code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self , lowercase__ ): super().__init__() snake_case_ : List[Any] = nn.ModuleList(lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = False , lowercase__ = True , ): for i, (image, scale, controlnet) in enumerate(zip(lowercase__ , lowercase__ , self.nets ) ): snake_case_ : str = controlnet( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ) # merge samples if i == 0: snake_case_ : Tuple = down_samples, mid_sample else: snake_case_ : int = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(lowercase__ , lowercase__ ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def __UpperCamelCase (self , lowercase__ , lowercase__ = True , lowercase__ = None , lowercase__ = False , lowercase__ = None , ): snake_case_ : Optional[int] = 0 snake_case_ : List[str] = save_directory for controlnet in self.nets: controlnet.save_pretrained( lowercase__ , is_main_process=lowercase__ , save_function=lowercase__ , safe_serialization=lowercase__ , variant=lowercase__ , ) idx += 1 snake_case_ : Any = model_path_to_save + f'_{idx}' @classmethod def __UpperCamelCase (cls , lowercase__ , **lowercase__ ): snake_case_ : Any = 0 snake_case_ : Union[str, Any] = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... snake_case_ : int = pretrained_model_path while os.path.isdir(lowercase__ ): snake_case_ : Any = ControlNetModel.from_pretrained(lowercase__ , **lowercase__ ) controlnets.append(lowercase__ ) idx += 1 snake_case_ : Dict = pretrained_model_path + f'_{idx}' logger.info(f'{len(lowercase__ )} controlnets loaded from {pretrained_model_path}.' ) if len(lowercase__ ) == 0: raise ValueError( f'No ControlNets found under {os.path.dirname(lowercase__ )}. Expected at least {pretrained_model_path + "_0"}.' ) return cls(lowercase__ )
707
"""simple docstring""" import argparse import copy def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" snake_case_ : List[Any] = {} with open(SCREAMING_SNAKE_CASE__ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: snake_case_ : int = [] _list.append([line.split()[1], line.split()[2]] ) snake_case_ : Optional[Any] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: snake_case_ : str = [] _list.append([line.split()[0], line.split()[2]] ) snake_case_ : Optional[Any] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" with open(SCREAMING_SNAKE_CASE__ ) as f: snake_case_ : Optional[Any] = f.read(1 ) snake_case_ : Union[str, Any] = start_node snake_case_ : Dict = [] snake_case_ : Union[str, Any] = start_node snake_case_ : Tuple = 0 while visiting not in first_solution: snake_case_ : int = 1_0_0_0_0 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(SCREAMING_SNAKE_CASE__ ) and k[0] not in first_solution: snake_case_ : Union[str, Any] = k[1] snake_case_ : Any = k[0] first_solution.append(SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = distance_of_first_solution + int(SCREAMING_SNAKE_CASE__ ) snake_case_ : List[str] = best_node first_solution.append(SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[Any] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 snake_case_ : int = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0_0_0_0 ) return first_solution, distance_of_first_solution def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" snake_case_ : Union[str, Any] = [] for n in solution[1:-1]: snake_case_ : str = solution.index(SCREAMING_SNAKE_CASE__ ) for kn in solution[1:-1]: snake_case_ : Tuple = solution.index(SCREAMING_SNAKE_CASE__ ) if n == kn: continue snake_case_ : Optional[Any] = copy.deepcopy(SCREAMING_SNAKE_CASE__ ) snake_case_ : int = kn snake_case_ : Dict = n snake_case_ : Optional[int] = 0 for k in _tmp[:-1]: snake_case_ : Dict = _tmp[_tmp.index(SCREAMING_SNAKE_CASE__ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: snake_case_ : Dict = distance + int(i[1] ) _tmp.append(SCREAMING_SNAKE_CASE__ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) snake_case_ : Optional[Any] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda SCREAMING_SNAKE_CASE__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] ): """simple docstring""" snake_case_ : Dict = 1 snake_case_ : List[Any] = first_solution snake_case_ : List[Any] = [] snake_case_ : Optional[Any] = distance_of_first_solution snake_case_ : Dict = solution while count <= iters: snake_case_ : List[str] = find_neighborhood(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = 0 snake_case_ : List[Any] = neighborhood[index_of_best_solution] snake_case_ : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ ) - 1 snake_case_ : List[str] = False while not found: snake_case_ : Tuple = 0 while i < len(SCREAMING_SNAKE_CASE__ ): if best_solution[i] != solution[i]: snake_case_ : Optional[Any] = best_solution[i] snake_case_ : int = solution[i] break snake_case_ : List[str] = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) snake_case_ : Tuple = True snake_case_ : Dict = best_solution[:-1] snake_case_ : Tuple = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: snake_case_ : Tuple = cost snake_case_ : Union[str, Any] = solution else: snake_case_ : str = index_of_best_solution + 1 snake_case_ : Tuple = neighborhood[index_of_best_solution] if len(SCREAMING_SNAKE_CASE__ ) >= size: tabu_list.pop(0 ) snake_case_ : List[str] = count + 1 return best_solution_ever, best_cost def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any]=None ): """simple docstring""" snake_case_ : Tuple = generate_neighbours(args.File ) snake_case_ , snake_case_ : Optional[Any] = generate_first_solution( args.File , SCREAMING_SNAKE_CASE__ ) snake_case_ , snake_case_ : Dict = tabu_search( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , args.Iterations , args.Size , ) print(f'Best solution: {best_sol}, with total distance: {best_cost}.' ) if __name__ == "__main__": a_ = argparse.ArgumentParser(description='''Tabu Search''') parser.add_argument( '''-f''', '''--File''', type=str, help='''Path to the file containing the data''', required=True, ) parser.add_argument( '''-i''', '''--Iterations''', type=int, help='''How many iterations the algorithm should perform''', required=True, ) parser.add_argument( '''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True ) # Pass the arguments to main method main(parser.parse_args())
48
0
"""simple docstring""" from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract a_ = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : Optional[str] , SCREAMING_SNAKE_CASE__ : Optional[str] = None ): """simple docstring""" snake_case_ : Optional[Any] = tesseract_config if tesseract_config is not None else """""" # apply OCR snake_case_ : Optional[int] = to_pil_image(SCREAMING_SNAKE_CASE__ ) snake_case_ : Union[str, Any] = pil_image.size snake_case_ : Optional[Any] = pytesseract.image_to_data(SCREAMING_SNAKE_CASE__ , lang=SCREAMING_SNAKE_CASE__ , output_type="""dict""" , config=SCREAMING_SNAKE_CASE__ ) snake_case_ : Dict = data["""text"""], data["""left"""], data["""top"""], data["""width"""], data["""height"""] # filter empty words and corresponding coordinates snake_case_ : List[Any] = [idx for idx, word in enumerate(SCREAMING_SNAKE_CASE__ ) if not word.strip()] snake_case_ : Any = [word for idx, word in enumerate(SCREAMING_SNAKE_CASE__ ) if idx not in irrelevant_indices] snake_case_ : Optional[int] = [coord for idx, coord in enumerate(SCREAMING_SNAKE_CASE__ ) if idx not in irrelevant_indices] snake_case_ : List[Any] = [coord for idx, coord in enumerate(SCREAMING_SNAKE_CASE__ ) if idx not in irrelevant_indices] snake_case_ : Any = [coord for idx, coord in enumerate(SCREAMING_SNAKE_CASE__ ) if idx not in irrelevant_indices] snake_case_ : List[Any] = [coord for idx, coord in enumerate(SCREAMING_SNAKE_CASE__ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format snake_case_ : List[Any] = [] for x, y, w, h in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : Tuple = [x, y, x + w, y + h] actual_boxes.append(SCREAMING_SNAKE_CASE__ ) # finally, normalize the bounding boxes snake_case_ : Union[str, Any] = [] for box in actual_boxes: normalized_boxes.append(normalize_box(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : int = ["""pixel_values"""] def __init__(self , lowercase__ = True , lowercase__ = None , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = True , lowercase__ = None , lowercase__ = "" , **lowercase__ , ): super().__init__(**lowercase__ ) snake_case_ : List[Any] = size if size is not None else {"""height""": 2_24, """width""": 2_24} snake_case_ : Any = get_size_dict(lowercase__ ) snake_case_ : Optional[int] = do_resize snake_case_ : Any = size snake_case_ : Optional[int] = resample snake_case_ : Optional[int] = apply_ocr snake_case_ : List[Any] = ocr_lang snake_case_ : Tuple = tesseract_config def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = None , **lowercase__ , ): snake_case_ : int = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) snake_case_ : Dict = (size["""height"""], size["""width"""]) return resize(lowercase__ , size=lowercase__ , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ): snake_case_ : str = do_resize if do_resize is not None else self.do_resize snake_case_ : List[str] = size if size is not None else self.size snake_case_ : List[str] = get_size_dict(lowercase__ ) snake_case_ : str = resample if resample is not None else self.resample snake_case_ : Any = apply_ocr if apply_ocr is not None else self.apply_ocr snake_case_ : str = ocr_lang if ocr_lang is not None else self.ocr_lang snake_case_ : str = tesseract_config if tesseract_config is not None else self.tesseract_config snake_case_ : List[str] = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) # All transformations expect numpy arrays. snake_case_ : str = [to_numpy_array(lowercase__ ) for image in images] if apply_ocr: requires_backends(self , """pytesseract""" ) snake_case_ : Tuple = [] snake_case_ : Tuple = [] for image in images: snake_case_ : Optional[int] = apply_tesseract(lowercase__ , lowercase__ , lowercase__ ) words_batch.append(lowercase__ ) boxes_batch.append(lowercase__ ) if do_resize: snake_case_ : Union[str, Any] = [self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__ ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) snake_case_ : Any = [flip_channel_order(lowercase__ ) for image in images] snake_case_ : int = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] snake_case_ : str = BatchFeature(data={"""pixel_values""": images} , tensor_type=lowercase__ ) if apply_ocr: snake_case_ : List[str] = words_batch snake_case_ : Tuple = boxes_batch return data
708
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings a_ = r''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(_UpperCAmelCase) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """rag""" _A : Optional[Any] = True def __init__(self , lowercase__=None , lowercase__=True , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=" / " , lowercase__=" // " , lowercase__=5 , lowercase__=3_00 , lowercase__=7_68 , lowercase__=8 , lowercase__="wiki_dpr" , lowercase__="train" , lowercase__="compressed" , lowercase__=None , lowercase__=None , lowercase__=False , lowercase__=False , lowercase__=0.0 , lowercase__=True , lowercase__=False , lowercase__=False , lowercase__=False , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__( bos_token_id=lowercase__ , pad_token_id=lowercase__ , eos_token_id=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , prefix=lowercase__ , vocab_size=lowercase__ , **lowercase__ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" snake_case_ : List[Any] = kwargs.pop("""question_encoder""" ) snake_case_ : Tuple = question_encoder_config.pop("""model_type""" ) snake_case_ : List[str] = kwargs.pop("""generator""" ) snake_case_ : List[str] = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig snake_case_ : List[str] = AutoConfig.for_model(lowercase__ , **lowercase__ ) snake_case_ : Tuple = AutoConfig.for_model(lowercase__ , **lowercase__ ) snake_case_ : int = reduce_loss snake_case_ : Optional[int] = label_smoothing snake_case_ : Dict = exclude_bos_score snake_case_ : Union[str, Any] = do_marginalize snake_case_ : Union[str, Any] = title_sep snake_case_ : int = doc_sep snake_case_ : int = n_docs snake_case_ : List[str] = max_combined_length snake_case_ : Tuple = dataset snake_case_ : int = dataset_split snake_case_ : str = index_name snake_case_ : List[str] = retrieval_vector_size snake_case_ : Dict = retrieval_batch_size snake_case_ : str = passages_path snake_case_ : Union[str, Any] = index_path snake_case_ : Tuple = use_dummy_dataset snake_case_ : Dict = output_retrieved snake_case_ : str = do_deduplication snake_case_ : Any = use_cache if self.forced_eos_token_id is None: snake_case_ : Any = getattr(self.generator , """forced_eos_token_id""" , lowercase__ ) @classmethod def __UpperCamelCase (cls , lowercase__ , lowercase__ , **lowercase__ ): return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Optional[Any] = copy.deepcopy(self.__dict__ ) snake_case_ : Any = self.question_encoder.to_dict() snake_case_ : Dict = self.generator.to_dict() snake_case_ : Union[str, Any] = self.__class__.model_type return output
48
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" snake_case_ : int = SwinvaConfig() snake_case_ : Union[str, Any] = swinva_name.split("""_""" ) snake_case_ : List[Any] = name_split[1] if "to" in name_split[3]: snake_case_ : Union[str, Any] = int(name_split[3][-3:] ) else: snake_case_ : Optional[int] = int(name_split[3] ) if "to" in name_split[2]: snake_case_ : Dict = int(name_split[2][-2:] ) else: snake_case_ : int = int(name_split[2][6:] ) if model_size == "tiny": snake_case_ : str = 9_6 snake_case_ : Dict = (2, 2, 6, 2) snake_case_ : int = (3, 6, 1_2, 2_4) elif model_size == "small": snake_case_ : Tuple = 9_6 snake_case_ : Optional[Any] = (2, 2, 1_8, 2) snake_case_ : Optional[int] = (3, 6, 1_2, 2_4) elif model_size == "base": snake_case_ : Dict = 1_2_8 snake_case_ : str = (2, 2, 1_8, 2) snake_case_ : List[Any] = (4, 8, 1_6, 3_2) else: snake_case_ : Tuple = 1_9_2 snake_case_ : Tuple = (2, 2, 1_8, 2) snake_case_ : Optional[Any] = (6, 1_2, 2_4, 4_8) if "to" in swinva_name: snake_case_ : str = (1_2, 1_2, 1_2, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): snake_case_ : str = 2_1_8_4_1 snake_case_ : str = """huggingface/label-files""" snake_case_ : List[str] = """imagenet-22k-id2label.json""" snake_case_ : Union[str, Any] = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type="""dataset""" ) , """r""" ) ) snake_case_ : Optional[int] = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} snake_case_ : int = idalabel snake_case_ : Optional[Any] = {v: k for k, v in idalabel.items()} else: snake_case_ : int = 1_0_0_0 snake_case_ : List[Any] = """huggingface/label-files""" snake_case_ : List[Any] = """imagenet-1k-id2label.json""" snake_case_ : Union[str, Any] = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type="""dataset""" ) , """r""" ) ) snake_case_ : Union[str, Any] = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} snake_case_ : Dict = idalabel snake_case_ : Optional[int] = {v: k for k, v in idalabel.items()} snake_case_ : Dict = img_size snake_case_ : int = num_classes snake_case_ : str = embed_dim snake_case_ : Dict = depths snake_case_ : int = num_heads snake_case_ : Optional[Any] = window_size return config def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" if "patch_embed.proj" in name: snake_case_ : Union[str, Any] = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: snake_case_ : Union[str, Any] = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: snake_case_ : List[str] = """encoder.""" + name if "attn.proj" in name: snake_case_ : Dict = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: snake_case_ : Dict = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: snake_case_ : List[Any] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: snake_case_ : Dict = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: snake_case_ : int = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: snake_case_ : List[Any] = name.replace("""mlp.fc2""" , """output.dense""" ) if "q_bias" in name: snake_case_ : Optional[Any] = name.replace("""q_bias""" , """query.bias""" ) if "k_bias" in name: snake_case_ : List[Any] = name.replace("""k_bias""" , """key.bias""" ) if "v_bias" in name: snake_case_ : int = name.replace("""v_bias""" , """value.bias""" ) if "cpb_mlp" in name: snake_case_ : str = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" ) if name == "norm.weight": snake_case_ : Tuple = """layernorm.weight""" if name == "norm.bias": snake_case_ : int = """layernorm.bias""" if "head" in name: snake_case_ : Union[str, Any] = name.replace("""head""" , """classifier""" ) else: snake_case_ : Optional[Any] = """swinv2.""" + name return name def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" for key in orig_state_dict.copy().keys(): snake_case_ : Tuple = orig_state_dict.pop(SCREAMING_SNAKE_CASE__ ) if "mask" in key: continue elif "qkv" in key: snake_case_ : List[Any] = key.split(""".""" ) snake_case_ : str = int(key_split[1] ) snake_case_ : Optional[Any] = int(key_split[3] ) snake_case_ : List[Any] = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: snake_case_ : Any = val[:dim, :] snake_case_ : Optional[Any] = val[dim : dim * 2, :] snake_case_ : int = val[-dim:, :] else: snake_case_ : List[str] = val[:dim] snake_case_ : Tuple = val[ dim : dim * 2 ] snake_case_ : Union[str, Any] = val[-dim:] else: snake_case_ : int = val return orig_state_dict def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : Optional[Any] = timm.create_model(SCREAMING_SNAKE_CASE__ , pretrained=SCREAMING_SNAKE_CASE__ ) timm_model.eval() snake_case_ : Any = get_swinva_config(SCREAMING_SNAKE_CASE__ ) snake_case_ : List[str] = SwinvaForImageClassification(SCREAMING_SNAKE_CASE__ ) model.eval() snake_case_ : Any = convert_state_dict(timm_model.state_dict() , SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) snake_case_ : Any = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case_ : Optional[Any] = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swinva_name.replace("""_""" , """-""" ) ) ) snake_case_ : Dict = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) snake_case_ : Optional[Any] = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) snake_case_ : Optional[int] = timm_model(inputs["""pixel_values"""] ) snake_case_ : List[str] = model(**SCREAMING_SNAKE_CASE__ ).logits assert torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) print(f'Saving model {swinva_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) model.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , organization="""nandwalritik""" , commit_message="""Add model""" , ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swinv2_name''', default='''swinv2_tiny_patch4_window8_256''', type=str, help='''Name of the Swinv2 timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) a_ = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
709
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """upernet""" def __init__(self , lowercase__=None , lowercase__=5_12 , lowercase__=0.02 , lowercase__=[1, 2, 3, 6] , lowercase__=True , lowercase__=0.4 , lowercase__=3_84 , lowercase__=2_56 , lowercase__=1 , lowercase__=False , lowercase__=2_55 , **lowercase__ , ): super().__init__(**lowercase__ ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) snake_case_ : List[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(lowercase__ , lowercase__ ): snake_case_ : Tuple = backbone_config.get("""model_type""" ) snake_case_ : List[str] = CONFIG_MAPPING[backbone_model_type] snake_case_ : List[Any] = config_class.from_dict(lowercase__ ) snake_case_ : List[Any] = backbone_config snake_case_ : Optional[Any] = hidden_size snake_case_ : Any = initializer_range snake_case_ : str = pool_scales snake_case_ : Dict = use_auxiliary_head snake_case_ : str = auxiliary_loss_weight snake_case_ : List[str] = auxiliary_in_channels snake_case_ : Optional[Any] = auxiliary_channels snake_case_ : Any = auxiliary_num_convs snake_case_ : List[Any] = auxiliary_concat_input snake_case_ : List[str] = loss_ignore_index def __UpperCamelCase (self ): snake_case_ : Dict = copy.deepcopy(self.__dict__ ) snake_case_ : Union[str, Any] = self.backbone_config.to_dict() snake_case_ : Any = self.__class__.model_type return output
48
0
"""simple docstring""" import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" snake_case_ : int = fname.split(os.path.sep )[-1] return re.search(R"""^(.*)_\d+\.jpg$""" , SCREAMING_SNAKE_CASE__ ).groups()[0] class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self , lowercase__ , lowercase__=None , lowercase__=None ): snake_case_ : Union[str, Any] = file_names snake_case_ : Tuple = image_transform snake_case_ : Union[str, Any] = label_to_id def __len__(self ): return len(self.file_names ) def __getitem__(self , lowercase__ ): snake_case_ : Optional[Any] = self.file_names[idx] snake_case_ : Dict = PIL.Image.open(lowercase__ ) snake_case_ : Union[str, Any] = raw_image.convert("""RGB""" ) if self.image_transform is not None: snake_case_ : Union[str, Any] = self.image_transform(lowercase__ ) snake_case_ : Dict = extract_label(lowercase__ ) if self.label_to_id is not None: snake_case_ : Union[str, Any] = self.label_to_id[label] return {"image": image, "label": label} def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] ): """simple docstring""" if args.with_tracking: snake_case_ : Union[str, Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="""all""" , project_dir=args.project_dir ) else: snake_case_ : List[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case_ : Tuple = config["""lr"""] snake_case_ : Any = int(config["""num_epochs"""] ) snake_case_ : str = int(config["""seed"""] ) snake_case_ : Any = int(config["""batch_size"""] ) snake_case_ : Any = config["""image_size"""] if not isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ): snake_case_ : Dict = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , """isdigit""" ): if args.checkpointing_steps == "epoch": snake_case_ : List[str] = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): snake_case_ : Any = int(args.checkpointing_steps ) else: raise ValueError( f'Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.' ) else: snake_case_ : Dict = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: snake_case_ : Any = os.path.split(SCREAMING_SNAKE_CASE__ )[-1].split(""".""" )[0] accelerator.init_trackers(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Grab all the image filenames snake_case_ : Any = [os.path.join(args.data_dir , SCREAMING_SNAKE_CASE__ ) for fname in os.listdir(args.data_dir ) if fname.endswith(""".jpg""" )] # Build the label correspondences snake_case_ : int = [extract_label(SCREAMING_SNAKE_CASE__ ) for fname in file_names] snake_case_ : List[str] = list(set(SCREAMING_SNAKE_CASE__ ) ) id_to_label.sort() snake_case_ : str = {lbl: i for i, lbl in enumerate(SCREAMING_SNAKE_CASE__ )} # Set the seed before splitting the data. np.random.seed(SCREAMING_SNAKE_CASE__ ) torch.manual_seed(SCREAMING_SNAKE_CASE__ ) torch.cuda.manual_seed_all(SCREAMING_SNAKE_CASE__ ) # Split our filenames between train and validation snake_case_ : Union[str, Any] = np.random.permutation(len(SCREAMING_SNAKE_CASE__ ) ) snake_case_ : Dict = int(0.8 * len(SCREAMING_SNAKE_CASE__ ) ) snake_case_ : Union[str, Any] = random_perm[:cut] snake_case_ : Optional[int] = random_perm[cut:] # For training we use a simple RandomResizedCrop snake_case_ : Any = Compose([RandomResizedCrop(SCREAMING_SNAKE_CASE__ , scale=(0.5, 1.0) ), ToTensor()] ) snake_case_ : Tuple = PetsDataset( [file_names[i] for i in train_split] , image_transform=SCREAMING_SNAKE_CASE__ , label_to_id=SCREAMING_SNAKE_CASE__ ) # For evaluation, we use a deterministic Resize snake_case_ : Tuple = Compose([Resize(SCREAMING_SNAKE_CASE__ ), ToTensor()] ) snake_case_ : str = PetsDataset([file_names[i] for i in eval_split] , image_transform=SCREAMING_SNAKE_CASE__ , label_to_id=SCREAMING_SNAKE_CASE__ ) # Instantiate dataloaders. snake_case_ : int = DataLoader(SCREAMING_SNAKE_CASE__ , shuffle=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , num_workers=4 ) snake_case_ : Optional[int] = DataLoader(SCREAMING_SNAKE_CASE__ , shuffle=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case_ : Tuple = create_model("""resnet50d""" , pretrained=SCREAMING_SNAKE_CASE__ , num_classes=len(SCREAMING_SNAKE_CASE__ ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case_ : Tuple = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): snake_case_ : Any = False for param in model.get_classifier().parameters(): snake_case_ : List[str] = True # We normalize the batches of images to be a bit faster. snake_case_ : Dict = torch.tensor(model.default_cfg["""mean"""] )[None, :, None, None].to(accelerator.device ) snake_case_ : Any = torch.tensor(model.default_cfg["""std"""] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer snake_case_ : str = torch.optim.Adam(params=model.parameters() , lr=lr / 2_5 ) # Instantiate learning rate scheduler snake_case_ : Dict = OneCycleLR(optimizer=SCREAMING_SNAKE_CASE__ , max_lr=SCREAMING_SNAKE_CASE__ , epochs=SCREAMING_SNAKE_CASE__ , steps_per_epoch=len(SCREAMING_SNAKE_CASE__ ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case_ : Any = accelerator.prepare( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # We need to keep track of how many total steps we have iterated over snake_case_ : Optional[Any] = 0 # We also need to keep track of the starting epoch so files are named properly snake_case_ : List[str] = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f'Resumed from checkpoint: {args.resume_from_checkpoint}' ) accelerator.load_state(args.resume_from_checkpoint ) snake_case_ : Tuple = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint snake_case_ : List[Any] = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) snake_case_ : int = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` snake_case_ : Union[str, Any] = os.path.splitext(SCREAMING_SNAKE_CASE__ )[0] if "epoch" in training_difference: snake_case_ : Tuple = int(training_difference.replace("""epoch_""" , """""" ) ) + 1 snake_case_ : str = None else: snake_case_ : Tuple = int(training_difference.replace("""step_""" , """""" ) ) snake_case_ : Optional[Any] = resume_step // len(SCREAMING_SNAKE_CASE__ ) resume_step -= starting_epoch * len(SCREAMING_SNAKE_CASE__ ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): model.train() if args.with_tracking: snake_case_ : Dict = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step snake_case_ : Tuple = accelerator.skip_first_batches(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader snake_case_ : Dict = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. snake_case_ : Any = {k: v.to(accelerator.device ) for k, v in batch.items()} snake_case_ : List[str] = (batch["""image"""] - mean) / std snake_case_ : int = model(SCREAMING_SNAKE_CASE__ ) snake_case_ : List[str] = torch.nn.functional.cross_entropy(SCREAMING_SNAKE_CASE__ , batch["""label"""] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(SCREAMING_SNAKE_CASE__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : Dict = f'step_{overall_step}' if overall_step % checkpointing_steps == 0: if args.output_dir is not None: snake_case_ : Dict = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE__ ) accelerator.save_state(SCREAMING_SNAKE_CASE__ ) model.eval() snake_case_ : List[str] = 0 snake_case_ : Any = 0 for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. snake_case_ : List[str] = {k: v.to(accelerator.device ) for k, v in batch.items()} snake_case_ : Optional[Any] = (batch["""image"""] - mean) / std with torch.no_grad(): snake_case_ : int = model(SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = outputs.argmax(dim=-1 ) snake_case_ : Optional[int] = accelerator.gather_for_metrics((predictions, batch["""label"""]) ) snake_case_ : Dict = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() snake_case_ : Tuple = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}: {1_0_0 * eval_metric:.2f}' ) if args.with_tracking: accelerator.log( { """accuracy""": 1_0_0 * eval_metric, """train_loss""": total_loss.item() / len(SCREAMING_SNAKE_CASE__ ), """epoch""": epoch, } , step=SCREAMING_SNAKE_CASE__ , ) if checkpointing_steps == "epoch": snake_case_ : Dict = f'epoch_{epoch}' if args.output_dir is not None: snake_case_ : Dict = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE__ ) accelerator.save_state(SCREAMING_SNAKE_CASE__ ) if args.with_tracking: accelerator.end_training() def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Tuple = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument("""--data_dir""" , required=SCREAMING_SNAKE_CASE__ , help="""The data folder on disk.""" ) parser.add_argument("""--fp16""" , action="""store_true""" , help="""If passed, will use FP16 training.""" ) parser.add_argument( """--mixed_precision""" , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) parser.add_argument( """--checkpointing_steps""" , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help="""Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.""" , ) parser.add_argument( """--output_dir""" , type=SCREAMING_SNAKE_CASE__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--resume_from_checkpoint""" , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help="""If the training should continue from a checkpoint folder.""" , ) parser.add_argument( """--with_tracking""" , action="""store_true""" , help="""Whether to load in all available experiment trackers from the environment and use them for logging.""" , ) parser.add_argument( """--project_dir""" , type=SCREAMING_SNAKE_CASE__ , default="""logs""" , help="""Location on where to store experiment tracking logs` and relevent project information""" , ) snake_case_ : Tuple = parser.parse_args() snake_case_ : Dict = {"""lr""": 3E-2, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 6_4, """image_size""": 2_2_4} training_function(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
710
"""simple docstring""" import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask a_ = logging.getLogger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self , lowercase__=-1 ): # in NER datasets, the last column is usually reserved for NER label snake_case_ : Union[str, Any] = label_idx def __UpperCamelCase (self , lowercase__ , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): snake_case_ : List[str] = mode.value snake_case_ : List[Any] = os.path.join(lowercase__ , f'{mode}.txt' ) snake_case_ : Tuple = 1 snake_case_ : Any = [] with open(lowercase__ , encoding="""utf-8""" ) as f: snake_case_ : str = [] snake_case_ : List[Any] = [] for line in f: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) guid_index += 1 snake_case_ : Optional[Any] = [] snake_case_ : int = [] else: snake_case_ : Optional[Any] = line.split(""" """ ) words.append(splits[0] ) if len(lowercase__ ) > 1: labels.append(splits[self.label_idx].replace("""\n""" , """""" ) ) else: # Examples could have no label for mode = "test" labels.append("""O""" ) if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) return examples def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : str = 0 for line in test_input_reader: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": writer.write(lowercase__ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: snake_case_ : Optional[int] = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n""" writer.write(lowercase__ ) else: logger.warning("""Maximum sequence length exceeded: No prediction for '%s'.""" , line.split()[0] ) def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: snake_case_ : Dict = f.read().splitlines() if "O" not in labels: snake_case_ : List[Any] = ["""O"""] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self ): # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: snake_case_ : Any = f.read().splitlines() if "O" not in labels: snake_case_ : Tuple = ["""O"""] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __lowercase ( _UpperCAmelCase): """simple docstring""" def __UpperCamelCase (self , lowercase__ , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): snake_case_ : List[Any] = mode.value snake_case_ : Optional[int] = os.path.join(lowercase__ , f'{mode}.txt' ) snake_case_ : Tuple = 1 snake_case_ : str = [] with open(lowercase__ , encoding="""utf-8""" ) as f: for sentence in parse_incr(lowercase__ ): snake_case_ : Tuple = [] snake_case_ : Any = [] for token in sentence: words.append(token["""form"""] ) labels.append(token["""upos"""] ) assert len(lowercase__ ) == len(lowercase__ ) if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) guid_index += 1 return examples def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : Dict = 0 for sentence in parse_incr(lowercase__ ): snake_case_ : int = preds_list[example_id] snake_case_ : Dict = """""" for token in sentence: out += f'{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) ' out += "\n" writer.write(lowercase__ ) example_id += 1 def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
48
0
"""simple docstring""" import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_sentencepiece_available(): import sentencepiece as sp a_ = 5 a_ = 10 @require_sentencepiece @require_tokenizers class __lowercase ( _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : str = SpeechaTextTokenizer _A : Any = False _A : Optional[Any] = True def __UpperCamelCase (self ): super().setUp() snake_case_ : List[str] = sp.SentencePieceProcessor() spm_model.Load(lowercase__ ) snake_case_ : Optional[int] = ["""<s>""", """<pad>""", """</s>""", """<unk>"""] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(lowercase__ ) )] snake_case_ : List[Any] = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) snake_case_ : List[str] = Path(self.tmpdirname ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""vocab_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""spm_file"""] ) snake_case_ : Optional[Any] = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase (self ): snake_case_ : Dict = """<pad>""" snake_case_ : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__ ) , lowercase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__ ) , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(lowercase__ ) , 10_01 ) def __UpperCamelCase (self ): self.assertEqual(self.get_tokenizer().vocab_size , 10_01 ) def __UpperCamelCase (self ): snake_case_ : int = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) snake_case_ : str = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowercase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase__ ) , [2_89, 50, 14, 1_74, 3_86] , ) snake_case_ : List[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowercase__ , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""] , ) snake_case_ : Optional[int] = tokenizer.convert_tokens_to_ids(lowercase__ ) self.assertListEqual(lowercase__ , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) snake_case_ : Dict = tokenizer.convert_ids_to_tokens(lowercase__ ) self.assertListEqual( lowercase__ , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""] , ) @slow def __UpperCamelCase (self ): # fmt: off snake_case_ : List[str] = {"""input_ids""": [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase__ , model_name="""facebook/s2t-small-mustc-en-de-st""" , revision="""a14f04cf0776c02f62a8cb800cf7909e15ea23ad""" , ) @require_sentencepiece class __lowercase ( unittest.TestCase): """simple docstring""" _A : str = """valhalla/s2t_mustc_multilinguial_medium""" _A : Tuple = """C'est trop cool""" _A : List[str] = """Esto es genial""" @classmethod def __UpperCamelCase (cls ): snake_case_ : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def __UpperCamelCase (self ): self.assertEqual(self.tokenizer.lang_code_to_id["""pt"""] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id["""ru"""] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id["""it"""] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id["""de"""] , 11 ) def __UpperCamelCase (self ): self.assertEqual(self.tokenizer.vocab_size , 1_00_00 ) def __UpperCamelCase (self ): self.assertIn(lowercase__ , self.tokenizer.all_special_ids ) snake_case_ : List[str] = [ES_CODE, 4, 16_01, 47, 76_47, 2] snake_case_ : Optional[int] = self.tokenizer.decode(lowercase__ , skip_special_tokens=lowercase__ ) snake_case_ : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) self.assertNotIn(self.tokenizer.eos_token , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Tuple = """fr""" snake_case_ : Optional[Any] = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , lowercase__ ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def __UpperCamelCase (self ): snake_case_ : List[Any] = """fr""" self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) snake_case_ : str = """es""" self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
711
"""simple docstring""" import random def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : Union[str, Any] = num - 1 snake_case_ : List[str] = 0 while s % 2 == 0: snake_case_ : str = s // 2 t += 1 for _ in range(5 ): snake_case_ : List[Any] = random.randrange(2 , num - 1 ) snake_case_ : Dict = pow(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if v != 1: snake_case_ : int = 0 while v != (num - 1): if i == t - 1: return False else: snake_case_ : str = i + 1 snake_case_ : int = (v**2) % num return True def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" if num < 2: return False snake_case_ : Dict = [ 2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1, 4_3, 4_7, 5_3, 5_9, 6_1, 6_7, 7_1, 7_3, 7_9, 8_3, 8_9, 9_7, 1_0_1, 1_0_3, 1_0_7, 1_0_9, 1_1_3, 1_2_7, 1_3_1, 1_3_7, 1_3_9, 1_4_9, 1_5_1, 1_5_7, 1_6_3, 1_6_7, 1_7_3, 1_7_9, 1_8_1, 1_9_1, 1_9_3, 1_9_7, 1_9_9, 2_1_1, 2_2_3, 2_2_7, 2_2_9, 2_3_3, 2_3_9, 2_4_1, 2_5_1, 2_5_7, 2_6_3, 2_6_9, 2_7_1, 2_7_7, 2_8_1, 2_8_3, 2_9_3, 3_0_7, 3_1_1, 3_1_3, 3_1_7, 3_3_1, 3_3_7, 3_4_7, 3_4_9, 3_5_3, 3_5_9, 3_6_7, 3_7_3, 3_7_9, 3_8_3, 3_8_9, 3_9_7, 4_0_1, 4_0_9, 4_1_9, 4_2_1, 4_3_1, 4_3_3, 4_3_9, 4_4_3, 4_4_9, 4_5_7, 4_6_1, 4_6_3, 4_6_7, 4_7_9, 4_8_7, 4_9_1, 4_9_9, 5_0_3, 5_0_9, 5_2_1, 5_2_3, 5_4_1, 5_4_7, 5_5_7, 5_6_3, 5_6_9, 5_7_1, 5_7_7, 5_8_7, 5_9_3, 5_9_9, 6_0_1, 6_0_7, 6_1_3, 6_1_7, 6_1_9, 6_3_1, 6_4_1, 6_4_3, 6_4_7, 6_5_3, 6_5_9, 6_6_1, 6_7_3, 6_7_7, 6_8_3, 6_9_1, 7_0_1, 7_0_9, 7_1_9, 7_2_7, 7_3_3, 7_3_9, 7_4_3, 7_5_1, 7_5_7, 7_6_1, 7_6_9, 7_7_3, 7_8_7, 7_9_7, 8_0_9, 8_1_1, 8_2_1, 8_2_3, 8_2_7, 8_2_9, 8_3_9, 8_5_3, 8_5_7, 8_5_9, 8_6_3, 8_7_7, 8_8_1, 8_8_3, 8_8_7, 9_0_7, 9_1_1, 9_1_9, 9_2_9, 9_3_7, 9_4_1, 9_4_7, 9_5_3, 9_6_7, 9_7_1, 9_7_7, 9_8_3, 9_9_1, 9_9_7, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int = 1_0_2_4 ): """simple docstring""" while True: snake_case_ : Tuple = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(SCREAMING_SNAKE_CASE__ ): return num if __name__ == "__main__": a_ = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
48
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : int = 1 snake_case_ : List[str] = 2 while i * i <= n: snake_case_ : int = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Optional[int] = 1 snake_case_ : str = 1 while True: i += 1 t_num += i if count_divisors(SCREAMING_SNAKE_CASE__ ) > 5_0_0: break return t_num if __name__ == "__main__": print(solution())
712
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType a_ = logging.get_logger(__name__) a_ = { '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Dict = """deberta-v2""" def __init__(self , lowercase__=12_81_00 , lowercase__=15_36 , lowercase__=24 , lowercase__=24 , lowercase__=61_44 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_12 , lowercase__=0 , lowercase__=0.02 , lowercase__=1e-7 , lowercase__=False , lowercase__=-1 , lowercase__=0 , lowercase__=True , lowercase__=None , lowercase__=0 , lowercase__="gelu" , **lowercase__ , ): super().__init__(**lowercase__ ) snake_case_ : Union[str, Any] = hidden_size snake_case_ : str = num_hidden_layers snake_case_ : Tuple = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : Optional[int] = hidden_act snake_case_ : Union[str, Any] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : List[Any] = max_position_embeddings snake_case_ : Union[str, Any] = type_vocab_size snake_case_ : Union[str, Any] = initializer_range snake_case_ : List[Any] = relative_attention snake_case_ : Dict = max_relative_positions snake_case_ : Optional[int] = pad_token_id snake_case_ : List[str] = position_biased_input # Backwards compatibility if type(lowercase__ ) == str: snake_case_ : Union[str, Any] = [x.strip() for x in pos_att_type.lower().split("""|""" )] snake_case_ : Optional[int] = pos_att_type snake_case_ : List[str] = vocab_size snake_case_ : Tuple = layer_norm_eps snake_case_ : List[Any] = kwargs.get("""pooler_hidden_size""" , lowercase__ ) snake_case_ : List[str] = pooler_dropout snake_case_ : int = pooler_hidden_act class __lowercase ( _UpperCAmelCase): """simple docstring""" @property def __UpperCamelCase (self ): if self.task == "multiple-choice": snake_case_ : List[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case_ : int = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def __UpperCamelCase (self ): return 12 def __UpperCamelCase (self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , lowercase__ = 3 , lowercase__ = 40 , lowercase__ = 40 , lowercase__ = None , ): snake_case_ : str = super().generate_dummy_inputs(preprocessor=lowercase__ , framework=lowercase__ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
48
0
"""simple docstring""" from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''microsoft/xprophetnet-large-wiki100-cased''': ( '''https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json''' ), } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Any = """xlm-prophetnet""" _A : Union[str, Any] = ["""past_key_values"""] _A : Optional[int] = { """num_attention_heads""": """num_encoder_attention_heads""", } def __init__(self , lowercase__ = 0.1 , lowercase__ = "gelu" , lowercase__ = 3_05_22 , lowercase__ = 10_24 , lowercase__ = 40_96 , lowercase__ = 12 , lowercase__ = 16 , lowercase__ = 40_96 , lowercase__ = 12 , lowercase__ = 16 , lowercase__ = 0.1 , lowercase__ = 0.1 , lowercase__ = 5_12 , lowercase__ = 0.02 , lowercase__ = True , lowercase__ = True , lowercase__ = 0 , lowercase__ = 2 , lowercase__ = 32 , lowercase__ = 1_28 , lowercase__ = False , lowercase__ = 0.0 , lowercase__ = True , lowercase__ = 0 , lowercase__ = 1 , lowercase__ = 2 , **lowercase__ , ): snake_case_ : Dict = vocab_size snake_case_ : Optional[int] = hidden_size snake_case_ : Tuple = encoder_ffn_dim snake_case_ : Optional[Any] = num_encoder_layers snake_case_ : Dict = num_encoder_attention_heads snake_case_ : Dict = decoder_ffn_dim snake_case_ : Union[str, Any] = num_decoder_layers snake_case_ : Tuple = num_decoder_attention_heads snake_case_ : Optional[int] = max_position_embeddings snake_case_ : str = init_std # Normal(0, this parameter) snake_case_ : Optional[Any] = activation_function # parameters for xlmprophetnet snake_case_ : Dict = ngram snake_case_ : List[Any] = num_buckets snake_case_ : Union[str, Any] = relative_max_distance snake_case_ : Optional[int] = disable_ngram_loss snake_case_ : Optional[int] = eps # 3 Types of Dropout snake_case_ : Optional[Any] = attention_dropout snake_case_ : Optional[int] = activation_dropout snake_case_ : Any = dropout snake_case_ : Tuple = use_cache super().__init__( pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , add_cross_attention=lowercase__ , decoder_start_token_id=lowercase__ , **lowercase__ , ) @property def __UpperCamelCase (self ): return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def __UpperCamelCase (self , lowercase__ ): raise NotImplementedError( """This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and""" """ `num_decoder_layers`.""" )
713
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
48
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : list ): """simple docstring""" snake_case_ : Optional[int] = len(SCREAMING_SNAKE_CASE__ ) for i in range(1 , SCREAMING_SNAKE_CASE__ ): snake_case_ : Tuple = collection[i] snake_case_ : Tuple = 0 snake_case_ : str = i - 1 while low <= high: snake_case_ : Optional[int] = (low + high) // 2 if val < collection[mid]: snake_case_ : List[str] = mid - 1 else: snake_case_ : str = mid + 1 for j in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , -1 ): snake_case_ : List[str] = collection[j - 1] snake_case_ : Any = val return collection if __name__ == "__main__": a_ = input('''Enter numbers separated by a comma:\n''').strip() a_ = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
714
