCase :Any = hidden_sizes lowerCamelCase :Union[str, Any] = depths lowerCamelCase :str = layer_type lowerCamelCase :Any = hidden_act lowerCamelCase :Optional[int] = downsample_in_first_stage lowerCamelCase :List[Any] = ['''stem'''] + [F"stage{idx}" for idx in range(1 , len(__snake_case ) + 1 )] lowerCamelCase , lowerCamelCase :str = get_aligned_output_features_output_indices( out_features=__snake_case , out_indices=__snake_case , stage_names=self.stage_names ) class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = version.parse('1.11' ) @property def snake_case ( self : List[Any] ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def snake_case ( self : str ): return 1e-3
49
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Tuple ): lowerCamelCase :List[Any] = inspect.getfile(accelerate.test_utils ) lowerCamelCase :Dict = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 lowerCamelCase :Any = test_metrics @require_cpu def snake_case ( self : Dict ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def snake_case ( self : int ): debug_launcher(self.test_metrics.main ) @require_single_gpu def snake_case ( self : Any ): self.test_metrics.main() @require_multi_gpu def snake_case ( self : Optional[int] ): print(F"Found {torch.cuda.device_count()} devices." ) lowerCamelCase :Optional[int] = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__snake_case , env=os.environ.copy() )
49
1
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor A__ = logging.get_logger(__name__) class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self : List[Any] , *__snake_case : Optional[int] , **__snake_case : Optional[Any] ): warnings.warn( '''The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use BeitImageProcessor instead.''' , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
49
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = '' _UpperCAmelCase = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) _UpperCAmelCase = None # compression type in fsspec. ex: "gzip" _UpperCAmelCase = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : str , __snake_case : str = "" , __snake_case : Optional[str] = None , __snake_case : Optional[dict] = None , **__snake_case : Dict ): super().__init__(self , **__snake_case ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode lowerCamelCase :Optional[Any] = fsspec.open( __snake_case , mode='''rb''' , protocol=__snake_case , compression=self.compression , client_kwargs={ '''requote_redirect_url''': False, # see https://github.com/huggingface/datasets/pull/5459 '''trust_env''': True, # Enable reading proxy env variables. **(target_options or {}).pop('''client_kwargs''' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) lowerCamelCase :List[str] = os.path.basename(self.file.path.split('''::''' )[0] ) lowerCamelCase :Dict = ( self.compressed_name[: self.compressed_name.rindex('''.''' )] if '''.''' in self.compressed_name else self.compressed_name ) lowerCamelCase :List[str] = None @classmethod def snake_case ( cls : Any , __snake_case : Any ): # compressed file paths are always relative to the archive root return super()._strip_protocol(__snake_case ).lstrip('''/''' ) def snake_case ( self : Any ): if self.dir_cache is None: lowerCamelCase :Optional[Any] = {**self.file.fs.info(self.file.path ), '''name''': self.uncompressed_name} lowerCamelCase :Optional[Any] = {f['''name''']: f} def snake_case ( self : Union[str, Any] , __snake_case : str ): return self.file.open().read() def snake_case ( self : Optional[int] , __snake_case : str , __snake_case : str = "rb" , __snake_case : int=None , __snake_case : Optional[int]=True , __snake_case : str=None , **__snake_case : str , ): lowerCamelCase :List[str] = self._strip_protocol(__snake_case ) if mode != "rb": raise ValueError(F"Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'" ) return self.file.open() class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'bz2' _UpperCAmelCase = 'bz2' _UpperCAmelCase = '.bz2' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'gzip' _UpperCAmelCase = 'gzip' _UpperCAmelCase = '.gz' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'lz4' _UpperCAmelCase = 'lz4' _UpperCAmelCase = '.lz4' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'xz' _UpperCAmelCase = 'xz' _UpperCAmelCase = '.xz' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'zstd' _UpperCAmelCase = 'zstd' _UpperCAmelCase = '.zst' def __init__( self : str , __snake_case : str , __snake_case : str = "rb" , __snake_case : Optional[str] = None , __snake_case : Optional[dict] = None , __snake_case : int = DEFAULT_BLOCK_SIZE , **__snake_case : int , ): super().__init__( fo=__snake_case , mode=__snake_case , target_protocol=__snake_case , target_options=__snake_case , block_size=__snake_case , **__snake_case , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 lowerCamelCase :Tuple = self.file.__enter__ class _lowerCAmelCase : def __init__( self : Dict , __snake_case : Tuple ): lowerCamelCase :Optional[int] = file_ def __enter__( self : Optional[int] ): self._file.__enter__() return self def __exit__( self : str , *__snake_case : Optional[Any] , **__snake_case : List[Any] ): self._file.__exit__(*__snake_case , **__snake_case ) def __iter__( self : Optional[Any] ): return iter(self._file ) def snake_case ( self : List[Any] ): return next(self._file ) def __getattr__( self : Any , __snake_case : str ): return getattr(self._file , __snake_case ) def fixed_enter(*__snake_case : Optional[int] , **__snake_case : str ): return WrappedFile(_enter(*__snake_case , **__snake_case ) ) lowerCamelCase :Dict = fixed_enter
49
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 42 class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): @register_to_config def __init__( self : Union[str, Any] , __snake_case : int = 3 , __snake_case : int = 3 , __snake_case : Tuple[str] = ("DownEncoderBlock2D",) , __snake_case : Tuple[str] = ("UpDecoderBlock2D",) , __snake_case : Tuple[int] = (64,) , __snake_case : int = 1 , __snake_case : str = "silu" , __snake_case : int = 3 , __snake_case : int = 32 , __snake_case : int = 256 , __snake_case : int = 32 , __snake_case : Optional[int] = None , __snake_case : float = 0.1_8_2_1_5 , __snake_case : str = "group" , ): super().__init__() # pass init params to Encoder lowerCamelCase :Tuple = Encoder( in_channels=__snake_case , out_channels=__snake_case , down_block_types=__snake_case , block_out_channels=__snake_case , layers_per_block=__snake_case , act_fn=__snake_case , norm_num_groups=__snake_case , double_z=__snake_case , ) lowerCamelCase :str = vq_embed_dim if vq_embed_dim is not None else latent_channels lowerCamelCase :List[Any] = nn.Convad(__snake_case , __snake_case , 1 ) lowerCamelCase :str = VectorQuantizer(__snake_case , __snake_case , beta=0.2_5 , remap=__snake_case , sane_index_shape=__snake_case ) lowerCamelCase :List[str] = nn.Convad(__snake_case , __snake_case , 1 ) # pass init params to Decoder lowerCamelCase :str = Decoder( in_channels=__snake_case , out_channels=__snake_case , up_block_types=__snake_case , block_out_channels=__snake_case , layers_per_block=__snake_case , act_fn=__snake_case , norm_num_groups=__snake_case , norm_type=__snake_case , ) @apply_forward_hook def snake_case ( self : Tuple , __snake_case : torch.FloatTensor , __snake_case : bool = True ): lowerCamelCase :str = self.encoder(__snake_case ) lowerCamelCase :int = self.quant_conv(__snake_case ) if not return_dict: return (h,) return VQEncoderOutput(latents=__snake_case ) @apply_forward_hook def snake_case ( self : Tuple , __snake_case : torch.FloatTensor , __snake_case : bool = False , __snake_case : bool = True ): # also go through quantization layer if not force_not_quantize: lowerCamelCase , lowerCamelCase , lowerCamelCase :List[str] = self.quantize(__snake_case ) else: lowerCamelCase :Any = h lowerCamelCase :List[str] = self.post_quant_conv(__snake_case ) lowerCamelCase :int = self.decoder(__snake_case , quant if self.config.norm_type == '''spatial''' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=__snake_case ) def snake_case ( self : str , __snake_case : torch.FloatTensor , __snake_case : bool = True ): lowerCamelCase :Union[str, Any] = sample lowerCamelCase :Optional[int] = self.encode(__snake_case ).latents lowerCamelCase :List[Any] = self.decode(__snake_case ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__snake_case )
49
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = LEDTokenizer _UpperCAmelCase = LEDTokenizerFast _UpperCAmelCase = True def snake_case ( self : Any ): super().setUp() lowerCamelCase :Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] lowerCamelCase :Any = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) lowerCamelCase :List[str] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCamelCase :int = {'''unk_token''': '''<unk>'''} lowerCamelCase :Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__snake_case ) ) def snake_case ( self : int , **__snake_case : int ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Dict , **__snake_case : Any ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Optional[Any] , __snake_case : Union[str, Any] ): return "lower newer", "lower newer" @cached_property def snake_case ( self : Any ): return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' ) @cached_property def snake_case ( self : int ): return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' ) @require_torch def snake_case ( self : str ): lowerCamelCase :Any = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowerCamelCase :List[Any] = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[Any] = tokenizer(__snake_case , max_length=len(__snake_case ) , padding=__snake_case , return_tensors='''pt''' ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowerCamelCase :List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(__snake_case , __snake_case ) @require_torch def snake_case ( self : Tuple ): lowerCamelCase :Dict = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Union[str, Any] = tokenizer(__snake_case , padding=__snake_case , return_tensors='''pt''' ) self.assertIn('''input_ids''' , __snake_case ) self.assertIn('''attention_mask''' , __snake_case ) self.assertNotIn('''labels''' , __snake_case ) self.assertNotIn('''decoder_attention_mask''' , __snake_case ) @require_torch def snake_case ( self : Union[str, Any] ): lowerCamelCase :Union[str, Any] = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :List[Any] = tokenizer(text_target=__snake_case , max_length=32 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) @require_torch def snake_case ( self : List[Any] ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[Any] = tokenizer( ['''I am a small frog''' * 1024, '''I am a small frog'''] , padding=__snake_case , truncation=__snake_case , return_tensors='''pt''' ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def snake_case ( self : Optional[int] ): lowerCamelCase :Union[str, Any] = ['''A long paragraph for summarization.'''] lowerCamelCase :Any = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Union[str, Any] = tokenizer(__snake_case , return_tensors='''pt''' ) lowerCamelCase :Any = tokenizer(text_target=__snake_case , return_tensors='''pt''' ) lowerCamelCase :Optional[int] = inputs['''input_ids'''] lowerCamelCase :Any = targets['''input_ids'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def snake_case ( self : Dict ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[int] = ['''Summary of the text.''', '''Another summary.'''] lowerCamelCase :List[Any] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] lowerCamelCase :Optional[int] = tokenizer(__snake_case , padding=__snake_case ) lowerCamelCase :Union[str, Any] = [[0] * len(__snake_case ) for x in encoded_output['''input_ids''']] lowerCamelCase :str = tokenizer.pad(__snake_case ) self.assertSequenceEqual(outputs['''global_attention_mask'''] , __snake_case ) def snake_case ( self : Tuple ): pass def snake_case ( self : Optional[int] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase :Optional[Any] = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :Tuple = self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :int = '''A, <mask> AllenNLP sentence.''' lowerCamelCase :str = tokenizer_r.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case ) lowerCamelCase :str = tokenizer_p.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case ) self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) lowerCamelCase :Optional[int] = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) lowerCamelCase :Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __snake_case , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __snake_case , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
49
1
from __future__ import annotations from decimal import Decimal from numpy import array def _lowerCamelCase ( a_ : list[list[float]]): lowerCamelCase :Tuple = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(a_) == 2 and len(matrix[0]) == 2 and len(matrix[1]) == 2: # Calculate the determinant of the matrix lowerCamelCase :Optional[int] = float( d(matrix[0][0]) * d(matrix[1][1]) - d(matrix[1][0]) * d(matrix[0][1])) if determinant == 0: raise ValueError('''This matrix has no inverse.''') # Creates a copy of the matrix with swapped positions of the elements lowerCamelCase :List[Any] = [[0.0, 0.0], [0.0, 0.0]] lowerCamelCase , lowerCamelCase :Union[str, Any] = matrix[1][1], matrix[0][0] lowerCamelCase , lowerCamelCase :Optional[int] = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(a_)) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(a_) == 3 and len(matrix[0]) == 3 and len(matrix[1]) == 3 and len(matrix[2]) == 3 ): # Calculate the determinant of the matrix using Sarrus rule lowerCamelCase :List[Any] = float( ( (d(matrix[0][0]) * d(matrix[1][1]) * d(matrix[2][2])) + (d(matrix[0][1]) * d(matrix[1][2]) * d(matrix[2][0])) + (d(matrix[0][2]) * d(matrix[1][0]) * d(matrix[2][1])) ) - ( (d(matrix[0][2]) * d(matrix[1][1]) * d(matrix[2][0])) + (d(matrix[0][1]) * d(matrix[1][0]) * d(matrix[2][2])) + (d(matrix[0][0]) * d(matrix[1][2]) * d(matrix[2][1])) )) if determinant == 0: raise ValueError('''This matrix has no inverse.''') # Creating cofactor matrix lowerCamelCase :Any = [ [d(0.0), d(0.0), d(0.0)], [d(0.0), d(0.0), d(0.0)], [d(0.0), d(0.0), d(0.0)], ] lowerCamelCase :int = (d(matrix[1][1]) * d(matrix[2][2])) - ( d(matrix[1][2]) * d(matrix[2][1]) ) lowerCamelCase :Any = -( (d(matrix[1][0]) * d(matrix[2][2])) - (d(matrix[1][2]) * d(matrix[2][0])) ) lowerCamelCase :List[Any] = (d(matrix[1][0]) * d(matrix[2][1])) - ( d(matrix[1][1]) * d(matrix[2][0]) ) lowerCamelCase :List[Any] = -( (d(matrix[0][1]) * d(matrix[2][2])) - (d(matrix[0][2]) * d(matrix[2][1])) ) lowerCamelCase :Optional[int] = (d(matrix[0][0]) * d(matrix[2][2])) - ( d(matrix[0][2]) * d(matrix[2][0]) ) lowerCamelCase :Optional[Any] = -( (d(matrix[0][0]) * d(matrix[2][1])) - (d(matrix[0][1]) * d(matrix[2][0])) ) lowerCamelCase :Dict = (d(matrix[0][1]) * d(matrix[1][2])) - ( d(matrix[0][2]) * d(matrix[1][1]) ) lowerCamelCase :Tuple = -( (d(matrix[0][0]) * d(matrix[1][2])) - (d(matrix[0][2]) * d(matrix[1][0])) ) lowerCamelCase :List[str] = (d(matrix[0][0]) * d(matrix[1][1])) - ( d(matrix[0][1]) * d(matrix[1][0]) ) # Transpose the cofactor matrix (Adjoint matrix) lowerCamelCase :int = array(a_) for i in range(3): for j in range(3): lowerCamelCase :List[Any] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix lowerCamelCase :Optional[Any] = array(a_) for i in range(3): for j in range(3): inverse_matrix[i][j] /= d(a_) # Calculate the inverse of the matrix return [[float(d(a_)) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('''Please provide a matrix of size 2x2 or 3x3.''')
49
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) A__ = { """configuration_layoutlmv2""": ["""LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv2Config"""], """processing_layoutlmv2""": ["""LayoutLMv2Processor"""], """tokenization_layoutlmv2""": ["""LayoutLMv2Tokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""LayoutLMv2TokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""LayoutLMv2FeatureExtractor"""] A__ = ["""LayoutLMv2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """LayoutLMv2ForQuestionAnswering""", """LayoutLMv2ForSequenceClassification""", """LayoutLMv2ForTokenClassification""", """LayoutLMv2Layer""", """LayoutLMv2Model""", """LayoutLMv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
49
1
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed A__ = logging.getLogger(__name__) def _lowerCamelCase ( a_ : Tuple=2 , a_ : Optional[int]=3 , a_ : Tuple=16 , a_ : int = 10 , a_ : int = 2): def get_dataset(a_ : List[str]): lowerCamelCase :int = torch.randn(batch_size * n_batches , 1) return TensorDataset(a_ , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1)) lowerCamelCase :List[Any] = get_dataset(a_) lowerCamelCase :Dict = get_dataset(a_) lowerCamelCase :Optional[Any] = DataLoader(a_ , shuffle=a_ , batch_size=a_ , num_workers=4) lowerCamelCase :int = DataLoader(a_ , shuffle=a_ , batch_size=a_ , num_workers=4) return (train_dataloader, valid_dataloader) def _lowerCamelCase ( a_ : Any , a_ : Dict , a_ : str , a_ : List[str] , a_ : Optional[int] , a_ : Union[str, Any]=None): lowerCamelCase :int = [] for epoch in range(a_): # Train quickly model.train() for batch in dataloader: lowerCamelCase , lowerCamelCase :List[Any] = batch lowerCamelCase :List[Any] = model(a_) lowerCamelCase :Dict = torch.nn.functional.mse_loss(a_ , a_) accelerator.backward(a_) optimizer.step() optimizer.zero_grad() rands.append(random.random()) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class _lowerCAmelCase ( nn.Module ): def __init__( self : Optional[int] ): super().__init__() lowerCamelCase :Optional[int] = nn.Parameter(torch.randn(1 ) ) lowerCamelCase :List[Any] = nn.Parameter(torch.randn(1 ) ) def snake_case ( self : Optional[Any] , __snake_case : List[str] ): return x * self.a + self.b class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowerCamelCase :Optional[Any] = DummyModel() lowerCamelCase :Optional[Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowerCamelCase , lowerCamelCase :str = dummy_dataloaders() lowerCamelCase :List[Any] = ProjectConfiguration(total_limit=1 , project_dir=__snake_case , automatic_checkpoint_naming=__snake_case ) # Train baseline lowerCamelCase :List[str] = Accelerator(project_config=__snake_case ) lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase :Dict = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def snake_case ( self : Optional[Any] ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowerCamelCase :int = DummyModel() lowerCamelCase :str = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowerCamelCase , lowerCamelCase :int = dummy_dataloaders() # Train baseline lowerCamelCase :Optional[Any] = Accelerator() lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase :str = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case ) # Save initial lowerCamelCase :Optional[int] = os.path.join(__snake_case , '''initial''' ) accelerator.save_state(__snake_case ) ((lowerCamelCase) , (lowerCamelCase)) :Union[str, Any] = model.a.item(), model.b.item() lowerCamelCase :List[str] = optimizer.state_dict() lowerCamelCase :Union[str, Any] = train(3 , __snake_case , __snake_case , __snake_case , __snake_case ) ((lowerCamelCase) , (lowerCamelCase)) :Tuple = model.a.item(), model.b.item() lowerCamelCase :str = optimizer.state_dict() # Train partially set_seed(42 ) lowerCamelCase :Union[str, Any] = DummyModel() lowerCamelCase :int = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowerCamelCase , lowerCamelCase :Optional[Any] = dummy_dataloaders() lowerCamelCase :Optional[Any] = Accelerator() lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase :Dict = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case ) accelerator.load_state(__snake_case ) ((lowerCamelCase) , (lowerCamelCase)) :Union[str, Any] = model.a.item(), model.b.item() lowerCamelCase :List[Any] = optimizer.state_dict() self.assertEqual(__snake_case , __snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertEqual(__snake_case , __snake_case ) lowerCamelCase :List[Any] = train(2 , __snake_case , __snake_case , __snake_case , __snake_case ) # Save everything lowerCamelCase :int = os.path.join(__snake_case , '''checkpoint''' ) accelerator.save_state(__snake_case ) # Load everything back in and make sure all states work accelerator.load_state(__snake_case ) test_rands += train(1 , __snake_case , __snake_case , __snake_case , __snake_case ) ((lowerCamelCase) , (lowerCamelCase)) :Union[str, Any] = model.a.item(), model.b.item() lowerCamelCase :str = optimizer.state_dict() self.assertEqual(__snake_case , __snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : str ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowerCamelCase :str = DummyModel() lowerCamelCase :List[str] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowerCamelCase , lowerCamelCase :Union[str, Any] = dummy_dataloaders() lowerCamelCase :Any = ProjectConfiguration(automatic_checkpoint_naming=__snake_case ) # Train baseline lowerCamelCase :int = Accelerator(project_dir=__snake_case , project_config=__snake_case ) lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase :str = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case ) # Save initial accelerator.save_state() ((lowerCamelCase) , (lowerCamelCase)) :List[Any] = model.a.item(), model.b.item() lowerCamelCase :Any = optimizer.state_dict() lowerCamelCase :List[Any] = train(3 , __snake_case , __snake_case , __snake_case , __snake_case ) ((lowerCamelCase) , (lowerCamelCase)) :List[Any] = model.a.item(), model.b.item() lowerCamelCase :Dict = optimizer.state_dict() # Train partially set_seed(42 ) lowerCamelCase :Dict = DummyModel() lowerCamelCase :Union[str, Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowerCamelCase , lowerCamelCase :Optional[Any] = dummy_dataloaders() lowerCamelCase :Tuple = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=__snake_case ) lowerCamelCase :List[str] = Accelerator(project_dir=__snake_case , project_config=__snake_case ) lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase :Tuple = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case ) accelerator.load_state(os.path.join(__snake_case , '''checkpoints''' , '''checkpoint_0''' ) ) ((lowerCamelCase) , (lowerCamelCase)) :int = model.a.item(), model.b.item() lowerCamelCase :Any = optimizer.state_dict() self.assertEqual(__snake_case , __snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertEqual(__snake_case , __snake_case ) lowerCamelCase :List[str] = train(2 , __snake_case , __snake_case , __snake_case , __snake_case ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(__snake_case , '''checkpoints''' , '''checkpoint_1''' ) ) test_rands += train(1 , __snake_case , __snake_case , __snake_case , __snake_case ) ((lowerCamelCase) , (lowerCamelCase)) :Any = model.a.item(), model.b.item() lowerCamelCase :int = optimizer.state_dict() self.assertEqual(__snake_case , __snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : Dict ): lowerCamelCase :str = torch.tensor([1, 2, 3] ) lowerCamelCase :int = torch.tensor([2, 3, 4] ) lowerCamelCase :Union[str, Any] = DummyModel() lowerCamelCase :Any = torch.optim.Adam(net.parameters() ) lowerCamelCase :Union[str, Any] = Accelerator() with self.assertRaises(__snake_case ) as ve: accelerator.register_for_checkpointing(__snake_case , __snake_case , __snake_case , __snake_case ) lowerCamelCase :Union[str, Any] = str(ve.exception ) self.assertTrue('''Item at index 0''' in message ) self.assertTrue('''Item at index 1''' in message ) self.assertFalse('''Item at index 2''' in message ) self.assertFalse('''Item at index 3''' in message ) def snake_case ( self : Any ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowerCamelCase :List[str] = DummyModel() lowerCamelCase :Optional[Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowerCamelCase :Optional[int] = torch.optim.lr_scheduler.StepLR(__snake_case , step_size=1 , gamma=0.9_9 ) lowerCamelCase , lowerCamelCase :List[Any] = dummy_dataloaders() lowerCamelCase :Tuple = ProjectConfiguration(automatic_checkpoint_naming=__snake_case ) # Train baseline lowerCamelCase :List[Any] = Accelerator(project_dir=__snake_case , project_config=__snake_case ) lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase :str = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # Save initial accelerator.save_state() lowerCamelCase :Optional[Any] = scheduler.state_dict() train(3 , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) self.assertNotEqual(__snake_case , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(__snake_case , '''checkpoints''' , '''checkpoint_0''' ) ) self.assertEqual(__snake_case , scheduler.state_dict() ) def snake_case ( self : Any ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowerCamelCase :int = DummyModel() lowerCamelCase :Optional[Any] = ProjectConfiguration(automatic_checkpoint_naming=__snake_case , total_limit=2 ) # Train baseline lowerCamelCase :Dict = Accelerator(project_dir=__snake_case , project_config=__snake_case ) lowerCamelCase :Tuple = accelerator.prepare(__snake_case ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(__snake_case , '''checkpoints''' , '''checkpoint_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__snake_case , '''checkpoints''' , '''checkpoint_9''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__snake_case , '''checkpoints''' , '''checkpoint_10''' ) ) ) @require_cuda def snake_case ( self : str ): lowerCamelCase :List[str] = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(__snake_case , env=os.environ.copy() ) if __name__ == "__main__": A__ = """/tmp/accelerate/state_checkpointing""" A__ = DummyModel() A__ = torch.optim.Adam(params=model.parameters(), lr=1E-3) A__ = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) A__ , A__ = dummy_dataloaders() A__ = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline A__ = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="""no""") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) A__ , A__ , A__ , A__ , A__ = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) A__ , A__ = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: A__ = group["""params"""][0].device break assert param_device.type == accelerator.device.type A__ = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""cpu""") for group in optimizer.param_groups: A__ = group["""params"""][0].device break assert ( param_device.type == torch.device("""cpu""").type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""on_device""") for group in optimizer.param_groups: A__ = group["""params"""][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="""Unsupported optimizer map location passed"""): accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""invalid""") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
49
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _lowerCAmelCase : @staticmethod def snake_case ( *__snake_case : str , **__snake_case : str ): pass @is_pipeline_test @require_vision class _lowerCAmelCase ( unittest.TestCase ): @require_torch def snake_case ( self : Union[str, Any] ): lowerCamelCase :Optional[int] = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Dict = image_classifier(__snake_case , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__snake_case ) , [ [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}], [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}], ] , ) lowerCamelCase :Tuple = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], ] , ) @require_tf def snake_case ( self : Tuple ): lowerCamelCase :Tuple = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Optional[Any] = image_classifier(__snake_case , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(__snake_case ) , [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}] , ) lowerCamelCase :int = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], ] , ) @slow @require_torch def snake_case ( self : Any ): lowerCamelCase :str = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Optional[Any] = image_classifier(__snake_case , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) lowerCamelCase :Any = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def snake_case ( self : Optional[Any] ): lowerCamelCase :Union[str, Any] = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes lowerCamelCase :Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Dict = image_classifier(__snake_case , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) lowerCamelCase :Any = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , )
49
1
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def _lowerCamelCase ( a_ : str): monkeypatch.setattr('''datasets.utils.deprecation_utils._emitted_deprecation_warnings''' , set()) @pytest.fixture def _lowerCamelCase ( a_ : Dict): class _lowerCAmelCase : def __init__( self : Optional[int] , __snake_case : Optional[Any] ): lowerCamelCase :Tuple = metric_id class _lowerCAmelCase : _UpperCAmelCase = [MetricMock(__SCREAMING_SNAKE_CASE ) for metric_id in ['accuracy', 'mse', 'precision', 'codeparrot/apps_metric']] def snake_case ( self : Tuple ): return self._metrics monkeypatch.setattr('''datasets.inspect.huggingface_hub''' , HfhMock()) @pytest.mark.parametrize( '''func, args''' , [(load_metric, ('''metrics/mse''',)), (list_metrics, ()), (inspect_metric, ('''metrics/mse''', '''tmp_path'''))]) def _lowerCamelCase ( a_ : Tuple , a_ : Dict , a_ : Union[str, Any] , a_ : str , a_ : Optional[int]): if "tmp_path" in args: lowerCamelCase :Any = tuple(arg if arg != '''tmp_path''' else tmp_path for arg in args) with pytest.warns(a_ , match='''https://huggingface.co/docs/evaluate'''): func(*a_)
49
import operator as op def _lowerCamelCase ( a_ : Tuple): lowerCamelCase :int = [] lowerCamelCase :List[str] = lambda a_ , a_: int(x / y) # noqa: E731 integer division operation lowerCamelCase :Optional[int] = { '''^''': op.pow, '''*''': op.mul, '''/''': div, '''+''': op.add, '''-''': op.sub, } # operators & their respective operation # print table header print('''Symbol'''.center(8) , '''Action'''.center(12) , '''Stack''' , sep=''' | ''') print('''-''' * (30 + len(a_))) for x in post_fix: if x.isdigit(): # if x in digit stack.append(a_) # append x to stack # output in tabular format print(x.rjust(8) , ('''push(''' + x + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') else: lowerCamelCase :Optional[Any] = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8) , ('''pop(''' + b + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') lowerCamelCase :str = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8) , ('''pop(''' + a + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') stack.append( str(opr[x](int(a_) , int(a_)))) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8) , ('''push(''' + a + x + b + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''' , ) return int(stack[0]) if __name__ == "__main__": A__ = input("""\n\nEnter a Postfix Equation (space separated) = """).split(""" """) print("""\n\tResult = """, solve(Postfix))
49
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'megatron-bert' def __init__( self : List[str] , __snake_case : int=29056 , __snake_case : List[Any]=1024 , __snake_case : str=24 , __snake_case : Dict=16 , __snake_case : Union[str, Any]=4096 , __snake_case : List[Any]="gelu" , __snake_case : List[str]=0.1 , __snake_case : int=0.1 , __snake_case : str=512 , __snake_case : str=2 , __snake_case : List[str]=0.0_2 , __snake_case : Any=1e-1_2 , __snake_case : int=0 , __snake_case : Tuple="absolute" , __snake_case : List[Any]=True , **__snake_case : List[str] , ): super().__init__(pad_token_id=__snake_case , **__snake_case ) lowerCamelCase :List[Any] = vocab_size lowerCamelCase :str = hidden_size lowerCamelCase :Any = num_hidden_layers lowerCamelCase :List[Any] = num_attention_heads lowerCamelCase :Any = hidden_act lowerCamelCase :str = intermediate_size lowerCamelCase :Optional[Any] = hidden_dropout_prob lowerCamelCase :List[str] = attention_probs_dropout_prob lowerCamelCase :int = max_position_embeddings lowerCamelCase :Dict = type_vocab_size lowerCamelCase :Optional[Any] = initializer_range lowerCamelCase :List[str] = layer_norm_eps lowerCamelCase :Optional[int] = position_embedding_type lowerCamelCase :Optional[Any] = use_cache
49
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() A__ = logging.get_logger(__name__) A__ = """Hello, World!""" A__ = """en_XX""" def _lowerCamelCase ( a_ : str , a_ : str , a_ : bool): lowerCamelCase :int = Path('''data_bin''') lowerCamelCase :Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(a_).parent) , checkpoint_file=Path(a_).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(a_) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(a_).parent / '''sentencepiece.bpe.model''') , src_dict=str(data_dir / '''dict.txt''') , ) xmod.eval() # disable dropout print(a_) lowerCamelCase :Any = xmod.model.encoder.sentence_encoder lowerCamelCase :List[str] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: lowerCamelCase :Dict = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our X-MOD config:''' , a_) lowerCamelCase :List[Any] = XmodForSequenceClassification(a_) if classification_head else XmodForMaskedLM(a_) model.eval() # Now let's copy all the weights. # Embeddings lowerCamelCase :Union[str, Any] = xmod_sent_encoder.embed_tokens.weight lowerCamelCase :Tuple = xmod_sent_encoder.embed_positions.weight lowerCamelCase :List[str] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight) # just zero them out b/c xmod doesn't use them. lowerCamelCase :List[Any] = xmod_sent_encoder.layernorm_embedding.weight lowerCamelCase :Optional[int] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers): # Encoder: start of layer lowerCamelCase :Union[str, Any] = model.roberta.encoder.layer[i] lowerCamelCase :List[str] = xmod_sent_encoder.layers[i] # self attention lowerCamelCase :Optional[int] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size)) ): raise AssertionError('''Dimensions of self-attention weights do not match.''') lowerCamelCase :Optional[int] = xmod_layer.self_attn.q_proj.weight lowerCamelCase :List[str] = xmod_layer.self_attn.q_proj.bias lowerCamelCase :str = xmod_layer.self_attn.k_proj.weight lowerCamelCase :Optional[Any] = xmod_layer.self_attn.k_proj.bias lowerCamelCase :Dict = xmod_layer.self_attn.v_proj.weight lowerCamelCase :Optional[int] = xmod_layer.self_attn.v_proj.bias # self-attention output lowerCamelCase :Optional[int] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('''Dimensions of self-attention output weights do not match.''') lowerCamelCase :List[Any] = xmod_layer.self_attn.out_proj.weight lowerCamelCase :Union[str, Any] = xmod_layer.self_attn.out_proj.bias lowerCamelCase :str = xmod_layer.self_attn_layer_norm.weight lowerCamelCase :List[Any] = xmod_layer.self_attn_layer_norm.bias # intermediate lowerCamelCase :Optional[int] = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of intermediate weights do not match.''') lowerCamelCase :int = xmod_layer.fca.weight lowerCamelCase :Union[str, Any] = xmod_layer.fca.bias # output lowerCamelCase :List[str] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of feed-forward weights do not match.''') lowerCamelCase :str = xmod_layer.fca.weight lowerCamelCase :int = xmod_layer.fca.bias lowerCamelCase :List[Any] = xmod_layer.final_layer_norm.weight lowerCamelCase :List[str] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: lowerCamelCase :List[str] = xmod_layer.adapter_layer_norm.weight lowerCamelCase :int = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys()) != sorted(xmod_layer.adapter_modules.keys()): raise AssertionError('''Lists of language adapters do not match.''') for lang_code, adapter in xmod_layer.adapter_modules.items(): lowerCamelCase :Optional[int] = bert_output.adapter_modules[lang_code] lowerCamelCase :Dict = xmod_layer.adapter_modules[lang_code] lowerCamelCase :List[Any] = from_adapter.fca.weight lowerCamelCase :List[Any] = from_adapter.fca.bias lowerCamelCase :Dict = from_adapter.fca.weight lowerCamelCase :Optional[Any] = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: lowerCamelCase :Dict = xmod_sent_encoder.layer_norm.weight lowerCamelCase :List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: lowerCamelCase :Union[str, Any] = xmod.model.classification_heads['''mnli'''].dense.weight lowerCamelCase :Tuple = xmod.model.classification_heads['''mnli'''].dense.bias lowerCamelCase :Optional[Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight lowerCamelCase :List[Any] = xmod.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head lowerCamelCase :int = xmod.model.encoder.lm_head.dense.weight lowerCamelCase :List[Any] = xmod.model.encoder.lm_head.dense.bias lowerCamelCase :Optional[int] = xmod.model.encoder.lm_head.layer_norm.weight lowerCamelCase :List[Any] = xmod.model.encoder.lm_head.layer_norm.bias lowerCamelCase :List[Any] = xmod.model.encoder.lm_head.weight lowerCamelCase :Any = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCamelCase :str = xmod.encode(a_).unsqueeze(0) # batch of size 1 model.roberta.set_default_language(a_) lowerCamelCase :Any = model(a_)[0] if classification_head: lowerCamelCase :Dict = xmod.model.classification_heads['''mnli'''](xmod.extract_features(a_)) else: lowerCamelCase :int = xmod.model(a_ , lang_id=[SAMPLE_LANGUAGE])[0] print(our_output.shape , their_output.shape) lowerCamelCase :List[str] = torch.max(torch.abs(our_output - their_output)).item() print(F"max_absolute_diff = {max_absolute_diff}") # ~ 1e-7 lowerCamelCase :str = torch.allclose(a_ , a_ , atol=1e-3) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''') if not success: raise Exception('''Something went wRoNg''') Path(a_).mkdir(parents=a_ , exist_ok=a_) print(F"Saving model to {pytorch_dump_folder_path}") model.save_pretrained(a_) if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) A__ = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
49
1
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList A__ = ["""\nclass""", """\ndef""", """\n#""", """\n@""", """\nprint""", """\nif"""] class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self : List[Any] , __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : Any=None , __snake_case : int=1 ): lowerCamelCase :Optional[Any] = tokenizer lowerCamelCase :Dict = dataset lowerCamelCase :Tuple = len(__snake_case ) if n_tasks is None else n_tasks lowerCamelCase :List[str] = n_copies def __iter__( self : Tuple ): lowerCamelCase :Dict = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() ) lowerCamelCase :List[str] = self.tokenizer(__snake_case , padding=__snake_case , return_tensors='''pt''' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self : Optional[int] , __snake_case : Union[str, Any] , __snake_case : str , __snake_case : int ): lowerCamelCase :Dict = start_length lowerCamelCase :Any = eof_strings lowerCamelCase :int = tokenizer def __call__( self : Any , __snake_case : str , __snake_case : Dict , **__snake_case : List[str] ): lowerCamelCase :Union[str, Any] = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) lowerCamelCase :Optional[Any] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(__snake_case ) def _lowerCamelCase ( a_ : Tuple): lowerCamelCase :Tuple = re.split('''(%s)''' % '''|'''.join(a_) , a_) # last string should be "" return "".join(string_list[:-2]) def _lowerCamelCase ( a_ : List[str] , a_ : str , a_ : Optional[int] , a_ : str , a_ : Optional[int] , a_ : Tuple=20 , **a_ : int): lowerCamelCase :Dict = defaultdict(a_) # dict of list of generated tokens for step, batch in tqdm(enumerate(a_)): with torch.no_grad(): lowerCamelCase :Optional[int] = batch['''ids'''].shape[-1] lowerCamelCase :Union[str, Any] = accelerator.unwrap_model(a_).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=a_ , **a_) # each task is generated batch_size times lowerCamelCase :Any = batch['''task_id'''].repeat(a_) lowerCamelCase :Tuple = accelerator.pad_across_processes( a_ , dim=1 , pad_index=tokenizer.pad_token_id) lowerCamelCase , lowerCamelCase :List[str] = accelerator.gather((generated_tokens, generated_tasks)) lowerCamelCase :Tuple = generated_tokens.cpu().numpy() lowerCamelCase :Tuple = generated_tasks.cpu().numpy() for task, generated_tokens in zip(a_ , a_): gen_token_dict[task].append(a_) lowerCamelCase :Optional[Any] = [[] for _ in range(a_)] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: lowerCamelCase :List[str] = tokenizer.decode(a_ , skip_special_tokens=a_ , clean_up_tokenization_spaces=a_) code_gens[task].append(remove_last_block(a_)) return code_gens def _lowerCamelCase ( ): # Setup configuration lowerCamelCase :int = HfArgumentParser(a_) lowerCamelCase :Union[str, Any] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric lowerCamelCase :Optional[int] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing lowerCamelCase :str = '''false''' if args.num_workers is None: lowerCamelCase :Tuple = multiprocessing.cpu_count() # Use dataset load to feed to accelerate lowerCamelCase :Union[str, Any] = Accelerator() set_seed(args.seed , device_specific=a_) # Load model and tokenizer lowerCamelCase :Union[str, Any] = AutoTokenizer.from_pretrained(args.model_ckpt) lowerCamelCase :str = tokenizer.eos_token lowerCamelCase :str = AutoModelForCausalLM.from_pretrained(args.model_ckpt) # Generation settings lowerCamelCase :Any = { '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , a_ , a_)]), } # Load evaluation dataset and metric lowerCamelCase :int = load_dataset('''openai_humaneval''') lowerCamelCase :Dict = load_metric('''code_eval''') lowerCamelCase :Optional[Any] = args.num_tasks if args.num_tasks is not None else len(human_eval['''test''']) lowerCamelCase :Union[str, Any] = args.n_samples // args.batch_size lowerCamelCase :Union[str, Any] = TokenizedDataset(a_ , human_eval['''test'''] , n_copies=a_ , n_tasks=a_) # do not confuse args.batch_size, which is actually the num_return_sequences lowerCamelCase :Dict = DataLoader(a_ , batch_size=1) # Run a quick test to see if code evaluation is enabled try: lowerCamelCase :Optional[int] = code_eval_metric.compute(references=[''''''] , predictions=[['''''']]) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''') raise exception lowerCamelCase , lowerCamelCase :Union[str, Any] = accelerator.prepare(a_ , a_) lowerCamelCase :int = complete_code( a_ , a_ , a_ , a_ , n_tasks=a_ , batch_size=args.batch_size , **a_ , ) if accelerator.is_main_process: lowerCamelCase :Dict = [] for task in tqdm(range(a_)): lowerCamelCase :Tuple = human_eval['''test'''][task]['''test'''] lowerCamelCase :int = F"check({human_eval['test'][task]['entry_point']})" references.append('''\n''' + test_func + '''\n''' + entry_point) # Evaluate completions with "code_eval" metric lowerCamelCase , lowerCamelCase :Any = code_eval_metric.compute( references=a_ , predictions=a_ , num_workers=args.num_workers) print(F"Results: {pass_at_k}") # Save results to json file with open(args.output_file , '''w''') as fp: json.dump(a_ , a_) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
49
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { """andreasmadsen/efficient_mlm_m0.40""": ( """https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json""" ), } class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'roberta-prelayernorm' def __init__( self : str , __snake_case : List[str]=50265 , __snake_case : Union[str, Any]=768 , __snake_case : Tuple=12 , __snake_case : int=12 , __snake_case : Any=3072 , __snake_case : Optional[int]="gelu" , __snake_case : List[Any]=0.1 , __snake_case : int=0.1 , __snake_case : Union[str, Any]=512 , __snake_case : Dict=2 , __snake_case : int=0.0_2 , __snake_case : Any=1e-1_2 , __snake_case : Optional[int]=1 , __snake_case : Dict=0 , __snake_case : Optional[int]=2 , __snake_case : Any="absolute" , __snake_case : Union[str, Any]=True , __snake_case : List[str]=None , **__snake_case : Optional[int] , ): super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) lowerCamelCase :Optional[int] = vocab_size lowerCamelCase :Dict = hidden_size lowerCamelCase :Tuple = num_hidden_layers lowerCamelCase :Optional[int] = num_attention_heads lowerCamelCase :Any = hidden_act lowerCamelCase :List[Any] = intermediate_size lowerCamelCase :Union[str, Any] = hidden_dropout_prob lowerCamelCase :str = attention_probs_dropout_prob lowerCamelCase :Tuple = max_position_embeddings lowerCamelCase :int = type_vocab_size lowerCamelCase :Optional[Any] = initializer_range lowerCamelCase :Union[str, Any] = layer_norm_eps lowerCamelCase :Dict = position_embedding_type lowerCamelCase :List[Any] = use_cache lowerCamelCase :Optional[int] = classifier_dropout class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): @property def snake_case ( self : Any ): if self.task == "multiple-choice": lowerCamelCase :Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase :List[str] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
49
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) A__ = { """configuration_layoutlmv2""": ["""LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv2Config"""], """processing_layoutlmv2""": ["""LayoutLMv2Processor"""], """tokenization_layoutlmv2""": ["""LayoutLMv2Tokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""LayoutLMv2TokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""LayoutLMv2FeatureExtractor"""] A__ = ["""LayoutLMv2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """LayoutLMv2ForQuestionAnswering""", """LayoutLMv2ForSequenceClassification""", """LayoutLMv2ForTokenClassification""", """LayoutLMv2Layer""", """LayoutLMv2Model""", """LayoutLMv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
49
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = DebertaTokenizer _UpperCAmelCase = True _UpperCAmelCase = DebertaTokenizerFast def snake_case ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase :Dict = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] lowerCamelCase :List[str] = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) lowerCamelCase :Any = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCamelCase :Dict = {'''unk_token''': '''[UNK]'''} lowerCamelCase :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase :List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__snake_case ) ) def snake_case ( self : str , **__snake_case : Dict ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Optional[Any] , __snake_case : int ): lowerCamelCase :List[Any] = '''lower newer''' lowerCamelCase :List[str] = '''lower newer''' return input_text, output_text def snake_case ( self : str ): lowerCamelCase :Optional[int] = self.get_tokenizer() lowerCamelCase :Union[str, Any] = '''lower newer''' lowerCamelCase :str = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] lowerCamelCase :Optional[int] = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) lowerCamelCase :List[str] = tokens + [tokenizer.unk_token] lowerCamelCase :Optional[int] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def snake_case ( self : Optional[int] ): lowerCamelCase :List[str] = self.get_tokenizer() lowerCamelCase :Optional[int] = tokenizer('''Hello''' , '''World''' ) lowerCamelCase :List[str] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __snake_case ) @slow def snake_case ( self : str ): lowerCamelCase :Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) lowerCamelCase :Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__snake_case ) lowerCamelCase :Tuple = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__snake_case ) lowerCamelCase :Union[str, Any] = tokenizer.encode( '''sequence builders''' , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) lowerCamelCase :str = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) lowerCamelCase :Any = tokenizer.build_inputs_with_special_tokens(__snake_case ) lowerCamelCase :Dict = tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def snake_case ( self : str ): lowerCamelCase :List[str] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: lowerCamelCase :int = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) lowerCamelCase :Tuple = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] lowerCamelCase :List[Any] = tokenizer(__snake_case , padding=__snake_case ) lowerCamelCase :Union[str, Any] = [tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) for seq in encoding['''input_ids''']] # fmt: off lowerCamelCase :Any = { '''input_ids''': [ [1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on lowerCamelCase :Optional[int] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __snake_case ) for expected, decoded in zip(__snake_case , __snake_case ): self.assertEqual(__snake_case , __snake_case )
49
1
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Optional[int] , __snake_case : int , __snake_case : int ): lowerCamelCase :Dict = jnp.ones((batch_size, length) ) / length return scores def snake_case ( self : Optional[Any] ): lowerCamelCase :Union[str, Any] = None lowerCamelCase :Dict = 20 lowerCamelCase :Any = self._get_uniform_logits(batch_size=2 , length=__snake_case ) # tweak scores to not be uniform anymore lowerCamelCase :Dict = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowerCamelCase :Tuple = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowerCamelCase :Tuple = jax.nn.softmax(__snake_case , axis=-1 ) lowerCamelCase :List[str] = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase :Optional[int] = FlaxTemperatureLogitsWarper(temperature=1.3 ) lowerCamelCase :Optional[int] = jax.nn.softmax(temp_dist_warper_sharper(__snake_case , scores.copy() , cur_len=__snake_case ) , axis=-1 ) lowerCamelCase :Any = jax.nn.softmax(temp_dist_warper_smoother(__snake_case , scores.copy() , cur_len=__snake_case ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def snake_case ( self : Optional[Any] ): lowerCamelCase :int = None lowerCamelCase :Optional[int] = 10 lowerCamelCase :str = 2 # create ramp distribution lowerCamelCase :str = np.broadcast_to(np.arange(__snake_case )[None, :] , (batch_size, vocab_size) ).copy() lowerCamelCase :List[str] = ramp_logits[1:, : vocab_size // 2] + vocab_size lowerCamelCase :Optional[int] = FlaxTopKLogitsWarper(3 ) lowerCamelCase :int = top_k_warp(__snake_case , __snake_case , cur_len=__snake_case ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowerCamelCase :Union[str, Any] = 5 lowerCamelCase :List[str] = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) lowerCamelCase :Union[str, Any] = np.broadcast_to(np.arange(__snake_case )[None, :] , (batch_size, length) ).copy() lowerCamelCase :List[Any] = top_k_warp_safety_check(__snake_case , __snake_case , cur_len=__snake_case ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def snake_case ( self : Any ): lowerCamelCase :List[str] = None lowerCamelCase :Any = 10 lowerCamelCase :Tuple = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowerCamelCase :Optional[int] = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.1_5, 0.3, 0.3, 0.2_5]] ) ) lowerCamelCase :int = FlaxTopPLogitsWarper(0.8 ) lowerCamelCase :List[Any] = np.exp(top_p_warp(__snake_case , __snake_case , cur_len=__snake_case ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowerCamelCase :Any = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.2_5]] ) self.assertTrue(np.allclose(__snake_case , __snake_case , atol=1e-3 ) ) # check edge cases with negative and extreme logits lowerCamelCase :int = np.broadcast_to(np.arange(__snake_case )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowerCamelCase :int = ramp_logits[1] * 1_0_0.0 # make sure at least 2 tokens are kept lowerCamelCase :Dict = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) lowerCamelCase :List[Any] = top_p_warp(__snake_case , __snake_case , cur_len=__snake_case ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def snake_case ( self : Optional[int] ): lowerCamelCase :List[Any] = 20 lowerCamelCase :Optional[int] = 4 lowerCamelCase :List[str] = 0 lowerCamelCase :int = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__snake_case ) # check that min length is applied at length 5 lowerCamelCase :int = ids_tensor((batch_size, 20) , vocab_size=20 ) lowerCamelCase :int = 5 lowerCamelCase :List[Any] = self._get_uniform_logits(__snake_case , __snake_case ) lowerCamelCase :List[Any] = min_dist_processor(__snake_case , __snake_case , cur_len=__snake_case ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''' )] ) # check that min length is not applied anymore at length 15 lowerCamelCase :Optional[Any] = self._get_uniform_logits(__snake_case , __snake_case ) lowerCamelCase :Any = 15 lowerCamelCase :Any = min_dist_processor(__snake_case , __snake_case , cur_len=__snake_case ) self.assertFalse(jnp.isinf(__snake_case ).any() ) def snake_case ( self : str ): lowerCamelCase :Any = 20 lowerCamelCase :List[Any] = 4 lowerCamelCase :List[str] = 0 lowerCamelCase :Any = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__snake_case ) # check that all scores are -inf except the bos_token_id score lowerCamelCase :Any = ids_tensor((batch_size, 1) , vocab_size=20 ) lowerCamelCase :List[str] = 1 lowerCamelCase :Dict = self._get_uniform_logits(__snake_case , __snake_case ) lowerCamelCase :int = logits_processor(__snake_case , __snake_case , cur_len=__snake_case ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowerCamelCase :Optional[Any] = 3 lowerCamelCase :Union[str, Any] = self._get_uniform_logits(__snake_case , __snake_case ) lowerCamelCase :int = logits_processor(__snake_case , __snake_case , cur_len=__snake_case ) self.assertFalse(jnp.isinf(__snake_case ).any() ) def snake_case ( self : Dict ): lowerCamelCase :Optional[Any] = 20 lowerCamelCase :List[str] = 4 lowerCamelCase :Any = 0 lowerCamelCase :Union[str, Any] = 5 lowerCamelCase :Dict = FlaxForcedEOSTokenLogitsProcessor(max_length=__snake_case , eos_token_id=__snake_case ) # check that all scores are -inf except the eos_token_id when max_length is reached lowerCamelCase :int = ids_tensor((batch_size, 4) , vocab_size=20 ) lowerCamelCase :Tuple = 4 lowerCamelCase :List[str] = self._get_uniform_logits(__snake_case , __snake_case ) lowerCamelCase :List[str] = logits_processor(__snake_case , __snake_case , cur_len=__snake_case ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowerCamelCase :Optional[int] = 3 lowerCamelCase :str = self._get_uniform_logits(__snake_case , __snake_case ) lowerCamelCase :str = logits_processor(__snake_case , __snake_case , cur_len=__snake_case ) self.assertFalse(jnp.isinf(__snake_case ).any() ) def snake_case ( self : str ): lowerCamelCase :List[Any] = 4 lowerCamelCase :Dict = 10 lowerCamelCase :int = 15 lowerCamelCase :Any = 2 lowerCamelCase :Dict = 1 lowerCamelCase :Union[str, Any] = 15 # dummy input_ids and scores lowerCamelCase :int = ids_tensor((batch_size, sequence_length) , __snake_case ) lowerCamelCase :int = input_ids.copy() lowerCamelCase :Tuple = self._get_uniform_logits(__snake_case , __snake_case ) lowerCamelCase :str = scores.copy() # instantiate all dist processors lowerCamelCase :List[Any] = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase :str = FlaxTopKLogitsWarper(3 ) lowerCamelCase :Optional[int] = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase :int = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__snake_case ) lowerCamelCase :Any = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__snake_case ) lowerCamelCase :Any = FlaxForcedEOSTokenLogitsProcessor(max_length=__snake_case , eos_token_id=__snake_case ) lowerCamelCase :Tuple = 10 # no processor list lowerCamelCase :Dict = temp_dist_warp(__snake_case , __snake_case , cur_len=__snake_case ) lowerCamelCase :Tuple = top_k_warp(__snake_case , __snake_case , cur_len=__snake_case ) lowerCamelCase :Optional[Any] = top_p_warp(__snake_case , __snake_case , cur_len=__snake_case ) lowerCamelCase :Dict = min_dist_proc(__snake_case , __snake_case , cur_len=__snake_case ) lowerCamelCase :int = bos_dist_proc(__snake_case , __snake_case , cur_len=__snake_case ) lowerCamelCase :Union[str, Any] = eos_dist_proc(__snake_case , __snake_case , cur_len=__snake_case ) # with processor list lowerCamelCase :Dict = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase :int = processor(__snake_case , __snake_case , cur_len=__snake_case ) # scores should be equal self.assertTrue(jnp.allclose(__snake_case , __snake_case , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def snake_case ( self : Union[str, Any] ): lowerCamelCase :Optional[int] = 4 lowerCamelCase :Optional[int] = 10 lowerCamelCase :int = 15 lowerCamelCase :List[str] = 2 lowerCamelCase :Optional[int] = 1 lowerCamelCase :Tuple = 15 # dummy input_ids and scores lowerCamelCase :Tuple = ids_tensor((batch_size, sequence_length) , __snake_case ) lowerCamelCase :List[str] = input_ids.copy() lowerCamelCase :List[str] = self._get_uniform_logits(__snake_case , __snake_case ) lowerCamelCase :Dict = scores.copy() # instantiate all dist processors lowerCamelCase :List[str] = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase :Union[str, Any] = FlaxTopKLogitsWarper(3 ) lowerCamelCase :Dict = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase :Optional[Any] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__snake_case ) lowerCamelCase :Dict = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__snake_case ) lowerCamelCase :int = FlaxForcedEOSTokenLogitsProcessor(max_length=__snake_case , eos_token_id=__snake_case ) lowerCamelCase :Any = 10 # no processor list def run_no_processor_list(__snake_case : int , __snake_case : Any , __snake_case : Optional[Any] ): lowerCamelCase :Dict = temp_dist_warp(__snake_case , __snake_case , cur_len=__snake_case ) lowerCamelCase :int = top_k_warp(__snake_case , __snake_case , cur_len=__snake_case ) lowerCamelCase :str = top_p_warp(__snake_case , __snake_case , cur_len=__snake_case ) lowerCamelCase :List[Any] = min_dist_proc(__snake_case , __snake_case , cur_len=__snake_case ) lowerCamelCase :Dict = bos_dist_proc(__snake_case , __snake_case , cur_len=__snake_case ) lowerCamelCase :Optional[int] = eos_dist_proc(__snake_case , __snake_case , cur_len=__snake_case ) return scores # with processor list def run_processor_list(__snake_case : Union[str, Any] , __snake_case : int , __snake_case : Tuple ): lowerCamelCase :Union[str, Any] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase :List[str] = processor(__snake_case , __snake_case , cur_len=__snake_case ) return scores lowerCamelCase :Optional[Any] = jax.jit(__snake_case ) lowerCamelCase :Tuple = jax.jit(__snake_case ) lowerCamelCase :List[str] = jitted_run_no_processor_list(__snake_case , __snake_case , __snake_case ) lowerCamelCase :int = jitted_run_processor_list(__snake_case , __snake_case , __snake_case ) # scores should be equal self.assertTrue(jnp.allclose(__snake_case , __snake_case , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