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('''fixtures/test_sentencepiece.model''') a_ = {'''target_lang''': '''fi''', '''source_lang''': '''en'''} a_ = '''>>zh<<''' a_ = '''Helsinki-NLP/''' if is_torch_available(): a_ = '''pt''' elif is_tf_available(): a_ = '''tf''' else: a_ = '''jax''' @require_sentencepiece class __lowercase ( _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : str = MarianTokenizer _A : List[str] = False _A : List[str] = True def __UpperCamelCase (self ): super().setUp() snake_case_ : Optional[int] = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] snake_case_ : Any = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) snake_case_ : Any = Path(self.tmpdirname ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) snake_case_ : Optional[Any] = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase (self , **lowercase__ ): return MarianTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def __UpperCamelCase (self , lowercase__ ): return ( "This is a test", "This is a test", ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = """</s>""" snake_case_ : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__ ) , lowercase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__ ) , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(lowercase__ ) , 9 ) def __UpperCamelCase (self ): self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def __UpperCamelCase (self ): snake_case_ : Any = MarianTokenizer.from_pretrained(f'{ORG_NAME}opus-mt-en-de' ) snake_case_ : Tuple = en_de_tokenizer(["""I am a small frog"""] , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) snake_case_ : Dict = [38, 1_21, 14, 6_97, 3_88_48, 0] self.assertListEqual(lowercase__ , batch.input_ids[0] ) snake_case_ : Tuple = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(lowercase__ ) snake_case_ : str = [x.name for x in Path(lowercase__ ).glob("""*""" )] self.assertIn("""source.spm""" , lowercase__ ) MarianTokenizer.from_pretrained(lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = self.get_tokenizer() snake_case_ : List[str] = tok( ["""I am a small frog""" * 10_00, """I am a small frog"""] , padding=lowercase__ , truncation=lowercase__ , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(batch.input_ids.shape , (2, 5_12) ) def __UpperCamelCase (self ): snake_case_ : Tuple = self.get_tokenizer() snake_case_ : Tuple = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=lowercase__ , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def __UpperCamelCase (self ): # fmt: off snake_case_ : str = {"""input_ids""": [[4_34_95, 4_62, 20, 4_21_64, 13_69, 52, 4_64, 1_32, 17_03, 4_92, 13, 74_91, 3_89_99, 6, 8, 4_64, 1_32, 17_03, 4_92, 13, 46_69, 3_78_67, 13, 75_25, 27, 15_93, 9_88, 13, 3_39_72, 70_29, 6, 20, 82_51, 3_83, 2, 2_70, 58_66, 37_88, 2, 23_53, 82_51, 1_23_38, 2, 1_39_58, 3_87, 2, 36_29, 69_53, 1_88, 29_00, 2, 1_39_58, 80_11, 1_15_01, 23, 84_60, 40_73, 3_40_09, 20, 4_35, 1_14_39, 27, 8, 84_60, 40_73, 60_04, 20, 99_88, 3_75, 27, 33, 2_66, 19_45, 10_76, 13_50, 3_78_67, 32_88, 5, 5_77, 10_76, 43_74, 8, 50_82, 5, 2_64_53, 2_57, 5_56, 4_03, 2, 2_42, 1_32, 3_83, 3_16, 4_92, 8, 1_07_67, 6, 3_16, 3_04, 42_39, 3, 0], [1_48, 1_57_22, 19, 18_39, 12, 13_50, 13, 2_23_27, 50_82, 54_18, 4_75_67, 3_59_38, 59, 3_18, 1_95_52, 1_08, 21_83, 54, 1_49_76, 48_35, 32, 5_47, 11_14, 8, 3_15, 24_17, 5, 92, 1_90_88, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00], [36, 63_95, 1_25_70, 3_91_47, 1_15_97, 6, 2_66, 4, 4_54_05, 72_96, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase__ , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def __UpperCamelCase (self ): snake_case_ : Any = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) snake_case_ : Dict = """Tämä on testi""" snake_case_ : List[Any] = """This is a test""" snake_case_ : Optional[int] = [76, 7, 20_47, 2] snake_case_ : List[str] = [69, 12, 11, 9_40, 2] snake_case_ : Any = tokenizer(lowercase__ ).input_ids self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : str = tokenizer(text_target=lowercase__ ).input_ids self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : int = tokenizer.decode(lowercase__ , skip_special_tokens=lowercase__ ) self.assertEqual(lowercase__ , lowercase__ )
48
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[Any] = """trocr""" _A : Union[str, Any] = ["""past_key_values"""] _A : str = { """num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model""", """num_hidden_layers""": """decoder_layers""", } def __init__(self , lowercase__=5_02_65 , lowercase__=10_24 , lowercase__=12 , lowercase__=16 , lowercase__=40_96 , lowercase__="gelu" , lowercase__=5_12 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=2 , lowercase__=0.02 , lowercase__=0.0 , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=True , lowercase__=1 , lowercase__=0 , lowercase__=2 , **lowercase__ , ): snake_case_ : Union[str, Any] = vocab_size snake_case_ : int = d_model snake_case_ : Any = decoder_layers snake_case_ : str = decoder_attention_heads snake_case_ : Optional[Any] = decoder_ffn_dim snake_case_ : str = activation_function snake_case_ : Dict = max_position_embeddings snake_case_ : Dict = dropout snake_case_ : Optional[int] = attention_dropout snake_case_ : Dict = activation_dropout snake_case_ : Tuple = init_std snake_case_ : Optional[int] = decoder_layerdrop snake_case_ : Optional[int] = use_cache snake_case_ : Union[str, Any] = scale_embedding snake_case_ : Optional[Any] = use_learned_position_embeddings snake_case_ : Dict = layernorm_embedding super().__init__( pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , decoder_start_token_id=lowercase__ , **lowercase__ , )
715
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCAmelCase) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True}) _A : ClassVar[Features] = Features({"""audio""": Audio()}) _A : ClassVar[Features] = Features({"""transcription""": Value("""string""")}) _A : str = "audio" _A : str = "transcription" def __UpperCamelCase (self , lowercase__ ): if self.audio_column not in features: raise ValueError(f'Column {self.audio_column} is not present in features.' ) if not isinstance(features[self.audio_column] , lowercase__ ): raise ValueError(f'Column {self.audio_column} is not an Audio type.' ) snake_case_ : Optional[int] = copy.deepcopy(self ) snake_case_ : Tuple = self.input_schema.copy() snake_case_ : List[str] = features[self.audio_column] snake_case_ : Any = input_schema return task_template @property def __UpperCamelCase (self ): return {self.audio_column: "audio", self.transcription_column: "transcription"}
48
0
"""simple docstring""" import torch from transformers import AutoModel class __lowercase ( torch.nn.Module): """simple docstring""" def __init__(self , lowercase__="sayef/fsner-bert-base-uncased" ): super(lowercase__ , self ).__init__() snake_case_ : Optional[Any] = AutoModel.from_pretrained(lowercase__ , return_dict=lowercase__ ) snake_case_ : int = torch.nn.CosineSimilarity(3 , 1e-08 ) snake_case_ : Optional[int] = torch.nn.Softmax(dim=1 ) def __UpperCamelCase (self , **lowercase__ ): return self.bert(**lowercase__ ).last_hidden_state def __UpperCamelCase (self , lowercase__ ): return token_embeddings.sum(2 , keepdim=lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__=1 ): return self.softmax(T * self.cos(lowercase__ , lowercase__ ) ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : Tuple = W_supports["""sizes"""].tolist() snake_case_ : Optional[Any] = W_supports["""start_token_id"""].item() snake_case_ : Dict = W_supports["""end_token_id"""].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] snake_case_ : int = self.BERT(**lowercase__ ) snake_case_ : Union[str, Any] = self.BERT(**lowercase__ ) snake_case_ : Union[str, Any] = None snake_case_ : List[Any] = None snake_case_ : Optional[int] = W_supports["""input_ids"""] == start_token_id snake_case_ : List[Any] = W_supports["""input_ids"""] == end_token_id for i, size in enumerate(lowercase__ ): if i == 0: snake_case_ : Union[str, Any] = 0 else: snake_case_ : List[Any] = support_sizes[i - 1] snake_case_ : Dict = S[s : s + size][start_token_masks[s : s + size]] snake_case_ : Tuple = S[s : s + size][end_token_masks[s : s + size]] snake_case_ : List[str] = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) snake_case_ : str = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: snake_case_ : Union[str, Any] = torch.vstack((p_starts, p_start) ) snake_case_ : str = torch.vstack((p_ends, p_end) ) else: snake_case_ : str = p_start snake_case_ : List[str] = p_end return p_starts, p_ends
716
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : int = ["""pixel_values"""] def __init__(self , lowercase__ = True , lowercase__ = None , lowercase__ = 0.9 , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = True , lowercase__ = None , lowercase__ = 1 / 2_55 , lowercase__ = True , lowercase__ = True , lowercase__ = None , lowercase__ = None , **lowercase__ , ): super().__init__(**lowercase__ ) snake_case_ : Tuple = size if size is not None else {"""shortest_edge""": 2_24} snake_case_ : Union[str, Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) snake_case_ : str = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} snake_case_ : Dict = get_size_dict(lowercase__ , param_name="""crop_size""" ) snake_case_ : Union[str, Any] = do_resize snake_case_ : List[str] = size snake_case_ : str = crop_pct snake_case_ : str = resample snake_case_ : Optional[Any] = do_center_crop snake_case_ : Dict = crop_size snake_case_ : int = do_rescale snake_case_ : Optional[int] = rescale_factor snake_case_ : str = do_normalize snake_case_ : str = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN snake_case_ : List[str] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = None , **lowercase__ , ): snake_case_ : Tuple = get_size_dict(lowercase__ , default_to_square=lowercase__ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f'size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) if crop_pct is not None: if "shortest_edge" in size: snake_case_ : Optional[int] = int(size["""shortest_edge"""] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: snake_case_ : Dict = int(size["""height"""] / crop_pct ) else: snake_case_ : List[str] = (int(size["""height"""] / crop_pct ), int(size["""width"""] / crop_pct )) else: raise ValueError("""Invalid size for resize: {}""".format(lowercase__ ) ) snake_case_ : List[Any] = get_resize_output_image_size(lowercase__ , size=lowercase__ , default_to_square=lowercase__ ) else: if "shortest_edge" in size: snake_case_ : Optional[int] = get_resize_output_image_size(lowercase__ , size=size["""shortest_edge"""] , default_to_square=lowercase__ ) elif "height" in size and "width" in size: snake_case_ : int = (size["""height"""], size["""width"""]) else: raise ValueError("""Invalid size for resize: {}""".format(lowercase__ ) ) return resize(lowercase__ , size=lowercase__ , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): snake_case_ : int = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(f'size must contain \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(lowercase__ , size=(size["""height"""], size["""width"""]) , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return normalize(lowercase__ , mean=lowercase__ , std=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ): snake_case_ : str = do_resize if do_resize is not None else self.do_resize snake_case_ : Any = crop_pct if crop_pct is not None else self.crop_pct snake_case_ : List[Any] = resample if resample is not None else self.resample snake_case_ : str = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : str = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : str = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : List[Any] = image_mean if image_mean is not None else self.image_mean snake_case_ : int = image_std if image_std is not None else self.image_std snake_case_ : List[Any] = size if size is not None else self.size snake_case_ : Optional[Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) snake_case_ : List[Any] = crop_size if crop_size is not None else self.crop_size snake_case_ : int = get_size_dict(lowercase__ , param_name="""crop_size""" ) snake_case_ : List[str] = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_pct is None: raise ValueError("""Crop_pct must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case_ : int = [to_numpy_array(lowercase__ ) for image in images] if do_resize: snake_case_ : str = [self.resize(image=lowercase__ , size=lowercase__ , crop_pct=lowercase__ , resample=lowercase__ ) for image in images] if do_center_crop: snake_case_ : Optional[int] = [self.center_crop(image=lowercase__ , size=lowercase__ ) for image in images] if do_rescale: snake_case_ : List[Any] = [self.rescale(image=lowercase__ , scale=lowercase__ ) for image in images] if do_normalize: snake_case_ : Optional[Any] = [self.normalize(image=lowercase__ , mean=lowercase__ , std=lowercase__ ) for image in images] snake_case_ : List[Any] = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] snake_case_ : Dict = {"""pixel_values""": images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
48
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings a_ = r''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(_UpperCAmelCase) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """rag""" _A : Optional[Any] = True def __init__(self , lowercase__=None , lowercase__=True , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=" / " , lowercase__=" // " , lowercase__=5 , lowercase__=3_00 , lowercase__=7_68 , lowercase__=8 , lowercase__="wiki_dpr" , lowercase__="train" , lowercase__="compressed" , lowercase__=None , lowercase__=None , lowercase__=False , lowercase__=False , lowercase__=0.0 , lowercase__=True , lowercase__=False , lowercase__=False , lowercase__=False , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__( bos_token_id=lowercase__ , pad_token_id=lowercase__ , eos_token_id=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , prefix=lowercase__ , vocab_size=lowercase__ , **lowercase__ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" snake_case_ : List[Any] = kwargs.pop("""question_encoder""" ) snake_case_ : Tuple = question_encoder_config.pop("""model_type""" ) snake_case_ : List[str] = kwargs.pop("""generator""" ) snake_case_ : List[str] = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig snake_case_ : List[str] = AutoConfig.for_model(lowercase__ , **lowercase__ ) snake_case_ : Tuple = AutoConfig.for_model(lowercase__ , **lowercase__ ) snake_case_ : int = reduce_loss snake_case_ : Optional[int] = label_smoothing snake_case_ : Dict = exclude_bos_score snake_case_ : Union[str, Any] = do_marginalize snake_case_ : Union[str, Any] = title_sep snake_case_ : int = doc_sep snake_case_ : int = n_docs snake_case_ : List[str] = max_combined_length snake_case_ : Tuple = dataset snake_case_ : int = dataset_split snake_case_ : str = index_name snake_case_ : List[str] = retrieval_vector_size snake_case_ : Dict = retrieval_batch_size snake_case_ : str = passages_path snake_case_ : Union[str, Any] = index_path snake_case_ : Tuple = use_dummy_dataset snake_case_ : Dict = output_retrieved snake_case_ : str = do_deduplication snake_case_ : Any = use_cache if self.forced_eos_token_id is None: snake_case_ : Any = getattr(self.generator , """forced_eos_token_id""" , lowercase__ ) @classmethod def __UpperCamelCase (cls , lowercase__ , lowercase__ , **lowercase__ ): return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Optional[Any] = copy.deepcopy(self.__dict__ ) snake_case_ : Any = self.question_encoder.to_dict() snake_case_ : Dict = self.generator.to_dict() snake_case_ : Union[str, Any] = self.__class__.model_type return output
717
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: a_ = None a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} a_ = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } a_ = { '''facebook/mbart-large-en-ro''': 1024, '''facebook/mbart-large-cc25''': 1024, } # fmt: off a_ = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Dict = VOCAB_FILES_NAMES _A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _A : str = ["""input_ids""", """attention_mask"""] _A : Tuple = MBartTokenizer _A : List[int] = [] _A : List[int] = [] def __init__(self , lowercase__=None , lowercase__=None , lowercase__="<s>" , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<mask>" , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ , ): # Mask token behave like a normal word, i.e. include the space before it snake_case_ : int = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token super().__init__( vocab_file=lowercase__ , tokenizer_file=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , unk_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , src_lang=lowercase__ , tgt_lang=lowercase__ , additional_special_tokens=lowercase__ , **lowercase__ , ) snake_case_ : Dict = vocab_file snake_case_ : Optional[int] = False if not self.vocab_file else True snake_case_ : Optional[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) snake_case_ : Any = { lang_code: self.convert_tokens_to_ids(lowercase__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } snake_case_ : Tuple = src_lang if src_lang is not None else """en_XX""" snake_case_ : Tuple = self.convert_tokens_to_ids(self._src_lang ) snake_case_ : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __UpperCamelCase (self ): return self._src_lang @src_lang.setter def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): snake_case_ : List[Any] = [self.sep_token_id] snake_case_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , **lowercase__ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) snake_case_ : int = src_lang snake_case_ : List[str] = self(lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , **lowercase__ ) snake_case_ : List[str] = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Union[str, Any] = tgt_lang_id return inputs def __UpperCamelCase (self , lowercase__ , lowercase__ = "en_XX" , lowercase__ = None , lowercase__ = "ro_RO" , **lowercase__ , ): snake_case_ : List[str] = src_lang snake_case_ : int = tgt_lang return super().prepare_seqaseq_batch(lowercase__ , lowercase__ , **lowercase__ ) def __UpperCamelCase (self ): return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCamelCase (self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Tuple = [] snake_case_ : List[Any] = [self.eos_token_id, self.cur_lang_code] snake_case_ : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Optional[int] = [] snake_case_ : Optional[Any] = [self.eos_token_id, self.cur_lang_code] snake_case_ : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ : int = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowercase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory.' ) return snake_case_ : List[str] = os.path.join( lowercase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ): copyfile(self.vocab_file , lowercase__ ) return (out_vocab_file,)
48
0
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer a_ = logging.get_logger(__name__) # pylint: disable=invalid-name a_ = ''' Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu") >>> repo = "openai/shap-e-img2img" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png" >>> image = load_image(image_url).convert("RGB") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], "corgi_3d.gif") ``` ''' @dataclass class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Union[PIL.Image.Image, np.ndarray] class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): super().__init__() self.register_modules( prior=lowercase__ , image_encoder=lowercase__ , image_processor=lowercase__ , scheduler=lowercase__ , renderer=lowercase__ , ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): if latents is None: snake_case_ : Any = randn_tensor(lowercase__ , generator=lowercase__ , device=lowercase__ , dtype=lowercase__ ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) snake_case_ : Tuple = latents.to(lowercase__ ) snake_case_ : Any = latents * scheduler.init_noise_sigma return latents def __UpperCamelCase (self , lowercase__=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) snake_case_ : List[Any] = torch.device(f'cuda:{gpu_id}' ) snake_case_ : List[str] = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase__ , lowercase__ ) @property def __UpperCamelCase (self ): if self.device != torch.device("""meta""" ) or not hasattr(self.image_encoder , """_hf_hook""" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(lowercase__ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): if isinstance(lowercase__ , lowercase__ ) and isinstance(image[0] , torch.Tensor ): snake_case_ : Tuple = torch.cat(lowercase__ , axis=0 ) if image[0].ndim == 4 else torch.stack(lowercase__ , axis=0 ) if not isinstance(lowercase__ , torch.Tensor ): snake_case_ : List[str] = self.image_processor(lowercase__ , return_tensors="""pt""" ).pixel_values[0].unsqueeze(0 ) snake_case_ : List[Any] = image.to(dtype=self.image_encoder.dtype , device=lowercase__ ) snake_case_ : int = self.image_encoder(lowercase__ )["""last_hidden_state"""] snake_case_ : Any = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 snake_case_ : List[str] = image_embeds.repeat_interleave(lowercase__ , dim=0 ) if do_classifier_free_guidance: snake_case_ : Any = torch.zeros_like(lowercase__ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes snake_case_ : List[str] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(lowercase__ ) def __call__(self , lowercase__ , lowercase__ = 1 , lowercase__ = 25 , lowercase__ = None , lowercase__ = None , lowercase__ = 4.0 , lowercase__ = 64 , lowercase__ = "pil" , lowercase__ = True , ): if isinstance(lowercase__ , PIL.Image.Image ): snake_case_ : Dict = 1 elif isinstance(lowercase__ , torch.Tensor ): snake_case_ : str = image.shape[0] elif isinstance(lowercase__ , lowercase__ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): snake_case_ : Union[str, Any] = len(lowercase__ ) else: raise ValueError( f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(lowercase__ )}' ) snake_case_ : Tuple = self._execution_device snake_case_ : int = batch_size * num_images_per_prompt snake_case_ : Optional[int] = guidance_scale > 1.0 snake_case_ : List[str] = self._encode_image(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # prior self.scheduler.set_timesteps(lowercase__ , device=lowercase__ ) snake_case_ : Any = self.scheduler.timesteps snake_case_ : int = self.prior.config.num_embeddings snake_case_ : Optional[int] = self.prior.config.embedding_dim snake_case_ : Tuple = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , lowercase__ , lowercase__ , lowercase__ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim snake_case_ : Optional[int] = latents.reshape(latents.shape[0] , lowercase__ , lowercase__ ) for i, t in enumerate(self.progress_bar(lowercase__ ) ): # expand the latents if we are doing classifier free guidance snake_case_ : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents snake_case_ : Any = self.scheduler.scale_model_input(lowercase__ , lowercase__ ) snake_case_ : List[Any] = self.prior( lowercase__ , timestep=lowercase__ , proj_embedding=lowercase__ , ).predicted_image_embedding # remove the variance snake_case_ : Any = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: snake_case_ : List[Any] = noise_pred.chunk(2 ) snake_case_ : Tuple = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) snake_case_ : int = self.scheduler.step( lowercase__ , timestep=lowercase__ , sample=lowercase__ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=lowercase__ ) snake_case_ : List[str] = [] for i, latent in enumerate(lowercase__ ): print() snake_case_ : int = self.renderer.decode( latent[None, :] , lowercase__ , size=lowercase__ , ray_batch_size=40_96 , n_coarse_samples=64 , n_fine_samples=1_28 , ) images.append(lowercase__ ) snake_case_ : Any = torch.stack(lowercase__ ) if output_type not in ["np", "pil"]: raise ValueError(f'Only the output types `pil` and `np` are supported not output_type={output_type}' ) snake_case_ : Optional[Any] = images.cpu().numpy() if output_type == "pil": snake_case_ : List[str] = [self.numpy_to_pil(lowercase__ ) for image in images] # Offload last model to CPU if hasattr(self , """final_offload_hook""" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=lowercase__ )
718
"""simple docstring""" import argparse import hashlib # hashlib is only used inside the Test class import struct class __lowercase : """simple docstring""" def __init__(self , lowercase__ ): snake_case_ : Union[str, Any] = data snake_case_ : List[str] = [0X6_7_4_5_2_3_0_1, 0Xe_f_c_d_a_b_8_9, 0X9_8_b_a_d_c_f_e, 0X1_0_3_2_5_4_7_6, 0Xc_3_d_2_e_1_f_0] @staticmethod def __UpperCamelCase (lowercase__ , lowercase__ ): return ((n << b) | (n >> (32 - b))) & 0Xf_f_f_f_f_f_f_f def __UpperCamelCase (self ): snake_case_ : Any = B"""\x80""" + B"""\x00""" * (63 - (len(self.data ) + 8) % 64) snake_case_ : Tuple = self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def __UpperCamelCase (self ): return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = list(struct.unpack(""">16L""" , lowercase__ ) ) + [0] * 64 for i in range(16 , 80 ): snake_case_ : Dict = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def __UpperCamelCase (self ): snake_case_ : List[Any] = self.padding() snake_case_ : Any = self.split_blocks() for block in self.blocks: snake_case_ : Any = self.expand_block(lowercase__ ) snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = self.h for i in range(0 , 80 ): if 0 <= i < 20: snake_case_ : Optional[Any] = (b & c) | ((~b) & d) snake_case_ : List[str] = 0X5_a_8_2_7_9_9_9 elif 20 <= i < 40: snake_case_ : Union[str, Any] = b ^ c ^ d snake_case_ : Tuple = 0X6_e_d_9_e_b_a_1 elif 40 <= i < 60: snake_case_ : str = (b & c) | (b & d) | (c & d) snake_case_ : List[str] = 0X8_f_1_b_b_c_d_c elif 60 <= i < 80: snake_case_ : Tuple = b ^ c ^ d snake_case_ : str = 0Xc_a_6_2_c_1_d_6 snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Optional[Any] = ( self.rotate(lowercase__ , 5 ) + f + e + k + expanded_block[i] & 0Xf_f_f_f_f_f_f_f, a, self.rotate(lowercase__ , 30 ), c, d, ) snake_case_ : Any = ( self.h[0] + a & 0Xf_f_f_f_f_f_f_f, self.h[1] + b & 0Xf_f_f_f_f_f_f_f, self.h[2] + c & 0Xf_f_f_f_f_f_f_f, self.h[3] + d & 0Xf_f_f_f_f_f_f_f, self.h[4] + e & 0Xf_f_f_f_f_f_f_f, ) return ("{:08x}" * 5).format(*self.h ) def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Union[str, Any] = b"""Test String""" assert SHAaHash(SCREAMING_SNAKE_CASE__ ).final_hash() == hashlib.shaa(SCREAMING_SNAKE_CASE__ ).hexdigest() # noqa: S324 def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : int = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument("""--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) snake_case_ : Optional[int] = parser.parse_args() snake_case_ : Optional[int] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: snake_case_ : List[str] = f.read() else: snake_case_ : Dict = bytes(SCREAMING_SNAKE_CASE__ , """utf-8""" ) print(SHAaHash(SCREAMING_SNAKE_CASE__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
48
0
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model a_ = '''0.12''' # assumed parallelism: 8 if is_torch_available(): import torch def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int]=None ): """simple docstring""" if rng is None: snake_case_ : Union[str, Any] = random.Random() snake_case_ : Optional[Any] = 1 for dim in shape: total_dims *= dim snake_case_ : List[Any] = [] for _ in range(SCREAMING_SNAKE_CASE__ ): values.append(rng.randint(0 , vocab_size - 1 ) ) snake_case_ : Dict = np.array(SCREAMING_SNAKE_CASE__ , dtype=jnp.intaa ).reshape(SCREAMING_SNAKE_CASE__ ) return output def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str]=None ): """simple docstring""" snake_case_ : Tuple = ids_tensor(SCREAMING_SNAKE_CASE__ , vocab_size=2 , rng=SCREAMING_SNAKE_CASE__ ) # make sure that at least one token is attended to for each batch snake_case_ : int = 1 return attn_mask @require_flax class __lowercase : """simple docstring""" _A : Optional[int] = None _A : Tuple = () def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 snake_case_ : List[Any] = 2 snake_case_ : Tuple = inputs["""input_ids"""].shape[-1] // 2 snake_case_ : Tuple = inputs["""input_ids"""][:max_batch_size, :sequence_length] snake_case_ : int = jnp.ones_like(lowercase__ ) snake_case_ : List[str] = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens snake_case_ : Dict = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` snake_case_ : Union[str, Any] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def __UpperCamelCase (self ): snake_case_ : List[Any] = self._get_input_ids_and_config() snake_case_ : Any = False snake_case_ : int = max_length snake_case_ : Dict = 0 for model_class in self.all_generative_model_classes: snake_case_ : Tuple = model_class(lowercase__ ) snake_case_ : Any = model_class.__name__[4:] # Skip the "Flax" at the beginning snake_case_ : Dict = getattr(lowercase__ , lowercase__ ) snake_case_ : Optional[Any] = pt_model_class(lowercase__ ).eval() snake_case_ : Optional[Any] = load_flax_weights_in_pytorch_model(lowercase__ , flax_model.params ) snake_case_ : Tuple = flax_model.generate(lowercase__ ).sequences snake_case_ : Dict = pt_model.generate(torch.tensor(lowercase__ , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: snake_case_ : Optional[int] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def __UpperCamelCase (self ): snake_case_ : str = self._get_input_ids_and_config() snake_case_ : List[str] = False snake_case_ : List[Any] = max_length for model_class in self.all_generative_model_classes: snake_case_ : Tuple = model_class(lowercase__ ) snake_case_ : Tuple = model.generate(lowercase__ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase__ ) snake_case_ : List[str] = jit(model.generate ) snake_case_ : Union[str, Any] = jit_generate(lowercase__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCamelCase (self ): snake_case_ : str = self._get_input_ids_and_config() snake_case_ : List[Any] = True snake_case_ : Tuple = max_length for model_class in self.all_generative_model_classes: snake_case_ : Optional[Any] = model_class(lowercase__ ) snake_case_ : List[Any] = model.generate(lowercase__ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase__ ) snake_case_ : List[str] = jit(model.generate ) snake_case_ : Optional[int] = jit_generate(lowercase__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCamelCase (self ): snake_case_ : List[str] = self._get_input_ids_and_config() snake_case_ : Tuple = False snake_case_ : Union[str, Any] = max_length snake_case_ : Optional[Any] = 2 for model_class in self.all_generative_model_classes: snake_case_ : Dict = model_class(lowercase__ ) snake_case_ : Optional[int] = model.generate(lowercase__ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase__ ) snake_case_ : List[Any] = jit(model.generate ) snake_case_ : Optional[Any] = jit_generate(lowercase__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCamelCase (self ): snake_case_ : Optional[int] = self._get_input_ids_and_config() snake_case_ : Optional[Any] = False snake_case_ : Tuple = max_length snake_case_ : Union[str, Any] = 2 snake_case_ : int = 2 for model_class in self.all_generative_model_classes: snake_case_ : int = model_class(lowercase__ ) snake_case_ : Optional[int] = model.generate(lowercase__ ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = self._get_input_ids_and_config() snake_case_ : List[str] = True snake_case_ : List[Any] = max_length snake_case_ : str = 0.8 snake_case_ : Optional[Any] = 10 snake_case_ : str = 0.3 snake_case_ : str = 1 snake_case_ : Optional[Any] = 8 snake_case_ : int = 9 for model_class in self.all_generative_model_classes: snake_case_ : int = model_class(lowercase__ ) snake_case_ : Optional[int] = model.generate(lowercase__ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase__ ) snake_case_ : Optional[int] = jit(model.generate ) snake_case_ : str = jit_generate(lowercase__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCamelCase (self ): snake_case_ : Any = self._get_input_ids_and_config() snake_case_ : str = max_length snake_case_ : Optional[Any] = 1 snake_case_ : Optional[int] = 8 snake_case_ : Union[str, Any] = 9 for model_class in self.all_generative_model_classes: snake_case_ : str = model_class(lowercase__ ) snake_case_ : Any = model.generate(lowercase__ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase__ ) snake_case_ : Any = jit(model.generate ) snake_case_ : List[str] = jit_generate(lowercase__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCamelCase (self ): snake_case_ : Tuple = self._get_input_ids_and_config() snake_case_ : List[str] = max_length snake_case_ : Optional[int] = 2 snake_case_ : List[Any] = 1 snake_case_ : Optional[Any] = 8 snake_case_ : str = 9 for model_class in self.all_generative_model_classes: snake_case_ : Tuple = model_class(lowercase__ ) snake_case_ : Optional[int] = model.generate(lowercase__ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase__ ) snake_case_ : List[Any] = jit(model.generate ) snake_case_ : List[str] = jit_generate(lowercase__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = self._get_input_ids_and_config() # pad attention mask on the left snake_case_ : Tuple = attention_mask.at[(0, 0)].set(0 ) snake_case_ : List[str] = False snake_case_ : Tuple = max_length for model_class in self.all_generative_model_classes: snake_case_ : Dict = model_class(lowercase__ ) snake_case_ : Optional[Any] = model.generate(lowercase__ , attention_mask=lowercase__ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase__ ) snake_case_ : str = jit(model.generate ) snake_case_ : int = jit_generate(lowercase__ , attention_mask=lowercase__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCamelCase (self ): snake_case_ : Any = self._get_input_ids_and_config() # pad attention mask on the left snake_case_ : Tuple = attention_mask.at[(0, 0)].set(0 ) snake_case_ : Dict = True snake_case_ : Optional[int] = max_length for model_class in self.all_generative_model_classes: snake_case_ : str = model_class(lowercase__ ) snake_case_ : Dict = model.generate(lowercase__ , attention_mask=lowercase__ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase__ ) snake_case_ : Tuple = jit(model.generate ) snake_case_ : List[str] = jit_generate(lowercase__ , attention_mask=lowercase__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCamelCase (self ): snake_case_ : int = self._get_input_ids_and_config() # pad attention mask on the left snake_case_ : Any = attention_mask.at[(0, 0)].set(0 ) snake_case_ : Tuple = 2 snake_case_ : Any = max_length for model_class in self.all_generative_model_classes: snake_case_ : Any = model_class(lowercase__ ) snake_case_ : Union[str, Any] = model.generate(lowercase__ , attention_mask=lowercase__ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase__ ) snake_case_ : List[str] = jit(model.generate ) snake_case_ : Optional[Any] = jit_generate(lowercase__ , attention_mask=lowercase__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class __lowercase ( unittest.TestCase): """simple docstring""" def __UpperCamelCase (self ): snake_case_ : List[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-bert""" ) snake_case_ : int = FlaxAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) snake_case_ : List[Any] = """Hello world""" snake_case_ : Optional[int] = tokenizer(lowercase__ , return_tensors="""np""" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(lowercase__ , """do_samples""" ): model.generate(lowercase__ , do_samples=lowercase__ ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(lowercase__ , """foo""" ): snake_case_ : Optional[int] = {"""foo""": """bar"""} model.generate(lowercase__ , **lowercase__ )
719
"""simple docstring""" from manim import * class __lowercase ( _UpperCAmelCase): """simple docstring""" def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = Rectangle(height=0.5 , width=0.5 ) snake_case_ : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) snake_case_ : Optional[Any] = [mem.copy() for i in range(6 )] snake_case_ : str = [mem.copy() for i in range(6 )] snake_case_ : str = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : Any = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[str] = VGroup(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[Any] = Text("""CPU""" , font_size=24 ) snake_case_ : Tuple = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowercase__ ) snake_case_ : List[Any] = [mem.copy() for i in range(4 )] snake_case_ : Tuple = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[str] = Text("""GPU""" , font_size=24 ) snake_case_ : Any = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) gpu.move_to([-1, -1, 0] ) self.add(lowercase__ ) snake_case_ : Optional[Any] = [mem.copy() for i in range(6 )] snake_case_ : List[Any] = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : Dict = Text("""Model""" , font_size=24 ) snake_case_ : int = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) model.move_to([3, -1.0, 0] ) self.add(lowercase__ ) snake_case_ : Dict = [] for i, rect in enumerate(lowercase__ ): rect.set_stroke(lowercase__ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) snake_case_ : List[str] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowercase__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowercase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase__ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase__ , buff=0.0 ) self.add(lowercase__ ) cpu_targs.append(lowercase__ ) snake_case_ : List[str] = [mem.copy() for i in range(6 )] snake_case_ : List[str] = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : str = Text("""Loaded Checkpoint""" , font_size=24 ) snake_case_ : Any = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , aligned_edge=lowercase__ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) snake_case_ : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) snake_case_ : Union[str, Any] = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowercase__ , lowercase__ ) snake_case_ : List[Any] = MarkupText( f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(lowercase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) snake_case_ : List[Any] = MarkupText( f'Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowercase__ ) , Write(lowercase__ ) ) self.play(Write(lowercase__ , run_time=1 ) , Create(lowercase__ , run_time=1 ) ) snake_case_ : Optional[int] = [] snake_case_ : List[str] = [] for i, rect in enumerate(lowercase__ ): snake_case_ : Optional[Any] = fill.copy().set_fill(lowercase__ , opacity=0.7 ) target.move_to(lowercase__ ) first_animations.append(GrowFromCenter(lowercase__ , run_time=1 ) ) snake_case_ : List[Any] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(lowercase__ , run_time=1.5 ) ) self.play(*lowercase__ ) self.play(*lowercase__ ) self.wait()
48
0
"""simple docstring""" from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int | float | str , SCREAMING_SNAKE_CASE__ : int | float | str ): """simple docstring""" if nth_term == "": return [""] snake_case_ : List[Any] = int(SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[Any] = int(SCREAMING_SNAKE_CASE__ ) snake_case_ : list[str] = [] for temp in range(int(SCREAMING_SNAKE_CASE__ ) ): series.append(f'1 / {pow(temp + 1 , int(SCREAMING_SNAKE_CASE__ ) )}' if series else """1""" ) return series if __name__ == "__main__": import doctest doctest.testmod() a_ = int(input('''Enter the last number (nth term) of the P-Series''')) a_ = int(input('''Enter the power for P-Series''')) print('''Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p''') print(p_series(nth_term, power))
720
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" snake_case_ : Union[str, Any] = 0 if start < end: snake_case_ : Union[str, Any] = randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = a[end] snake_case_ : Dict = a[pivot] snake_case_ : Any = temp snake_case_ , snake_case_ : Dict = _in_place_partition(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , p - 1 ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE__ , p + 1 , SCREAMING_SNAKE_CASE__ ) return count def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" snake_case_ : Tuple = 0 snake_case_ : List[Any] = randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : Dict = a[end] snake_case_ : List[Any] = a[pivot] snake_case_ : Optional[Any] = temp snake_case_ : List[str] = start - 1 for index in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value snake_case_ : Any = new_pivot_index + 1 snake_case_ : Tuple = a[new_pivot_index] snake_case_ : Optional[int] = a[index] snake_case_ : Tuple = temp snake_case_ : Union[str, Any] = a[new_pivot_index + 1] snake_case_ : Union[str, Any] = a[end] snake_case_ : Union[str, Any] = temp return new_pivot_index + 1, count a_ = TemporaryFile() a_ = 100 # 1000 elements are to be sorted a_ , a_ = 0, 1 # mean and standard deviation a_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array a_ = np.load(outfile) a_ = len(M) - 1 a_ = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
48
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all BART models at https://huggingface.co/models?filter=bart a_ = { '''vocab_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''', }, '''merges_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json''', }, } a_ = { '''facebook/bart-base''': 1024, '''facebook/bart-large''': 1024, '''facebook/bart-large-mnli''': 1024, '''facebook/bart-large-cnn''': 1024, '''facebook/bart-large-xsum''': 1024, '''yjernite/bart_eli5''': 1024, } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[Any] = VOCAB_FILES_NAMES _A : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _A : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : List[Any] = ["""input_ids""", """attention_mask"""] _A : List[str] = BartTokenizer def __init__(self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="replace" , lowercase__="<s>" , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<mask>" , lowercase__=False , lowercase__=True , **lowercase__ , ): super().__init__( lowercase__ , lowercase__ , tokenizer_file=lowercase__ , errors=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , unk_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ , **lowercase__ , ) snake_case_ : int = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , lowercase__ ) != add_prefix_space: snake_case_ : List[str] = getattr(lowercase__ , pre_tok_state.pop("""type""" ) ) snake_case_ : int = add_prefix_space snake_case_ : List[Any] = pre_tok_class(**lowercase__ ) snake_case_ : List[str] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` snake_case_ : int = """post_processor""" snake_case_ : Union[str, Any] = getattr(self.backend_tokenizer , lowercase__ , lowercase__ ) if tokenizer_component_instance: snake_case_ : List[Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case_ : int = tuple(state["""sep"""] ) if "cls" in state: snake_case_ : List[Any] = tuple(state["""cls"""] ) snake_case_ : str = False if state.get("""add_prefix_space""" , lowercase__ ) != add_prefix_space: snake_case_ : Optional[int] = add_prefix_space snake_case_ : int = True if state.get("""trim_offsets""" , lowercase__ ) != trim_offsets: snake_case_ : int = trim_offsets snake_case_ : int = True if changes_to_apply: snake_case_ : int = getattr(lowercase__ , state.pop("""type""" ) ) snake_case_ : List[str] = component_class(**lowercase__ ) setattr(self.backend_tokenizer , lowercase__ , lowercase__ ) @property def __UpperCamelCase (self ): if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def __UpperCamelCase (self , lowercase__ ): snake_case_ : Optional[Any] = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else value snake_case_ : Tuple = value def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): snake_case_ : Union[str, Any] = kwargs.get("""is_split_into_words""" , lowercase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*lowercase__ , **lowercase__ ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): snake_case_ : Dict = kwargs.get("""is_split_into_words""" , lowercase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): snake_case_ : Optional[Any] = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__=None ): snake_case_ : int = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): snake_case_ : Optional[Any] = [self.sep_token_id] snake_case_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
721
"""simple docstring""" import random def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : bool = False ): """simple docstring""" snake_case_ : dict = {i: [] for i in range(SCREAMING_SNAKE_CASE__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(SCREAMING_SNAKE_CASE__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(i + 1 , SCREAMING_SNAKE_CASE__ ): if random.random() < probability: graph[i].append(SCREAMING_SNAKE_CASE__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(SCREAMING_SNAKE_CASE__ ) return graph def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" return { i: [j for j in range(SCREAMING_SNAKE_CASE__ ) if i != j] for i in range(SCREAMING_SNAKE_CASE__ ) } if __name__ == "__main__": import doctest doctest.testmod()
48
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" if "resnet-50" in model_name: snake_case_ : Union[str, Any] = ResNetConfig.from_pretrained("""microsoft/resnet-50""" ) elif "resnet-101" in model_name: snake_case_ : Optional[int] = ResNetConfig.from_pretrained("""microsoft/resnet-101""" ) else: raise ValueError("""Model name should include either resnet50 or resnet101""" ) snake_case_ : List[str] = DetrConfig(use_timm_backbone=SCREAMING_SNAKE_CASE__ , backbone_config=SCREAMING_SNAKE_CASE__ ) # set label attributes snake_case_ : Union[str, Any] = """panoptic""" in model_name if is_panoptic: snake_case_ : Tuple = 2_5_0 else: snake_case_ : Optional[Any] = 9_1 snake_case_ : Union[str, Any] = """huggingface/label-files""" snake_case_ : List[Any] = """coco-detection-id2label.json""" snake_case_ : Any = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type="""dataset""" ) , """r""" ) ) snake_case_ : Tuple = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} snake_case_ : List[Any] = idalabel snake_case_ : int = {v: k for k, v in idalabel.items()} return config, is_panoptic def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" snake_case_ : Optional[Any] = [] # stem # fmt: off rename_keys.append(("""backbone.0.body.conv1.weight""", """backbone.conv_encoder.model.embedder.embedder.convolution.weight""") ) rename_keys.append(("""backbone.0.body.bn1.weight""", """backbone.conv_encoder.model.embedder.embedder.normalization.weight""") ) rename_keys.append(("""backbone.0.body.bn1.bias""", """backbone.conv_encoder.model.embedder.embedder.normalization.bias""") ) rename_keys.append(("""backbone.0.body.bn1.running_mean""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_mean""") ) rename_keys.append(("""backbone.0.body.bn1.running_var""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_var""") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight', ) ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias') ) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append( (f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight', ) ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) return rename_keys def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" snake_case_ : Optional[int] = state_dict.pop(SCREAMING_SNAKE_CASE__ ) snake_case_ : Any = val def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str=False ): """simple docstring""" snake_case_ : Tuple = """""" if is_panoptic: snake_case_ : str = """detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) snake_case_ : List[Any] = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) snake_case_ : Union[str, Any] = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict snake_case_ : List[Any] = in_proj_weight[:2_5_6, :] snake_case_ : Dict = in_proj_bias[:2_5_6] snake_case_ : List[Any] = in_proj_weight[2_5_6:5_1_2, :] snake_case_ : Optional[int] = in_proj_bias[2_5_6:5_1_2] snake_case_ : Dict = in_proj_weight[-2_5_6:, :] snake_case_ : Dict = in_proj_bias[-2_5_6:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention snake_case_ : Optional[Any] = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) snake_case_ : Optional[Any] = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict snake_case_ : Any = in_proj_weight[:2_5_6, :] snake_case_ : Tuple = in_proj_bias[:2_5_6] snake_case_ : str = in_proj_weight[2_5_6:5_1_2, :] snake_case_ : Optional[int] = in_proj_bias[2_5_6:5_1_2] snake_case_ : Optional[int] = in_proj_weight[-2_5_6:, :] snake_case_ : str = in_proj_bias[-2_5_6:] # read in weights + bias of input projection layer of cross-attention snake_case_ : List[str] = state_dict.pop( f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) snake_case_ : Any = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict snake_case_ : Dict = in_proj_weight_cross_attn[:2_5_6, :] snake_case_ : int = in_proj_bias_cross_attn[:2_5_6] snake_case_ : Dict = in_proj_weight_cross_attn[2_5_6:5_1_2, :] snake_case_ : Any = in_proj_bias_cross_attn[2_5_6:5_1_2] snake_case_ : Tuple = in_proj_weight_cross_attn[-2_5_6:, :] snake_case_ : int = in_proj_bias_cross_attn[-2_5_6:] def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case_ : int = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : List[Any]=False ): """simple docstring""" snake_case_ : Any = get_detr_config(SCREAMING_SNAKE_CASE__ ) # load original model from torch hub snake_case_ : str = { """detr-resnet-50""": """detr_resnet50""", """detr-resnet-101""": """detr_resnet101""", } logger.info(f'Converting model {model_name}...' ) snake_case_ : List[str] = torch.hub.load("""facebookresearch/detr""" , model_name_to_original_name[model_name] , pretrained=SCREAMING_SNAKE_CASE__ ).eval() snake_case_ : Dict = detr.state_dict() # rename keys for src, dest in create_rename_keys(SCREAMING_SNAKE_CASE__ ): if is_panoptic: snake_case_ : Union[str, Any] = """detr.""" + src rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # query, key and value matrices need special treatment read_in_q_k_v(SCREAMING_SNAKE_CASE__ , is_panoptic=SCREAMING_SNAKE_CASE__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them snake_case_ : Union[str, Any] = """detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): snake_case_ : Optional[int] = state_dict.pop(SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[Any] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: snake_case_ : int = state_dict.pop(SCREAMING_SNAKE_CASE__ ) snake_case_ : Union[str, Any] = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: snake_case_ : Any = state_dict.pop(SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[Any] = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): snake_case_ : Dict = state_dict.pop(SCREAMING_SNAKE_CASE__ ) snake_case_ : Dict = val # finally, create HuggingFace model and load state dict snake_case_ : Optional[Any] = DetrForSegmentation(SCREAMING_SNAKE_CASE__ ) if is_panoptic else DetrForObjectDetection(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() # verify our conversion on an image snake_case_ : int = """coco_panoptic""" if is_panoptic else """coco_detection""" snake_case_ : List[Any] = DetrImageProcessor(format=SCREAMING_SNAKE_CASE__ ) snake_case_ : int = processor(images=prepare_img() , return_tensors="""pt""" ) snake_case_ : Optional[Any] = encoding["""pixel_values"""] snake_case_ : Optional[Any] = detr(SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[Any] = model(SCREAMING_SNAKE_CASE__ ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1E-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1E-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: # Upload model and image processor to the hub logger.info("""Uploading PyTorch model and image processor to the hub...""" ) model.push_to_hub(f'nielsr/{model_name}' ) processor.push_to_hub(f'nielsr/{model_name}' ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''detr-resnet-50''', type=str, choices=['''detr-resnet-50''', '''detr-resnet-101'''], help='''Name of the DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the model to the hub or not.''') a_ = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
700
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json''' ), } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """dpr""" def __init__(self , lowercase__=3_05_22 , lowercase__=7_68 , lowercase__=12 , lowercase__=12 , lowercase__=30_72 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_12 , lowercase__=2 , lowercase__=0.02 , lowercase__=1e-12 , lowercase__=0 , lowercase__="absolute" , lowercase__ = 0 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , **lowercase__ ) snake_case_ : List[Any] = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : Tuple = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : int = hidden_act snake_case_ : Dict = intermediate_size snake_case_ : int = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : str = max_position_embeddings snake_case_ : List[str] = type_vocab_size snake_case_ : List[str] = initializer_range snake_case_ : Optional[int] = layer_norm_eps snake_case_ : Union[str, Any] = projection_dim snake_case_ : str = position_embedding_type
48
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : Union[str, Any] = [], [] while len(SCREAMING_SNAKE_CASE__ ) > 1: snake_case_ : int = min(SCREAMING_SNAKE_CASE__ ), max(SCREAMING_SNAKE_CASE__ ) start.append(SCREAMING_SNAKE_CASE__ ) end.append(SCREAMING_SNAKE_CASE__ ) collection.remove(SCREAMING_SNAKE_CASE__ ) collection.remove(SCREAMING_SNAKE_CASE__ ) end.reverse() return start + collection + end if __name__ == "__main__": a_ = input('''Enter numbers separated by a comma:\n''').strip() a_ = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
701
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm a_ = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex a_ = 10 a_ = 256 def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" if len(SCREAMING_SNAKE_CASE__ ) < MIN_NUM_TOKENS: return None snake_case_ : Union[str, Any] = MinHash(num_perm=SCREAMING_SNAKE_CASE__ ) for token in set(SCREAMING_SNAKE_CASE__ ): min_hash.update(token.encode() ) return min_hash def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" return {t for t in NON_ALPHA.split(SCREAMING_SNAKE_CASE__ ) if len(t.strip() ) > 0} class __lowercase : """simple docstring""" def __init__(self , *, lowercase__ = 0.85 , ): snake_case_ : Tuple = duplication_jaccard_threshold snake_case_ : Optional[Any] = NUM_PERM snake_case_ : Tuple = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) snake_case_ : List[Any] = defaultdict(lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : int = self._index.query(lowercase__ ) if code_key in self._index.keys: print(f'Duplicate key {code_key}' ) return self._index.insert(lowercase__ , lowercase__ ) if len(lowercase__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowercase__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(lowercase__ ) def __UpperCamelCase (self ): snake_case_ : str = [] for base, duplicates in self._duplicate_clusters.items(): snake_case_ : Optional[Any] = [base] + list(lowercase__ ) # reformat the cluster to be a list of dict snake_case_ : Any = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(lowercase__ ) return duplicate_clusters def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = self.get_duplicate_clusters() with open(lowercase__ , """w""" ) as f: json.dump(lowercase__ , lowercase__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ , snake_case_ : str = element snake_case_ : Tuple = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] ): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(SCREAMING_SNAKE_CASE__ , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ): if data is not None: yield data def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] , SCREAMING_SNAKE_CASE__ : float ): """simple docstring""" snake_case_ : int = DuplicationIndex(duplication_jaccard_threshold=SCREAMING_SNAKE_CASE__ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(SCREAMING_SNAKE_CASE__ ) ) , max_queue_size=1_0_0 ) ): di.add(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : int = get_tokens(SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = get_tokens(SCREAMING_SNAKE_CASE__ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) a_ = None def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Optional[Any] = [] for elementa in cluster: snake_case_ : Union[str, Any] = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: snake_case_ : Any = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) >= jaccard_threshold: elementa["copies"] += 1 break else: snake_case_ : Union[str, Any] = 1 extremes.append(SCREAMING_SNAKE_CASE__ ) return extremes def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" global _shared_dataset snake_case_ : str = dataset snake_case_ : int = [] snake_case_ : Optional[int] = partial(_find_cluster_extremes_shared , jaccard_threshold=SCREAMING_SNAKE_CASE__ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) , total=len(SCREAMING_SNAKE_CASE__ ) , ): extremes_list.append(SCREAMING_SNAKE_CASE__ ) return extremes_list def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] , SCREAMING_SNAKE_CASE__ : float = 0.85 ): """simple docstring""" snake_case_ : List[str] = make_duplicate_clusters(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : str = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} snake_case_ : str = {} snake_case_ : Dict = find_extremes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for extremes in extremes_clusters: for element in extremes: snake_case_ : int = element snake_case_ : Optional[int] = duplicate_indices - set(extreme_dict.keys() ) snake_case_ : List[Any] = dataset.filter(lambda SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : idx not in remove_indices , with_indices=SCREAMING_SNAKE_CASE__ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: snake_case_ : List[Any] = element["""base_index"""] in extreme_dict if element["is_extreme"]: snake_case_ : str = extreme_dict[element["""base_index"""]]["""copies"""] print(f'Original dataset size: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Number of duplicate clusters: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Files in duplicate cluster: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Unique files in duplicate cluster: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Filtered dataset size: {len(SCREAMING_SNAKE_CASE__ )}' ) return ds_filter, duplicate_clusters
48
0
"""simple docstring""" import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests a_ = open # noqa: we just need to have a builtin inside this module to test it properly
702
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) a_ = logging.getLogger(__name__) if __name__ == "__main__": a_ = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=30522, type=int) a_ = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, '''rb''') as fp: a_ = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') a_ = Counter() for tk_ids in data: counter.update(tk_ids) a_ = [0] * args.vocab_size for k, v in counter.items(): a_ = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
48
0
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" snake_case_ : Optional[Any] = tmp_path / """cache""" snake_case_ : Optional[int] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : Tuple = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" snake_case_ : List[Any] = tmp_path / """cache""" snake_case_ : int = {"""text""": """string"""} snake_case_ : Any = features.copy() if features else default_expected_features snake_case_ : List[Any] = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : Dict = TextDatasetReader(SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : Union[str, Any] = tmp_path / """cache""" snake_case_ : Optional[Any] = {"""text""": """string"""} snake_case_ : Optional[int] = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , split=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" if issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : List[str] = text_path elif issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : str = [text_path] snake_case_ : List[str] = tmp_path / """cache""" snake_case_ : List[str] = {"""text""": """string"""} snake_case_ : Dict = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str]=("train",) ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for split in splits: snake_case_ : Dict = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" snake_case_ : int = tmp_path / """cache""" snake_case_ : List[str] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : Optional[Any] = TextDatasetReader({"""train""": text_path} , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Tuple = tmp_path / """cache""" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" snake_case_ : List[str] = {"""text""": """string"""} snake_case_ : int = features.copy() if features else default_expected_features snake_case_ : Tuple = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : str = TextDatasetReader({"""train""": text_path} , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" if split: snake_case_ : Union[str, Any] = {split: text_path} else: snake_case_ : Union[str, Any] = """train""" snake_case_ : int = {"""train""": text_path, """test""": text_path} snake_case_ : List[Any] = tmp_path / """cache""" snake_case_ : Tuple = {"""text""": """string"""} snake_case_ : int = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
703
"""simple docstring""" import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" snake_case_ : Optional[Any] = tmp_path / """cache""" snake_case_ : Optional[int] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : Tuple = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" snake_case_ : List[Any] = tmp_path / """cache""" snake_case_ : int = {"""text""": """string"""} snake_case_ : Any = features.copy() if features else default_expected_features snake_case_ : List[Any] = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : Dict = TextDatasetReader(SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : Union[str, Any] = tmp_path / """cache""" snake_case_ : Optional[Any] = {"""text""": """string"""} snake_case_ : Optional[int] = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , split=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" if issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : List[str] = text_path elif issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : str = [text_path] snake_case_ : List[str] = tmp_path / """cache""" snake_case_ : List[str] = {"""text""": """string"""} snake_case_ : Dict = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str]=("train",) ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for split in splits: snake_case_ : Dict = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" snake_case_ : int = tmp_path / """cache""" snake_case_ : List[str] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : Optional[Any] = TextDatasetReader({"""train""": text_path} , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Tuple = tmp_path / """cache""" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" snake_case_ : List[str] = {"""text""": """string"""} snake_case_ : int = features.copy() if features else default_expected_features snake_case_ : Tuple = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : str = TextDatasetReader({"""train""": text_path} , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" if split: snake_case_ : Union[str, Any] = {split: text_path} else: snake_case_ : Union[str, Any] = """train""" snake_case_ : int = {"""train""": text_path, """test""": text_path} snake_case_ : List[Any] = tmp_path / """cache""" snake_case_ : Tuple = {"""text""": """string"""} snake_case_ : int = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
48
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] ): snake_case_ : Optional[Any] = 0 snake_case_ : int = len(SCREAMING_SNAKE_CASE__ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None snake_case_ : Optional[int] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(SCREAMING_SNAKE_CASE__ ): return None snake_case_ : Dict = sorted_collection[point] if current_item == item: return point else: if point < left: snake_case_ : List[Any] = left snake_case_ : List[Any] = point elif point > right: snake_case_ : List[Any] = right snake_case_ : Tuple = point else: if item < current_item: snake_case_ : List[Any] = point - 1 else: snake_case_ : Union[str, Any] = point + 1 return None def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] ): if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None snake_case_ : int = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(SCREAMING_SNAKE_CASE__ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif point > right: return interpolation_search_by_recursion(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , point - 1 ) else: return interpolation_search_by_recursion( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , point + 1 , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any ): if collection != sorted(SCREAMING_SNAKE_CASE__ ): raise ValueError("""Collection must be ascending sorted""" ) return True if __name__ == "__main__": import sys a_ = 0 if debug == 1: a_ = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit('''Sequence must be ascending sorted to apply interpolation search''') a_ = 67 a_ = interpolation_search(collection, target) if result is not None: print(F'''{target} found at positions: {result}''') else: print('''Not found''')
704
"""simple docstring""" from copy import deepcopy class __lowercase : """simple docstring""" def __init__(self , lowercase__ = None , lowercase__ = None ): if arr is None and size is not None: snake_case_ : str = size snake_case_ : Optional[Any] = [0] * size elif arr is not None: self.init(lowercase__ ) else: raise ValueError("""Either arr or size must be specified""" ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Optional[Any] = len(lowercase__ ) snake_case_ : int = deepcopy(lowercase__ ) for i in range(1 , self.size ): snake_case_ : Optional[Any] = self.next_(lowercase__ ) if j < self.size: self.tree[j] += self.tree[i] def __UpperCamelCase (self ): snake_case_ : Dict = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): snake_case_ : Optional[int] = self.next_(lowercase__ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def __UpperCamelCase (lowercase__ ): return index + (index & (-index)) @staticmethod def __UpperCamelCase (lowercase__ ): return index - (index & (-index)) def __UpperCamelCase (self , lowercase__ , lowercase__ ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value snake_case_ : Tuple = self.next_(lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): self.add(lowercase__ , value - self.get(lowercase__ ) ) def __UpperCamelCase (self , lowercase__ ): if right == 0: return 0 snake_case_ : List[str] = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] snake_case_ : Optional[int] = self.prev(lowercase__ ) return result def __UpperCamelCase (self , lowercase__ , lowercase__ ): return self.prefix(lowercase__ ) - self.prefix(lowercase__ ) def __UpperCamelCase (self , lowercase__ ): return self.query(lowercase__ , index + 1 ) def __UpperCamelCase (self , lowercase__ ): value -= self.tree[0] if value < 0: return -1 snake_case_ : Tuple = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 snake_case_ : Tuple = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
48
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" snake_case_ : Union[str, Any] = [] snake_case_ : str = set({"""(""", """[""", """{"""} ) snake_case_ : List[str] = set({""")""", """]""", """}"""} ) snake_case_ : Union[str, Any] = {"""{""": """}""", """[""": """]""", """(""": """)"""} for i in range(len(SCREAMING_SNAKE_CASE__ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(SCREAMING_SNAKE_CASE__ ) == 0 or (len(SCREAMING_SNAKE_CASE__ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(SCREAMING_SNAKE_CASE__ ) == 0 def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Optional[Any] = input("""Enter sequence of brackets: """ ) if is_balanced(SCREAMING_SNAKE_CASE__ ): print(SCREAMING_SNAKE_CASE__ , """is balanced""" ) else: print(SCREAMING_SNAKE_CASE__ , """is not balanced""" ) if __name__ == "__main__": main()
705
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : list ): """simple docstring""" snake_case_ : Optional[int] = len(SCREAMING_SNAKE_CASE__ ) for i in range(1 , SCREAMING_SNAKE_CASE__ ): snake_case_ : Tuple = collection[i] snake_case_ : Tuple = 0 snake_case_ : str = i - 1 while low <= high: snake_case_ : Optional[int] = (low + high) // 2 if val < collection[mid]: snake_case_ : List[str] = mid - 1 else: snake_case_ : str = mid + 1 for j in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , -1 ): snake_case_ : List[str] = collection[j - 1] snake_case_ : Any = val return collection if __name__ == "__main__": a_ = input('''Enter numbers separated by a comma:\n''').strip() a_ = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
48
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() a_ = logging.get_logger(__name__) a_ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } a_ = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple ): """simple docstring""" for attribute in key.split(""".""" ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models snake_case_ : List[str] = """lm_head""" snake_case_ : Tuple = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if weight_type is not None: snake_case_ : Optional[Any] = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).shape else: snake_case_ : Union[str, Any] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": snake_case_ : List[str] = value elif weight_type == "weight_g": snake_case_ : Optional[Any] = value elif weight_type == "weight_v": snake_case_ : List[str] = value elif weight_type == "bias": snake_case_ : Optional[int] = value else: snake_case_ : str = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" snake_case_ : Tuple = [] snake_case_ : Optional[Any] = fairseq_model.state_dict() snake_case_ : str = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): snake_case_ : Tuple = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hf_model.config.feat_extract_norm == """group""" , ) snake_case_ : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): snake_case_ : Dict = """unispeech.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: snake_case_ : Dict = True if "*" in mapped_key: snake_case_ : Optional[Any] = name.split(SCREAMING_SNAKE_CASE__ )[0].split(""".""" )[-2] snake_case_ : Union[str, Any] = mapped_key.replace("""*""" , SCREAMING_SNAKE_CASE__ ) if "weight_g" in name: snake_case_ : Optional[int] = """weight_g""" elif "weight_v" in name: snake_case_ : Tuple = """weight_v""" elif "bias" in name: snake_case_ : Any = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case_ : str = """weight""" else: snake_case_ : List[str] = None set_recursively(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE__ ) logger.warning(f'Unused weights: {unused_weights}' ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Any = full_name.split("""conv_layers.""" )[-1] snake_case_ : int = name.split(""".""" ) snake_case_ : List[Any] = int(items[0] ) snake_case_ : Any = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) snake_case_ : Any = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) snake_case_ : int = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) snake_case_ : str = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) snake_case_ : int = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : List[str]=True ): """simple docstring""" if config_path is not None: snake_case_ : Union[str, Any] = UniSpeechConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) else: snake_case_ : Optional[int] = UniSpeechConfig() if is_finetuned: if dict_path: snake_case_ : Optional[int] = Dictionary.load_from_json(SCREAMING_SNAKE_CASE__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case_ : Union[str, Any] = target_dict.pad_index snake_case_ : List[Any] = target_dict.bos_index snake_case_ : str = target_dict.eos_index snake_case_ : str = len(target_dict.symbols ) snake_case_ : Dict = os.path.join(SCREAMING_SNAKE_CASE__ , """vocab.json""" ) if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(SCREAMING_SNAKE_CASE__ ) ) return os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[Any] = target_dict.indices # fairseq has the <pad> and <s> switched snake_case_ : int = 4_2 snake_case_ : Optional[int] = 4_3 with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : int = WavaVecaPhonemeCTCTokenizer( SCREAMING_SNAKE_CASE__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=SCREAMING_SNAKE_CASE__ , ) snake_case_ : str = True if config.feat_extract_norm == """layer""" else False snake_case_ : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , ) snake_case_ : Union[str, Any] = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case_ : List[str] = UniSpeechForCTC(SCREAMING_SNAKE_CASE__ ) else: snake_case_ : Dict = UniSpeechForPreTraining(SCREAMING_SNAKE_CASE__ ) if is_finetuned: snake_case_ : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path} ) else: snake_case_ : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) snake_case_ : Any = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) hf_unispeech.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) a_ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
706
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Union[str, Any] = ["""image_processor""", """tokenizer"""] _A : str = """ChineseCLIPImageProcessor""" _A : Tuple = ("""BertTokenizer""", """BertTokenizerFast""") def __init__(self , lowercase__=None , lowercase__=None , **lowercase__ ): snake_case_ : Any = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowercase__ , ) snake_case_ : Optional[Any] = kwargs.pop("""feature_extractor""" ) snake_case_ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowercase__ , lowercase__ ) snake_case_ : Union[str, Any] = self.image_processor def __call__(self , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ ): if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: snake_case_ : Any = self.tokenizer(lowercase__ , return_tensors=lowercase__ , **lowercase__ ) if images is not None: snake_case_ : Tuple = self.image_processor(lowercase__ , return_tensors=lowercase__ , **lowercase__ ) if text is not None and images is not None: snake_case_ : List[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase__ ) , tensor_type=lowercase__ ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): return self.tokenizer.batch_decode(*lowercase__ , **lowercase__ ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): return self.tokenizer.decode(*lowercase__ , **lowercase__ ) @property def __UpperCamelCase (self ): snake_case_ : Optional[int] = self.tokenizer.model_input_names snake_case_ : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __UpperCamelCase (self ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowercase__ , ) return self.image_processor_class
48
0
"""simple docstring""" import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 a_ = sys.version_info >= (3, 10) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Any=None ): """simple docstring""" return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE__ ) @dataclass class __lowercase : """simple docstring""" _A : int _A : float _A : str _A : bool @dataclass class __lowercase : """simple docstring""" _A : int = 42 _A : str = field(default="""toto""" , metadata={"""help""": """help message"""}) @dataclass class __lowercase : """simple docstring""" _A : bool = False _A : bool = True _A : Optional[bool] = None class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : int = """titi""" _A : str = """toto""" class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : int = """titi""" _A : Dict = """toto""" _A : Tuple = 42 @dataclass class __lowercase : """simple docstring""" _A : BasicEnum = "toto" def __UpperCamelCase (self ): snake_case_ : int = BasicEnum(self.foo ) @dataclass class __lowercase : """simple docstring""" _A : MixedTypeEnum = "toto" def __UpperCamelCase (self ): snake_case_ : Optional[Any] = MixedTypeEnum(self.foo ) @dataclass class __lowercase : """simple docstring""" _A : Optional[int] = None _A : Optional[float] = field(default=_UpperCAmelCase , metadata={"""help""": """help message"""}) _A : Optional[str] = None _A : Optional[List[str]] = list_field(default=[]) _A : Optional[List[int]] = list_field(default=[]) @dataclass class __lowercase : """simple docstring""" _A : List[int] = list_field(default=[]) _A : List[int] = list_field(default=[1, 2, 3]) _A : List[str] = list_field(default=["""Hallo""", """Bonjour""", """Hello"""]) _A : List[float] = list_field(default=[0.1, 0.2, 0.3]) @dataclass class __lowercase : """simple docstring""" _A : List[int] = field() _A : str = field() _A : BasicEnum = field() def __UpperCamelCase (self ): snake_case_ : List[Any] = BasicEnum(self.required_enum ) @dataclass class __lowercase : """simple docstring""" _A : int _A : "BasicEnum" = field() _A : "Optional[bool]" = None _A : "str" = field(default="""toto""" , metadata={"""help""": """help message"""}) _A : "List[str]" = list_field(default=["""Hallo""", """Bonjour""", """Hello"""]) if is_python_no_less_than_3_10: @dataclass class __lowercase : """simple docstring""" _A : bool = False _A : bool = True _A : bool | None = None @dataclass class __lowercase : """simple docstring""" _A : int | None = None _A : float | None = field(default=_UpperCAmelCase , metadata={"""help""": """help message"""}) _A : str | None = None _A : list[str] | None = list_field(default=[]) _A : list[int] | None = list_field(default=[]) class __lowercase ( unittest.TestCase): """simple docstring""" def __UpperCamelCase (self , lowercase__ , lowercase__ ): self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): snake_case_ : List[str] = {k: v for k, v in vars(lowercase__ ).items() if k != """container"""} snake_case_ : Optional[Any] = {k: v for k, v in vars(lowercase__ ).items() if k != """container"""} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("""choices""" , lowercase__ ) and yy.get("""choices""" , lowercase__ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["""type"""](lowercase__ ) , yy["""type"""](lowercase__ ) ) del xx["type"], yy["type"] self.assertEqual(lowercase__ , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Any = HfArgumentParser(lowercase__ ) snake_case_ : str = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=lowercase__ , required=lowercase__ ) expected.add_argument("""--bar""" , type=lowercase__ , required=lowercase__ ) expected.add_argument("""--baz""" , type=lowercase__ , required=lowercase__ ) expected.add_argument("""--flag""" , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs="""?""" ) self.argparsersEqual(lowercase__ , lowercase__ ) snake_case_ : Union[str, Any] = ["""--foo""", """1""", """--baz""", """quux""", """--bar""", """0.5"""] (snake_case_ ) : Union[str, Any] = parser.parse_args_into_dataclasses(lowercase__ , look_for_args_file=lowercase__ ) self.assertFalse(example.flag ) def __UpperCamelCase (self ): snake_case_ : List[str] = HfArgumentParser(lowercase__ ) snake_case_ : Union[str, Any] = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=42 , type=lowercase__ ) expected.add_argument("""--baz""" , default="""toto""" , type=lowercase__ , help="""help message""" ) self.argparsersEqual(lowercase__ , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs="""?""" ) expected.add_argument("""--baz""" , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs="""?""" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("""--no_baz""" , action="""store_false""" , default=lowercase__ , dest="""baz""" ) expected.add_argument("""--opt""" , type=lowercase__ , default=lowercase__ ) snake_case_ : int = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase__ ) for dataclass_type in dataclass_types: snake_case_ : Any = HfArgumentParser(lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) snake_case_ : int = parser.parse_args([] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) snake_case_ : Optional[int] = parser.parse_args(["""--foo""", """--no_baz"""] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) snake_case_ : Optional[Any] = parser.parse_args(["""--foo""", """--baz"""] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) snake_case_ : Optional[Any] = parser.parse_args(["""--foo""", """True""", """--baz""", """True""", """--opt""", """True"""] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) snake_case_ : Union[str, Any] = parser.parse_args(["""--foo""", """False""", """--baz""", """False""", """--opt""", """False"""] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) def __UpperCamelCase (self ): snake_case_ : Optional[Any] = HfArgumentParser(lowercase__ ) snake_case_ : Any = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=["""titi""", """toto""", 42] , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(lowercase__ , lowercase__ ) snake_case_ : Union[str, Any] = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) snake_case_ : Dict = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) snake_case_ : Optional[Any] = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) snake_case_ : int = parser.parse_args_into_dataclasses(["""--foo""", """titi"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) snake_case_ : Any = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) snake_case_ : List[Any] = parser.parse_args_into_dataclasses(["""--foo""", """42"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def __UpperCamelCase (self ): @dataclass class __lowercase : """simple docstring""" _A : Literal["titi", "toto", 42] = "toto" snake_case_ : List[Any] = HfArgumentParser(lowercase__ ) snake_case_ : Tuple = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=("""titi""", """toto""", 42) , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(lowercase__ , lowercase__ ) snake_case_ : Tuple = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) snake_case_ : Optional[int] = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) snake_case_ : List[str] = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) def __UpperCamelCase (self ): snake_case_ : str = HfArgumentParser(lowercase__ ) snake_case_ : List[str] = argparse.ArgumentParser() expected.add_argument("""--foo_int""" , nargs="""+""" , default=[] , type=lowercase__ ) expected.add_argument("""--bar_int""" , nargs="""+""" , default=[1, 2, 3] , type=lowercase__ ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=lowercase__ ) expected.add_argument("""--foo_float""" , nargs="""+""" , default=[0.1, 0.2, 0.3] , type=lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) snake_case_ : Optional[Any] = parser.parse_args([] ) self.assertEqual( lowercase__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["""Hallo""", """Bonjour""", """Hello"""] , foo_float=[0.1, 0.2, 0.3] ) , ) snake_case_ : Optional[int] = parser.parse_args("""--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7""".split() ) self.assertEqual(lowercase__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["""a""", """b""", """c"""] , foo_float=[0.1, 0.7] ) ) def __UpperCamelCase (self ): snake_case_ : Dict = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=lowercase__ , type=lowercase__ ) expected.add_argument("""--bar""" , default=lowercase__ , type=lowercase__ , help="""help message""" ) expected.add_argument("""--baz""" , default=lowercase__ , type=lowercase__ ) expected.add_argument("""--ces""" , nargs="""+""" , default=[] , type=lowercase__ ) expected.add_argument("""--des""" , nargs="""+""" , default=[] , type=lowercase__ ) snake_case_ : int = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase__ ) for dataclass_type in dataclass_types: snake_case_ : Dict = HfArgumentParser(lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) snake_case_ : int = parser.parse_args([] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , bar=lowercase__ , baz=lowercase__ , ces=[] , des=[] ) ) snake_case_ : Optional[int] = parser.parse_args("""--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3""".split() ) self.assertEqual(lowercase__ , Namespace(foo=12 , bar=3.14 , baz="""42""" , ces=["""a""", """b""", """c"""] , des=[1, 2, 3] ) ) def __UpperCamelCase (self ): snake_case_ : List[Any] = HfArgumentParser(lowercase__ ) snake_case_ : Tuple = argparse.ArgumentParser() expected.add_argument("""--required_list""" , nargs="""+""" , type=lowercase__ , required=lowercase__ ) expected.add_argument("""--required_str""" , type=lowercase__ , required=lowercase__ ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=lowercase__ , ) self.argparsersEqual(lowercase__ , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = HfArgumentParser(lowercase__ ) snake_case_ : List[str] = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=lowercase__ , required=lowercase__ ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=lowercase__ , ) expected.add_argument("""--opt""" , type=lowercase__ , default=lowercase__ ) expected.add_argument("""--baz""" , default="""toto""" , type=lowercase__ , help="""help message""" ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : List[str] = HfArgumentParser(lowercase__ ) snake_case_ : Tuple = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } snake_case_ : List[Any] = parser.parse_dict(lowercase__ )[0] snake_case_ : Optional[int] = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : List[str] = HfArgumentParser(lowercase__ ) snake_case_ : Tuple = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, """extra""": 42, } self.assertRaises(lowercase__ , parser.parse_dict , lowercase__ , allow_extra_keys=lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Optional[int] = HfArgumentParser(lowercase__ ) snake_case_ : Optional[Any] = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ : int = os.path.join(lowercase__ , """temp_json""" ) os.mkdir(lowercase__ ) with open(temp_local_path + """.json""" , """w+""" ) as f: json.dump(lowercase__ , lowercase__ ) snake_case_ : Optional[Any] = parser.parse_yaml_file(Path(temp_local_path + """.json""" ) )[0] snake_case_ : List[Any] = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Optional[Any] = HfArgumentParser(lowercase__ ) snake_case_ : int = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ : Tuple = os.path.join(lowercase__ , """temp_yaml""" ) os.mkdir(lowercase__ ) with open(temp_local_path + """.yaml""" , """w+""" ) as f: yaml.dump(lowercase__ , lowercase__ ) snake_case_ : Any = parser.parse_yaml_file(Path(temp_local_path + """.yaml""" ) )[0] snake_case_ : Optional[int] = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : int = HfArgumentParser(lowercase__ ) self.assertIsNotNone(lowercase__ )
707
"""simple docstring""" import argparse import copy def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" snake_case_ : List[Any] = {} with open(SCREAMING_SNAKE_CASE__ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: snake_case_ : int = [] _list.append([line.split()[1], line.split()[2]] ) snake_case_ : Optional[Any] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: snake_case_ : str = [] _list.append([line.split()[0], line.split()[2]] ) snake_case_ : Optional[Any] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" with open(SCREAMING_SNAKE_CASE__ ) as f: snake_case_ : Optional[Any] = f.read(1 ) snake_case_ : Union[str, Any] = start_node snake_case_ : Dict = [] snake_case_ : Union[str, Any] = start_node snake_case_ : Tuple = 0 while visiting not in first_solution: snake_case_ : int = 1_0_0_0_0 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(SCREAMING_SNAKE_CASE__ ) and k[0] not in first_solution: snake_case_ : Union[str, Any] = k[1] snake_case_ : Any = k[0] first_solution.append(SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = distance_of_first_solution + int(SCREAMING_SNAKE_CASE__ ) snake_case_ : List[str] = best_node first_solution.append(SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[Any] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 snake_case_ : int = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0_0_0_0 ) return first_solution, distance_of_first_solution def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" snake_case_ : Union[str, Any] = [] for n in solution[1:-1]: snake_case_ : str = solution.index(SCREAMING_SNAKE_CASE__ ) for kn in solution[1:-1]: snake_case_ : Tuple = solution.index(SCREAMING_SNAKE_CASE__ ) if n == kn: continue snake_case_ : Optional[Any] = copy.deepcopy(SCREAMING_SNAKE_CASE__ ) snake_case_ : int = kn snake_case_ : Dict = n snake_case_ : Optional[int] = 0 for k in _tmp[:-1]: snake_case_ : Dict = _tmp[_tmp.index(SCREAMING_SNAKE_CASE__ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: snake_case_ : Dict = distance + int(i[1] ) _tmp.append(SCREAMING_SNAKE_CASE__ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) snake_case_ : Optional[Any] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda SCREAMING_SNAKE_CASE__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] ): """simple docstring""" snake_case_ : Dict = 1 snake_case_ : List[Any] = first_solution snake_case_ : List[Any] = [] snake_case_ : Optional[Any] = distance_of_first_solution snake_case_ : Dict = solution while count <= iters: snake_case_ : List[str] = find_neighborhood(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = 0 snake_case_ : List[Any] = neighborhood[index_of_best_solution] snake_case_ : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ ) - 1 snake_case_ : List[str] = False while not found: snake_case_ : Tuple = 0 while i < len(SCREAMING_SNAKE_CASE__ ): if best_solution[i] != solution[i]: snake_case_ : Optional[Any] = best_solution[i] snake_case_ : int = solution[i] break snake_case_ : List[str] = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) snake_case_ : Tuple = True snake_case_ : Dict = best_solution[:-1] snake_case_ : Tuple = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: snake_case_ : Tuple = cost snake_case_ : Union[str, Any] = solution else: snake_case_ : str = index_of_best_solution + 1 snake_case_ : Tuple = neighborhood[index_of_best_solution] if len(SCREAMING_SNAKE_CASE__ ) >= size: tabu_list.pop(0 ) snake_case_ : List[str] = count + 1 return best_solution_ever, best_cost def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any]=None ): """simple docstring""" snake_case_ : Tuple = generate_neighbours(args.File ) snake_case_ , snake_case_ : Optional[Any] = generate_first_solution( args.File , SCREAMING_SNAKE_CASE__ ) snake_case_ , snake_case_ : Dict = tabu_search( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , args.Iterations , args.Size , ) print(f'Best solution: {best_sol}, with total distance: {best_cost}.' ) if __name__ == "__main__": a_ = argparse.ArgumentParser(description='''Tabu Search''') parser.add_argument( '''-f''', '''--File''', type=str, help='''Path to the file containing the data''', required=True, ) parser.add_argument( '''-i''', '''--Iterations''', type=int, help='''How many iterations the algorithm should perform''', required=True, ) parser.add_argument( '''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True ) # Pass the arguments to main method main(parser.parse_args())