49
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) A__ = [ """cross_validation.py""", """gradient_accumulation.py""", """local_sgd.py""", """multi_process_metrics.py""", """memory.py""", """automatic_gradient_accumulation.py""", """fsdp_with_peak_mem_tracking.py""", """deepspeed_with_config_support.py""", """megatron_lm_gpt_pretraining.py""", ] class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Any , __snake_case : str , __snake_case : bool , __snake_case : str = None , __snake_case : list = None ): lowerCamelCase :Tuple = None lowerCamelCase :Tuple = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) lowerCamelCase :Optional[int] = os.path.abspath('''examples''' ) for item in os.listdir(__snake_case ): if item not in EXCLUDE_EXAMPLES: lowerCamelCase :Optional[int] = os.path.join(__snake_case , __snake_case ) if os.path.isfile(__snake_case ) and ".py" in item_path: with self.subTest( tested_script=__snake_case , feature_script=__snake_case , tested_section='''main()''' if parser_only else '''training_function()''' , ): lowerCamelCase :Union[str, Any] = compare_against_test( os.path.join(__snake_case , __snake_case ) , __snake_case , __snake_case , __snake_case ) lowerCamelCase :int = '''\n'''.join(__snake_case ) if special_strings is not None: for string in special_strings: lowerCamelCase :int = diff.replace(__snake_case , '''''' ) self.assertEqual(__snake_case , '''''' ) def snake_case ( self : Dict ): self.one_complete_example('''complete_nlp_example.py''' , __snake_case ) self.one_complete_example('''complete_nlp_example.py''' , __snake_case ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Union[str, Any] = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) lowerCamelCase :Optional[int] = [ ''' ''' * 16 + '''{\n\n''', ''' ''' * 20 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 20 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 20 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 20 + '''"epoch": epoch,\n\n''', ''' ''' * 16 + '''},\n\n''', ''' ''' * 16 + '''step=epoch,\n''', ''' ''' * 12, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , __snake_case , __snake_case , __snake_case ) self.one_complete_example('''complete_cv_example.py''' , __snake_case , __snake_case , __snake_case ) @mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '1'} ) class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = False @classmethod def snake_case ( cls : Optional[Any] ): super().setUpClass() lowerCamelCase :Any = tempfile.mkdtemp() lowerCamelCase :Optional[int] = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) lowerCamelCase :List[str] = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def snake_case ( cls : Dict ): super().tearDownClass() shutil.rmtree(cls._tmpdir ) def snake_case ( self : int ): lowerCamelCase :Any = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def snake_case ( self : List[Any] ): lowerCamelCase :Tuple = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n ".split() lowerCamelCase :List[Any] = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def snake_case ( self : List[str] ): lowerCamelCase :Dict = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}\n ".split() lowerCamelCase :Dict = run_command(self._launch_args + testargs , return_stdout=__snake_case ) self.assertNotIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) def snake_case ( self : str ): lowerCamelCase :List[Any] = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}\n ".split() lowerCamelCase :Optional[int] = run_command(self._launch_args + testargs , return_stdout=__snake_case ) if torch.cuda.is_available(): lowerCamelCase :Union[str, Any] = torch.cuda.device_count() else: lowerCamelCase :Dict = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) else: self.assertIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) @slow def snake_case ( self : Any ): lowerCamelCase :Tuple = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): lowerCamelCase :Dict = run_command(self._launch_args + testargs , return_stdout=__snake_case ) lowerCamelCase :Tuple = re.findall('''({.+})''' , __snake_case ) lowerCamelCase :Optional[Any] = [r for r in results if '''accuracy''' in r][-1] lowerCamelCase :List[str] = ast.literal_eval(__snake_case ) self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 ) def snake_case ( self : int ): lowerCamelCase :Dict = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case ( self : Any ): with tempfile.TemporaryDirectory() as tmpdir: lowerCamelCase :Tuple = F"\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__snake_case , '''tracking''' ) ) ) def snake_case ( self : Tuple ): lowerCamelCase :Tuple = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def snake_case ( self : Optional[Any] ): lowerCamelCase :int = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
49
1
import operator as op A__ = """scaler.pt""" A__ = """pytorch_model""" A__ = """random_states""" A__ = """optimizer""" A__ = """scheduler""" A__ = """pytorch_model.bin""" A__ = """pytorch_model.bin.index.json""" A__ = """model.safetensors""" A__ = """model.safetensors.index.json""" A__ = """1.10.2""" A__ = """py38""" A__ = """4.17.0""" A__ = ["""ml.p3.16xlarge""", """ml.p3dn.24xlarge""", """ml.p4dn.24xlarge"""] A__ = ["""FULL_SHARD""", """SHARD_GRAD_OP""", """NO_SHARD""", """HYBRID_SHARD""", """HYBRID_SHARD_ZERO2"""] A__ = ["""TRANSFORMER_BASED_WRAP""", """SIZE_BASED_WRAP""", """NO_WRAP"""] A__ = ["""BACKWARD_PRE""", """BACKWARD_POST""", """NO_PREFETCH"""] A__ = ["""FULL_STATE_DICT""", """LOCAL_STATE_DICT""", """SHARDED_STATE_DICT"""] A__ = """2.0.1""" A__ = ["""pdsh""", """standard""", """openmpi""", """mvapich"""] A__ = ["""default""", """reduce-overhead""", """max-autotune"""] A__ = {""">""": op.gt, """>=""": op.ge, """==""": op.eq, """!=""": op.ne, """<=""": op.le, """<""": op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 A__ = [ """nnodes""", """nproc_per_node""", """rdzv_backend""", """rdzv_endpoint""", """rdzv_id""", """rdzv_conf""", """standalone""", """max_restarts""", """monitor_interval""", """start_method""", """role""", """module""", """m""", """no_python""", """run_path""", """log_dir""", """r""", """redirects""", """t""", """tee""", """node_rank""", """master_addr""", """master_port""", ] A__ = ["""DEEPSPEED""", """MULTI_GPU""", """FSDP""", """MEGATRON_LM"""] A__ = ["""DEEPSPEED""", """MULTI_XPU""", """FSDP"""]
49
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs A__ = imread(R"""digital_image_processing/image_data/lena_small.jpg""") A__ = cvtColor(img, COLOR_BGR2GRAY) def _lowerCamelCase ( ): lowerCamelCase :int = cn.convert_to_negative(a_) # assert negative_img array for at least one True assert negative_img.any() def _lowerCamelCase ( ): with Image.open('''digital_image_processing/image_data/lena_small.jpg''') as img: # Work around assertion for response assert str(cc.change_contrast(a_ , 1_10)).startswith( '''<PIL.Image.Image image mode=RGB size=100x100 at''') def _lowerCamelCase ( ): lowerCamelCase :Optional[Any] = canny.gen_gaussian_kernel(9 , sigma=1.4) # Assert ambiguous array assert resp.all() def _lowerCamelCase ( ): lowerCamelCase :str = imread('''digital_image_processing/image_data/lena_small.jpg''' , 0) # assert ambiguous array for all == True assert canny_img.all() lowerCamelCase :Optional[Any] = canny.canny(a_) # assert canny array for at least one True assert canny_array.any() def _lowerCamelCase ( ): assert gg.gaussian_filter(a_ , 5 , sigma=0.9).all() def _lowerCamelCase ( ): # laplace diagonals lowerCamelCase :List[Any] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]]) lowerCamelCase :List[Any] = conv.img_convolve(a_ , a_).astype(a_) assert res.any() def _lowerCamelCase ( ): assert med.median_filter(a_ , 3).any() def _lowerCamelCase ( ): lowerCamelCase , lowerCamelCase :Union[str, Any] = sob.sobel_filter(a_) assert grad.any() and theta.any() def _lowerCamelCase ( ): lowerCamelCase :Dict = sp.make_sepia(a_ , 20) assert sepia.all() def _lowerCamelCase ( a_ : str = "digital_image_processing/image_data/lena_small.jpg"): lowerCamelCase :Any = bs.Burkes(imread(a_ , 1) , 1_20) burkes.process() assert burkes.output_img.any() def _lowerCamelCase ( a_ : str = "digital_image_processing/image_data/lena_small.jpg" , ): lowerCamelCase :Tuple = rs.NearestNeighbour(imread(a_ , 1) , 4_00 , 2_00) nn.process() assert nn.output.any() def _lowerCamelCase ( ): lowerCamelCase :Tuple = '''digital_image_processing/image_data/lena.jpg''' # Reading the image and converting it to grayscale. lowerCamelCase :Tuple = imread(a_ , 0) # Test for get_neighbors_pixel function() return not None lowerCamelCase :Dict = 0 lowerCamelCase :Optional[Any] = 0 lowerCamelCase :str = image[x_coordinate][y_coordinate] lowerCamelCase :Any = lbp.get_neighbors_pixel( a_ , a_ , a_ , a_) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCamelCase :int = np.zeros((image.shape[0], image.shape[1])) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0]): for j in range(0 , image.shape[1]): lowerCamelCase :Optional[int] = lbp.local_binary_value(a_ , a_ , a_) assert lbp_image.any()
49
1
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline A__ = logging.get_logger(__name__) # pylint: disable=invalid-name class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self : Tuple , __snake_case : Dict , __snake_case : Tuple ): super().__init__() self.register_modules(unet=__snake_case , scheduler=__snake_case ) @torch.no_grad() def __call__( self : Any , __snake_case : int = 1 , __snake_case : int = 100 , __snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __snake_case : Optional[float] = None , __snake_case : bool = True , ): if audio_length_in_s is None: lowerCamelCase :Union[str, Any] = self.unet.config.sample_size / self.unet.config.sample_rate lowerCamelCase :List[str] = audio_length_in_s * self.unet.config.sample_rate lowerCamelCase :int = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F"{audio_length_in_s} is too small. Make sure it's bigger or equal to" F" {3 * down_scale_factor / self.unet.config.sample_rate}." ) lowerCamelCase :Union[str, Any] = int(__snake_case ) if sample_size % down_scale_factor != 0: lowerCamelCase :Dict = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F"{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled" F" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising" ''' process.''' ) lowerCamelCase :str = int(__snake_case ) lowerCamelCase :List[Any] = next(iter(self.unet.parameters() ) ).dtype lowerCamelCase :Tuple = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(__snake_case , __snake_case ) and len(__snake_case ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(__snake_case )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) lowerCamelCase :str = randn_tensor(__snake_case , generator=__snake_case , device=self.device , dtype=__snake_case ) # set step values self.scheduler.set_timesteps(__snake_case , device=audio.device ) lowerCamelCase :Optional[Any] = self.scheduler.timesteps.to(__snake_case ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCamelCase :List[Any] = self.unet(__snake_case , __snake_case ).sample # 2. compute previous image: x_t -> t_t-1 lowerCamelCase :Any = self.scheduler.step(__snake_case , __snake_case , __snake_case ).prev_sample lowerCamelCase :List[str] = audio.clamp(-1 , 1 ).float().cpu().numpy() lowerCamelCase :Optional[Any] = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=__snake_case )
49
import os from math import logaa def _lowerCamelCase ( a_ : str = "base_exp.txt"): lowerCamelCase :float = 0 lowerCamelCase :Optional[int] = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(a_) , a_))): lowerCamelCase , lowerCamelCase :Optional[int] = list(map(a_ , line.split(''','''))) if x * logaa(a_) > largest: lowerCamelCase :List[Any] = x * logaa(a_) lowerCamelCase :Any = i + 1 return result if __name__ == "__main__": print(solution())
49
1
import operator as op def _lowerCamelCase ( a_ : Tuple): lowerCamelCase :int = [] lowerCamelCase :List[str] = lambda a_ , a_: int(x / y) # noqa: E731 integer division operation lowerCamelCase :Optional[int] = { '''^''': op.pow, '''*''': op.mul, '''/''': div, '''+''': op.add, '''-''': op.sub, } # operators & their respective operation # print table header print('''Symbol'''.center(8) , '''Action'''.center(12) , '''Stack''' , sep=''' | ''') print('''-''' * (30 + len(a_))) for x in post_fix: if x.isdigit(): # if x in digit stack.append(a_) # append x to stack # output in tabular format print(x.rjust(8) , ('''push(''' + x + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') else: lowerCamelCase :Optional[Any] = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8) , ('''pop(''' + b + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') lowerCamelCase :str = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8) , ('''pop(''' + a + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') stack.append( str(opr[x](int(a_) , int(a_)))) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8) , ('''push(''' + a + x + b + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''' , ) return int(stack[0]) if __name__ == "__main__": A__ = input("""\n\nEnter a Postfix Equation (space separated) = """).split(""" """) print("""\n\tResult = """, solve(Postfix))
49
def _lowerCamelCase ( a_ : list): if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''') for cell_n in range(1 , len(grid[0])): grid[0][cell_n] += grid[0][cell_n - 1] lowerCamelCase :Any = grid[0] for row_n in range(1 , len(a_)): lowerCamelCase :List[str] = grid[row_n] lowerCamelCase :Union[str, Any] = fill_row(a_ , a_) lowerCamelCase :List[Any] = grid[row_n] return grid[-1][-1] def _lowerCamelCase ( a_ : list , a_ : list): current_row[0] += row_above[0] for cell_n in range(1 , len(a_)): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n]) return current_row if __name__ == "__main__": import doctest doctest.testmod()
49
1
from math import pi, sqrt, tan def _lowerCamelCase ( a_ : float): if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''') return 6 * side_length**2 def _lowerCamelCase ( a_ : float , a_ : float , a_ : float): if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''') return 2 * ((length * breadth) + (breadth * height) + (length * height)) def _lowerCamelCase ( a_ : float): if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''') return 4 * pi * radius**2 def _lowerCamelCase ( a_ : float): if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''') return 3 * pi * radius**2 def _lowerCamelCase ( a_ : float , a_ : float): if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''') return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def _lowerCamelCase ( a_ : float , a_ : float , a_ : float): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''') lowerCamelCase :List[str] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def _lowerCamelCase ( a_ : float , a_ : float): if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''') return 2 * pi * radius * (height + radius) def _lowerCamelCase ( a_ : float , a_ : float): if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''') if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''') return 4 * pow(a_ , 2) * torus_radius * tube_radius def _lowerCamelCase ( a_ : float , a_ : float): if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''') return length * width def _lowerCamelCase ( a_ : float): if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''') return side_length**2 def _lowerCamelCase ( a_ : float , a_ : float): if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''') return (base * height) / 2 def _lowerCamelCase ( a_ : float , a_ : float , a_ : float): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''') elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''') lowerCamelCase :str = (sidea + sidea + sidea) / 2 lowerCamelCase :Union[str, Any] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea)) return area def _lowerCamelCase ( a_ : float , a_ : float): if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''') return base * height def _lowerCamelCase ( a_ : float , a_ : float , a_ : float): if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''') return 1 / 2 * (basea + basea) * height def _lowerCamelCase ( a_ : float): if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''') return pi * radius**2 def _lowerCamelCase ( a_ : float , a_ : float): if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''') return pi * radius_x * radius_y def _lowerCamelCase ( a_ : float , a_ : float): if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''') return 1 / 2 * diagonal_a * diagonal_a def _lowerCamelCase ( a_ : int , a_ : float): if not isinstance(a_ , a_) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''') elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''') return (sides * length**2) / (4 * tan(pi / sides)) return (sides * length**2) / (4 * tan(pi / sides)) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("""[DEMO] Areas of various geometric shapes: \n""") print(F'Rectangle: {area_rectangle(10, 20) = }') print(F'Square: {area_square(10) = }') print(F'Triangle: {area_triangle(10, 10) = }') print(F'Triangle: {area_triangle_three_sides(5, 12, 13) = }') print(F'Parallelogram: {area_parallelogram(10, 20) = }') print(F'Rhombus: {area_rhombus(10, 20) = }') print(F'Trapezium: {area_trapezium(10, 20, 30) = }') print(F'Circle: {area_circle(20) = }') print(F'Ellipse: {area_ellipse(10, 20) = }') print("""\nSurface Areas of various geometric shapes: \n""") print(F'Cube: {surface_area_cube(20) = }') print(F'Cuboid: {surface_area_cuboid(10, 20, 30) = }') print(F'Sphere: {surface_area_sphere(20) = }') print(F'Hemisphere: {surface_area_hemisphere(20) = }') print(F'Cone: {surface_area_cone(10, 20) = }') print(F'Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }') print(F'Cylinder: {surface_area_cylinder(10, 20) = }') print(F'Torus: {surface_area_torus(20, 10) = }') print(F'Equilateral Triangle: {area_reg_polygon(3, 10) = }') print(F'Square: {area_reg_polygon(4, 10) = }') print(F'Reqular Pentagon: {area_reg_polygon(5, 10) = }')
49
import math def _lowerCamelCase ( a_ : int): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a_) + 1) , 6): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCamelCase ( a_ : float = 0.1): lowerCamelCase :Dict = 3 lowerCamelCase :List[Any] = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1): primes += is_prime(a_) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
49
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class _lowerCAmelCase ( unittest.TestCase ): def __init__( self : Optional[int] , __snake_case : Tuple , __snake_case : Any=7 , __snake_case : List[str]=3 , __snake_case : int=10 , __snake_case : Tuple=18 , __snake_case : List[Any]=30 , __snake_case : Optional[int]=400 , __snake_case : str=True , __snake_case : List[str]=None , __snake_case : Tuple=True , __snake_case : Union[str, Any]=[0.5, 0.5, 0.5] , __snake_case : Optional[int]=[0.5, 0.5, 0.5] , __snake_case : Optional[int]=None , ): lowerCamelCase :str = size if size is not None else {'''shortest_edge''': 18} lowerCamelCase :Tuple = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} lowerCamelCase :int = parent lowerCamelCase :Union[str, Any] = batch_size lowerCamelCase :Union[str, Any] = num_channels lowerCamelCase :Optional[int] = num_frames lowerCamelCase :List[str] = image_size lowerCamelCase :Tuple = min_resolution lowerCamelCase :Optional[int] = max_resolution lowerCamelCase :Optional[Any] = do_resize lowerCamelCase :Optional[int] = size lowerCamelCase :Optional[Any] = do_normalize lowerCamelCase :str = image_mean lowerCamelCase :List[str] = image_std lowerCamelCase :Tuple = crop_size def snake_case ( self : List[str] ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = VivitImageProcessor if is_vision_available() else None def snake_case ( self : Union[str, Any] ): lowerCamelCase :Tuple = VivitImageProcessingTester(self ) @property def snake_case ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def snake_case ( self : Union[str, Any] ): lowerCamelCase :Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , '''image_mean''' ) ) self.assertTrue(hasattr(__snake_case , '''image_std''' ) ) self.assertTrue(hasattr(__snake_case , '''do_normalize''' ) ) self.assertTrue(hasattr(__snake_case , '''do_resize''' ) ) self.assertTrue(hasattr(__snake_case , '''do_center_crop''' ) ) self.assertTrue(hasattr(__snake_case , '''size''' ) ) def snake_case ( self : List[str] ): lowerCamelCase :Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) lowerCamelCase :Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def snake_case ( self : List[str] ): # Initialize image_processing lowerCamelCase :str = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos lowerCamelCase :Tuple = prepare_video_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for video in video_inputs: self.assertIsInstance(__snake_case , __snake_case ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input lowerCamelCase :List[str] = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowerCamelCase :Tuple = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case ( self : Dict ): # Initialize image_processing lowerCamelCase :List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase :str = prepare_video_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for video in video_inputs: self.assertIsInstance(__snake_case , __snake_case ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input lowerCamelCase :List[Any] = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowerCamelCase :int = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case ( self : Tuple ): # Initialize image_processing lowerCamelCase :Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase :List[Any] = prepare_video_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for video in video_inputs: self.assertIsInstance(__snake_case , __snake_case ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input lowerCamelCase :Dict = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowerCamelCase :Tuple = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
49
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : str ): lowerCamelCase :int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :List[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :Optional[Any] = -1 lowerCamelCase :List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Tuple = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :str = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowerCamelCase :str = TextStreamer(__snake_case ) model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case , streamer=__snake_case ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCamelCase :Optional[int] = cs.out[:-1] self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : Dict ): lowerCamelCase :Tuple = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :int = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :List[Any] = -1 lowerCamelCase :Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Tuple = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :List[Any] = tokenizer.decode(greedy_ids[0] ) lowerCamelCase :List[str] = TextIteratorStreamer(__snake_case ) lowerCamelCase :List[str] = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} lowerCamelCase :Tuple = Thread(target=model.generate , kwargs=__snake_case ) thread.start() lowerCamelCase :Any = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : str ): lowerCamelCase :int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :Dict = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :List[str] = -1 lowerCamelCase :Optional[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Optional[Any] = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :List[str] = greedy_ids[:, input_ids.shape[1] :] lowerCamelCase :Union[str, Any] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowerCamelCase :List[str] = TextStreamer(__snake_case , skip_prompt=__snake_case ) model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case , streamer=__snake_case ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCamelCase :int = cs.out[:-1] self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : Optional[int] ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them lowerCamelCase :List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) lowerCamelCase :Union[str, Any] = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(__snake_case ) lowerCamelCase :Optional[int] = -1 lowerCamelCase :Union[str, Any] = torch.ones((1, 5) , device=__snake_case ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowerCamelCase :Dict = TextStreamer(__snake_case , skip_special_tokens=__snake_case ) model.generate(__snake_case , max_new_tokens=1 , do_sample=__snake_case , streamer=__snake_case ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowerCamelCase :Tuple = cs.out[:-1] # Remove the final "\n" lowerCamelCase :int = tokenizer(__snake_case , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def snake_case ( self : List[Any] ): lowerCamelCase :List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :Optional[int] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :Optional[int] = -1 lowerCamelCase :Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :List[Any] = TextIteratorStreamer(__snake_case , timeout=0.0_0_1 ) lowerCamelCase :Dict = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} lowerCamelCase :Tuple = Thread(target=model.generate , kwargs=__snake_case ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__snake_case ): lowerCamelCase :Dict = '''''' for new_text in streamer: streamer_text += new_text
49
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { """andreasmadsen/efficient_mlm_m0.40""": ( """https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json""" ), } class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'roberta-prelayernorm' def __init__( self : str , __snake_case : List[str]=50265 , __snake_case : Union[str, Any]=768 , __snake_case : Tuple=12 , __snake_case : int=12 , __snake_case : Any=3072 , __snake_case : Optional[int]="gelu" , __snake_case : List[Any]=0.1 , __snake_case : int=0.1 , __snake_case : Union[str, Any]=512 , __snake_case : Dict=2 , __snake_case : int=0.0_2 , __snake_case : Any=1e-1_2 , __snake_case : Optional[int]=1 , __snake_case : Dict=0 , __snake_case : Optional[int]=2 , __snake_case : Any="absolute" , __snake_case : Union[str, Any]=True , __snake_case : List[str]=None , **__snake_case : Optional[int] , ): super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) lowerCamelCase :Optional[int] = vocab_size lowerCamelCase :Dict = hidden_size lowerCamelCase :Tuple = num_hidden_layers lowerCamelCase :Optional[int] = num_attention_heads lowerCamelCase :Any = hidden_act lowerCamelCase :List[Any] = intermediate_size lowerCamelCase :Union[str, Any] = hidden_dropout_prob lowerCamelCase :str = attention_probs_dropout_prob lowerCamelCase :Tuple = max_position_embeddings lowerCamelCase :int = type_vocab_size lowerCamelCase :Optional[Any] = initializer_range lowerCamelCase :Union[str, Any] = layer_norm_eps lowerCamelCase :Dict = position_embedding_type lowerCamelCase :List[Any] = use_cache lowerCamelCase :Optional[int] = classifier_dropout class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): @property def snake_case ( self : Any ): if self.task == "multiple-choice": lowerCamelCase :Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase :List[str] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
49
from maths.prime_factors import prime_factors def _lowerCamelCase ( a_ : int): if not isinstance(a_ , a_): lowerCamelCase :Tuple = F"Input value of [number={number}] must be an integer" raise TypeError(a_) if number < 1: raise ValueError('''Input must be a positive integer''') return -1 if len(prime_factors(a_)) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
49
1
A__ = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100_000)] def _lowerCamelCase ( a_ : int): lowerCamelCase :str = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_00_00] number //= 10_00_00 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution A__ = [None] * 10_000_000 A__ = True A__ = False def _lowerCamelCase ( a_ : int): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore lowerCamelCase :List[Any] = chain(next_number(a_)) lowerCamelCase :List[Any] = number_chain while number < 10_00_00_00: lowerCamelCase :List[Any] = number_chain number *= 10 return number_chain def _lowerCamelCase ( a_ : int = 10_00_00_00): for i in range(1 , a_): if CHAINS[i] is None: chain(i + 1) return CHAINS[:number].count(a_) if __name__ == "__main__": import doctest doctest.testmod() print(F'{solution() = }')
49
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() A__ = logging.get_logger(__name__) def _lowerCamelCase ( a_ : str , a_ : str=False): lowerCamelCase :Optional[int] = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''')) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''')) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''')) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''')) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''')) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''')) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''')) for stage_idx in range(len(config.backbone_config.depths)): for layer_idx in range(config.backbone_config.depths[stage_idx]): rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias")) # transformer encoder for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight")) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias")) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight")) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias")) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight")) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias")) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight")) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias")) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight")) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias")) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ]) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCamelCase :List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''') else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ]) # fmt: on return rename_keys def _lowerCamelCase ( a_ : Any , a_ : Any , a_ : int=False): for i in range(config.num_hidden_layers): if base_model: lowerCamelCase :Union[str, Any] = '''''' else: lowerCamelCase :Optional[int] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase :Optional[Any] = state_dict.pop(F"blocks.{i}.attn.qkv.weight") lowerCamelCase :Any = state_dict.pop(F"blocks.{i}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict lowerCamelCase :Any = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase :Tuple = in_proj_bias[: config.hidden_size] lowerCamelCase :int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase :Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase :Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase :List[Any] = in_proj_bias[-config.hidden_size :] def _lowerCamelCase ( a_ : int): lowerCamelCase :Any = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(a_ , a_) def _lowerCamelCase ( a_ : int , a_ : Any , a_ : Tuple): lowerCamelCase :Optional[Any] = dct.pop(a_) lowerCamelCase :str = val def _lowerCamelCase ( ): lowerCamelCase :Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase :Tuple = Image.open(requests.get(a_ , stream=a_).raw) return im @torch.no_grad() def _lowerCamelCase ( a_ : Optional[Any] , a_ : Optional[Any] , a_ : Optional[Any]=False): lowerCamelCase :Optional[int] = BitConfig( global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=a_ , ) lowerCamelCase :Optional[int] = ViTHybridConfig(backbone_config=a_ , image_size=3_84 , num_labels=10_00) lowerCamelCase :List[Any] = False # load original model from timm lowerCamelCase :List[str] = timm.create_model(a_ , pretrained=a_) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCamelCase :List[str] = timm_model.state_dict() if base_model: remove_classification_head_(a_) lowerCamelCase :Tuple = create_rename_keys(a_ , a_) for src, dest in rename_keys: rename_key(a_ , a_ , a_) read_in_q_k_v(a_ , a_ , a_) lowerCamelCase :List[str] = '''huggingface/label-files''' lowerCamelCase :Any = '''imagenet-1k-id2label.json''' lowerCamelCase :List[Any] = json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''') , '''r''')) lowerCamelCase :Optional[Any] = {int(a_): v for k, v in idalabel.items()} lowerCamelCase :Optional[int] = idalabel lowerCamelCase :Union[str, Any] = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": lowerCamelCase :Optional[Any] = ViTHybridModel(a_).eval() else: lowerCamelCase :Dict = ViTHybridForImageClassification(a_).eval() model.load_state_dict(a_) # create image processor lowerCamelCase :Dict = create_transform(**resolve_data_config({} , model=a_)) lowerCamelCase :str = transform.transforms lowerCamelCase :int = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } lowerCamelCase :Any = ViTHybridImageProcessor( do_resize=a_ , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=a_ , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=a_ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCamelCase :Dict = prepare_img() lowerCamelCase :str = transform(a_).unsqueeze(0) lowerCamelCase :str = processor(a_ , return_tensors='''pt''').pixel_values # verify pixel values assert torch.allclose(a_ , a_) # verify logits with torch.no_grad(): lowerCamelCase :Optional[int] = model(a_) lowerCamelCase :Union[str, Any] = outputs.logits print('''Predicted class:''' , logits.argmax(-1).item()) if base_model: lowerCamelCase :Union[str, Any] = timm_model.forward_features(a_) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(a_ , outputs.pooler_output , atol=1e-3) else: lowerCamelCase :List[str] = timm_model(a_) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(a_ , outputs.logits , atol=1e-3) print('''Looks ok!''') if pytorch_dump_folder_path is not None: Path(a_).mkdir(exist_ok=a_) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}") model.save_pretrained(a_) print(F"Saving processor to {pytorch_dump_folder_path}") processor.save_pretrained(a_) if push_to_hub: print(F"Pushing model and processor to the hub {vit_name}") model.push_to_hub(F"ybelkada/{vit_name}") processor.push_to_hub(F"ybelkada/{vit_name}") if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_r50_s16_384""", type=str, help="""Name of the hybrid ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) A__ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
49
1
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def _lowerCamelCase ( a_ : int): if not is_accelerate_available(): return method lowerCamelCase :Any = version.parse(accelerate.__version__).base_version if version.parse(a_) < version.parse('''0.17.0'''): return method def wrapper(self : Optional[Any] , *a_ : List[str] , **a_ : str): if hasattr(self , '''_hf_hook''') and hasattr(self._hf_hook , '''pre_forward'''): self._hf_hook.pre_forward(self) return method(self , *a_ , **a_) return wrapper
49
def _lowerCamelCase ( a_ : int = 4_00_00_00): lowerCamelCase :Dict = [0, 1] lowerCamelCase :Optional[Any] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1]) if fib[i + 2] > n: break i += 1 lowerCamelCase :Dict = 0 for j in range(len(a_) - 1): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F'{solution() = }')
49
1
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _lowerCAmelCase : def __init__( self : Optional[Any] , __snake_case : Tuple , __snake_case : Union[str, Any]=13 , __snake_case : int=10 , __snake_case : Optional[Any]=3 , __snake_case : Union[str, Any]=2 , __snake_case : Tuple=2 , __snake_case : Union[str, Any]=2 , __snake_case : int=True , __snake_case : Dict=True , __snake_case : Optional[int]=32 , __snake_case : int=5 , __snake_case : List[Any]=4 , __snake_case : Union[str, Any]=37 , __snake_case : List[str]="gelu" , __snake_case : int=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : str=10 , __snake_case : Dict=0.0_2 , __snake_case : Union[str, Any]=0.9 , __snake_case : Any=None , ): lowerCamelCase :Dict = parent lowerCamelCase :List[Any] = batch_size lowerCamelCase :str = image_size lowerCamelCase :int = num_channels lowerCamelCase :Any = patch_size lowerCamelCase :Tuple = tubelet_size lowerCamelCase :int = num_frames lowerCamelCase :Any = is_training lowerCamelCase :List[str] = use_labels lowerCamelCase :Dict = hidden_size lowerCamelCase :int = num_hidden_layers lowerCamelCase :List[str] = num_attention_heads lowerCamelCase :Optional[int] = intermediate_size lowerCamelCase :Union[str, Any] = hidden_act lowerCamelCase :Dict = hidden_dropout_prob lowerCamelCase :Tuple = attention_probs_dropout_prob lowerCamelCase :List[Any] = type_sequence_label_size lowerCamelCase :List[Any] = initializer_range lowerCamelCase :Any = mask_ratio lowerCamelCase :Optional[Any] = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame lowerCamelCase :Optional[Any] = (image_size // patch_size) ** 2 lowerCamelCase :List[Any] = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos lowerCamelCase :Optional[Any] = int(mask_ratio * self.seq_length ) def snake_case ( self : Any ): lowerCamelCase :str = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase :Any = None if self.use_labels: lowerCamelCase :List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase :Any = self.get_config() return config, pixel_values, labels def snake_case ( self : List[Any] ): return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def snake_case ( self : List[Any] , __snake_case : int , __snake_case : List[Any] , __snake_case : List[Any] ): lowerCamelCase :str = VideoMAEModel(config=__snake_case ) model.to(__snake_case ) model.eval() lowerCamelCase :Optional[int] = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self : Tuple , __snake_case : List[Any] , __snake_case : Any , __snake_case : List[Any] ): lowerCamelCase :Any = VideoMAEForPreTraining(__snake_case ) model.to(__snake_case ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowerCamelCase :int = torch.ones((self.num_masks,) ) lowerCamelCase :Dict = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) lowerCamelCase :Optional[Any] = mask.expand(self.batch_size , -1 ).bool() lowerCamelCase :int = model(__snake_case , __snake_case ) # model only returns predictions for masked patches lowerCamelCase :Optional[Any] = mask.sum().item() lowerCamelCase :Any = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Tuple = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase :Optional[Any] = config_and_inputs lowerCamelCase :Optional[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) _UpperCAmelCase = ( {'feature-extraction': VideoMAEModel, 'video-classification': VideoMAEForVideoClassification} if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def snake_case ( self : str ): lowerCamelCase :Union[str, Any] = VideoMAEModelTester(self ) lowerCamelCase :Tuple = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=37 ) def snake_case ( self : Tuple , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : int=False ): lowerCamelCase :Optional[Any] = copy.deepcopy(__snake_case ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowerCamelCase :Optional[int] = torch.ones((self.model_tester.num_masks,) ) lowerCamelCase :Tuple = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) lowerCamelCase :Optional[int] = mask.expand(self.model_tester.batch_size , -1 ).bool() lowerCamelCase :Tuple = bool_masked_pos.to(__snake_case ) if return_labels: if model_class in [ *get_values(__snake_case ), ]: lowerCamelCase :str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def snake_case ( self : Tuple ): self.config_tester.run_common_tests() @unittest.skip(reason='''VideoMAE does not use inputs_embeds''' ) def snake_case ( self : Dict ): pass def snake_case ( self : Optional[Any] ): lowerCamelCase , lowerCamelCase :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :List[str] = model_class(__snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase :int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case , nn.Linear ) ) def snake_case ( self : List[str] ): lowerCamelCase , lowerCamelCase :Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :Union[str, Any] = model_class(__snake_case ) lowerCamelCase :Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase :Any = [*signature.parameters.keys()] lowerCamelCase :Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __snake_case ) def snake_case ( self : Tuple ): lowerCamelCase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def snake_case ( self : List[Any] ): lowerCamelCase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__snake_case ) @slow def snake_case ( self : Dict ): for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase :Dict = VideoMAEModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def snake_case ( self : str ): if not self.has_attentions: pass else: lowerCamelCase , lowerCamelCase :int = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase :Any = True for model_class in self.all_model_classes: lowerCamelCase :Any = self.model_tester.seq_length - self.model_tester.num_masks lowerCamelCase :List[str] = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) lowerCamelCase :List[str] = True lowerCamelCase :Any = False lowerCamelCase :Optional[Any] = True lowerCamelCase :Any = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :List[Any] = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Dict = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase :Tuple = True lowerCamelCase :Dict = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :Optional[int] = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :List[Any] = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowerCamelCase :Any = len(__snake_case ) # Check attention is always last and order is fine lowerCamelCase :List[str] = True lowerCamelCase :Optional[Any] = True lowerCamelCase :Optional[int] = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :Any = model(**self._prepare_for_class(__snake_case , __snake_case ) ) self.assertEqual(out_len + 1 , len(__snake_case ) ) lowerCamelCase :Any = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def snake_case ( self : List[Any] ): def check_hidden_states_output(__snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Optional[int] ): lowerCamelCase :List[str] = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :List[Any] = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :List[Any] = outputs.hidden_states lowerCamelCase :Optional[Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__snake_case ) , __snake_case ) lowerCamelCase :Union[str, Any] = self.model_tester.seq_length - self.model_tester.num_masks lowerCamelCase :Optional[Any] = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowerCamelCase , lowerCamelCase :Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :Tuple = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase :Dict = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def snake_case ( self : Optional[Any] ): pass def _lowerCamelCase ( ): lowerCamelCase :List[str] = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''') lowerCamelCase :List[str] = np.load(a_) return list(a_) @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): @cached_property def snake_case ( self : str ): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def snake_case ( self : Optional[Any] ): lowerCamelCase :List[str] = VideoMAEForVideoClassification.from_pretrained('''MCG-NJU/videomae-base-finetuned-kinetics''' ).to( __snake_case ) lowerCamelCase :Optional[Any] = self.default_image_processor lowerCamelCase :int = prepare_video() lowerCamelCase :Dict = image_processor(__snake_case , return_tensors='''pt''' ).to(__snake_case ) # forward pass with torch.no_grad(): lowerCamelCase :List[str] = model(**__snake_case ) # verify the logits lowerCamelCase :Dict = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , __snake_case ) lowerCamelCase :List[str] = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1e-4 ) ) @slow def snake_case ( self : Dict ): lowerCamelCase :str = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' ).to(__snake_case ) lowerCamelCase :str = self.default_image_processor lowerCamelCase :Any = prepare_video() lowerCamelCase :List[Any] = image_processor(__snake_case , return_tensors='''pt''' ).to(__snake_case ) # add boolean mask, indicating which patches to mask lowerCamelCase :int = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' , filename='''bool_masked_pos.pt''' ) lowerCamelCase :Optional[Any] = torch.load(__snake_case ) # forward pass with torch.no_grad(): lowerCamelCase :Union[str, Any] = model(**__snake_case ) # verify the logits lowerCamelCase :List[Any] = torch.Size([1, 1408, 1536] ) lowerCamelCase :List[str] = torch.tensor( [[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] , device=__snake_case ) self.assertEqual(outputs.logits.shape , __snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __snake_case , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) lowerCamelCase :str = torch.tensor([0.5_1_4_2] , device=__snake_case ) self.assertTrue(torch.allclose(outputs.loss , __snake_case , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) lowerCamelCase :List[Any] = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' , norm_pix_loss=__snake_case ).to( __snake_case ) with torch.no_grad(): lowerCamelCase :Optional[int] = model(**__snake_case ) lowerCamelCase :Any = torch.tensor(torch.tensor([0.6_4_6_9] ) , device=__snake_case ) self.assertTrue(torch.allclose(outputs.loss , __snake_case , atol=1e-4 ) )
49
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ = { """configuration_nllb_moe""": [ """NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NllbMoeConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""", """NllbMoeForConditionalGeneration""", """NllbMoeModel""", """NllbMoePreTrainedModel""", """NllbMoeTop2Router""", """NllbMoeSparseMLP""", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
49
1
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A__ = logging.get_logger(__name__) A__ = { """microsoft/conditional-detr-resnet-50""": ( """https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json""" ), } class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'conditional_detr' _UpperCAmelCase = ['past_key_values'] _UpperCAmelCase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Union[str, Any] , __snake_case : Any=True , __snake_case : Tuple=None , __snake_case : Union[str, Any]=3 , __snake_case : Dict=300 , __snake_case : Tuple=6 , __snake_case : Union[str, Any]=2048 , __snake_case : List[Any]=8 , __snake_case : List[str]=6 , __snake_case : int=2048 , __snake_case : Any=8 , __snake_case : Any=0.0 , __snake_case : Any=0.0 , __snake_case : List[str]=True , __snake_case : Dict="relu" , __snake_case : int=256 , __snake_case : Union[str, Any]=0.1 , __snake_case : Dict=0.0 , __snake_case : Tuple=0.0 , __snake_case : Any=0.0_2 , __snake_case : Union[str, Any]=1.0 , __snake_case : List[Any]=False , __snake_case : Optional[Any]="sine" , __snake_case : List[Any]="resnet50" , __snake_case : str=True , __snake_case : Optional[int]=False , __snake_case : Optional[Any]=2 , __snake_case : Optional[Any]=5 , __snake_case : int=2 , __snake_case : int=1 , __snake_case : Dict=1 , __snake_case : Tuple=2 , __snake_case : Union[str, Any]=5 , __snake_case : Any=2 , __snake_case : Optional[Any]=0.2_5 , **__snake_case : List[Any] , ): if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) lowerCamelCase :Any = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(__snake_case , __snake_case ): lowerCamelCase :Dict = backbone_config.get('''model_type''' ) lowerCamelCase :Optional[int] = CONFIG_MAPPING[backbone_model_type] lowerCamelCase :Any = config_class.from_dict(__snake_case ) lowerCamelCase :Union[str, Any] = use_timm_backbone lowerCamelCase :List[str] = backbone_config lowerCamelCase :Optional[Any] = num_channels lowerCamelCase :Any = num_queries lowerCamelCase :Any = d_model lowerCamelCase :Dict = encoder_ffn_dim lowerCamelCase :Optional[Any] = encoder_layers lowerCamelCase :Optional[int] = encoder_attention_heads lowerCamelCase :Union[str, Any] = decoder_ffn_dim lowerCamelCase :Dict = decoder_layers lowerCamelCase :List[str] = decoder_attention_heads lowerCamelCase :List[Any] = dropout lowerCamelCase :Tuple = attention_dropout lowerCamelCase :List[str] = activation_dropout lowerCamelCase :List[str] = activation_function lowerCamelCase :Optional[int] = init_std lowerCamelCase :int = init_xavier_std lowerCamelCase :List[str] = encoder_layerdrop lowerCamelCase :List[Any] = decoder_layerdrop lowerCamelCase :Any = encoder_layers lowerCamelCase :Optional[int] = auxiliary_loss lowerCamelCase :Any = position_embedding_type lowerCamelCase :str = backbone lowerCamelCase :Optional[int] = use_pretrained_backbone lowerCamelCase :Any = dilation # Hungarian matcher lowerCamelCase :Dict = class_cost lowerCamelCase :int = bbox_cost lowerCamelCase :Tuple = giou_cost # Loss coefficients lowerCamelCase :int = mask_loss_coefficient lowerCamelCase :Tuple = dice_loss_coefficient lowerCamelCase :Optional[int] = cls_loss_coefficient lowerCamelCase :Tuple = bbox_loss_coefficient lowerCamelCase :Union[str, Any] = giou_loss_coefficient lowerCamelCase :int = focal_alpha super().__init__(is_encoder_decoder=__snake_case , **__snake_case ) @property def snake_case ( self : List[str] ): return self.encoder_attention_heads @property def snake_case ( self : int ): return self.d_model def snake_case ( self : List[Any] ): lowerCamelCase :Dict = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowerCamelCase :Any = self.backbone_config.to_dict() lowerCamelCase :List[Any] = self.__class__.model_type return output class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = version.parse('1.11' ) @property def snake_case ( self : List[str] ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def snake_case ( self : Any ): return 1e-5 @property def snake_case ( self : Any ): return 12
49
import numpy class _lowerCAmelCase : def __init__( self : Dict , __snake_case : numpy.ndarray , __snake_case : numpy.ndarray ): lowerCamelCase :Dict = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. lowerCamelCase :Dict = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. lowerCamelCase :Dict = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. lowerCamelCase :Any = numpy.random.rand(3 , 1 ) # Real output values provided. lowerCamelCase :Union[str, Any] = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. lowerCamelCase :List[str] = numpy.zeros(output_array.shape ) def snake_case ( self : Optional[int] ): lowerCamelCase :Any = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. lowerCamelCase :Any = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. lowerCamelCase :Dict = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def snake_case ( self : Any ): lowerCamelCase :Union[str, Any] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) lowerCamelCase :Dict = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) lowerCamelCase :int = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def snake_case ( self : Dict , __snake_case : numpy.ndarray , __snake_case : int , __snake_case : bool ): for iteration in range(1 , iterations + 1 ): lowerCamelCase :Union[str, Any] = self.feedforward() self.back_propagation() if give_loss: lowerCamelCase :Tuple = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"Iteration {iteration} Loss: {loss}" ) def snake_case ( self : Optional[int] , __snake_case : numpy.ndarray ): lowerCamelCase :int = input_arr lowerCamelCase :Union[str, Any] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) lowerCamelCase :Optional[Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) lowerCamelCase :Optional[int] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def _lowerCamelCase ( a_ : numpy.ndarray): return 1 / (1 + numpy.exp(-value)) def _lowerCamelCase ( a_ : numpy.ndarray): return (value) * (1 - (value)) def _lowerCamelCase ( ): lowerCamelCase :Optional[Any] = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. lowerCamelCase :int = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa) # Calling neural network class. lowerCamelCase :List[Any] = TwoHiddenLayerNeuralNetwork( input_array=a_ , output_array=a_) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=a_ , iterations=10 , give_loss=a_) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa)) if __name__ == "__main__": example()
49
1
import re def _lowerCamelCase ( a_ : str): lowerCamelCase :List[Any] = re.compile(R'''^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$''') if match := re.search(a_ , a_): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("""+918827897895"""))
49
def _lowerCamelCase ( a_ : str , a_ : str): lowerCamelCase :List[str] = len(a_) lowerCamelCase :List[str] = len(a_) lowerCamelCase :int = [[False for _ in range(m + 1)] for _ in range(n + 1)] lowerCamelCase :Optional[Any] = True for i in range(a_): for j in range(m + 1): if dp[i][j]: if j < m and a[i].upper() == b[j]: lowerCamelCase :Any = True if a[i].islower(): lowerCamelCase :List[str] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
49
1
import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _lowerCamelCase ( a_ : Any , a_ : Any): assert isinstance(a_ , a_) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True]) def _lowerCamelCase ( a_ : Optional[Any] , a_ : Tuple , a_ : List[Any]): lowerCamelCase :Dict = tmp_path / '''cache''' lowerCamelCase :Optional[int] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase :List[Any] = JsonDatasetReader(a_ , cache_dir=a_ , keep_in_memory=a_).read() _check_json_dataset(a_ , a_) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def _lowerCamelCase ( a_ : Dict , a_ : Union[str, Any] , a_ : int): lowerCamelCase :str = tmp_path / '''cache''' lowerCamelCase :List[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowerCamelCase :int = features.copy() if features else default_expected_features lowerCamelCase :Dict = ( Features({feature: Value(a_) for feature, dtype in features.items()}) if features is not None else None ) lowerCamelCase :Optional[Any] = JsonDatasetReader(a_ , features=a_ , cache_dir=a_).read() _check_json_dataset(a_ , a_) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def _lowerCamelCase ( a_ : Optional[int] , a_ : int , a_ : str): lowerCamelCase :Union[str, Any] = tmp_path / '''cache''' lowerCamelCase :List[Any] = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} lowerCamelCase :str = features.copy() if features else default_expected_features lowerCamelCase :Optional[int] = ( Features({feature: Value(a_) for feature, dtype in features.items()}) if features is not None else None ) lowerCamelCase :int = JsonDatasetReader(a_ , features=a_ , cache_dir=a_).read() assert isinstance(a_ , a_) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def _lowerCamelCase ( a_ : Optional[int] , a_ : int): # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} lowerCamelCase :Any = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} lowerCamelCase :int = features.copy() lowerCamelCase :Dict = ( Features({feature: Value(a_) for feature, dtype in features.items()}) if features is not None else None ) lowerCamelCase :List[str] = tmp_path / '''cache''' lowerCamelCase :List[str] = JsonDatasetReader(a_ , features=a_ , cache_dir=a_).read() assert isinstance(a_ , a_) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train'''), '''train''', '''test''']) def _lowerCamelCase ( a_ : Union[str, Any] , a_ : List[Any] , a_ : List[str]): lowerCamelCase :Any = tmp_path / '''cache''' lowerCamelCase :Tuple = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowerCamelCase :Any = JsonDatasetReader(a_ , cache_dir=a_ , split=a_).read() _check_json_dataset(a_ , a_) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list]) def _lowerCamelCase ( a_ : Optional[Any] , a_ : Union[str, Any] , a_ : Tuple): if issubclass(a_ , a_): lowerCamelCase :str = jsonl_path elif issubclass(a_ , a_): lowerCamelCase :List[Any] = [jsonl_path] lowerCamelCase :Any = tmp_path / '''cache''' lowerCamelCase :List[str] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowerCamelCase :Dict = JsonDatasetReader(a_ , cache_dir=a_).read() _check_json_dataset(a_ , a_) def _lowerCamelCase ( a_ : str , a_ : Dict , a_ : Any=("train",)): assert isinstance(a_ , a_) for split in splits: lowerCamelCase :Tuple = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True]) def _lowerCamelCase ( a_ : int , a_ : List[Any] , a_ : Dict): lowerCamelCase :Dict = tmp_path / '''cache''' lowerCamelCase :int = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase :Union[str, Any] = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=a_ , keep_in_memory=a_).read() _check_json_datasetdict(a_ , a_) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def _lowerCamelCase ( a_ : Any , a_ : Union[str, Any] , a_ : int): lowerCamelCase :List[Any] = tmp_path / '''cache''' lowerCamelCase :List[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowerCamelCase :List[str] = features.copy() if features else default_expected_features lowerCamelCase :Any = ( Features({feature: Value(a_) for feature, dtype in features.items()}) if features is not None else None ) lowerCamelCase :List[str] = JsonDatasetReader({'''train''': jsonl_path} , features=a_ , cache_dir=a_).read() _check_json_datasetdict(a_ , a_) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train'''), '''train''', '''test''']) def _lowerCamelCase ( a_ : Optional[Any] , a_ : Any , a_ : str): if split: lowerCamelCase :Any = {split: jsonl_path} else: lowerCamelCase :Optional[Any] = '''train''' lowerCamelCase :List[str] = {'''train''': jsonl_path, '''test''': jsonl_path} lowerCamelCase :List[Any] = tmp_path / '''cache''' lowerCamelCase :Tuple = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowerCamelCase :Dict = JsonDatasetReader(a_ , cache_dir=a_).read() _check_json_datasetdict(a_ , a_ , splits=list(path.keys())) assert all(dataset[split].split == split for split in path.keys()) def _lowerCamelCase ( a_ : int): return json.load(a_) def _lowerCamelCase ( a_ : Union[str, Any]): return [json.loads(a_) for line in buffer] class _lowerCAmelCase : @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def snake_case ( self : List[str] , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : str ): with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case ).write() buffer.seek(0 ) lowerCamelCase :Optional[int] = load_json_function(__snake_case ) assert isinstance(__snake_case , __snake_case ) assert isinstance(exported_content[0] , __snake_case ) assert len(__snake_case ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def snake_case ( self : Optional[Any] , __snake_case : int , __snake_case : Optional[int] , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Any ): with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case , orient=__snake_case ).write() buffer.seek(0 ) lowerCamelCase :str = load_json(__snake_case ) assert isinstance(__snake_case , __snake_case ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__snake_case , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__snake_case ) == 10 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def snake_case ( self : Tuple , __snake_case : Optional[Any] , __snake_case : int , __snake_case : List[str] ): with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case , num_proc=2 ).write() buffer.seek(0 ) lowerCamelCase :Any = load_json_function(__snake_case ) assert isinstance(__snake_case , __snake_case ) assert isinstance(exported_content[0] , __snake_case ) assert len(__snake_case ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def snake_case ( self : Any , __snake_case : int , __snake_case : List[str] , __snake_case : str , __snake_case : Optional[int] , __snake_case : Optional[Any] ): with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case , orient=__snake_case , num_proc=2 ).write() buffer.seek(0 ) lowerCamelCase :Tuple = load_json(__snake_case ) assert isinstance(__snake_case , __snake_case ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__snake_case , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__snake_case ) == 10 def snake_case ( self : Optional[Any] , __snake_case : Dict ): with pytest.raises(__snake_case ): with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def snake_case ( self : List[Any] , __snake_case : Dict , __snake_case : List[Any] , __snake_case : Dict , __snake_case : List[str] , __snake_case : Optional[Any] ): lowerCamelCase :Any = tmp_path_factory.mktemp('''data''' ) / F"test.json.{extension}" lowerCamelCase :int = str(shared_datadir / F"test_file.json.{extension}" ) JsonDatasetWriter(__snake_case , __snake_case , compression=__snake_case ).write() with fsspec.open(__snake_case , '''rb''' , compression='''infer''' ) as f: lowerCamelCase :List[Any] = f.read() with fsspec.open(__snake_case , '''rb''' , compression='''infer''' ) as f: lowerCamelCase :int = f.read() assert exported_content == original_content
49
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : def __init__( self : Any , __snake_case : Optional[int] , __snake_case : int=13 , __snake_case : str=[30, 30] , __snake_case : Tuple=2 , __snake_case : Optional[Any]=3 , __snake_case : int=True , __snake_case : Tuple=True , __snake_case : List[Any]=32 , __snake_case : int=5 , __snake_case : Optional[Any]=4 , __snake_case : Union[str, Any]=37 , __snake_case : str="gelu" , __snake_case : Tuple=0.1 , __snake_case : List[Any]=0.1 , __snake_case : Union[str, Any]=10 , __snake_case : str=0.0_2 , __snake_case : Union[str, Any]=3 , __snake_case : Union[str, Any]=None , __snake_case : List[str]=8 , __snake_case : Any=10 , ): lowerCamelCase :Optional[Any] = parent lowerCamelCase :List[Any] = batch_size lowerCamelCase :Any = image_size lowerCamelCase :Union[str, Any] = patch_size lowerCamelCase :Any = num_channels lowerCamelCase :List[Any] = is_training lowerCamelCase :Optional[Any] = use_labels lowerCamelCase :Any = hidden_size lowerCamelCase :List[Any] = num_hidden_layers lowerCamelCase :List[str] = num_attention_heads lowerCamelCase :Tuple = intermediate_size lowerCamelCase :List[str] = hidden_act lowerCamelCase :List[str] = hidden_dropout_prob lowerCamelCase :Any = attention_probs_dropout_prob lowerCamelCase :List[Any] = type_sequence_label_size lowerCamelCase :Optional[int] = initializer_range lowerCamelCase :List[Any] = num_labels lowerCamelCase :Any = scope lowerCamelCase :Union[str, Any] = n_targets lowerCamelCase :Optional[Any] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowerCamelCase :Tuple = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowerCamelCase :str = num_patches + 1 + self.num_detection_tokens def snake_case ( self : List[str] ): lowerCamelCase :str = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowerCamelCase :List[str] = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowerCamelCase :Optional[int] = [] for i in range(self.batch_size ): lowerCamelCase :List[str] = {} lowerCamelCase :Tuple = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=__snake_case ) lowerCamelCase :List[str] = torch.rand(self.n_targets , 4 , device=__snake_case ) labels.append(__snake_case ) lowerCamelCase :str = self.get_config() return config, pixel_values, labels def snake_case ( self : Union[str, Any] ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__snake_case , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def snake_case ( self : Tuple , __snake_case : Tuple , __snake_case : Tuple , __snake_case : Any ): lowerCamelCase :Optional[Any] = YolosModel(config=__snake_case ) model.to(__snake_case ) model.eval() lowerCamelCase :Union[str, Any] = model(__snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def snake_case ( self : Dict , __snake_case : str , __snake_case : Optional[int] , __snake_case : Optional[Any] ): lowerCamelCase :int = YolosForObjectDetection(__snake_case ) model.to(__snake_case ) model.eval() lowerCamelCase :str = model(pixel_values=__snake_case ) lowerCamelCase :Any = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) lowerCamelCase :int = model(pixel_values=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def snake_case ( self : int ): lowerCamelCase :List[Any] = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase :str = config_and_inputs lowerCamelCase :Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () _UpperCAmelCase = ( {'feature-extraction': YolosModel, 'object-detection': YolosForObjectDetection} if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def snake_case ( self : Any , __snake_case : List[Any] , __snake_case : Tuple , __snake_case : Dict=False ): lowerCamelCase :Optional[int] = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowerCamelCase :Dict = [] for i in range(self.model_tester.batch_size ): lowerCamelCase :Optional[Any] = {} lowerCamelCase :List[Any] = torch.ones( size=(self.model_tester.n_targets,) , device=__snake_case , dtype=torch.long ) lowerCamelCase :str = torch.ones( self.model_tester.n_targets , 4 , device=__snake_case , dtype=torch.float ) labels.append(__snake_case ) lowerCamelCase :Union[str, Any] = labels return inputs_dict def snake_case ( self : Tuple ): lowerCamelCase :Union[str, Any] = YolosModelTester(self ) lowerCamelCase :Dict = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=37 ) def snake_case ( self : Union[str, Any] ): self.config_tester.run_common_tests() def snake_case ( self : Optional[Any] ): # YOLOS does not use inputs_embeds pass def snake_case ( self : Tuple ): lowerCamelCase , lowerCamelCase :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :Optional[int] = model_class(__snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase :str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case , nn.Linear ) ) def snake_case ( self : str ): lowerCamelCase , lowerCamelCase :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :str = model_class(__snake_case ) lowerCamelCase :Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase :Tuple = [*signature.parameters.keys()] lowerCamelCase :Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __snake_case ) def snake_case ( self : int ): lowerCamelCase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def snake_case ( self : str ): lowerCamelCase , lowerCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase :int = True # in YOLOS, the seq_len is different lowerCamelCase :str = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowerCamelCase :str = True lowerCamelCase :Tuple = False lowerCamelCase :Optional[int] = True lowerCamelCase :int = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :str = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :str = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase :Optional[Any] = True lowerCamelCase :str = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :Tuple = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Tuple = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowerCamelCase :Optional[int] = len(__snake_case ) # Check attention is always last and order is fine lowerCamelCase :Union[str, Any] = True lowerCamelCase :List[Any] = True lowerCamelCase :Tuple = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :int = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Dict = 1 self.assertEqual(out_len + added_hidden_states , len(__snake_case ) ) lowerCamelCase :Dict = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def snake_case ( self : List[str] ): def check_hidden_states_output(__snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Tuple ): lowerCamelCase :Union[str, Any] = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :Any = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Optional[Any] = outputs.hidden_states lowerCamelCase :Any = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__snake_case ) , __snake_case ) # YOLOS has a different seq_length lowerCamelCase :List[str] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowerCamelCase , lowerCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :Union[str, Any] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase :Any = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*__snake_case ) @slow def snake_case ( self : Dict ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase :Tuple = YolosModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def _lowerCamelCase ( ): lowerCamelCase :int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): @cached_property def snake_case ( self : Tuple ): return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def snake_case ( self : Dict ): lowerCamelCase :Union[str, Any] = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(__snake_case ) lowerCamelCase :Optional[Any] = self.default_image_processor lowerCamelCase :str = prepare_img() lowerCamelCase :Dict = image_processor(images=__snake_case , return_tensors='''pt''' ).to(__snake_case ) # forward pass with torch.no_grad(): lowerCamelCase :Optional[Any] = model(inputs.pixel_values ) # verify outputs lowerCamelCase :int = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , __snake_case ) lowerCamelCase :Any = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=__snake_case , ) lowerCamelCase :Any = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __snake_case , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , __snake_case , atol=1e-4 ) ) # verify postprocessing lowerCamelCase :List[str] = image_processor.post_process_object_detection( __snake_case , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] lowerCamelCase :List[str] = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(__snake_case ) lowerCamelCase :str = [75, 75, 17, 63, 17] lowerCamelCase :Tuple = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(__snake_case ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , __snake_case , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , __snake_case ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , __snake_case ) )
49
1
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A__ = logging.get_logger(__name__) A__ = """▁""" A__ = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", } A__ = { """vocab_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json""" ), }, """spm_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model""" ) }, } A__ = { """facebook/s2t-small-librispeech-asr""": 1_024, } A__ = ["""pt""", """fr""", """ru""", """nl""", """ro""", """it""", """es""", """de"""] A__ = {"""mustc""": MUSTC_LANGS} class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = MAX_MODEL_INPUT_SIZES _UpperCAmelCase = ['input_ids', 'attention_mask'] _UpperCAmelCase = [] def __init__( self : Tuple , __snake_case : Optional[Any] , __snake_case : str , __snake_case : Tuple="<s>" , __snake_case : Dict="</s>" , __snake_case : List[str]="<pad>" , __snake_case : Optional[Any]="<unk>" , __snake_case : Optional[Any]=False , __snake_case : Tuple=False , __snake_case : int=None , __snake_case : List[str]=None , __snake_case : Optional[Dict[str, Any]] = None , **__snake_case : str , ): lowerCamelCase :Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , do_upper_case=__snake_case , do_lower_case=__snake_case , tgt_lang=__snake_case , lang_codes=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) lowerCamelCase :Optional[int] = do_upper_case lowerCamelCase :int = do_lower_case lowerCamelCase :Dict = load_json(__snake_case ) lowerCamelCase :Tuple = {v: k for k, v in self.encoder.items()} lowerCamelCase :List[Any] = spm_file lowerCamelCase :Union[str, Any] = load_spm(__snake_case , self.sp_model_kwargs ) if lang_codes is not None: lowerCamelCase :List[str] = lang_codes lowerCamelCase :int = LANGUAGES[lang_codes] lowerCamelCase :Tuple = [F"<lang:{lang}>" for lang in self.langs] lowerCamelCase :Optional[int] = {lang: self.sp_model.PieceToId(F"<lang:{lang}>" ) for lang in self.langs} lowerCamelCase :str = self.lang_tokens lowerCamelCase :List[Any] = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: lowerCamelCase :int = {} @property def snake_case ( self : Optional[Any] ): return len(self.encoder ) @property def snake_case ( self : int ): return self._tgt_lang @tgt_lang.setter def snake_case ( self : List[str] , __snake_case : Union[str, Any] ): lowerCamelCase :Dict = new_tgt_lang self.set_tgt_lang_special_tokens(__snake_case ) def snake_case ( self : Tuple , __snake_case : str ): lowerCamelCase :Any = self.lang_code_to_id[tgt_lang] lowerCamelCase :List[str] = [lang_code_id] def snake_case ( self : Any , __snake_case : str ): return self.sp_model.encode(__snake_case , out_type=__snake_case ) def snake_case ( self : Tuple , __snake_case : int ): return self.encoder.get(__snake_case , self.encoder[self.unk_token] ) def snake_case ( self : Dict , __snake_case : int ): return self.decoder.get(__snake_case , self.unk_token ) def snake_case ( self : Optional[int] , __snake_case : List[str] ): lowerCamelCase :Any = [] lowerCamelCase :int = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: lowerCamelCase :int = self.sp_model.decode(__snake_case ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " lowerCamelCase :Any = [] else: current_sub_tokens.append(__snake_case ) lowerCamelCase :int = self.sp_model.decode(__snake_case ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def snake_case ( self : int , __snake_case : Tuple , __snake_case : Any=None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def snake_case ( self : Any , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) lowerCamelCase :List[str] = [1] * len(self.prefix_tokens ) lowerCamelCase :Union[str, Any] = [1] if token_ids_a is None: return prefix_ones + ([0] * len(__snake_case )) + suffix_ones return prefix_ones + ([0] * len(__snake_case )) + ([0] * len(__snake_case )) + suffix_ones def snake_case ( self : Tuple ): lowerCamelCase :List[str] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ): lowerCamelCase :Any = self.__dict__.copy() lowerCamelCase :str = None return state def __setstate__( self : Any , __snake_case : Dict ): lowerCamelCase :int = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowerCamelCase :List[str] = {} lowerCamelCase :Tuple = load_spm(self.spm_file , self.sp_model_kwargs ) def snake_case ( self : Optional[Any] , __snake_case : str , __snake_case : Optional[str] = None ): lowerCamelCase :int = Path(__snake_case ) assert save_dir.is_dir(), F"{save_directory} should be a directory" lowerCamelCase :List[Any] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) lowerCamelCase :Optional[Any] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , __snake_case ) if os.path.abspath(self.spm_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __snake_case ) elif not os.path.isfile(self.spm_file ): with open(__snake_case , '''wb''' ) as fi: lowerCamelCase :List[str] = self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (str(__snake_case ), str(__snake_case )) def _lowerCamelCase ( a_ : str , a_ : Dict[str, Any]): lowerCamelCase :Tuple = sentencepiece.SentencePieceProcessor(**a_) spm.Load(str(a_)) return spm def _lowerCamelCase ( a_ : str): with open(a_ , '''r''') as f: return json.load(a_) def _lowerCamelCase ( a_ : List[str] , a_ : str): with open(a_ , '''w''') as f: json.dump(a_ , a_ , indent=2)
49
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Tuple ): lowerCamelCase :List[Any] = inspect.getfile(accelerate.test_utils ) lowerCamelCase :Dict = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 lowerCamelCase :Any = test_metrics @require_cpu def snake_case ( self : Dict ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def snake_case ( self : int ): debug_launcher(self.test_metrics.main ) @require_single_gpu def snake_case ( self : Any ): self.test_metrics.main() @require_multi_gpu def snake_case ( self : Optional[int] ): print(F"Found {torch.cuda.device_count()} devices." ) lowerCamelCase :Optional[int] = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__snake_case , env=os.environ.copy() )
49
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A__ = {"""processing_layoutxlm""": ["""LayoutXLMProcessor"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""LayoutXLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""LayoutXLMTokenizerFast"""] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
49
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = '' _UpperCAmelCase = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) _UpperCAmelCase = None # compression type in fsspec. ex: "gzip" _UpperCAmelCase = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : str , __snake_case : str = "" , __snake_case : Optional[str] = None , __snake_case : Optional[dict] = None , **__snake_case : Dict ): super().__init__(self , **__snake_case ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode lowerCamelCase :Optional[Any] = fsspec.open( __snake_case , mode='''rb''' , protocol=__snake_case , compression=self.compression , client_kwargs={ '''requote_redirect_url''': False, # see https://github.com/huggingface/datasets/pull/5459 '''trust_env''': True, # Enable reading proxy env variables. **(target_options or {}).pop('''client_kwargs''' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) lowerCamelCase :List[str] = os.path.basename(self.file.path.split('''::''' )[0] ) lowerCamelCase :Dict = ( self.compressed_name[: self.compressed_name.rindex('''.''' )] if '''.''' in self.compressed_name else self.compressed_name ) lowerCamelCase :List[str] = None @classmethod def snake_case ( cls : Any , __snake_case : Any ): # compressed file paths are always relative to the archive root return super()._strip_protocol(__snake_case ).lstrip('''/''' ) def snake_case ( self : Any ): if self.dir_cache is None: lowerCamelCase :Optional[Any] = {**self.file.fs.info(self.file.path ), '''name''': self.uncompressed_name} lowerCamelCase :Optional[Any] = {f['''name''']: f} def snake_case ( self : Union[str, Any] , __snake_case : str ): return self.file.open().read() def snake_case ( self : Optional[int] , __snake_case : str , __snake_case : str = "rb" , __snake_case : int=None , __snake_case : Optional[int]=True , __snake_case : str=None , **__snake_case : str , ): lowerCamelCase :List[str] = self._strip_protocol(__snake_case ) if mode != "rb": raise ValueError(F"Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'" ) return self.file.open() class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'bz2' _UpperCAmelCase = 'bz2' _UpperCAmelCase = '.bz2' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'gzip' _UpperCAmelCase = 'gzip' _UpperCAmelCase = '.gz' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'lz4' _UpperCAmelCase = 'lz4' _UpperCAmelCase = '.lz4' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'xz' _UpperCAmelCase = 'xz' _UpperCAmelCase = '.xz' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'zstd' _UpperCAmelCase = 'zstd' _UpperCAmelCase = '.zst' def __init__( self : str , __snake_case : str , __snake_case : str = "rb" , __snake_case : Optional[str] = None , __snake_case : Optional[dict] = None , __snake_case : int = DEFAULT_BLOCK_SIZE , **__snake_case : int , ): super().__init__( fo=__snake_case , mode=__snake_case , target_protocol=__snake_case , target_options=__snake_case , block_size=__snake_case , **__snake_case , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 lowerCamelCase :Tuple = self.file.__enter__ class _lowerCAmelCase : def __init__( self : Dict , __snake_case : Tuple ): lowerCamelCase :Optional[int] = file_ def __enter__( self : Optional[int] ): self._file.__enter__() return self def __exit__( self : str , *__snake_case : Optional[Any] , **__snake_case : List[Any] ): self._file.__exit__(*__snake_case , **__snake_case ) def __iter__( self : Optional[Any] ): return iter(self._file ) def snake_case ( self : List[Any] ): return next(self._file ) def __getattr__( self : Any , __snake_case : str ): return getattr(self._file , __snake_case ) def fixed_enter(*__snake_case : Optional[int] , **__snake_case : str ): return WrappedFile(_enter(*__snake_case , **__snake_case ) ) lowerCamelCase :Dict = fixed_enter
49
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { """sayakpaul/vit-msn-base""": """https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json""", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'vit_msn' def __init__( self : List[str] , __snake_case : Union[str, Any]=768 , __snake_case : Any=12 , __snake_case : List[str]=12 , __snake_case : Any=3072 , __snake_case : Any="gelu" , __snake_case : int=0.0 , __snake_case : str=0.0 , __snake_case : List[Any]=0.0_2 , __snake_case : int=1e-0_6 , __snake_case : Any=224 , __snake_case : Dict=16 , __snake_case : Dict=3 , __snake_case : Union[str, Any]=True , **__snake_case : Union[str, Any] , ): super().__init__(**__snake_case ) lowerCamelCase :Optional[int] = hidden_size lowerCamelCase :int = num_hidden_layers lowerCamelCase :int = num_attention_heads lowerCamelCase :List[Any] = intermediate_size lowerCamelCase :Tuple = hidden_act lowerCamelCase :Union[str, Any] = hidden_dropout_prob lowerCamelCase :Any = attention_probs_dropout_prob lowerCamelCase :List[str] = initializer_range lowerCamelCase :Tuple = layer_norm_eps lowerCamelCase :Tuple = image_size lowerCamelCase :List[str] = patch_size lowerCamelCase :Dict = num_channels lowerCamelCase :Union[str, Any] = qkv_bias
49
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = LEDTokenizer _UpperCAmelCase = LEDTokenizerFast _UpperCAmelCase = True def snake_case ( self : Any ): super().setUp() lowerCamelCase :Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] lowerCamelCase :Any = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) lowerCamelCase :List[str] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCamelCase :int = {'''unk_token''': '''<unk>'''} lowerCamelCase :Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__snake_case ) ) def snake_case ( self : int , **__snake_case : int ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Dict , **__snake_case : Any ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Optional[Any] , __snake_case : Union[str, Any] ): return "lower newer", "lower newer" @cached_property def snake_case ( self : Any ): return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' ) @cached_property def snake_case ( self : int ): return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' ) @require_torch def snake_case ( self : str ): lowerCamelCase :Any = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowerCamelCase :List[Any] = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[Any] = tokenizer(__snake_case , max_length=len(__snake_case ) , padding=__snake_case , return_tensors='''pt''' ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowerCamelCase :List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(__snake_case , __snake_case ) @require_torch def snake_case ( self : Tuple ): lowerCamelCase :Dict = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Union[str, Any] = tokenizer(__snake_case , padding=__snake_case , return_tensors='''pt''' ) self.assertIn('''input_ids''' , __snake_case ) self.assertIn('''attention_mask''' , __snake_case ) self.assertNotIn('''labels''' , __snake_case ) self.assertNotIn('''decoder_attention_mask''' , __snake_case ) @require_torch def snake_case ( self : Union[str, Any] ): lowerCamelCase :Union[str, Any] = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :List[Any] = tokenizer(text_target=__snake_case , max_length=32 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) @require_torch def snake_case ( self : List[Any] ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[Any] = tokenizer( ['''I am a small frog''' * 1024, '''I am a small frog'''] , padding=__snake_case , truncation=__snake_case , return_tensors='''pt''' ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def snake_case ( self : Optional[int] ): lowerCamelCase :Union[str, Any] = ['''A long paragraph for summarization.'''] lowerCamelCase :Any = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Union[str, Any] = tokenizer(__snake_case , return_tensors='''pt''' ) lowerCamelCase :Any = tokenizer(text_target=__snake_case , return_tensors='''pt''' ) lowerCamelCase :Optional[int] = inputs['''input_ids'''] lowerCamelCase :Any = targets['''input_ids'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def snake_case ( self : Dict ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[int] = ['''Summary of the text.''', '''Another summary.'''] lowerCamelCase :List[Any] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] lowerCamelCase :Optional[int] = tokenizer(__snake_case , padding=__snake_case ) lowerCamelCase :Union[str, Any] = [[0] * len(__snake_case ) for x in encoded_output['''input_ids''']] lowerCamelCase :str = tokenizer.pad(__snake_case ) self.assertSequenceEqual(outputs['''global_attention_mask'''] , __snake_case ) def snake_case ( self : Tuple ): pass def snake_case ( self : Optional[int] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase :Optional[Any] = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :Tuple = self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :int = '''A, <mask> AllenNLP sentence.''' lowerCamelCase :str = tokenizer_r.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case ) lowerCamelCase :str = tokenizer_p.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case ) self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) lowerCamelCase :Optional[int] = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) lowerCamelCase :Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __snake_case , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __snake_case , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
49
1
from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging A__ = logging.get_logger(__name__) def _lowerCamelCase ( a_ : Union[tf.Tensor, np.ndarray]): if isinstance(a_ , np.ndarray): return list(tensor.shape) lowerCamelCase :int = tf.shape(a_) if tensor.shape == tf.TensorShape(a_): return dynamic lowerCamelCase :Union[str, Any] = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(a_)] def _lowerCamelCase ( a_ : tf.Tensor , a_ : Optional[int] = None , a_ : Optional[str] = None): return tf.nn.softmax(logits=logits + 1e-9 , axis=a_ , name=a_) def _lowerCamelCase ( a_ : Dict , a_ : Optional[int] , a_ : Union[str, Any] , a_ : str=1e-5 , a_ : List[Any]=-1): # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(a_ , a_): raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''') # Get mean and variance on the axis to be normalized lowerCamelCase , lowerCamelCase :Any = tf.nn.moments(a_ , axes=[axis] , keepdims=a_) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis lowerCamelCase :Dict = [1] * inputs.shape.rank lowerCamelCase :Tuple = shape_list(a_)[axis] lowerCamelCase :List[Any] = tf.reshape(a_ , a_) lowerCamelCase :str = tf.reshape(a_ , a_) # Compute layer normalization using the batch_normalization # function. lowerCamelCase :Dict = tf.nn.batch_normalization( a_ , a_ , a_ , offset=a_ , scale=a_ , variance_epsilon=a_ , ) return outputs def _lowerCamelCase ( a_ : Dict , a_ : List[str]=0 , a_ : Dict=-1): # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input lowerCamelCase :str = tf.shape(a_) lowerCamelCase :int = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1]) lowerCamelCase :int = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0) return tf.reshape(a_ , a_) def _lowerCamelCase ( a_ : tf.Tensor): if not isinstance(a_ , tf.Tensor): lowerCamelCase :Optional[int] = tf.convert_to_tensor(a_) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: lowerCamelCase :int = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: lowerCamelCase :List[Any] = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) lowerCamelCase :Tuple = ( tf.cast(1 , encoder_attention_mask.dtype) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def _lowerCamelCase ( a_ : tf.Tensor , a_ : int , a_ : str = "input_ids"): tf.debugging.assert_less( a_ , tf.cast(a_ , dtype=tensor.dtype) , message=( F"The maximum value of {tensor_name} ({tf.math.reduce_max(a_)}) must be smaller than the embedding " F"layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time." ) , ) def _lowerCamelCase ( a_ : int , a_ : Dict , a_ : Any): lowerCamelCase :Optional[Any] = 6_45_12 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. lowerCamelCase :str = [x for x in data if len(a_) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( '''The following attributes cannot be saved to HDF5 file because ''' F"they are larger than {HDF5_OBJECT_HEADER_LIMIT} " F"bytes: {bad_attributes}") lowerCamelCase :Optional[int] = np.asarray(a_) lowerCamelCase :Union[str, Any] = 1 lowerCamelCase :Tuple = np.array_split(a_ , a_) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data): num_chunks += 1 lowerCamelCase :List[str] = np.array_split(a_ , a_) if num_chunks > 1: for chunk_id, chunk_data in enumerate(a_): lowerCamelCase :Any = chunk_data else: lowerCamelCase :List[Any] = data def _lowerCamelCase ( a_ : str , a_ : List[Any]): if name in group.attrs: lowerCamelCase :Union[str, Any] = [n.decode('''utf8''') if hasattr(a_ , '''decode''') else n for n in group.attrs[name]] else: lowerCamelCase :str = [] lowerCamelCase :List[Any] = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('''utf8''') if hasattr(a_ , '''decode''') else n for n in group.attrs['''%s%d''' % (name, chunk_id)]]) chunk_id += 1 return data def _lowerCamelCase ( a_ : Optional[Any]): def _expand_single_ad_tensor(a_ : Any): if isinstance(a_ , tf.Tensor) and t.shape.rank == 1: return tf.expand_dims(a_ , axis=-1) return t return tf.nest.map_structure(_expand_single_ad_tensor , a_)
49
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) A__ = { """configuration_layoutlmv2""": ["""LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv2Config"""], """processing_layoutlmv2""": ["""LayoutLMv2Processor"""], """tokenization_layoutlmv2""": ["""LayoutLMv2Tokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""LayoutLMv2TokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""LayoutLMv2FeatureExtractor"""] A__ = ["""LayoutLMv2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """LayoutLMv2ForQuestionAnswering""", """LayoutLMv2ForSequenceClassification""", """LayoutLMv2ForTokenClassification""", """LayoutLMv2Layer""", """LayoutLMv2Model""", """LayoutLMv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
49
1
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { """huggingface/autoformer-tourism-monthly""": """https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json""", } class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'autoformer' _UpperCAmelCase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self : Optional[int] , __snake_case : Optional[int] = None , __snake_case : Optional[int] = None , __snake_case : str = "student_t" , __snake_case : str = "nll" , __snake_case : int = 1 , __snake_case : List[int] = [1, 2, 3, 4, 5, 6, 7] , __snake_case : bool = True , __snake_case : int = 0 , __snake_case : int = 0 , __snake_case : int = 0 , __snake_case : int = 0 , __snake_case : Optional[List[int]] = None , __snake_case : Optional[List[int]] = None , __snake_case : int = 64 , __snake_case : int = 2 , __snake_case : int = 2 , __snake_case : int = 2 , __snake_case : int = 2 , __snake_case : int = 32 , __snake_case : int = 32 , __snake_case : str = "gelu" , __snake_case : float = 0.1 , __snake_case : float = 0.1 , __snake_case : float = 0.1 , __snake_case : float = 0.1 , __snake_case : float = 0.1 , __snake_case : int = 100 , __snake_case : float = 0.0_2 , __snake_case : bool = True , __snake_case : List[Any]=True , __snake_case : int = 10 , __snake_case : int = 25 , __snake_case : int = 3 , **__snake_case : Optional[int] , ): # time series specific configuration lowerCamelCase :List[str] = prediction_length lowerCamelCase :Tuple = context_length if context_length is not None else prediction_length lowerCamelCase :Union[str, Any] = distribution_output lowerCamelCase :Tuple = loss lowerCamelCase :Optional[Any] = input_size lowerCamelCase :Any = num_time_features lowerCamelCase :Dict = lags_sequence lowerCamelCase :Optional[int] = scaling lowerCamelCase :Dict = num_dynamic_real_features lowerCamelCase :Union[str, Any] = num_static_real_features lowerCamelCase :List[str] = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(__snake_case ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) lowerCamelCase :Dict = cardinality else: lowerCamelCase :Optional[Any] = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(__snake_case ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) lowerCamelCase :Optional[int] = embedding_dimension else: lowerCamelCase :Optional[int] = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowerCamelCase :Union[str, Any] = num_parallel_samples # Transformer architecture configuration lowerCamelCase :Optional[Any] = input_size * len(self.lags_sequence ) + self._number_of_features lowerCamelCase :Tuple = d_model lowerCamelCase :Dict = encoder_attention_heads lowerCamelCase :Union[str, Any] = decoder_attention_heads lowerCamelCase :Dict = encoder_ffn_dim lowerCamelCase :int = decoder_ffn_dim lowerCamelCase :List[str] = encoder_layers lowerCamelCase :int = decoder_layers lowerCamelCase :Optional[Any] = dropout lowerCamelCase :str = attention_dropout lowerCamelCase :Optional[int] = activation_dropout lowerCamelCase :List[str] = encoder_layerdrop lowerCamelCase :List[str] = decoder_layerdrop lowerCamelCase :List[Any] = activation_function lowerCamelCase :Optional[int] = init_std lowerCamelCase :str = use_cache # Autoformer lowerCamelCase :int = label_length lowerCamelCase :List[str] = moving_average lowerCamelCase :List[str] = autocorrelation_factor super().__init__(is_encoder_decoder=__snake_case , **__snake_case ) @property def snake_case ( self : List[Any] ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
49
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _lowerCAmelCase : @staticmethod def snake_case ( *__snake_case : str , **__snake_case : str ): pass @is_pipeline_test @require_vision class _lowerCAmelCase ( unittest.TestCase ): @require_torch def snake_case ( self : Union[str, Any] ): lowerCamelCase :Optional[int] = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Dict = image_classifier(__snake_case , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__snake_case ) , [ [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}], [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}], ] , ) lowerCamelCase :Tuple = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], ] , ) @require_tf def snake_case ( self : Tuple ): lowerCamelCase :Tuple = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Optional[Any] = image_classifier(__snake_case , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(__snake_case ) , [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}] , ) lowerCamelCase :int = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], ] , ) @slow @require_torch def snake_case ( self : Any ): lowerCamelCase :str = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Optional[Any] = image_classifier(__snake_case , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) lowerCamelCase :Any = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def snake_case ( self : Optional[Any] ): lowerCamelCase :Union[str, Any] = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes lowerCamelCase :Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Dict = image_classifier(__snake_case , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) lowerCamelCase :Any = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , )
49
1
from maths.prime_factors import prime_factors def _lowerCamelCase ( a_ : int): if not isinstance(a_ , a_): lowerCamelCase :Tuple = F"Input value of [number={number}] must be an integer" raise TypeError(a_) if number < 1: raise ValueError('''Input must be a positive integer''') return -1 if len(prime_factors(a_)) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
49
import operator as op def _lowerCamelCase ( a_ : Tuple): lowerCamelCase :int = [] lowerCamelCase :List[str] = lambda a_ , a_: int(x / y) # noqa: E731 integer division operation lowerCamelCase :Optional[int] = { '''^''': op.pow, '''*''': op.mul, '''/''': div, '''+''': op.add, '''-''': op.sub, } # operators & their respective operation # print table header print('''Symbol'''.center(8) , '''Action'''.center(12) , '''Stack''' , sep=''' | ''') print('''-''' * (30 + len(a_))) for x in post_fix: if x.isdigit(): # if x in digit stack.append(a_) # append x to stack # output in tabular format print(x.rjust(8) , ('''push(''' + x + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') else: lowerCamelCase :Optional[Any] = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8) , ('''pop(''' + b + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') lowerCamelCase :str = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8) , ('''pop(''' + a + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') stack.append( str(opr[x](int(a_) , int(a_)))) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8) , ('''push(''' + a + x + b + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''' , ) return int(stack[0]) if __name__ == "__main__": A__ = input("""\n\nEnter a Postfix Equation (space separated) = """).split(""" """) print("""\n\tResult = """, solve(Postfix))
49
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ = { """configuration_nllb_moe""": [ """NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NllbMoeConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""", """NllbMoeForConditionalGeneration""", """NllbMoeModel""", """NllbMoePreTrainedModel""", """NllbMoeTop2Router""", """NllbMoeSparseMLP""", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
49
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() A__ = logging.get_logger(__name__) A__ = """Hello, World!""" A__ = """en_XX""" def _lowerCamelCase ( a_ : str , a_ : str , a_ : bool): lowerCamelCase :int = Path('''data_bin''') lowerCamelCase :Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(a_).parent) , checkpoint_file=Path(a_).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(a_) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(a_).parent / '''sentencepiece.bpe.model''') , src_dict=str(data_dir / '''dict.txt''') , ) xmod.eval() # disable dropout print(a_) lowerCamelCase :Any = xmod.model.encoder.sentence_encoder lowerCamelCase :List[str] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: lowerCamelCase :Dict = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our X-MOD config:''' , a_) lowerCamelCase :List[Any] = XmodForSequenceClassification(a_) if classification_head else XmodForMaskedLM(a_) model.eval() # Now let's copy all the weights. # Embeddings lowerCamelCase :Union[str, Any] = xmod_sent_encoder.embed_tokens.weight lowerCamelCase :Tuple = xmod_sent_encoder.embed_positions.weight lowerCamelCase :List[str] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight) # just zero them out b/c xmod doesn't use them. lowerCamelCase :List[Any] = xmod_sent_encoder.layernorm_embedding.weight lowerCamelCase :Optional[int] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers): # Encoder: start of layer lowerCamelCase :Union[str, Any] = model.roberta.encoder.layer[i] lowerCamelCase :List[str] = xmod_sent_encoder.layers[i] # self attention lowerCamelCase :Optional[int] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size)) ): raise AssertionError('''Dimensions of self-attention weights do not match.''') lowerCamelCase :Optional[int] = xmod_layer.self_attn.q_proj.weight lowerCamelCase :List[str] = xmod_layer.self_attn.q_proj.bias lowerCamelCase :str = xmod_layer.self_attn.k_proj.weight lowerCamelCase :Optional[Any] = xmod_layer.self_attn.k_proj.bias lowerCamelCase :Dict = xmod_layer.self_attn.v_proj.weight lowerCamelCase :Optional[int] = xmod_layer.self_attn.v_proj.bias # self-attention output lowerCamelCase :Optional[int] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('''Dimensions of self-attention output weights do not match.''') lowerCamelCase :List[Any] = xmod_layer.self_attn.out_proj.weight lowerCamelCase :Union[str, Any] = xmod_layer.self_attn.out_proj.bias lowerCamelCase :str = xmod_layer.self_attn_layer_norm.weight lowerCamelCase :List[Any] = xmod_layer.self_attn_layer_norm.bias # intermediate lowerCamelCase :Optional[int] = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of intermediate weights do not match.''') lowerCamelCase :int = xmod_layer.fca.weight lowerCamelCase :Union[str, Any] = xmod_layer.fca.bias # output lowerCamelCase :List[str] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of feed-forward weights do not match.''') lowerCamelCase :str = xmod_layer.fca.weight lowerCamelCase :int = xmod_layer.fca.bias lowerCamelCase :List[Any] = xmod_layer.final_layer_norm.weight lowerCamelCase :List[str] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: lowerCamelCase :List[str] = xmod_layer.adapter_layer_norm.weight lowerCamelCase :int = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys()) != sorted(xmod_layer.adapter_modules.keys()): raise AssertionError('''Lists of language adapters do not match.''') for lang_code, adapter in xmod_layer.adapter_modules.items(): lowerCamelCase :Optional[int] = bert_output.adapter_modules[lang_code] lowerCamelCase :Dict = xmod_layer.adapter_modules[lang_code] lowerCamelCase :List[Any] = from_adapter.fca.weight lowerCamelCase :List[Any] = from_adapter.fca.bias lowerCamelCase :Dict = from_adapter.fca.weight lowerCamelCase :Optional[Any] = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: lowerCamelCase :Dict = xmod_sent_encoder.layer_norm.weight lowerCamelCase :List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: lowerCamelCase :Union[str, Any] = xmod.model.classification_heads['''mnli'''].dense.weight lowerCamelCase :Tuple = xmod.model.classification_heads['''mnli'''].dense.bias lowerCamelCase :Optional[Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight lowerCamelCase :List[Any] = xmod.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head lowerCamelCase :int = xmod.model.encoder.lm_head.dense.weight lowerCamelCase :List[Any] = xmod.model.encoder.lm_head.dense.bias lowerCamelCase :Optional[int] = xmod.model.encoder.lm_head.layer_norm.weight lowerCamelCase :List[Any] = xmod.model.encoder.lm_head.layer_norm.bias lowerCamelCase :List[Any] = xmod.model.encoder.lm_head.weight lowerCamelCase :Any = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCamelCase :str = xmod.encode(a_).unsqueeze(0) # batch of size 1 model.roberta.set_default_language(a_) lowerCamelCase :Any = model(a_)[0] if classification_head: lowerCamelCase :Dict = xmod.model.classification_heads['''mnli'''](xmod.extract_features(a_)) else: lowerCamelCase :int = xmod.model(a_ , lang_id=[SAMPLE_LANGUAGE])[0] print(our_output.shape , their_output.shape) lowerCamelCase :List[str] = torch.max(torch.abs(our_output - their_output)).item() print(F"max_absolute_diff = {max_absolute_diff}") # ~ 1e-7 lowerCamelCase :str = torch.allclose(a_ , a_ , atol=1e-3) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''') if not success: raise Exception('''Something went wRoNg''') Path(a_).mkdir(parents=a_ , exist_ok=a_) print(F"Saving model to {pytorch_dump_folder_path}") model.save_pretrained(a_) if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) A__ = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
49
1