48
0
"""simple docstring""" import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class __lowercase ( _UpperCAmelCase): """simple docstring""" def __get__(self , lowercase__ , lowercase__=None ): # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError("""unreadable attribute""" ) snake_case_ : int = """__cached_""" + self.fget.__name__ snake_case_ : str = getattr(lowercase__ , lowercase__ , lowercase__ ) if cached is None: snake_case_ : Any = self.fget(lowercase__ ) setattr(lowercase__ , lowercase__ , lowercase__ ) return cached def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" snake_case_ : List[Any] = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f'invalid truth value {val!r}' ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" if is_torch_fx_proxy(SCREAMING_SNAKE_CASE__ ): return True if is_torch_available(): import torch if isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(SCREAMING_SNAKE_CASE__ , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(SCREAMING_SNAKE_CASE__ , (jnp.ndarray, Tracer) ): return True return isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] ): """simple docstring""" return isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" return _is_numpy(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" import torch return isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] ): """simple docstring""" return False if not is_torch_available() else _is_torch(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" import torch return isinstance(SCREAMING_SNAKE_CASE__ , torch.device ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" return False if not is_torch_available() else _is_torch_device(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] ): """simple docstring""" import torch if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : List[Any] = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: return False return isinstance(SCREAMING_SNAKE_CASE__ , torch.dtype ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" return False if not is_torch_available() else _is_torch_dtype(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" import tensorflow as tf return isinstance(SCREAMING_SNAKE_CASE__ , tf.Tensor ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" return False if not is_tf_available() else _is_tensorflow(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(SCREAMING_SNAKE_CASE__ , """is_symbolic_tensor""" ): return tf.is_symbolic_tensor(SCREAMING_SNAKE_CASE__ ) return type(SCREAMING_SNAKE_CASE__ ) == tf.Tensor def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" return False if not is_tf_available() else _is_tf_symbolic_tensor(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" import jax.numpy as jnp # noqa: F811 return isinstance(SCREAMING_SNAKE_CASE__ , jnp.ndarray ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" return False if not is_flax_available() else _is_jax(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple ): """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE__ , (dict, UserDict) ): return {k: to_py_obj(SCREAMING_SNAKE_CASE__ ) for k, v in obj.items()} elif isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ): return [to_py_obj(SCREAMING_SNAKE_CASE__ ) for o in obj] elif is_tf_tensor(SCREAMING_SNAKE_CASE__ ): return obj.numpy().tolist() elif is_torch_tensor(SCREAMING_SNAKE_CASE__ ): return obj.detach().cpu().tolist() elif is_jax_tensor(SCREAMING_SNAKE_CASE__ ): return np.asarray(SCREAMING_SNAKE_CASE__ ).tolist() elif isinstance(SCREAMING_SNAKE_CASE__ , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple ): """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE__ , (dict, UserDict) ): return {k: to_numpy(SCREAMING_SNAKE_CASE__ ) for k, v in obj.items()} elif isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ): return np.array(SCREAMING_SNAKE_CASE__ ) elif is_tf_tensor(SCREAMING_SNAKE_CASE__ ): return obj.numpy() elif is_torch_tensor(SCREAMING_SNAKE_CASE__ ): return obj.detach().cpu().numpy() elif is_jax_tensor(SCREAMING_SNAKE_CASE__ ): return np.asarray(SCREAMING_SNAKE_CASE__ ) else: return obj class __lowercase ( _UpperCAmelCase): """simple docstring""" def __UpperCamelCase (self ): snake_case_ : str = fields(self ) # Safety and consistency checks if not len(lowercase__ ): raise ValueError(f'{self.__class__.__name__} has no fields.' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f'{self.__class__.__name__} should not have more than one required field.' ) snake_case_ : Union[str, Any] = getattr(self , class_fields[0].name ) snake_case_ : Any = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(lowercase__ ): if isinstance(lowercase__ , lowercase__ ): snake_case_ : Optional[Any] = first_field.items() snake_case_ : int = True else: try: snake_case_ : Any = iter(lowercase__ ) snake_case_ : str = True except TypeError: snake_case_ : List[Any] = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(lowercase__ ): if ( not isinstance(lowercase__ , (list, tuple) ) or not len(lowercase__ ) == 2 or not isinstance(element[0] , lowercase__ ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute snake_case_ : Dict = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f'Cannot set key/value for {element}. It needs to be a tuple (key, value).' ) break setattr(self , element[0] , element[1] ) if element[1] is not None: snake_case_ : Union[str, Any] = element[1] elif first_field is not None: snake_case_ : Tuple = first_field else: for field in class_fields: snake_case_ : Optional[int] = getattr(self , field.name ) if v is not None: snake_case_ : Optional[int] = v def __delitem__(self , *lowercase__ , **lowercase__ ): raise Exception(f'You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.' ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): raise Exception(f'You cannot use ``setdefault`` on a {self.__class__.__name__} instance.' ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): raise Exception(f'You cannot use ``pop`` on a {self.__class__.__name__} instance.' ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): raise Exception(f'You cannot use ``update`` on a {self.__class__.__name__} instance.' ) def __getitem__(self , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): snake_case_ : Union[str, Any] = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__(self , lowercase__ , lowercase__ ): if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(lowercase__ , lowercase__ ) super().__setattr__(lowercase__ , lowercase__ ) def __setitem__(self , lowercase__ , lowercase__ ): # Will raise a KeyException if needed super().__setitem__(lowercase__ , lowercase__ ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(lowercase__ , lowercase__ ) def __UpperCamelCase (self ): return tuple(self[k] for k in self.keys() ) class __lowercase ( _UpperCAmelCase , _UpperCAmelCase): """simple docstring""" @classmethod def __UpperCamelCase (cls , lowercase__ ): raise ValueError( f'{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}' ) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : str = """longest""" _A : Optional[Any] = """max_length""" _A : Optional[int] = """do_not_pad""" class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Any = """pt""" _A : Tuple = """tf""" _A : Any = """np""" _A : Dict = """jax""" class __lowercase : """simple docstring""" def __init__(self , lowercase__ ): snake_case_ : Any = context_managers snake_case_ : int = ExitStack() def __enter__(self ): for context_manager in self.context_managers: self.stack.enter_context(lowercase__ ) def __exit__(self , *lowercase__ , **lowercase__ ): self.stack.__exit__(*lowercase__ , **lowercase__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" snake_case_ : Dict = infer_framework(SCREAMING_SNAKE_CASE__ ) if framework == "tf": snake_case_ : Dict = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": snake_case_ : Union[str, Any] = inspect.signature(model_class.forward ) # PyTorch models else: snake_case_ : List[str] = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" snake_case_ : Optional[int] = model_class.__name__ snake_case_ : Tuple = infer_framework(SCREAMING_SNAKE_CASE__ ) if framework == "tf": snake_case_ : int = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": snake_case_ : List[str] = inspect.signature(model_class.forward ) # PyTorch models else: snake_case_ : List[Any] = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : MutableMapping , SCREAMING_SNAKE_CASE__ : str = "" , SCREAMING_SNAKE_CASE__ : str = "." ): """simple docstring""" def _flatten_dict(SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int]="" , SCREAMING_SNAKE_CASE__ : List[Any]="." ): for k, v in d.items(): snake_case_ : Tuple = str(SCREAMING_SNAKE_CASE__ ) + delimiter + str(SCREAMING_SNAKE_CASE__ ) if parent_key else k if v and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): yield from flatten_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , delimiter=SCREAMING_SNAKE_CASE__ ).items() else: yield key, v return dict(_flatten_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) @contextmanager def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : bool = False ): """simple docstring""" if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ): """simple docstring""" if is_numpy_array(SCREAMING_SNAKE_CASE__ ): return np.transpose(SCREAMING_SNAKE_CASE__ , axes=SCREAMING_SNAKE_CASE__ ) elif is_torch_tensor(SCREAMING_SNAKE_CASE__ ): return array.T if axes is None else array.permute(*SCREAMING_SNAKE_CASE__ ) elif is_tf_tensor(SCREAMING_SNAKE_CASE__ ): import tensorflow as tf return tf.transpose(SCREAMING_SNAKE_CASE__ , perm=SCREAMING_SNAKE_CASE__ ) elif is_jax_tensor(SCREAMING_SNAKE_CASE__ ): return jnp.transpose(SCREAMING_SNAKE_CASE__ , axes=SCREAMING_SNAKE_CASE__ ) else: raise ValueError(f'Type not supported for transpose: {type(SCREAMING_SNAKE_CASE__ )}.' ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" if is_numpy_array(SCREAMING_SNAKE_CASE__ ): return np.reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif is_torch_tensor(SCREAMING_SNAKE_CASE__ ): return array.reshape(*SCREAMING_SNAKE_CASE__ ) elif is_tf_tensor(SCREAMING_SNAKE_CASE__ ): import tensorflow as tf return tf.reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif is_jax_tensor(SCREAMING_SNAKE_CASE__ ): return jnp.reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: raise ValueError(f'Type not supported for reshape: {type(SCREAMING_SNAKE_CASE__ )}.' ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str]=None ): """simple docstring""" if is_numpy_array(SCREAMING_SNAKE_CASE__ ): return np.squeeze(SCREAMING_SNAKE_CASE__ , axis=SCREAMING_SNAKE_CASE__ ) elif is_torch_tensor(SCREAMING_SNAKE_CASE__ ): return array.squeeze() if axis is None else array.squeeze(dim=SCREAMING_SNAKE_CASE__ ) elif is_tf_tensor(SCREAMING_SNAKE_CASE__ ): import tensorflow as tf return tf.squeeze(SCREAMING_SNAKE_CASE__ , axis=SCREAMING_SNAKE_CASE__ ) elif is_jax_tensor(SCREAMING_SNAKE_CASE__ ): return jnp.squeeze(SCREAMING_SNAKE_CASE__ , axis=SCREAMING_SNAKE_CASE__ ) else: raise ValueError(f'Type not supported for squeeze: {type(SCREAMING_SNAKE_CASE__ )}.' ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" if is_numpy_array(SCREAMING_SNAKE_CASE__ ): return np.expand_dims(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif is_torch_tensor(SCREAMING_SNAKE_CASE__ ): return array.unsqueeze(dim=SCREAMING_SNAKE_CASE__ ) elif is_tf_tensor(SCREAMING_SNAKE_CASE__ ): import tensorflow as tf return tf.expand_dims(SCREAMING_SNAKE_CASE__ , axis=SCREAMING_SNAKE_CASE__ ) elif is_jax_tensor(SCREAMING_SNAKE_CASE__ ): return jnp.expand_dims(SCREAMING_SNAKE_CASE__ , axis=SCREAMING_SNAKE_CASE__ ) else: raise ValueError(f'Type not supported for expand_dims: {type(SCREAMING_SNAKE_CASE__ )}.' ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" if is_numpy_array(SCREAMING_SNAKE_CASE__ ): return np.size(SCREAMING_SNAKE_CASE__ ) elif is_torch_tensor(SCREAMING_SNAKE_CASE__ ): return array.numel() elif is_tf_tensor(SCREAMING_SNAKE_CASE__ ): import tensorflow as tf return tf.size(SCREAMING_SNAKE_CASE__ ) elif is_jax_tensor(SCREAMING_SNAKE_CASE__ ): return array.size else: raise ValueError(f'Type not supported for expand_dims: {type(SCREAMING_SNAKE_CASE__ )}.' ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" for key, value in auto_map.items(): if isinstance(SCREAMING_SNAKE_CASE__ , (tuple, list) ): snake_case_ : Dict = [f'{repo_id}--{v}' if (v is not None and """--""" not in v) else v for v in value] elif value is not None and "--" not in value: snake_case_ : Union[str, Any] = f'{repo_id}--{value}' return auto_map def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple ): """simple docstring""" for base_class in inspect.getmro(SCREAMING_SNAKE_CASE__ ): snake_case_ : Dict = base_class.__module__ snake_case_ : int = base_class.__name__ if module.startswith("""tensorflow""" ) or module.startswith("""keras""" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("""torch""" ) or name == "PreTrainedModel": return "pt" elif module.startswith("""flax""" ) or module.startswith("""jax""" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f'Could not infer framework from class {model_class}.' )
708
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings a_ = r''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(_UpperCAmelCase) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """rag""" _A : Optional[Any] = True def __init__(self , lowercase__=None , lowercase__=True , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=" / " , lowercase__=" // " , lowercase__=5 , lowercase__=3_00 , lowercase__=7_68 , lowercase__=8 , lowercase__="wiki_dpr" , lowercase__="train" , lowercase__="compressed" , lowercase__=None , lowercase__=None , lowercase__=False , lowercase__=False , lowercase__=0.0 , lowercase__=True , lowercase__=False , lowercase__=False , lowercase__=False , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__( bos_token_id=lowercase__ , pad_token_id=lowercase__ , eos_token_id=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , prefix=lowercase__ , vocab_size=lowercase__ , **lowercase__ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" snake_case_ : List[Any] = kwargs.pop("""question_encoder""" ) snake_case_ : Tuple = question_encoder_config.pop("""model_type""" ) snake_case_ : List[str] = kwargs.pop("""generator""" ) snake_case_ : List[str] = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig snake_case_ : List[str] = AutoConfig.for_model(lowercase__ , **lowercase__ ) snake_case_ : Tuple = AutoConfig.for_model(lowercase__ , **lowercase__ ) snake_case_ : int = reduce_loss snake_case_ : Optional[int] = label_smoothing snake_case_ : Dict = exclude_bos_score snake_case_ : Union[str, Any] = do_marginalize snake_case_ : Union[str, Any] = title_sep snake_case_ : int = doc_sep snake_case_ : int = n_docs snake_case_ : List[str] = max_combined_length snake_case_ : Tuple = dataset snake_case_ : int = dataset_split snake_case_ : str = index_name snake_case_ : List[str] = retrieval_vector_size snake_case_ : Dict = retrieval_batch_size snake_case_ : str = passages_path snake_case_ : Union[str, Any] = index_path snake_case_ : Tuple = use_dummy_dataset snake_case_ : Dict = output_retrieved snake_case_ : str = do_deduplication snake_case_ : Any = use_cache if self.forced_eos_token_id is None: snake_case_ : Any = getattr(self.generator , """forced_eos_token_id""" , lowercase__ ) @classmethod def __UpperCamelCase (cls , lowercase__ , lowercase__ , **lowercase__ ): return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Optional[Any] = copy.deepcopy(self.__dict__ ) snake_case_ : Any = self.question_encoder.to_dict() snake_case_ : Dict = self.generator.to_dict() snake_case_ : Union[str, Any] = self.__class__.model_type return output
48
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : int=False ): """simple docstring""" snake_case_ : str = """backbone.""" if is_semantic else """""" snake_case_ : str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'{prefix}blocks.{i}.norm1.weight', f'beit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'{prefix}blocks.{i}.norm1.bias', f'beit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (f'{prefix}blocks.{i}.attn.proj.weight', f'beit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (f'{prefix}blocks.{i}.attn.proj.bias', f'beit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'{prefix}blocks.{i}.norm2.weight', f'beit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'{prefix}blocks.{i}.norm2.bias', f'beit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc1.weight', f'beit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc1.bias', f'beit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc2.weight', f'beit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc2.bias', f'beit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ (f'{prefix}cls_token', """beit.embeddings.cls_token"""), (f'{prefix}patch_embed.proj.weight', """beit.embeddings.patch_embeddings.projection.weight"""), (f'{prefix}patch_embed.proj.bias', """beit.embeddings.patch_embeddings.projection.bias"""), (f'{prefix}pos_embed', """beit.embeddings.position_embeddings"""), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("""mask_token""", """beit.embeddings.mask_token"""), ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) else: # layernorm + classification head rename_keys.extend( [ ("""fc_norm.weight""", """beit.pooler.layernorm.weight"""), ("""fc_norm.bias""", """beit.pooler.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : int=False ): """simple docstring""" for i in range(config.num_hidden_layers ): snake_case_ : Union[str, Any] = """backbone.""" if is_semantic else """""" # queries, keys and values snake_case_ : Union[str, Any] = state_dict.pop(f'{prefix}blocks.{i}.attn.qkv.weight' ) snake_case_ : str = state_dict.pop(f'{prefix}blocks.{i}.attn.q_bias' ) snake_case_ : Tuple = state_dict.pop(f'{prefix}blocks.{i}.attn.v_bias' ) snake_case_ : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] snake_case_ : List[Any] = q_bias snake_case_ : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case_ : Optional[int] = in_proj_weight[ -config.hidden_size :, : ] snake_case_ : Any = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained snake_case_ : Dict = state_dict.pop(f'{prefix}blocks.{i}.gamma_1' ) snake_case_ : List[Any] = state_dict.pop(f'{prefix}blocks.{i}.gamma_2' ) snake_case_ : int = gamma_a snake_case_ : Any = gamma_a def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : str = dct.pop(SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = val def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Tuple = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case_ : int = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False ): """simple docstring""" snake_case_ : Optional[Any] = False if """rvlcdip""" in checkpoint_url else True snake_case_ : Optional[int] = BeitConfig(use_absolute_position_embeddings=SCREAMING_SNAKE_CASE__ , use_mask_token=SCREAMING_SNAKE_CASE__ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: snake_case_ : Any = 1_0_2_4 snake_case_ : Optional[Any] = 4_0_9_6 snake_case_ : Any = 2_4 snake_case_ : Optional[int] = 1_6 # labels if "rvlcdip" in checkpoint_url: snake_case_ : List[Any] = 1_6 snake_case_ : Tuple = """huggingface/label-files""" snake_case_ : Tuple = """rvlcdip-id2label.json""" snake_case_ : List[Any] = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type="""dataset""" ) , """r""" ) ) snake_case_ : str = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} snake_case_ : Any = idalabel snake_case_ : Optional[int] = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys snake_case_ : Tuple = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" )["""model"""] snake_case_ : int = create_rename_keys(SCREAMING_SNAKE_CASE__ , has_lm_head=SCREAMING_SNAKE_CASE__ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) read_in_q_k_v(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , has_lm_head=SCREAMING_SNAKE_CASE__ ) # load HuggingFace model snake_case_ : List[Any] = BeitForMaskedImageModeling(SCREAMING_SNAKE_CASE__ ) if has_lm_head else BeitForImageClassification(SCREAMING_SNAKE_CASE__ ) model.eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) # Check outputs on an image snake_case_ : Any = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = prepare_img() snake_case_ : Dict = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) snake_case_ : Optional[int] = encoding["""pixel_values"""] snake_case_ : int = model(SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[int] = outputs.logits # verify logits snake_case_ : Any = [1, 1_6] if """rvlcdip""" in checkpoint_url else [1, 1_9_6, 8_1_9_2] assert logits.shape == torch.Size(SCREAMING_SNAKE_CASE__ ), "Shape of logits not as expected" Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: if has_lm_head: snake_case_ : int = """dit-base""" if """base""" in checkpoint_url else """dit-large""" else: snake_case_ : Tuple = """dit-base-finetuned-rvlcdip""" if """dit-b""" in checkpoint_url else """dit-large-finetuned-rvlcdip""" image_processor.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=SCREAMING_SNAKE_CASE__ , ) model.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=SCREAMING_SNAKE_CASE__ , ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) a_ = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
709
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """upernet""" def __init__(self , lowercase__=None , lowercase__=5_12 , lowercase__=0.02 , lowercase__=[1, 2, 3, 6] , lowercase__=True , lowercase__=0.4 , lowercase__=3_84 , lowercase__=2_56 , lowercase__=1 , lowercase__=False , lowercase__=2_55 , **lowercase__ , ): super().__init__(**lowercase__ ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) snake_case_ : List[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(lowercase__ , lowercase__ ): snake_case_ : Tuple = backbone_config.get("""model_type""" ) snake_case_ : List[str] = CONFIG_MAPPING[backbone_model_type] snake_case_ : List[Any] = config_class.from_dict(lowercase__ ) snake_case_ : List[Any] = backbone_config snake_case_ : Optional[Any] = hidden_size snake_case_ : Any = initializer_range snake_case_ : str = pool_scales snake_case_ : Dict = use_auxiliary_head snake_case_ : str = auxiliary_loss_weight snake_case_ : List[str] = auxiliary_in_channels snake_case_ : Optional[Any] = auxiliary_channels snake_case_ : Any = auxiliary_num_convs snake_case_ : List[Any] = auxiliary_concat_input snake_case_ : List[str] = loss_ignore_index def __UpperCamelCase (self ): snake_case_ : Dict = copy.deepcopy(self.__dict__ ) snake_case_ : Union[str, Any] = self.backbone_config.to_dict() snake_case_ : Any = self.__class__.model_type return output
48
0
"""simple docstring""" import argparse import json import subprocess def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : List[str] = [] snake_case_ : Dict = ( f'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"' """ https://api.github.com/repos/huggingface/transformers/actions/runners""" ) snake_case_ : Union[str, Any] = subprocess.run(SCREAMING_SNAKE_CASE__ , shell=SCREAMING_SNAKE_CASE__ , stdout=subprocess.PIPE ) snake_case_ : Tuple = output.stdout.decode("""utf-8""" ) snake_case_ : Dict = json.loads(SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = status["""runners"""] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(SCREAMING_SNAKE_CASE__ ) # save the result so we can report them on Slack with open("""offline_runners.txt""" , """w""" ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) ) if len(SCREAMING_SNAKE_CASE__ ) > 0: snake_case_ : Optional[int] = """\n""".join([x["""name"""] for x in offline_runners] ) raise ValueError(f'The following runners are offline:\n{failed}' ) if __name__ == "__main__": def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" return values.split(""",""" ) a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--target_runners''', default=None, type=list_str, required=True, help='''Comma-separated list of runners to check status.''', ) parser.add_argument( '''--token''', default=None, type=str, required=True, help='''A token that has actions:read permission.''' ) a_ = parser.parse_args() get_runner_status(args.target_runners, args.token)
710
"""simple docstring""" import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask a_ = logging.getLogger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self , lowercase__=-1 ): # in NER datasets, the last column is usually reserved for NER label snake_case_ : Union[str, Any] = label_idx def __UpperCamelCase (self , lowercase__ , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): snake_case_ : List[str] = mode.value snake_case_ : List[Any] = os.path.join(lowercase__ , f'{mode}.txt' ) snake_case_ : Tuple = 1 snake_case_ : Any = [] with open(lowercase__ , encoding="""utf-8""" ) as f: snake_case_ : str = [] snake_case_ : List[Any] = [] for line in f: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) guid_index += 1 snake_case_ : Optional[Any] = [] snake_case_ : int = [] else: snake_case_ : Optional[Any] = line.split(""" """ ) words.append(splits[0] ) if len(lowercase__ ) > 1: labels.append(splits[self.label_idx].replace("""\n""" , """""" ) ) else: # Examples could have no label for mode = "test" labels.append("""O""" ) if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) return examples def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : str = 0 for line in test_input_reader: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": writer.write(lowercase__ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: snake_case_ : Optional[int] = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n""" writer.write(lowercase__ ) else: logger.warning("""Maximum sequence length exceeded: No prediction for '%s'.""" , line.split()[0] ) def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: snake_case_ : Dict = f.read().splitlines() if "O" not in labels: snake_case_ : List[Any] = ["""O"""] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self ): # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: snake_case_ : Any = f.read().splitlines() if "O" not in labels: snake_case_ : Tuple = ["""O"""] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __lowercase ( _UpperCAmelCase): """simple docstring""" def __UpperCamelCase (self , lowercase__ , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): snake_case_ : List[Any] = mode.value snake_case_ : Optional[int] = os.path.join(lowercase__ , f'{mode}.txt' ) snake_case_ : Tuple = 1 snake_case_ : str = [] with open(lowercase__ , encoding="""utf-8""" ) as f: for sentence in parse_incr(lowercase__ ): snake_case_ : Tuple = [] snake_case_ : Any = [] for token in sentence: words.append(token["""form"""] ) labels.append(token["""upos"""] ) assert len(lowercase__ ) == len(lowercase__ ) if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) guid_index += 1 return examples def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : Dict = 0 for sentence in parse_incr(lowercase__ ): snake_case_ : int = preds_list[example_id] snake_case_ : Dict = """""" for token in sentence: out += f'{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) ' out += "\n" writer.write(lowercase__ ) example_id += 1 def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
48
0
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ = {'''configuration_van''': ['''VAN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VanConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''VAN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VanForImageClassification''', '''VanModel''', '''VanPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
711
"""simple docstring""" import random def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : Union[str, Any] = num - 1 snake_case_ : List[str] = 0 while s % 2 == 0: snake_case_ : str = s // 2 t += 1 for _ in range(5 ): snake_case_ : List[Any] = random.randrange(2 , num - 1 ) snake_case_ : Dict = pow(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if v != 1: snake_case_ : int = 0 while v != (num - 1): if i == t - 1: return False else: snake_case_ : str = i + 1 snake_case_ : int = (v**2) % num return True def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" if num < 2: return False snake_case_ : Dict = [ 2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1, 4_3, 4_7, 5_3, 5_9, 6_1, 6_7, 7_1, 7_3, 7_9, 8_3, 8_9, 9_7, 1_0_1, 1_0_3, 1_0_7, 1_0_9, 1_1_3, 1_2_7, 1_3_1, 1_3_7, 1_3_9, 1_4_9, 1_5_1, 1_5_7, 1_6_3, 1_6_7, 1_7_3, 1_7_9, 1_8_1, 1_9_1, 1_9_3, 1_9_7, 1_9_9, 2_1_1, 2_2_3, 2_2_7, 2_2_9, 2_3_3, 2_3_9, 2_4_1, 2_5_1, 2_5_7, 2_6_3, 2_6_9, 2_7_1, 2_7_7, 2_8_1, 2_8_3, 2_9_3, 3_0_7, 3_1_1, 3_1_3, 3_1_7, 3_3_1, 3_3_7, 3_4_7, 3_4_9, 3_5_3, 3_5_9, 3_6_7, 3_7_3, 3_7_9, 3_8_3, 3_8_9, 3_9_7, 4_0_1, 4_0_9, 4_1_9, 4_2_1, 4_3_1, 4_3_3, 4_3_9, 4_4_3, 4_4_9, 4_5_7, 4_6_1, 4_6_3, 4_6_7, 4_7_9, 4_8_7, 4_9_1, 4_9_9, 5_0_3, 5_0_9, 5_2_1, 5_2_3, 5_4_1, 5_4_7, 5_5_7, 5_6_3, 5_6_9, 5_7_1, 5_7_7, 5_8_7, 5_9_3, 5_9_9, 6_0_1, 6_0_7, 6_1_3, 6_1_7, 6_1_9, 6_3_1, 6_4_1, 6_4_3, 6_4_7, 6_5_3, 6_5_9, 6_6_1, 6_7_3, 6_7_7, 6_8_3, 6_9_1, 7_0_1, 7_0_9, 7_1_9, 7_2_7, 7_3_3, 7_3_9, 7_4_3, 7_5_1, 7_5_7, 7_6_1, 7_6_9, 7_7_3, 7_8_7, 7_9_7, 8_0_9, 8_1_1, 8_2_1, 8_2_3, 8_2_7, 8_2_9, 8_3_9, 8_5_3, 8_5_7, 8_5_9, 8_6_3, 8_7_7, 8_8_1, 8_8_3, 8_8_7, 9_0_7, 9_1_1, 9_1_9, 9_2_9, 9_3_7, 9_4_1, 9_4_7, 9_5_3, 9_6_7, 9_7_1, 9_7_7, 9_8_3, 9_9_1, 9_9_7, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int = 1_0_2_4 ): """simple docstring""" while True: snake_case_ : Tuple = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(SCREAMING_SNAKE_CASE__ ): return num if __name__ == "__main__": a_ = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
48
0
"""simple docstring""" import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" snake_case_ : Dict = AlbertConfig.from_json_file(SCREAMING_SNAKE_CASE__ ) print(f'Building PyTorch model from configuration: {config}' ) snake_case_ : List[str] = AlbertForPreTraining(SCREAMING_SNAKE_CASE__ ) # Load weights from tf checkpoint load_tf_weights_in_albert(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--albert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained ALBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) a_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
712
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType a_ = logging.get_logger(__name__) a_ = { '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Dict = """deberta-v2""" def __init__(self , lowercase__=12_81_00 , lowercase__=15_36 , lowercase__=24 , lowercase__=24 , lowercase__=61_44 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_12 , lowercase__=0 , lowercase__=0.02 , lowercase__=1e-7 , lowercase__=False , lowercase__=-1 , lowercase__=0 , lowercase__=True , lowercase__=None , lowercase__=0 , lowercase__="gelu" , **lowercase__ , ): super().__init__(**lowercase__ ) snake_case_ : Union[str, Any] = hidden_size snake_case_ : str = num_hidden_layers snake_case_ : Tuple = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : Optional[int] = hidden_act snake_case_ : Union[str, Any] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : List[Any] = max_position_embeddings snake_case_ : Union[str, Any] = type_vocab_size snake_case_ : Union[str, Any] = initializer_range snake_case_ : List[Any] = relative_attention snake_case_ : Dict = max_relative_positions snake_case_ : Optional[int] = pad_token_id snake_case_ : List[str] = position_biased_input # Backwards compatibility if type(lowercase__ ) == str: snake_case_ : Union[str, Any] = [x.strip() for x in pos_att_type.lower().split("""|""" )] snake_case_ : Optional[int] = pos_att_type snake_case_ : List[str] = vocab_size snake_case_ : Tuple = layer_norm_eps snake_case_ : List[Any] = kwargs.get("""pooler_hidden_size""" , lowercase__ ) snake_case_ : List[str] = pooler_dropout snake_case_ : int = pooler_hidden_act class __lowercase ( _UpperCAmelCase): """simple docstring""" @property def __UpperCamelCase (self ): if self.task == "multiple-choice": snake_case_ : List[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case_ : int = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def __UpperCamelCase (self ): return 12 def __UpperCamelCase (self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , lowercase__ = 3 , lowercase__ = 40 , lowercase__ = 40 , lowercase__ = None , ): snake_case_ : str = super().generate_dummy_inputs(preprocessor=lowercase__ , framework=lowercase__ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
48
0
"""simple docstring""" import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class __lowercase ( _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : int = CpmAntTokenizer _A : List[Any] = False def __UpperCamelCase (self ): super().setUp() snake_case_ : Optional[int] = [ """<d>""", """</d>""", """<s>""", """</s>""", """</_>""", """<unk>""", """<pad>""", """</n>""", """我""", """是""", """C""", """P""", """M""", """A""", """n""", """t""", ] snake_case_ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) @tooslow def __UpperCamelCase (self ): snake_case_ : Optional[int] = CpmAntTokenizer.from_pretrained("""openbmb/cpm-ant-10b""" ) snake_case_ : str = """今天天气真好!""" snake_case_ : Dict = ["""今天""", """天气""", """真""", """好""", """!"""] snake_case_ : Any = tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : Dict = """今天天气真好!""" snake_case_ : Union[str, Any] = [tokenizer.bos_token] + tokens snake_case_ : Union[str, Any] = [6, 98_02, 1_49_62, 20_82, 8_31, 2_44] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , lowercase__ ) snake_case_ : int = tokenizer.decode(lowercase__ ) self.assertEqual(lowercase__ , lowercase__ )
713
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
48
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : Tuple = int(SCREAMING_SNAKE_CASE__ ) if decimal in (0, 1): # Exit cases for the recursion return str(SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = divmod(SCREAMING_SNAKE_CASE__ , 2 ) return binary_recursive(SCREAMING_SNAKE_CASE__ ) + str(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : Optional[int] = str(SCREAMING_SNAKE_CASE__ ).strip() if not number: raise ValueError("""No input value was provided""" ) snake_case_ : str = """-""" if number.startswith("""-""" ) else """""" snake_case_ : Dict = number.lstrip("""-""" ) if not number.isnumeric(): raise ValueError("""Input value is not an integer""" ) return f'{negative}0b{binary_recursive(int(SCREAMING_SNAKE_CASE__ ) )}' if __name__ == "__main__": from doctest import testmod testmod()
714
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('''fixtures/test_sentencepiece.model''') a_ = {'''target_lang''': '''fi''', '''source_lang''': '''en'''} a_ = '''>>zh<<''' a_ = '''Helsinki-NLP/''' if is_torch_available(): a_ = '''pt''' elif is_tf_available(): a_ = '''tf''' else: a_ = '''jax''' @require_sentencepiece class __lowercase ( _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : str = MarianTokenizer _A : List[str] = False _A : List[str] = True def __UpperCamelCase (self ): super().setUp() snake_case_ : Optional[int] = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] snake_case_ : Any = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) snake_case_ : Any = Path(self.tmpdirname ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) snake_case_ : Optional[Any] = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase (self , **lowercase__ ): return MarianTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def __UpperCamelCase (self , lowercase__ ): return ( "This is a test", "This is a test", ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = """</s>""" snake_case_ : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__ ) , lowercase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__ ) , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(lowercase__ ) , 9 ) def __UpperCamelCase (self ): self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def __UpperCamelCase (self ): snake_case_ : Any = MarianTokenizer.from_pretrained(f'{ORG_NAME}opus-mt-en-de' ) snake_case_ : Tuple = en_de_tokenizer(["""I am a small frog"""] , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) snake_case_ : Dict = [38, 1_21, 14, 6_97, 3_88_48, 0] self.assertListEqual(lowercase__ , batch.input_ids[0] ) snake_case_ : Tuple = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(lowercase__ ) snake_case_ : str = [x.name for x in Path(lowercase__ ).glob("""*""" )] self.assertIn("""source.spm""" , lowercase__ ) MarianTokenizer.from_pretrained(lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = self.get_tokenizer() snake_case_ : List[str] = tok( ["""I am a small frog""" * 10_00, """I am a small frog"""] , padding=lowercase__ , truncation=lowercase__ , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(batch.input_ids.shape , (2, 5_12) ) def __UpperCamelCase (self ): snake_case_ : Tuple = self.get_tokenizer() snake_case_ : Tuple = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=lowercase__ , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def __UpperCamelCase (self ): # fmt: off snake_case_ : str = {"""input_ids""": [[4_34_95, 4_62, 20, 4_21_64, 13_69, 52, 4_64, 1_32, 17_03, 4_92, 13, 74_91, 3_89_99, 6, 8, 4_64, 1_32, 17_03, 4_92, 13, 46_69, 3_78_67, 13, 75_25, 27, 15_93, 9_88, 13, 3_39_72, 70_29, 6, 20, 82_51, 3_83, 2, 2_70, 58_66, 37_88, 2, 23_53, 82_51, 1_23_38, 2, 1_39_58, 3_87, 2, 36_29, 69_53, 1_88, 29_00, 2, 1_39_58, 80_11, 1_15_01, 23, 84_60, 40_73, 3_40_09, 20, 4_35, 1_14_39, 27, 8, 84_60, 40_73, 60_04, 20, 99_88, 3_75, 27, 33, 2_66, 19_45, 10_76, 13_50, 3_78_67, 32_88, 5, 5_77, 10_76, 43_74, 8, 50_82, 5, 2_64_53, 2_57, 5_56, 4_03, 2, 2_42, 1_32, 3_83, 3_16, 4_92, 8, 1_07_67, 6, 3_16, 3_04, 42_39, 3, 0], [1_48, 1_57_22, 19, 18_39, 12, 13_50, 13, 2_23_27, 50_82, 54_18, 4_75_67, 3_59_38, 59, 3_18, 1_95_52, 1_08, 21_83, 54, 1_49_76, 48_35, 32, 5_47, 11_14, 8, 3_15, 24_17, 5, 92, 1_90_88, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00], [36, 63_95, 1_25_70, 3_91_47, 1_15_97, 6, 2_66, 4, 4_54_05, 72_96, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase__ , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def __UpperCamelCase (self ): snake_case_ : Any = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) snake_case_ : Dict = """Tämä on testi""" snake_case_ : List[Any] = """This is a test""" snake_case_ : Optional[int] = [76, 7, 20_47, 2] snake_case_ : List[str] = [69, 12, 11, 9_40, 2] snake_case_ : Any = tokenizer(lowercase__ ).input_ids self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : str = tokenizer(text_target=lowercase__ ).input_ids self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : int = tokenizer.decode(lowercase__ , skip_special_tokens=lowercase__ ) self.assertEqual(lowercase__ , lowercase__ )
48
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int = 5_0 ): """simple docstring""" snake_case_ : Optional[Any] = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'''{solution() = }''')
715
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCAmelCase) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True}) _A : ClassVar[Features] = Features({"""audio""": Audio()}) _A : ClassVar[Features] = Features({"""transcription""": Value("""string""")}) _A : str = "audio" _A : str = "transcription" def __UpperCamelCase (self , lowercase__ ): if self.audio_column not in features: raise ValueError(f'Column {self.audio_column} is not present in features.' ) if not isinstance(features[self.audio_column] , lowercase__ ): raise ValueError(f'Column {self.audio_column} is not an Audio type.' ) snake_case_ : Optional[int] = copy.deepcopy(self ) snake_case_ : Tuple = self.input_schema.copy() snake_case_ : List[str] = features[self.audio_column] snake_case_ : Any = input_schema return task_template @property def __UpperCamelCase (self ): return {self.audio_column: "audio", self.transcription_column: "transcription"}
48
0
"""simple docstring""" import numpy as np class __lowercase : """simple docstring""" def __init__(self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None ): self.set_matricies(red=lowercase__ , green=lowercase__ , blue=lowercase__ , red_edge=lowercase__ , nir=lowercase__ ) def __UpperCamelCase (self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None ): if red is not None: snake_case_ : int = red if green is not None: snake_case_ : List[Any] = green if blue is not None: snake_case_ : Tuple = blue if red_edge is not None: snake_case_ : Any = red_edge if nir is not None: snake_case_ : Optional[int] = nir return True def __UpperCamelCase (self , lowercase__="" , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None ): self.set_matricies(red=lowercase__ , green=lowercase__ , blue=lowercase__ , red_edge=lowercase__ , nir=lowercase__ ) snake_case_ : Union[str, Any] = { """ARVI2""": self.arvaa, """CCCI""": self.ccci, """CVI""": self.cvi, """GLI""": self.gli, """NDVI""": self.ndvi, """BNDVI""": self.bndvi, """redEdgeNDVI""": self.red_edge_ndvi, """GNDVI""": self.gndvi, """GBNDVI""": self.gbndvi, """GRNDVI""": self.grndvi, """RBNDVI""": self.rbndvi, """PNDVI""": self.pndvi, """ATSAVI""": self.atsavi, """BWDRVI""": self.bwdrvi, """CIgreen""": self.ci_green, """CIrededge""": self.ci_rededge, """CI""": self.ci, """CTVI""": self.ctvi, """GDVI""": self.gdvi, """EVI""": self.evi, """GEMI""": self.gemi, """GOSAVI""": self.gosavi, """GSAVI""": self.gsavi, """Hue""": self.hue, """IVI""": self.ivi, """IPVI""": self.ipvi, """I""": self.i, """RVI""": self.rvi, """MRVI""": self.mrvi, """MSAVI""": self.m_savi, """NormG""": self.norm_g, """NormNIR""": self.norm_nir, """NormR""": self.norm_r, """NGRDI""": self.ngrdi, """RI""": self.ri, """S""": self.s, """IF""": self._if, """DVI""": self.dvi, """TVI""": self.tvi, """NDRE""": self.ndre, } try: return funcs[index]() except KeyError: print("""Index not in the list!""" ) return False def __UpperCamelCase (self ): return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def __UpperCamelCase (self ): return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def __UpperCamelCase (self ): return self.nir * (self.red / (self.green**2)) def __UpperCamelCase (self ): return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def __UpperCamelCase (self ): return (self.nir - self.red) / (self.nir + self.red) def __UpperCamelCase (self ): return (self.nir - self.blue) / (self.nir + self.blue) def __UpperCamelCase (self ): return (self.redEdge - self.red) / (self.redEdge + self.red) def __UpperCamelCase (self ): return (self.nir - self.green) / (self.nir + self.green) def __UpperCamelCase (self ): return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def __UpperCamelCase (self ): return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def __UpperCamelCase (self ): return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def __UpperCamelCase (self ): return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def __UpperCamelCase (self , lowercase__=0.08 , lowercase__=1.22 , lowercase__=0.03 ): return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def __UpperCamelCase (self ): return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def __UpperCamelCase (self ): return (self.nir / self.green) - 1 def __UpperCamelCase (self ): return (self.nir / self.redEdge) - 1 def __UpperCamelCase (self ): return (self.red - self.blue) / self.red def __UpperCamelCase (self ): snake_case_ : Tuple = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def __UpperCamelCase (self ): return self.nir - self.green def __UpperCamelCase (self ): return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def __UpperCamelCase (self ): snake_case_ : List[Any] = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def __UpperCamelCase (self , lowercase__=0.16 ): return (self.nir - self.green) / (self.nir + self.green + y) def __UpperCamelCase (self , lowercase__=0.5 ): return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def __UpperCamelCase (self ): return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def __UpperCamelCase (self , lowercase__=None , lowercase__=None ): return (self.nir - b) / (a * self.red) def __UpperCamelCase (self ): return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def __UpperCamelCase (self ): return (self.red + self.green + self.blue) / 30.5 def __UpperCamelCase (self ): return self.nir / self.red def __UpperCamelCase (self ): return (self.rvi() - 1) / (self.rvi() + 1) def __UpperCamelCase (self ): return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def __UpperCamelCase (self ): return self.green / (self.nir + self.red + self.green) def __UpperCamelCase (self ): return self.nir / (self.nir + self.red + self.green) def __UpperCamelCase (self ): return self.red / (self.nir + self.red + self.green) def __UpperCamelCase (self ): return (self.green - self.red) / (self.green + self.red) def __UpperCamelCase (self ): return (self.red - self.green) / (self.red + self.green) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) snake_case_ : Optional[Any] = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def __UpperCamelCase (self ): return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def __UpperCamelCase (self ): return self.nir / self.red def __UpperCamelCase (self ): return (self.ndvi() + 0.5) ** (1 / 2) def __UpperCamelCase (self ): return (self.nir - self.redEdge) / (self.nir + self.redEdge)
716
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : int = ["""pixel_values"""] def __init__(self , lowercase__ = True , lowercase__ = None , lowercase__ = 0.9 , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = True , lowercase__ = None , lowercase__ = 1 / 2_55 , lowercase__ = True , lowercase__ = True , lowercase__ = None , lowercase__ = None , **lowercase__ , ): super().__init__(**lowercase__ ) snake_case_ : Tuple = size if size is not None else {"""shortest_edge""": 2_24} snake_case_ : Union[str, Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) snake_case_ : str = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} snake_case_ : Dict = get_size_dict(lowercase__ , param_name="""crop_size""" ) snake_case_ : Union[str, Any] = do_resize snake_case_ : List[str] = size snake_case_ : str = crop_pct snake_case_ : str = resample snake_case_ : Optional[Any] = do_center_crop snake_case_ : Dict = crop_size snake_case_ : int = do_rescale snake_case_ : Optional[int] = rescale_factor snake_case_ : str = do_normalize snake_case_ : str = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN snake_case_ : List[str] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = None , **lowercase__ , ): snake_case_ : Tuple = get_size_dict(lowercase__ , default_to_square=lowercase__ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f'size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) if crop_pct is not None: if "shortest_edge" in size: snake_case_ : Optional[int] = int(size["""shortest_edge"""] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: snake_case_ : Dict = int(size["""height"""] / crop_pct ) else: snake_case_ : List[str] = (int(size["""height"""] / crop_pct ), int(size["""width"""] / crop_pct )) else: raise ValueError("""Invalid size for resize: {}""".format(lowercase__ ) ) snake_case_ : List[Any] = get_resize_output_image_size(lowercase__ , size=lowercase__ , default_to_square=lowercase__ ) else: if "shortest_edge" in size: snake_case_ : Optional[int] = get_resize_output_image_size(lowercase__ , size=size["""shortest_edge"""] , default_to_square=lowercase__ ) elif "height" in size and "width" in size: snake_case_ : int = (size["""height"""], size["""width"""]) else: raise ValueError("""Invalid size for resize: {}""".format(lowercase__ ) ) return resize(lowercase__ , size=lowercase__ , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): snake_case_ : int = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(f'size must contain \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(lowercase__ , size=(size["""height"""], size["""width"""]) , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return normalize(lowercase__ , mean=lowercase__ , std=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ): snake_case_ : str = do_resize if do_resize is not None else self.do_resize snake_case_ : Any = crop_pct if crop_pct is not None else self.crop_pct snake_case_ : List[Any] = resample if resample is not None else self.resample snake_case_ : str = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : str = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : str = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : List[Any] = image_mean if image_mean is not None else self.image_mean snake_case_ : int = image_std if image_std is not None else self.image_std snake_case_ : List[Any] = size if size is not None else self.size snake_case_ : Optional[Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) snake_case_ : List[Any] = crop_size if crop_size is not None else self.crop_size snake_case_ : int = get_size_dict(lowercase__ , param_name="""crop_size""" ) snake_case_ : List[str] = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_pct is None: raise ValueError("""Crop_pct must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case_ : int = [to_numpy_array(lowercase__ ) for image in images] if do_resize: snake_case_ : str = [self.resize(image=lowercase__ , size=lowercase__ , crop_pct=lowercase__ , resample=lowercase__ ) for image in images] if do_center_crop: snake_case_ : Optional[int] = [self.center_crop(image=lowercase__ , size=lowercase__ ) for image in images] if do_rescale: snake_case_ : List[Any] = [self.rescale(image=lowercase__ , scale=lowercase__ ) for image in images] if do_normalize: snake_case_ : Optional[Any] = [self.normalize(image=lowercase__ , mean=lowercase__ , std=lowercase__ ) for image in images] snake_case_ : List[Any] = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] snake_case_ : Dict = {"""pixel_values""": images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
48
0
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py a_ = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. a_ = importlib.util.spec_from_file_location( '''transformers''', os.path.join(PATH_TO_TRANSFORMERS, '''__init__.py'''), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) a_ = spec.loader.load_module() a_ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` a_ = re.compile('''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') a_ = { '''CLIPConfigMixin''', '''DecisionTransformerConfigMixin''', '''EncoderDecoderConfigMixin''', '''RagConfigMixin''', '''SpeechEncoderDecoderConfigMixin''', '''VisionEncoderDecoderConfigMixin''', '''VisionTextDualEncoderConfigMixin''', } def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Optional[Any] = [] for config_class in list(CONFIG_MAPPING.values() ): snake_case_ : List[str] = False # source code of `config_class` snake_case_ : Dict = inspect.getsource(SCREAMING_SNAKE_CASE__ ) snake_case_ : Dict = _re_checkpoint.findall(SCREAMING_SNAKE_CASE__ ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` snake_case_ : int = checkpoint # verify the checkpoint name corresponds to the checkpoint link snake_case_ : List[Any] = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: snake_case_ : Optional[Any] = True break snake_case_ : int = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: snake_case_ : str = """\n""".join(sorted(SCREAMING_SNAKE_CASE__ ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
717
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: a_ = None a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} a_ = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } a_ = { '''facebook/mbart-large-en-ro''': 1024, '''facebook/mbart-large-cc25''': 1024, } # fmt: off a_ = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Dict = VOCAB_FILES_NAMES _A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _A : str = ["""input_ids""", """attention_mask"""] _A : Tuple = MBartTokenizer _A : List[int] = [] _A : List[int] = [] def __init__(self , lowercase__=None , lowercase__=None , lowercase__="<s>" , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<mask>" , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ , ): # Mask token behave like a normal word, i.e. include the space before it snake_case_ : int = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token super().__init__( vocab_file=lowercase__ , tokenizer_file=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , unk_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , src_lang=lowercase__ , tgt_lang=lowercase__ , additional_special_tokens=lowercase__ , **lowercase__ , ) snake_case_ : Dict = vocab_file snake_case_ : Optional[int] = False if not self.vocab_file else True snake_case_ : Optional[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) snake_case_ : Any = { lang_code: self.convert_tokens_to_ids(lowercase__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } snake_case_ : Tuple = src_lang if src_lang is not None else """en_XX""" snake_case_ : Tuple = self.convert_tokens_to_ids(self._src_lang ) snake_case_ : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __UpperCamelCase (self ): return self._src_lang @src_lang.setter def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): snake_case_ : List[Any] = [self.sep_token_id] snake_case_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , **lowercase__ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) snake_case_ : int = src_lang snake_case_ : List[str] = self(lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , **lowercase__ ) snake_case_ : List[str] = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Union[str, Any] = tgt_lang_id return inputs def __UpperCamelCase (self , lowercase__ , lowercase__ = "en_XX" , lowercase__ = None , lowercase__ = "ro_RO" , **lowercase__ , ): snake_case_ : List[str] = src_lang snake_case_ : int = tgt_lang return super().prepare_seqaseq_batch(lowercase__ , lowercase__ , **lowercase__ ) def __UpperCamelCase (self ): return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCamelCase (self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Tuple = [] snake_case_ : List[Any] = [self.eos_token_id, self.cur_lang_code] snake_case_ : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Optional[int] = [] snake_case_ : Optional[Any] = [self.eos_token_id, self.cur_lang_code] snake_case_ : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ : int = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowercase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory.' ) return snake_case_ : List[str] = os.path.join( lowercase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ): copyfile(self.vocab_file , lowercase__ ) return (out_vocab_file,)
48
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: a_ = None a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} a_ = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } a_ = { '''facebook/mbart-large-en-ro''': 1024, '''facebook/mbart-large-cc25''': 1024, } # fmt: off a_ = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Dict = VOCAB_FILES_NAMES _A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _A : str = ["""input_ids""", """attention_mask"""] _A : Tuple = MBartTokenizer _A : List[int] = [] _A : List[int] = [] def __init__(self , lowercase__=None , lowercase__=None , lowercase__="<s>" , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<mask>" , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ , ): # Mask token behave like a normal word, i.e. include the space before it snake_case_ : int = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token super().__init__( vocab_file=lowercase__ , tokenizer_file=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , unk_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , src_lang=lowercase__ , tgt_lang=lowercase__ , additional_special_tokens=lowercase__ , **lowercase__ , ) snake_case_ : Dict = vocab_file snake_case_ : Optional[int] = False if not self.vocab_file else True snake_case_ : Optional[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) snake_case_ : Any = { lang_code: self.convert_tokens_to_ids(lowercase__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } snake_case_ : Tuple = src_lang if src_lang is not None else """en_XX""" snake_case_ : Tuple = self.convert_tokens_to_ids(self._src_lang ) snake_case_ : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __UpperCamelCase (self ): return self._src_lang @src_lang.setter def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): snake_case_ : List[Any] = [self.sep_token_id] snake_case_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , **lowercase__ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) snake_case_ : int = src_lang snake_case_ : List[str] = self(lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , **lowercase__ ) snake_case_ : List[str] = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Union[str, Any] = tgt_lang_id return inputs def __UpperCamelCase (self , lowercase__ , lowercase__ = "en_XX" , lowercase__ = None , lowercase__ = "ro_RO" , **lowercase__ , ): snake_case_ : List[str] = src_lang snake_case_ : int = tgt_lang return super().prepare_seqaseq_batch(lowercase__ , lowercase__ , **lowercase__ ) def __UpperCamelCase (self ): return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCamelCase (self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Tuple = [] snake_case_ : List[Any] = [self.eos_token_id, self.cur_lang_code] snake_case_ : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Optional[int] = [] snake_case_ : Optional[Any] = [self.eos_token_id, self.cur_lang_code] snake_case_ : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ : int = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowercase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory.' ) return snake_case_ : List[str] = os.path.join( lowercase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ): copyfile(self.vocab_file , lowercase__ ) return (out_vocab_file,)
718
"""simple docstring""" import argparse import hashlib # hashlib is only used inside the Test class import struct class __lowercase : """simple docstring""" def __init__(self , lowercase__ ): snake_case_ : Union[str, Any] = data snake_case_ : List[str] = [0X6_7_4_5_2_3_0_1, 0Xe_f_c_d_a_b_8_9, 0X9_8_b_a_d_c_f_e, 0X1_0_3_2_5_4_7_6, 0Xc_3_d_2_e_1_f_0] @staticmethod def __UpperCamelCase (lowercase__ , lowercase__ ): return ((n << b) | (n >> (32 - b))) & 0Xf_f_f_f_f_f_f_f def __UpperCamelCase (self ): snake_case_ : Any = B"""\x80""" + B"""\x00""" * (63 - (len(self.data ) + 8) % 64) snake_case_ : Tuple = self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def __UpperCamelCase (self ): return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = list(struct.unpack(""">16L""" , lowercase__ ) ) + [0] * 64 for i in range(16 , 80 ): snake_case_ : Dict = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def __UpperCamelCase (self ): snake_case_ : List[Any] = self.padding() snake_case_ : Any = self.split_blocks() for block in self.blocks: snake_case_ : Any = self.expand_block(lowercase__ ) snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = self.h for i in range(0 , 80 ): if 0 <= i < 20: snake_case_ : Optional[Any] = (b & c) | ((~b) & d) snake_case_ : List[str] = 0X5_a_8_2_7_9_9_9 elif 20 <= i < 40: snake_case_ : Union[str, Any] = b ^ c ^ d snake_case_ : Tuple = 0X6_e_d_9_e_b_a_1 elif 40 <= i < 60: snake_case_ : str = (b & c) | (b & d) | (c & d) snake_case_ : List[str] = 0X8_f_1_b_b_c_d_c elif 60 <= i < 80: snake_case_ : Tuple = b ^ c ^ d snake_case_ : str = 0Xc_a_6_2_c_1_d_6 snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Optional[Any] = ( self.rotate(lowercase__ , 5 ) + f + e + k + expanded_block[i] & 0Xf_f_f_f_f_f_f_f, a, self.rotate(lowercase__ , 30 ), c, d, ) snake_case_ : Any = ( self.h[0] + a & 0Xf_f_f_f_f_f_f_f, self.h[1] + b & 0Xf_f_f_f_f_f_f_f, self.h[2] + c & 0Xf_f_f_f_f_f_f_f, self.h[3] + d & 0Xf_f_f_f_f_f_f_f, self.h[4] + e & 0Xf_f_f_f_f_f_f_f, ) return ("{:08x}" * 5).format(*self.h ) def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Union[str, Any] = b"""Test String""" assert SHAaHash(SCREAMING_SNAKE_CASE__ ).final_hash() == hashlib.shaa(SCREAMING_SNAKE_CASE__ ).hexdigest() # noqa: S324 def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : int = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument("""--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) snake_case_ : Optional[int] = parser.parse_args() snake_case_ : Optional[int] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: snake_case_ : List[str] = f.read() else: snake_case_ : Dict = bytes(SCREAMING_SNAKE_CASE__ , """utf-8""" ) print(SHAaHash(SCREAMING_SNAKE_CASE__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
48
0
"""simple docstring""" from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = True , lowercase__ = None , lowercase__ = False , lowercase__ = None , lowercase__ = True , lowercase__ = "arrow" , **lowercase__ , ): super().__init__( split=lowercase__ , features=lowercase__ , cache_dir=lowercase__ , keep_in_memory=lowercase__ , streaming=lowercase__ , **lowercase__ , ) snake_case_ : Dict = load_from_cache_file snake_case_ : List[str] = file_format snake_case_ : Optional[Any] = Spark( df=lowercase__ , features=lowercase__ , cache_dir=lowercase__ , working_dir=lowercase__ , **lowercase__ , ) def __UpperCamelCase (self ): if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) snake_case_ : List[Any] = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=lowercase__ , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
719
"""simple docstring""" from manim import * class __lowercase ( _UpperCAmelCase): """simple docstring""" def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = Rectangle(height=0.5 , width=0.5 ) snake_case_ : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) snake_case_ : Optional[Any] = [mem.copy() for i in range(6 )] snake_case_ : str = [mem.copy() for i in range(6 )] snake_case_ : str = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : Any = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[str] = VGroup(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[Any] = Text("""CPU""" , font_size=24 ) snake_case_ : Tuple = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowercase__ ) snake_case_ : List[Any] = [mem.copy() for i in range(4 )] snake_case_ : Tuple = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[str] = Text("""GPU""" , font_size=24 ) snake_case_ : Any = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) gpu.move_to([-1, -1, 0] ) self.add(lowercase__ ) snake_case_ : Optional[Any] = [mem.copy() for i in range(6 )] snake_case_ : List[Any] = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : Dict = Text("""Model""" , font_size=24 ) snake_case_ : int = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) model.move_to([3, -1.0, 0] ) self.add(lowercase__ ) snake_case_ : Dict = [] for i, rect in enumerate(lowercase__ ): rect.set_stroke(lowercase__ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) snake_case_ : List[str] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowercase__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowercase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase__ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase__ , buff=0.0 ) self.add(lowercase__ ) cpu_targs.append(lowercase__ ) snake_case_ : List[str] = [mem.copy() for i in range(6 )] snake_case_ : List[str] = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : str = Text("""Loaded Checkpoint""" , font_size=24 ) snake_case_ : Any = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , aligned_edge=lowercase__ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) snake_case_ : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) snake_case_ : Union[str, Any] = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowercase__ , lowercase__ ) snake_case_ : List[Any] = MarkupText( f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(lowercase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) snake_case_ : List[Any] = MarkupText( f'Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowercase__ ) , Write(lowercase__ ) ) self.play(Write(lowercase__ , run_time=1 ) , Create(lowercase__ , run_time=1 ) ) snake_case_ : Optional[int] = [] snake_case_ : List[str] = [] for i, rect in enumerate(lowercase__ ): snake_case_ : Optional[Any] = fill.copy().set_fill(lowercase__ , opacity=0.7 ) target.move_to(lowercase__ ) first_animations.append(GrowFromCenter(lowercase__ , run_time=1 ) ) snake_case_ : List[Any] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(lowercase__ , run_time=1.5 ) ) self.play(*lowercase__ ) self.play(*lowercase__ ) self.wait()
48
0
"""simple docstring""" from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput a_ = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowercase ( _UpperCAmelCase , _UpperCAmelCase): """simple docstring""" @register_to_config def __init__(self , lowercase__ , lowercase__ = None , lowercase__ = None ): super().__init__() snake_case_ : Tuple = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" snake_case_ : Any = torch.zeros(lowercase__ , lowercase__ ) else: snake_case_ : Optional[int] = None snake_case_ : Dict = torch.nn.Parameter(lowercase__ ) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : VQModel _A : CLIPTextModel _A : CLIPTokenizer _A : TransformeraDModel _A : LearnedClassifierFreeSamplingEmbeddings _A : VQDiffusionScheduler def __init__(self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): super().__init__() self.register_modules( vqvae=lowercase__ , transformer=lowercase__ , text_encoder=lowercase__ , tokenizer=lowercase__ , scheduler=lowercase__ , learned_classifier_free_sampling_embeddings=lowercase__ , ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : Dict = len(lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else 1 # get prompt text embeddings snake_case_ : Union[str, Any] = self.tokenizer( lowercase__ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) snake_case_ : Any = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: snake_case_ : Optional[int] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f' {self.tokenizer.model_max_length} tokens: {removed_text}' ) snake_case_ : Union[str, Any] = text_input_ids[:, : self.tokenizer.model_max_length] snake_case_ : int = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 snake_case_ : List[str] = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=lowercase__ ) # duplicate text embeddings for each generation per prompt snake_case_ : Tuple = prompt_embeds.repeat_interleave(lowercase__ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: snake_case_ : Any = self.learned_classifier_free_sampling_embeddings.embeddings snake_case_ : Union[str, Any] = negative_prompt_embeds.unsqueeze(0 ).repeat(lowercase__ , 1 , 1 ) else: snake_case_ : Tuple = [""""""] * batch_size snake_case_ : Dict = text_input_ids.shape[-1] snake_case_ : Tuple = self.tokenizer( lowercase__ , padding="""max_length""" , max_length=lowercase__ , truncation=lowercase__ , return_tensors="""pt""" , ) snake_case_ : Optional[int] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings snake_case_ : int = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=lowercase__ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method snake_case_ : Optional[Any] = negative_prompt_embeds.shape[1] snake_case_ : Optional[int] = negative_prompt_embeds.repeat(1 , lowercase__ , 1 ) snake_case_ : int = negative_prompt_embeds.view(batch_size * num_images_per_prompt , lowercase__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes snake_case_ : Optional[Any] = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__(self , lowercase__ , lowercase__ = 1_00 , lowercase__ = 5.0 , lowercase__ = 1.0 , lowercase__ = 1 , lowercase__ = None , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , lowercase__ = None , lowercase__ = 1 , ): if isinstance(lowercase__ , lowercase__ ): snake_case_ : List[Any] = 1 elif isinstance(lowercase__ , lowercase__ ): snake_case_ : Optional[int] = len(lowercase__ ) else: raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(lowercase__ )}' ) snake_case_ : int = batch_size * num_images_per_prompt snake_case_ : Tuple = guidance_scale > 1.0 snake_case_ : List[Any] = self._encode_prompt(lowercase__ , lowercase__ , lowercase__ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowercase__ , lowercase__ ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(lowercase__ )}.' ) # get the initial completely masked latents unless the user supplied it snake_case_ : int = (batch_size, self.transformer.num_latent_pixels) if latents is None: snake_case_ : Dict = self.transformer.num_vector_embeds - 1 snake_case_ : Optional[int] = torch.full(lowercase__ , lowercase__ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( """Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,""" f' {self.transformer.num_vector_embeds - 1} (inclusive).' ) snake_case_ : Tuple = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(lowercase__ , device=self.device ) snake_case_ : Optional[Any] = self.scheduler.timesteps.to(self.device ) snake_case_ : List[str] = latents for i, t in enumerate(self.progress_bar(lowercase__ ) ): # expand the sample if we are doing classifier free guidance snake_case_ : Any = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` snake_case_ : int = self.transformer(lowercase__ , encoder_hidden_states=lowercase__ , timestep=lowercase__ ).sample if do_classifier_free_guidance: snake_case_ : Union[str, Any] = model_output.chunk(2 ) snake_case_ : Optional[int] = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(lowercase__ , dim=1 , keepdim=lowercase__ ) snake_case_ : str = self.truncate(lowercase__ , lowercase__ ) # remove `log(0)`'s (`-inf`s) snake_case_ : Union[str, Any] = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 snake_case_ : Dict = self.scheduler.step(lowercase__ , timestep=lowercase__ , sample=lowercase__ , generator=lowercase__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowercase__ , lowercase__ , lowercase__ ) snake_case_ : Dict = self.vqvae.config.vq_embed_dim snake_case_ : Optional[int] = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) snake_case_ : List[Any] = self.vqvae.quantize.get_codebook_entry(lowercase__ , shape=lowercase__ ) snake_case_ : Dict = self.vqvae.decode(lowercase__ , force_not_quantize=lowercase__ ).sample snake_case_ : Union[str, Any] = (image / 2 + 0.5).clamp(0 , 1 ) snake_case_ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case_ : Tuple = self.numpy_to_pil(lowercase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : List[Any] = torch.sort(lowercase__ , 1 , descending=lowercase__ ) snake_case_ : Optional[Any] = torch.exp(lowercase__ ) snake_case_ : int = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out snake_case_ : Optional[int] = torch.full_like(keep_mask[:, 0:1, :] , lowercase__ ) snake_case_ : int = torch.cat((all_true, keep_mask) , dim=1 ) snake_case_ : List[Any] = keep_mask[:, :-1, :] snake_case_ : List[Any] = keep_mask.gather(1 , indices.argsort(1 ) ) snake_case_ : Optional[int] = log_p_x_0.clone() snake_case_ : Dict = -torch.inf # -inf = log(0) return rv
720
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" snake_case_ : Union[str, Any] = 0 if start < end: snake_case_ : Union[str, Any] = randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = a[end] snake_case_ : Dict = a[pivot] snake_case_ : Any = temp snake_case_ , snake_case_ : Dict = _in_place_partition(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , p - 1 ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE__ , p + 1 , SCREAMING_SNAKE_CASE__ ) return count def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" snake_case_ : Tuple = 0 snake_case_ : List[Any] = randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : Dict = a[end] snake_case_ : List[Any] = a[pivot] snake_case_ : Optional[Any] = temp snake_case_ : List[str] = start - 1 for index in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value snake_case_ : Any = new_pivot_index + 1 snake_case_ : Tuple = a[new_pivot_index] snake_case_ : Optional[int] = a[index] snake_case_ : Tuple = temp snake_case_ : Union[str, Any] = a[new_pivot_index + 1] snake_case_ : Union[str, Any] = a[end] snake_case_ : Union[str, Any] = temp return new_pivot_index + 1, count a_ = TemporaryFile() a_ = 100 # 1000 elements are to be sorted a_ , a_ = 0, 1 # mean and standard deviation a_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array a_ = np.load(outfile) a_ = len(M) - 1 a_ = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
48
0
"""simple docstring""" from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance a_ = 6378137.0 a_ = 6356752.314245 a_ = 6378137 def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ): """simple docstring""" snake_case_ : Dict = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude snake_case_ : Union[str, Any] = atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE__ ) ) ) snake_case_ : List[Any] = atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE__ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius snake_case_ : Union[str, Any] = haversine_distance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) / EQUATORIAL_RADIUS # Intermediate P and Q values snake_case_ : Union[str, Any] = (b_lata + b_lata) / 2 snake_case_ : Optional[int] = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) snake_case_ : int = (sin(SCREAMING_SNAKE_CASE__ ) ** 2) * (cos(SCREAMING_SNAKE_CASE__ ) ** 2) snake_case_ : Optional[Any] = cos(sigma / 2 ) ** 2 snake_case_ : Optional[Any] = (sigma - sin(SCREAMING_SNAKE_CASE__ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) snake_case_ : Optional[int] = (cos(SCREAMING_SNAKE_CASE__ ) ** 2) * (sin(SCREAMING_SNAKE_CASE__ ) ** 2) snake_case_ : List[str] = sin(sigma / 2 ) ** 2 snake_case_ : Optional[Any] = (sigma + sin(SCREAMING_SNAKE_CASE__ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
721
"""simple docstring""" import random def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : bool = False ): """simple docstring""" snake_case_ : dict = {i: [] for i in range(SCREAMING_SNAKE_CASE__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(SCREAMING_SNAKE_CASE__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(i + 1 , SCREAMING_SNAKE_CASE__ ): if random.random() < probability: graph[i].append(SCREAMING_SNAKE_CASE__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(SCREAMING_SNAKE_CASE__ ) return graph def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" return { i: [j for j in range(SCREAMING_SNAKE_CASE__ ) if i != j] for i in range(SCREAMING_SNAKE_CASE__ ) } if __name__ == "__main__": import doctest doctest.testmod()
48
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowercase ( _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : List[str] = KandinskyInpaintPipeline _A : List[str] = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] _A : List[Any] = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] _A : Union[str, Any] = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] _A : Tuple = False @property def __UpperCamelCase (self ): return 32 @property def __UpperCamelCase (self ): return 32 @property def __UpperCamelCase (self ): return self.time_input_dim @property def __UpperCamelCase (self ): return self.time_input_dim * 4 @property def __UpperCamelCase (self ): return 1_00 @property def __UpperCamelCase (self ): snake_case_ : Optional[int] = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def __UpperCamelCase (self ): torch.manual_seed(0 ) snake_case_ : Union[str, Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) snake_case_ : List[Any] = MultilingualCLIP(lowercase__ ) snake_case_ : Tuple = text_encoder.eval() return text_encoder @property def __UpperCamelCase (self ): torch.manual_seed(0 ) snake_case_ : Dict = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } snake_case_ : Union[str, Any] = UNetaDConditionModel(**lowercase__ ) return model @property def __UpperCamelCase (self ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __UpperCamelCase (self ): torch.manual_seed(0 ) snake_case_ : int = VQModel(**self.dummy_movq_kwargs ) return model def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = self.dummy_text_encoder snake_case_ : Tuple = self.dummy_tokenizer snake_case_ : Optional[Any] = self.dummy_unet snake_case_ : int = self.dummy_movq snake_case_ : Optional[int] = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.00085 , beta_end=0.012 , clip_sample=lowercase__ , set_alpha_to_one=lowercase__ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=lowercase__ , ) snake_case_ : Any = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def __UpperCamelCase (self , lowercase__ , lowercase__=0 ): snake_case_ : Any = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowercase__ ) ).to(lowercase__ ) snake_case_ : Optional[int] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(lowercase__ ) # create init_image snake_case_ : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowercase__ ) ).to(lowercase__ ) snake_case_ : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case_ : Dict = Image.fromarray(np.uinta(lowercase__ ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create mask snake_case_ : Any = np.ones((64, 64) , dtype=np.floataa ) snake_case_ : List[Any] = 0 if str(lowercase__ ).startswith("""mps""" ): snake_case_ : Any = torch.manual_seed(lowercase__ ) else: snake_case_ : Dict = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) snake_case_ : Union[str, Any] = { """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = """cpu""" snake_case_ : Dict = self.get_dummy_components() snake_case_ : Any = self.pipeline_class(**lowercase__ ) snake_case_ : Any = pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) snake_case_ : Union[str, Any] = pipe(**self.get_dummy_inputs(lowercase__ ) ) snake_case_ : List[Any] = output.images snake_case_ : Any = pipe( **self.get_dummy_inputs(lowercase__ ) , return_dict=lowercase__ , )[0] snake_case_ : List[str] = image[0, -3:, -3:, -1] snake_case_ : List[str] = image_from_tuple[0, -3:, -3:, -1] print(f'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) snake_case_ : Dict = np.array( [0.8326919, 0.73790467, 0.20918581, 0.9309612, 0.5511791, 0.43713328, 0.5513321, 0.49922934, 0.59497786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def __UpperCamelCase (self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __lowercase ( unittest.TestCase): """simple docstring""" def __UpperCamelCase (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase (self ): snake_case_ : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) snake_case_ : Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) snake_case_ : int = np.ones((7_68, 7_68) , dtype=np.floataa ) snake_case_ : int = 0 snake_case_ : str = """a hat""" snake_case_ : int = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(lowercase__ ) snake_case_ : Union[str, Any] = KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) snake_case_ : List[str] = pipeline.to(lowercase__ ) pipeline.set_progress_bar_config(disable=lowercase__ ) snake_case_ : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case_ : Union[str, Any] = pipe_prior( lowercase__ , generator=lowercase__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() snake_case_ : Optional[int] = pipeline( lowercase__ , image=lowercase__ , mask_image=lowercase__ , image_embeds=lowercase__ , negative_image_embeds=lowercase__ , generator=lowercase__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="""np""" , ) snake_case_ : Union[str, Any] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowercase__ , lowercase__ )
700
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json''' ), } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """dpr""" def __init__(self , lowercase__=3_05_22 , lowercase__=7_68 , lowercase__=12 , lowercase__=12 , lowercase__=30_72 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_12 , lowercase__=2 , lowercase__=0.02 , lowercase__=1e-12 , lowercase__=0 , lowercase__="absolute" , lowercase__ = 0 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , **lowercase__ ) snake_case_ : List[Any] = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : Tuple = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : int = hidden_act snake_case_ : Dict = intermediate_size snake_case_ : int = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : str = max_position_embeddings snake_case_ : List[str] = type_vocab_size snake_case_ : List[str] = initializer_range snake_case_ : Optional[int] = layer_norm_eps snake_case_ : Union[str, Any] = projection_dim snake_case_ : str = position_embedding_type
48
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : list[int] ): """simple docstring""" snake_case_ : Dict = len(SCREAMING_SNAKE_CASE__ ) for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(i + 1 , SCREAMING_SNAKE_CASE__ ): if numbers[j] < numbers[i]: snake_case_ : List[Any] = numbers[j], numbers[i] return numbers if __name__ == "__main__": a_ = input('''Enter numbers separated by a comma:\n''').strip() a_ = [int(item) for item in user_input.split(''',''')] print(exchange_sort(unsorted))
701
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm a_ = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex a_ = 10 a_ = 256 def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" if len(SCREAMING_SNAKE_CASE__ ) < MIN_NUM_TOKENS: return None snake_case_ : Union[str, Any] = MinHash(num_perm=SCREAMING_SNAKE_CASE__ ) for token in set(SCREAMING_SNAKE_CASE__ ): min_hash.update(token.encode() ) return min_hash def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" return {t for t in NON_ALPHA.split(SCREAMING_SNAKE_CASE__ ) if len(t.strip() ) > 0} class __lowercase : """simple docstring""" def __init__(self , *, lowercase__ = 0.85 , ): snake_case_ : Tuple = duplication_jaccard_threshold snake_case_ : Optional[Any] = NUM_PERM snake_case_ : Tuple = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) snake_case_ : List[Any] = defaultdict(lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : int = self._index.query(lowercase__ ) if code_key in self._index.keys: print(f'Duplicate key {code_key}' ) return self._index.insert(lowercase__ , lowercase__ ) if len(lowercase__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowercase__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(lowercase__ ) def __UpperCamelCase (self ): snake_case_ : str = [] for base, duplicates in self._duplicate_clusters.items(): snake_case_ : Optional[Any] = [base] + list(lowercase__ ) # reformat the cluster to be a list of dict snake_case_ : Any = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(lowercase__ ) return duplicate_clusters def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = self.get_duplicate_clusters() with open(lowercase__ , """w""" ) as f: json.dump(lowercase__ , lowercase__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ , snake_case_ : str = element snake_case_ : Tuple = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] ): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(SCREAMING_SNAKE_CASE__ , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ): if data is not None: yield data def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] , SCREAMING_SNAKE_CASE__ : float ): """simple docstring""" snake_case_ : int = DuplicationIndex(duplication_jaccard_threshold=SCREAMING_SNAKE_CASE__ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(SCREAMING_SNAKE_CASE__ ) ) , max_queue_size=1_0_0 ) ): di.add(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : int = get_tokens(SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = get_tokens(SCREAMING_SNAKE_CASE__ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) a_ = None def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Optional[Any] = [] for elementa in cluster: snake_case_ : Union[str, Any] = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: snake_case_ : Any = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) >= jaccard_threshold: elementa["copies"] += 1 break else: snake_case_ : Union[str, Any] = 1 extremes.append(SCREAMING_SNAKE_CASE__ ) return extremes def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" global _shared_dataset snake_case_ : str = dataset snake_case_ : int = [] snake_case_ : Optional[int] = partial(_find_cluster_extremes_shared , jaccard_threshold=SCREAMING_SNAKE_CASE__ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) , total=len(SCREAMING_SNAKE_CASE__ ) , ): extremes_list.append(SCREAMING_SNAKE_CASE__ ) return extremes_list def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] , SCREAMING_SNAKE_CASE__ : float = 0.85 ): """simple docstring""" snake_case_ : List[str] = make_duplicate_clusters(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : str = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} snake_case_ : str = {} snake_case_ : Dict = find_extremes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for extremes in extremes_clusters: for element in extremes: snake_case_ : int = element snake_case_ : Optional[int] = duplicate_indices - set(extreme_dict.keys() ) snake_case_ : List[Any] = dataset.filter(lambda SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : idx not in remove_indices , with_indices=SCREAMING_SNAKE_CASE__ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: snake_case_ : List[Any] = element["""base_index"""] in extreme_dict if element["is_extreme"]: snake_case_ : str = extreme_dict[element["""base_index"""]]["""copies"""] print(f'Original dataset size: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Number of duplicate clusters: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Files in duplicate cluster: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Unique files in duplicate cluster: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Filtered dataset size: {len(SCREAMING_SNAKE_CASE__ )}' ) return ds_filter, duplicate_clusters
48
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/config.json''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/config.json''' # See all FNet models at https://huggingface.co/models?filter=fnet } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : List[Any] = """fnet""" def __init__(self , lowercase__=3_20_00 , lowercase__=7_68 , lowercase__=12 , lowercase__=30_72 , lowercase__="gelu_new" , lowercase__=0.1 , lowercase__=5_12 , lowercase__=4 , lowercase__=0.02 , lowercase__=1e-12 , lowercase__=False , lowercase__=5_12 , lowercase__=3 , lowercase__=1 , lowercase__=2 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__ ) snake_case_ : List[Any] = vocab_size snake_case_ : str = max_position_embeddings snake_case_ : List[Any] = hidden_size snake_case_ : Any = num_hidden_layers snake_case_ : Any = intermediate_size snake_case_ : Optional[Any] = hidden_act snake_case_ : List[Any] = hidden_dropout_prob snake_case_ : Union[str, Any] = initializer_range snake_case_ : List[Any] = type_vocab_size snake_case_ : List[Any] = layer_norm_eps snake_case_ : Dict = use_tpu_fourier_optimizations snake_case_ : Tuple = tpu_short_seq_length
702
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) a_ = logging.getLogger(__name__) if __name__ == "__main__": a_ = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=30522, type=int) a_ = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, '''rb''') as fp: a_ = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') a_ = Counter() for tk_ids in data: counter.update(tk_ids) a_ = [0] * args.vocab_size for k, v in counter.items(): a_ = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
48
0
import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union a_ = re.compile(r'''^(?P<major>\d+)''' r'''\.(?P<minor>\d+)''' r'''\.(?P<patch>\d+)$''') @total_ordering @dataclass class __lowercase : """simple docstring""" _A : str _A : Optional[str] = None _A : Optional[Union[str, int]] = None _A : Optional[Union[str, int]] = None _A : Optional[Union[str, int]] = None def __UpperCamelCase (self ): snake_case_ : int = _str_to_version_tuple(self.version_str ) def __repr__(self ): return f'{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}' @property def __UpperCamelCase (self ): return self.major, self.minor, self.patch def __UpperCamelCase (self , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): return Version(lowercase__ ) elif isinstance(lowercase__ , lowercase__ ): return other raise TypeError(f'{other} (type {type(lowercase__ )}) cannot be compared to version.' ) def __eq__(self , lowercase__ ): try: snake_case_ : List[Any] = self._validate_operand(lowercase__ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__(self , lowercase__ ): snake_case_ : Optional[Any] = self._validate_operand(lowercase__ ) return self.tuple < other.tuple def __hash__(self ): return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def __UpperCamelCase (cls , lowercase__ ): snake_case_ : Dict = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def __UpperCamelCase (self ): return self.version_str def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" snake_case_ : List[str] = _VERSION_REG.match(SCREAMING_SNAKE_CASE__ ) if not res: raise ValueError(f'Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.' ) return tuple(int(SCREAMING_SNAKE_CASE__ ) for v in [res.group("""major""" ), res.group("""minor""" ), res.group("""patch""" )] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" return ".".join(str(SCREAMING_SNAKE_CASE__ ) for v in version_tuple )