import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A__ = logging.get_logger(__name__) A__ = {"""vocab_file""": """sentencepiece.model"""} A__ = { """vocab_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/sentencepiece.model""", }, } A__ = { """google/rembert""": 256, } class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : str , __snake_case : Any , __snake_case : int=False , __snake_case : Optional[int]=True , __snake_case : List[Any]=True , __snake_case : Any="[CLS]" , __snake_case : Optional[int]="[SEP]" , __snake_case : int="[UNK]" , __snake_case : Optional[int]="[SEP]" , __snake_case : Any="[PAD]" , __snake_case : int="[CLS]" , __snake_case : Any="[MASK]" , **__snake_case : int , ): super().__init__( do_lower_case=__snake_case , remove_space=__snake_case , keep_accents=__snake_case , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , **__snake_case , ) lowerCamelCase :Dict = do_lower_case lowerCamelCase :Union[str, Any] = remove_space lowerCamelCase :Tuple = keep_accents lowerCamelCase :Optional[Any] = vocab_file lowerCamelCase :Any = spm.SentencePieceProcessor() self.sp_model.Load(__snake_case ) @property def snake_case ( self : Dict ): return len(self.sp_model ) def snake_case ( self : List[str] ): lowerCamelCase :str = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[Any] ): lowerCamelCase :Optional[int] = self.__dict__.copy() lowerCamelCase :Optional[int] = None return state def __setstate__( self : List[str] , __snake_case : Optional[Any] ): lowerCamelCase :Optional[Any] = d lowerCamelCase :Any = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def snake_case ( self : Optional[int] , __snake_case : Optional[Any] , __snake_case : List[Any]=False ): lowerCamelCase :Dict = self.sp_model.EncodeAsPieces(__snake_case ) return pieces def snake_case ( self : str , __snake_case : int ): return self.sp_model.PieceToId(__snake_case ) def snake_case ( self : List[Any] , __snake_case : Union[str, Any] ): return self.sp_model.IdToPiece(__snake_case ) def snake_case ( self : List[str] , __snake_case : List[str] ): lowerCamelCase :Optional[int] = self.sp_model.decode_pieces(__snake_case ) return out_string def snake_case ( self : Union[str, Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): lowerCamelCase :List[str] = [self.sep_token_id] lowerCamelCase :str = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def snake_case ( self : int , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__snake_case )) + [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1] def snake_case ( self : Dict , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): lowerCamelCase :int = [self.sep_token_id] lowerCamelCase :Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case ( self : str , __snake_case : str , __snake_case : Optional[str] = None ): if not os.path.isdir(__snake_case ): logger.error('''Vocabulary path ({}) should be a directory'''.format(__snake_case ) ) return lowerCamelCase :Dict = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) return (out_vocab_file,)
49
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { """andreasmadsen/efficient_mlm_m0.40""": ( """https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json""" ), } class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'roberta-prelayernorm' def __init__( self : str , __snake_case : List[str]=50265 , __snake_case : Union[str, Any]=768 , __snake_case : Tuple=12 , __snake_case : int=12 , __snake_case : Any=3072 , __snake_case : Optional[int]="gelu" , __snake_case : List[Any]=0.1 , __snake_case : int=0.1 , __snake_case : Union[str, Any]=512 , __snake_case : Dict=2 , __snake_case : int=0.0_2 , __snake_case : Any=1e-1_2 , __snake_case : Optional[int]=1 , __snake_case : Dict=0 , __snake_case : Optional[int]=2 , __snake_case : Any="absolute" , __snake_case : Union[str, Any]=True , __snake_case : List[str]=None , **__snake_case : Optional[int] , ): super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) lowerCamelCase :Optional[int] = vocab_size lowerCamelCase :Dict = hidden_size lowerCamelCase :Tuple = num_hidden_layers lowerCamelCase :Optional[int] = num_attention_heads lowerCamelCase :Any = hidden_act lowerCamelCase :List[Any] = intermediate_size lowerCamelCase :Union[str, Any] = hidden_dropout_prob lowerCamelCase :str = attention_probs_dropout_prob lowerCamelCase :Tuple = max_position_embeddings lowerCamelCase :int = type_vocab_size lowerCamelCase :Optional[Any] = initializer_range lowerCamelCase :Union[str, Any] = layer_norm_eps lowerCamelCase :Dict = position_embedding_type lowerCamelCase :List[Any] = use_cache lowerCamelCase :Optional[int] = classifier_dropout class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): @property def snake_case ( self : Any ): if self.task == "multiple-choice": lowerCamelCase :Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase :List[str] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
49
1
from collections import deque from math import floor from random import random from time import time class _lowerCAmelCase : def __init__( self : Any ): lowerCamelCase :Union[str, Any] = {} def snake_case ( self : Any , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : str=1 ): if self.graph.get(__snake_case ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: lowerCamelCase :Dict = [[w, v]] if not self.graph.get(__snake_case ): lowerCamelCase :List[Any] = [] def snake_case ( self : int ): return list(self.graph ) def snake_case ( self : Union[str, Any] , __snake_case : List[Any] , __snake_case : Optional[Any] ): if self.graph.get(__snake_case ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__snake_case ) def snake_case ( self : Optional[int] , __snake_case : Tuple=-2 , __snake_case : int=-1 ): if s == d: return [] lowerCamelCase :int = [] lowerCamelCase :Tuple = [] if s == -2: lowerCamelCase :str = list(self.graph )[0] stack.append(__snake_case ) visited.append(__snake_case ) lowerCamelCase :Dict = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase :Tuple = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__snake_case ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase :int = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__snake_case ) != 0: lowerCamelCase :List[str] = stack[len(__snake_case ) - 1] else: lowerCamelCase :Optional[Any] = ss # check if se have reached the starting point if len(__snake_case ) == 0: return visited def snake_case ( self : Union[str, Any] , __snake_case : List[Any]=-1 ): if c == -1: lowerCamelCase :str = floor(random() * 10000 ) + 10 for i in range(__snake_case ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowerCamelCase :Dict = floor(random() * c ) + 1 if n != i: self.add_pair(__snake_case , __snake_case , 1 ) def snake_case ( self : Optional[Any] , __snake_case : str=-2 ): lowerCamelCase :List[str] = deque() lowerCamelCase :List[str] = [] if s == -2: lowerCamelCase :Any = list(self.graph )[0] d.append(__snake_case ) visited.append(__snake_case ) while d: lowerCamelCase :Optional[int] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def snake_case ( self : str , __snake_case : str ): lowerCamelCase :Union[str, Any] = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def snake_case ( self : int , __snake_case : List[str] ): return len(self.graph[u] ) def snake_case ( self : str , __snake_case : List[Any]=-2 ): lowerCamelCase :List[Any] = [] lowerCamelCase :Dict = [] if s == -2: lowerCamelCase :Union[str, Any] = list(self.graph )[0] stack.append(__snake_case ) visited.append(__snake_case ) lowerCamelCase :Optional[int] = s lowerCamelCase :List[Any] = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase :Dict = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase :Optional[int] = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(__snake_case ) != 0: lowerCamelCase :Optional[int] = stack[len(__snake_case ) - 1] else: lowerCamelCase :Union[str, Any] = ss # check if se have reached the starting point if len(__snake_case ) == 0: return sorted_nodes def snake_case ( self : int ): lowerCamelCase :Any = [] lowerCamelCase :Optional[int] = [] lowerCamelCase :Any = list(self.graph )[0] stack.append(__snake_case ) visited.append(__snake_case ) lowerCamelCase :int = -2 lowerCamelCase :Union[str, Any] = [] lowerCamelCase :str = s lowerCamelCase :str = False lowerCamelCase :int = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase :Dict = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCamelCase :str = len(__snake_case ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase :Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCamelCase :Tuple = True if len(__snake_case ) != 0: lowerCamelCase :int = stack[len(__snake_case ) - 1] else: lowerCamelCase :Tuple = False indirect_parents.append(__snake_case ) lowerCamelCase :Tuple = s lowerCamelCase :str = ss # check if se have reached the starting point if len(__snake_case ) == 0: return list(__snake_case ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Union[str, Any] = [] lowerCamelCase :str = [] lowerCamelCase :List[str] = list(self.graph )[0] stack.append(__snake_case ) visited.append(__snake_case ) lowerCamelCase :List[str] = -2 lowerCamelCase :Optional[Any] = [] lowerCamelCase :Optional[Any] = s lowerCamelCase :Tuple = False lowerCamelCase :Optional[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase :str = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCamelCase :List[Any] = len(__snake_case ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase :Tuple = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCamelCase :Tuple = True if len(__snake_case ) != 0: lowerCamelCase :int = stack[len(__snake_case ) - 1] else: lowerCamelCase :Tuple = False indirect_parents.append(__snake_case ) lowerCamelCase :int = s lowerCamelCase :Tuple = ss # check if se have reached the starting point if len(__snake_case ) == 0: return False def snake_case ( self : List[Any] , __snake_case : List[str]=-2 , __snake_case : Optional[Any]=-1 ): lowerCamelCase :Union[str, Any] = time() self.dfs(__snake_case , __snake_case ) lowerCamelCase :Optional[Any] = time() return end - begin def snake_case ( self : int , __snake_case : int=-2 ): lowerCamelCase :List[Any] = time() self.bfs(__snake_case ) lowerCamelCase :Tuple = time() return end - begin class _lowerCAmelCase : def __init__( self : Union[str, Any] ): lowerCamelCase :Any = {} def snake_case ( self : Union[str, Any] , __snake_case : int , __snake_case : Dict , __snake_case : List[str]=1 ): # check if the u exists if self.graph.get(__snake_case ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist lowerCamelCase :int = [[w, v]] # add the other way if self.graph.get(__snake_case ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist lowerCamelCase :str = [[w, u]] def snake_case ( self : Tuple , __snake_case : Optional[int] , __snake_case : Tuple ): if self.graph.get(__snake_case ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__snake_case ) # the other way round if self.graph.get(__snake_case ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(__snake_case ) def snake_case ( self : int , __snake_case : int=-2 , __snake_case : List[Any]=-1 ): if s == d: return [] lowerCamelCase :int = [] lowerCamelCase :str = [] if s == -2: lowerCamelCase :Dict = list(self.graph )[0] stack.append(__snake_case ) visited.append(__snake_case ) lowerCamelCase :Optional[int] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase :List[str] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__snake_case ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase :Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__snake_case ) != 0: lowerCamelCase :Optional[int] = stack[len(__snake_case ) - 1] else: lowerCamelCase :Any = ss # check if se have reached the starting point if len(__snake_case ) == 0: return visited def snake_case ( self : Dict , __snake_case : List[str]=-1 ): if c == -1: lowerCamelCase :str = floor(random() * 10000 ) + 10 for i in range(__snake_case ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowerCamelCase :Optional[int] = floor(random() * c ) + 1 if n != i: self.add_pair(__snake_case , __snake_case , 1 ) def snake_case ( self : int , __snake_case : str=-2 ): lowerCamelCase :Optional[int] = deque() lowerCamelCase :List[Any] = [] if s == -2: lowerCamelCase :Union[str, Any] = list(self.graph )[0] d.append(__snake_case ) visited.append(__snake_case ) while d: lowerCamelCase :str = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def snake_case ( self : int , __snake_case : Any ): return len(self.graph[u] ) def snake_case ( self : Tuple ): lowerCamelCase :Optional[int] = [] lowerCamelCase :Optional[Any] = [] lowerCamelCase :Any = list(self.graph )[0] stack.append(__snake_case ) visited.append(__snake_case ) lowerCamelCase :Optional[Any] = -2 lowerCamelCase :Optional[int] = [] lowerCamelCase :int = s lowerCamelCase :str = False lowerCamelCase :List[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase :List[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCamelCase :Tuple = len(__snake_case ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase :Any = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCamelCase :str = True if len(__snake_case ) != 0: lowerCamelCase :Dict = stack[len(__snake_case ) - 1] else: lowerCamelCase :Tuple = False indirect_parents.append(__snake_case ) lowerCamelCase :Union[str, Any] = s lowerCamelCase :Any = ss # check if se have reached the starting point if len(__snake_case ) == 0: return list(__snake_case ) def snake_case ( self : Any ): lowerCamelCase :Optional[Any] = [] lowerCamelCase :Union[str, Any] = [] lowerCamelCase :Any = list(self.graph )[0] stack.append(__snake_case ) visited.append(__snake_case ) lowerCamelCase :Any = -2 lowerCamelCase :Dict = [] lowerCamelCase :Dict = s lowerCamelCase :Union[str, Any] = False lowerCamelCase :List[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCamelCase :Union[str, Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCamelCase :int = len(__snake_case ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCamelCase :Dict = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCamelCase :Optional[Any] = True if len(__snake_case ) != 0: lowerCamelCase :Any = stack[len(__snake_case ) - 1] else: lowerCamelCase :List[Any] = False indirect_parents.append(__snake_case ) lowerCamelCase :Any = s lowerCamelCase :Any = ss # check if se have reached the starting point if len(__snake_case ) == 0: return False def snake_case ( self : List[Any] ): return list(self.graph ) def snake_case ( self : Optional[int] , __snake_case : Dict=-2 , __snake_case : int=-1 ): lowerCamelCase :str = time() self.dfs(__snake_case , __snake_case ) lowerCamelCase :Tuple = time() return end - begin def snake_case ( self : List[str] , __snake_case : Union[str, Any]=-2 ): lowerCamelCase :List[Any] = time() self.bfs(__snake_case ) lowerCamelCase :Tuple = time() return end - begin
49
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = DebertaTokenizer _UpperCAmelCase = True _UpperCAmelCase = DebertaTokenizerFast def snake_case ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase :Dict = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] lowerCamelCase :List[str] = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) lowerCamelCase :Any = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCamelCase :Dict = {'''unk_token''': '''[UNK]'''} lowerCamelCase :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase :List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__snake_case ) ) def snake_case ( self : str , **__snake_case : Dict ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Optional[Any] , __snake_case : int ): lowerCamelCase :List[Any] = '''lower newer''' lowerCamelCase :List[str] = '''lower newer''' return input_text, output_text def snake_case ( self : str ): lowerCamelCase :Optional[int] = self.get_tokenizer() lowerCamelCase :Union[str, Any] = '''lower newer''' lowerCamelCase :str = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] lowerCamelCase :Optional[int] = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) lowerCamelCase :List[str] = tokens + [tokenizer.unk_token] lowerCamelCase :Optional[int] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def snake_case ( self : Optional[int] ): lowerCamelCase :List[str] = self.get_tokenizer() lowerCamelCase :Optional[int] = tokenizer('''Hello''' , '''World''' ) lowerCamelCase :List[str] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __snake_case ) @slow def snake_case ( self : str ): lowerCamelCase :Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) lowerCamelCase :Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__snake_case ) lowerCamelCase :Tuple = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__snake_case ) lowerCamelCase :Union[str, Any] = tokenizer.encode( '''sequence builders''' , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) lowerCamelCase :str = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) lowerCamelCase :Any = tokenizer.build_inputs_with_special_tokens(__snake_case ) lowerCamelCase :Dict = tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def snake_case ( self : str ): lowerCamelCase :List[str] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: lowerCamelCase :int = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) lowerCamelCase :Tuple = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] lowerCamelCase :List[Any] = tokenizer(__snake_case , padding=__snake_case ) lowerCamelCase :Union[str, Any] = [tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) for seq in encoding['''input_ids''']] # fmt: off lowerCamelCase :Any = { '''input_ids''': [ [1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on lowerCamelCase :Optional[int] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __snake_case ) for expected, decoded in zip(__snake_case , __snake_case ): self.assertEqual(__snake_case , __snake_case )
49
1
from __future__ import annotations class _lowerCAmelCase : def __init__( self : Dict , __snake_case : int ): lowerCamelCase :Tuple = order # a_{0} ... a_{k} lowerCamelCase :Dict = [1.0] + [0.0] * order # b_{0} ... b_{k} lowerCamelCase :Optional[int] = [1.0] + [0.0] * order # x[n-1] ... x[n-k] lowerCamelCase :Union[str, Any] = [0.0] * self.order # y[n-1] ... y[n-k] lowerCamelCase :Any = [0.0] * self.order def snake_case ( self : List[str] , __snake_case : list[float] , __snake_case : list[float] ): if len(__snake_case ) < self.order: lowerCamelCase :int = [1.0, *a_coeffs] if len(__snake_case ) != self.order + 1: lowerCamelCase :str = ( F"Expected a_coeffs to have {self.order + 1} elements " F"for {self.order}-order filter, got {len(__snake_case )}" ) raise ValueError(__snake_case ) if len(__snake_case ) != self.order + 1: lowerCamelCase :str = ( F"Expected b_coeffs to have {self.order + 1} elements " F"for {self.order}-order filter, got {len(__snake_case )}" ) raise ValueError(__snake_case ) lowerCamelCase :Optional[int] = a_coeffs lowerCamelCase :Tuple = b_coeffs def snake_case ( self : Tuple , __snake_case : float ): lowerCamelCase :int = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) lowerCamelCase :Union[str, Any] = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] lowerCamelCase :Optional[Any] = self.input_history[:-1] lowerCamelCase :Union[str, Any] = self.output_history[:-1] lowerCamelCase :int = sample lowerCamelCase :int = result return result
49
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) A__ = [ """cross_validation.py""", """gradient_accumulation.py""", """local_sgd.py""", """multi_process_metrics.py""", """memory.py""", """automatic_gradient_accumulation.py""", """fsdp_with_peak_mem_tracking.py""", """deepspeed_with_config_support.py""", """megatron_lm_gpt_pretraining.py""", ] class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Any , __snake_case : str , __snake_case : bool , __snake_case : str = None , __snake_case : list = None ): lowerCamelCase :Tuple = None lowerCamelCase :Tuple = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) lowerCamelCase :Optional[int] = os.path.abspath('''examples''' ) for item in os.listdir(__snake_case ): if item not in EXCLUDE_EXAMPLES: lowerCamelCase :Optional[int] = os.path.join(__snake_case , __snake_case ) if os.path.isfile(__snake_case ) and ".py" in item_path: with self.subTest( tested_script=__snake_case , feature_script=__snake_case , tested_section='''main()''' if parser_only else '''training_function()''' , ): lowerCamelCase :Union[str, Any] = compare_against_test( os.path.join(__snake_case , __snake_case ) , __snake_case , __snake_case , __snake_case ) lowerCamelCase :int = '''\n'''.join(__snake_case ) if special_strings is not None: for string in special_strings: lowerCamelCase :int = diff.replace(__snake_case , '''''' ) self.assertEqual(__snake_case , '''''' ) def snake_case ( self : Dict ): self.one_complete_example('''complete_nlp_example.py''' , __snake_case ) self.one_complete_example('''complete_nlp_example.py''' , __snake_case ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Union[str, Any] = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) lowerCamelCase :Optional[int] = [ ''' ''' * 16 + '''{\n\n''', ''' ''' * 20 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 20 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 20 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 20 + '''"epoch": epoch,\n\n''', ''' ''' * 16 + '''},\n\n''', ''' ''' * 16 + '''step=epoch,\n''', ''' ''' * 12, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , __snake_case , __snake_case , __snake_case ) self.one_complete_example('''complete_cv_example.py''' , __snake_case , __snake_case , __snake_case ) @mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '1'} ) class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = False @classmethod def snake_case ( cls : Optional[Any] ): super().setUpClass() lowerCamelCase :Any = tempfile.mkdtemp() lowerCamelCase :Optional[int] = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) lowerCamelCase :List[str] = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def snake_case ( cls : Dict ): super().tearDownClass() shutil.rmtree(cls._tmpdir ) def snake_case ( self : int ): lowerCamelCase :Any = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def snake_case ( self : List[Any] ): lowerCamelCase :Tuple = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n ".split() lowerCamelCase :List[Any] = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def snake_case ( self : List[str] ): lowerCamelCase :Dict = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}\n ".split() lowerCamelCase :Dict = run_command(self._launch_args + testargs , return_stdout=__snake_case ) self.assertNotIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) def snake_case ( self : str ): lowerCamelCase :List[Any] = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}\n ".split() lowerCamelCase :Optional[int] = run_command(self._launch_args + testargs , return_stdout=__snake_case ) if torch.cuda.is_available(): lowerCamelCase :Union[str, Any] = torch.cuda.device_count() else: lowerCamelCase :Dict = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) else: self.assertIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) @slow def snake_case ( self : Any ): lowerCamelCase :Tuple = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): lowerCamelCase :Dict = run_command(self._launch_args + testargs , return_stdout=__snake_case ) lowerCamelCase :Tuple = re.findall('''({.+})''' , __snake_case ) lowerCamelCase :Optional[Any] = [r for r in results if '''accuracy''' in r][-1] lowerCamelCase :List[str] = ast.literal_eval(__snake_case ) self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 ) def snake_case ( self : int ): lowerCamelCase :Dict = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case ( self : Any ): with tempfile.TemporaryDirectory() as tmpdir: lowerCamelCase :Tuple = F"\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__snake_case , '''tracking''' ) ) ) def snake_case ( self : Tuple ): lowerCamelCase :Tuple = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def snake_case ( self : Optional[Any] ): lowerCamelCase :int = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
49
1
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): # to overwrite at feature extractactor specific tests _UpperCAmelCase = None _UpperCAmelCase = None @property def snake_case ( self : Any ): return self.feat_extract_tester.prepare_feat_extract_dict() def snake_case ( self : Tuple ): lowerCamelCase :Dict = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(__snake_case , '''feature_size''' ) ) self.assertTrue(hasattr(__snake_case , '''sampling_rate''' ) ) self.assertTrue(hasattr(__snake_case , '''padding_value''' ) ) def snake_case ( self : Dict ): lowerCamelCase :int = self.feat_extract_tester.prepare_inputs_for_common() lowerCamelCase :Any = self.feature_extraction_class(**self.feat_extract_dict ) lowerCamelCase :str = feat_extract.model_input_names[0] lowerCamelCase :Optional[Any] = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(__snake_case ) == len(__snake_case ) for x, y in zip(__snake_case , processed_features[input_name] ) ) ) lowerCamelCase :Dict = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__snake_case ) lowerCamelCase :List[str] = BatchFeature({input_name: speech_inputs} , tensor_type='''np''' ) lowerCamelCase :Dict = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowerCamelCase :int = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def snake_case ( self : List[str] ): lowerCamelCase :Dict = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__snake_case ) lowerCamelCase :List[str] = self.feature_extraction_class(**self.feat_extract_dict ) lowerCamelCase :List[str] = feat_extract.model_input_names[0] lowerCamelCase :Union[str, Any] = BatchFeature({input_name: speech_inputs} , tensor_type='''pt''' ) lowerCamelCase :Dict = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowerCamelCase :List[str] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def snake_case ( self : Optional[Any] ): lowerCamelCase :int = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__snake_case ) lowerCamelCase :List[str] = self.feature_extraction_class(**self.feat_extract_dict ) lowerCamelCase :Tuple = feat_extract.model_input_names[0] lowerCamelCase :str = BatchFeature({input_name: speech_inputs} , tensor_type='''tf''' ) lowerCamelCase :List[Any] = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowerCamelCase :Tuple = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def snake_case ( self : Dict , __snake_case : Tuple=False ): def _inputs_have_equal_length(__snake_case : int ): lowerCamelCase :Any = len(input[0] ) for input_slice in input[1:]: if len(__snake_case ) != length: return False return True def _inputs_are_equal(__snake_case : Tuple , __snake_case : Tuple ): if len(__snake_case ) != len(__snake_case ): return False for input_slice_a, input_slice_a in zip(__snake_case , __snake_case ): if not np.allclose(np.asarray(__snake_case ) , np.asarray(__snake_case ) , atol=1e-3 ): return False return True lowerCamelCase :List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) lowerCamelCase :Tuple = self.feat_extract_tester.prepare_inputs_for_common(numpify=__snake_case ) lowerCamelCase :Any = feat_extract.model_input_names[0] lowerCamelCase :Tuple = BatchFeature({input_name: speech_inputs} ) lowerCamelCase :List[Any] = self.feat_extract_tester.seq_length_diff lowerCamelCase :List[str] = self.feat_extract_tester.max_seq_length + pad_diff lowerCamelCase :List[str] = self.feat_extract_tester.min_seq_length lowerCamelCase :Any = self.feat_extract_tester.batch_size lowerCamelCase :List[Any] = self.feat_extract_tester.feature_size # test padding for List[int] + numpy lowerCamelCase :Optional[int] = feat_extract.pad(__snake_case , padding=__snake_case ) lowerCamelCase :List[str] = input_a[input_name] lowerCamelCase :Union[str, Any] = feat_extract.pad(__snake_case , padding='''longest''' ) lowerCamelCase :Dict = input_a[input_name] lowerCamelCase :List[str] = feat_extract.pad(__snake_case , padding='''max_length''' , max_length=len(speech_inputs[-1] ) ) lowerCamelCase :List[Any] = input_a[input_name] lowerCamelCase :Tuple = feat_extract.pad(__snake_case , padding='''longest''' , return_tensors='''np''' ) lowerCamelCase :Optional[Any] = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(__snake_case ): feat_extract.pad(__snake_case , padding='''max_length''' )[input_name] lowerCamelCase :Any = feat_extract.pad( __snake_case , padding='''max_length''' , max_length=__snake_case , return_tensors='''np''' ) lowerCamelCase :List[str] = input_a[input_name] self.assertFalse(_inputs_have_equal_length(__snake_case ) ) self.assertTrue(_inputs_have_equal_length(__snake_case ) ) self.assertTrue(_inputs_have_equal_length(__snake_case ) ) self.assertTrue(_inputs_are_equal(__snake_case , __snake_case ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy lowerCamelCase :Tuple = feat_extract.pad(__snake_case , pad_to_multiple_of=10 ) lowerCamelCase :Union[str, Any] = input_a[input_name] lowerCamelCase :Dict = feat_extract.pad(__snake_case , padding='''longest''' , pad_to_multiple_of=10 ) lowerCamelCase :Optional[int] = input_a[input_name] lowerCamelCase :Tuple = feat_extract.pad( __snake_case , padding='''max_length''' , pad_to_multiple_of=10 , max_length=__snake_case ) lowerCamelCase :Optional[Any] = input_a[input_name] lowerCamelCase :Tuple = feat_extract.pad( __snake_case , padding='''max_length''' , pad_to_multiple_of=10 , max_length=__snake_case , return_tensors='''np''' , ) lowerCamelCase :str = input_a[input_name] self.assertTrue(all(len(__snake_case ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(__snake_case , __snake_case ) ) lowerCamelCase :Optional[Any] = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(__snake_case ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct lowerCamelCase :str = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1e-3 ) def snake_case ( self : Dict , __snake_case : Union[str, Any]=False ): def _inputs_have_equal_length(__snake_case : List[str] ): lowerCamelCase :str = len(input[0] ) for input_slice in input[1:]: if len(__snake_case ) != length: return False return True def _inputs_are_equal(__snake_case : Dict , __snake_case : List[str] ): if len(__snake_case ) != len(__snake_case ): return False for input_slice_a, input_slice_a in zip(__snake_case , __snake_case ): if not np.allclose(np.asarray(__snake_case ) , np.asarray(__snake_case ) , atol=1e-3 ): return False return True lowerCamelCase :str = self.feature_extraction_class(**self.feat_extract_dict ) lowerCamelCase :Any = self.feat_extract_tester.prepare_inputs_for_common(numpify=__snake_case ) lowerCamelCase :Tuple = feat_extract.model_input_names[0] lowerCamelCase :Optional[int] = BatchFeature({input_name: speech_inputs} ) # truncate to smallest lowerCamelCase :List[str] = feat_extract.pad( __snake_case , padding='''max_length''' , max_length=len(speech_inputs[0] ) , truncation=__snake_case ) lowerCamelCase :Optional[Any] = input_a[input_name] lowerCamelCase :List[Any] = feat_extract.pad(__snake_case , padding='''max_length''' , max_length=len(speech_inputs[0] ) ) lowerCamelCase :Any = input_a[input_name] self.assertTrue(_inputs_have_equal_length(__snake_case ) ) self.assertFalse(_inputs_have_equal_length(__snake_case ) ) # truncate to smallest with np lowerCamelCase :Optional[Any] = feat_extract.pad( __snake_case , padding='''max_length''' , max_length=len(speech_inputs[0] ) , return_tensors='''np''' , truncation=__snake_case , ) lowerCamelCase :int = input_a[input_name] lowerCamelCase :List[Any] = feat_extract.pad( __snake_case , padding='''max_length''' , max_length=len(speech_inputs[0] ) , return_tensors='''np''' ) lowerCamelCase :Optional[Any] = input_a[input_name] self.assertTrue(_inputs_have_equal_length(__snake_case ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(__snake_case ) ) # truncate to middle lowerCamelCase :Any = feat_extract.pad( __snake_case , padding='''max_length''' , max_length=len(speech_inputs[1] ) , truncation=__snake_case , return_tensors='''np''' , ) lowerCamelCase :Optional[int] = input_a[input_name] lowerCamelCase :Optional[int] = feat_extract.pad( __snake_case , padding='''max_length''' , max_length=len(speech_inputs[1] ) , truncation=__snake_case ) lowerCamelCase :Dict = input_a[input_name] lowerCamelCase :Optional[int] = feat_extract.pad( __snake_case , padding='''max_length''' , max_length=len(speech_inputs[1] ) , return_tensors='''np''' ) lowerCamelCase :List[Any] = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(__snake_case ) ) self.assertTrue(_inputs_have_equal_length(__snake_case ) ) self.assertTrue(_inputs_are_equal(__snake_case , __snake_case ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(__snake_case ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(__snake_case ): feat_extract.pad(__snake_case , truncation=__snake_case )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(__snake_case ): feat_extract.pad(__snake_case , padding='''longest''' , truncation=__snake_case )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(__snake_case ): feat_extract.pad(__snake_case , padding='''longest''' , truncation=__snake_case )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(__snake_case ): feat_extract.pad(__snake_case , padding='''max_length''' , truncation=__snake_case )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy lowerCamelCase :Any = 12 lowerCamelCase :Dict = feat_extract.pad( __snake_case , padding='''max_length''' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=__snake_case , truncation=__snake_case , ) lowerCamelCase :List[str] = input_a[input_name] lowerCamelCase :Dict = feat_extract.pad( __snake_case , padding='''max_length''' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=__snake_case , ) lowerCamelCase :List[str] = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of lowerCamelCase :List[str] = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: lowerCamelCase :List[Any] = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(__snake_case ) ) self.assertFalse(_inputs_have_equal_length(__snake_case ) ) def snake_case ( self : Union[str, Any] ): self._check_padding(numpify=__snake_case ) def snake_case ( self : int ): self._check_padding(numpify=__snake_case ) def snake_case ( self : Union[str, Any] ): self._check_truncation(numpify=__snake_case ) def snake_case ( self : str ): self._check_truncation(numpify=__snake_case ) @require_torch def snake_case ( self : Optional[int] ): lowerCamelCase :Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) lowerCamelCase :Optional[Any] = self.feat_extract_tester.prepare_inputs_for_common() lowerCamelCase :Dict = feat_extract.model_input_names[0] lowerCamelCase :Any = BatchFeature({input_name: speech_inputs} ) lowerCamelCase :Optional[Any] = feat_extract.pad(__snake_case , padding='''longest''' , return_tensors='''np''' )[input_name] lowerCamelCase :Dict = feat_extract.pad(__snake_case , padding='''longest''' , return_tensors='''pt''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) @require_tf def snake_case ( self : Optional[Any] ): lowerCamelCase :List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) lowerCamelCase :Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_common() lowerCamelCase :Tuple = feat_extract.model_input_names[0] lowerCamelCase :int = BatchFeature({input_name: speech_inputs} ) lowerCamelCase :str = feat_extract.pad(__snake_case , padding='''longest''' , return_tensors='''np''' )[input_name] lowerCamelCase :List[Any] = feat_extract.pad(__snake_case , padding='''longest''' , return_tensors='''tf''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def snake_case ( self : int ): lowerCamelCase :Union[str, Any] = self.feat_extract_dict lowerCamelCase :Union[str, Any] = True lowerCamelCase :int = self.feature_extraction_class(**__snake_case ) lowerCamelCase :Optional[int] = self.feat_extract_tester.prepare_inputs_for_common() lowerCamelCase :Tuple = [len(__snake_case ) for x in speech_inputs] lowerCamelCase :Optional[int] = feat_extract.model_input_names[0] lowerCamelCase :int = BatchFeature({input_name: speech_inputs} ) lowerCamelCase :int = feat_extract.pad(__snake_case , padding='''longest''' , return_tensors='''np''' ) self.assertIn('''attention_mask''' , __snake_case ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , __snake_case ) def snake_case ( self : Any ): lowerCamelCase :str = self.feat_extract_dict lowerCamelCase :Optional[int] = True lowerCamelCase :int = self.feature_extraction_class(**__snake_case ) lowerCamelCase :List[Any] = self.feat_extract_tester.prepare_inputs_for_common() lowerCamelCase :Optional[int] = [len(__snake_case ) for x in speech_inputs] lowerCamelCase :List[Any] = feat_extract.model_input_names[0] lowerCamelCase :str = BatchFeature({input_name: speech_inputs} ) lowerCamelCase :str = min(__snake_case ) lowerCamelCase :List[str] = feat_extract.pad( __snake_case , padding='''max_length''' , max_length=__snake_case , truncation=__snake_case , return_tensors='''np''' ) self.assertIn('''attention_mask''' , __snake_case ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
49
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs A__ = imread(R"""digital_image_processing/image_data/lena_small.jpg""") A__ = cvtColor(img, COLOR_BGR2GRAY) def _lowerCamelCase ( ): lowerCamelCase :int = cn.convert_to_negative(a_) # assert negative_img array for at least one True assert negative_img.any() def _lowerCamelCase ( ): with Image.open('''digital_image_processing/image_data/lena_small.jpg''') as img: # Work around assertion for response assert str(cc.change_contrast(a_ , 1_10)).startswith( '''<PIL.Image.Image image mode=RGB size=100x100 at''') def _lowerCamelCase ( ): lowerCamelCase :Optional[Any] = canny.gen_gaussian_kernel(9 , sigma=1.4) # Assert ambiguous array assert resp.all() def _lowerCamelCase ( ): lowerCamelCase :str = imread('''digital_image_processing/image_data/lena_small.jpg''' , 0) # assert ambiguous array for all == True assert canny_img.all() lowerCamelCase :Optional[Any] = canny.canny(a_) # assert canny array for at least one True assert canny_array.any() def _lowerCamelCase ( ): assert gg.gaussian_filter(a_ , 5 , sigma=0.9).all() def _lowerCamelCase ( ): # laplace diagonals lowerCamelCase :List[Any] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]]) lowerCamelCase :List[Any] = conv.img_convolve(a_ , a_).astype(a_) assert res.any() def _lowerCamelCase ( ): assert med.median_filter(a_ , 3).any() def _lowerCamelCase ( ): lowerCamelCase , lowerCamelCase :Union[str, Any] = sob.sobel_filter(a_) assert grad.any() and theta.any() def _lowerCamelCase ( ): lowerCamelCase :Dict = sp.make_sepia(a_ , 20) assert sepia.all() def _lowerCamelCase ( a_ : str = "digital_image_processing/image_data/lena_small.jpg"): lowerCamelCase :Any = bs.Burkes(imread(a_ , 1) , 1_20) burkes.process() assert burkes.output_img.any() def _lowerCamelCase ( a_ : str = "digital_image_processing/image_data/lena_small.jpg" , ): lowerCamelCase :Tuple = rs.NearestNeighbour(imread(a_ , 1) , 4_00 , 2_00) nn.process() assert nn.output.any() def _lowerCamelCase ( ): lowerCamelCase :Tuple = '''digital_image_processing/image_data/lena.jpg''' # Reading the image and converting it to grayscale. lowerCamelCase :Tuple = imread(a_ , 0) # Test for get_neighbors_pixel function() return not None lowerCamelCase :Dict = 0 lowerCamelCase :Optional[Any] = 0 lowerCamelCase :str = image[x_coordinate][y_coordinate] lowerCamelCase :Any = lbp.get_neighbors_pixel( a_ , a_ , a_ , a_) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCamelCase :int = np.zeros((image.shape[0], image.shape[1])) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0]): for j in range(0 , image.shape[1]): lowerCamelCase :Optional[int] = lbp.local_binary_value(a_ , a_ , a_) assert lbp_image.any()
49
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A__ = { """configuration_maskformer""": ["""MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MaskFormerConfig"""], """configuration_maskformer_swin""": ["""MaskFormerSwinConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""MaskFormerFeatureExtractor"""] A__ = ["""MaskFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """MaskFormerForInstanceSegmentation""", """MaskFormerModel""", """MaskFormerPreTrainedModel""", ] A__ = [ """MaskFormerSwinBackbone""", """MaskFormerSwinModel""", """MaskFormerSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
49
import os from math import logaa def _lowerCamelCase ( a_ : str = "base_exp.txt"): lowerCamelCase :float = 0 lowerCamelCase :Optional[int] = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(a_) , a_))): lowerCamelCase , lowerCamelCase :Optional[int] = list(map(a_ , line.split(''','''))) if x * logaa(a_) > largest: lowerCamelCase :List[Any] = x * logaa(a_) lowerCamelCase :Any = i + 1 return result if __name__ == "__main__": print(solution())
49
1
import numpy as np from PIL import Image def _lowerCamelCase ( a_ : np.ndarray , a_ : int , a_ : int): lowerCamelCase :Optional[int] = np.array(a_) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''') lowerCamelCase :Dict = 0 lowerCamelCase :int = 0 lowerCamelCase :List[Any] = 0 lowerCamelCase :Dict = 0 # compute the shape of the output matrix lowerCamelCase :Optional[Any] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape lowerCamelCase :Union[str, Any] = np.zeros((maxpool_shape, maxpool_shape)) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix lowerCamelCase :Union[str, Any] = np.max(arr[i : i + size, j : j + size]) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCamelCase :Dict = 0 lowerCamelCase :int = 0 return updated_arr def _lowerCamelCase ( a_ : np.ndarray , a_ : int , a_ : int): lowerCamelCase :Optional[int] = np.array(a_) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''') lowerCamelCase :Any = 0 lowerCamelCase :Any = 0 lowerCamelCase :Any = 0 lowerCamelCase :List[Any] = 0 # compute the shape of the output matrix lowerCamelCase :List[Any] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape lowerCamelCase :Union[str, Any] = np.zeros((avgpool_shape, avgpool_shape)) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix lowerCamelCase :Optional[int] = int(np.average(arr[i : i + size, j : j + size])) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCamelCase :str = 0 lowerCamelCase :List[str] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="""avgpooling""", verbose=True) # Loading the image A__ = Image.open("""path_to_image""") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
49
def _lowerCamelCase ( a_ : list): if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''') for cell_n in range(1 , len(grid[0])): grid[0][cell_n] += grid[0][cell_n - 1] lowerCamelCase :Any = grid[0] for row_n in range(1 , len(a_)): lowerCamelCase :List[str] = grid[row_n] lowerCamelCase :Union[str, Any] = fill_row(a_ , a_) lowerCamelCase :List[Any] = grid[row_n] return grid[-1][-1] def _lowerCamelCase ( a_ : list , a_ : list): current_row[0] += row_above[0] for cell_n in range(1 , len(a_)): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n]) return current_row if __name__ == "__main__": import doctest doctest.testmod()
49
1
import os from math import logaa def _lowerCamelCase ( a_ : str = "base_exp.txt"): lowerCamelCase :float = 0 lowerCamelCase :Optional[int] = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(a_) , a_))): lowerCamelCase , lowerCamelCase :Optional[int] = list(map(a_ , line.split(''','''))) if x * logaa(a_) > largest: lowerCamelCase :List[Any] = x * logaa(a_) lowerCamelCase :Any = i + 1 return result if __name__ == "__main__": print(solution())
49
import math def _lowerCamelCase ( a_ : int): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a_) + 1) , 6): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCamelCase ( a_ : float = 0.1): lowerCamelCase :Dict = 3 lowerCamelCase :List[Any] = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1): primes += is_prime(a_) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
49
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A__ = { """configuration_vivit""": ["""VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """VivitConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""VivitImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """VivitModel""", """VivitPreTrainedModel""", """VivitForVideoClassification""", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
49
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : str ): lowerCamelCase :int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :List[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :Optional[Any] = -1 lowerCamelCase :List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Tuple = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :str = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowerCamelCase :str = TextStreamer(__snake_case ) model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case , streamer=__snake_case ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCamelCase :Optional[int] = cs.out[:-1] self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : Dict ): lowerCamelCase :Tuple = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :int = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :List[Any] = -1 lowerCamelCase :Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Tuple = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :List[Any] = tokenizer.decode(greedy_ids[0] ) lowerCamelCase :List[str] = TextIteratorStreamer(__snake_case ) lowerCamelCase :List[str] = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} lowerCamelCase :Tuple = Thread(target=model.generate , kwargs=__snake_case ) thread.start() lowerCamelCase :Any = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : str ): lowerCamelCase :int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :Dict = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :List[str] = -1 lowerCamelCase :Optional[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Optional[Any] = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :List[str] = greedy_ids[:, input_ids.shape[1] :] lowerCamelCase :Union[str, Any] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowerCamelCase :List[str] = TextStreamer(__snake_case , skip_prompt=__snake_case ) model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case , streamer=__snake_case ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCamelCase :int = cs.out[:-1] self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : Optional[int] ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them lowerCamelCase :List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) lowerCamelCase :Union[str, Any] = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(__snake_case ) lowerCamelCase :Optional[int] = -1 lowerCamelCase :Union[str, Any] = torch.ones((1, 5) , device=__snake_case ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowerCamelCase :Dict = TextStreamer(__snake_case , skip_special_tokens=__snake_case ) model.generate(__snake_case , max_new_tokens=1 , do_sample=__snake_case , streamer=__snake_case ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowerCamelCase :Tuple = cs.out[:-1] # Remove the final "\n" lowerCamelCase :int = tokenizer(__snake_case , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def snake_case ( self : List[Any] ): lowerCamelCase :List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :Optional[int] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :Optional[int] = -1 lowerCamelCase :Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :List[Any] = TextIteratorStreamer(__snake_case , timeout=0.0_0_1 ) lowerCamelCase :Dict = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} lowerCamelCase :Tuple = Thread(target=model.generate , kwargs=__snake_case ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__snake_case ): lowerCamelCase :Dict = '''''' for new_text in streamer: streamer_text += new_text
49
1
import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib A__ = threading.Lock() A__ = None A__ = { """debug""": logging.DEBUG, """info""": logging.INFO, """warning""": logging.WARNING, """error""": logging.ERROR, """critical""": logging.CRITICAL, } A__ = logging.WARNING A__ = True def _lowerCamelCase ( ): lowerCamelCase :Tuple = os.getenv('''TRANSFORMERS_VERBOSITY''' , a_) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F"Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, " F"has to be one of: { ', '.join(log_levels.keys()) }") return _default_log_level def _lowerCamelCase ( ): return __name__.split('''.''')[0] def _lowerCamelCase ( ): return logging.getLogger(_get_library_name()) def _lowerCamelCase ( ): global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return lowerCamelCase :Tuple = logging.StreamHandler() # Set sys.stderr as stream. lowerCamelCase :Union[str, Any] = sys.stderr.flush # Apply our default configuration to the library root logger. lowerCamelCase :List[str] = _get_library_root_logger() library_root_logger.addHandler(_default_handler) library_root_logger.setLevel(_get_default_logging_level()) lowerCamelCase :Tuple = False def _lowerCamelCase ( ): global _default_handler with _lock: if not _default_handler: return lowerCamelCase :Optional[Any] = _get_library_root_logger() library_root_logger.removeHandler(_default_handler) library_root_logger.setLevel(logging.NOTSET) lowerCamelCase :int = None def _lowerCamelCase ( ): return log_levels def _lowerCamelCase ( a_ : Optional[str] = None): if name is None: lowerCamelCase :List[Any] = _get_library_name() _configure_library_root_logger() return logging.getLogger(a_) def _lowerCamelCase ( ): _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def _lowerCamelCase ( a_ : int): _configure_library_root_logger() _get_library_root_logger().setLevel(a_) def _lowerCamelCase ( ): return set_verbosity(a_) def _lowerCamelCase ( ): return set_verbosity(a_) def _lowerCamelCase ( ): return set_verbosity(a_) def _lowerCamelCase ( ): return set_verbosity(a_) def _lowerCamelCase ( ): _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler) def _lowerCamelCase ( ): _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler) def _lowerCamelCase ( a_ : logging.Handler): _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(a_) def _lowerCamelCase ( a_ : logging.Handler): _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(a_) def _lowerCamelCase ( ): _configure_library_root_logger() lowerCamelCase :List[str] = False def _lowerCamelCase ( ): _configure_library_root_logger() lowerCamelCase :str = True def _lowerCamelCase ( ): lowerCamelCase :Union[str, Any] = _get_library_root_logger().handlers for handler in handlers: lowerCamelCase :Any = logging.Formatter('''[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s''') handler.setFormatter(a_) def _lowerCamelCase ( ): lowerCamelCase :Optional[Any] = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(a_) def _lowerCamelCase ( self : Optional[int] , *a_ : str , **a_ : List[Any]): lowerCamelCase :str = os.getenv('''TRANSFORMERS_NO_ADVISORY_WARNINGS''' , a_) if no_advisory_warnings: return self.warning(*a_ , **a_) A__ = warning_advice @functools.lru_cache(a_) def _lowerCamelCase ( self : int , *a_ : Union[str, Any] , **a_ : Optional[Any]): self.warning(*a_ , **a_) A__ = warning_once class _lowerCAmelCase : def __init__( self : Any , *__snake_case : str , **__snake_case : List[str] ): # pylint: disable=unused-argument lowerCamelCase :Union[str, Any] = args[0] if args else None def __iter__( self : Optional[int] ): return iter(self._iterator ) def __getattr__( self : Optional[int] , __snake_case : Dict ): def empty_fn(*__snake_case : List[Any] , **__snake_case : Union[str, Any] ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Union[str, Any] ): return self def __exit__( self : Optional[int] , __snake_case : Any , __snake_case : List[str] , __snake_case : Optional[Any] ): return class _lowerCAmelCase : def __call__( self : Optional[int] , *__snake_case : Dict , **__snake_case : Optional[Any] ): if _tqdm_active: return tqdm_lib.tqdm(*__snake_case , **__snake_case ) else: return EmptyTqdm(*__snake_case , **__snake_case ) def snake_case ( self : int , *__snake_case : Union[str, Any] , **__snake_case : Union[str, Any] ): lowerCamelCase :Union[str, Any] = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*__snake_case , **__snake_case ) def snake_case ( self : Tuple ): if _tqdm_active: return tqdm_lib.tqdm.get_lock() A__ = _tqdm_cls() def _lowerCamelCase ( ): global _tqdm_active return bool(_tqdm_active) def _lowerCamelCase ( ): global _tqdm_active lowerCamelCase :List[str] = True hf_hub_utils.enable_progress_bars() def _lowerCamelCase ( ): global _tqdm_active lowerCamelCase :List[Any] = False hf_hub_utils.disable_progress_bars()
49
from maths.prime_factors import prime_factors def _lowerCamelCase ( a_ : int): if not isinstance(a_ , a_): lowerCamelCase :Tuple = F"Input value of [number={number}] must be an integer" raise TypeError(a_) if number < 1: raise ValueError('''Input must be a positive integer''') return -1 if len(prime_factors(a_)) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
49
1