703
"""simple docstring""" import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" snake_case_ : Optional[Any] = tmp_path / """cache""" snake_case_ : Optional[int] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : Tuple = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" snake_case_ : List[Any] = tmp_path / """cache""" snake_case_ : int = {"""text""": """string"""} snake_case_ : Any = features.copy() if features else default_expected_features snake_case_ : List[Any] = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : Dict = TextDatasetReader(SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : Union[str, Any] = tmp_path / """cache""" snake_case_ : Optional[Any] = {"""text""": """string"""} snake_case_ : Optional[int] = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , split=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" if issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : List[str] = text_path elif issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : str = [text_path] snake_case_ : List[str] = tmp_path / """cache""" snake_case_ : List[str] = {"""text""": """string"""} snake_case_ : Dict = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str]=("train",) ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for split in splits: snake_case_ : Dict = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" snake_case_ : int = tmp_path / """cache""" snake_case_ : List[str] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : Optional[Any] = TextDatasetReader({"""train""": text_path} , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Tuple = tmp_path / """cache""" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" snake_case_ : List[str] = {"""text""": """string"""} snake_case_ : int = features.copy() if features else default_expected_features snake_case_ : Tuple = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : str = TextDatasetReader({"""train""": text_path} , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" if split: snake_case_ : Union[str, Any] = {split: text_path} else: snake_case_ : Union[str, Any] = """train""" snake_case_ : int = {"""train""": text_path, """test""": text_path} snake_case_ : List[Any] = tmp_path / """cache""" snake_case_ : Tuple = {"""text""": """string"""} snake_case_ : int = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
48
0
"""simple docstring""" import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __lowercase ( unittest.TestCase): """simple docstring""" _A : List[Any] = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING _A : List[str] = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : str = AudioClassificationPipeline(model=lowercase__ , feature_extractor=lowercase__ ) # test with a raw waveform snake_case_ : Union[str, Any] = np.zeros((3_40_00,) ) snake_case_ : List[Any] = np.zeros((1_40_00,) ) return audio_classifier, [audioa, audio] def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : int = examples snake_case_ : Dict = audio_classifier(lowercase__ ) # by default a model is initialized with num_labels=2 self.assertEqual( lowercase__ , [ {"""score""": ANY(lowercase__ ), """label""": ANY(lowercase__ )}, {"""score""": ANY(lowercase__ ), """label""": ANY(lowercase__ )}, ] , ) snake_case_ : List[str] = audio_classifier(lowercase__ , top_k=1 ) self.assertEqual( lowercase__ , [ {"""score""": ANY(lowercase__ ), """label""": ANY(lowercase__ )}, ] , ) self.run_torchaudio(lowercase__ ) @require_torchaudio def __UpperCamelCase (self , lowercase__ ): import datasets # test with a local file snake_case_ : Optional[int] = datasets.load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) snake_case_ : Union[str, Any] = dataset[0]["""audio"""]["""array"""] snake_case_ : Union[str, Any] = audio_classifier(lowercase__ ) self.assertEqual( lowercase__ , [ {"""score""": ANY(lowercase__ ), """label""": ANY(lowercase__ )}, {"""score""": ANY(lowercase__ ), """label""": ANY(lowercase__ )}, ] , ) @require_torch def __UpperCamelCase (self ): snake_case_ : List[str] = """anton-l/wav2vec2-random-tiny-classifier""" snake_case_ : List[str] = pipeline("""audio-classification""" , model=lowercase__ ) snake_case_ : Dict = np.ones((80_00,) ) snake_case_ : Tuple = audio_classifier(lowercase__ , top_k=4 ) snake_case_ : Dict = [ {"""score""": 0.0842, """label""": """no"""}, {"""score""": 0.0838, """label""": """up"""}, {"""score""": 0.0837, """label""": """go"""}, {"""score""": 0.0834, """label""": """right"""}, ] snake_case_ : str = [ {"""score""": 0.0845, """label""": """stop"""}, {"""score""": 0.0844, """label""": """on"""}, {"""score""": 0.0841, """label""": """right"""}, {"""score""": 0.0834, """label""": """left"""}, ] self.assertIn(nested_simplify(lowercase__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) snake_case_ : Union[str, Any] = {"""array""": np.ones((80_00,) ), """sampling_rate""": audio_classifier.feature_extractor.sampling_rate} snake_case_ : Tuple = audio_classifier(lowercase__ , top_k=4 ) self.assertIn(nested_simplify(lowercase__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def __UpperCamelCase (self ): import datasets snake_case_ : Union[str, Any] = """superb/wav2vec2-base-superb-ks""" snake_case_ : List[Any] = pipeline("""audio-classification""" , model=lowercase__ ) snake_case_ : Optional[int] = datasets.load_dataset("""anton-l/superb_dummy""" , """ks""" , split="""test""" ) snake_case_ : str = np.array(dataset[3]["""speech"""] , dtype=np.floataa ) snake_case_ : Dict = audio_classifier(lowercase__ , top_k=4 ) self.assertEqual( nested_simplify(lowercase__ , decimals=3 ) , [ {"""score""": 0.981, """label""": """go"""}, {"""score""": 0.007, """label""": """up"""}, {"""score""": 0.006, """label""": """_unknown_"""}, {"""score""": 0.001, """label""": """down"""}, ] , ) @require_tf @unittest.skip("""Audio classification is not implemented for TF""" ) def __UpperCamelCase (self ): pass
704
"""simple docstring""" from copy import deepcopy class __lowercase : """simple docstring""" def __init__(self , lowercase__ = None , lowercase__ = None ): if arr is None and size is not None: snake_case_ : str = size snake_case_ : Optional[Any] = [0] * size elif arr is not None: self.init(lowercase__ ) else: raise ValueError("""Either arr or size must be specified""" ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Optional[Any] = len(lowercase__ ) snake_case_ : int = deepcopy(lowercase__ ) for i in range(1 , self.size ): snake_case_ : Optional[Any] = self.next_(lowercase__ ) if j < self.size: self.tree[j] += self.tree[i] def __UpperCamelCase (self ): snake_case_ : Dict = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): snake_case_ : Optional[int] = self.next_(lowercase__ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def __UpperCamelCase (lowercase__ ): return index + (index & (-index)) @staticmethod def __UpperCamelCase (lowercase__ ): return index - (index & (-index)) def __UpperCamelCase (self , lowercase__ , lowercase__ ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value snake_case_ : Tuple = self.next_(lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): self.add(lowercase__ , value - self.get(lowercase__ ) ) def __UpperCamelCase (self , lowercase__ ): if right == 0: return 0 snake_case_ : List[str] = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] snake_case_ : Optional[int] = self.prev(lowercase__ ) return result def __UpperCamelCase (self , lowercase__ , lowercase__ ): return self.prefix(lowercase__ ) - self.prefix(lowercase__ ) def __UpperCamelCase (self , lowercase__ ): return self.query(lowercase__ , index + 1 ) def __UpperCamelCase (self , lowercase__ ): value -= self.tree[0] if value < 0: return -1 snake_case_ : Tuple = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 snake_case_ : Tuple = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
48
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ = { '''configuration_conditional_detr''': [ '''CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConditionalDetrConfig''', '''ConditionalDetrOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['''ConditionalDetrFeatureExtractor'''] a_ = ['''ConditionalDetrImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConditionalDetrForObjectDetection''', '''ConditionalDetrForSegmentation''', '''ConditionalDetrModel''', '''ConditionalDetrPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
705
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : list ): """simple docstring""" snake_case_ : Optional[int] = len(SCREAMING_SNAKE_CASE__ ) for i in range(1 , SCREAMING_SNAKE_CASE__ ): snake_case_ : Tuple = collection[i] snake_case_ : Tuple = 0 snake_case_ : str = i - 1 while low <= high: snake_case_ : Optional[int] = (low + high) // 2 if val < collection[mid]: snake_case_ : List[str] = mid - 1 else: snake_case_ : str = mid + 1 for j in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , -1 ): snake_case_ : List[str] = collection[j - 1] snake_case_ : Any = val return collection if __name__ == "__main__": a_ = input('''Enter numbers separated by a comma:\n''').strip() a_ = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
48
0
"""simple docstring""" import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class __lowercase : """simple docstring""" def __init__(self , lowercase__ , lowercase__=99 , lowercase__=13 , lowercase__=16 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=2 , lowercase__=32 , lowercase__=4 , lowercase__=4 , lowercase__=30 , lowercase__=0 , lowercase__=1 , lowercase__=2 , lowercase__=None , ): snake_case_ : Tuple = parent snake_case_ : Tuple = batch_size snake_case_ : List[str] = decoder_seq_length # For common tests snake_case_ : List[str] = self.decoder_seq_length snake_case_ : List[Any] = is_training snake_case_ : List[Any] = use_attention_mask snake_case_ : Dict = use_labels snake_case_ : Union[str, Any] = vocab_size snake_case_ : List[str] = d_model snake_case_ : str = d_model snake_case_ : List[str] = decoder_layers snake_case_ : Any = decoder_layers snake_case_ : int = decoder_ffn_dim snake_case_ : Tuple = decoder_attention_heads snake_case_ : Union[str, Any] = decoder_attention_heads snake_case_ : Optional[int] = eos_token_id snake_case_ : Dict = bos_token_id snake_case_ : int = pad_token_id snake_case_ : List[Any] = decoder_start_token_id snake_case_ : Union[str, Any] = use_cache snake_case_ : List[str] = max_position_embeddings snake_case_ : Union[str, Any] = None snake_case_ : Tuple = decoder_seq_length snake_case_ : int = 2 snake_case_ : Optional[Any] = 1 def __UpperCamelCase (self ): snake_case_ : int = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) snake_case_ : Dict = None if self.use_attention_mask: snake_case_ : Optional[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) snake_case_ : Tuple = None if self.use_labels: snake_case_ : List[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) snake_case_ : int = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): snake_case_ : Optional[int] = True snake_case_ : Optional[int] = TrOCRDecoder(config=lowercase__ ).to(lowercase__ ).eval() snake_case_ : List[str] = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass snake_case_ : Tuple = model(lowercase__ , use_cache=lowercase__ ) snake_case_ : Optional[Any] = model(lowercase__ ) snake_case_ : Optional[Any] = model(lowercase__ , use_cache=lowercase__ ) self.parent.assertTrue(len(lowercase__ ) == len(lowercase__ ) ) self.parent.assertTrue(len(lowercase__ ) == len(lowercase__ ) + 1 ) snake_case_ : List[str] = outputs["""past_key_values"""] # create hypothetical next token and extent to next_input_ids snake_case_ : int = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and snake_case_ : Dict = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ : Optional[Any] = model(lowercase__ )["""last_hidden_state"""] snake_case_ : List[Any] = model(lowercase__ , past_key_values=lowercase__ )["""last_hidden_state"""] # select random slice snake_case_ : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ : List[str] = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() snake_case_ : str = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(lowercase__ , lowercase__ , atol=1e-3 ) def __UpperCamelCase (self ): snake_case_ : Optional[Any] = self.prepare_config_and_inputs() snake_case_ : List[str] = config_and_inputs snake_case_ : Union[str, Any] = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_torch class __lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : Optional[int] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () _A : Any = (TrOCRForCausalLM,) if is_torch_available() else () _A : Optional[Any] = {"""text-generation""": TrOCRForCausalLM} if is_torch_available() else {} _A : Optional[int] = True _A : int = False def __UpperCamelCase (self ): snake_case_ : Dict = TrOCRStandaloneDecoderModelTester(self , is_training=lowercase__ ) snake_case_ : Tuple = ConfigTester(self , config_class=lowercase__ ) def __UpperCamelCase (self ): pass def __UpperCamelCase (self ): pass def __UpperCamelCase (self ): pass def __UpperCamelCase (self ): self.config_tester.run_common_tests() def __UpperCamelCase (self ): snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*lowercase__ ) def __UpperCamelCase (self ): return @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def __UpperCamelCase (self ): pass
706
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Union[str, Any] = ["""image_processor""", """tokenizer"""] _A : str = """ChineseCLIPImageProcessor""" _A : Tuple = ("""BertTokenizer""", """BertTokenizerFast""") def __init__(self , lowercase__=None , lowercase__=None , **lowercase__ ): snake_case_ : Any = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowercase__ , ) snake_case_ : Optional[Any] = kwargs.pop("""feature_extractor""" ) snake_case_ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowercase__ , lowercase__ ) snake_case_ : Union[str, Any] = self.image_processor def __call__(self , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ ): if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: snake_case_ : Any = self.tokenizer(lowercase__ , return_tensors=lowercase__ , **lowercase__ ) if images is not None: snake_case_ : Tuple = self.image_processor(lowercase__ , return_tensors=lowercase__ , **lowercase__ ) if text is not None and images is not None: snake_case_ : List[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase__ ) , tensor_type=lowercase__ ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): return self.tokenizer.batch_decode(*lowercase__ , **lowercase__ ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): return self.tokenizer.decode(*lowercase__ , **lowercase__ ) @property def __UpperCamelCase (self ): snake_case_ : Optional[int] = self.tokenizer.model_input_names snake_case_ : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __UpperCamelCase (self ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowercase__ , ) return self.image_processor_class
48
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
707
"""simple docstring""" import argparse import copy def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" snake_case_ : List[Any] = {} with open(SCREAMING_SNAKE_CASE__ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: snake_case_ : int = [] _list.append([line.split()[1], line.split()[2]] ) snake_case_ : Optional[Any] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: snake_case_ : str = [] _list.append([line.split()[0], line.split()[2]] ) snake_case_ : Optional[Any] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" with open(SCREAMING_SNAKE_CASE__ ) as f: snake_case_ : Optional[Any] = f.read(1 ) snake_case_ : Union[str, Any] = start_node snake_case_ : Dict = [] snake_case_ : Union[str, Any] = start_node snake_case_ : Tuple = 0 while visiting not in first_solution: snake_case_ : int = 1_0_0_0_0 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(SCREAMING_SNAKE_CASE__ ) and k[0] not in first_solution: snake_case_ : Union[str, Any] = k[1] snake_case_ : Any = k[0] first_solution.append(SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = distance_of_first_solution + int(SCREAMING_SNAKE_CASE__ ) snake_case_ : List[str] = best_node first_solution.append(SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[Any] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 snake_case_ : int = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0_0_0_0 ) return first_solution, distance_of_first_solution def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" snake_case_ : Union[str, Any] = [] for n in solution[1:-1]: snake_case_ : str = solution.index(SCREAMING_SNAKE_CASE__ ) for kn in solution[1:-1]: snake_case_ : Tuple = solution.index(SCREAMING_SNAKE_CASE__ ) if n == kn: continue snake_case_ : Optional[Any] = copy.deepcopy(SCREAMING_SNAKE_CASE__ ) snake_case_ : int = kn snake_case_ : Dict = n snake_case_ : Optional[int] = 0 for k in _tmp[:-1]: snake_case_ : Dict = _tmp[_tmp.index(SCREAMING_SNAKE_CASE__ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: snake_case_ : Dict = distance + int(i[1] ) _tmp.append(SCREAMING_SNAKE_CASE__ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) snake_case_ : Optional[Any] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda SCREAMING_SNAKE_CASE__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] ): """simple docstring""" snake_case_ : Dict = 1 snake_case_ : List[Any] = first_solution snake_case_ : List[Any] = [] snake_case_ : Optional[Any] = distance_of_first_solution snake_case_ : Dict = solution while count <= iters: snake_case_ : List[str] = find_neighborhood(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = 0 snake_case_ : List[Any] = neighborhood[index_of_best_solution] snake_case_ : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ ) - 1 snake_case_ : List[str] = False while not found: snake_case_ : Tuple = 0 while i < len(SCREAMING_SNAKE_CASE__ ): if best_solution[i] != solution[i]: snake_case_ : Optional[Any] = best_solution[i] snake_case_ : int = solution[i] break snake_case_ : List[str] = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) snake_case_ : Tuple = True snake_case_ : Dict = best_solution[:-1] snake_case_ : Tuple = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: snake_case_ : Tuple = cost snake_case_ : Union[str, Any] = solution else: snake_case_ : str = index_of_best_solution + 1 snake_case_ : Tuple = neighborhood[index_of_best_solution] if len(SCREAMING_SNAKE_CASE__ ) >= size: tabu_list.pop(0 ) snake_case_ : List[str] = count + 1 return best_solution_ever, best_cost def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any]=None ): """simple docstring""" snake_case_ : Tuple = generate_neighbours(args.File ) snake_case_ , snake_case_ : Optional[Any] = generate_first_solution( args.File , SCREAMING_SNAKE_CASE__ ) snake_case_ , snake_case_ : Dict = tabu_search( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , args.Iterations , args.Size , ) print(f'Best solution: {best_sol}, with total distance: {best_cost}.' ) if __name__ == "__main__": a_ = argparse.ArgumentParser(description='''Tabu Search''') parser.add_argument( '''-f''', '''--File''', type=str, help='''Path to the file containing the data''', required=True, ) parser.add_argument( '''-i''', '''--Iterations''', type=int, help='''How many iterations the algorithm should perform''', required=True, ) parser.add_argument( '''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True ) # Pass the arguments to main method main(parser.parse_args())
48
0
"""simple docstring""" import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer a_ = ['''gpt2'''] a_ = '''gpt2''' if is_tf_available(): class __lowercase ( tf.Module): """simple docstring""" def __init__(self , lowercase__ ): super().__init__() snake_case_ : Any = tokenizer snake_case_ : Union[str, Any] = AutoConfig.from_pretrained(lowercase__ ) snake_case_ : Union[str, Any] = TFGPTaLMHeadModel.from_config(lowercase__ ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="""text""" ),) ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : str = self.tokenizer(lowercase__ ) snake_case_ : str = tokenized["""input_ids"""].to_tensor() snake_case_ : Optional[int] = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) snake_case_ : str = self.model(input_ids=lowercase__ , attention_mask=lowercase__ )["""logits"""] return outputs @require_tf @require_keras_nlp class __lowercase ( unittest.TestCase): """simple docstring""" def __UpperCamelCase (self ): super().setUp() snake_case_ : List[Any] = [GPTaTokenizer.from_pretrained(lowercase__ ) for checkpoint in (TOKENIZER_CHECKPOINTS)] snake_case_ : Optional[Any] = [TFGPTaTokenizer.from_pretrained(lowercase__ ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) snake_case_ : Any = [ """This is a straightforward English test sentence.""", """This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""", """Now we're going to add some Chinese: 一 二 三 一二三""", """And some much more rare Chinese: 齉 堃 齉堃""", """Je vais aussi écrire en français pour tester les accents""", """Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""", ] snake_case_ : Union[str, Any] = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def __UpperCamelCase (self ): for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: snake_case_ : List[str] = tokenizer([test_inputs] , return_tensors="""tf""" ) snake_case_ : Tuple = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors snake_case_ : Dict = python_outputs[key].numpy() snake_case_ : Dict = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(lowercase__ , tf.intaa ) == tf_outputs_values ) ) @slow def __UpperCamelCase (self ): for tf_tokenizer in self.tf_tokenizers: snake_case_ : int = tf.function(lowercase__ ) for test_inputs in self.test_sentences: snake_case_ : int = tf.constant(lowercase__ ) snake_case_ : str = compiled_tokenizer(lowercase__ ) snake_case_ : Dict = tf_tokenizer(lowercase__ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def __UpperCamelCase (self ): for tf_tokenizer in self.tf_tokenizers: snake_case_ : Optional[int] = ModelToSave(tokenizer=lowercase__ ) snake_case_ : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) snake_case_ : Tuple = model.serving(lowercase__ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: snake_case_ : int = Path(lowercase__ ) / """saved.model""" tf.saved_model.save(lowercase__ , lowercase__ , signatures={"""serving_default""": model.serving} ) snake_case_ : Tuple = tf.saved_model.load(lowercase__ ) snake_case_ : List[Any] = loaded_model.signatures["""serving_default"""](lowercase__ )["""output_0"""] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def __UpperCamelCase (self ): for tf_tokenizer in self.tf_tokenizers: snake_case_ : List[str] = tf.convert_to_tensor([self.test_sentences[0]] ) snake_case_ : List[Any] = tf_tokenizer(lowercase__ ) # Build model with some sample inputs snake_case_ : Any = tf_tokenizer.get_config() snake_case_ : List[Any] = TFGPTaTokenizer.from_config(lowercase__ ) snake_case_ : List[str] = model_from_config(lowercase__ ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def __UpperCamelCase (self ): for tf_tokenizer in self.tf_tokenizers: # for the test to run snake_case_ : Tuple = 12_31_23 for max_length in [3, 5, 10_24]: snake_case_ : Tuple = tf.convert_to_tensor([self.test_sentences[0]] ) snake_case_ : List[Any] = tf_tokenizer(lowercase__ , max_length=lowercase__ ) snake_case_ : Union[str, Any] = out["""input_ids"""].numpy().shape[1] assert out_length == max_length
708
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings a_ = r''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(_UpperCAmelCase) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """rag""" _A : Optional[Any] = True def __init__(self , lowercase__=None , lowercase__=True , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=" / " , lowercase__=" // " , lowercase__=5 , lowercase__=3_00 , lowercase__=7_68 , lowercase__=8 , lowercase__="wiki_dpr" , lowercase__="train" , lowercase__="compressed" , lowercase__=None , lowercase__=None , lowercase__=False , lowercase__=False , lowercase__=0.0 , lowercase__=True , lowercase__=False , lowercase__=False , lowercase__=False , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__( bos_token_id=lowercase__ , pad_token_id=lowercase__ , eos_token_id=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , prefix=lowercase__ , vocab_size=lowercase__ , **lowercase__ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" snake_case_ : List[Any] = kwargs.pop("""question_encoder""" ) snake_case_ : Tuple = question_encoder_config.pop("""model_type""" ) snake_case_ : List[str] = kwargs.pop("""generator""" ) snake_case_ : List[str] = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig snake_case_ : List[str] = AutoConfig.for_model(lowercase__ , **lowercase__ ) snake_case_ : Tuple = AutoConfig.for_model(lowercase__ , **lowercase__ ) snake_case_ : int = reduce_loss snake_case_ : Optional[int] = label_smoothing snake_case_ : Dict = exclude_bos_score snake_case_ : Union[str, Any] = do_marginalize snake_case_ : Union[str, Any] = title_sep snake_case_ : int = doc_sep snake_case_ : int = n_docs snake_case_ : List[str] = max_combined_length snake_case_ : Tuple = dataset snake_case_ : int = dataset_split snake_case_ : str = index_name snake_case_ : List[str] = retrieval_vector_size snake_case_ : Dict = retrieval_batch_size snake_case_ : str = passages_path snake_case_ : Union[str, Any] = index_path snake_case_ : Tuple = use_dummy_dataset snake_case_ : Dict = output_retrieved snake_case_ : str = do_deduplication snake_case_ : Any = use_cache if self.forced_eos_token_id is None: snake_case_ : Any = getattr(self.generator , """forced_eos_token_id""" , lowercase__ ) @classmethod def __UpperCamelCase (cls , lowercase__ , lowercase__ , **lowercase__ ): return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Optional[Any] = copy.deepcopy(self.__dict__ ) snake_case_ : Any = self.question_encoder.to_dict() snake_case_ : Dict = self.generator.to_dict() snake_case_ : Union[str, Any] = self.__class__.model_type return output
48
0
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=_UpperCAmelCase) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : str = field(default="""question-answering-extractive""" , metadata={"""include_in_asdict_even_if_is_default""": True}) _A : ClassVar[Features] = Features({"""question""": Value("""string"""), """context""": Value("""string""")}) _A : ClassVar[Features] = Features( { """answers""": Sequence( { """text""": Value("""string"""), """answer_start""": Value("""int32"""), }) }) _A : str = "question" _A : str = "context" _A : str = "answers" @property def __UpperCamelCase (self ): return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
709
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """upernet""" def __init__(self , lowercase__=None , lowercase__=5_12 , lowercase__=0.02 , lowercase__=[1, 2, 3, 6] , lowercase__=True , lowercase__=0.4 , lowercase__=3_84 , lowercase__=2_56 , lowercase__=1 , lowercase__=False , lowercase__=2_55 , **lowercase__ , ): super().__init__(**lowercase__ ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) snake_case_ : List[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(lowercase__ , lowercase__ ): snake_case_ : Tuple = backbone_config.get("""model_type""" ) snake_case_ : List[str] = CONFIG_MAPPING[backbone_model_type] snake_case_ : List[Any] = config_class.from_dict(lowercase__ ) snake_case_ : List[Any] = backbone_config snake_case_ : Optional[Any] = hidden_size snake_case_ : Any = initializer_range snake_case_ : str = pool_scales snake_case_ : Dict = use_auxiliary_head snake_case_ : str = auxiliary_loss_weight snake_case_ : List[str] = auxiliary_in_channels snake_case_ : Optional[Any] = auxiliary_channels snake_case_ : Any = auxiliary_num_convs snake_case_ : List[Any] = auxiliary_concat_input snake_case_ : List[str] = loss_ignore_index def __UpperCamelCase (self ): snake_case_ : Dict = copy.deepcopy(self.__dict__ ) snake_case_ : Union[str, Any] = self.backbone_config.to_dict() snake_case_ : Any = self.__class__.model_type return output
48
0
"""simple docstring""" import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class __lowercase : """simple docstring""" def __init__(self , lowercase__ , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="resnet50" , lowercase__=3 , lowercase__=32 , lowercase__=3 , lowercase__=True , lowercase__=True , ): snake_case_ : Union[str, Any] = parent snake_case_ : Optional[Any] = out_indices if out_indices is not None else [4] snake_case_ : int = stage_names snake_case_ : str = out_features snake_case_ : Optional[Any] = backbone snake_case_ : Tuple = batch_size snake_case_ : Union[str, Any] = image_size snake_case_ : List[str] = num_channels snake_case_ : str = use_pretrained_backbone snake_case_ : List[str] = is_training def __UpperCamelCase (self ): snake_case_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ : List[str] = self.get_config() return config, pixel_values def __UpperCamelCase (self ): return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : List[str] = TimmBackbone(config=lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): snake_case_ : str = model(lowercase__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = self.prepare_config_and_inputs() snake_case_ : str = config_and_inputs snake_case_ : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch @require_timm class __lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : Union[str, Any] = (TimmBackbone,) if is_torch_available() else () _A : Union[str, Any] = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} _A : Optional[Any] = False _A : Dict = False _A : List[Any] = False _A : int = False def __UpperCamelCase (self ): snake_case_ : List[str] = TimmBackboneModelTester(self ) snake_case_ : int = ConfigTester(self , config_class=lowercase__ , has_text_modality=lowercase__ ) def __UpperCamelCase (self ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCamelCase (self ): snake_case_ : Optional[int] = """resnet18""" snake_case_ : Union[str, Any] = """microsoft/resnet-18""" snake_case_ : Optional[Any] = AutoBackbone.from_pretrained(lowercase__ , use_timm_backbone=lowercase__ ) snake_case_ : Optional[Any] = AutoBackbone.from_pretrained(lowercase__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) snake_case_ : Tuple = AutoBackbone.from_pretrained(lowercase__ , use_timm_backbone=lowercase__ , out_indices=[1, 2, 3] ) snake_case_ : List[Any] = AutoBackbone.from_pretrained(lowercase__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("""TimmBackbone doesn't support feed forward chunking""" ) def __UpperCamelCase (self ): pass @unittest.skip("""TimmBackbone doesn't have num_hidden_layers attribute""" ) def __UpperCamelCase (self ): pass @unittest.skip("""TimmBackbone initialization is managed on the timm side""" ) def __UpperCamelCase (self ): pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def __UpperCamelCase (self ): pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def __UpperCamelCase (self ): pass @unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""" ) def __UpperCamelCase (self ): pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def __UpperCamelCase (self ): pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def __UpperCamelCase (self ): pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def __UpperCamelCase (self ): pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def __UpperCamelCase (self ): pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def __UpperCamelCase (self ): pass @unittest.skip("""TimmBackbone doesn't have hidden size info in its configuration.""" ) def __UpperCamelCase (self ): pass @unittest.skip("""TimmBackbone doesn't support output_attentions.""" ) def __UpperCamelCase (self ): pass @unittest.skip("""Safetensors is not supported by timm.""" ) def __UpperCamelCase (self ): pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __UpperCamelCase (self ): pass def __UpperCamelCase (self ): snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : Optional[int] = model_class(lowercase__ ) snake_case_ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ : List[str] = [*signature.parameters.keys()] snake_case_ : Dict = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Union[str, Any] = True snake_case_ : List[str] = self.has_attentions # no need to test all models as different heads yield the same functionality snake_case_ : str = self.all_model_classes[0] snake_case_ : str = model_class(lowercase__ ) model.to(lowercase__ ) snake_case_ : Optional[Any] = self._prepare_for_class(lowercase__ , lowercase__ ) snake_case_ : List[Any] = model(**lowercase__ ) snake_case_ : str = outputs[0][-1] # Encoder-/Decoder-only models snake_case_ : int = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: snake_case_ : str = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowercase__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def __UpperCamelCase (self ): snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : Any = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() snake_case_ : Tuple = model(**lowercase__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None snake_case_ : str = copy.deepcopy(lowercase__ ) snake_case_ : List[str] = None snake_case_ : Tuple = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() snake_case_ : str = model(**lowercase__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights snake_case_ : Dict = copy.deepcopy(lowercase__ ) snake_case_ : Any = False snake_case_ : List[str] = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() snake_case_ : Any = model(**lowercase__ )
710
"""simple docstring""" import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask a_ = logging.getLogger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self , lowercase__=-1 ): # in NER datasets, the last column is usually reserved for NER label snake_case_ : Union[str, Any] = label_idx def __UpperCamelCase (self , lowercase__ , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): snake_case_ : List[str] = mode.value snake_case_ : List[Any] = os.path.join(lowercase__ , f'{mode}.txt' ) snake_case_ : Tuple = 1 snake_case_ : Any = [] with open(lowercase__ , encoding="""utf-8""" ) as f: snake_case_ : str = [] snake_case_ : List[Any] = [] for line in f: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) guid_index += 1 snake_case_ : Optional[Any] = [] snake_case_ : int = [] else: snake_case_ : Optional[Any] = line.split(""" """ ) words.append(splits[0] ) if len(lowercase__ ) > 1: labels.append(splits[self.label_idx].replace("""\n""" , """""" ) ) else: # Examples could have no label for mode = "test" labels.append("""O""" ) if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) return examples def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : str = 0 for line in test_input_reader: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": writer.write(lowercase__ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: snake_case_ : Optional[int] = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n""" writer.write(lowercase__ ) else: logger.warning("""Maximum sequence length exceeded: No prediction for '%s'.""" , line.split()[0] ) def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: snake_case_ : Dict = f.read().splitlines() if "O" not in labels: snake_case_ : List[Any] = ["""O"""] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self ): # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: snake_case_ : Any = f.read().splitlines() if "O" not in labels: snake_case_ : Tuple = ["""O"""] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __lowercase ( _UpperCAmelCase): """simple docstring""" def __UpperCamelCase (self , lowercase__ , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): snake_case_ : List[Any] = mode.value snake_case_ : Optional[int] = os.path.join(lowercase__ , f'{mode}.txt' ) snake_case_ : Tuple = 1 snake_case_ : str = [] with open(lowercase__ , encoding="""utf-8""" ) as f: for sentence in parse_incr(lowercase__ ): snake_case_ : Tuple = [] snake_case_ : Any = [] for token in sentence: words.append(token["""form"""] ) labels.append(token["""upos"""] ) assert len(lowercase__ ) == len(lowercase__ ) if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) guid_index += 1 return examples def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : Dict = 0 for sentence in parse_incr(lowercase__ ): snake_case_ : int = preds_list[example_id] snake_case_ : Dict = """""" for token in sentence: out += f'{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) ' out += "\n" writer.write(lowercase__ ) example_id += 1 def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
48
0
"""simple docstring""" import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''} a_ = { '''vocab_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''', }, '''emoji_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''', }, } a_ = { '''abeja/gpt-neox-japanese-2.7b''': 2048, } def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" with open(SCREAMING_SNAKE_CASE__ , """r""" , encoding="""utf-8""" ) as f: snake_case_ : int = json.loads(f.read() ) snake_case_ : int = collections.OrderedDict() snake_case_ : Optional[int] = collections.OrderedDict() snake_case_ : int = collections.OrderedDict() with open(SCREAMING_SNAKE_CASE__ , """r""" , encoding="""utf-8""" ) as f: snake_case_ : Optional[Any] = f.readlines() snake_case_ : Any = [[t.rstrip("""\n""" )] if (t == """,""" or """,""" not in t) else t.rstrip("""\n""" ).split(""",""" ) for t in token] for idx, b in enumerate(SCREAMING_SNAKE_CASE__ ): snake_case_ : Dict = b snake_case_ : List[Any] = idx for wd in b: snake_case_ : Optional[Any] = idx return vocab, raw_vocab, ids_to_tokens, emoji class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : int = VOCAB_FILES_NAMES _A : int = PRETRAINED_VOCAB_FILES_MAP _A : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : List[Any] = ["""input_ids""", """attention_mask"""] def __init__(self , lowercase__ , lowercase__ , lowercase__="<|endoftext|>" , lowercase__="<|endoftext|>" , lowercase__="<|startoftext|>" , lowercase__="<|endoftext|>" , lowercase__=False , **lowercase__ , ): super().__init__( unk_token=lowercase__ , pad_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , do_clean_text=lowercase__ , **lowercase__ , ) if not os.path.isfile(lowercase__ ): raise ValueError( f'Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained' """ model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" ) if not os.path.isfile(lowercase__ ): raise ValueError( f'Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google' """ pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" ) snake_case_ : Optional[int] = do_clean_text snake_case_ : Union[str, Any] = load_vocab_and_emoji(lowercase__ , lowercase__ ) snake_case_ : Tuple = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def __UpperCamelCase (self ): # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def __UpperCamelCase (self ): return dict(self.raw_vocab , **self.added_tokens_encoder ) def __UpperCamelCase (self , lowercase__ ): return self.subword_tokenizer.tokenize(lowercase__ , clean=self.do_clean_text ) def __UpperCamelCase (self , lowercase__ ): return self.vocab.get(lowercase__ , self.vocab.get(self.unk_token ) ) def __UpperCamelCase (self , lowercase__ ): return self.subword_tokenizer.convert_id_to_token(lowercase__ ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Union[str, Any] = """""".join(lowercase__ ).strip() return out_string def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase__ , add_special_tokens=lowercase__ ) + [self.eos_token_id] ) if len(lowercase__ ) > self.model_max_length: snake_case_ : Dict = input_ids[-self.model_max_length :] return input_ids def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): snake_case_ : int = 0 if os.path.isdir(lowercase__ ): snake_case_ : Optional[int] = os.path.join( lowercase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case_ : Tuple = os.path.join( lowercase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""emoji_file"""] ) else: snake_case_ : Optional[Any] = ( (filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case_ : Union[str, Any] = ( (filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""emoji_file"""] ) with open(lowercase__ , """w""" , encoding="""utf-8""" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' """ Please check that the vocabulary is not corrupted!""" ) snake_case_ : int = token_index writer.write(""",""".join(lowercase__ ) + """\n""" ) index += 1 with open(lowercase__ , """w""" , encoding="""utf-8""" ) as writer: json.dump(self.emoji , lowercase__ ) return vocab_file, emoji_file class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : int = vocab # same as swe snake_case_ : Tuple = ids_to_tokens # same as bpe snake_case_ : Any = emoji snake_case_ : Any = np.max([len(lowercase__ ) for w in self.vocab.keys()] ) snake_case_ : Optional[int] = re.compile(R"""(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)""" ) snake_case_ : Dict = re.compile(R"""[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*""" ) snake_case_ : Optional[Any] = re.compile(R"""[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}""" ) snake_case_ : Union[str, Any] = re.compile( R"""([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" ) snake_case_ : List[Any] = re.compile( R"""(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" ) snake_case_ : str = re.compile( R"""((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*""" ) snake_case_ : int = """─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿""" snake_case_ : str = """▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟""" snake_case_ : Any = str.maketrans({k: """<BLOCK>""" for k in keisen + blocks} ) def __len__(self ): return len(self.ids_to_tokens ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Any = self.content_repattera.sub("""<URL>""" , lowercase__ ) snake_case_ : Tuple = self.content_repattera.sub("""<EMAIL>""" , lowercase__ ) snake_case_ : Union[str, Any] = self.content_repattera.sub("""<TEL>""" , lowercase__ ) snake_case_ : Dict = self.content_repattera.sub("""<DATE>""" , lowercase__ ) snake_case_ : Tuple = self.content_repattera.sub("""<DATE>""" , lowercase__ ) snake_case_ : Tuple = self.content_repattera.sub("""<PRICE>""" , lowercase__ ) snake_case_ : Optional[Any] = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: snake_case_ : Tuple = content.replace("""<BLOCK><BLOCK>""" , """<BLOCK>""" ) return content def __UpperCamelCase (self , lowercase__ , lowercase__=False ): snake_case_ : Optional[int] = text.replace(""" """ , """<SP>""" ) snake_case_ : Optional[int] = text.replace(""" """ , """<SP>""" ) snake_case_ : Any = text.replace("""\r\n""" , """<BR>""" ) snake_case_ : Dict = text.replace("""\n""" , """<BR>""" ) snake_case_ : Optional[Any] = text.replace("""\r""" , """<BR>""" ) snake_case_ : Optional[Any] = text.replace("""\t""" , """<TAB>""" ) snake_case_ : List[str] = text.replace("""—""" , """ー""" ) snake_case_ : Union[str, Any] = text.replace("""−""" , """ー""" ) for k, v in self.emoji["emoji"].items(): if k in text: snake_case_ : Union[str, Any] = text.replace(lowercase__ , lowercase__ ) if clean: snake_case_ : Optional[Any] = self.clean_text(lowercase__ ) def check_simbol(lowercase__ ): snake_case_ : int = x.encode() if len(lowercase__ ) == 1 and len(lowercase__ ) == 2: snake_case_ : Tuple = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0Xc_2_a_1 and c <= 0Xc_2_b_f) or (c >= 0Xc_7_8_0 and c <= 0Xc_7_8_3) or (c >= 0Xc_a_b_9 and c <= 0Xc_b_b_f) or (c >= 0Xc_c_8_0 and c <= 0Xc_d_a_2) ): return True return False def checkuae(lowercase__ ): snake_case_ : int = x.encode() if len(lowercase__ ) == 1 and len(lowercase__ ) == 3: snake_case_ : Union[str, Any] = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0Xe_2_8_0_8_0 and c <= 0Xe_2_b_0_7_f: return True return False snake_case_ : Optional[Any] = 0 snake_case_ : List[str] = [] while pos < len(lowercase__ ): snake_case_ : Tuple = min(len(lowercase__ ) , pos + self.maxlen + 1 ) if text[pos] == """<""" else pos + 3 snake_case_ : Optional[Any] = [] # (token_id, token, pos) for e in range(lowercase__ , lowercase__ , -1 ): snake_case_ : str = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(lowercase__ ) > 2: snake_case_ : Optional[Any] = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(lowercase__ ) > 0: # the smallest token_id is adopted snake_case_ : Optional[int] = sorted(lowercase__ , key=lambda lowercase__ : x[0] )[0] result.append(lowercase__ ) snake_case_ : Union[str, Any] = e else: snake_case_ : Optional[Any] = pos + 1 snake_case_ : Tuple = text[pos:end] if check_simbol(lowercase__ ): result.append("""<KIGOU>""" ) elif checkuae(lowercase__ ): result.append("""<U2000U2BFF>""" ) else: for i in wd.encode("""utf-8""" ): result.append("""<|byte%d|>""" % i ) snake_case_ : Tuple = end return result def __UpperCamelCase (self , lowercase__ , lowercase__="\n" ): snake_case_ : Optional[Any] = [] snake_case_ : Optional[Any] = [] snake_case_ : Dict = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(lowercase__ ) > 0: words.append(bytearray(lowercase__ ).decode("""utf-8""" , errors="""replace""" ) ) snake_case_ : Tuple = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["""emoji_inv"""][word] ) elif word == "<SP>": words.append(""" """ ) elif word == "<BR>": words.append(lowercase__ ) elif word == "<TAB>": words.append("""\t""" ) elif word == "<BLOCK>": words.append("""▀""" ) elif word == "<KIGOU>": words.append("""ǀ""" ) elif word == "<U2000U2BFF>": words.append("""‖""" ) else: words.append(lowercase__ ) if len(lowercase__ ) > 0: words.append(bytearray(lowercase__ ).decode("""utf-8""" , errors="""replace""" ) ) snake_case_ : str = """""".join(lowercase__ ) return text
711
"""simple docstring""" import random def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : Union[str, Any] = num - 1 snake_case_ : List[str] = 0 while s % 2 == 0: snake_case_ : str = s // 2 t += 1 for _ in range(5 ): snake_case_ : List[Any] = random.randrange(2 , num - 1 ) snake_case_ : Dict = pow(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if v != 1: snake_case_ : int = 0 while v != (num - 1): if i == t - 1: return False else: snake_case_ : str = i + 1 snake_case_ : int = (v**2) % num return True def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" if num < 2: return False snake_case_ : Dict = [ 2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1, 4_3, 4_7, 5_3, 5_9, 6_1, 6_7, 7_1, 7_3, 7_9, 8_3, 8_9, 9_7, 1_0_1, 1_0_3, 1_0_7, 1_0_9, 1_1_3, 1_2_7, 1_3_1, 1_3_7, 1_3_9, 1_4_9, 1_5_1, 1_5_7, 1_6_3, 1_6_7, 1_7_3, 1_7_9, 1_8_1, 1_9_1, 1_9_3, 1_9_7, 1_9_9, 2_1_1, 2_2_3, 2_2_7, 2_2_9, 2_3_3, 2_3_9, 2_4_1, 2_5_1, 2_5_7, 2_6_3, 2_6_9, 2_7_1, 2_7_7, 2_8_1, 2_8_3, 2_9_3, 3_0_7, 3_1_1, 3_1_3, 3_1_7, 3_3_1, 3_3_7, 3_4_7, 3_4_9, 3_5_3, 3_5_9, 3_6_7, 3_7_3, 3_7_9, 3_8_3, 3_8_9, 3_9_7, 4_0_1, 4_0_9, 4_1_9, 4_2_1, 4_3_1, 4_3_3, 4_3_9, 4_4_3, 4_4_9, 4_5_7, 4_6_1, 4_6_3, 4_6_7, 4_7_9, 4_8_7, 4_9_1, 4_9_9, 5_0_3, 5_0_9, 5_2_1, 5_2_3, 5_4_1, 5_4_7, 5_5_7, 5_6_3, 5_6_9, 5_7_1, 5_7_7, 5_8_7, 5_9_3, 5_9_9, 6_0_1, 6_0_7, 6_1_3, 6_1_7, 6_1_9, 6_3_1, 6_4_1, 6_4_3, 6_4_7, 6_5_3, 6_5_9, 6_6_1, 6_7_3, 6_7_7, 6_8_3, 6_9_1, 7_0_1, 7_0_9, 7_1_9, 7_2_7, 7_3_3, 7_3_9, 7_4_3, 7_5_1, 7_5_7, 7_6_1, 7_6_9, 7_7_3, 7_8_7, 7_9_7, 8_0_9, 8_1_1, 8_2_1, 8_2_3, 8_2_7, 8_2_9, 8_3_9, 8_5_3, 8_5_7, 8_5_9, 8_6_3, 8_7_7, 8_8_1, 8_8_3, 8_8_7, 9_0_7, 9_1_1, 9_1_9, 9_2_9, 9_3_7, 9_4_1, 9_4_7, 9_5_3, 9_6_7, 9_7_1, 9_7_7, 9_8_3, 9_9_1, 9_9_7, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int = 1_0_2_4 ): """simple docstring""" while True: snake_case_ : Tuple = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(SCREAMING_SNAKE_CASE__ ): return num if __name__ == "__main__": a_ = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
48
0
"""simple docstring""" import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a_ = { '''facebook/mask2former-swin-small-coco-instance''': ( '''https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json''' ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : List[Any] = """mask2former""" _A : List[Any] = ["""swin"""] _A : Any = {"""hidden_size""": """hidden_dim"""} def __init__(self , lowercase__ = None , lowercase__ = 2_56 , lowercase__ = 2_56 , lowercase__ = 2_56 , lowercase__ = 10_24 , lowercase__ = "relu" , lowercase__ = 6 , lowercase__ = 10 , lowercase__ = 8 , lowercase__ = 0.0 , lowercase__ = 20_48 , lowercase__ = False , lowercase__ = False , lowercase__ = 4 , lowercase__ = 2_55 , lowercase__ = 1_00 , lowercase__ = 0.1 , lowercase__ = 2.0 , lowercase__ = 5.0 , lowercase__ = 5.0 , lowercase__ = 1_25_44 , lowercase__ = 3.0 , lowercase__ = 0.75 , lowercase__ = 0.02 , lowercase__ = 1.0 , lowercase__ = True , lowercase__ = [4, 8, 16, 32] , lowercase__ = None , **lowercase__ , ): if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.""" ) snake_case_ : Dict = CONFIG_MAPPING["""swin"""]( image_size=2_24 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=lowercase__ , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(lowercase__ , lowercase__ ): snake_case_ : int = backbone_config.pop("""model_type""" ) snake_case_ : Optional[int] = CONFIG_MAPPING[backbone_model_type] snake_case_ : int = config_class.from_dict(lowercase__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ' f'Supported model types: {",".join(self.backbones_supported )}' ) snake_case_ : Optional[Any] = backbone_config snake_case_ : List[str] = feature_size snake_case_ : Optional[Any] = mask_feature_size snake_case_ : List[str] = hidden_dim snake_case_ : str = encoder_feedforward_dim snake_case_ : str = activation_function snake_case_ : Optional[int] = encoder_layers snake_case_ : Dict = decoder_layers snake_case_ : int = num_attention_heads snake_case_ : str = dropout snake_case_ : Optional[int] = dim_feedforward snake_case_ : Tuple = pre_norm snake_case_ : List[Any] = enforce_input_projection snake_case_ : Tuple = common_stride snake_case_ : Optional[int] = ignore_value snake_case_ : Tuple = num_queries snake_case_ : str = no_object_weight snake_case_ : List[str] = class_weight snake_case_ : List[str] = mask_weight snake_case_ : str = dice_weight snake_case_ : Tuple = train_num_points snake_case_ : List[str] = oversample_ratio snake_case_ : str = importance_sample_ratio snake_case_ : str = init_std snake_case_ : int = init_xavier_std snake_case_ : Tuple = use_auxiliary_loss snake_case_ : Optional[int] = feature_strides snake_case_ : Any = output_auxiliary_logits snake_case_ : List[Any] = decoder_layers super().__init__(**lowercase__ ) @classmethod def __UpperCamelCase (cls , lowercase__ , **lowercase__ ): return cls( backbone_config=lowercase__ , **lowercase__ , ) def __UpperCamelCase (self ): snake_case_ : Tuple = copy.deepcopy(self.__dict__ ) snake_case_ : int = self.backbone_config.to_dict() snake_case_ : str = self.__class__.model_type return output
712
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType a_ = logging.get_logger(__name__) a_ = { '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Dict = """deberta-v2""" def __init__(self , lowercase__=12_81_00 , lowercase__=15_36 , lowercase__=24 , lowercase__=24 , lowercase__=61_44 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_12 , lowercase__=0 , lowercase__=0.02 , lowercase__=1e-7 , lowercase__=False , lowercase__=-1 , lowercase__=0 , lowercase__=True , lowercase__=None , lowercase__=0 , lowercase__="gelu" , **lowercase__ , ): super().__init__(**lowercase__ ) snake_case_ : Union[str, Any] = hidden_size snake_case_ : str = num_hidden_layers snake_case_ : Tuple = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : Optional[int] = hidden_act snake_case_ : Union[str, Any] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : List[Any] = max_position_embeddings snake_case_ : Union[str, Any] = type_vocab_size snake_case_ : Union[str, Any] = initializer_range snake_case_ : List[Any] = relative_attention snake_case_ : Dict = max_relative_positions snake_case_ : Optional[int] = pad_token_id snake_case_ : List[str] = position_biased_input # Backwards compatibility if type(lowercase__ ) == str: snake_case_ : Union[str, Any] = [x.strip() for x in pos_att_type.lower().split("""|""" )] snake_case_ : Optional[int] = pos_att_type snake_case_ : List[str] = vocab_size snake_case_ : Tuple = layer_norm_eps snake_case_ : List[Any] = kwargs.get("""pooler_hidden_size""" , lowercase__ ) snake_case_ : List[str] = pooler_dropout snake_case_ : int = pooler_hidden_act class __lowercase ( _UpperCAmelCase): """simple docstring""" @property def __UpperCamelCase (self ): if self.task == "multiple-choice": snake_case_ : List[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case_ : int = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def __UpperCamelCase (self ): return 12 def __UpperCamelCase (self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , lowercase__ = 3 , lowercase__ = 40 , lowercase__ = 40 , lowercase__ = None , ): snake_case_ : str = super().generate_dummy_inputs(preprocessor=lowercase__ , framework=lowercase__ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
48
0
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. a_ = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class __lowercase ( unittest.TestCase): """simple docstring""" _A : List[Any] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _A : Tuple = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: _A : Tuple = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: _A : Dict = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def __UpperCamelCase (self ): snake_case_ : str = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" ) snake_case_ : Any = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(lowercase__ ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) snake_case_ : Dict = text_classifier("""This is great !""" , top_k=2 ) self.assertEqual( nested_simplify(lowercase__ ) , [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}] ) snake_case_ : int = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 ) self.assertEqual( nested_simplify(lowercase__ ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) snake_case_ : Tuple = text_classifier("""This is great !""" , top_k=1 ) self.assertEqual(nested_simplify(lowercase__ ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) # Legacy behavior snake_case_ : Optional[Any] = text_classifier("""This is great !""" , return_all_scores=lowercase__ ) self.assertEqual(nested_simplify(lowercase__ ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) snake_case_ : List[Any] = text_classifier("""This is great !""" , return_all_scores=lowercase__ ) self.assertEqual( nested_simplify(lowercase__ ) , [[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}]] ) snake_case_ : Any = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=lowercase__ ) self.assertEqual( nested_simplify(lowercase__ ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) snake_case_ : Optional[int] = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=lowercase__ ) self.assertEqual( nested_simplify(lowercase__ ) , [ {"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_0""", """score""": 0.504}, ] , ) @require_torch def __UpperCamelCase (self ): import torch snake_case_ : Optional[int] = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , ) snake_case_ : Optional[Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(lowercase__ ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @require_tf def __UpperCamelCase (self ): snake_case_ : str = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" ) snake_case_ : Optional[int] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(lowercase__ ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @slow @require_torch def __UpperCamelCase (self ): snake_case_ : Tuple = pipeline("""text-classification""" ) snake_case_ : str = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(lowercase__ ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) snake_case_ : List[Any] = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(lowercase__ ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) snake_case_ : List[str] = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(lowercase__ ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) @slow @require_tf def __UpperCamelCase (self ): snake_case_ : int = pipeline("""text-classification""" , framework="""tf""" ) snake_case_ : Optional[int] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(lowercase__ ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) snake_case_ : List[Any] = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(lowercase__ ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) snake_case_ : Optional[int] = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(lowercase__ ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : int = TextClassificationPipeline(model=lowercase__ , tokenizer=lowercase__ ) return text_classifier, ["HuggingFace is in", "This is another test"] def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : Dict = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 snake_case_ : Union[str, Any] = """HuggingFace is in""" snake_case_ : str = text_classifier(lowercase__ ) self.assertEqual(nested_simplify(lowercase__ ) , [{"""label""": ANY(lowercase__ ), """score""": ANY(lowercase__ )}] ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) snake_case_ : Optional[int] = ["""HuggingFace is in """, """Paris is in France"""] snake_case_ : List[str] = text_classifier(lowercase__ ) self.assertEqual( nested_simplify(lowercase__ ) , [{"""label""": ANY(lowercase__ ), """score""": ANY(lowercase__ )}, {"""label""": ANY(lowercase__ ), """score""": ANY(lowercase__ )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format snake_case_ : List[Any] = text_classifier(lowercase__ , top_k=lowercase__ ) snake_case_ : int = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(lowercase__ ) , [[{"""label""": ANY(lowercase__ ), """score""": ANY(lowercase__ )}] * N, [{"""label""": ANY(lowercase__ ), """score""": ANY(lowercase__ )}] * N] , ) snake_case_ : List[str] = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""} snake_case_ : Optional[int] = text_classifier(lowercase__ ) self.assertEqual( nested_simplify(lowercase__ ) , {"""label""": ANY(lowercase__ ), """score""": ANY(lowercase__ )} , ) self.assertTrue(outputs["""label"""] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. snake_case_ : Optional[int] = [["""HuggingFace is in """, """Paris is in France"""]] with self.assertRaises(lowercase__ ): text_classifier(lowercase__ ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility snake_case_ : Union[str, Any] = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] ) self.assertEqual( nested_simplify(lowercase__ ) , [{"""label""": ANY(lowercase__ ), """score""": ANY(lowercase__ )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
713
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
48
0
"""simple docstring""" import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : Dict = VQModel _A : Union[str, Any] = """sample""" @property def __UpperCamelCase (self , lowercase__=(32, 32) ): snake_case_ : int = 4 snake_case_ : Union[str, Any] = 3 snake_case_ : Optional[int] = floats_tensor((batch_size, num_channels) + sizes ).to(lowercase__ ) return {"sample": image} @property def __UpperCamelCase (self ): return (3, 32, 32) @property def __UpperCamelCase (self ): return (3, 32, 32) def __UpperCamelCase (self ): snake_case_ : List[Any] = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 3, } snake_case_ : Union[str, Any] = self.dummy_input return init_dict, inputs_dict def __UpperCamelCase (self ): pass def __UpperCamelCase (self ): pass def __UpperCamelCase (self ): snake_case_ : int = VQModel.from_pretrained("""fusing/vqgan-dummy""" , output_loading_info=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(lowercase__ ) snake_case_ : Union[str, Any] = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def __UpperCamelCase (self ): snake_case_ : Optional[int] = VQModel.from_pretrained("""fusing/vqgan-dummy""" ) model.to(lowercase__ ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) snake_case_ : int = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) snake_case_ : str = image.to(lowercase__ ) with torch.no_grad(): snake_case_ : Dict = model(lowercase__ ).sample snake_case_ : int = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off snake_case_ : int = torch.tensor([-0.0153, -0.4044, -0.1880, -0.5161, -0.2418, -0.4072, -0.1612, -0.0633, -0.0143] ) # fmt: on self.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3 ) )
714
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('''fixtures/test_sentencepiece.model''') a_ = {'''target_lang''': '''fi''', '''source_lang''': '''en'''} a_ = '''>>zh<<''' a_ = '''Helsinki-NLP/''' if is_torch_available(): a_ = '''pt''' elif is_tf_available(): a_ = '''tf''' else: a_ = '''jax''' @require_sentencepiece class __lowercase ( _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : str = MarianTokenizer _A : List[str] = False _A : List[str] = True def __UpperCamelCase (self ): super().setUp() snake_case_ : Optional[int] = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] snake_case_ : Any = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) snake_case_ : Any = Path(self.tmpdirname ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) snake_case_ : Optional[Any] = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase (self , **lowercase__ ): return MarianTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def __UpperCamelCase (self , lowercase__ ): return ( "This is a test", "This is a test", ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = """</s>""" snake_case_ : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__ ) , lowercase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__ ) , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(lowercase__ ) , 9 ) def __UpperCamelCase (self ): self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def __UpperCamelCase (self ): snake_case_ : Any = MarianTokenizer.from_pretrained(f'{ORG_NAME}opus-mt-en-de' ) snake_case_ : Tuple = en_de_tokenizer(["""I am a small frog"""] , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) snake_case_ : Dict = [38, 1_21, 14, 6_97, 3_88_48, 0] self.assertListEqual(lowercase__ , batch.input_ids[0] ) snake_case_ : Tuple = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(lowercase__ ) snake_case_ : str = [x.name for x in Path(lowercase__ ).glob("""*""" )] self.assertIn("""source.spm""" , lowercase__ ) MarianTokenizer.from_pretrained(lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = self.get_tokenizer() snake_case_ : List[str] = tok( ["""I am a small frog""" * 10_00, """I am a small frog"""] , padding=lowercase__ , truncation=lowercase__ , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(batch.input_ids.shape , (2, 5_12) ) def __UpperCamelCase (self ): snake_case_ : Tuple = self.get_tokenizer() snake_case_ : Tuple = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=lowercase__ , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def __UpperCamelCase (self ): # fmt: off snake_case_ : str = {"""input_ids""": [[4_34_95, 4_62, 20, 4_21_64, 13_69, 52, 4_64, 1_32, 17_03, 4_92, 13, 74_91, 3_89_99, 6, 8, 4_64, 1_32, 17_03, 4_92, 13, 46_69, 3_78_67, 13, 75_25, 27, 15_93, 9_88, 13, 3_39_72, 70_29, 6, 20, 82_51, 3_83, 2, 2_70, 58_66, 37_88, 2, 23_53, 82_51, 1_23_38, 2, 1_39_58, 3_87, 2, 36_29, 69_53, 1_88, 29_00, 2, 1_39_58, 80_11, 1_15_01, 23, 84_60, 40_73, 3_40_09, 20, 4_35, 1_14_39, 27, 8, 84_60, 40_73, 60_04, 20, 99_88, 3_75, 27, 33, 2_66, 19_45, 10_76, 13_50, 3_78_67, 32_88, 5, 5_77, 10_76, 43_74, 8, 50_82, 5, 2_64_53, 2_57, 5_56, 4_03, 2, 2_42, 1_32, 3_83, 3_16, 4_92, 8, 1_07_67, 6, 3_16, 3_04, 42_39, 3, 0], [1_48, 1_57_22, 19, 18_39, 12, 13_50, 13, 2_23_27, 50_82, 54_18, 4_75_67, 3_59_38, 59, 3_18, 1_95_52, 1_08, 21_83, 54, 1_49_76, 48_35, 32, 5_47, 11_14, 8, 3_15, 24_17, 5, 92, 1_90_88, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00], [36, 63_95, 1_25_70, 3_91_47, 1_15_97, 6, 2_66, 4, 4_54_05, 72_96, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase__ , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def __UpperCamelCase (self ): snake_case_ : Any = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) snake_case_ : Dict = """Tämä on testi""" snake_case_ : List[Any] = """This is a test""" snake_case_ : Optional[int] = [76, 7, 20_47, 2] snake_case_ : List[str] = [69, 12, 11, 9_40, 2] snake_case_ : Any = tokenizer(lowercase__ ).input_ids self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : str = tokenizer(text_target=lowercase__ ).input_ids self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : int = tokenizer.decode(lowercase__ , skip_special_tokens=lowercase__ ) self.assertEqual(lowercase__ , lowercase__ )
48
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Optional[Any] = 0 for i in range(1 , 1_0_0_1 ): total += i**i return str(SCREAMING_SNAKE_CASE__ )[-1_0:] if __name__ == "__main__": print(solution())
715
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCAmelCase) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True}) _A : ClassVar[Features] = Features({"""audio""": Audio()}) _A : ClassVar[Features] = Features({"""transcription""": Value("""string""")}) _A : str = "audio" _A : str = "transcription" def __UpperCamelCase (self , lowercase__ ): if self.audio_column not in features: raise ValueError(f'Column {self.audio_column} is not present in features.' ) if not isinstance(features[self.audio_column] , lowercase__ ): raise ValueError(f'Column {self.audio_column} is not an Audio type.' ) snake_case_ : Optional[int] = copy.deepcopy(self ) snake_case_ : Tuple = self.input_schema.copy() snake_case_ : List[str] = features[self.audio_column] snake_case_ : Any = input_schema return task_template @property def __UpperCamelCase (self ): return {self.audio_column: "audio", self.transcription_column: "transcription"}
48
0
"""simple docstring""" import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __lowercase ( _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : List[str] = """hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline""" def __UpperCamelCase (self , lowercase__=0 ): snake_case_ : List[str] = np.random.RandomState(lowercase__ ) snake_case_ : List[str] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def __UpperCamelCase (self ): snake_case_ : Dict = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=lowercase__ ) snake_case_ : Optional[Any] = self.get_dummy_inputs() snake_case_ : Dict = pipe(**lowercase__ ).images snake_case_ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) snake_case_ : Union[str, Any] = np.array([0.65072, 0.58492, 0.48219, 0.55521, 0.53180, 0.55939, 0.50697, 0.39800, 0.46455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase (self ): snake_case_ : str = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) snake_case_ : Union[str, Any] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) snake_case_ : Optional[Any] = self.get_dummy_inputs() snake_case_ : str = pipe(**lowercase__ ).images snake_case_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) snake_case_ : Tuple = np.array([0.65863, 0.59425, 0.49326, 0.56313, 0.53875, 0.56627, 0.51065, 0.39777, 0.46330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase (self ): snake_case_ : str = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) snake_case_ : Any = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowercase__ ) snake_case_ : int = self.get_dummy_inputs() snake_case_ : Any = pipe(**lowercase__ ).images snake_case_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) snake_case_ : Dict = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase (self ): snake_case_ : List[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) snake_case_ : Optional[int] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowercase__ ) snake_case_ : Optional[Any] = self.get_dummy_inputs() snake_case_ : Optional[Any] = pipe(**lowercase__ ).images snake_case_ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) snake_case_ : Tuple = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase (self ): snake_case_ : int = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) snake_case_ : Optional[int] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowercase__ ) snake_case_ : Union[str, Any] = self.get_dummy_inputs() snake_case_ : Optional[Any] = pipe(**lowercase__ ).images snake_case_ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) snake_case_ : str = np.array([0.53817, 0.60812, 0.47384, 0.49530, 0.51894, 0.49814, 0.47984, 0.38958, 0.44271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase (self ): snake_case_ : Any = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) snake_case_ : Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowercase__ ) snake_case_ : int = self.get_dummy_inputs() snake_case_ : Optional[int] = pipe(**lowercase__ ).images snake_case_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) snake_case_ : Tuple = np.array([0.53895, 0.60808, 0.47933, 0.49608, 0.51886, 0.49950, 0.48053, 0.38957, 0.44200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase (self ): snake_case_ : Dict = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=lowercase__ ) snake_case_ : Tuple = self.get_dummy_inputs() snake_case_ : List[Any] = 3 * [inputs["""prompt"""]] # forward snake_case_ : Optional[Any] = pipe(**lowercase__ ) snake_case_ : Optional[Any] = output.images[0, -3:, -3:, -1] snake_case_ : Optional[int] = self.get_dummy_inputs() snake_case_ : Optional[int] = 3 * [inputs.pop("""prompt""" )] snake_case_ : str = pipe.tokenizer( lowercase__ , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=lowercase__ , return_tensors="""np""" , ) snake_case_ : Any = text_inputs["""input_ids"""] snake_case_ : Dict = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] snake_case_ : Optional[int] = prompt_embeds # forward snake_case_ : Optional[int] = pipe(**lowercase__ ) snake_case_ : int = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 def __UpperCamelCase (self ): snake_case_ : str = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=lowercase__ ) snake_case_ : Tuple = self.get_dummy_inputs() snake_case_ : List[Any] = 3 * ["""this is a negative prompt"""] snake_case_ : Any = negative_prompt snake_case_ : Dict = 3 * [inputs["""prompt"""]] # forward snake_case_ : Optional[int] = pipe(**lowercase__ ) snake_case_ : List[Any] = output.images[0, -3:, -3:, -1] snake_case_ : Optional[int] = self.get_dummy_inputs() snake_case_ : List[Any] = 3 * [inputs.pop("""prompt""" )] snake_case_ : List[Any] = [] for p in [prompt, negative_prompt]: snake_case_ : str = pipe.tokenizer( lowercase__ , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=lowercase__ , return_tensors="""np""" , ) snake_case_ : Any = text_inputs["""input_ids"""] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) snake_case_ : str = embeds # forward snake_case_ : str = pipe(**lowercase__ ) snake_case_ : int = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class __lowercase ( unittest.TestCase): """simple docstring""" @property def __UpperCamelCase (self ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __UpperCamelCase (self ): snake_case_ : str = ort.SessionOptions() snake_case_ : Any = False return options def __UpperCamelCase (self ): # using the PNDM scheduler by default snake_case_ : List[Any] = OnnxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=lowercase__ , feature_extractor=lowercase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) snake_case_ : Any = """A painting of a squirrel eating a burger""" np.random.seed(0 ) snake_case_ : Dict = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="""np""" ) snake_case_ : List[Any] = output.images snake_case_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) snake_case_ : Dict = np.array([0.0452, 0.0390, 0.0087, 0.0350, 0.0617, 0.0364, 0.0544, 0.0523, 0.0720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __UpperCamelCase (self ): snake_case_ : str = DDIMScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) snake_case_ : List[str] = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=lowercase__ , safety_checker=lowercase__ , feature_extractor=lowercase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) snake_case_ : List[Any] = """open neural network exchange""" snake_case_ : str = np.random.RandomState(0 ) snake_case_ : Dict = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=lowercase__ , output_type="""np""" ) snake_case_ : int = output.images snake_case_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) snake_case_ : str = np.array([0.2867, 0.1974, 0.1481, 0.7294, 0.7251, 0.6667, 0.4194, 0.5642, 0.6486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __UpperCamelCase (self ): snake_case_ : Optional[Any] = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) snake_case_ : List[Any] = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=lowercase__ , safety_checker=lowercase__ , feature_extractor=lowercase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) snake_case_ : Dict = """open neural network exchange""" snake_case_ : Any = np.random.RandomState(0 ) snake_case_ : str = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=lowercase__ , output_type="""np""" ) snake_case_ : Union[str, Any] = output.images snake_case_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) snake_case_ : Optional[int] = np.array([0.2306, 0.1959, 0.1593, 0.6549, 0.6394, 0.5408, 0.5065, 0.6010, 0.6161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __UpperCamelCase (self ): snake_case_ : str = 0 def test_callback_fn(lowercase__ , lowercase__ , lowercase__ ) -> None: snake_case_ : Optional[int] = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) snake_case_ : str = latents[0, -3:, -3:, -1] snake_case_ : str = np.array( [-0.6772, -0.3835, -1.2456, 0.1905, -1.0974, 0.6967, -1.9353, 0.0178, 1.0167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) snake_case_ : Union[str, Any] = latents[0, -3:, -3:, -1] snake_case_ : Optional[Any] = np.array( [-0.3351, 0.2241, -0.1837, -0.2325, -0.6577, 0.3393, -0.0241, 0.5899, 1.3875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 snake_case_ : Union[str, Any] = False snake_case_ : Any = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=lowercase__ , feature_extractor=lowercase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase__ ) snake_case_ : Optional[int] = """Andromeda galaxy in a bottle""" snake_case_ : Union[str, Any] = np.random.RandomState(0 ) pipe( prompt=lowercase__ , num_inference_steps=5 , guidance_scale=7.5 , generator=lowercase__ , callback=lowercase__ , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def __UpperCamelCase (self ): snake_case_ : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=lowercase__ , feature_extractor=lowercase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(lowercase__ , lowercase__ ) assert pipe.safety_checker is None snake_case_ : int = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowercase__ ) snake_case_ : int = OnnxStableDiffusionPipeline.from_pretrained(lowercase__ ) # sanity check that the pipeline still works assert pipe.safety_checker is None snake_case_ : Optional[Any] = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None
716
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : int = ["""pixel_values"""] def __init__(self , lowercase__ = True , lowercase__ = None , lowercase__ = 0.9 , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = True , lowercase__ = None , lowercase__ = 1 / 2_55 , lowercase__ = True , lowercase__ = True , lowercase__ = None , lowercase__ = None , **lowercase__ , ): super().__init__(**lowercase__ ) snake_case_ : Tuple = size if size is not None else {"""shortest_edge""": 2_24} snake_case_ : Union[str, Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) snake_case_ : str = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} snake_case_ : Dict = get_size_dict(lowercase__ , param_name="""crop_size""" ) snake_case_ : Union[str, Any] = do_resize snake_case_ : List[str] = size snake_case_ : str = crop_pct snake_case_ : str = resample snake_case_ : Optional[Any] = do_center_crop snake_case_ : Dict = crop_size snake_case_ : int = do_rescale snake_case_ : Optional[int] = rescale_factor snake_case_ : str = do_normalize snake_case_ : str = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN snake_case_ : List[str] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = None , **lowercase__ , ): snake_case_ : Tuple = get_size_dict(lowercase__ , default_to_square=lowercase__ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f'size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) if crop_pct is not None: if "shortest_edge" in size: snake_case_ : Optional[int] = int(size["""shortest_edge"""] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: snake_case_ : Dict = int(size["""height"""] / crop_pct ) else: snake_case_ : List[str] = (int(size["""height"""] / crop_pct ), int(size["""width"""] / crop_pct )) else: raise ValueError("""Invalid size for resize: {}""".format(lowercase__ ) ) snake_case_ : List[Any] = get_resize_output_image_size(lowercase__ , size=lowercase__ , default_to_square=lowercase__ ) else: if "shortest_edge" in size: snake_case_ : Optional[int] = get_resize_output_image_size(lowercase__ , size=size["""shortest_edge"""] , default_to_square=lowercase__ ) elif "height" in size and "width" in size: snake_case_ : int = (size["""height"""], size["""width"""]) else: raise ValueError("""Invalid size for resize: {}""".format(lowercase__ ) ) return resize(lowercase__ , size=lowercase__ , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): snake_case_ : int = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(f'size must contain \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(lowercase__ , size=(size["""height"""], size["""width"""]) , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return normalize(lowercase__ , mean=lowercase__ , std=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ): snake_case_ : str = do_resize if do_resize is not None else self.do_resize snake_case_ : Any = crop_pct if crop_pct is not None else self.crop_pct snake_case_ : List[Any] = resample if resample is not None else self.resample snake_case_ : str = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : str = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : str = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : List[Any] = image_mean if image_mean is not None else self.image_mean snake_case_ : int = image_std if image_std is not None else self.image_std snake_case_ : List[Any] = size if size is not None else self.size snake_case_ : Optional[Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) snake_case_ : List[Any] = crop_size if crop_size is not None else self.crop_size snake_case_ : int = get_size_dict(lowercase__ , param_name="""crop_size""" ) snake_case_ : List[str] = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_pct is None: raise ValueError("""Crop_pct must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case_ : int = [to_numpy_array(lowercase__ ) for image in images] if do_resize: snake_case_ : str = [self.resize(image=lowercase__ , size=lowercase__ , crop_pct=lowercase__ , resample=lowercase__ ) for image in images] if do_center_crop: snake_case_ : Optional[int] = [self.center_crop(image=lowercase__ , size=lowercase__ ) for image in images] if do_rescale: snake_case_ : List[Any] = [self.rescale(image=lowercase__ , scale=lowercase__ ) for image in images] if do_normalize: snake_case_ : Optional[Any] = [self.normalize(image=lowercase__ , mean=lowercase__ , std=lowercase__ ) for image in images] snake_case_ : List[Any] = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] snake_case_ : Dict = {"""pixel_values""": images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
48
0
"""simple docstring""" from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class __lowercase : """simple docstring""" def __init__(self , lowercase__ = None ): if components is None: snake_case_ : Any = [] snake_case_ : Dict = list(lowercase__ ) def __len__(self ): return len(self.__components ) def __str__(self ): return "(" + ",".join(map(lowercase__ , self.__components ) ) + ")" def __add__(self , lowercase__ ): snake_case_ : Any = len(self ) if size == len(lowercase__ ): snake_case_ : Union[str, Any] = [self.__components[i] + other.component(lowercase__ ) for i in range(lowercase__ )] return Vector(lowercase__ ) else: raise Exception("""must have the same size""" ) def __sub__(self , lowercase__ ): snake_case_ : Optional[Any] = len(self ) if size == len(lowercase__ ): snake_case_ : str = [self.__components[i] - other.component(lowercase__ ) for i in range(lowercase__ )] return Vector(lowercase__ ) else: # error case raise Exception("""must have the same size""" ) @overload def __mul__(self , lowercase__ ): ... @overload def __mul__(self , lowercase__ ): ... def __mul__(self , lowercase__ ): if isinstance(lowercase__ , (float, int) ): snake_case_ : str = [c * other for c in self.__components] return Vector(lowercase__ ) elif isinstance(lowercase__ , lowercase__ ) and len(self ) == len(lowercase__ ): snake_case_ : str = len(self ) snake_case_ : List[Any] = [self.__components[i] * other.component(lowercase__ ) for i in range(lowercase__ )] return sum(lowercase__ ) else: # error case raise Exception("""invalid operand!""" ) def __UpperCamelCase (self ): return Vector(self.__components ) def __UpperCamelCase (self , lowercase__ ): if isinstance(lowercase__ , lowercase__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("""index out of range""" ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): assert -len(self.__components ) <= pos < len(self.__components ) snake_case_ : Any = value def __UpperCamelCase (self ): if len(self.__components ) == 0: raise Exception("""Vector is empty""" ) snake_case_ : int = [c**2 for c in self.__components] return math.sqrt(sum(lowercase__ ) ) def __UpperCamelCase (self , lowercase__ , lowercase__ = False ): snake_case_ : str = self * other snake_case_ : Dict = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return Vector([0] * dimension ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )) snake_case_ : int = [0] * dimension snake_case_ : Tuple = 1 return Vector(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : Vector , SCREAMING_SNAKE_CASE__ : Vector ): """simple docstring""" assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , (int, float) )) ) return x * scalar + y def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" random.seed(SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = [random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] return Vector(SCREAMING_SNAKE_CASE__ ) class __lowercase : """simple docstring""" def __init__(self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : str = matrix snake_case_ : List[Any] = w snake_case_ : List[Any] = h def __str__(self ): snake_case_ : Union[str, Any] = """""" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__(self , lowercase__ ): if self.__width == other.width() and self.__height == other.height(): snake_case_ : List[str] = [] for i in range(self.__height ): snake_case_ : List[Any] = [ self.__matrix[i][j] + other.component(lowercase__ , lowercase__ ) for j in range(self.__width ) ] matrix.append(lowercase__ ) return Matrix(lowercase__ , self.__width , self.__height ) else: raise Exception("""matrix must have the same dimension!""" ) def __sub__(self , lowercase__ ): if self.__width == other.width() and self.__height == other.height(): snake_case_ : List[str] = [] for i in range(self.__height ): snake_case_ : Dict = [ self.__matrix[i][j] - other.component(lowercase__ , lowercase__ ) for j in range(self.__width ) ] matrix.append(lowercase__ ) return Matrix(lowercase__ , self.__width , self.__height ) else: raise Exception("""matrices must have the same dimension!""" ) @overload def __mul__(self , lowercase__ ): ... @overload def __mul__(self , lowercase__ ): ... def __mul__(self , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): # matrix-vector if len(lowercase__ ) == self.__width: snake_case_ : Optional[int] = zero_vector(self.__height ) for i in range(self.__height ): snake_case_ : List[str] = [ self.__matrix[i][j] * other.component(lowercase__ ) for j in range(self.__width ) ] ans.change_component(lowercase__ , sum(lowercase__ ) ) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""" ) elif isinstance(lowercase__ , (int, float) ): # matrix-scalar snake_case_ : Optional[int] = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(lowercase__ , self.__width , self.__height ) return None def __UpperCamelCase (self ): return self.__height def __UpperCamelCase (self ): return self.__width def __UpperCamelCase (self , lowercase__ , lowercase__ ): if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""" ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): if 0 <= x < self.__height and 0 <= y < self.__width: snake_case_ : List[Any] = value else: raise Exception("""change_component: indices out of bounds""" ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): if self.__height != self.__width: raise Exception("""Matrix is not square""" ) snake_case_ : int = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(lowercase__ ) ): snake_case_ : Tuple = minor[i][:y] + minor[i][y + 1 :] return Matrix(lowercase__ , self.__width - 1 , self.__height - 1 ).determinant() def __UpperCamelCase (self , lowercase__ , lowercase__ ): if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(lowercase__ , lowercase__ ) else: raise Exception("""Indices out of bounds""" ) def __UpperCamelCase (self ): if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if self.__height < 1: raise Exception("""Matrix has no element""" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: snake_case_ : str = [ self.__matrix[0][y] * self.cofactor(0 , lowercase__ ) for y in range(self.__width ) ] return sum(lowercase__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : list[list[float]] = [[0] * n for _ in range(SCREAMING_SNAKE_CASE__ )] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" random.seed(SCREAMING_SNAKE_CASE__ ) snake_case_ : list[list[float]] = [ [random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] for _ in range(SCREAMING_SNAKE_CASE__ ) ] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
717
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: a_ = None a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} a_ = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } a_ = { '''facebook/mbart-large-en-ro''': 1024, '''facebook/mbart-large-cc25''': 1024, } # fmt: off a_ = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Dict = VOCAB_FILES_NAMES _A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _A : str = ["""input_ids""", """attention_mask"""] _A : Tuple = MBartTokenizer _A : List[int] = [] _A : List[int] = [] def __init__(self , lowercase__=None , lowercase__=None , lowercase__="<s>" , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<mask>" , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ , ): # Mask token behave like a normal word, i.e. include the space before it snake_case_ : int = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token super().__init__( vocab_file=lowercase__ , tokenizer_file=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , unk_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , src_lang=lowercase__ , tgt_lang=lowercase__ , additional_special_tokens=lowercase__ , **lowercase__ , ) snake_case_ : Dict = vocab_file snake_case_ : Optional[int] = False if not self.vocab_file else True snake_case_ : Optional[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) snake_case_ : Any = { lang_code: self.convert_tokens_to_ids(lowercase__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } snake_case_ : Tuple = src_lang if src_lang is not None else """en_XX""" snake_case_ : Tuple = self.convert_tokens_to_ids(self._src_lang ) snake_case_ : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __UpperCamelCase (self ): return self._src_lang @src_lang.setter def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): snake_case_ : List[Any] = [self.sep_token_id] snake_case_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , **lowercase__ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) snake_case_ : int = src_lang snake_case_ : List[str] = self(lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , **lowercase__ ) snake_case_ : List[str] = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Union[str, Any] = tgt_lang_id return inputs def __UpperCamelCase (self , lowercase__ , lowercase__ = "en_XX" , lowercase__ = None , lowercase__ = "ro_RO" , **lowercase__ , ): snake_case_ : List[str] = src_lang snake_case_ : int = tgt_lang return super().prepare_seqaseq_batch(lowercase__ , lowercase__ , **lowercase__ ) def __UpperCamelCase (self ): return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCamelCase (self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Tuple = [] snake_case_ : List[Any] = [self.eos_token_id, self.cur_lang_code] snake_case_ : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Optional[int] = [] snake_case_ : Optional[Any] = [self.eos_token_id, self.cur_lang_code] snake_case_ : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ : int = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowercase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory.' ) return snake_case_ : List[str] = os.path.join( lowercase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ): copyfile(self.vocab_file , lowercase__ ) return (out_vocab_file,)
48
0