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() A__ = logging.get_logger(__name__) def _lowerCamelCase ( a_ : Union[str, Any] , a_ : Union[str, Any]): lowerCamelCase :Dict = [] for i in range(encoder_config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"encoder.deit.blocks.{i}.norm1.weight", F"encoder.encoder.layer.{i}.layernorm_before.weight")) rename_keys.append((F"encoder.deit.blocks.{i}.norm1.bias", F"encoder.encoder.layer.{i}.layernorm_before.bias")) rename_keys.append( (F"encoder.deit.blocks.{i}.attn.proj.weight", F"encoder.encoder.layer.{i}.attention.output.dense.weight")) rename_keys.append( (F"encoder.deit.blocks.{i}.attn.proj.bias", F"encoder.encoder.layer.{i}.attention.output.dense.bias")) rename_keys.append( (F"encoder.deit.blocks.{i}.norm2.weight", F"encoder.encoder.layer.{i}.layernorm_after.weight")) rename_keys.append((F"encoder.deit.blocks.{i}.norm2.bias", F"encoder.encoder.layer.{i}.layernorm_after.bias")) rename_keys.append( (F"encoder.deit.blocks.{i}.mlp.fc1.weight", F"encoder.encoder.layer.{i}.intermediate.dense.weight")) rename_keys.append( (F"encoder.deit.blocks.{i}.mlp.fc1.bias", F"encoder.encoder.layer.{i}.intermediate.dense.bias")) rename_keys.append( (F"encoder.deit.blocks.{i}.mlp.fc2.weight", F"encoder.encoder.layer.{i}.output.dense.weight")) rename_keys.append((F"encoder.deit.blocks.{i}.mlp.fc2.bias", F"encoder.encoder.layer.{i}.output.dense.bias")) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ]) return rename_keys def _lowerCamelCase ( a_ : Dict , a_ : Tuple): for i in range(encoder_config.num_hidden_layers): # queries, keys and values (only weights, no biases) lowerCamelCase :int = state_dict.pop(F"encoder.deit.blocks.{i}.attn.qkv.weight") lowerCamelCase :Optional[Any] = in_proj_weight[ : encoder_config.hidden_size, : ] lowerCamelCase :Optional[Any] = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] lowerCamelCase :Any = in_proj_weight[ -encoder_config.hidden_size :, : ] def _lowerCamelCase ( a_ : Union[str, Any] , a_ : Dict , a_ : Optional[int]): lowerCamelCase :Optional[int] = dct.pop(a_) lowerCamelCase :List[Any] = val def _lowerCamelCase ( a_ : Any): if "handwritten" in checkpoint_url: lowerCamelCase :str = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: lowerCamelCase :List[str] = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' lowerCamelCase :Tuple = Image.open(requests.get(a_ , stream=a_).raw).convert('''RGB''') return im @torch.no_grad() def _lowerCamelCase ( a_ : List[str] , a_ : str): lowerCamelCase :Union[str, Any] = ViTConfig(image_size=3_84 , qkv_bias=a_) lowerCamelCase :Union[str, Any] = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: lowerCamelCase :str = 7_68 elif "large" in checkpoint_url: # use ViT-large encoder lowerCamelCase :List[Any] = 10_24 lowerCamelCase :Optional[Any] = 40_96 lowerCamelCase :Optional[Any] = 24 lowerCamelCase :int = 16 lowerCamelCase :Any = 10_24 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''') # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: lowerCamelCase :Optional[Any] = False lowerCamelCase :Tuple = '''relu''' lowerCamelCase :Optional[int] = 10_24 lowerCamelCase :Dict = True lowerCamelCase :Optional[int] = False lowerCamelCase :List[Any] = False # load HuggingFace model lowerCamelCase :Any = ViTModel(a_ , add_pooling_layer=a_) lowerCamelCase :Optional[Any] = TrOCRForCausalLM(a_) lowerCamelCase :Union[str, Any] = VisionEncoderDecoderModel(encoder=a_ , decoder=a_) model.eval() # load state_dict of original model, rename some keys lowerCamelCase :Union[str, Any] = torch.hub.load_state_dict_from_url(a_ , map_location='''cpu''' , check_hash=a_)['''model'''] lowerCamelCase :Any = create_rename_keys(a_ , a_) for src, dest in rename_keys: rename_key(a_ , a_ , a_) read_in_q_k_v(a_ , a_) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): lowerCamelCase :int = state_dict.pop(a_) if key.startswith('''decoder''') and "output_projection" not in key: lowerCamelCase :Optional[int] = val else: lowerCamelCase :Any = val # load state dict model.load_state_dict(a_) # Check outputs on an image lowerCamelCase :int = ViTImageProcessor(size=encoder_config.image_size) lowerCamelCase :Any = RobertaTokenizer.from_pretrained('''roberta-large''') lowerCamelCase :List[Any] = TrOCRProcessor(a_ , a_) lowerCamelCase :int = processor(images=prepare_img(a_) , return_tensors='''pt''').pixel_values # verify logits lowerCamelCase :List[Any] = torch.tensor([[model.config.decoder.decoder_start_token_id]]) lowerCamelCase :str = model(pixel_values=a_ , decoder_input_ids=a_) lowerCamelCase :Optional[Any] = outputs.logits lowerCamelCase :Optional[Any] = torch.Size([1, 1, 5_02_65]) if "trocr-base-handwritten" in checkpoint_url: lowerCamelCase :Dict = torch.tensor( [-1.4_502, -4.6_683, -0.5_347, -2.9_291, 9.1_435, -3.0_571, 8.9_764, 1.7_560, 8.7_358, -1.5_311]) elif "trocr-large-handwritten" in checkpoint_url: lowerCamelCase :Optional[int] = torch.tensor( [-2.6_437, -1.3_129, -2.2_596, -5.3_455, 6.3_539, 1.7_604, 5.4_991, 1.4_702, 5.6_113, 2.0_170]) elif "trocr-base-printed" in checkpoint_url: lowerCamelCase :str = torch.tensor( [-5.6_816, -5.8_388, 1.1_398, -6.9_034, 6.8_505, -2.4_393, 1.2_284, -1.0_232, -1.9_661, -3.9_210]) elif "trocr-large-printed" in checkpoint_url: lowerCamelCase :Tuple = torch.tensor( [-6.0_162, -7.0_959, 4.4_155, -5.1_063, 7.0_468, -3.1_631, 2.6_466, -0.3_081, -0.8_106, -1.7_535]) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , a_ , atol=1e-3), "First elements of logits not as expected" Path(a_).mkdir(exist_ok=a_) print(F"Saving model to {pytorch_dump_folder_path}") model.save_pretrained(a_) print(F"Saving processor to {pytorch_dump_folder_path}") processor.save_pretrained(a_) if __name__ == "__main__": A__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) A__ = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
49
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() A__ = logging.get_logger(__name__) def _lowerCamelCase ( a_ : str , a_ : str=False): lowerCamelCase :Optional[int] = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''')) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''')) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''')) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''')) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''')) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''')) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''')) for stage_idx in range(len(config.backbone_config.depths)): for layer_idx in range(config.backbone_config.depths[stage_idx]): rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias")) # transformer encoder for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight")) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias")) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight")) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias")) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight")) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias")) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight")) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias")) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight")) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias")) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ]) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCamelCase :List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''') else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ]) # fmt: on return rename_keys def _lowerCamelCase ( a_ : Any , a_ : Any , a_ : int=False): for i in range(config.num_hidden_layers): if base_model: lowerCamelCase :Union[str, Any] = '''''' else: lowerCamelCase :Optional[int] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase :Optional[Any] = state_dict.pop(F"blocks.{i}.attn.qkv.weight") lowerCamelCase :Any = state_dict.pop(F"blocks.{i}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict lowerCamelCase :Any = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase :Tuple = in_proj_bias[: config.hidden_size] lowerCamelCase :int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase :Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase :Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase :List[Any] = in_proj_bias[-config.hidden_size :] def _lowerCamelCase ( a_ : int): lowerCamelCase :Any = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(a_ , a_) def _lowerCamelCase ( a_ : int , a_ : Any , a_ : Tuple): lowerCamelCase :Optional[Any] = dct.pop(a_) lowerCamelCase :str = val def _lowerCamelCase ( ): lowerCamelCase :Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase :Tuple = Image.open(requests.get(a_ , stream=a_).raw) return im @torch.no_grad() def _lowerCamelCase ( a_ : Optional[Any] , a_ : Optional[Any] , a_ : Optional[Any]=False): lowerCamelCase :Optional[int] = BitConfig( global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=a_ , ) lowerCamelCase :Optional[int] = ViTHybridConfig(backbone_config=a_ , image_size=3_84 , num_labels=10_00) lowerCamelCase :List[Any] = False # load original model from timm lowerCamelCase :List[str] = timm.create_model(a_ , pretrained=a_) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCamelCase :List[str] = timm_model.state_dict() if base_model: remove_classification_head_(a_) lowerCamelCase :Tuple = create_rename_keys(a_ , a_) for src, dest in rename_keys: rename_key(a_ , a_ , a_) read_in_q_k_v(a_ , a_ , a_) lowerCamelCase :List[str] = '''huggingface/label-files''' lowerCamelCase :Any = '''imagenet-1k-id2label.json''' lowerCamelCase :List[Any] = json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''') , '''r''')) lowerCamelCase :Optional[Any] = {int(a_): v for k, v in idalabel.items()} lowerCamelCase :Optional[int] = idalabel lowerCamelCase :Union[str, Any] = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": lowerCamelCase :Optional[Any] = ViTHybridModel(a_).eval() else: lowerCamelCase :Dict = ViTHybridForImageClassification(a_).eval() model.load_state_dict(a_) # create image processor lowerCamelCase :Dict = create_transform(**resolve_data_config({} , model=a_)) lowerCamelCase :str = transform.transforms lowerCamelCase :int = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } lowerCamelCase :Any = ViTHybridImageProcessor( do_resize=a_ , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=a_ , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=a_ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCamelCase :Dict = prepare_img() lowerCamelCase :str = transform(a_).unsqueeze(0) lowerCamelCase :str = processor(a_ , return_tensors='''pt''').pixel_values # verify pixel values assert torch.allclose(a_ , a_) # verify logits with torch.no_grad(): lowerCamelCase :Optional[int] = model(a_) lowerCamelCase :Union[str, Any] = outputs.logits print('''Predicted class:''' , logits.argmax(-1).item()) if base_model: lowerCamelCase :Union[str, Any] = timm_model.forward_features(a_) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(a_ , outputs.pooler_output , atol=1e-3) else: lowerCamelCase :List[str] = timm_model(a_) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(a_ , outputs.logits , atol=1e-3) print('''Looks ok!''') if pytorch_dump_folder_path is not None: Path(a_).mkdir(exist_ok=a_) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}") model.save_pretrained(a_) print(F"Saving processor to {pytorch_dump_folder_path}") processor.save_pretrained(a_) if push_to_hub: print(F"Pushing model and processor to the hub {vit_name}") model.push_to_hub(F"ybelkada/{vit_name}") processor.push_to_hub(F"ybelkada/{vit_name}") if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_r50_s16_384""", type=str, help="""Name of the hybrid ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) A__ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
49
1
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) A__ = [ """cross_validation.py""", """gradient_accumulation.py""", """local_sgd.py""", """multi_process_metrics.py""", """memory.py""", """automatic_gradient_accumulation.py""", """fsdp_with_peak_mem_tracking.py""", """deepspeed_with_config_support.py""", """megatron_lm_gpt_pretraining.py""", ] class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Any , __snake_case : str , __snake_case : bool , __snake_case : str = None , __snake_case : list = None ): lowerCamelCase :Tuple = None lowerCamelCase :Tuple = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) lowerCamelCase :Optional[int] = os.path.abspath('''examples''' ) for item in os.listdir(__snake_case ): if item not in EXCLUDE_EXAMPLES: lowerCamelCase :Optional[int] = os.path.join(__snake_case , __snake_case ) if os.path.isfile(__snake_case ) and ".py" in item_path: with self.subTest( tested_script=__snake_case , feature_script=__snake_case , tested_section='''main()''' if parser_only else '''training_function()''' , ): lowerCamelCase :Union[str, Any] = compare_against_test( os.path.join(__snake_case , __snake_case ) , __snake_case , __snake_case , __snake_case ) lowerCamelCase :int = '''\n'''.join(__snake_case ) if special_strings is not None: for string in special_strings: lowerCamelCase :int = diff.replace(__snake_case , '''''' ) self.assertEqual(__snake_case , '''''' ) def snake_case ( self : Dict ): self.one_complete_example('''complete_nlp_example.py''' , __snake_case ) self.one_complete_example('''complete_nlp_example.py''' , __snake_case ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Union[str, Any] = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) lowerCamelCase :Optional[int] = [ ''' ''' * 16 + '''{\n\n''', ''' ''' * 20 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 20 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 20 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 20 + '''"epoch": epoch,\n\n''', ''' ''' * 16 + '''},\n\n''', ''' ''' * 16 + '''step=epoch,\n''', ''' ''' * 12, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , __snake_case , __snake_case , __snake_case ) self.one_complete_example('''complete_cv_example.py''' , __snake_case , __snake_case , __snake_case ) @mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '1'} ) class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = False @classmethod def snake_case ( cls : Optional[Any] ): super().setUpClass() lowerCamelCase :Any = tempfile.mkdtemp() lowerCamelCase :Optional[int] = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) lowerCamelCase :List[str] = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def snake_case ( cls : Dict ): super().tearDownClass() shutil.rmtree(cls._tmpdir ) def snake_case ( self : int ): lowerCamelCase :Any = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def snake_case ( self : List[Any] ): lowerCamelCase :Tuple = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n ".split() lowerCamelCase :List[Any] = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def snake_case ( self : List[str] ): lowerCamelCase :Dict = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}\n ".split() lowerCamelCase :Dict = run_command(self._launch_args + testargs , return_stdout=__snake_case ) self.assertNotIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) def snake_case ( self : str ): lowerCamelCase :List[Any] = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}\n ".split() lowerCamelCase :Optional[int] = run_command(self._launch_args + testargs , return_stdout=__snake_case ) if torch.cuda.is_available(): lowerCamelCase :Union[str, Any] = torch.cuda.device_count() else: lowerCamelCase :Dict = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) else: self.assertIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) @slow def snake_case ( self : Any ): lowerCamelCase :Tuple = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): lowerCamelCase :Dict = run_command(self._launch_args + testargs , return_stdout=__snake_case ) lowerCamelCase :Tuple = re.findall('''({.+})''' , __snake_case ) lowerCamelCase :Optional[Any] = [r for r in results if '''accuracy''' in r][-1] lowerCamelCase :List[str] = ast.literal_eval(__snake_case ) self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 ) def snake_case ( self : int ): lowerCamelCase :Dict = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case ( self : Any ): with tempfile.TemporaryDirectory() as tmpdir: lowerCamelCase :Tuple = F"\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__snake_case , '''tracking''' ) ) ) def snake_case ( self : Tuple ): lowerCamelCase :Tuple = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def snake_case ( self : Optional[Any] ): lowerCamelCase :int = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
49
def _lowerCamelCase ( a_ : int = 4_00_00_00): lowerCamelCase :Dict = [0, 1] lowerCamelCase :Optional[Any] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1]) if fib[i + 2] > n: break i += 1 lowerCamelCase :Dict = 0 for j in range(len(a_) - 1): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F'{solution() = }')
49
1
def _lowerCamelCase ( a_ : dict): lowerCamelCase :set[int] = set() # To detect a back edge, keep track of vertices currently in the recursion stack lowerCamelCase :set[int] = set() return any( node not in visited and depth_first_search(a_ , a_ , a_ , a_) for node in graph) def _lowerCamelCase ( a_ : dict , a_ : int , a_ : set , a_ : set): visited.add(a_) rec_stk.add(a_) for node in graph[vertex]: if node not in visited: if depth_first_search(a_ , a_ , a_ , a_): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(a_) return False if __name__ == "__main__": from doctest import testmod testmod()
49
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ = { """configuration_nllb_moe""": [ """NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NllbMoeConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""", """NllbMoeForConditionalGeneration""", """NllbMoeModel""", """NllbMoePreTrainedModel""", """NllbMoeTop2Router""", """NllbMoeSparseMLP""", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
49
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A__ = {"""configuration_opt""": ["""OPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """OPTConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """OPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """OPTForCausalLM""", """OPTModel""", """OPTPreTrainedModel""", """OPTForSequenceClassification""", """OPTForQuestionAnswering""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""TFOPTForCausalLM""", """TFOPTModel""", """TFOPTPreTrainedModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """FlaxOPTForCausalLM""", """FlaxOPTModel""", """FlaxOPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
49
import numpy class _lowerCAmelCase : def __init__( self : Dict , __snake_case : numpy.ndarray , __snake_case : numpy.ndarray ): lowerCamelCase :Dict = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. lowerCamelCase :Dict = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. lowerCamelCase :Dict = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. lowerCamelCase :Any = numpy.random.rand(3 , 1 ) # Real output values provided. lowerCamelCase :Union[str, Any] = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. lowerCamelCase :List[str] = numpy.zeros(output_array.shape ) def snake_case ( self : Optional[int] ): lowerCamelCase :Any = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. lowerCamelCase :Any = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. lowerCamelCase :Dict = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def snake_case ( self : Any ): lowerCamelCase :Union[str, Any] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) lowerCamelCase :Dict = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) lowerCamelCase :int = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def snake_case ( self : Dict , __snake_case : numpy.ndarray , __snake_case : int , __snake_case : bool ): for iteration in range(1 , iterations + 1 ): lowerCamelCase :Union[str, Any] = self.feedforward() self.back_propagation() if give_loss: lowerCamelCase :Tuple = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"Iteration {iteration} Loss: {loss}" ) def snake_case ( self : Optional[int] , __snake_case : numpy.ndarray ): lowerCamelCase :int = input_arr lowerCamelCase :Union[str, Any] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) lowerCamelCase :Optional[Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) lowerCamelCase :Optional[int] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def _lowerCamelCase ( a_ : numpy.ndarray): return 1 / (1 + numpy.exp(-value)) def _lowerCamelCase ( a_ : numpy.ndarray): return (value) * (1 - (value)) def _lowerCamelCase ( ): lowerCamelCase :Optional[Any] = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. lowerCamelCase :int = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa) # Calling neural network class. lowerCamelCase :List[Any] = TwoHiddenLayerNeuralNetwork( input_array=a_ , output_array=a_) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=a_ , iterations=10 , give_loss=a_) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa)) if __name__ == "__main__": example()
49
1
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. A__ = {"""LayoutLMv2Config""", """LayoutLMv3Config"""} @is_pipeline_test class _lowerCAmelCase ( unittest.TestCase ): _UpperCAmelCase = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _UpperCAmelCase = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: _UpperCAmelCase = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: _UpperCAmelCase = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def snake_case ( self : Dict , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : Dict ): lowerCamelCase :Any = ZeroShotClassificationPipeline( model=__snake_case , tokenizer=__snake_case , candidate_labels=['''polics''', '''health'''] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def snake_case ( self : int , __snake_case : str , __snake_case : List[Any] ): lowerCamelCase :List[str] = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics''' ) self.assertEqual(__snake_case , {'''sequence''': ANY(__snake_case ), '''labels''': [ANY(__snake_case )], '''scores''': [ANY(__snake_case )]} ) # No kwarg lowerCamelCase :Any = classifier('''Who are you voting for in 2020?''' , ['''politics'''] ) self.assertEqual(__snake_case , {'''sequence''': ANY(__snake_case ), '''labels''': [ANY(__snake_case )], '''scores''': [ANY(__snake_case )]} ) lowerCamelCase :Any = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics'''] ) self.assertEqual(__snake_case , {'''sequence''': ANY(__snake_case ), '''labels''': [ANY(__snake_case )], '''scores''': [ANY(__snake_case )]} ) lowerCamelCase :int = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics, public health''' ) self.assertEqual( __snake_case , {'''sequence''': ANY(__snake_case ), '''labels''': [ANY(__snake_case ), ANY(__snake_case )], '''scores''': [ANY(__snake_case ), ANY(__snake_case )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) , 1.0 ) lowerCamelCase :Dict = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health'''] ) self.assertEqual( __snake_case , {'''sequence''': ANY(__snake_case ), '''labels''': [ANY(__snake_case ), ANY(__snake_case )], '''scores''': [ANY(__snake_case ), ANY(__snake_case )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) , 1.0 ) lowerCamelCase :Optional[Any] = classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''This text is about {}''' ) self.assertEqual(__snake_case , {'''sequence''': ANY(__snake_case ), '''labels''': [ANY(__snake_case )], '''scores''': [ANY(__snake_case )]} ) # https://github.com/huggingface/transformers/issues/13846 lowerCamelCase :List[str] = classifier(['''I am happy'''] , ['''positive''', '''negative'''] ) self.assertEqual( __snake_case , [ {'''sequence''': ANY(__snake_case ), '''labels''': [ANY(__snake_case ), ANY(__snake_case )], '''scores''': [ANY(__snake_case ), ANY(__snake_case )]} for i in range(1 ) ] , ) lowerCamelCase :str = classifier(['''I am happy''', '''I am sad'''] , ['''positive''', '''negative'''] ) self.assertEqual( __snake_case , [ {'''sequence''': ANY(__snake_case ), '''labels''': [ANY(__snake_case ), ANY(__snake_case )], '''scores''': [ANY(__snake_case ), ANY(__snake_case )]} for i in range(2 ) ] , ) with self.assertRaises(__snake_case ): classifier('''''' , candidate_labels='''politics''' ) with self.assertRaises(__snake_case ): classifier(__snake_case , candidate_labels='''politics''' ) with self.assertRaises(__snake_case ): classifier('''Who are you voting for in 2020?''' , candidate_labels='''''' ) with self.assertRaises(__snake_case ): classifier('''Who are you voting for in 2020?''' , candidate_labels=__snake_case ) with self.assertRaises(__snake_case ): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''Not formatting template''' , ) with self.assertRaises(__snake_case ): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template=__snake_case , ) self.run_entailment_id(__snake_case ) def snake_case ( self : Dict , __snake_case : Pipeline ): lowerCamelCase :int = zero_shot_classifier.model.config lowerCamelCase :Optional[int] = config.labelaid lowerCamelCase :Optional[Any] = zero_shot_classifier.entailment_id lowerCamelCase :List[Any] = {'''LABEL_0''': 0, '''LABEL_1''': 1, '''LABEL_2''': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) lowerCamelCase :Any = {'''entailment''': 0, '''neutral''': 1, '''contradiction''': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) lowerCamelCase :Tuple = {'''ENTAIL''': 0, '''NON-ENTAIL''': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) lowerCamelCase :List[Any] = {'''ENTAIL''': 2, '''NEUTRAL''': 1, '''CONTR''': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) lowerCamelCase :Any = original_labelaid self.assertEqual(__snake_case , zero_shot_classifier.entailment_id ) @require_torch def snake_case ( self : str ): lowerCamelCase :str = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( '''Who are you voting for in 2020?''' * 100 , candidate_labels=['''politics''', '''public health''', '''science'''] ) @require_torch def snake_case ( self : Optional[Any] ): lowerCamelCase :Optional[int] = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) lowerCamelCase :Optional[int] = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(__snake_case ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @require_tf def snake_case ( self : Union[str, Any] ): lowerCamelCase :Any = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''tf''' , ) lowerCamelCase :Union[str, Any] = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(__snake_case ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @slow @require_torch def snake_case ( self : Dict ): lowerCamelCase :Union[str, Any] = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''pt''' ) lowerCamelCase :Optional[int] = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(__snake_case ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) lowerCamelCase :List[str] = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=__snake_case , ) self.assertEqual( nested_simplify(__snake_case ) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , ) @slow @require_tf def snake_case ( self : Tuple ): lowerCamelCase :Optional[Any] = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''tf''' ) lowerCamelCase :Optional[Any] = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(__snake_case ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) lowerCamelCase :int = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=__snake_case , ) self.assertEqual( nested_simplify(__snake_case ) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , )
49
def _lowerCamelCase ( a_ : str , a_ : str): lowerCamelCase :List[str] = len(a_) lowerCamelCase :List[str] = len(a_) lowerCamelCase :int = [[False for _ in range(m + 1)] for _ in range(n + 1)] lowerCamelCase :Optional[Any] = True for i in range(a_): for j in range(m + 1): if dp[i][j]: if j < m and a[i].upper() == b[j]: lowerCamelCase :Any = True if a[i].islower(): lowerCamelCase :List[str] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
49
1
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A__ = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = XLMRobertaTokenizer _UpperCAmelCase = XLMRobertaTokenizerFast _UpperCAmelCase = True _UpperCAmelCase = True def snake_case ( self : int ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase :List[Any] = XLMRobertaTokenizer(__snake_case , keep_accents=__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case ( self : Dict ): lowerCamelCase :List[str] = '''<pad>''' lowerCamelCase :Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) , __snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) , __snake_case ) def snake_case ( self : int ): lowerCamelCase :int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(__snake_case ) , 1002 ) def snake_case ( self : str ): self.assertEqual(self.get_tokenizer().vocab_size , 1002 ) def snake_case ( self : Tuple ): lowerCamelCase :str = XLMRobertaTokenizer(__snake_case , keep_accents=__snake_case ) lowerCamelCase :int = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCamelCase :str = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) lowerCamelCase :Tuple = tokenizer.convert_tokens_to_ids(__snake_case ) self.assertListEqual( __snake_case , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) lowerCamelCase :Any = tokenizer.convert_ids_to_tokens(__snake_case ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def snake_case ( self : str ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCamelCase :int = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase :List[str] = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :int = self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :Optional[int] = tempfile.mkdtemp() lowerCamelCase :List[Any] = tokenizer_r.save_pretrained(__snake_case ) lowerCamelCase :List[str] = tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) lowerCamelCase :Any = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way lowerCamelCase :Dict = tokenizer_r.from_pretrained(__snake_case ) lowerCamelCase :Optional[Any] = tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=True lowerCamelCase :List[str] = tempfile.mkdtemp() lowerCamelCase :Optional[Any] = tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) lowerCamelCase :Any = tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way lowerCamelCase :Any = tokenizer_r.from_pretrained(__snake_case ) lowerCamelCase :Optional[int] = tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=False lowerCamelCase :Dict = tempfile.mkdtemp() lowerCamelCase :Optional[int] = tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) lowerCamelCase :Optional[int] = tokenizer_p.save_pretrained(__snake_case ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCamelCase :Tuple = tokenizer_r.from_pretrained(__snake_case ) lowerCamelCase :str = tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) @cached_property def snake_case ( self : Optional[Any] ): return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' ) def snake_case ( self : Optional[int] ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__snake_case , f.name ) lowerCamelCase :Optional[int] = XLMRobertaTokenizer(f.name , keep_accents=__snake_case ) lowerCamelCase :Any = pickle.dumps(__snake_case ) pickle.loads(__snake_case ) def snake_case ( self : Optional[Any] ): if not self.test_rust_tokenizer: return lowerCamelCase :Optional[Any] = self.get_tokenizer() lowerCamelCase :Tuple = self.get_rust_tokenizer() lowerCamelCase :List[str] = '''I was born in 92000, and this is falsé.''' lowerCamelCase :Any = tokenizer.tokenize(__snake_case ) lowerCamelCase :Any = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) lowerCamelCase :List[str] = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) lowerCamelCase :Dict = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) lowerCamelCase :Optional[Any] = self.get_rust_tokenizer() lowerCamelCase :List[str] = tokenizer.encode(__snake_case ) lowerCamelCase :Dict = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) @slow def snake_case ( self : List[Any] ): lowerCamelCase :Tuple = '''Hello World!''' lowerCamelCase :Dict = [0, 35378, 6661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__snake_case , self.big_tokenizer.encode(__snake_case ) ) @slow def snake_case ( self : Optional[Any] ): lowerCamelCase :Any = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) lowerCamelCase :Optional[int] = [ 0, 3293, 83, 10, 4552, 4989, 7986, 678, 10, 5915, 111, 179459, 124850, 4, 6044, 237, 12, 6, 5, 6, 4, 6780, 705, 15, 1388, 44, 378, 10114, 711, 152, 20, 6, 5, 22376, 642, 1221, 15190, 34153, 450, 5608, 959, 1119, 57702, 136, 186, 47, 1098, 29367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6044, 237, 6284, 50901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__snake_case , self.big_tokenizer.encode(__snake_case ) ) @slow def snake_case ( self : str ): # fmt: off lowerCamelCase :Any = {'''input_ids''': [[0, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [0, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
49
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : def __init__( self : Any , __snake_case : Optional[int] , __snake_case : int=13 , __snake_case : str=[30, 30] , __snake_case : Tuple=2 , __snake_case : Optional[Any]=3 , __snake_case : int=True , __snake_case : Tuple=True , __snake_case : List[Any]=32 , __snake_case : int=5 , __snake_case : Optional[Any]=4 , __snake_case : Union[str, Any]=37 , __snake_case : str="gelu" , __snake_case : Tuple=0.1 , __snake_case : List[Any]=0.1 , __snake_case : Union[str, Any]=10 , __snake_case : str=0.0_2 , __snake_case : Union[str, Any]=3 , __snake_case : Union[str, Any]=None , __snake_case : List[str]=8 , __snake_case : Any=10 , ): lowerCamelCase :Optional[Any] = parent lowerCamelCase :List[Any] = batch_size lowerCamelCase :Any = image_size lowerCamelCase :Union[str, Any] = patch_size lowerCamelCase :Any = num_channels lowerCamelCase :List[Any] = is_training lowerCamelCase :Optional[Any] = use_labels lowerCamelCase :Any = hidden_size lowerCamelCase :List[Any] = num_hidden_layers lowerCamelCase :List[str] = num_attention_heads lowerCamelCase :Tuple = intermediate_size lowerCamelCase :List[str] = hidden_act lowerCamelCase :List[str] = hidden_dropout_prob lowerCamelCase :Any = attention_probs_dropout_prob lowerCamelCase :List[Any] = type_sequence_label_size lowerCamelCase :Optional[int] = initializer_range lowerCamelCase :List[Any] = num_labels lowerCamelCase :Any = scope lowerCamelCase :Union[str, Any] = n_targets lowerCamelCase :Optional[Any] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowerCamelCase :Tuple = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowerCamelCase :str = num_patches + 1 + self.num_detection_tokens def snake_case ( self : List[str] ): lowerCamelCase :str = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowerCamelCase :List[str] = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowerCamelCase :Optional[int] = [] for i in range(self.batch_size ): lowerCamelCase :List[str] = {} lowerCamelCase :Tuple = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=__snake_case ) lowerCamelCase :List[str] = torch.rand(self.n_targets , 4 , device=__snake_case ) labels.append(__snake_case ) lowerCamelCase :str = self.get_config() return config, pixel_values, labels def snake_case ( self : Union[str, Any] ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__snake_case , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def snake_case ( self : Tuple , __snake_case : Tuple , __snake_case : Tuple , __snake_case : Any ): lowerCamelCase :Optional[Any] = YolosModel(config=__snake_case ) model.to(__snake_case ) model.eval() lowerCamelCase :Union[str, Any] = model(__snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def snake_case ( self : Dict , __snake_case : str , __snake_case : Optional[int] , __snake_case : Optional[Any] ): lowerCamelCase :int = YolosForObjectDetection(__snake_case ) model.to(__snake_case ) model.eval() lowerCamelCase :str = model(pixel_values=__snake_case ) lowerCamelCase :Any = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) lowerCamelCase :int = model(pixel_values=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def snake_case ( self : int ): lowerCamelCase :List[Any] = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase :str = config_and_inputs lowerCamelCase :Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () _UpperCAmelCase = ( {'feature-extraction': YolosModel, 'object-detection': YolosForObjectDetection} if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def snake_case ( self : Any , __snake_case : List[Any] , __snake_case : Tuple , __snake_case : Dict=False ): lowerCamelCase :Optional[int] = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowerCamelCase :Dict = [] for i in range(self.model_tester.batch_size ): lowerCamelCase :Optional[Any] = {} lowerCamelCase :List[Any] = torch.ones( size=(self.model_tester.n_targets,) , device=__snake_case , dtype=torch.long ) lowerCamelCase :str = torch.ones( self.model_tester.n_targets , 4 , device=__snake_case , dtype=torch.float ) labels.append(__snake_case ) lowerCamelCase :Union[str, Any] = labels return inputs_dict def snake_case ( self : Tuple ): lowerCamelCase :Union[str, Any] = YolosModelTester(self ) lowerCamelCase :Dict = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=37 ) def snake_case ( self : Union[str, Any] ): self.config_tester.run_common_tests() def snake_case ( self : Optional[Any] ): # YOLOS does not use inputs_embeds pass def snake_case ( self : Tuple ): lowerCamelCase , lowerCamelCase :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :Optional[int] = model_class(__snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase :str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case , nn.Linear ) ) def snake_case ( self : str ): lowerCamelCase , lowerCamelCase :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :str = model_class(__snake_case ) lowerCamelCase :Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase :Tuple = [*signature.parameters.keys()] lowerCamelCase :Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __snake_case ) def snake_case ( self : int ): lowerCamelCase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def snake_case ( self : str ): lowerCamelCase , lowerCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase :int = True # in YOLOS, the seq_len is different lowerCamelCase :str = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowerCamelCase :str = True lowerCamelCase :Tuple = False lowerCamelCase :Optional[int] = True lowerCamelCase :int = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :str = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :str = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase :Optional[Any] = True lowerCamelCase :str = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :Tuple = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Tuple = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowerCamelCase :Optional[int] = len(__snake_case ) # Check attention is always last and order is fine lowerCamelCase :Union[str, Any] = True lowerCamelCase :List[Any] = True lowerCamelCase :Tuple = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :int = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Dict = 1 self.assertEqual(out_len + added_hidden_states , len(__snake_case ) ) lowerCamelCase :Dict = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def snake_case ( self : List[str] ): def check_hidden_states_output(__snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Tuple ): lowerCamelCase :Union[str, Any] = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :Any = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Optional[Any] = outputs.hidden_states lowerCamelCase :Any = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__snake_case ) , __snake_case ) # YOLOS has a different seq_length lowerCamelCase :List[str] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowerCamelCase , lowerCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :Union[str, Any] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase :Any = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*__snake_case ) @slow def snake_case ( self : Dict ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase :Tuple = YolosModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def _lowerCamelCase ( ): lowerCamelCase :int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): @cached_property def snake_case ( self : Tuple ): return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def snake_case ( self : Dict ): lowerCamelCase :Union[str, Any] = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(__snake_case ) lowerCamelCase :Optional[Any] = self.default_image_processor lowerCamelCase :str = prepare_img() lowerCamelCase :Dict = image_processor(images=__snake_case , return_tensors='''pt''' ).to(__snake_case ) # forward pass with torch.no_grad(): lowerCamelCase :Optional[Any] = model(inputs.pixel_values ) # verify outputs lowerCamelCase :int = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , __snake_case ) lowerCamelCase :Any = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=__snake_case , ) lowerCamelCase :Any = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __snake_case , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , __snake_case , atol=1e-4 ) ) # verify postprocessing lowerCamelCase :List[str] = image_processor.post_process_object_detection( __snake_case , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] lowerCamelCase :List[str] = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(__snake_case ) lowerCamelCase :str = [75, 75, 17, 63, 17] lowerCamelCase :Tuple = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(__snake_case ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , __snake_case , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , __snake_case ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , __snake_case ) )
49
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() A__ = logging.get_logger(__name__) def _lowerCamelCase ( a_ : str , a_ : str=False): lowerCamelCase :Optional[int] = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''')) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''')) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''')) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''')) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''')) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''')) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''')) for stage_idx in range(len(config.backbone_config.depths)): for layer_idx in range(config.backbone_config.depths[stage_idx]): rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias")) # transformer encoder for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight")) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias")) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight")) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias")) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight")) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias")) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight")) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias")) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight")) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias")) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ]) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCamelCase :List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''') else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ]) # fmt: on return rename_keys def _lowerCamelCase ( a_ : Any , a_ : Any , a_ : int=False): for i in range(config.num_hidden_layers): if base_model: lowerCamelCase :Union[str, Any] = '''''' else: lowerCamelCase :Optional[int] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase :Optional[Any] = state_dict.pop(F"blocks.{i}.attn.qkv.weight") lowerCamelCase :Any = state_dict.pop(F"blocks.{i}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict lowerCamelCase :Any = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase :Tuple = in_proj_bias[: config.hidden_size] lowerCamelCase :int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase :Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase :Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase :List[Any] = in_proj_bias[-config.hidden_size :] def _lowerCamelCase ( a_ : int): lowerCamelCase :Any = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(a_ , a_) def _lowerCamelCase ( a_ : int , a_ : Any , a_ : Tuple): lowerCamelCase :Optional[Any] = dct.pop(a_) lowerCamelCase :str = val def _lowerCamelCase ( ): lowerCamelCase :Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase :Tuple = Image.open(requests.get(a_ , stream=a_).raw) return im @torch.no_grad() def _lowerCamelCase ( a_ : Optional[Any] , a_ : Optional[Any] , a_ : Optional[Any]=False): lowerCamelCase :Optional[int] = BitConfig( global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=a_ , ) lowerCamelCase :Optional[int] = ViTHybridConfig(backbone_config=a_ , image_size=3_84 , num_labels=10_00) lowerCamelCase :List[Any] = False # load original model from timm lowerCamelCase :List[str] = timm.create_model(a_ , pretrained=a_) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCamelCase :List[str] = timm_model.state_dict() if base_model: remove_classification_head_(a_) lowerCamelCase :Tuple = create_rename_keys(a_ , a_) for src, dest in rename_keys: rename_key(a_ , a_ , a_) read_in_q_k_v(a_ , a_ , a_) lowerCamelCase :List[str] = '''huggingface/label-files''' lowerCamelCase :Any = '''imagenet-1k-id2label.json''' lowerCamelCase :List[Any] = json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''') , '''r''')) lowerCamelCase :Optional[Any] = {int(a_): v for k, v in idalabel.items()} lowerCamelCase :Optional[int] = idalabel lowerCamelCase :Union[str, Any] = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": lowerCamelCase :Optional[Any] = ViTHybridModel(a_).eval() else: lowerCamelCase :Dict = ViTHybridForImageClassification(a_).eval() model.load_state_dict(a_) # create image processor lowerCamelCase :Dict = create_transform(**resolve_data_config({} , model=a_)) lowerCamelCase :str = transform.transforms lowerCamelCase :int = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } lowerCamelCase :Any = ViTHybridImageProcessor( do_resize=a_ , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=a_ , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=a_ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCamelCase :Dict = prepare_img() lowerCamelCase :str = transform(a_).unsqueeze(0) lowerCamelCase :str = processor(a_ , return_tensors='''pt''').pixel_values # verify pixel values assert torch.allclose(a_ , a_) # verify logits with torch.no_grad(): lowerCamelCase :Optional[int] = model(a_) lowerCamelCase :Union[str, Any] = outputs.logits print('''Predicted class:''' , logits.argmax(-1).item()) if base_model: lowerCamelCase :Union[str, Any] = timm_model.forward_features(a_) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(a_ , outputs.pooler_output , atol=1e-3) else: lowerCamelCase :List[str] = timm_model(a_) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(a_ , outputs.logits , atol=1e-3) print('''Looks ok!''') if pytorch_dump_folder_path is not None: Path(a_).mkdir(exist_ok=a_) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}") model.save_pretrained(a_) print(F"Saving processor to {pytorch_dump_folder_path}") processor.save_pretrained(a_) if push_to_hub: print(F"Pushing model and processor to the hub {vit_name}") model.push_to_hub(F"ybelkada/{vit_name}") processor.push_to_hub(F"ybelkada/{vit_name}") if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_r50_s16_384""", type=str, help="""Name of the hybrid ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) A__ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
49
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Tuple ): lowerCamelCase :List[Any] = inspect.getfile(accelerate.test_utils ) lowerCamelCase :Dict = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 lowerCamelCase :Any = test_metrics @require_cpu def snake_case ( self : Dict ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def snake_case ( self : int ): debug_launcher(self.test_metrics.main ) @require_single_gpu def snake_case ( self : Any ): self.test_metrics.main() @require_multi_gpu def snake_case ( self : Optional[int] ): print(F"Found {torch.cuda.device_count()} devices." ) lowerCamelCase :Optional[int] = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__snake_case , env=os.environ.copy() )
49
1
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed A__ = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def _lowerCamelCase ( a_ : Optional[Any]): assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def _lowerCamelCase ( a_ : Optional[int] , a_ : List[Any]): if args.student_type == "roberta": lowerCamelCase :Dict = False elif args.student_type == "gpt2": lowerCamelCase :str = False def _lowerCamelCase ( a_ : Any , a_ : int): if args.student_type == "roberta": lowerCamelCase :Union[str, Any] = False def _lowerCamelCase ( ): lowerCamelCase :List[Any] = argparse.ArgumentParser(description='''Training''') parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''') parser.add_argument( '''--dump_path''' , type=a_ , required=a_ , help='''The output directory (log, checkpoints, parameters, etc.)''') parser.add_argument( '''--data_file''' , type=a_ , required=a_ , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=a_ , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=a_ , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=a_ , required=a_ , help='''Path to the student configuration.''') parser.add_argument( '''--student_pretrained_weights''' , default=a_ , type=a_ , help='''Load student initialization checkpoint.''') parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=a_ , help='''Teacher type (BERT, RoBERTa).''') parser.add_argument('''--teacher_name''' , type=a_ , required=a_ , help='''The teacher model.''') parser.add_argument('''--temperature''' , default=2.0 , type=a_ , help='''Temperature for the softmax temperature.''') parser.add_argument( '''--alpha_ce''' , default=0.5 , type=a_ , help='''Linear weight for the distillation loss. Must be >=0.''') parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=a_ , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=a_ , help='''Linear weight for the CLM loss. Must be >=0.''') parser.add_argument('''--alpha_mse''' , default=0.0 , type=a_ , help='''Linear weight of the MSE loss. Must be >=0.''') parser.add_argument( '''--alpha_cos''' , default=0.0 , type=a_ , help='''Linear weight of the cosine embedding loss. Must be >=0.''') parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''') parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=a_ , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=a_ , help='''Proportion of tokens to mask out.''') parser.add_argument('''--word_keep''' , default=0.1 , type=a_ , help='''Proportion of tokens to keep.''') parser.add_argument('''--word_rand''' , default=0.1 , type=a_ , help='''Proportion of tokens to randomly replace.''') parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=a_ , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=a_ , help='''The token counts in the data_file for MLM.''') parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=a_ , default=3 , help='''Number of pass on the whole dataset.''') parser.add_argument('''--batch_size''' , type=a_ , default=5 , help='''Batch size (for each process).''') parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=a_ , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=a_ , help='''Linear warmup proportion.''') parser.add_argument('''--weight_decay''' , default=0.0 , type=a_ , help='''Weight decay if we apply some.''') parser.add_argument('''--learning_rate''' , default=5e-4 , type=a_ , help='''The initial learning rate for Adam.''') parser.add_argument('''--adam_epsilon''' , default=1e-6 , type=a_ , help='''Epsilon for Adam optimizer.''') parser.add_argument('''--max_grad_norm''' , default=5.0 , type=a_ , help='''Max gradient norm.''') parser.add_argument('''--initializer_range''' , default=0.02 , type=a_ , help='''Random initialization range.''') parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=a_ , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=a_ , default=1 , help='''Number of GPUs in the node.''') parser.add_argument('''--local_rank''' , type=a_ , default=-1 , help='''Distributed training - Local rank''') parser.add_argument('''--seed''' , type=a_ , default=56 , help='''Random seed''') parser.add_argument('''--log_interval''' , type=a_ , default=5_00 , help='''Tensorboard logging interval.''') parser.add_argument('''--checkpoint_interval''' , type=a_ , default=40_00 , help='''Checkpoint interval.''') lowerCamelCase :List[Any] = parser.parse_args() sanity_checks(a_) # ARGS # init_gpu_params(a_) set_seed(a_) if args.is_master: if os.path.exists(args.dump_path): if not args.force: raise ValueError( F"Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite" ''' itUse `--force` if you want to overwrite it''') else: shutil.rmtree(args.dump_path) if not os.path.exists(args.dump_path): os.makedirs(args.dump_path) logger.info(F"Experiment will be dumped and logged in {args.dump_path}") # SAVE PARAMS # logger.info(F"Param: {args}") with open(os.path.join(args.dump_path , '''parameters.json''') , '''w''') as f: json.dump(vars(a_) , a_ , indent=4) git_log(args.dump_path) lowerCamelCase , lowerCamelCase , lowerCamelCase :int = MODEL_CLASSES[args.student_type] lowerCamelCase , lowerCamelCase , lowerCamelCase :int = MODEL_CLASSES[args.teacher_type] # TOKENIZER # lowerCamelCase :Optional[Any] = teacher_tokenizer_class.from_pretrained(args.teacher_name) lowerCamelCase :List[Any] = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): lowerCamelCase :Optional[Any] = tokenizer.all_special_tokens.index(a_) lowerCamelCase :List[Any] = tokenizer.all_special_ids[idx] logger.info(F"Special tokens {special_tok_ids}") lowerCamelCase :Dict = special_tok_ids lowerCamelCase :Optional[Any] = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F"Loading data from {args.data_file}") with open(args.data_file , '''rb''') as fp: lowerCamelCase :str = pickle.load(a_) if args.mlm: logger.info(F"Loading token counts from {args.token_counts} (already pre-computed)") with open(args.token_counts , '''rb''') as fp: lowerCamelCase :Union[str, Any] = pickle.load(a_) lowerCamelCase :int = np.maximum(a_ , 1) ** -args.mlm_smoothing for idx in special_tok_ids.values(): lowerCamelCase :Tuple = 0.0 # do not predict special tokens lowerCamelCase :Optional[Any] = torch.from_numpy(a_) else: lowerCamelCase :Optional[int] = None lowerCamelCase :Optional[int] = LmSeqsDataset(params=a_ , data=a_) logger.info('''Data loader created.''') # STUDENT # logger.info(F"Loading student config from {args.student_config}") lowerCamelCase :Dict = student_config_class.from_pretrained(args.student_config) lowerCamelCase :Tuple = True if args.student_pretrained_weights is not None: logger.info(F"Loading pretrained weights from {args.student_pretrained_weights}") lowerCamelCase :Dict = student_model_class.from_pretrained(args.student_pretrained_weights , config=a_) else: lowerCamelCase :Tuple = student_model_class(a_) if args.n_gpu > 0: student.to(F"cuda:{args.local_rank}") logger.info('''Student loaded.''') # TEACHER # lowerCamelCase :str = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=a_) if args.n_gpu > 0: teacher.to(F"cuda:{args.local_rank}") logger.info(F"Teacher loaded from {args.teacher_name}.") # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(a_ , a_) if args.freeze_token_type_embds: freeze_token_type_embeddings(a_ , a_) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() lowerCamelCase :Optional[Any] = Distiller( params=a_ , dataset=a_ , token_probs=a_ , student=a_ , teacher=a_) distiller.train() logger.info('''Let\'s go get some drinks.''') if __name__ == "__main__": main()
49
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = '' _UpperCAmelCase = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) _UpperCAmelCase = None # compression type in fsspec. ex: "gzip" _UpperCAmelCase = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : str , __snake_case : str = "" , __snake_case : Optional[str] = None , __snake_case : Optional[dict] = None , **__snake_case : Dict ): super().__init__(self , **__snake_case ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode lowerCamelCase :Optional[Any] = fsspec.open( __snake_case , mode='''rb''' , protocol=__snake_case , compression=self.compression , client_kwargs={ '''requote_redirect_url''': False, # see https://github.com/huggingface/datasets/pull/5459 '''trust_env''': True, # Enable reading proxy env variables. **(target_options or {}).pop('''client_kwargs''' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) lowerCamelCase :List[str] = os.path.basename(self.file.path.split('''::''' )[0] ) lowerCamelCase :Dict = ( self.compressed_name[: self.compressed_name.rindex('''.''' )] if '''.''' in self.compressed_name else self.compressed_name ) lowerCamelCase :List[str] = None @classmethod def snake_case ( cls : Any , __snake_case : Any ): # compressed file paths are always relative to the archive root return super()._strip_protocol(__snake_case ).lstrip('''/''' ) def snake_case ( self : Any ): if self.dir_cache is None: lowerCamelCase :Optional[Any] = {**self.file.fs.info(self.file.path ), '''name''': self.uncompressed_name} lowerCamelCase :Optional[Any] = {f['''name''']: f} def snake_case ( self : Union[str, Any] , __snake_case : str ): return self.file.open().read() def snake_case ( self : Optional[int] , __snake_case : str , __snake_case : str = "rb" , __snake_case : int=None , __snake_case : Optional[int]=True , __snake_case : str=None , **__snake_case : str , ): lowerCamelCase :List[str] = self._strip_protocol(__snake_case ) if mode != "rb": raise ValueError(F"Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'" ) return self.file.open() class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'bz2' _UpperCAmelCase = 'bz2' _UpperCAmelCase = '.bz2' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'gzip' _UpperCAmelCase = 'gzip' _UpperCAmelCase = '.gz' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'lz4' _UpperCAmelCase = 'lz4' _UpperCAmelCase = '.lz4' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'xz' _UpperCAmelCase = 'xz' _UpperCAmelCase = '.xz' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'zstd' _UpperCAmelCase = 'zstd' _UpperCAmelCase = '.zst' def __init__( self : str , __snake_case : str , __snake_case : str = "rb" , __snake_case : Optional[str] = None , __snake_case : Optional[dict] = None , __snake_case : int = DEFAULT_BLOCK_SIZE , **__snake_case : int , ): super().__init__( fo=__snake_case , mode=__snake_case , target_protocol=__snake_case , target_options=__snake_case , block_size=__snake_case , **__snake_case , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 lowerCamelCase :Tuple = self.file.__enter__ class _lowerCAmelCase : def __init__( self : Dict , __snake_case : Tuple ): lowerCamelCase :Optional[int] = file_ def __enter__( self : Optional[int] ): self._file.__enter__() return self def __exit__( self : str , *__snake_case : Optional[Any] , **__snake_case : List[Any] ): self._file.__exit__(*__snake_case , **__snake_case ) def __iter__( self : Optional[Any] ): return iter(self._file ) def snake_case ( self : List[Any] ): return next(self._file ) def __getattr__( self : Any , __snake_case : str ): return getattr(self._file , __snake_case ) def fixed_enter(*__snake_case : Optional[int] , **__snake_case : str ): return WrappedFile(_enter(*__snake_case , **__snake_case ) ) lowerCamelCase :Dict = fixed_enter
49
1
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): @property def snake_case ( self : Any ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case ( self : str ): lowerCamelCase :int = ort.SessionOptions() lowerCamelCase :Dict = False return options def snake_case ( self : Dict ): lowerCamelCase :int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) lowerCamelCase :List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) lowerCamelCase :Optional[int] = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=__snake_case , feature_extractor=__snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__snake_case ) lowerCamelCase :Optional[int] = '''A red cat sitting on a park bench''' lowerCamelCase :Optional[int] = np.random.RandomState(0 ) lowerCamelCase :int = pipe( prompt=__snake_case , image=__snake_case , mask_image=__snake_case , guidance_scale=7.5 , num_inference_steps=10 , generator=__snake_case , output_type='''np''' , ) lowerCamelCase :str = output.images lowerCamelCase :Tuple = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) lowerCamelCase :Tuple = np.array([0.2_5_1_4, 0.3_0_0_7, 0.3_5_1_7, 0.1_7_9_0, 0.2_3_8_2, 0.3_1_6_7, 0.1_9_4_4, 0.2_2_7_3, 0.2_4_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def snake_case ( self : List[Any] ): lowerCamelCase :Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) lowerCamelCase :Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) lowerCamelCase :int = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) lowerCamelCase :Any = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=__snake_case , safety_checker=__snake_case , feature_extractor=__snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__snake_case ) lowerCamelCase :Any = '''A red cat sitting on a park bench''' lowerCamelCase :Optional[int] = np.random.RandomState(0 ) lowerCamelCase :str = pipe( prompt=__snake_case , image=__snake_case , mask_image=__snake_case , guidance_scale=7.5 , num_inference_steps=20 , generator=__snake_case , output_type='''np''' , ) lowerCamelCase :str = output.images lowerCamelCase :Any = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) lowerCamelCase :Optional[Any] = np.array([0.0_0_8_6, 0.0_0_7_7, 0.0_0_8_3, 0.0_0_9_3, 0.0_1_0_7, 0.0_1_3_9, 0.0_0_9_4, 0.0_0_9_7, 0.0_1_2_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
49
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = LEDTokenizer _UpperCAmelCase = LEDTokenizerFast _UpperCAmelCase = True def snake_case ( self : Any ): super().setUp() lowerCamelCase :Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] lowerCamelCase :Any = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) lowerCamelCase :List[str] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCamelCase :int = {'''unk_token''': '''<unk>'''} lowerCamelCase :Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__snake_case ) ) def snake_case ( self : int , **__snake_case : int ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Dict , **__snake_case : Any ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Optional[Any] , __snake_case : Union[str, Any] ): return "lower newer", "lower newer" @cached_property def snake_case ( self : Any ): return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' ) @cached_property def snake_case ( self : int ): return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' ) @require_torch def snake_case ( self : str ): lowerCamelCase :Any = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowerCamelCase :List[Any] = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[Any] = tokenizer(__snake_case , max_length=len(__snake_case ) , padding=__snake_case , return_tensors='''pt''' ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowerCamelCase :List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(__snake_case , __snake_case ) @require_torch def snake_case ( self : Tuple ): lowerCamelCase :Dict = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Union[str, Any] = tokenizer(__snake_case , padding=__snake_case , return_tensors='''pt''' ) self.assertIn('''input_ids''' , __snake_case ) self.assertIn('''attention_mask''' , __snake_case ) self.assertNotIn('''labels''' , __snake_case ) self.assertNotIn('''decoder_attention_mask''' , __snake_case ) @require_torch def snake_case ( self : Union[str, Any] ): lowerCamelCase :Union[str, Any] = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :List[Any] = tokenizer(text_target=__snake_case , max_length=32 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) @require_torch def snake_case ( self : List[Any] ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[Any] = tokenizer( ['''I am a small frog''' * 1024, '''I am a small frog'''] , padding=__snake_case , truncation=__snake_case , return_tensors='''pt''' ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def snake_case ( self : Optional[int] ): lowerCamelCase :Union[str, Any] = ['''A long paragraph for summarization.'''] lowerCamelCase :Any = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Union[str, Any] = tokenizer(__snake_case , return_tensors='''pt''' ) lowerCamelCase :Any = tokenizer(text_target=__snake_case , return_tensors='''pt''' ) lowerCamelCase :Optional[int] = inputs['''input_ids'''] lowerCamelCase :Any = targets['''input_ids'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def snake_case ( self : Dict ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[int] = ['''Summary of the text.''', '''Another summary.'''] lowerCamelCase :List[Any] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] lowerCamelCase :Optional[int] = tokenizer(__snake_case , padding=__snake_case ) lowerCamelCase :Union[str, Any] = [[0] * len(__snake_case ) for x in encoded_output['''input_ids''']] lowerCamelCase :str = tokenizer.pad(__snake_case ) self.assertSequenceEqual(outputs['''global_attention_mask'''] , __snake_case ) def snake_case ( self : Tuple ): pass def snake_case ( self : Optional[int] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase :Optional[Any] = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :Tuple = self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :int = '''A, <mask> AllenNLP sentence.''' lowerCamelCase :str = tokenizer_r.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case ) lowerCamelCase :str = tokenizer_p.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case ) self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) lowerCamelCase :Optional[int] = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) lowerCamelCase :Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __snake_case , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __snake_case , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
49
1
import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets A__ = """\ @inproceedings{kakwani2020indicnlpsuite, title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}}, author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar}, year={2020}, booktitle={Findings of EMNLP}, } """ A__ = """\ IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te. """ A__ = """ Compute IndicGLUE evaluation metric associated to each IndicGLUE dataset. Args: predictions: list of predictions to score (as int64), except for 'cvit-mkb-clsr' where each prediction is a vector (of float32). references: list of ground truth labels corresponding to the predictions (as int64), except for 'cvit-mkb-clsr' where each reference is a vector (of float32). Returns: depending on the IndicGLUE subset, one or several of: \"accuracy\": Accuracy \"f1\": F1 score \"precision\": Precision@10 Examples: >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wnli') # 'wnli' or any of [\"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wiki-ner') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> indic_glue_metric = datasets.load_metric('indic_glue', 'cvit-mkb-clsr') >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'precision@10': 1.0} """ def _lowerCamelCase ( a_ : Tuple , a_ : List[Any]): return float((preds == labels).mean()) def _lowerCamelCase ( a_ : Tuple , a_ : Optional[Any]): lowerCamelCase :int = simple_accuracy(a_ , a_) lowerCamelCase :Tuple = float(fa_score(y_true=a_ , y_pred=a_)) return { "accuracy": acc, "f1": fa, } def _lowerCamelCase ( a_ : str , a_ : List[str]): lowerCamelCase :Optional[Any] = np.array(a_) lowerCamelCase :Optional[int] = np.array(a_) lowerCamelCase :Any = en_sentvecs.shape[0] # mean centering lowerCamelCase :List[str] = en_sentvecs - np.mean(a_ , axis=0) lowerCamelCase :Tuple = in_sentvecs - np.mean(a_ , axis=0) lowerCamelCase :int = cdist(a_ , a_ , '''cosine''') lowerCamelCase :List[Any] = np.array(range(a_)) lowerCamelCase :Any = sim.argsort(axis=1)[:, :10] lowerCamelCase :str = np.any(preds == actual[:, None] , axis=1) return float(matches.mean()) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): def snake_case ( self : str ): if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), '''references''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if self.config_name != '''cvit-mkb-clsr''' else None , ) def snake_case ( self : List[Any] , __snake_case : Union[str, Any] , __snake_case : str ): if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(__snake_case , __snake_case )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(__snake_case , __snake_case ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(__snake_case , __snake_case )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' )
49
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) A__ = { """configuration_layoutlmv2""": ["""LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv2Config"""], """processing_layoutlmv2""": ["""LayoutLMv2Processor"""], """tokenization_layoutlmv2""": ["""LayoutLMv2Tokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""LayoutLMv2TokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""LayoutLMv2FeatureExtractor"""] A__ = ["""LayoutLMv2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """LayoutLMv2ForQuestionAnswering""", """LayoutLMv2ForSequenceClassification""", """LayoutLMv2ForTokenClassification""", """LayoutLMv2Layer""", """LayoutLMv2Model""", """LayoutLMv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
49
1
def _lowerCamelCase ( a_ : int , a_ : int): while second != 0: lowerCamelCase :str = first & second first ^= second lowerCamelCase :Union[str, Any] = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() A__ = int(input("""Enter the first number: """).strip()) A__ = int(input("""Enter the second number: """).strip()) print(F'{add(first, second) = }')
49
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _lowerCAmelCase : @staticmethod def snake_case ( *__snake_case : str , **__snake_case : str ): pass @is_pipeline_test @require_vision class _lowerCAmelCase ( unittest.TestCase ): @require_torch def snake_case ( self : Union[str, Any] ): lowerCamelCase :Optional[int] = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Dict = image_classifier(__snake_case , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__snake_case ) , [ [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}], [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}], ] , ) lowerCamelCase :Tuple = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], ] , ) @require_tf def snake_case ( self : Tuple ): lowerCamelCase :Tuple = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Optional[Any] = image_classifier(__snake_case , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(__snake_case ) , [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}] , ) lowerCamelCase :int = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], ] , ) @slow @require_torch def snake_case ( self : Any ): lowerCamelCase :str = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Optional[Any] = image_classifier(__snake_case , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) lowerCamelCase :Any = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def snake_case ( self : Optional[Any] ): lowerCamelCase :Union[str, Any] = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes lowerCamelCase :Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Dict = image_classifier(__snake_case , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) lowerCamelCase :Any = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , )
49
1
from __future__ import annotations def _lowerCamelCase ( a_ : int): lowerCamelCase :Union[str, Any] = [True] * limit lowerCamelCase :Tuple = False lowerCamelCase :List[str] = False lowerCamelCase :List[Any] = True for i in range(3 , int(limit**0.5 + 1) , 2): lowerCamelCase :List[Any] = i * 2 while index < limit: lowerCamelCase :Union[str, Any] = False lowerCamelCase :List[Any] = index + i lowerCamelCase :List[str] = [2] for i in range(3 , a_ , 2): if is_prime[i]: primes.append(a_) return primes def _lowerCamelCase ( a_ : int = 1_00_00_00): lowerCamelCase :Tuple = prime_sieve(a_) lowerCamelCase :str = 0 lowerCamelCase :Dict = 0 for i in range(len(a_)): for j in range(i + length , len(a_)): lowerCamelCase :Dict = sum(primes[i:j]) if sol >= ceiling: break if sol in primes: lowerCamelCase :str = j - i lowerCamelCase :Optional[int] = sol return largest if __name__ == "__main__": print(F'{solution() = }')
49
import operator as op def _lowerCamelCase ( a_ : Tuple): lowerCamelCase :int = [] lowerCamelCase :List[str] = lambda a_ , a_: int(x / y) # noqa: E731 integer division operation lowerCamelCase :Optional[int] = { '''^''': op.pow, '''*''': op.mul, '''/''': div, '''+''': op.add, '''-''': op.sub, } # operators & their respective operation # print table header print('''Symbol'''.center(8) , '''Action'''.center(12) , '''Stack''' , sep=''' | ''') print('''-''' * (30 + len(a_))) for x in post_fix: if x.isdigit(): # if x in digit stack.append(a_) # append x to stack # output in tabular format print(x.rjust(8) , ('''push(''' + x + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') else: lowerCamelCase :Optional[Any] = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8) , ('''pop(''' + b + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') lowerCamelCase :str = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8) , ('''pop(''' + a + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') stack.append( str(opr[x](int(a_) , int(a_)))) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8) , ('''push(''' + a + x + b + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''' , ) return int(stack[0]) if __name__ == "__main__": A__ = input("""\n\nEnter a Postfix Equation (space separated) = """).split(""" """) print("""\n\tResult = """, solve(Postfix))
49
1
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py A__ = """src/transformers""" A__ = """docs/source/en/tasks""" def _lowerCamelCase ( a_ : int , a_ : Optional[int] , a_ : int): with open(a_ , '''r''' , encoding='''utf-8''' , newline='''\n''') as f: lowerCamelCase :Dict = f.readlines() # Find the start prompt. lowerCamelCase :List[str] = 0 while not lines[start_index].startswith(a_): start_index += 1 start_index += 1 lowerCamelCase :Optional[Any] = start_index while not lines[end_index].startswith(a_): end_index += 1 end_index -= 1 while len(lines[start_index]) <= 1: start_index += 1 while len(lines[end_index]) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index]), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. A__ = direct_transformers_import(TRANSFORMERS_PATH) A__ = { """asr.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, """audio_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, """language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, """image_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, """masked_language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, """multiple_choice.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, """object_detection.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, """question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, """semantic_segmentation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, """sequence_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, """summarization.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """token_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, """translation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """video_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, """document_question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, """monocular_depth_estimation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). A__ = { """summarization.md""": ("""nllb""",), """translation.md""": ("""nllb""",), } def _lowerCamelCase ( a_ : List[str]): lowerCamelCase :Tuple = TASK_GUIDE_TO_MODELS[task_guide] lowerCamelCase :Optional[int] = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(a_ , set()) lowerCamelCase :List[Any] = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"[{name}](../model_doc/{code})" for code, name in model_names.items()]) + "\n" def _lowerCamelCase ( a_ : Union[str, Any] , a_ : Optional[Any]=False): lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase :Tuple = _find_text_in_file( filename=os.path.join(a_ , a_) , start_prompt='''<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->''' , end_prompt='''<!--End of the generated tip-->''' , ) lowerCamelCase :str = get_model_list_for_task(a_) if current_list != new_list: if overwrite: with open(os.path.join(a_ , a_) , '''w''' , encoding='''utf-8''' , newline='''\n''') as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:]) else: raise ValueError( F"The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`" ''' to fix this.''') if __name__ == "__main__": A__ = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") A__ = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
49
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() A__ = logging.get_logger(__name__) A__ = """Hello, World!""" A__ = """en_XX""" def _lowerCamelCase ( a_ : str , a_ : str , a_ : bool): lowerCamelCase :int = Path('''data_bin''') lowerCamelCase :Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(a_).parent) , checkpoint_file=Path(a_).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(a_) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(a_).parent / '''sentencepiece.bpe.model''') , src_dict=str(data_dir / '''dict.txt''') , ) xmod.eval() # disable dropout print(a_) lowerCamelCase :Any = xmod.model.encoder.sentence_encoder lowerCamelCase :List[str] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: lowerCamelCase :Dict = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our X-MOD config:''' , a_) lowerCamelCase :List[Any] = XmodForSequenceClassification(a_) if classification_head else XmodForMaskedLM(a_) model.eval() # Now let's copy all the weights. # Embeddings lowerCamelCase :Union[str, Any] = xmod_sent_encoder.embed_tokens.weight lowerCamelCase :Tuple = xmod_sent_encoder.embed_positions.weight lowerCamelCase :List[str] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight) # just zero them out b/c xmod doesn't use them. lowerCamelCase :List[Any] = xmod_sent_encoder.layernorm_embedding.weight lowerCamelCase :Optional[int] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers): # Encoder: start of layer lowerCamelCase :Union[str, Any] = model.roberta.encoder.layer[i] lowerCamelCase :List[str] = xmod_sent_encoder.layers[i] # self attention lowerCamelCase :Optional[int] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size)) ): raise AssertionError('''Dimensions of self-attention weights do not match.''') lowerCamelCase :Optional[int] = xmod_layer.self_attn.q_proj.weight lowerCamelCase :List[str] = xmod_layer.self_attn.q_proj.bias lowerCamelCase :str = xmod_layer.self_attn.k_proj.weight lowerCamelCase :Optional[Any] = xmod_layer.self_attn.k_proj.bias lowerCamelCase :Dict = xmod_layer.self_attn.v_proj.weight lowerCamelCase :Optional[int] = xmod_layer.self_attn.v_proj.bias # self-attention output lowerCamelCase :Optional[int] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('''Dimensions of self-attention output weights do not match.''') lowerCamelCase :List[Any] = xmod_layer.self_attn.out_proj.weight lowerCamelCase :Union[str, Any] = xmod_layer.self_attn.out_proj.bias lowerCamelCase :str = xmod_layer.self_attn_layer_norm.weight lowerCamelCase :List[Any] = xmod_layer.self_attn_layer_norm.bias # intermediate lowerCamelCase :Optional[int] = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of intermediate weights do not match.''') lowerCamelCase :int = xmod_layer.fca.weight lowerCamelCase :Union[str, Any] = xmod_layer.fca.bias # output lowerCamelCase :List[str] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of feed-forward weights do not match.''') lowerCamelCase :str = xmod_layer.fca.weight lowerCamelCase :int = xmod_layer.fca.bias lowerCamelCase :List[Any] = xmod_layer.final_layer_norm.weight lowerCamelCase :List[str] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: lowerCamelCase :List[str] = xmod_layer.adapter_layer_norm.weight lowerCamelCase :int = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys()) != sorted(xmod_layer.adapter_modules.keys()): raise AssertionError('''Lists of language adapters do not match.''') for lang_code, adapter in xmod_layer.adapter_modules.items(): lowerCamelCase :Optional[int] = bert_output.adapter_modules[lang_code] lowerCamelCase :Dict = xmod_layer.adapter_modules[lang_code] lowerCamelCase :List[Any] = from_adapter.fca.weight lowerCamelCase :List[Any] = from_adapter.fca.bias lowerCamelCase :Dict = from_adapter.fca.weight lowerCamelCase :Optional[Any] = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: lowerCamelCase :Dict = xmod_sent_encoder.layer_norm.weight lowerCamelCase :List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: lowerCamelCase :Union[str, Any] = xmod.model.classification_heads['''mnli'''].dense.weight lowerCamelCase :Tuple = xmod.model.classification_heads['''mnli'''].dense.bias lowerCamelCase :Optional[Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight lowerCamelCase :List[Any] = xmod.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head lowerCamelCase :int = xmod.model.encoder.lm_head.dense.weight lowerCamelCase :List[Any] = xmod.model.encoder.lm_head.dense.bias lowerCamelCase :Optional[int] = xmod.model.encoder.lm_head.layer_norm.weight lowerCamelCase :List[Any] = xmod.model.encoder.lm_head.layer_norm.bias lowerCamelCase :List[Any] = xmod.model.encoder.lm_head.weight lowerCamelCase :Any = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCamelCase :str = xmod.encode(a_).unsqueeze(0) # batch of size 1 model.roberta.set_default_language(a_) lowerCamelCase :Any = model(a_)[0] if classification_head: lowerCamelCase :Dict = xmod.model.classification_heads['''mnli'''](xmod.extract_features(a_)) else: lowerCamelCase :int = xmod.model(a_ , lang_id=[SAMPLE_LANGUAGE])[0] print(our_output.shape , their_output.shape) lowerCamelCase :List[str] = torch.max(torch.abs(our_output - their_output)).item() print(F"max_absolute_diff = {max_absolute_diff}") # ~ 1e-7 lowerCamelCase :str = torch.allclose(a_ , a_ , atol=1e-3) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''') if not success: raise Exception('''Something went wRoNg''') Path(a_).mkdir(parents=a_ , exist_ok=a_) print(F"Saving model to {pytorch_dump_folder_path}") model.save_pretrained(a_) if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) A__ = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
49
1
from collections import deque class _lowerCAmelCase : def __init__( self : Union[str, Any] , __snake_case : str , __snake_case : int , __snake_case : int ): lowerCamelCase :List[Any] = process_name # process name lowerCamelCase :int = arrival_time # arrival time of the process # completion time of finished process or last interrupted time lowerCamelCase :int = arrival_time lowerCamelCase :int = burst_time # remaining burst time lowerCamelCase :Tuple = 0 # total time of the process wait in ready queue lowerCamelCase :Any = 0 # time from arrival time to completion time class _lowerCAmelCase : def __init__( self : List[str] , __snake_case : int , __snake_case : list[int] , __snake_case : deque[Process] , __snake_case : int , ): # total number of mlfq's queues lowerCamelCase :List[Any] = number_of_queues # time slice of queues that round robin algorithm applied lowerCamelCase :int = time_slices # unfinished process is in this ready_queue lowerCamelCase :str = queue # current time lowerCamelCase :Optional[Any] = current_time # finished process is in this sequence queue lowerCamelCase :deque[Process] = deque() def snake_case ( self : str ): lowerCamelCase :Union[str, Any] = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def snake_case ( self : List[str] , __snake_case : list[Process] ): lowerCamelCase :str = [] for i in range(len(__snake_case ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def snake_case ( self : Union[str, Any] , __snake_case : list[Process] ): lowerCamelCase :Optional[Any] = [] for i in range(len(__snake_case ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def snake_case ( self : Any , __snake_case : list[Process] ): lowerCamelCase :List[str] = [] for i in range(len(__snake_case ) ): completion_times.append(queue[i].stop_time ) return completion_times def snake_case ( self : int , __snake_case : deque[Process] ): return [q.burst_time for q in queue] def snake_case ( self : Optional[Any] , __snake_case : Process ): process.waiting_time += self.current_time - process.stop_time return process.waiting_time def snake_case ( self : List[str] , __snake_case : deque[Process] ): lowerCamelCase :deque[Process] = deque() # sequence deque of finished process while len(__snake_case ) != 0: lowerCamelCase :Tuple = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(__snake_case ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 lowerCamelCase :Dict = 0 # set the process's turnaround time because it is finished lowerCamelCase :Any = self.current_time - cp.arrival_time # set the completion time lowerCamelCase :Dict = self.current_time # add the process to queue that has finished queue finished.append(__snake_case ) self.finish_queue.extend(__snake_case ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def snake_case ( self : Tuple , __snake_case : deque[Process] , __snake_case : int ): lowerCamelCase :deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(__snake_case ) ): lowerCamelCase :List[str] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(__snake_case ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time lowerCamelCase :List[Any] = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(__snake_case ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished lowerCamelCase :Optional[Any] = 0 # set the finish time lowerCamelCase :Optional[int] = self.current_time # update the process' turnaround time because it is finished lowerCamelCase :Tuple = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(__snake_case ) self.finish_queue.extend(__snake_case ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def snake_case ( self : str ): # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): lowerCamelCase , lowerCamelCase :Union[str, Any] = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest A__ = Process("""P1""", 0, 53) A__ = Process("""P2""", 0, 17) A__ = Process("""P3""", 0, 68) A__ = Process("""P4""", 0, 24) A__ = 3 A__ = [17, 25] A__ = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"""queue""": deque([Pa, Pa, Pa, Pa])}) A__ = Process("""P1""", 0, 53) A__ = Process("""P2""", 0, 17) A__ = Process("""P3""", 0, 68) A__ = Process("""P4""", 0, 24) A__ = 3 A__ = [17, 25] A__ = deque([Pa, Pa, Pa, Pa]) A__ = MLFQ(number_of_queues, time_slices, queue, 0) A__ = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print completion times of processes(P1, P2, P3, P4) print( F'completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print sequence of finished processes print( F'sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}' )
49
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { """andreasmadsen/efficient_mlm_m0.40""": ( """https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json""" ), } class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'roberta-prelayernorm' def __init__( self : str , __snake_case : List[str]=50265 , __snake_case : Union[str, Any]=768 , __snake_case : Tuple=12 , __snake_case : int=12 , __snake_case : Any=3072 , __snake_case : Optional[int]="gelu" , __snake_case : List[Any]=0.1 , __snake_case : int=0.1 , __snake_case : Union[str, Any]=512 , __snake_case : Dict=2 , __snake_case : int=0.0_2 , __snake_case : Any=1e-1_2 , __snake_case : Optional[int]=1 , __snake_case : Dict=0 , __snake_case : Optional[int]=2 , __snake_case : Any="absolute" , __snake_case : Union[str, Any]=True , __snake_case : List[str]=None , **__snake_case : Optional[int] , ): super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) lowerCamelCase :Optional[int] = vocab_size lowerCamelCase :Dict = hidden_size lowerCamelCase :Tuple = num_hidden_layers lowerCamelCase :Optional[int] = num_attention_heads lowerCamelCase :Any = hidden_act lowerCamelCase :List[Any] = intermediate_size lowerCamelCase :Union[str, Any] = hidden_dropout_prob lowerCamelCase :str = attention_probs_dropout_prob lowerCamelCase :Tuple = max_position_embeddings lowerCamelCase :int = type_vocab_size lowerCamelCase :Optional[Any] = initializer_range lowerCamelCase :Union[str, Any] = layer_norm_eps lowerCamelCase :Dict = position_embedding_type lowerCamelCase :List[Any] = use_cache lowerCamelCase :Optional[int] = classifier_dropout class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): @property def snake_case ( self : Any ): if self.task == "multiple-choice": lowerCamelCase :Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase :List[str] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
49
1
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : List[str] ): lowerCamelCase :str = '''laion/clap-htsat-unfused''' lowerCamelCase :Union[str, Any] = tempfile.mkdtemp() def snake_case ( self : List[str] , **__snake_case : Optional[Any] ): return RobertaTokenizer.from_pretrained(self.checkpoint , **A__ ) def snake_case ( self : Optional[int] , **__snake_case : Any ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **A__ ) def snake_case ( self : Optional[int] ): shutil.rmtree(self.tmpdirname ) def snake_case ( self : Any ): lowerCamelCase :int = self.get_tokenizer() lowerCamelCase :Any = self.get_feature_extractor() lowerCamelCase :str = ClapProcessor(tokenizer=A__ , feature_extractor=A__ ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase :List[Any] = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , A__ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A__ ) def snake_case ( self : List[str] ): lowerCamelCase :Union[str, Any] = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase :Optional[int] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) lowerCamelCase :Optional[int] = self.get_feature_extractor(do_normalize=A__ , padding_value=1.0 ) lowerCamelCase :Dict = ClapProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=A__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A__ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A__ ) def snake_case ( self : Tuple ): lowerCamelCase :Tuple = self.get_feature_extractor() lowerCamelCase :Any = self.get_tokenizer() lowerCamelCase :Optional[int] = ClapProcessor(tokenizer=A__ , feature_extractor=A__ ) lowerCamelCase :List[str] = floats_list((3, 1000) ) lowerCamelCase :Dict = feature_extractor(A__ , return_tensors='''np''' ) lowerCamelCase :str = processor(audios=A__ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def snake_case ( self : Union[str, Any] ): lowerCamelCase :str = self.get_feature_extractor() lowerCamelCase :Tuple = self.get_tokenizer() lowerCamelCase :Optional[Any] = ClapProcessor(tokenizer=A__ , feature_extractor=A__ ) lowerCamelCase :Tuple = '''This is a test string''' lowerCamelCase :Optional[int] = processor(text=A__ ) lowerCamelCase :str = tokenizer(A__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Optional[Any] = self.get_feature_extractor() lowerCamelCase :List[Any] = self.get_tokenizer() lowerCamelCase :Union[str, Any] = ClapProcessor(tokenizer=A__ , feature_extractor=A__ ) lowerCamelCase :int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase :str = processor.batch_decode(A__ ) lowerCamelCase :Optional[int] = tokenizer.batch_decode(A__ ) self.assertListEqual(A__ , A__ ) def snake_case ( self : List[str] ): lowerCamelCase :Any = self.get_feature_extractor() lowerCamelCase :List[Any] = self.get_tokenizer() lowerCamelCase :List[Any] = ClapProcessor(tokenizer=A__ , feature_extractor=A__ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , )
700
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = DebertaTokenizer _UpperCAmelCase = True _UpperCAmelCase = DebertaTokenizerFast def snake_case ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase :Dict = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] lowerCamelCase :List[str] = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) lowerCamelCase :Any = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCamelCase :Dict = {'''unk_token''': '''[UNK]'''} lowerCamelCase :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase :List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__snake_case ) ) def snake_case ( self : str , **__snake_case : Dict ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Optional[Any] , __snake_case : int ): lowerCamelCase :List[Any] = '''lower newer''' lowerCamelCase :List[str] = '''lower newer''' return input_text, output_text def snake_case ( self : str ): lowerCamelCase :Optional[int] = self.get_tokenizer() lowerCamelCase :Union[str, Any] = '''lower newer''' lowerCamelCase :str = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] lowerCamelCase :Optional[int] = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) lowerCamelCase :List[str] = tokens + [tokenizer.unk_token] lowerCamelCase :Optional[int] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def snake_case ( self : Optional[int] ): lowerCamelCase :List[str] = self.get_tokenizer() lowerCamelCase :Optional[int] = tokenizer('''Hello''' , '''World''' ) lowerCamelCase :List[str] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __snake_case ) @slow def snake_case ( self : str ): lowerCamelCase :Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) lowerCamelCase :Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__snake_case ) lowerCamelCase :Tuple = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__snake_case ) lowerCamelCase :Union[str, Any] = tokenizer.encode( '''sequence builders''' , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) lowerCamelCase :str = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) lowerCamelCase :Any = tokenizer.build_inputs_with_special_tokens(__snake_case ) lowerCamelCase :Dict = tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def snake_case ( self : str ): lowerCamelCase :List[str] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: lowerCamelCase :int = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) lowerCamelCase :Tuple = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] lowerCamelCase :List[Any] = tokenizer(__snake_case , padding=__snake_case ) lowerCamelCase :Union[str, Any] = [tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) for seq in encoding['''input_ids''']] # fmt: off lowerCamelCase :Any = { '''input_ids''': [ [1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on lowerCamelCase :Optional[int] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __snake_case ) for expected, decoded in zip(__snake_case , __snake_case ): self.assertEqual(__snake_case , __snake_case )
49
0
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/config.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/config.json""", } class _lowerCAmelCase ( _snake_case ): _UpperCAmelCase = 'xlnet' _UpperCAmelCase = ['mems'] _UpperCAmelCase = { 'n_token': 'vocab_size', # Backward compatibility 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : int , __snake_case : List[Any]=32000 , __snake_case : Optional[Any]=1024 , __snake_case : str=24 , __snake_case : Optional[Any]=16 , __snake_case : List[Any]=4096 , __snake_case : List[Any]="gelu" , __snake_case : Any=True , __snake_case : List[str]="bi" , __snake_case : Dict=0.0_2 , __snake_case : Tuple=1e-1_2 , __snake_case : str=0.1 , __snake_case : Union[str, Any]=512 , __snake_case : List[Any]=None , __snake_case : Dict=True , __snake_case : Dict=False , __snake_case : str=False , __snake_case : Tuple=-1 , __snake_case : str=False , __snake_case : Any="last" , __snake_case : Union[str, Any]=True , __snake_case : Union[str, Any]="tanh" , __snake_case : int=0.1 , __snake_case : Optional[int]=5 , __snake_case : List[str]=5 , __snake_case : Dict=5 , __snake_case : str=1 , __snake_case : Dict=2 , **__snake_case : Tuple , ): lowerCamelCase :Dict = vocab_size lowerCamelCase :int = d_model lowerCamelCase :Union[str, Any] = n_layer lowerCamelCase :List[Any] = n_head if d_model % n_head != 0: raise ValueError(F"'d_model % n_head' ({d_model % n_head}) should be equal to 0" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" ) lowerCamelCase :List[str] = d_model // n_head lowerCamelCase :List[str] = ff_activation lowerCamelCase :Union[str, Any] = d_inner lowerCamelCase :Optional[Any] = untie_r lowerCamelCase :List[str] = attn_type lowerCamelCase :Union[str, Any] = initializer_range lowerCamelCase :Tuple = layer_norm_eps lowerCamelCase :Dict = dropout lowerCamelCase :Any = mem_len lowerCamelCase :Optional[int] = reuse_len lowerCamelCase :Optional[Any] = bi_data lowerCamelCase :Union[str, Any] = clamp_len lowerCamelCase :Any = same_length lowerCamelCase :int = summary_type lowerCamelCase :List[str] = summary_use_proj lowerCamelCase :Optional[int] = summary_activation lowerCamelCase :int = summary_last_dropout lowerCamelCase :int = start_n_top lowerCamelCase :List[str] = end_n_top lowerCamelCase :Tuple = bos_token_id lowerCamelCase :List[Any] = pad_token_id lowerCamelCase :List[Any] = eos_token_id if "use_cache" in kwargs: warnings.warn( '''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`''' ''' instead.''' , lowerCAmelCase__ , ) lowerCamelCase :List[str] = kwargs['''use_cache'''] lowerCamelCase :Tuple = use_mems_eval lowerCamelCase :Union[str, Any] = use_mems_train super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def snake_case ( self : Dict ): logger.info(F"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def snake_case ( self : List[str] , __snake_case : int ): # Message copied from Transformer-XL documentation raise NotImplementedError( F"The model {self.model_type} is one of the few models that has no sequence length limit." )
701
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) A__ = [ """cross_validation.py""", """gradient_accumulation.py""", """local_sgd.py""", """multi_process_metrics.py""", """memory.py""", """automatic_gradient_accumulation.py""", """fsdp_with_peak_mem_tracking.py""", """deepspeed_with_config_support.py""", """megatron_lm_gpt_pretraining.py""", ] class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Any , __snake_case : str , __snake_case : bool , __snake_case : str = None , __snake_case : list = None ): lowerCamelCase :Tuple = None lowerCamelCase :Tuple = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) lowerCamelCase :Optional[int] = os.path.abspath('''examples''' ) for item in os.listdir(__snake_case ): if item not in EXCLUDE_EXAMPLES: lowerCamelCase :Optional[int] = os.path.join(__snake_case , __snake_case ) if os.path.isfile(__snake_case ) and ".py" in item_path: with self.subTest( tested_script=__snake_case , feature_script=__snake_case , tested_section='''main()''' if parser_only else '''training_function()''' , ): lowerCamelCase :Union[str, Any] = compare_against_test( os.path.join(__snake_case , __snake_case ) , __snake_case , __snake_case , __snake_case ) lowerCamelCase :int = '''\n'''.join(__snake_case ) if special_strings is not None: for string in special_strings: lowerCamelCase :int = diff.replace(__snake_case , '''''' ) self.assertEqual(__snake_case , '''''' ) def snake_case ( self : Dict ): self.one_complete_example('''complete_nlp_example.py''' , __snake_case ) self.one_complete_example('''complete_nlp_example.py''' , __snake_case ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Union[str, Any] = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) lowerCamelCase :Optional[int] = [ ''' ''' * 16 + '''{\n\n''', ''' ''' * 20 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 20 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 20 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 20 + '''"epoch": epoch,\n\n''', ''' ''' * 16 + '''},\n\n''', ''' ''' * 16 + '''step=epoch,\n''', ''' ''' * 12, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , __snake_case , __snake_case , __snake_case ) self.one_complete_example('''complete_cv_example.py''' , __snake_case , __snake_case , __snake_case ) @mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '1'} ) class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = False @classmethod def snake_case ( cls : Optional[Any] ): super().setUpClass() lowerCamelCase :Any = tempfile.mkdtemp() lowerCamelCase :Optional[int] = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) lowerCamelCase :List[str] = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def snake_case ( cls : Dict ): super().tearDownClass() shutil.rmtree(cls._tmpdir ) def snake_case ( self : int ): lowerCamelCase :Any = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def snake_case ( self : List[Any] ): lowerCamelCase :Tuple = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n ".split() lowerCamelCase :List[Any] = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def snake_case ( self : List[str] ): lowerCamelCase :Dict = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}\n ".split() lowerCamelCase :Dict = run_command(self._launch_args + testargs , return_stdout=__snake_case ) self.assertNotIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) def snake_case ( self : str ): lowerCamelCase :List[Any] = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}\n ".split() lowerCamelCase :Optional[int] = run_command(self._launch_args + testargs , return_stdout=__snake_case ) if torch.cuda.is_available(): lowerCamelCase :Union[str, Any] = torch.cuda.device_count() else: lowerCamelCase :Dict = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) else: self.assertIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) @slow def snake_case ( self : Any ): lowerCamelCase :Tuple = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): lowerCamelCase :Dict = run_command(self._launch_args + testargs , return_stdout=__snake_case ) lowerCamelCase :Tuple = re.findall('''({.+})''' , __snake_case ) lowerCamelCase :Optional[Any] = [r for r in results if '''accuracy''' in r][-1] lowerCamelCase :List[str] = ast.literal_eval(__snake_case ) self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 ) def snake_case ( self : int ): lowerCamelCase :Dict = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case ( self : Any ): with tempfile.TemporaryDirectory() as tmpdir: lowerCamelCase :Tuple = F"\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__snake_case , '''tracking''' ) ) ) def snake_case ( self : Tuple ): lowerCamelCase :Tuple = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def snake_case ( self : Optional[Any] ): lowerCamelCase :int = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
49
0
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(""".""") def _lowerCamelCase ( a_ : List[str]): lowerCamelCase :int = test_file.split(os.path.sep) if components[0:2] != ["tests", "models"]: raise ValueError( '''`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ''' F"{test_file} instead.") lowerCamelCase :Optional[Any] = components[-1] if not test_fn.endswith('''py'''): raise ValueError(F"`test_file` should be a python file. Got {test_fn} instead.") if not test_fn.startswith('''test_modeling_'''): raise ValueError( F"`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.") lowerCamelCase :Optional[Any] = components[:-1] + [test_fn.replace('''.py''' , '''''')] lowerCamelCase :Optional[Any] = '''.'''.join(_SCREAMING_SNAKE_CASE) return test_module_path def _lowerCamelCase ( a_ : int): lowerCamelCase :Union[str, Any] = get_module_path(_SCREAMING_SNAKE_CASE) lowerCamelCase :Union[str, Any] = importlib.import_module(_SCREAMING_SNAKE_CASE) return test_module def _lowerCamelCase ( a_ : Optional[int]): lowerCamelCase :int = [] lowerCamelCase :List[str] = get_test_module(_SCREAMING_SNAKE_CASE) for attr in dir(_SCREAMING_SNAKE_CASE): if attr.endswith('''ModelTester'''): tester_classes.append(getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)) # sort with class names return sorted(_SCREAMING_SNAKE_CASE , key=lambda a_: x.__name__) def _lowerCamelCase ( a_ : int): lowerCamelCase :List[str] = [] lowerCamelCase :Optional[Any] = get_test_module(_SCREAMING_SNAKE_CASE) for attr in dir(_SCREAMING_SNAKE_CASE): lowerCamelCase :List[str] = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). lowerCamelCase :int = getattr(_SCREAMING_SNAKE_CASE , '''all_model_classes''' , []) if len(_SCREAMING_SNAKE_CASE) > 0: test_classes.append(_SCREAMING_SNAKE_CASE) # sort with class names return sorted(_SCREAMING_SNAKE_CASE , key=lambda a_: x.__name__) def _lowerCamelCase ( a_ : Optional[int]): lowerCamelCase :str = get_test_classes(_SCREAMING_SNAKE_CASE) lowerCamelCase :Dict = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes) # sort with class names return sorted(_SCREAMING_SNAKE_CASE , key=lambda a_: x.__name__) def _lowerCamelCase ( a_ : Union[str, Any]): lowerCamelCase :Union[str, Any] = test_class() if hasattr(_SCREAMING_SNAKE_CASE , '''setUp'''): test.setUp() lowerCamelCase :int = None if hasattr(_SCREAMING_SNAKE_CASE , '''model_tester'''): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: lowerCamelCase :Union[str, Any] = test.model_tester.__class__ return model_tester def _lowerCamelCase ( a_ : str , a_ : Optional[int]): lowerCamelCase :Optional[Any] = get_test_classes(_SCREAMING_SNAKE_CASE) lowerCamelCase :str = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(_SCREAMING_SNAKE_CASE) # sort with class names return sorted(_SCREAMING_SNAKE_CASE , key=lambda a_: x.__name__) def _lowerCamelCase ( a_ : int , a_ : int): lowerCamelCase :Union[str, Any] = get_test_classes_for_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) lowerCamelCase :Optional[int] = [] for test_class in test_classes: lowerCamelCase :int = get_model_tester_from_test_class(_SCREAMING_SNAKE_CASE) if tester_class is not None: tester_classes.append(_SCREAMING_SNAKE_CASE) # sort with class names return sorted(_SCREAMING_SNAKE_CASE , key=lambda a_: x.__name__) def _lowerCamelCase ( a_ : Tuple): lowerCamelCase :Any = get_test_classes(_SCREAMING_SNAKE_CASE) lowerCamelCase :Optional[Any] = {test_class: get_model_tester_from_test_class(_SCREAMING_SNAKE_CASE) for test_class in test_classes} return test_tester_mapping def _lowerCamelCase ( a_ : Union[str, Any]): lowerCamelCase :Optional[int] = get_model_classes(_SCREAMING_SNAKE_CASE) lowerCamelCase :Optional[int] = { model_class: get_test_classes_for_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) for model_class in model_classes } return model_test_mapping def _lowerCamelCase ( a_ : int): lowerCamelCase :Optional[int] = get_model_classes(_SCREAMING_SNAKE_CASE) lowerCamelCase :Dict = { model_class: get_tester_classes_for_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) for model_class in model_classes } return model_to_tester_mapping def _lowerCamelCase ( a_ : List[Any]): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE): return o elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE): return o.__name__ elif isinstance(_SCREAMING_SNAKE_CASE , (list, tuple)): return [to_json(_SCREAMING_SNAKE_CASE) for x in o] elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE): return {to_json(_SCREAMING_SNAKE_CASE): to_json(_SCREAMING_SNAKE_CASE) for k, v in o.items()} else: return o
702
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs A__ = imread(R"""digital_image_processing/image_data/lena_small.jpg""") A__ = cvtColor(img, COLOR_BGR2GRAY) def _lowerCamelCase ( ): lowerCamelCase :int = cn.convert_to_negative(a_) # assert negative_img array for at least one True assert negative_img.any() def _lowerCamelCase ( ): with Image.open('''digital_image_processing/image_data/lena_small.jpg''') as img: # Work around assertion for response assert str(cc.change_contrast(a_ , 1_10)).startswith( '''<PIL.Image.Image image mode=RGB size=100x100 at''') def _lowerCamelCase ( ): lowerCamelCase :Optional[Any] = canny.gen_gaussian_kernel(9 , sigma=1.4) # Assert ambiguous array assert resp.all() def _lowerCamelCase ( ): lowerCamelCase :str = imread('''digital_image_processing/image_data/lena_small.jpg''' , 0) # assert ambiguous array for all == True assert canny_img.all() lowerCamelCase :Optional[Any] = canny.canny(a_) # assert canny array for at least one True assert canny_array.any() def _lowerCamelCase ( ): assert gg.gaussian_filter(a_ , 5 , sigma=0.9).all() def _lowerCamelCase ( ): # laplace diagonals lowerCamelCase :List[Any] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]]) lowerCamelCase :List[Any] = conv.img_convolve(a_ , a_).astype(a_) assert res.any() def _lowerCamelCase ( ): assert med.median_filter(a_ , 3).any() def _lowerCamelCase ( ): lowerCamelCase , lowerCamelCase :Union[str, Any] = sob.sobel_filter(a_) assert grad.any() and theta.any() def _lowerCamelCase ( ): lowerCamelCase :Dict = sp.make_sepia(a_ , 20) assert sepia.all() def _lowerCamelCase ( a_ : str = "digital_image_processing/image_data/lena_small.jpg"): lowerCamelCase :Any = bs.Burkes(imread(a_ , 1) , 1_20) burkes.process() assert burkes.output_img.any() def _lowerCamelCase ( a_ : str = "digital_image_processing/image_data/lena_small.jpg" , ): lowerCamelCase :Tuple = rs.NearestNeighbour(imread(a_ , 1) , 4_00 , 2_00) nn.process() assert nn.output.any() def _lowerCamelCase ( ): lowerCamelCase :Tuple = '''digital_image_processing/image_data/lena.jpg''' # Reading the image and converting it to grayscale. lowerCamelCase :Tuple = imread(a_ , 0) # Test for get_neighbors_pixel function() return not None lowerCamelCase :Dict = 0 lowerCamelCase :Optional[Any] = 0 lowerCamelCase :str = image[x_coordinate][y_coordinate] lowerCamelCase :Any = lbp.get_neighbors_pixel( a_ , a_ , a_ , a_) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCamelCase :int = np.zeros((image.shape[0], image.shape[1])) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0]): for j in range(0 , image.shape[1]): lowerCamelCase :Optional[int] = lbp.local_binary_value(a_ , a_ , a_) assert lbp_image.any()
49
0
from collections.abc import Generator def _lowerCamelCase ( ): lowerCamelCase , lowerCamelCase :Any = 0, 1 while True: lowerCamelCase , lowerCamelCase :Dict = b, a + b yield b def _lowerCamelCase ( a_ : Dict = 10_00): lowerCamelCase :Optional[int] = 1 lowerCamelCase :Dict = fibonacci_generator() while len(str(next(a_))) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
703
import os from math import logaa def _lowerCamelCase ( a_ : str = "base_exp.txt"): lowerCamelCase :float = 0 lowerCamelCase :Optional[int] = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(a_) , a_))): lowerCamelCase , lowerCamelCase :Optional[int] = list(map(a_ , line.split(''','''))) if x * logaa(a_) > largest: lowerCamelCase :List[Any] = x * logaa(a_) lowerCamelCase :Any = i + 1 return result if __name__ == "__main__": print(solution())
49
0
'''simple docstring''' import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A__ = logging.get_logger(__name__) A__ = '''▁''' A__ = {'''vocab_file''': '''vocab.txt''', '''sentencepiece_model_ckpt''': '''sentencepiece.bpe.model'''} A__ = { '''sentencepiece_model_file''': '''sentencepiece.bpe.model''', '''vocab_file''': '''vocab.txt''', } A__ = { '''vocab_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', }, '''sentencepiece_model_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', }, } A__ = { '''ernie-m-base''': 514, '''ernie-m-large''': 514, } A__ = { '''ernie-m-base''': {'''do_lower_case''': False}, '''ernie-m-large''': {'''do_lower_case''': False}, } class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = ['input_ids'] _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = RESOURCE_FILES_NAMES def __init__( self : Any , __snake_case : Tuple , __snake_case : Optional[int]=None , __snake_case : Any=False , __snake_case : List[str]="utf8" , __snake_case : Optional[int]="[UNK]" , __snake_case : Dict="[SEP]" , __snake_case : List[str]="[PAD]" , __snake_case : Dict="[CLS]" , __snake_case : Optional[int]="[MASK]" , __snake_case : Optional[Dict[str, Any]] = None , **__snake_case : Optional[int] , ): lowerCamelCase :Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , vocab_file=UpperCamelCase_ , encoding=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) lowerCamelCase :Dict = do_lower_case lowerCamelCase :Optional[Any] = sentencepiece_model_ckpt lowerCamelCase :Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase_ ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: lowerCamelCase :List[Any] = self.load_vocab(filepath=UpperCamelCase_ ) else: lowerCamelCase :str = {self.sp_model.id_to_piece(UpperCamelCase_ ): id for id in range(self.sp_model.get_piece_size() )} lowerCamelCase :List[str] = {v: k for k, v in self.vocab.items()} def snake_case ( self : List[str] , __snake_case : Dict ): if text is None: return None lowerCamelCase :Optional[Any] = self.tokenize(UpperCamelCase_ ) lowerCamelCase :int = '', [] for i, ch in enumerate(UpperCamelCase_ ): if ch in self.SP_CHAR_MAPPING: lowerCamelCase :str = self.SP_CHAR_MAPPING.get(UpperCamelCase_ ) else: lowerCamelCase :Optional[int] = unicodedata.normalize('''NFKC''' , UpperCamelCase_ ) if self.is_whitespace(UpperCamelCase_ ): continue normalized_text += ch char_mapping.extend([i] * len(UpperCamelCase_ ) ) lowerCamelCase :Any = normalized_text, [], 0 if self.do_lower_case: lowerCamelCase :Union[str, Any] = text.lower() for token in split_tokens: if token[:1] == "▁": lowerCamelCase :Tuple = token[1:] lowerCamelCase :Optional[Any] = text[offset:].index(UpperCamelCase_ ) + offset lowerCamelCase :Any = start + len(UpperCamelCase_ ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) lowerCamelCase :Tuple = end return token_mapping @property def snake_case ( self : Dict ): return len(self.vocab ) def snake_case ( self : Tuple ): return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self : List[str] ): lowerCamelCase :Optional[int] = self.__dict__.copy() lowerCamelCase :List[str] = None return state def __setstate__( self : List[Any] , __snake_case : Dict ): lowerCamelCase :Any = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowerCamelCase :Tuple = {} lowerCamelCase :Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def snake_case ( self : Dict , __snake_case : Dict ): return "".join((self.SP_CHAR_MAPPING.get(UpperCamelCase_ , UpperCamelCase_ ) for c in text) ) def snake_case ( self : Union[str, Any] , __snake_case : int , __snake_case : Dict=False , __snake_case : Optional[int]=64 , __snake_case : Tuple=0.1 ): if self.sp_model_kwargs.get('''enable_sampling''' ) is True: lowerCamelCase :List[Any] = True if self.sp_model_kwargs.get('''alpha''' ) is not None: lowerCamelCase :Optional[int] = self.sp_model_kwargs.get('''alpha''' ) if self.sp_model_kwargs.get('''nbest_size''' ) is not None: lowerCamelCase :List[Any] = self.sp_model_kwargs.get('''nbest_size''' ) if not enable_sampling: lowerCamelCase :Any = self.sp_model.EncodeAsPieces(UpperCamelCase_ ) else: lowerCamelCase :Tuple = self.sp_model.SampleEncodeAsPieces(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCamelCase :Any = [] for pi, piece in enumerate(UpperCamelCase_ ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(UpperCamelCase_ ) and pi != 0: new_pieces.append(UpperCamelCase_ ) continue else: continue lowerCamelCase :str = 0 for i, chunk in enumerate(UpperCamelCase_ ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(UpperCamelCase_ ) or self.is_punct(UpperCamelCase_ ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(UpperCamelCase_ ) lowerCamelCase :Tuple = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowerCamelCase :Any = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowerCamelCase :Any = i if len(UpperCamelCase_ ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def snake_case ( self : Tuple , __snake_case : Dict ): lowerCamelCase :str = ''.join(UpperCamelCase_ ).replace(UpperCamelCase_ , ''' ''' ).strip() return out_string def snake_case ( self : str , __snake_case : str ): lowerCamelCase :str = self.convert_ids_to_tokens(UpperCamelCase_ ) lowerCamelCase :int = ''.join(UpperCamelCase_ ).replace(UpperCamelCase_ , ''' ''' ).strip() return out_string def snake_case ( self : Optional[Any] , __snake_case : Any ): return self.vocab.get(UpperCamelCase_ , self.vocab.get(self.unk_token ) ) def snake_case ( self : Optional[int] , __snake_case : List[str] ): return self.reverse_vocab.get(UpperCamelCase_ , self.unk_token ) def snake_case ( self : Optional[int] , __snake_case : str , __snake_case : int=None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase :List[Any] = [self.cls_token_id] lowerCamelCase :Tuple = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def snake_case ( self : Dict , __snake_case : Optional[Any] , __snake_case : str=None ): if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def snake_case ( self : Optional[Any] , __snake_case : Optional[int] , __snake_case : Optional[int]=None , __snake_case : Any=False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1] def snake_case ( self : Union[str, Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): if token_ids_a is None: # [CLS] X [SEP] return (len(UpperCamelCase_ ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(UpperCamelCase_ ) + 1) + [1] * (len(UpperCamelCase_ ) + 3) def snake_case ( self : str , __snake_case : Union[str, Any] ): if "\u4e00" <= char <= "\u9fff": return True return False def snake_case ( self : Optional[int] , __snake_case : List[Any] ): if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def snake_case ( self : Union[str, Any] , __snake_case : List[str] ): if char in ",;:.?!~,;:。?!《》【】": return True return False def snake_case ( self : Any , __snake_case : Optional[Any] ): if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(UpperCamelCase_ ) == 1: lowerCamelCase :Any = unicodedata.category(UpperCamelCase_ ) if cat == "Zs": return True return False def snake_case ( self : Union[str, Any] , __snake_case : Any ): lowerCamelCase :List[str] = {} with io.open(UpperCamelCase_ , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(UpperCamelCase_ ): lowerCamelCase :List[str] = line.rstrip('''\n''' ) lowerCamelCase :Optional[Any] = int(UpperCamelCase_ ) return token_to_idx def snake_case ( self : Dict , __snake_case : str , __snake_case : Optional[str] = None ): lowerCamelCase :Optional[int] = 0 if os.path.isdir(UpperCamelCase_ ): lowerCamelCase :Any = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: lowerCamelCase :Union[str, Any] = (filename_prefix + '-' if filename_prefix else '') + save_directory with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda __snake_case : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." ''' Please check that the vocabulary is not corrupted!''' ) lowerCamelCase :Optional[Any] = token_index writer.write(token + '''\n''' ) index += 1 lowerCamelCase :int = os.path.join(UpperCamelCase_ , '''sentencepiece.bpe.model''' ) with open(UpperCamelCase_ , '''wb''' ) as fi: lowerCamelCase :int = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (vocab_file,)
704
def _lowerCamelCase ( a_ : list): if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''') for cell_n in range(1 , len(grid[0])): grid[0][cell_n] += grid[0][cell_n - 1] lowerCamelCase :Any = grid[0] for row_n in range(1 , len(a_)): lowerCamelCase :List[str] = grid[row_n] lowerCamelCase :Union[str, Any] = fill_row(a_ , a_) lowerCamelCase :List[Any] = grid[row_n] return grid[-1][-1] def _lowerCamelCase ( a_ : list , a_ : list): current_row[0] += row_above[0] for cell_n in range(1 , len(a_)): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n]) return current_row if __name__ == "__main__": import doctest doctest.testmod()
49
0
import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() A__ = logging.get_logger("""transformers.models.encodec""") A__ = { "quantizer.vq.layers.*._codebook.inited": "quantizer.layers.*.codebook.inited", "quantizer.vq.layers.*._codebook.cluster_size": "quantizer.layers.*.codebook.cluster_size", "quantizer.vq.layers.*._codebook.embed": "quantizer.layers.*.codebook.embed", "quantizer.vq.layers.*._codebook.embed_avg": "quantizer.layers.*.codebook.embed_avg", } A__ = { "encoder.model.0.conv.conv": "encoder.layers.0.conv", "encoder.model.1.block.1.conv.conv": "encoder.layers.1.block.1.conv", "encoder.model.1.block.3.conv.conv": "encoder.layers.1.block.3.conv", "encoder.model.1.shortcut.conv.conv": "encoder.layers.1.shortcut.conv", "encoder.model.3.conv.conv": "encoder.layers.3.conv", "encoder.model.4.block.1.conv.conv": "encoder.layers.4.block.1.conv", "encoder.model.4.block.3.conv.conv": "encoder.layers.4.block.3.conv", "encoder.model.4.shortcut.conv.conv": "encoder.layers.4.shortcut.conv", "encoder.model.6.conv.conv": "encoder.layers.6.conv", "encoder.model.7.block.1.conv.conv": "encoder.layers.7.block.1.conv", "encoder.model.7.block.3.conv.conv": "encoder.layers.7.block.3.conv", "encoder.model.7.shortcut.conv.conv": "encoder.layers.7.shortcut.conv", "encoder.model.9.conv.conv": "encoder.layers.9.conv", "encoder.model.10.block.1.conv.conv": "encoder.layers.10.block.1.conv", "encoder.model.10.block.3.conv.conv": "encoder.layers.10.block.3.conv", "encoder.model.10.shortcut.conv.conv": "encoder.layers.10.shortcut.conv", "encoder.model.12.conv.conv": "encoder.layers.12.conv", "encoder.model.13.lstm": "encoder.layers.13.lstm", "encoder.model.15.conv.conv": "encoder.layers.15.conv", } A__ = { "encoder.model.0.conv.norm": "encoder.layers.0.norm", "encoder.model.1.block.1.conv.norm": "encoder.layers.1.block.1.norm", "encoder.model.1.block.3.conv.norm": "encoder.layers.1.block.3.norm", "encoder.model.1.shortcut.conv.norm": "encoder.layers.1.shortcut.norm", "encoder.model.3.conv.norm": "encoder.layers.3.norm", "encoder.model.4.block.1.conv.norm": "encoder.layers.4.block.1.norm", "encoder.model.4.block.3.conv.norm": "encoder.layers.4.block.3.norm", "encoder.model.4.shortcut.conv.norm": "encoder.layers.4.shortcut.norm", "encoder.model.6.conv.norm": "encoder.layers.6.norm", "encoder.model.7.block.1.conv.norm": "encoder.layers.7.block.1.norm", "encoder.model.7.block.3.conv.norm": "encoder.layers.7.block.3.norm", "encoder.model.7.shortcut.conv.norm": "encoder.layers.7.shortcut.norm", "encoder.model.9.conv.norm": "encoder.layers.9.norm", "encoder.model.10.block.1.conv.norm": "encoder.layers.10.block.1.norm", "encoder.model.10.block.3.conv.norm": "encoder.layers.10.block.3.norm", "encoder.model.10.shortcut.conv.norm": "encoder.layers.10.shortcut.norm", "encoder.model.12.conv.norm": "encoder.layers.12.norm", "encoder.model.15.conv.norm": "encoder.layers.15.norm", } A__ = { "decoder.model.0.conv.conv": "decoder.layers.0.conv", "decoder.model.1.lstm": "decoder.layers.1.lstm", "decoder.model.3.convtr.convtr": "decoder.layers.3.conv", "decoder.model.4.block.1.conv.conv": "decoder.layers.4.block.1.conv", "decoder.model.4.block.3.conv.conv": "decoder.layers.4.block.3.conv", "decoder.model.4.shortcut.conv.conv": "decoder.layers.4.shortcut.conv", "decoder.model.6.convtr.convtr": "decoder.layers.6.conv", "decoder.model.7.block.1.conv.conv": "decoder.layers.7.block.1.conv", "decoder.model.7.block.3.conv.conv": "decoder.layers.7.block.3.conv", "decoder.model.7.shortcut.conv.conv": "decoder.layers.7.shortcut.conv", "decoder.model.9.convtr.convtr": "decoder.layers.9.conv", "decoder.model.10.block.1.conv.conv": "decoder.layers.10.block.1.conv", "decoder.model.10.block.3.conv.conv": "decoder.layers.10.block.3.conv", "decoder.model.10.shortcut.conv.conv": "decoder.layers.10.shortcut.conv", "decoder.model.12.convtr.convtr": "decoder.layers.12.conv", "decoder.model.13.block.1.conv.conv": "decoder.layers.13.block.1.conv", "decoder.model.13.block.3.conv.conv": "decoder.layers.13.block.3.conv", "decoder.model.13.shortcut.conv.conv": "decoder.layers.13.shortcut.conv", "decoder.model.15.conv.conv": "decoder.layers.15.conv", } A__ = { "decoder.model.0.conv.norm": "decoder.layers.0.norm", "decoder.model.3.convtr.norm": "decoder.layers.3.norm", "decoder.model.4.block.1.conv.norm": "decoder.layers.4.block.1.norm", "decoder.model.4.block.3.conv.norm": "decoder.layers.4.block.3.norm", "decoder.model.4.shortcut.conv.norm": "decoder.layers.4.shortcut.norm", "decoder.model.6.convtr.norm": "decoder.layers.6.norm", "decoder.model.7.block.1.conv.norm": "decoder.layers.7.block.1.norm", "decoder.model.7.block.3.conv.norm": "decoder.layers.7.block.3.norm", "decoder.model.7.shortcut.conv.norm": "decoder.layers.7.shortcut.norm", "decoder.model.9.convtr.norm": "decoder.layers.9.norm", "decoder.model.10.block.1.conv.norm": "decoder.layers.10.block.1.norm", "decoder.model.10.block.3.conv.norm": "decoder.layers.10.block.3.norm", "decoder.model.10.shortcut.conv.norm": "decoder.layers.10.shortcut.norm", "decoder.model.12.convtr.norm": "decoder.layers.12.norm", "decoder.model.13.block.1.conv.norm": "decoder.layers.13.block.1.norm", "decoder.model.13.block.3.conv.norm": "decoder.layers.13.block.3.norm", "decoder.model.13.shortcut.conv.norm": "decoder.layers.13.shortcut.norm", "decoder.model.15.conv.norm": "decoder.layers.15.norm", } A__ = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } A__ = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } A__ = [] A__ = [] def _lowerCamelCase ( a_ : Union[str, Any] , a_ : Union[str, Any] , a_ : Optional[Any] , a_ : Optional[int] , a_ : int): for attribute in key.split('''.'''): lowerCamelCase :Optional[Any] = getattr(_A , _A) if weight_type is not None: lowerCamelCase :List[str] = getattr(_A , _A).shape else: lowerCamelCase :List[str] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}") if weight_type == "weight": lowerCamelCase :Dict = value elif weight_type == "weight_g": lowerCamelCase :str = value elif weight_type == "weight_v": lowerCamelCase :Optional[int] = value elif weight_type == "bias": lowerCamelCase :Tuple = value elif weight_type == "running_mean": lowerCamelCase :List[Any] = value elif weight_type == "running_var": lowerCamelCase :str = value elif weight_type == "num_batches_tracked": lowerCamelCase :List[Any] = value elif weight_type == "weight_ih_l0": lowerCamelCase :Optional[Any] = value elif weight_type == "weight_hh_l0": lowerCamelCase :Tuple = value elif weight_type == "bias_ih_l0": lowerCamelCase :str = value elif weight_type == "bias_hh_l0": lowerCamelCase :Optional[int] = value elif weight_type == "weight_ih_l1": lowerCamelCase :Dict = value elif weight_type == "weight_hh_l1": lowerCamelCase :str = value elif weight_type == "bias_ih_l1": lowerCamelCase :Optional[Any] = value elif weight_type == "bias_hh_l1": lowerCamelCase :int = value else: lowerCamelCase :Optional[Any] = value logger.info(F"{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.") def _lowerCamelCase ( a_ : Tuple , a_ : Any): for key in ignore_keys: if key.endswith('''.*'''): if name.startswith(key[:-1]): return True elif ".*." in key: lowerCamelCase :Any = key.split('''.*.''') if prefix in name and suffix in name: return True elif key in name: return True return False def _lowerCamelCase ( a_ : List[Any] , a_ : Optional[int] , a_ : Optional[Any]): lowerCamelCase :Dict = [] if model_name == "encodec_24khz" or "encodec_32khz": lowerCamelCase :str = MAPPING_24K elif model_name == "encodec_48khz": lowerCamelCase :Any = MAPPING_48K else: raise ValueError(F"Unsupported model: {model_name}") for name, value in orig_dict.items(): if should_ignore(_A , _A): logger.info(F"{name} was ignored") continue lowerCamelCase :int = False for key, mapped_key in MAPPING.items(): if "*" in key: lowerCamelCase :Any = key.split('''.*.''') if prefix in name and suffix in name: lowerCamelCase :Optional[Any] = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('''embed''') and name.endswith('''embed_avg'''): continue lowerCamelCase :Optional[Any] = True if "*" in mapped_key: lowerCamelCase :Optional[Any] = name.split(_A)[0].split('''.''')[-2] lowerCamelCase :str = mapped_key.replace('''*''' , _A) if "weight_g" in name: lowerCamelCase :Any = "weight_g" elif "weight_v" in name: lowerCamelCase :List[Any] = "weight_v" elif "weight_ih_l0" in name: lowerCamelCase :Union[str, Any] = "weight_ih_l0" elif "weight_hh_l0" in name: lowerCamelCase :Dict = "weight_hh_l0" elif "bias_ih_l0" in name: lowerCamelCase :Optional[Any] = "bias_ih_l0" elif "bias_hh_l0" in name: lowerCamelCase :Optional[int] = "bias_hh_l0" elif "weight_ih_l1" in name: lowerCamelCase :Dict = "weight_ih_l1" elif "weight_hh_l1" in name: lowerCamelCase :Optional[Any] = "weight_hh_l1" elif "bias_ih_l1" in name: lowerCamelCase :List[str] = "bias_ih_l1" elif "bias_hh_l1" in name: lowerCamelCase :List[Any] = "bias_hh_l1" elif "bias" in name: lowerCamelCase :str = "bias" elif "weight" in name: lowerCamelCase :List[Any] = "weight" elif "running_mean" in name: lowerCamelCase :Any = "running_mean" elif "running_var" in name: lowerCamelCase :List[Any] = "running_var" elif "num_batches_tracked" in name: lowerCamelCase :str = "num_batches_tracked" else: lowerCamelCase :Optional[int] = None set_recursively(_A , _A , _A , _A , _A) continue if not is_used: unused_weights.append(_A) logger.warning(F"Unused weights: {unused_weights}") @torch.no_grad() def _lowerCamelCase ( a_ : Tuple , a_ : Union[str, Any] , a_ : List[str] , a_ : List[str]=None , a_ : Optional[int]=None , ): if config_path is not None: lowerCamelCase :str = EncodecConfig.from_pretrained(_A) else: lowerCamelCase :Optional[int] = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": lowerCamelCase :Union[str, Any] = [8, 5, 4, 4] lowerCamelCase :Tuple = [2.2] lowerCamelCase :int = 64 lowerCamelCase :List[Any] = 3_20_00 lowerCamelCase :Optional[int] = 20_48 lowerCamelCase :Optional[Any] = False lowerCamelCase :int = False lowerCamelCase :int = False elif model_name == "encodec_48khz": lowerCamelCase :Any = [8, 5, 4, 2] lowerCamelCase :str = [3.0, 6.0, 12.0, 24.0] lowerCamelCase :Dict = 4_80_00 lowerCamelCase :Optional[int] = 2 lowerCamelCase :Union[str, Any] = False lowerCamelCase :str = "time_group_norm" lowerCamelCase :int = True lowerCamelCase :Optional[Any] = 1.0 lowerCamelCase :Union[str, Any] = 0.01 else: raise ValueError(F"Unknown model name: {model_name}") lowerCamelCase :Dict = EncodecModel(_A) lowerCamelCase :Dict = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(_A) lowerCamelCase :Dict = torch.load(_A) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights lowerCamelCase :List[str] = original_checkpoint["best_state"] recursively_load_weights(_A , _A , _A) model.save_pretrained(_A) if repo_id: print('''Pushing to the hub...''') feature_extractor.push_to_hub(_A) model.push_to_hub(_A) if __name__ == "__main__": A__ = argparse.ArgumentParser() parser.add_argument( """--model""", default="""encodec_24khz""", type=str, help="""The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) A__ = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
705
import math def _lowerCamelCase ( a_ : int): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a_) + 1) , 6): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCamelCase ( a_ : float = 0.1): lowerCamelCase :Dict = 3 lowerCamelCase :List[Any] = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1): primes += is_prime(a_) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
49
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowerCAmelCase ( __lowerCamelCase ): _UpperCAmelCase = ['image_processor', 'tokenizer'] _UpperCAmelCase = 'CLIPImageProcessor' _UpperCAmelCase = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : Optional[Any] , __snake_case : Optional[int]=None , __snake_case : str=None , **__snake_case : int ): lowerCamelCase :List[str] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCAmelCase_ , ) lowerCamelCase :Optional[Any] = kwargs.pop('''feature_extractor''' ) lowerCamelCase :Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) def __call__( self : List[str] , __snake_case : Tuple=None , __snake_case : List[str]=None , __snake_case : Tuple=None , **__snake_case : Any ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: lowerCamelCase :Union[str, Any] = self.tokenizer(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) if images is not None: lowerCamelCase :Tuple = self.image_processor(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) if text is not None and images is not None: lowerCamelCase :Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase_ ) , tensor_type=UpperCAmelCase_ ) def snake_case ( self : str , *__snake_case : str , **__snake_case : Optional[int] ): return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def snake_case ( self : str , *__snake_case : List[Any] , **__snake_case : List[str] ): return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) @property def snake_case ( self : Optional[Any] ): lowerCamelCase :str = self.tokenizer.model_input_names lowerCamelCase :List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def snake_case ( self : int ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCAmelCase_ , ) return self.image_processor_class @property def snake_case ( self : str ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCAmelCase_ , ) return self.image_processor
706
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : str ): lowerCamelCase :int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :List[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :Optional[Any] = -1 lowerCamelCase :List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Tuple = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :str = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowerCamelCase :str = TextStreamer(__snake_case ) model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case , streamer=__snake_case ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCamelCase :Optional[int] = cs.out[:-1] self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : Dict ): lowerCamelCase :Tuple = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :int = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :List[Any] = -1 lowerCamelCase :Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Tuple = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :List[Any] = tokenizer.decode(greedy_ids[0] ) lowerCamelCase :List[str] = TextIteratorStreamer(__snake_case ) lowerCamelCase :List[str] = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} lowerCamelCase :Tuple = Thread(target=model.generate , kwargs=__snake_case ) thread.start() lowerCamelCase :Any = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : str ): lowerCamelCase :int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :Dict = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :List[str] = -1 lowerCamelCase :Optional[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Optional[Any] = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :List[str] = greedy_ids[:, input_ids.shape[1] :] lowerCamelCase :Union[str, Any] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowerCamelCase :List[str] = TextStreamer(__snake_case , skip_prompt=__snake_case ) model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case , streamer=__snake_case ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCamelCase :int = cs.out[:-1] self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : Optional[int] ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them lowerCamelCase :List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) lowerCamelCase :Union[str, Any] = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(__snake_case ) lowerCamelCase :Optional[int] = -1 lowerCamelCase :Union[str, Any] = torch.ones((1, 5) , device=__snake_case ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowerCamelCase :Dict = TextStreamer(__snake_case , skip_special_tokens=__snake_case ) model.generate(__snake_case , max_new_tokens=1 , do_sample=__snake_case , streamer=__snake_case ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowerCamelCase :Tuple = cs.out[:-1] # Remove the final "\n" lowerCamelCase :int = tokenizer(__snake_case , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def snake_case ( self : List[Any] ): lowerCamelCase :List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :Optional[int] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :Optional[int] = -1 lowerCamelCase :Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :List[Any] = TextIteratorStreamer(__snake_case , timeout=0.0_0_1 ) lowerCamelCase :Dict = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} lowerCamelCase :Tuple = Thread(target=model.generate , kwargs=__snake_case ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__snake_case ): lowerCamelCase :Dict = '''''' for new_text in streamer: streamer_text += new_text
49
0
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCAmelCase : def __init__( self : Optional[int] , __snake_case : Dict , __snake_case : List[str]=13 , __snake_case : Optional[Any]=7 , __snake_case : Any=True , __snake_case : List[str]=True , __snake_case : Union[str, Any]=True , __snake_case : Union[str, Any]=True , __snake_case : Optional[Any]=99 , __snake_case : List[Any]=16 , __snake_case : str=36 , __snake_case : Optional[int]=6 , __snake_case : List[Any]=6 , __snake_case : Optional[int]=6 , __snake_case : List[str]=37 , __snake_case : Tuple="gelu" , __snake_case : Dict=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Union[str, Any]=512 , __snake_case : Any=16 , __snake_case : int=2 , __snake_case : Optional[Any]=0.0_2 , __snake_case : Tuple=3 , __snake_case : Any=4 , __snake_case : Tuple=None , ): lowerCamelCase :List[Any] = parent lowerCamelCase :Union[str, Any] = batch_size lowerCamelCase :Any = seq_length lowerCamelCase :List[Any] = is_training lowerCamelCase :Any = use_input_mask lowerCamelCase :Optional[int] = use_token_type_ids lowerCamelCase :Optional[Any] = use_labels lowerCamelCase :Optional[int] = vocab_size lowerCamelCase :Union[str, Any] = embedding_size lowerCamelCase :Union[str, Any] = hidden_size lowerCamelCase :str = num_hidden_layers lowerCamelCase :str = num_hidden_groups lowerCamelCase :int = num_attention_heads lowerCamelCase :int = intermediate_size lowerCamelCase :str = hidden_act lowerCamelCase :List[Any] = hidden_dropout_prob lowerCamelCase :Union[str, Any] = attention_probs_dropout_prob lowerCamelCase :List[str] = max_position_embeddings lowerCamelCase :Any = type_vocab_size lowerCamelCase :Any = type_sequence_label_size lowerCamelCase :str = initializer_range lowerCamelCase :Optional[Any] = num_labels lowerCamelCase :List[str] = num_choices lowerCamelCase :Tuple = scope def snake_case ( self : Optional[int] ): lowerCamelCase :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase :Tuple = None if self.use_input_mask: lowerCamelCase :Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase :Tuple = None if self.use_token_type_ids: lowerCamelCase :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase :Any = None lowerCamelCase :Union[str, Any] = None lowerCamelCase :Optional[Any] = None if self.use_labels: lowerCamelCase :Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase :str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase :List[Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase :Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self : Any ): return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def snake_case ( self : Tuple , __snake_case : List[Any] , __snake_case : str , __snake_case : Dict , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : Dict ): lowerCamelCase :Dict = AlbertModel(config=_lowercase ) model.to(_lowercase ) model.eval() lowerCamelCase :Optional[int] = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase ) lowerCamelCase :Dict = model(_lowercase , token_type_ids=_lowercase ) lowerCamelCase :str = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def snake_case ( self : List[str] , __snake_case : str , __snake_case : str , __snake_case : List[str] , __snake_case : int , __snake_case : List[Any] , __snake_case : Tuple , __snake_case : Union[str, Any] ): lowerCamelCase :Optional[int] = AlbertForPreTraining(config=_lowercase ) model.to(_lowercase ) model.eval() lowerCamelCase :Dict = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , sentence_order_label=_lowercase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def snake_case ( self : List[Any] , __snake_case : Any , __snake_case : Tuple , __snake_case : Optional[int] , __snake_case : Any , __snake_case : str , __snake_case : Optional[int] , __snake_case : int ): lowerCamelCase :Optional[Any] = AlbertForMaskedLM(config=_lowercase ) model.to(_lowercase ) model.eval() lowerCamelCase :Dict = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self : Optional[Any] , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : str , __snake_case : Any ): lowerCamelCase :Optional[Any] = AlbertForQuestionAnswering(config=_lowercase ) model.to(_lowercase ) model.eval() lowerCamelCase :Tuple = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , start_positions=_lowercase , end_positions=_lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case ( self : Tuple , __snake_case : List[Any] , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : int , __snake_case : Any , __snake_case : Optional[Any] ): lowerCamelCase :Dict = self.num_labels lowerCamelCase :Union[str, Any] = AlbertForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() lowerCamelCase :Optional[int] = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self : int , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : Optional[Any] , __snake_case : int , __snake_case : List[str] , __snake_case : List[str] ): lowerCamelCase :List[Any] = self.num_labels lowerCamelCase :Optional[Any] = AlbertForTokenClassification(config=_lowercase ) model.to(_lowercase ) model.eval() lowerCamelCase :List[Any] = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self : List[Any] , __snake_case : Tuple , __snake_case : List[str] , __snake_case : Tuple , __snake_case : Any , __snake_case : int , __snake_case : int , __snake_case : Any ): lowerCamelCase :List[Any] = self.num_choices lowerCamelCase :Tuple = AlbertForMultipleChoice(config=_lowercase ) model.to(_lowercase ) model.eval() lowerCamelCase :Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase :str = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase :Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase :List[Any] = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case ( self : List[str] ): lowerCamelCase :List[Any] = self.prepare_config_and_inputs() ( lowerCamelCase ) :int = config_and_inputs lowerCamelCase :Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): _UpperCAmelCase = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) _UpperCAmelCase = ( { 'feature-extraction': AlbertModel, 'fill-mask': AlbertForMaskedLM, 'question-answering': AlbertForQuestionAnswering, 'text-classification': AlbertForSequenceClassification, 'token-classification': AlbertForTokenClassification, 'zero-shot': AlbertForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase = True def snake_case ( self : Optional[int] , __snake_case : List[str] , __snake_case : Dict , __snake_case : Dict=False ): lowerCamelCase :List[Any] = super()._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) if return_labels: if model_class in get_values(_lowercase ): lowerCamelCase :Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_lowercase ) lowerCamelCase :Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowercase ) return inputs_dict def snake_case ( self : List[str] ): lowerCamelCase :List[str] = AlbertModelTester(self ) lowerCamelCase :str = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def snake_case ( self : int ): self.config_tester.run_common_tests() def snake_case ( self : Optional[Any] ): lowerCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def snake_case ( self : List[Any] ): lowerCamelCase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowercase ) def snake_case ( self : Optional[int] ): lowerCamelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowercase ) def snake_case ( self : Dict ): lowerCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowercase ) def snake_case ( self : Union[str, Any] ): lowerCamelCase :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowercase ) def snake_case ( self : Dict ): lowerCamelCase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowercase ) def snake_case ( self : str ): lowerCamelCase :Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase :Tuple = type self.model_tester.create_and_check_model(*_lowercase ) @slow def snake_case ( self : List[Any] ): for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase :Tuple = AlbertModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) @require_torch class _lowerCAmelCase ( unittest.TestCase ): @slow def snake_case ( self : str ): lowerCamelCase :List[str] = AlbertModel.from_pretrained('''albert-base-v2''' ) lowerCamelCase :int = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowerCamelCase :Optional[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCamelCase :List[Any] = model(_lowercase , attention_mask=_lowercase )[0] lowerCamelCase :str = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _lowercase ) lowerCamelCase :Tuple = torch.tensor( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowercase , atol=1e-4 ) )
707
from maths.prime_factors import prime_factors def _lowerCamelCase ( a_ : int): if not isinstance(a_ , a_): lowerCamelCase :Tuple = F"Input value of [number={number}] must be an integer" raise TypeError(a_) if number < 1: raise ValueError('''Input must be a positive integer''') return -1 if len(prime_factors(a_)) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
49
0
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A__ = logging.get_logger(__name__) A__ = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", } A__ = { """vocab_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"""}, """merges_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"""}, } A__ = { """ctrl""": 256, } A__ = { """Pregnancy""": 168_629, """Christianity""": 7_675, """Explain""": 106_423, """Fitness""": 63_440, """Saving""": 63_163, """Ask""": 27_171, """Ass""": 95_985, """Joke""": 163_509, """Questions""": 45_622, """Thoughts""": 49_605, """Retail""": 52_342, """Feminism""": 164_338, """Writing""": 11_992, """Atheism""": 192_263, """Netflix""": 48_616, """Computing""": 39_639, """Opinion""": 43_213, """Alone""": 44_967, """Funny""": 58_917, """Gaming""": 40_358, """Human""": 4_088, """India""": 1_331, """Joker""": 77_138, """Diet""": 36_206, """Legal""": 11_859, """Norman""": 4_939, """Tip""": 72_689, """Weight""": 52_343, """Movies""": 46_273, """Running""": 23_425, """Science""": 2_090, """Horror""": 37_793, """Confession""": 60_572, """Finance""": 12_250, """Politics""": 16_360, """Scary""": 191_985, """Support""": 12_654, """Technologies""": 32_516, """Teenage""": 66_160, """Event""": 32_769, """Learned""": 67_460, """Notion""": 182_770, """Wikipedia""": 37_583, """Books""": 6_665, """Extract""": 76_050, """Confessions""": 102_701, """Conspiracy""": 75_932, """Links""": 63_674, """Narcissus""": 150_425, """Relationship""": 54_766, """Relationships""": 134_796, """Reviews""": 41_671, """News""": 4_256, """Translation""": 26_820, """multilingual""": 128_406, } def _lowerCamelCase ( a_ : Optional[int]): lowerCamelCase :Tuple = set() lowerCamelCase :Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char)) lowerCamelCase :Any = char lowerCamelCase :Union[str, Any] = set(__A) return pairs class _lowerCAmelCase ( __A ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = CONTROL_CODES def __init__( self : Dict , __snake_case : Tuple , __snake_case : int , __snake_case : Dict="<unk>" , **__snake_case : Tuple ): super().__init__(unk_token=__snake_case , **__snake_case ) with open(__snake_case , encoding='''utf-8''' ) as vocab_handle: lowerCamelCase :List[Any] = json.load(__snake_case ) lowerCamelCase :Union[str, Any] = {v: k for k, v in self.encoder.items()} with open(__snake_case , encoding='''utf-8''' ) as merges_handle: lowerCamelCase :Tuple = merges_handle.read().split('''\n''' )[1:-1] lowerCamelCase :List[str] = [tuple(merge.split() ) for merge in merges] lowerCamelCase :Tuple = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) lowerCamelCase :Dict = {} @property def snake_case ( self : Optional[Any] ): return len(self.encoder ) def snake_case ( self : Optional[int] ): return dict(self.encoder , **self.added_tokens_encoder ) def snake_case ( self : str , __snake_case : Optional[int] ): if token in self.cache: return self.cache[token] lowerCamelCase :Dict = tuple(__snake_case ) lowerCamelCase :Any = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) lowerCamelCase :Dict = get_pairs(__snake_case ) if not pairs: return token while True: lowerCamelCase :List[Any] = min(__snake_case , key=lambda __snake_case : self.bpe_ranks.get(__snake_case , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase :Tuple = bigram lowerCamelCase :Union[str, Any] = [] lowerCamelCase :Dict = 0 while i < len(__snake_case ): try: lowerCamelCase :List[Any] = word.index(__snake_case , __snake_case ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase :int = j if word[i] == first and i < len(__snake_case ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase :int = tuple(__snake_case ) lowerCamelCase :Optional[Any] = new_word if len(__snake_case ) == 1: break else: lowerCamelCase :int = get_pairs(__snake_case ) lowerCamelCase :List[str] = '''@@ '''.join(__snake_case ) lowerCamelCase :Optional[Any] = word[:-4] lowerCamelCase :Union[str, Any] = word return word def snake_case ( self : int , __snake_case : List[str] ): lowerCamelCase :int = [] lowerCamelCase :Any = re.findall(R'''\S+\n?''' , __snake_case ) for token in words: split_tokens.extend(list(self.bpe(__snake_case ).split(''' ''' ) ) ) return split_tokens def snake_case ( self : int , __snake_case : str ): return self.encoder.get(__snake_case , self.encoder.get(self.unk_token ) ) def snake_case ( self : Tuple , __snake_case : List[str] ): return self.decoder.get(__snake_case , self.unk_token ) def snake_case ( self : Optional[Any] , __snake_case : List[str] ): lowerCamelCase :Optional[Any] = ''' '''.join(__snake_case ).replace('''@@ ''' , '''''' ).strip() return out_string def snake_case ( self : List[Any] , __snake_case : str , __snake_case : Optional[str] = None ): if not os.path.isdir(__snake_case ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return lowerCamelCase :Union[str, Any] = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase :Union[str, Any] = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__snake_case , ensure_ascii=__snake_case ) + '''\n''' ) lowerCamelCase :Dict = 0 with open(__snake_case , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __snake_case : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ''' Please check that the tokenizer is not corrupted!''' ) lowerCamelCase :List[str] = token_index writer.write(''' '''.join(__snake_case ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
708
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() A__ = logging.get_logger(__name__) def _lowerCamelCase ( a_ : str , a_ : str=False): lowerCamelCase :Optional[int] = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''')) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''')) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''')) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''')) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''')) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''')) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''')) for stage_idx in range(len(config.backbone_config.depths)): for layer_idx in range(config.backbone_config.depths[stage_idx]): rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias")) # transformer encoder for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight")) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias")) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight")) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias")) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight")) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias")) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight")) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias")) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight")) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias")) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ]) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCamelCase :List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''') else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ]) # fmt: on return rename_keys def _lowerCamelCase ( a_ : Any , a_ : Any , a_ : int=False): for i in range(config.num_hidden_layers): if base_model: lowerCamelCase :Union[str, Any] = '''''' else: lowerCamelCase :Optional[int] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase :Optional[Any] = state_dict.pop(F"blocks.{i}.attn.qkv.weight") lowerCamelCase :Any = state_dict.pop(F"blocks.{i}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict lowerCamelCase :Any = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase :Tuple = in_proj_bias[: config.hidden_size] lowerCamelCase :int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase :Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase :Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase :List[Any] = in_proj_bias[-config.hidden_size :] def _lowerCamelCase ( a_ : int): lowerCamelCase :Any = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(a_ , a_) def _lowerCamelCase ( a_ : int , a_ : Any , a_ : Tuple): lowerCamelCase :Optional[Any] = dct.pop(a_) lowerCamelCase :str = val def _lowerCamelCase ( ): lowerCamelCase :Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase :Tuple = Image.open(requests.get(a_ , stream=a_).raw) return im @torch.no_grad() def _lowerCamelCase ( a_ : Optional[Any] , a_ : Optional[Any] , a_ : Optional[Any]=False): lowerCamelCase :Optional[int] = BitConfig( global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=a_ , ) lowerCamelCase :Optional[int] = ViTHybridConfig(backbone_config=a_ , image_size=3_84 , num_labels=10_00) lowerCamelCase :List[Any] = False # load original model from timm lowerCamelCase :List[str] = timm.create_model(a_ , pretrained=a_) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCamelCase :List[str] = timm_model.state_dict() if base_model: remove_classification_head_(a_) lowerCamelCase :Tuple = create_rename_keys(a_ , a_) for src, dest in rename_keys: rename_key(a_ , a_ , a_) read_in_q_k_v(a_ , a_ , a_) lowerCamelCase :List[str] = '''huggingface/label-files''' lowerCamelCase :Any = '''imagenet-1k-id2label.json''' lowerCamelCase :List[Any] = json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''') , '''r''')) lowerCamelCase :Optional[Any] = {int(a_): v for k, v in idalabel.items()} lowerCamelCase :Optional[int] = idalabel lowerCamelCase :Union[str, Any] = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": lowerCamelCase :Optional[Any] = ViTHybridModel(a_).eval() else: lowerCamelCase :Dict = ViTHybridForImageClassification(a_).eval() model.load_state_dict(a_) # create image processor lowerCamelCase :Dict = create_transform(**resolve_data_config({} , model=a_)) lowerCamelCase :str = transform.transforms lowerCamelCase :int = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } lowerCamelCase :Any = ViTHybridImageProcessor( do_resize=a_ , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=a_ , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=a_ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCamelCase :Dict = prepare_img() lowerCamelCase :str = transform(a_).unsqueeze(0) lowerCamelCase :str = processor(a_ , return_tensors='''pt''').pixel_values # verify pixel values assert torch.allclose(a_ , a_) # verify logits with torch.no_grad(): lowerCamelCase :Optional[int] = model(a_) lowerCamelCase :Union[str, Any] = outputs.logits print('''Predicted class:''' , logits.argmax(-1).item()) if base_model: lowerCamelCase :Union[str, Any] = timm_model.forward_features(a_) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(a_ , outputs.pooler_output , atol=1e-3) else: lowerCamelCase :List[str] = timm_model(a_) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(a_ , outputs.logits , atol=1e-3) print('''Looks ok!''') if pytorch_dump_folder_path is not None: Path(a_).mkdir(exist_ok=a_) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}") model.save_pretrained(a_) print(F"Saving processor to {pytorch_dump_folder_path}") processor.save_pretrained(a_) if push_to_hub: print(F"Pushing model and processor to the hub {vit_name}") model.push_to_hub(F"ybelkada/{vit_name}") processor.push_to_hub(F"ybelkada/{vit_name}") if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_r50_s16_384""", type=str, help="""Name of the hybrid ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) A__ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
49
0
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self : Union[str, Any] , *__snake_case : str , __snake_case : Any=None , __snake_case : Any=None , **__snake_case : Union[str, Any] ): super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) lowerCamelCase :List[str] = eval_examples lowerCamelCase :Optional[Any] = post_process_function def snake_case ( self : List[str] , __snake_case : Dict = None , __snake_case : List[str]=None , __snake_case : List[Any] = None , __snake_case : List[Any] = "eval" , **__snake_case : Optional[int] , ): lowerCamelCase :Optional[int] = gen_kwargs.copy() lowerCamelCase :List[Any] = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length ) lowerCamelCase :List[str] = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams ) lowerCamelCase :str = gen_kwargs lowerCamelCase :Optional[int] = self.eval_dataset if eval_dataset is None else eval_dataset lowerCamelCase :str = self.get_eval_dataloader(_lowerCAmelCase ) lowerCamelCase :List[Any] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowerCamelCase :str = self.compute_metrics lowerCamelCase :Any = None lowerCamelCase :Optional[int] = time.time() lowerCamelCase :Any = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCamelCase :str = eval_loop( _lowerCAmelCase , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCAmelCase , metric_key_prefix=_lowerCAmelCase , ) finally: lowerCamelCase :Dict = compute_metrics lowerCamelCase :str = self.args.eval_batch_size * self.args.world_size if F"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( _lowerCAmelCase , _lowerCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowerCamelCase :Union[str, Any] = self.post_process_function(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) lowerCamelCase :str = self.compute_metrics(_lowerCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"{metric_key_prefix}_" ): lowerCamelCase :Dict = metrics.pop(_lowerCAmelCase ) metrics.update(output.metrics ) else: lowerCamelCase :Optional[Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_lowerCAmelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowerCamelCase :Any = self.callback_handler.on_evaluate(self.args , self.state , self.control , _lowerCAmelCase ) return metrics def snake_case ( self : Any , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : List[Any]=None , __snake_case : Dict = "test" , **__snake_case : str ): lowerCamelCase :Optional[Any] = gen_kwargs.copy() lowerCamelCase :Any = self.get_test_dataloader(_lowerCAmelCase ) # Temporarily disable metric computation, we will do it in the loop here. lowerCamelCase :str = self.compute_metrics lowerCamelCase :Optional[int] = None lowerCamelCase :Union[str, Any] = time.time() lowerCamelCase :str = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCamelCase :str = eval_loop( _lowerCAmelCase , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCAmelCase , metric_key_prefix=_lowerCAmelCase , ) finally: lowerCamelCase :List[str] = compute_metrics lowerCamelCase :Dict = self.args.eval_batch_size * self.args.world_size if F"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( _lowerCAmelCase , _lowerCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output lowerCamelCase :int = self.post_process_function(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , '''predict''' ) lowerCamelCase :Tuple = self.compute_metrics(_lowerCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"{metric_key_prefix}_" ): lowerCamelCase :int = metrics.pop(_lowerCAmelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_lowerCAmelCase )
709
def _lowerCamelCase ( a_ : int = 4_00_00_00): lowerCamelCase :Dict = [0, 1] lowerCamelCase :Optional[Any] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1]) if fib[i + 2] > n: break i += 1 lowerCamelCase :Dict = 0 for j in range(len(a_) - 1): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F'{solution() = }')
49
0
def _lowerCamelCase ( a_ : Union[str, Any] , a_ : List[str]): if discount_rate < 0: raise ValueError('''Discount rate cannot be negative''') if not cash_flows: raise ValueError('''Cash flows list cannot be empty''') lowerCamelCase :Tuple = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(lowerCamelCase__)) return round(lowerCamelCase__ , ndigits=2) if __name__ == "__main__": import doctest doctest.testmod()
710
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ = { """configuration_nllb_moe""": [ """NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NllbMoeConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""", """NllbMoeForConditionalGeneration""", """NllbMoeModel""", """NllbMoePreTrainedModel""", """NllbMoeTop2Router""", """NllbMoeSparseMLP""", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
49
0
def _lowerCamelCase ( a_ : int , a_ : bool = False): if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_31_70_44_06_46_79_88_73_85_96_19_81 and not allow_probable: raise ValueError( '''Warning: upper bound of deterministic test is exceeded. ''' '''Pass allow_probable=True to allow probabilistic test. ''' '''A return value of True indicates a probable prime.''') # array bounds provided by analysis lowerCamelCase :Any = [ 20_47, 1_37_36_53, 25_32_60_01, 32_15_03_17_51, 2_15_23_02_89_87_47, 3_47_47_49_66_03_83, 3_41_55_00_71_72_83_21, 1, 3_82_51_23_05_65_46_41_30_51, 1, 1, 31_86_65_85_78_34_03_11_51_16_74_61, 3_31_70_44_06_46_79_88_73_85_96_19_81, ] lowerCamelCase :Union[str, Any] = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(_lowerCAmelCase , 1): if n < _p: # then we have our last prime to check lowerCamelCase :str = primes[:idx] break lowerCamelCase :List[str] = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: lowerCamelCase :int = False for r in range(_lowerCAmelCase): lowerCamelCase :Any = pow(_lowerCAmelCase , d * 2**r , _lowerCAmelCase) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): lowerCamelCase :Optional[Any] = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def _lowerCamelCase ( ): assert not miller_rabin(5_61) assert miller_rabin(5_63) # 2047 assert not miller_rabin(83_82_01) assert miller_rabin(83_82_07) # 1_373_653 assert not miller_rabin(17_31_60_01) assert miller_rabin(17_31_60_17) # 25_326_001 assert not miller_rabin(30_78_38_66_41) assert miller_rabin(30_78_38_66_53) # 3_215_031_751 assert not miller_rabin(1_71_30_45_57_48_01) assert miller_rabin(1_71_30_45_57_48_19) # 2_152_302_898_747 assert not miller_rabin(2_77_97_99_72_83_07) assert miller_rabin(2_77_97_99_72_83_27) # 3_474_749_660_383 assert not miller_rabin(1_13_85_00_23_90_94_41) assert miller_rabin(1_13_85_00_23_90_95_27) # 341_550_071_728_321 assert not miller_rabin(1_27_50_41_01_88_48_80_43_51) assert miller_rabin(1_27_50_41_01_88_48_80_43_91) # 3_825_123_056_546_413_051 assert not miller_rabin(7_96_66_46_44_58_50_77_87_79_18_67) assert miller_rabin(7_96_66_46_44_58_50_77_87_79_19_51) # 318_665_857_834_031_151_167_461 assert not miller_rabin(55_28_40_67_74_46_64_78_97_66_03_33) assert miller_rabin(55_28_40_67_74_46_64_78_97_66_03_59) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
711
import numpy class _lowerCAmelCase : def __init__( self : Dict , __snake_case : numpy.ndarray , __snake_case : numpy.ndarray ): lowerCamelCase :Dict = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. lowerCamelCase :Dict = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. lowerCamelCase :Dict = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. lowerCamelCase :Any = numpy.random.rand(3 , 1 ) # Real output values provided. lowerCamelCase :Union[str, Any] = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. lowerCamelCase :List[str] = numpy.zeros(output_array.shape ) def snake_case ( self : Optional[int] ): lowerCamelCase :Any = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. lowerCamelCase :Any = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. lowerCamelCase :Dict = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def snake_case ( self : Any ): lowerCamelCase :Union[str, Any] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) lowerCamelCase :Dict = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) lowerCamelCase :int = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def snake_case ( self : Dict , __snake_case : numpy.ndarray , __snake_case : int , __snake_case : bool ): for iteration in range(1 , iterations + 1 ): lowerCamelCase :Union[str, Any] = self.feedforward() self.back_propagation() if give_loss: lowerCamelCase :Tuple = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"Iteration {iteration} Loss: {loss}" ) def snake_case ( self : Optional[int] , __snake_case : numpy.ndarray ): lowerCamelCase :int = input_arr lowerCamelCase :Union[str, Any] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) lowerCamelCase :Optional[Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) lowerCamelCase :Optional[int] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def _lowerCamelCase ( a_ : numpy.ndarray): return 1 / (1 + numpy.exp(-value)) def _lowerCamelCase ( a_ : numpy.ndarray): return (value) * (1 - (value)) def _lowerCamelCase ( ): lowerCamelCase :Optional[Any] = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. lowerCamelCase :int = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa) # Calling neural network class. lowerCamelCase :List[Any] = TwoHiddenLayerNeuralNetwork( input_array=a_ , output_array=a_) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=a_ , iterations=10 , give_loss=a_) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa)) if __name__ == "__main__": example()
49
0
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def _lowerCamelCase ( a_ : Optional[int] , a_ : Optional[int]=False): try: lowerCamelCase :Dict = os.environ[key] except KeyError: # KEY isn't set, default to `default`. lowerCamelCase :List[Any] = default else: # KEY is set, convert it to True or False. try: lowerCamelCase :Tuple = strtobool(__lowerCAmelCase) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"If set, {key} must be yes or no.") return _value A__ = parse_flag_from_env("""RUN_SLOW""", default=False) def _lowerCamelCase ( a_ : Any): return unittest.skip('''Test was skipped''')(__lowerCAmelCase) def _lowerCamelCase ( a_ : Optional[Any]): return unittest.skipUnless(_run_slow_tests , '''test is slow''')(__lowerCAmelCase) def _lowerCamelCase ( a_ : Dict): return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''')(__lowerCAmelCase) def _lowerCamelCase ( a_ : Union[str, Any]): return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''')(__lowerCAmelCase) def _lowerCamelCase ( a_ : Union[str, Any]): return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''')(__lowerCAmelCase) def _lowerCamelCase ( a_ : List[str]): return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''')(__lowerCAmelCase) def _lowerCamelCase ( a_ : List[str]): return unittest.skipUnless( is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''')(__lowerCAmelCase) def _lowerCamelCase ( a_ : int): return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''')(__lowerCAmelCase) def _lowerCamelCase ( a_ : Union[str, Any]): return unittest.skipUnless(is_tpu_available() , '''test requires TPU''')(__lowerCAmelCase) def _lowerCamelCase ( a_ : Union[str, Any]): return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''')(__lowerCAmelCase) def _lowerCamelCase ( a_ : Optional[int]): return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''')(__lowerCAmelCase) def _lowerCamelCase ( a_ : Any): return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''')(__lowerCAmelCase) def _lowerCamelCase ( a_ : Dict): return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''')(__lowerCAmelCase) def _lowerCamelCase ( a_ : Union[str, Any]): return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''')(__lowerCAmelCase) def _lowerCamelCase ( a_ : Any): return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''')(__lowerCAmelCase) def _lowerCamelCase ( a_ : Any): return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''') , '''test requires torch version >= 1.12.0''')(__lowerCAmelCase) def _lowerCamelCase ( a_ : Any=None , a_ : Any=None): if test_case is None: return partial(__lowerCAmelCase , version=__lowerCAmelCase) return unittest.skipUnless(is_torch_version('''>=''' , __lowerCAmelCase) , F"test requires torch version >= {version}")(__lowerCAmelCase) def _lowerCamelCase ( a_ : Tuple): return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''')(__lowerCAmelCase) def _lowerCamelCase ( a_ : Tuple): return unittest.skipUnless(is_wandb_available() , '''test requires wandb''')(__lowerCAmelCase) def _lowerCamelCase ( a_ : str): return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''')(__lowerCAmelCase) A__ = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def _lowerCamelCase ( a_ : Tuple): return unittest.skipUnless( _atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(__lowerCAmelCase) class _lowerCAmelCase ( unittest.TestCase ): _UpperCAmelCase = True @classmethod def snake_case ( cls : Optional[Any] ): lowerCamelCase :int = tempfile.mkdtemp() @classmethod def snake_case ( cls : Union[str, Any] ): if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def snake_case ( self : str ): if self.clear_on_setup: for path in Path(self.tmpdir ).glob('''**/*''' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(_a ) class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Optional[Any] ): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Optional[Any] , __snake_case : Dict ): lowerCamelCase :Union[str, Any] = mocks if isinstance(_a , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def _lowerCamelCase ( a_ : Any): lowerCamelCase :Optional[int] = AcceleratorState() lowerCamelCase :Union[str, Any] = tensor[None].clone().to(state.device) lowerCamelCase :Optional[Any] = gather(__lowerCAmelCase).cpu() lowerCamelCase :List[Any] = tensor[0].cpu() for i in range(tensors.shape[0]): if not torch.equal(tensors[i] , __lowerCAmelCase): return False return True class _lowerCAmelCase : def __init__( self : List[str] , __snake_case : Tuple , __snake_case : int , __snake_case : List[str] ): lowerCamelCase :Tuple = returncode lowerCamelCase :List[Any] = stdout lowerCamelCase :Tuple = stderr async def _lowerCamelCase ( a_ : int , a_ : List[Any]): while True: lowerCamelCase :Optional[int] = await stream.readline() if line: callback(__lowerCAmelCase) else: break async def _lowerCamelCase ( a_ : List[Any] , a_ : Tuple=None , a_ : List[Any]=None , a_ : str=None , a_ : Tuple=False , a_ : Union[str, Any]=False): if echo: print('''\nRunning: ''' , ''' '''.join(__lowerCAmelCase)) lowerCamelCase :Any = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__lowerCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__lowerCAmelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) lowerCamelCase :Optional[int] = [] lowerCamelCase :Union[str, Any] = [] def tee(a_ : Optional[Any] , a_ : List[Any] , a_ : Optional[Any] , a_ : Any=""): lowerCamelCase :int = line.decode('''utf-8''').rstrip() sink.append(__lowerCAmelCase) if not quiet: print(__lowerCAmelCase , __lowerCAmelCase , file=__lowerCAmelCase) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda a_: tee(__lowerCAmelCase , __lowerCAmelCase , sys.stdout , label='''stdout:'''))), asyncio.create_task(_read_stream(p.stderr , lambda a_: tee(__lowerCAmelCase , __lowerCAmelCase , sys.stderr , label='''stderr:'''))), ] , timeout=__lowerCAmelCase , ) return _RunOutput(await p.wait() , __lowerCAmelCase , __lowerCAmelCase) def _lowerCamelCase ( a_ : List[Any] , a_ : Union[str, Any]=None , a_ : List[Any]=None , a_ : Optional[Any]=1_80 , a_ : List[str]=False , a_ : Any=True): lowerCamelCase :Optional[int] = asyncio.get_event_loop() lowerCamelCase :Union[str, Any] = loop.run_until_complete( _stream_subprocess(__lowerCAmelCase , env=__lowerCAmelCase , stdin=__lowerCAmelCase , timeout=__lowerCAmelCase , quiet=__lowerCAmelCase , echo=__lowerCAmelCase)) lowerCamelCase :Any = """ """.join(__lowerCAmelCase) if result.returncode > 0: lowerCamelCase :int = """\n""".join(result.stderr) raise RuntimeError( F"\'{cmd_str}\' failed with returncode {result.returncode}\n\n" F"The combined stderr from workers follows:\n{stderr}") return result class _lowerCAmelCase ( UpperCamelCase_ ): pass def _lowerCamelCase ( a_ : List[Any] , a_ : Tuple=False): try: lowerCamelCase :Any = subprocess.check_output(__lowerCAmelCase , stderr=subprocess.STDOUT) if return_stdout: if hasattr(__lowerCAmelCase , '''decode'''): lowerCamelCase :Tuple = output.decode('''utf-8''') return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"Command `{' '.join(__lowerCAmelCase)}` failed with the following error:\n\n{e.output.decode()}") from e
712
def _lowerCamelCase ( a_ : str , a_ : str): lowerCamelCase :List[str] = len(a_) lowerCamelCase :List[str] = len(a_) lowerCamelCase :int = [[False for _ in range(m + 1)] for _ in range(n + 1)] lowerCamelCase :Optional[Any] = True for i in range(a_): for j in range(m + 1): if dp[i][j]: if j < m and a[i].upper() == b[j]: lowerCamelCase :Any = True if a[i].islower(): lowerCamelCase :List[str] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
49
0
from __future__ import annotations from collections.abc import Iterator class _lowerCAmelCase : def __init__( self : Optional[int] , __snake_case : int ): lowerCamelCase :Any = value lowerCamelCase :Tuple = None lowerCamelCase :Optional[int] = None class _lowerCAmelCase : def __init__( self : int , __snake_case : Node ): lowerCamelCase :Any = tree def snake_case ( self : Optional[int] , __snake_case : Node | None ): if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : List[str] ): yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
713
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : def __init__( self : Any , __snake_case : Optional[int] , __snake_case : int=13 , __snake_case : str=[30, 30] , __snake_case : Tuple=2 , __snake_case : Optional[Any]=3 , __snake_case : int=True , __snake_case : Tuple=True , __snake_case : List[Any]=32 , __snake_case : int=5 , __snake_case : Optional[Any]=4 , __snake_case : Union[str, Any]=37 , __snake_case : str="gelu" , __snake_case : Tuple=0.1 , __snake_case : List[Any]=0.1 , __snake_case : Union[str, Any]=10 , __snake_case : str=0.0_2 , __snake_case : Union[str, Any]=3 , __snake_case : Union[str, Any]=None , __snake_case : List[str]=8 , __snake_case : Any=10 , ): lowerCamelCase :Optional[Any] = parent lowerCamelCase :List[Any] = batch_size lowerCamelCase :Any = image_size lowerCamelCase :Union[str, Any] = patch_size lowerCamelCase :Any = num_channels lowerCamelCase :List[Any] = is_training lowerCamelCase :Optional[Any] = use_labels lowerCamelCase :Any = hidden_size lowerCamelCase :List[Any] = num_hidden_layers lowerCamelCase :List[str] = num_attention_heads lowerCamelCase :Tuple = intermediate_size lowerCamelCase :List[str] = hidden_act lowerCamelCase :List[str] = hidden_dropout_prob lowerCamelCase :Any = attention_probs_dropout_prob lowerCamelCase :List[Any] = type_sequence_label_size lowerCamelCase :Optional[int] = initializer_range lowerCamelCase :List[Any] = num_labels lowerCamelCase :Any = scope lowerCamelCase :Union[str, Any] = n_targets lowerCamelCase :Optional[Any] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowerCamelCase :Tuple = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowerCamelCase :str = num_patches + 1 + self.num_detection_tokens def snake_case ( self : List[str] ): lowerCamelCase :str = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowerCamelCase :List[str] = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowerCamelCase :Optional[int] = [] for i in range(self.batch_size ): lowerCamelCase :List[str] = {} lowerCamelCase :Tuple = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=__snake_case ) lowerCamelCase :List[str] = torch.rand(self.n_targets , 4 , device=__snake_case ) labels.append(__snake_case ) lowerCamelCase :str = self.get_config() return config, pixel_values, labels def snake_case ( self : Union[str, Any] ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__snake_case , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def snake_case ( self : Tuple , __snake_case : Tuple , __snake_case : Tuple , __snake_case : Any ): lowerCamelCase :Optional[Any] = YolosModel(config=__snake_case ) model.to(__snake_case ) model.eval() lowerCamelCase :Union[str, Any] = model(__snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def snake_case ( self : Dict , __snake_case : str , __snake_case : Optional[int] , __snake_case : Optional[Any] ): lowerCamelCase :int = YolosForObjectDetection(__snake_case ) model.to(__snake_case ) model.eval() lowerCamelCase :str = model(pixel_values=__snake_case ) lowerCamelCase :Any = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) lowerCamelCase :int = model(pixel_values=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def snake_case ( self : int ): lowerCamelCase :List[Any] = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase :str = config_and_inputs lowerCamelCase :Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () _UpperCAmelCase = ( {'feature-extraction': YolosModel, 'object-detection': YolosForObjectDetection} if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def snake_case ( self : Any , __snake_case : List[Any] , __snake_case : Tuple , __snake_case : Dict=False ): lowerCamelCase :Optional[int] = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowerCamelCase :Dict = [] for i in range(self.model_tester.batch_size ): lowerCamelCase :Optional[Any] = {} lowerCamelCase :List[Any] = torch.ones( size=(self.model_tester.n_targets,) , device=__snake_case , dtype=torch.long ) lowerCamelCase :str = torch.ones( self.model_tester.n_targets , 4 , device=__snake_case , dtype=torch.float ) labels.append(__snake_case ) lowerCamelCase :Union[str, Any] = labels return inputs_dict def snake_case ( self : Tuple ): lowerCamelCase :Union[str, Any] = YolosModelTester(self ) lowerCamelCase :Dict = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=37 ) def snake_case ( self : Union[str, Any] ): self.config_tester.run_common_tests() def snake_case ( self : Optional[Any] ): # YOLOS does not use inputs_embeds pass def snake_case ( self : Tuple ): lowerCamelCase , lowerCamelCase :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :Optional[int] = model_class(__snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase :str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case , nn.Linear ) ) def snake_case ( self : str ): lowerCamelCase , lowerCamelCase :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :str = model_class(__snake_case ) lowerCamelCase :Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase :Tuple = [*signature.parameters.keys()] lowerCamelCase :Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __snake_case ) def snake_case ( self : int ): lowerCamelCase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def snake_case ( self : str ): lowerCamelCase , lowerCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase :int = True # in YOLOS, the seq_len is different lowerCamelCase :str = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowerCamelCase :str = True lowerCamelCase :Tuple = False lowerCamelCase :Optional[int] = True lowerCamelCase :int = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :str = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :str = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase :Optional[Any] = True lowerCamelCase :str = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :Tuple = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Tuple = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowerCamelCase :Optional[int] = len(__snake_case ) # Check attention is always last and order is fine lowerCamelCase :Union[str, Any] = True lowerCamelCase :List[Any] = True lowerCamelCase :Tuple = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :int = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Dict = 1 self.assertEqual(out_len + added_hidden_states , len(__snake_case ) ) lowerCamelCase :Dict = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def snake_case ( self : List[str] ): def check_hidden_states_output(__snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Tuple ): lowerCamelCase :Union[str, Any] = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :Any = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Optional[Any] = outputs.hidden_states lowerCamelCase :Any = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__snake_case ) , __snake_case ) # YOLOS has a different seq_length lowerCamelCase :List[str] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowerCamelCase , lowerCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :Union[str, Any] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase :Any = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*__snake_case ) @slow def snake_case ( self : Dict ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase :Tuple = YolosModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def _lowerCamelCase ( ): lowerCamelCase :int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): @cached_property def snake_case ( self : Tuple ): return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def snake_case ( self : Dict ): lowerCamelCase :Union[str, Any] = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(__snake_case ) lowerCamelCase :Optional[Any] = self.default_image_processor lowerCamelCase :str = prepare_img() lowerCamelCase :Dict = image_processor(images=__snake_case , return_tensors='''pt''' ).to(__snake_case ) # forward pass with torch.no_grad(): lowerCamelCase :Optional[Any] = model(inputs.pixel_values ) # verify outputs lowerCamelCase :int = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , __snake_case ) lowerCamelCase :Any = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=__snake_case , ) lowerCamelCase :Any = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __snake_case , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , __snake_case , atol=1e-4 ) ) # verify postprocessing lowerCamelCase :List[str] = image_processor.post_process_object_detection( __snake_case , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] lowerCamelCase :List[str] = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(__snake_case ) lowerCamelCase :str = [75, 75, 17, 63, 17] lowerCamelCase :Tuple = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(__snake_case ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , __snake_case , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , __snake_case ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , __snake_case ) )
49
0
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument A__ = { """/attention/""": """/0/SelfAttention/""", """/self_attention/""": """/0/SelfAttention/""", """/encoder_decoder_attention/""": """/1/EncDecAttention/""", """value""": """v""", """query""": """q""", """key""": """k""", """out""": """o""", """pre_self_attention_layer_norm""": """0/layer_norm""", """pre_cross_attention_layer_norm""": """1/layer_norm""", """pre_attention_layer_norm""": """0/layer_norm""", # previously 1, but seems wrong """token_embedder""": """shared""", """encoder_norm""": """final_layer_norm""", """decoder_norm""": """final_layer_norm""", """relpos_bias/rel_embedding""": """block/0/layer/0/SelfAttention/relative_attention_bias/weight""", """router/router_weights/w/""": """router/classifier/""", """roer/roer_weights/w/""": """router/classifier/""", """logits_dense""": """lm_head""", } def _lowerCAmelCase ( a_ : Tuple): # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model lowerCamelCase :int = list(s_dict.keys()) for key in keys: lowerCamelCase :List[Any] = R'''.*/layers_(\d+)''' lowerCamelCase :int = key if re.match(lowerCAmelCase__ , lowerCAmelCase__): lowerCamelCase :Tuple = re.sub(R'''layers_(\d+)''' , R'''block/\1/layer''' , lowerCAmelCase__) lowerCamelCase :List[str] = R'''(encoder|decoder)\/''' if re.match(lowerCAmelCase__ , lowerCAmelCase__): lowerCamelCase :str = re.match(lowerCAmelCase__ , lowerCAmelCase__).groups() if groups[0] == "encoder": lowerCamelCase :Dict = re.sub(R'''/mlp/''' , R'''/1/mlp/''' , lowerCAmelCase__) lowerCamelCase :Tuple = re.sub(R'''/pre_mlp_layer_norm/''' , R'''/1/layer_norm/''' , lowerCAmelCase__) elif groups[0] == "decoder": lowerCamelCase :List[str] = re.sub(R'''/mlp/''' , R'''/2/mlp/''' , lowerCAmelCase__) lowerCamelCase :List[str] = re.sub(R'''/pre_mlp_layer_norm/''' , R'''/2/layer_norm/''' , lowerCAmelCase__) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: lowerCamelCase :Dict = new_key.replace(lowerCAmelCase__ , lowerCAmelCase__) print(F"{key} -> {new_key}") lowerCamelCase :Optional[int] = s_dict.pop(lowerCAmelCase__) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: lowerCamelCase :List[Any] = s_dict[ '''encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: lowerCamelCase :List[str] = s_dict[ '''decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys()): if "expert" in key: lowerCamelCase :str = s_dict[key].shape[0] lowerCamelCase :Optional[int] = s_dict[key] for idx in range(lowerCAmelCase__): lowerCamelCase :str = expert_weihts[idx] print(F"{key} -> {key.replace('expert/' , 'nested fstring')}") s_dict.pop(lowerCAmelCase__) return s_dict A__ = { """NUM_ENCODER_LAYERS""": """num_layers""", """NUM_DECODER_LAYERS""": """num_decoder_layers""", """NUM_HEADS""": """num_heads""", """HEAD_DIM""": """d_kv""", """EMBED_DIM""": """d_model""", """MLP_DIM""": """d_ff""", """NUM_SELECTED_EXPERTS""": """num_selected_experts""", """NUM_ENCODER_SPARSE_LAYERS""": """num_sparse_encoder_layers""", """NUM_DECODER_SPARSE_LAYERS""": """num_sparse_decoder_layers""", """dense.MlpBlock.activations""": """feed_forward_proj""", } def _lowerCAmelCase ( a_ : Optional[Any] , a_ : Optional[Any]): # Convert a google style config to the hugging face fromat import regex as re with open(lowerCAmelCase__ , '''r''') as f: lowerCamelCase :Any = f.read() lowerCamelCase :Optional[int] = re.findall(R'''(.*) = ([0-9.]*)''' , lowerCAmelCase__) lowerCamelCase :List[str] = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": lowerCamelCase :List[Any] = float(lowerCAmelCase__) if '''.''' in value else int(lowerCAmelCase__) lowerCamelCase :Optional[int] = re.findall(R'''(.*activations) = \(\'(.*)\',\)''' , lowerCAmelCase__)[0] lowerCamelCase :List[str] = str(activation[1]) lowerCamelCase :Optional[int] = num_experts lowerCamelCase :int = SwitchTransformersConfig(**lowerCAmelCase__) return config def _lowerCAmelCase ( a_ : int , a_ : Optional[int] , a_ : Optional[int]=None , a_ : Tuple="./" , a_ : Dict=8): # Initialise PyTorch model print(F"Loading flax weights from : {flax_checkpoint_path}") lowerCamelCase :Optional[int] = checkpoints.load_tax_checkpoint(lowerCAmelCase__) if gin_file is not None: lowerCamelCase :Any = convert_gin_to_config(lowerCAmelCase__ , lowerCAmelCase__) else: lowerCamelCase :List[Any] = SwitchTransformersConfig.from_pretrained(lowerCAmelCase__) lowerCamelCase :Any = SwitchTransformersForConditionalGeneration(lowerCAmelCase__) lowerCamelCase :Tuple = flax_params['''target'''] lowerCamelCase :str = flatten_dict(lowerCAmelCase__ , sep='''/''') lowerCamelCase :Optional[int] = rename_keys(lowerCAmelCase__) lowerCamelCase :int = unflatten_dict(lowerCAmelCase__ , sep='''/''') # Load the flax params in the PT model load_flax_weights_in_pytorch_model(lowerCAmelCase__ , lowerCAmelCase__) print(F"Save PyTorch model to {pytorch_dump_path}") pt_model.save_pretrained(lowerCAmelCase__) if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the""" """ model architecture. If not provided, a `gin_file` has to be provided.""" ), ) parser.add_argument( """--gin_file""", default=None, type=str, required=False, help="""Path to the gin config file. If not provided, a `config_file` has to be passed """, ) parser.add_argument( """--config_name""", default=None, type=str, required=False, help="""Config name of SwitchTransformers model.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output pytorch model.""" ) parser.add_argument("""--num_experts""", default=8, type=int, required=False, help="""Number of experts""") A__ = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
714
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Tuple ): lowerCamelCase :List[Any] = inspect.getfile(accelerate.test_utils ) lowerCamelCase :Dict = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 lowerCamelCase :Any = test_metrics @require_cpu def snake_case ( self : Dict ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def snake_case ( self : int ): debug_launcher(self.test_metrics.main ) @require_single_gpu def snake_case ( self : Any ): self.test_metrics.main() @require_multi_gpu def snake_case ( self : Optional[int] ): print(F"Found {torch.cuda.device_count()} devices." ) lowerCamelCase :Optional[int] = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__snake_case , env=os.environ.copy() )
49
0
from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def _lowerCamelCase ( a_ : List[Any] , a_ : str , a_ : str = False): if radian_mode: return [magnitude * cos(__A), magnitude * sin(__A)] return [magnitude * cos(radians(__A)), magnitude * sin(radians(__A))] def _lowerCamelCase ( a_ : Dict , a_ : Dict , a_ : List[str] = 10**-1): lowerCamelCase :NDArray[floataa] = cross(__A , __A) lowerCamelCase :float = sum(__A) return abs(__A) < eps if __name__ == "__main__": # Test to check if it works A__ = array( [ polar_force(718.4, 180 - 30), polar_force(879.54, 45), polar_force(100, -90), ] ) A__ = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg A__ = array( [ polar_force(30 * 9.81, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) A__ = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg A__ = array([[0, -2_000], [0, -1_200], [0, 15_600], [0, -12_400]]) A__ = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
715
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = '' _UpperCAmelCase = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) _UpperCAmelCase = None # compression type in fsspec. ex: "gzip" _UpperCAmelCase = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : str , __snake_case : str = "" , __snake_case : Optional[str] = None , __snake_case : Optional[dict] = None , **__snake_case : Dict ): super().__init__(self , **__snake_case ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode lowerCamelCase :Optional[Any] = fsspec.open( __snake_case , mode='''rb''' , protocol=__snake_case , compression=self.compression , client_kwargs={ '''requote_redirect_url''': False, # see https://github.com/huggingface/datasets/pull/5459 '''trust_env''': True, # Enable reading proxy env variables. **(target_options or {}).pop('''client_kwargs''' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) lowerCamelCase :List[str] = os.path.basename(self.file.path.split('''::''' )[0] ) lowerCamelCase :Dict = ( self.compressed_name[: self.compressed_name.rindex('''.''' )] if '''.''' in self.compressed_name else self.compressed_name ) lowerCamelCase :List[str] = None @classmethod def snake_case ( cls : Any , __snake_case : Any ): # compressed file paths are always relative to the archive root return super()._strip_protocol(__snake_case ).lstrip('''/''' ) def snake_case ( self : Any ): if self.dir_cache is None: lowerCamelCase :Optional[Any] = {**self.file.fs.info(self.file.path ), '''name''': self.uncompressed_name} lowerCamelCase :Optional[Any] = {f['''name''']: f} def snake_case ( self : Union[str, Any] , __snake_case : str ): return self.file.open().read() def snake_case ( self : Optional[int] , __snake_case : str , __snake_case : str = "rb" , __snake_case : int=None , __snake_case : Optional[int]=True , __snake_case : str=None , **__snake_case : str , ): lowerCamelCase :List[str] = self._strip_protocol(__snake_case ) if mode != "rb": raise ValueError(F"Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'" ) return self.file.open() class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'bz2' _UpperCAmelCase = 'bz2' _UpperCAmelCase = '.bz2' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'gzip' _UpperCAmelCase = 'gzip' _UpperCAmelCase = '.gz' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'lz4' _UpperCAmelCase = 'lz4' _UpperCAmelCase = '.lz4' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'xz' _UpperCAmelCase = 'xz' _UpperCAmelCase = '.xz' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'zstd' _UpperCAmelCase = 'zstd' _UpperCAmelCase = '.zst' def __init__( self : str , __snake_case : str , __snake_case : str = "rb" , __snake_case : Optional[str] = None , __snake_case : Optional[dict] = None , __snake_case : int = DEFAULT_BLOCK_SIZE , **__snake_case : int , ): super().__init__( fo=__snake_case , mode=__snake_case , target_protocol=__snake_case , target_options=__snake_case , block_size=__snake_case , **__snake_case , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 lowerCamelCase :Tuple = self.file.__enter__ class _lowerCAmelCase : def __init__( self : Dict , __snake_case : Tuple ): lowerCamelCase :Optional[int] = file_ def __enter__( self : Optional[int] ): self._file.__enter__() return self def __exit__( self : str , *__snake_case : Optional[Any] , **__snake_case : List[Any] ): self._file.__exit__(*__snake_case , **__snake_case ) def __iter__( self : Optional[Any] ): return iter(self._file ) def snake_case ( self : List[Any] ): return next(self._file ) def __getattr__( self : Any , __snake_case : str ): return getattr(self._file , __snake_case ) def fixed_enter(*__snake_case : Optional[int] , **__snake_case : str ): return WrappedFile(_enter(*__snake_case , **__snake_case ) ) lowerCamelCase :Dict = fixed_enter
49
0
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A__ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) A__ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.weight', F'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.bias', F'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'encoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'encoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'encoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'encoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.weight', F'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( F'transformer.decoder.layers.{i}.cross_attn.out_proj.weight', F'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( F'transformer.decoder.layers.{i}.cross_attn.out_proj.bias', F'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'decoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'decoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'decoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'decoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.weight', F'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.weight', F'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.bias', F'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'decoder.layers.{i}.final_layer_norm.bias')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qcontent_proj.weight', F'decoder.layers.{i}.sa_qcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kcontent_proj.weight', F'decoder.layers.{i}.sa_kcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qpos_proj.weight', F'decoder.layers.{i}.sa_qpos_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kpos_proj.weight', F'decoder.layers.{i}.sa_kpos_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.sa_v_proj.weight', F'decoder.layers.{i}.sa_v_proj.weight')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qcontent_proj.weight', F'decoder.layers.{i}.ca_qcontent_proj.weight') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kcontent_proj.weight', F'decoder.layers.{i}.ca_kcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kpos_proj.weight', F'decoder.layers.{i}.ca_kpos_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.ca_v_proj.weight', F'decoder.layers.{i}.ca_v_proj.weight')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight', F'decoder.layers.{i}.ca_qpos_sine_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qcontent_proj.bias', F'decoder.layers.{i}.sa_qcontent_proj.bias') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kcontent_proj.bias', F'decoder.layers.{i}.sa_kcontent_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.sa_qpos_proj.bias', F'decoder.layers.{i}.sa_qpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.sa_kpos_proj.bias', F'decoder.layers.{i}.sa_kpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.sa_v_proj.bias', F'decoder.layers.{i}.sa_v_proj.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qcontent_proj.bias', F'decoder.layers.{i}.ca_qcontent_proj.bias') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kcontent_proj.bias', F'decoder.layers.{i}.ca_kcontent_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.ca_kpos_proj.bias', F'decoder.layers.{i}.ca_kpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.ca_v_proj.bias', F'decoder.layers.{i}.ca_v_proj.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias', F'decoder.layers.{i}.ca_qpos_sine_proj.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def _lowerCamelCase ( a_ : List[Any] , a_ : int , a_ : Dict): lowerCamelCase :List[str] = state_dict.pop(_lowerCamelCase) lowerCamelCase :Tuple = val def _lowerCamelCase ( a_ : str): lowerCamelCase :Tuple = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: lowerCamelCase :Dict = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''') lowerCamelCase :Dict = value else: lowerCamelCase :Any = value return new_state_dict def _lowerCamelCase ( a_ : Optional[int] , a_ : Tuple=False): lowerCamelCase :Optional[Any] = '' if is_panoptic: lowerCamelCase :Optional[Any] = 'conditional_detr.' # first: transformer encoder for i in range(6): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowerCamelCase :Optional[int] = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight") lowerCamelCase :Tuple = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias") # next, add query, keys and values (in that order) to the state dict lowerCamelCase :Dict = in_proj_weight[:2_56, :] lowerCamelCase :List[Any] = in_proj_bias[:2_56] lowerCamelCase :Dict = in_proj_weight[2_56:5_12, :] lowerCamelCase :Union[str, Any] = in_proj_bias[2_56:5_12] lowerCamelCase :Any = in_proj_weight[-2_56:, :] lowerCamelCase :Any = in_proj_bias[-2_56:] def _lowerCamelCase ( ): lowerCamelCase :Any = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCamelCase :Union[str, Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase).raw) return im @torch.no_grad() def _lowerCamelCase ( a_ : Union[str, Any] , a_ : Optional[int]): lowerCamelCase :List[Any] = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: lowerCamelCase :Dict = 'resnet101' if "dc5" in model_name: lowerCamelCase :List[Any] = True lowerCamelCase :Dict = 'panoptic' in model_name if is_panoptic: lowerCamelCase :List[str] = 2_50 else: lowerCamelCase :str = 91 lowerCamelCase :Any = 'huggingface/label-files' lowerCamelCase :List[str] = 'coco-detection-id2label.json' lowerCamelCase :int = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type='''dataset''') , '''r''')) lowerCamelCase :str = {int(_lowerCamelCase): v for k, v in idalabel.items()} lowerCamelCase :Union[str, Any] = idalabel lowerCamelCase :Any = {v: k for k, v in idalabel.items()} # load image processor lowerCamelCase :Optional[int] = 'coco_panoptic' if is_panoptic else 'coco_detection' lowerCamelCase :str = ConditionalDetrImageProcessor(format=_lowerCamelCase) # prepare image lowerCamelCase :List[str] = prepare_img() lowerCamelCase :int = image_processor(images=_lowerCamelCase , return_tensors='''pt''') lowerCamelCase :Dict = encoding['pixel_values'] logger.info(F"Converting model {model_name}...") # load original model from torch hub lowerCamelCase :Any = torch.hub.load('''DeppMeng/ConditionalDETR''' , _lowerCamelCase , pretrained=_lowerCamelCase).eval() lowerCamelCase :Union[str, Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: lowerCamelCase :Optional[Any] = 'conditional_detr.' + src rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) lowerCamelCase :Union[str, Any] = rename_backbone_keys(_lowerCamelCase) # query, key and value matrices need special treatment read_in_q_k_v(_lowerCamelCase , is_panoptic=_lowerCamelCase) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowerCamelCase :Dict = 'conditional_detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''conditional_detr''') and not key.startswith('''class_labels_classifier''') and not key.startswith('''bbox_predictor''') ): lowerCamelCase :List[Any] = state_dict.pop(_lowerCamelCase) lowerCamelCase :Tuple = val elif "class_labels_classifier" in key or "bbox_predictor" in key: lowerCamelCase :Any = state_dict.pop(_lowerCamelCase) lowerCamelCase :Dict = val elif key.startswith('''bbox_attention''') or key.startswith('''mask_head'''): continue else: lowerCamelCase :str = state_dict.pop(_lowerCamelCase) lowerCamelCase :List[str] = val else: if not key.startswith('''class_labels_classifier''') and not key.startswith('''bbox_predictor'''): lowerCamelCase :Dict = state_dict.pop(_lowerCamelCase) lowerCamelCase :List[Any] = val # finally, create HuggingFace model and load state dict lowerCamelCase :str = ConditionalDetrForSegmentation(_lowerCamelCase) if is_panoptic else ConditionalDetrForObjectDetection(_lowerCamelCase) model.load_state_dict(_lowerCamelCase) model.eval() model.push_to_hub(repo_id=_lowerCamelCase , organization='''DepuMeng''' , commit_message='''Add model''') # verify our conversion lowerCamelCase :List[Any] = conditional_detr(_lowerCamelCase) lowerCamelCase :Dict = model(_lowerCamelCase) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1e-4) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1e-4) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1e-4) # Save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}...") Path(_lowerCamelCase).mkdir(exist_ok=_lowerCamelCase) model.save_pretrained(_lowerCamelCase) image_processor.save_pretrained(_lowerCamelCase) if __name__ == "__main__": A__ = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) A__ = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
716
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = LEDTokenizer _UpperCAmelCase = LEDTokenizerFast _UpperCAmelCase = True def snake_case ( self : Any ): super().setUp() lowerCamelCase :Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] lowerCamelCase :Any = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) lowerCamelCase :List[str] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCamelCase :int = {'''unk_token''': '''<unk>'''} lowerCamelCase :Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__snake_case ) ) def snake_case ( self : int , **__snake_case : int ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Dict , **__snake_case : Any ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Optional[Any] , __snake_case : Union[str, Any] ): return "lower newer", "lower newer" @cached_property def snake_case ( self : Any ): return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' ) @cached_property def snake_case ( self : int ): return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' ) @require_torch def snake_case ( self : str ): lowerCamelCase :Any = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowerCamelCase :List[Any] = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[Any] = tokenizer(__snake_case , max_length=len(__snake_case ) , padding=__snake_case , return_tensors='''pt''' ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowerCamelCase :List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(__snake_case , __snake_case ) @require_torch def snake_case ( self : Tuple ): lowerCamelCase :Dict = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Union[str, Any] = tokenizer(__snake_case , padding=__snake_case , return_tensors='''pt''' ) self.assertIn('''input_ids''' , __snake_case ) self.assertIn('''attention_mask''' , __snake_case ) self.assertNotIn('''labels''' , __snake_case ) self.assertNotIn('''decoder_attention_mask''' , __snake_case ) @require_torch def snake_case ( self : Union[str, Any] ): lowerCamelCase :Union[str, Any] = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :List[Any] = tokenizer(text_target=__snake_case , max_length=32 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) @require_torch def snake_case ( self : List[Any] ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[Any] = tokenizer( ['''I am a small frog''' * 1024, '''I am a small frog'''] , padding=__snake_case , truncation=__snake_case , return_tensors='''pt''' ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def snake_case ( self : Optional[int] ): lowerCamelCase :Union[str, Any] = ['''A long paragraph for summarization.'''] lowerCamelCase :Any = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Union[str, Any] = tokenizer(__snake_case , return_tensors='''pt''' ) lowerCamelCase :Any = tokenizer(text_target=__snake_case , return_tensors='''pt''' ) lowerCamelCase :Optional[int] = inputs['''input_ids'''] lowerCamelCase :Any = targets['''input_ids'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def snake_case ( self : Dict ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[int] = ['''Summary of the text.''', '''Another summary.'''] lowerCamelCase :List[Any] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] lowerCamelCase :Optional[int] = tokenizer(__snake_case , padding=__snake_case ) lowerCamelCase :Union[str, Any] = [[0] * len(__snake_case ) for x in encoded_output['''input_ids''']] lowerCamelCase :str = tokenizer.pad(__snake_case ) self.assertSequenceEqual(outputs['''global_attention_mask'''] , __snake_case ) def snake_case ( self : Tuple ): pass def snake_case ( self : Optional[int] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase :Optional[Any] = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :Tuple = self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :int = '''A, <mask> AllenNLP sentence.''' lowerCamelCase :str = tokenizer_r.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case ) lowerCamelCase :str = tokenizer_p.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case ) self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) lowerCamelCase :Optional[int] = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) lowerCamelCase :Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __snake_case , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __snake_case , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
49
0
from ...configuration_utils import PretrainedConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { """google/vivit-b-16x2-kinetics400""": ( """https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json""" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class _lowerCAmelCase ( _A ): _UpperCAmelCase = 'vivit' def __init__( self : str , __snake_case : Dict=224 , __snake_case : Union[str, Any]=32 , __snake_case : int=[2, 16, 16] , __snake_case : Dict=3 , __snake_case : Dict=768 , __snake_case : Dict=12 , __snake_case : Tuple=12 , __snake_case : Any=3072 , __snake_case : List[str]="gelu_fast" , __snake_case : Optional[Any]=0.0 , __snake_case : Tuple=0.0 , __snake_case : Dict=0.0_2 , __snake_case : Optional[Any]=1e-0_6 , __snake_case : Union[str, Any]=True , **__snake_case : str , ): lowerCamelCase :Union[str, Any] = hidden_size lowerCamelCase :str = num_hidden_layers lowerCamelCase :int = num_attention_heads lowerCamelCase :str = intermediate_size lowerCamelCase :Tuple = hidden_act lowerCamelCase :Union[str, Any] = hidden_dropout_prob lowerCamelCase :Optional[int] = attention_probs_dropout_prob lowerCamelCase :int = initializer_range lowerCamelCase :List[Any] = layer_norm_eps lowerCamelCase :Optional[Any] = image_size lowerCamelCase :Union[str, Any] = num_frames lowerCamelCase :Any = tubelet_size lowerCamelCase :int = num_channels lowerCamelCase :List[str] = qkv_bias super().__init__(**__lowerCamelCase )
717
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) A__ = { """configuration_layoutlmv2""": ["""LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv2Config"""], """processing_layoutlmv2""": ["""LayoutLMv2Processor"""], """tokenization_layoutlmv2""": ["""LayoutLMv2Tokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""LayoutLMv2TokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""LayoutLMv2FeatureExtractor"""] A__ = ["""LayoutLMv2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """LayoutLMv2ForQuestionAnswering""", """LayoutLMv2ForSequenceClassification""", """LayoutLMv2ForTokenClassification""", """LayoutLMv2Layer""", """LayoutLMv2Model""", """LayoutLMv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
49
0
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def _lowerCamelCase ( ): lowerCamelCase :Optional[int] = { '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7], } lowerCamelCase :Optional[int] = Dataset.from_dict(a_) return dataset class _lowerCAmelCase ( _UpperCAmelCase ): def snake_case ( self : Tuple ): lowerCamelCase :Any = get_dataset() lowerCamelCase :int = make_duplicate_clusters(lowerCamelCase_ , 0.8_5 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def snake_case ( self : List[str] ): lowerCamelCase :List[Any] = get_dataset() lowerCamelCase :Optional[Any] = deduplicate_dataset(lowerCamelCase_ ) self.assertEqual(len(lowerCamelCase_ ) , 2 ) print(lowerCamelCase_ ) self.assertEqual(duplicate_clusters[0][0]['''copies'''] , 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''] , lowerCamelCase_ )
718
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _lowerCAmelCase : @staticmethod def snake_case ( *__snake_case : str , **__snake_case : str ): pass @is_pipeline_test @require_vision class _lowerCAmelCase ( unittest.TestCase ): @require_torch def snake_case ( self : Union[str, Any] ): lowerCamelCase :Optional[int] = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Dict = image_classifier(__snake_case , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__snake_case ) , [ [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}], [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}], ] , ) lowerCamelCase :Tuple = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], ] , ) @require_tf def snake_case ( self : Tuple ): lowerCamelCase :Tuple = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Optional[Any] = image_classifier(__snake_case , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(__snake_case ) , [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}] , ) lowerCamelCase :int = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], ] , ) @slow @require_torch def snake_case ( self : Any ): lowerCamelCase :str = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Optional[Any] = image_classifier(__snake_case , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) lowerCamelCase :Any = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def snake_case ( self : Optional[Any] ): lowerCamelCase :Union[str, Any] = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes lowerCamelCase :Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Dict = image_classifier(__snake_case , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) lowerCamelCase :Any = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , )
49
0
import heapq def _lowerCamelCase ( a_ : Optional[Any]): lowerCamelCase :str = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(_A , [-1 * len(_A), (key, value)]) # chosen_vertices = set of chosen vertices lowerCamelCase :Tuple = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices lowerCamelCase :Any = heapq.heappop(_A)[1][0] chosen_vertices.add(_A) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: lowerCamelCase :Optional[Any] = elem[1][1].index(_A) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(_A) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() A__ = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F'Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}')
719
import operator as op def _lowerCamelCase ( a_ : Tuple): lowerCamelCase :int = [] lowerCamelCase :List[str] = lambda a_ , a_: int(x / y) # noqa: E731 integer division operation lowerCamelCase :Optional[int] = { '''^''': op.pow, '''*''': op.mul, '''/''': div, '''+''': op.add, '''-''': op.sub, } # operators & their respective operation # print table header print('''Symbol'''.center(8) , '''Action'''.center(12) , '''Stack''' , sep=''' | ''') print('''-''' * (30 + len(a_))) for x in post_fix: if x.isdigit(): # if x in digit stack.append(a_) # append x to stack # output in tabular format print(x.rjust(8) , ('''push(''' + x + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') else: lowerCamelCase :Optional[Any] = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8) , ('''pop(''' + b + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') lowerCamelCase :str = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8) , ('''pop(''' + a + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') stack.append( str(opr[x](int(a_) , int(a_)))) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8) , ('''push(''' + a + x + b + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''' , ) return int(stack[0]) if __name__ == "__main__": A__ = input("""\n\nEnter a Postfix Equation (space separated) = """).split(""" """) print("""\n\tResult = """, solve(Postfix))
49
0
def _lowerCamelCase ( a_ : Union[str, Any] = 50_00_00_00): lowerCamelCase :str = set() lowerCamelCase :List[str] = int((limit - 24) ** (1 / 2)) lowerCamelCase :Union[str, Any] = set(range(3 , prime_square_limit + 1 , 2)) primes.add(2) for p in range(3 , prime_square_limit + 1 , 2): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , a_))) for primea in primes: lowerCamelCase :str = primea * primea for primea in primes: lowerCamelCase :Optional[Any] = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: lowerCamelCase :Optional[int] = primea * primea * primea * primea lowerCamelCase :List[str] = square + cube + tetr if total >= limit: break ret.add(a_) return len(a_) if __name__ == "__main__": print(F'{solution() = }')
720
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() A__ = logging.get_logger(__name__) A__ = """Hello, World!""" A__ = """en_XX""" def _lowerCamelCase ( a_ : str , a_ : str , a_ : bool): lowerCamelCase :int = Path('''data_bin''') lowerCamelCase :Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(a_).parent) , checkpoint_file=Path(a_).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(a_) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(a_).parent / '''sentencepiece.bpe.model''') , src_dict=str(data_dir / '''dict.txt''') , ) xmod.eval() # disable dropout print(a_) lowerCamelCase :Any = xmod.model.encoder.sentence_encoder lowerCamelCase :List[str] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: lowerCamelCase :Dict = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our X-MOD config:''' , a_) lowerCamelCase :List[Any] = XmodForSequenceClassification(a_) if classification_head else XmodForMaskedLM(a_) model.eval() # Now let's copy all the weights. # Embeddings lowerCamelCase :Union[str, Any] = xmod_sent_encoder.embed_tokens.weight lowerCamelCase :Tuple = xmod_sent_encoder.embed_positions.weight lowerCamelCase :List[str] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight) # just zero them out b/c xmod doesn't use them. lowerCamelCase :List[Any] = xmod_sent_encoder.layernorm_embedding.weight lowerCamelCase :Optional[int] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers): # Encoder: start of layer lowerCamelCase :Union[str, Any] = model.roberta.encoder.layer[i] lowerCamelCase :List[str] = xmod_sent_encoder.layers[i] # self attention lowerCamelCase :Optional[int] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size)) ): raise AssertionError('''Dimensions of self-attention weights do not match.''') lowerCamelCase :Optional[int] = xmod_layer.self_attn.q_proj.weight lowerCamelCase :List[str] = xmod_layer.self_attn.q_proj.bias lowerCamelCase :str = xmod_layer.self_attn.k_proj.weight lowerCamelCase :Optional[Any] = xmod_layer.self_attn.k_proj.bias lowerCamelCase :Dict = xmod_layer.self_attn.v_proj.weight lowerCamelCase :Optional[int] = xmod_layer.self_attn.v_proj.bias # self-attention output lowerCamelCase :Optional[int] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('''Dimensions of self-attention output weights do not match.''') lowerCamelCase :List[Any] = xmod_layer.self_attn.out_proj.weight lowerCamelCase :Union[str, Any] = xmod_layer.self_attn.out_proj.bias lowerCamelCase :str = xmod_layer.self_attn_layer_norm.weight lowerCamelCase :List[Any] = xmod_layer.self_attn_layer_norm.bias # intermediate lowerCamelCase :Optional[int] = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of intermediate weights do not match.''') lowerCamelCase :int = xmod_layer.fca.weight lowerCamelCase :Union[str, Any] = xmod_layer.fca.bias # output lowerCamelCase :List[str] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of feed-forward weights do not match.''') lowerCamelCase :str = xmod_layer.fca.weight lowerCamelCase :int = xmod_layer.fca.bias lowerCamelCase :List[Any] = xmod_layer.final_layer_norm.weight lowerCamelCase :List[str] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: lowerCamelCase :List[str] = xmod_layer.adapter_layer_norm.weight lowerCamelCase :int = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys()) != sorted(xmod_layer.adapter_modules.keys()): raise AssertionError('''Lists of language adapters do not match.''') for lang_code, adapter in xmod_layer.adapter_modules.items(): lowerCamelCase :Optional[int] = bert_output.adapter_modules[lang_code] lowerCamelCase :Dict = xmod_layer.adapter_modules[lang_code] lowerCamelCase :List[Any] = from_adapter.fca.weight lowerCamelCase :List[Any] = from_adapter.fca.bias lowerCamelCase :Dict = from_adapter.fca.weight lowerCamelCase :Optional[Any] = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: lowerCamelCase :Dict = xmod_sent_encoder.layer_norm.weight lowerCamelCase :List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: lowerCamelCase :Union[str, Any] = xmod.model.classification_heads['''mnli'''].dense.weight lowerCamelCase :Tuple = xmod.model.classification_heads['''mnli'''].dense.bias lowerCamelCase :Optional[Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight lowerCamelCase :List[Any] = xmod.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head lowerCamelCase :int = xmod.model.encoder.lm_head.dense.weight lowerCamelCase :List[Any] = xmod.model.encoder.lm_head.dense.bias lowerCamelCase :Optional[int] = xmod.model.encoder.lm_head.layer_norm.weight lowerCamelCase :List[Any] = xmod.model.encoder.lm_head.layer_norm.bias lowerCamelCase :List[Any] = xmod.model.encoder.lm_head.weight lowerCamelCase :Any = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCamelCase :str = xmod.encode(a_).unsqueeze(0) # batch of size 1 model.roberta.set_default_language(a_) lowerCamelCase :Any = model(a_)[0] if classification_head: lowerCamelCase :Dict = xmod.model.classification_heads['''mnli'''](xmod.extract_features(a_)) else: lowerCamelCase :int = xmod.model(a_ , lang_id=[SAMPLE_LANGUAGE])[0] print(our_output.shape , their_output.shape) lowerCamelCase :List[str] = torch.max(torch.abs(our_output - their_output)).item() print(F"max_absolute_diff = {max_absolute_diff}") # ~ 1e-7 lowerCamelCase :str = torch.allclose(a_ , a_ , atol=1e-3) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''') if not success: raise Exception('''Something went wRoNg''') Path(a_).mkdir(parents=a_ , exist_ok=a_) print(F"Saving model to {pytorch_dump_folder_path}") model.save_pretrained(a_) if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) A__ = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
49
0