"""simple docstring""" import copy import random from transformers import CLIPTokenizer class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self , *lowercase__ , **lowercase__ ): super().__init__(*lowercase__ , **lowercase__ ) snake_case_ : Union[str, Any] = {} def __UpperCamelCase (self , lowercase__ , *lowercase__ , **lowercase__ ): snake_case_ : Optional[int] = super().add_tokens(lowercase__ , *lowercase__ , **lowercase__ ) if num_added_tokens == 0: raise ValueError( f'The tokenizer already contains the token {placeholder_token}. Please pass a different' """ `placeholder_token` that is not already in the tokenizer.""" ) def __UpperCamelCase (self , lowercase__ , *lowercase__ , lowercase__=1 , **lowercase__ ): snake_case_ : Optional[int] = [] if num_vec_per_token == 1: self.try_adding_tokens(lowercase__ , *lowercase__ , **lowercase__ ) output.append(lowercase__ ) else: snake_case_ : Dict = [] for i in range(lowercase__ ): snake_case_ : Union[str, Any] = placeholder_token + f'_{i}' self.try_adding_tokens(lowercase__ , *lowercase__ , **lowercase__ ) output.append(lowercase__ ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f'The tokenizer already has placeholder token {token} that can get confused with' f' {placeholder_token}keep placeholder tokens independent' ) snake_case_ : str = output def __UpperCamelCase (self , lowercase__ , lowercase__=False , lowercase__=1.0 ): if isinstance(lowercase__ , lowercase__ ): snake_case_ : Dict = [] for i in range(len(lowercase__ ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=lowercase__ ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: snake_case_ : str = self.token_map[placeholder_token] snake_case_ : str = tokens[: 1 + int(len(lowercase__ ) * prop_tokens_to_load )] if vector_shuffle: snake_case_ : Optional[Any] = copy.copy(lowercase__ ) random.shuffle(lowercase__ ) snake_case_ : Optional[int] = text.replace(lowercase__ , """ """.join(lowercase__ ) ) return text def __call__(self , lowercase__ , *lowercase__ , lowercase__=False , lowercase__=1.0 , **lowercase__ ): return super().__call__( self.replace_placeholder_tokens_in_text( lowercase__ , vector_shuffle=lowercase__ , prop_tokens_to_load=lowercase__ ) , *lowercase__ , **lowercase__ , ) def __UpperCamelCase (self , lowercase__ , *lowercase__ , lowercase__=False , lowercase__=1.0 , **lowercase__ ): return super().encode( self.replace_placeholder_tokens_in_text( lowercase__ , vector_shuffle=lowercase__ , prop_tokens_to_load=lowercase__ ) , *lowercase__ , **lowercase__ , )
718
"""simple docstring""" import argparse import hashlib # hashlib is only used inside the Test class import struct class __lowercase : """simple docstring""" def __init__(self , lowercase__ ): snake_case_ : Union[str, Any] = data snake_case_ : List[str] = [0X6_7_4_5_2_3_0_1, 0Xe_f_c_d_a_b_8_9, 0X9_8_b_a_d_c_f_e, 0X1_0_3_2_5_4_7_6, 0Xc_3_d_2_e_1_f_0] @staticmethod def __UpperCamelCase (lowercase__ , lowercase__ ): return ((n << b) | (n >> (32 - b))) & 0Xf_f_f_f_f_f_f_f def __UpperCamelCase (self ): snake_case_ : Any = B"""\x80""" + B"""\x00""" * (63 - (len(self.data ) + 8) % 64) snake_case_ : Tuple = self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def __UpperCamelCase (self ): return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = list(struct.unpack(""">16L""" , lowercase__ ) ) + [0] * 64 for i in range(16 , 80 ): snake_case_ : Dict = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def __UpperCamelCase (self ): snake_case_ : List[Any] = self.padding() snake_case_ : Any = self.split_blocks() for block in self.blocks: snake_case_ : Any = self.expand_block(lowercase__ ) snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = self.h for i in range(0 , 80 ): if 0 <= i < 20: snake_case_ : Optional[Any] = (b & c) | ((~b) & d) snake_case_ : List[str] = 0X5_a_8_2_7_9_9_9 elif 20 <= i < 40: snake_case_ : Union[str, Any] = b ^ c ^ d snake_case_ : Tuple = 0X6_e_d_9_e_b_a_1 elif 40 <= i < 60: snake_case_ : str = (b & c) | (b & d) | (c & d) snake_case_ : List[str] = 0X8_f_1_b_b_c_d_c elif 60 <= i < 80: snake_case_ : Tuple = b ^ c ^ d snake_case_ : str = 0Xc_a_6_2_c_1_d_6 snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Optional[Any] = ( self.rotate(lowercase__ , 5 ) + f + e + k + expanded_block[i] & 0Xf_f_f_f_f_f_f_f, a, self.rotate(lowercase__ , 30 ), c, d, ) snake_case_ : Any = ( self.h[0] + a & 0Xf_f_f_f_f_f_f_f, self.h[1] + b & 0Xf_f_f_f_f_f_f_f, self.h[2] + c & 0Xf_f_f_f_f_f_f_f, self.h[3] + d & 0Xf_f_f_f_f_f_f_f, self.h[4] + e & 0Xf_f_f_f_f_f_f_f, ) return ("{:08x}" * 5).format(*self.h ) def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Union[str, Any] = b"""Test String""" assert SHAaHash(SCREAMING_SNAKE_CASE__ ).final_hash() == hashlib.shaa(SCREAMING_SNAKE_CASE__ ).hexdigest() # noqa: S324 def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : int = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument("""--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) snake_case_ : Optional[int] = parser.parse_args() snake_case_ : Optional[int] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: snake_case_ : List[str] = f.read() else: snake_case_ : Dict = bytes(SCREAMING_SNAKE_CASE__ , """utf-8""" ) print(SHAaHash(SCREAMING_SNAKE_CASE__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
48
0
"""simple docstring""" import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase ( _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : Dict = CLIPTokenizer _A : Any = CLIPTokenizerFast _A : List[Any] = True _A : Optional[Any] = {} _A : int = False def __UpperCamelCase (self ): super().setUp() # fmt: off snake_case_ : Optional[Any] = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on snake_case_ : List[Any] = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) snake_case_ : Optional[Any] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>"""] snake_case_ : Optional[int] = {"""unk_token""": """<unk>"""} snake_case_ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case_ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowercase__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowercase__ ) ) def __UpperCamelCase (self , **lowercase__ ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def __UpperCamelCase (self , **lowercase__ ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowercase__ ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = """lower newer""" snake_case_ : str = """lower newer""" return input_text, output_text def __UpperCamelCase (self ): snake_case_ : Optional[int] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case_ : Optional[Any] = """lower newer""" snake_case_ : Union[str, Any] = ["""lo""", """w""", """er</w>""", """n""", """e""", """w""", """er</w>"""] snake_case_ : Any = tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : Any = tokens + [tokenizer.unk_token] snake_case_ : Dict = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , lowercase__ ) @require_ftfy def __UpperCamelCase (self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): snake_case_ : List[str] = self.tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) snake_case_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) snake_case_ : List[Any] = """A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d.""" snake_case_ : List[Any] = tokenizer_s.tokenize(lowercase__ ) snake_case_ : Optional[Any] = tokenizer_r.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways snake_case_ : str = """xa\u0303y""" + """ """ + """x\xe3y""" snake_case_ : Dict = tokenizer_s.tokenize(lowercase__ ) snake_case_ : List[str] = tokenizer_r.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) # Test that the tokenization is identical on unicode of space type snake_case_ : Optional[Any] = [ """\u0009""", # (horizontal tab, '\t') """\u000B""", # (vertical tab) """\u000C""", # (form feed) """\u0020""", # (space, ' ') """\u200E""", # (left-to-right mark):w """\u200F""", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: snake_case_ : Tuple = tokenizer_s.tokenize(lowercase__ ) snake_case_ : List[Any] = tokenizer_r.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) # Test that the tokenization is identical on unicode of line break type snake_case_ : Dict = [ """\u000A""", # (line feed, '\n') """\r\n""", # (carriage return and line feed, '\r\n') """\u000D""", # (carriage return, '\r') """\r""", # (carriage return, '\r') """\u000D""", # (carriage return, '\r') """\u2028""", # (line separator) """\u2029""", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: snake_case_ : Any = tokenizer_s.tokenize(lowercase__ ) snake_case_ : Optional[int] = tokenizer_r.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) def __UpperCamelCase (self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): snake_case_ : List[str] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` snake_case_ : Dict = f'{text_of_1_token} {text_of_1_token}' snake_case_ : List[str] = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , ) snake_case_ : Union[str, Any] = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , ) snake_case_ : Optional[int] = f' {text}' snake_case_ : int = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , ) snake_case_ : List[Any] = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ) + 1, 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , ) def __UpperCamelCase (self ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(lowercase__ ) as context: self.rust_tokenizer_class.from_pretrained("""robot-test/old-clip-tokenizer""" ) self.assertTrue( context.exception.args[0].startswith( """The `backend_tokenizer` provided does not match the expected format.""" ) ) @require_ftfy def __UpperCamelCase (self ): super().test_tokenization_python_rust_equals() def __UpperCamelCase (self ): # CLIP always lower cases letters pass
719
"""simple docstring""" from manim import * class __lowercase ( _UpperCAmelCase): """simple docstring""" def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = Rectangle(height=0.5 , width=0.5 ) snake_case_ : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) snake_case_ : Optional[Any] = [mem.copy() for i in range(6 )] snake_case_ : str = [mem.copy() for i in range(6 )] snake_case_ : str = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : Any = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[str] = VGroup(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[Any] = Text("""CPU""" , font_size=24 ) snake_case_ : Tuple = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowercase__ ) snake_case_ : List[Any] = [mem.copy() for i in range(4 )] snake_case_ : Tuple = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[str] = Text("""GPU""" , font_size=24 ) snake_case_ : Any = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) gpu.move_to([-1, -1, 0] ) self.add(lowercase__ ) snake_case_ : Optional[Any] = [mem.copy() for i in range(6 )] snake_case_ : List[Any] = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : Dict = Text("""Model""" , font_size=24 ) snake_case_ : int = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) model.move_to([3, -1.0, 0] ) self.add(lowercase__ ) snake_case_ : Dict = [] for i, rect in enumerate(lowercase__ ): rect.set_stroke(lowercase__ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) snake_case_ : List[str] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowercase__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowercase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase__ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase__ , buff=0.0 ) self.add(lowercase__ ) cpu_targs.append(lowercase__ ) snake_case_ : List[str] = [mem.copy() for i in range(6 )] snake_case_ : List[str] = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : str = Text("""Loaded Checkpoint""" , font_size=24 ) snake_case_ : Any = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , aligned_edge=lowercase__ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) snake_case_ : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) snake_case_ : Union[str, Any] = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowercase__ , lowercase__ ) snake_case_ : List[Any] = MarkupText( f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(lowercase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) snake_case_ : List[Any] = MarkupText( f'Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowercase__ ) , Write(lowercase__ ) ) self.play(Write(lowercase__ , run_time=1 ) , Create(lowercase__ , run_time=1 ) ) snake_case_ : Optional[int] = [] snake_case_ : List[str] = [] for i, rect in enumerate(lowercase__ ): snake_case_ : Optional[Any] = fill.copy().set_fill(lowercase__ , opacity=0.7 ) target.move_to(lowercase__ ) first_animations.append(GrowFromCenter(lowercase__ , run_time=1 ) ) snake_case_ : List[Any] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(lowercase__ , run_time=1.5 ) ) self.play(*lowercase__ ) self.play(*lowercase__ ) self.wait()
48
0
"""simple docstring""" import re from filelock import FileLock try: import nltk a_ = True except (ImportError, ModuleNotFoundError): a_ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" re.sub("""<n>""" , """""" , SCREAMING_SNAKE_CASE__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(SCREAMING_SNAKE_CASE__ ) )
720
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" snake_case_ : Union[str, Any] = 0 if start < end: snake_case_ : Union[str, Any] = randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = a[end] snake_case_ : Dict = a[pivot] snake_case_ : Any = temp snake_case_ , snake_case_ : Dict = _in_place_partition(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , p - 1 ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE__ , p + 1 , SCREAMING_SNAKE_CASE__ ) return count def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" snake_case_ : Tuple = 0 snake_case_ : List[Any] = randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : Dict = a[end] snake_case_ : List[Any] = a[pivot] snake_case_ : Optional[Any] = temp snake_case_ : List[str] = start - 1 for index in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value snake_case_ : Any = new_pivot_index + 1 snake_case_ : Tuple = a[new_pivot_index] snake_case_ : Optional[int] = a[index] snake_case_ : Tuple = temp snake_case_ : Union[str, Any] = a[new_pivot_index + 1] snake_case_ : Union[str, Any] = a[end] snake_case_ : Union[str, Any] = temp return new_pivot_index + 1, count a_ = TemporaryFile() a_ = 100 # 1000 elements are to be sorted a_ , a_ = 0, 1 # mean and standard deviation a_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array a_ = np.load(outfile) a_ = len(M) - 1 a_ = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
48
0
"""simple docstring""" import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py a_ = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. a_ = direct_transformers_import(PATH_TO_TRANSFORMERS) a_ = transformers.models.auto.configuration_auto.CONFIG_MAPPING a_ = { # used to compute the property `self.chunk_length` '''EncodecConfig''': ['''overlap'''], # used as `self.bert_model = BertModel(config, ...)` '''DPRConfig''': True, # not used in modeling files, but it's an important information '''FSMTConfig''': ['''langs'''], # used internally in the configuration class file '''GPTNeoConfig''': ['''attention_types'''], # used internally in the configuration class file '''EsmConfig''': ['''is_folding_model'''], # used during training (despite we don't have training script for these models yet) '''Mask2FormerConfig''': ['''ignore_value'''], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) '''OneFormerConfig''': ['''ignore_value''', '''norm'''], # used during preprocessing and collation, see `collating_graphormer.py` '''GraphormerConfig''': ['''spatial_pos_max'''], # used internally in the configuration class file '''T5Config''': ['''feed_forward_proj'''], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally '''MT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''], '''UMT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''], # used internally in the configuration class file '''LongT5Config''': ['''feed_forward_proj'''], # used internally in the configuration class file '''SwitchTransformersConfig''': ['''feed_forward_proj'''], # having default values other than `1e-5` - we can't fix them without breaking '''BioGptConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''GLPNConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''SegformerConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''CvtConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''PerceiverConfig''': ['''layer_norm_eps'''], # used internally to calculate the feature size '''InformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate the feature size '''TimeSeriesTransformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate the feature size '''AutoformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate `mlp_dim` '''SamVisionConfig''': ['''mlp_ratio'''], # For (head) training, but so far not implemented '''ClapAudioConfig''': ['''num_classes'''], # Not used, but providing useful information to users '''SpeechT5HifiGanConfig''': ['''sampling_rate'''], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { '''CLIPSegConfig''': True, '''DeformableDetrConfig''': True, '''DetaConfig''': True, '''DinatConfig''': True, '''DonutSwinConfig''': True, '''EfficientFormerConfig''': True, '''FSMTConfig''': True, '''JukeboxConfig''': True, '''LayoutLMv2Config''': True, '''MaskFormerSwinConfig''': True, '''MT5Config''': True, '''NatConfig''': True, '''OneFormerConfig''': True, '''PerceiverConfig''': True, '''RagConfig''': True, '''SpeechT5Config''': True, '''SwinConfig''': True, '''Swin2SRConfig''': True, '''Swinv2Config''': True, '''SwitchTransformersConfig''': True, '''TableTransformerConfig''': True, '''TapasConfig''': True, '''TransfoXLConfig''': True, '''UniSpeechConfig''': True, '''UniSpeechSatConfig''': True, '''WavLMConfig''': True, '''WhisperConfig''': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) '''JukeboxPriorConfig''': True, # TODO: @Younes (for `is_decoder`) '''Pix2StructTextConfig''': True, } ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" snake_case_ : Optional[Any] = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f'config.{attribute}' in modeling_source or f'getattr(config, "{attribute}"' in modeling_source or f'getattr(self.config, "{attribute}"' in modeling_source ): snake_case_ : Dict = True # Deal with multi-line cases elif ( re.search( Rf'getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"' , SCREAMING_SNAKE_CASE__ , ) is not None ): snake_case_ : Tuple = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: snake_case_ : Tuple = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files snake_case_ : int = [ """bos_index""", """eos_index""", """pad_index""", """unk_index""", """mask_index""", """image_size""", """use_cache""", """out_features""", """out_indices""", ] snake_case_ : str = ["""encoder_no_repeat_ngram_size"""] # Special cases to be allowed snake_case_ : str = True if not attribute_used: snake_case_ : Dict = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: snake_case_ : List[str] = True elif attribute in ["tie_word_embeddings"] and default_value is False: snake_case_ : Optional[Any] = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: snake_case_ : Optional[int] = True elif attribute.endswith("""_token_id""" ): snake_case_ : Tuple = True # configuration class specific cases if not case_allowed: snake_case_ : List[str] = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) snake_case_ : Optional[Any] = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] ): """simple docstring""" snake_case_ : List[str] = dict(inspect.signature(config_class.__init__ ).parameters ) snake_case_ : List[Any] = [x for x in list(signature.keys() ) if x not in ["""self""", """kwargs"""]] snake_case_ : List[str] = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass snake_case_ : Optional[Any] = {} if len(config_class.attribute_map ) > 0: snake_case_ : Optional[int] = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files snake_case_ : str = inspect.getsourcefile(SCREAMING_SNAKE_CASE__ ) snake_case_ : Union[str, Any] = os.path.dirname(SCREAMING_SNAKE_CASE__ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. snake_case_ : List[str] = [os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for fn in os.listdir(SCREAMING_SNAKE_CASE__ ) if fn.startswith("""modeling_""" )] # Get the source code strings snake_case_ : Union[str, Any] = [] for path in modeling_paths: if os.path.isfile(SCREAMING_SNAKE_CASE__ ): with open(SCREAMING_SNAKE_CASE__ ) as fp: modeling_sources.append(fp.read() ) snake_case_ : Any = [] for config_param, default_value in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # `attributes` here is all the variant names for `config_param` snake_case_ : int = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): unused_attributes.append(attributes[0] ) return sorted(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Optional[int] = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) snake_case_ : str = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda SCREAMING_SNAKE_CASE__ : inspect.isclass(SCREAMING_SNAKE_CASE__ ) and issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and inspect.getmodule(SCREAMING_SNAKE_CASE__ ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: snake_case_ : int = check_config_attributes_being_used(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: snake_case_ : Optional[Any] = unused_attributes if len(SCREAMING_SNAKE_CASE__ ) > 0: snake_case_ : Optional[int] = """The following configuration classes contain unused attributes in the corresponding modeling files:\n""" for name, attributes in configs_with_unused_attributes.items(): error += f'{name}: {attributes}\n' raise ValueError(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": check_config_attributes()
721
"""simple docstring""" import random def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : bool = False ): """simple docstring""" snake_case_ : dict = {i: [] for i in range(SCREAMING_SNAKE_CASE__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(SCREAMING_SNAKE_CASE__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(i + 1 , SCREAMING_SNAKE_CASE__ ): if random.random() < probability: graph[i].append(SCREAMING_SNAKE_CASE__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(SCREAMING_SNAKE_CASE__ ) return graph def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" return { i: [j for j in range(SCREAMING_SNAKE_CASE__ ) if i != j] for i in range(SCREAMING_SNAKE_CASE__ ) } if __name__ == "__main__": import doctest doctest.testmod()
48
0
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class _lowerCAmelCase : def __init__( self : str , __snake_case : Optional[int] , __snake_case : Optional[int]=13 , __snake_case : Dict=7 , __snake_case : List[Any]=True , __snake_case : str=True , __snake_case : Union[str, Any]=True , __snake_case : Optional[int]=True , __snake_case : int=99 , __snake_case : Union[str, Any]=32 , __snake_case : Tuple=2 , __snake_case : Optional[int]=4 , __snake_case : int=37 , __snake_case : Optional[int]="gelu" , __snake_case : Optional[Any]=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : str=512 , __snake_case : Optional[int]=16 , __snake_case : Optional[int]=2 , __snake_case : List[str]=0.0_2 , __snake_case : Optional[Any]=3 , __snake_case : Any=4 , __snake_case : Optional[Any]=None , ): lowerCamelCase :List[Any] = parent lowerCamelCase :Optional[Any] = 13 lowerCamelCase :Union[str, Any] = 7 lowerCamelCase :str = True lowerCamelCase :Optional[int] = True lowerCamelCase :Optional[int] = True lowerCamelCase :List[str] = True lowerCamelCase :Union[str, Any] = 99 lowerCamelCase :str = 384 lowerCamelCase :List[str] = 2 lowerCamelCase :Optional[Any] = 4 lowerCamelCase :Any = 37 lowerCamelCase :List[Any] = '''gelu''' lowerCamelCase :Dict = 0.1 lowerCamelCase :Optional[int] = 0.1 lowerCamelCase :List[Any] = 512 lowerCamelCase :List[Any] = 16 lowerCamelCase :Union[str, Any] = 2 lowerCamelCase :Any = 0.0_2 lowerCamelCase :Union[str, Any] = 3 lowerCamelCase :Optional[int] = 4 lowerCamelCase :int = 128 lowerCamelCase :List[Any] = 2 lowerCamelCase :Optional[int] = 9 lowerCamelCase :List[Any] = 1 lowerCamelCase :Dict = None def snake_case ( self : Optional[Any] ): lowerCamelCase :int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase :Optional[Any] = None if self.use_input_mask: lowerCamelCase :int = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase :int = None if self.use_token_type_ids: lowerCamelCase :Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase :Optional[int] = None lowerCamelCase :List[Any] = None lowerCamelCase :Union[str, Any] = None if self.use_labels: lowerCamelCase :Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase :Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase :int = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase :List[str] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__snake_case , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self : Dict , __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : Optional[Any] ): lowerCamelCase :int = TFConvBertModel(config=__snake_case ) lowerCamelCase :int = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCamelCase :Any = [input_ids, input_mask] lowerCamelCase :Dict = model(__snake_case ) lowerCamelCase :List[str] = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Any , __snake_case : Tuple , __snake_case : List[str] ): lowerCamelCase :str = TFConvBertForMaskedLM(config=__snake_case ) lowerCamelCase :Dict = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowerCamelCase :List[Any] = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self : List[Any] , __snake_case : List[Any] , __snake_case : Optional[int] , __snake_case : Optional[int] , __snake_case : Any , __snake_case : str , __snake_case : Dict , __snake_case : Tuple ): lowerCamelCase :Any = self.num_labels lowerCamelCase :List[str] = TFConvBertForSequenceClassification(config=__snake_case ) lowerCamelCase :int = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowerCamelCase :str = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : int ): lowerCamelCase :Union[str, Any] = self.num_choices lowerCamelCase :int = TFConvBertForMultipleChoice(config=__snake_case ) lowerCamelCase :int = tf.tile(tf.expand_dims(__snake_case , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase :Optional[Any] = tf.tile(tf.expand_dims(__snake_case , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase :Union[str, Any] = tf.tile(tf.expand_dims(__snake_case , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase :List[Any] = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowerCamelCase :Optional[int] = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case ( self : Union[str, Any] , __snake_case : List[Any] , __snake_case : Dict , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : Optional[int] ): lowerCamelCase :List[Any] = self.num_labels lowerCamelCase :Any = TFConvBertForTokenClassification(config=__snake_case ) lowerCamelCase :List[str] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowerCamelCase :Any = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self : Any , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : List[str] ): lowerCamelCase :Dict = TFConvBertForQuestionAnswering(config=__snake_case ) lowerCamelCase :str = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowerCamelCase :List[Any] = model(__snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case ( self : Optional[Any] ): lowerCamelCase :List[Any] = self.prepare_config_and_inputs() ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) :str = config_and_inputs lowerCamelCase :Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _UpperCAmelCase = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def snake_case ( self : int ): lowerCamelCase :str = TFConvBertModelTester(self ) lowerCamelCase :str = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def snake_case ( self : Optional[Any] ): self.config_tester.run_common_tests() def snake_case ( self : Optional[int] ): lowerCamelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def snake_case ( self : List[Any] ): lowerCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__snake_case ) def snake_case ( self : Any ): lowerCamelCase :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__snake_case ) def snake_case ( self : Tuple ): lowerCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__snake_case ) def snake_case ( self : Any ): lowerCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__snake_case ) def snake_case ( self : str ): lowerCamelCase :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__snake_case ) @slow def snake_case ( self : int ): lowerCamelCase , lowerCamelCase :int = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase :List[str] = True lowerCamelCase :List[Any] = True if hasattr(__snake_case , '''use_cache''' ): lowerCamelCase :List[Any] = True lowerCamelCase :int = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) lowerCamelCase :Any = getattr(self.model_tester , '''key_length''' , __snake_case ) for model_class in self.all_model_classes: lowerCamelCase :Dict = self._prepare_for_class(__snake_case , __snake_case ) lowerCamelCase :Dict = model_class(__snake_case ) lowerCamelCase :Optional[int] = len(model(__snake_case ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__snake_case , saved_model=__snake_case ) lowerCamelCase :Optional[Any] = os.path.join(__snake_case , '''saved_model''' , '''1''' ) lowerCamelCase :str = tf.keras.models.load_model(__snake_case ) lowerCamelCase :List[Any] = model(__snake_case ) if self.is_encoder_decoder: lowerCamelCase :List[Any] = outputs['''encoder_hidden_states'''] lowerCamelCase :Optional[int] = outputs['''encoder_attentions'''] else: lowerCamelCase :Any = outputs['''hidden_states'''] lowerCamelCase :Union[str, Any] = outputs['''attentions'''] self.assertEqual(len(__snake_case ) , __snake_case ) lowerCamelCase :Optional[int] = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__snake_case ) , __snake_case ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def snake_case ( self : Union[str, Any] ): lowerCamelCase :int = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) self.assertIsNotNone(__snake_case ) def snake_case ( self : Union[str, Any] ): lowerCamelCase , lowerCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase :Optional[int] = True lowerCamelCase :Optional[Any] = getattr(self.model_tester , '''decoder_seq_length''' , self.model_tester.seq_length ) lowerCamelCase :List[Any] = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) lowerCamelCase :int = getattr(self.model_tester , '''key_length''' , __snake_case ) lowerCamelCase :List[Any] = getattr(self.model_tester , '''key_length''' , __snake_case ) def check_decoder_attentions_output(__snake_case : Union[str, Any] ): lowerCamelCase :Optional[Any] = len(__snake_case ) self.assertEqual(out_len % 2 , 0 ) lowerCamelCase :Dict = outputs.decoder_attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__snake_case : List[Any] ): lowerCamelCase :Dict = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: lowerCamelCase :Tuple = True lowerCamelCase :Dict = False lowerCamelCase :str = model_class(__snake_case ) lowerCamelCase :Any = model(self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :str = len(__snake_case ) self.assertEqual(config.output_hidden_states , __snake_case ) check_encoder_attentions_output(__snake_case ) if self.is_encoder_decoder: lowerCamelCase :int = model_class(__snake_case ) lowerCamelCase :str = model(self._prepare_for_class(__snake_case , __snake_case ) ) self.assertEqual(config.output_hidden_states , __snake_case ) check_decoder_attentions_output(__snake_case ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] lowerCamelCase :int = True lowerCamelCase :Optional[int] = model_class(__snake_case ) lowerCamelCase :List[Any] = model(self._prepare_for_class(__snake_case , __snake_case ) ) self.assertEqual(config.output_hidden_states , __snake_case ) check_encoder_attentions_output(__snake_case ) # Check attention is always last and order is fine lowerCamelCase :Any = True lowerCamelCase :Dict = True lowerCamelCase :str = model_class(__snake_case ) lowerCamelCase :int = model(self._prepare_for_class(__snake_case , __snake_case ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__snake_case ) ) self.assertEqual(model.config.output_hidden_states , __snake_case ) check_encoder_attentions_output(__snake_case ) @require_tf class _lowerCAmelCase ( unittest.TestCase ): @slow def snake_case ( self : List[Any] ): lowerCamelCase :Dict = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) lowerCamelCase :Any = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase :Optional[int] = model(__snake_case )[0] lowerCamelCase :Optional[int] = [1, 6, 768] self.assertEqual(output.shape , __snake_case ) lowerCamelCase :Optional[Any] = tf.constant( [ [ [-0.0_3_4_7_5_4_9_3, -0.4_6_8_6_0_3_4, -0.3_0_6_3_8_8_3_2], [0.2_2_6_3_7_2_4_8, -0.2_6_9_8_8_6_4_6, -0.7_4_2_3_4_2_4], [0.1_0_3_2_4_8_6_8, -0.4_5_0_1_3_5_0_8, -0.5_8_2_8_0_7_8_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __snake_case , atol=1e-4 )
49
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = DebertaTokenizer _UpperCAmelCase = True _UpperCAmelCase = DebertaTokenizerFast def snake_case ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase :Dict = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] lowerCamelCase :List[str] = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) lowerCamelCase :Any = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCamelCase :Dict = {'''unk_token''': '''[UNK]'''} lowerCamelCase :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase :List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__snake_case ) ) def snake_case ( self : str , **__snake_case : Dict ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Optional[Any] , __snake_case : int ): lowerCamelCase :List[Any] = '''lower newer''' lowerCamelCase :List[str] = '''lower newer''' return input_text, output_text def snake_case ( self : str ): lowerCamelCase :Optional[int] = self.get_tokenizer() lowerCamelCase :Union[str, Any] = '''lower newer''' lowerCamelCase :str = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] lowerCamelCase :Optional[int] = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) lowerCamelCase :List[str] = tokens + [tokenizer.unk_token] lowerCamelCase :Optional[int] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def snake_case ( self : Optional[int] ): lowerCamelCase :List[str] = self.get_tokenizer() lowerCamelCase :Optional[int] = tokenizer('''Hello''' , '''World''' ) lowerCamelCase :List[str] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __snake_case ) @slow def snake_case ( self : str ): lowerCamelCase :Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) lowerCamelCase :Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__snake_case ) lowerCamelCase :Tuple = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__snake_case ) lowerCamelCase :Union[str, Any] = tokenizer.encode( '''sequence builders''' , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) lowerCamelCase :str = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) lowerCamelCase :Any = tokenizer.build_inputs_with_special_tokens(__snake_case ) lowerCamelCase :Dict = tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def snake_case ( self : str ): lowerCamelCase :List[str] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: lowerCamelCase :int = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) lowerCamelCase :Tuple = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] lowerCamelCase :List[Any] = tokenizer(__snake_case , padding=__snake_case ) lowerCamelCase :Union[str, Any] = [tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) for seq in encoding['''input_ids''']] # fmt: off lowerCamelCase :Any = { '''input_ids''': [ [1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on lowerCamelCase :Optional[int] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __snake_case ) for expected, decoded in zip(__snake_case , __snake_case ): self.assertEqual(__snake_case , __snake_case )
49
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { """kssteven/ibert-roberta-base""": """https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json""", """kssteven/ibert-roberta-large""": """https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json""", """kssteven/ibert-roberta-large-mnli""": ( """https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json""" ), } class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'ibert' def __init__( self : Tuple , __snake_case : Optional[int]=30522 , __snake_case : List[Any]=768 , __snake_case : Union[str, Any]=12 , __snake_case : Tuple=12 , __snake_case : List[str]=3072 , __snake_case : int="gelu" , __snake_case : int=0.1 , __snake_case : Tuple=0.1 , __snake_case : Optional[Any]=512 , __snake_case : Any=2 , __snake_case : Union[str, Any]=0.0_2 , __snake_case : Optional[Any]=1e-1_2 , __snake_case : List[str]=1 , __snake_case : Optional[Any]=0 , __snake_case : List[Any]=2 , __snake_case : Optional[int]="absolute" , __snake_case : Union[str, Any]=False , __snake_case : List[str]="none" , **__snake_case : Dict , ): super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) lowerCamelCase :Tuple = vocab_size lowerCamelCase :List[str] = hidden_size lowerCamelCase :Optional[int] = num_hidden_layers lowerCamelCase :int = num_attention_heads lowerCamelCase :Tuple = hidden_act lowerCamelCase :Optional[Any] = intermediate_size lowerCamelCase :Optional[int] = hidden_dropout_prob lowerCamelCase :Any = attention_probs_dropout_prob lowerCamelCase :int = max_position_embeddings lowerCamelCase :Any = type_vocab_size lowerCamelCase :int = initializer_range lowerCamelCase :Optional[Any] = layer_norm_eps lowerCamelCase :Union[str, Any] = position_embedding_type lowerCamelCase :List[Any] = quant_mode lowerCamelCase :Union[str, Any] = force_dequant class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): @property def snake_case ( self : List[Any] ): if self.task == "multiple-choice": lowerCamelCase :List[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase :Tuple = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
49
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) A__ = [ """cross_validation.py""", """gradient_accumulation.py""", """local_sgd.py""", """multi_process_metrics.py""", """memory.py""", """automatic_gradient_accumulation.py""", """fsdp_with_peak_mem_tracking.py""", """deepspeed_with_config_support.py""", """megatron_lm_gpt_pretraining.py""", ] class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Any , __snake_case : str , __snake_case : bool , __snake_case : str = None , __snake_case : list = None ): lowerCamelCase :Tuple = None lowerCamelCase :Tuple = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) lowerCamelCase :Optional[int] = os.path.abspath('''examples''' ) for item in os.listdir(__snake_case ): if item not in EXCLUDE_EXAMPLES: lowerCamelCase :Optional[int] = os.path.join(__snake_case , __snake_case ) if os.path.isfile(__snake_case ) and ".py" in item_path: with self.subTest( tested_script=__snake_case , feature_script=__snake_case , tested_section='''main()''' if parser_only else '''training_function()''' , ): lowerCamelCase :Union[str, Any] = compare_against_test( os.path.join(__snake_case , __snake_case ) , __snake_case , __snake_case , __snake_case ) lowerCamelCase :int = '''\n'''.join(__snake_case ) if special_strings is not None: for string in special_strings: lowerCamelCase :int = diff.replace(__snake_case , '''''' ) self.assertEqual(__snake_case , '''''' ) def snake_case ( self : Dict ): self.one_complete_example('''complete_nlp_example.py''' , __snake_case ) self.one_complete_example('''complete_nlp_example.py''' , __snake_case ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Union[str, Any] = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) lowerCamelCase :Optional[int] = [ ''' ''' * 16 + '''{\n\n''', ''' ''' * 20 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 20 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 20 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 20 + '''"epoch": epoch,\n\n''', ''' ''' * 16 + '''},\n\n''', ''' ''' * 16 + '''step=epoch,\n''', ''' ''' * 12, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , __snake_case , __snake_case , __snake_case ) self.one_complete_example('''complete_cv_example.py''' , __snake_case , __snake_case , __snake_case ) @mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '1'} ) class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = False @classmethod def snake_case ( cls : Optional[Any] ): super().setUpClass() lowerCamelCase :Any = tempfile.mkdtemp() lowerCamelCase :Optional[int] = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) lowerCamelCase :List[str] = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def snake_case ( cls : Dict ): super().tearDownClass() shutil.rmtree(cls._tmpdir ) def snake_case ( self : int ): lowerCamelCase :Any = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def snake_case ( self : List[Any] ): lowerCamelCase :Tuple = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n ".split() lowerCamelCase :List[Any] = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def snake_case ( self : List[str] ): lowerCamelCase :Dict = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}\n ".split() lowerCamelCase :Dict = run_command(self._launch_args + testargs , return_stdout=__snake_case ) self.assertNotIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) def snake_case ( self : str ): lowerCamelCase :List[Any] = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}\n ".split() lowerCamelCase :Optional[int] = run_command(self._launch_args + testargs , return_stdout=__snake_case ) if torch.cuda.is_available(): lowerCamelCase :Union[str, Any] = torch.cuda.device_count() else: lowerCamelCase :Dict = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) else: self.assertIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) @slow def snake_case ( self : Any ): lowerCamelCase :Tuple = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): lowerCamelCase :Dict = run_command(self._launch_args + testargs , return_stdout=__snake_case ) lowerCamelCase :Tuple = re.findall('''({.+})''' , __snake_case ) lowerCamelCase :Optional[Any] = [r for r in results if '''accuracy''' in r][-1] lowerCamelCase :List[str] = ast.literal_eval(__snake_case ) self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 ) def snake_case ( self : int ): lowerCamelCase :Dict = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case ( self : Any ): with tempfile.TemporaryDirectory() as tmpdir: lowerCamelCase :Tuple = F"\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__snake_case , '''tracking''' ) ) ) def snake_case ( self : Tuple ): lowerCamelCase :Tuple = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def snake_case ( self : Optional[Any] ): lowerCamelCase :int = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
49
1
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.g4dn.xlarge', 'results': {'train_runtime': 6_5_0, 'eval_accuracy': 0.6, 'eval_loss': 0.9}, }, { 'framework': 'tensorflow', 'script': 'run_tf.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.g4dn.xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.3, 'eval_loss': 0.9}, }, ] ) class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Any ): if self.framework == "pytorch": subprocess.run( F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding='''utf-8''' , check=__snake_case , ) assert hasattr(self , '''env''' ) def snake_case ( self : List[str] , __snake_case : List[str]=1 ): # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"{self.env.base_job_name}-single" , instance_count=__snake_case , instance_type=self.instance_type , debugger_hook_config=__snake_case , hyperparameters={**self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='''py36''' , ) def snake_case ( self : str , __snake_case : Tuple ): TrainingJobAnalytics(__snake_case ).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv" ) def snake_case ( self : Union[str, Any] ): # create estimator lowerCamelCase :List[str] = self.create_estimator() # run training estimator.fit() # result dataframe lowerCamelCase :Any = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCamelCase :Tuple = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) lowerCamelCase :int = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCamelCase :Tuple = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"{estimator.latest_training_job.name}.json" , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , __snake_case )
49
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs A__ = imread(R"""digital_image_processing/image_data/lena_small.jpg""") A__ = cvtColor(img, COLOR_BGR2GRAY) def _lowerCamelCase ( ): lowerCamelCase :int = cn.convert_to_negative(a_) # assert negative_img array for at least one True assert negative_img.any() def _lowerCamelCase ( ): with Image.open('''digital_image_processing/image_data/lena_small.jpg''') as img: # Work around assertion for response assert str(cc.change_contrast(a_ , 1_10)).startswith( '''<PIL.Image.Image image mode=RGB size=100x100 at''') def _lowerCamelCase ( ): lowerCamelCase :Optional[Any] = canny.gen_gaussian_kernel(9 , sigma=1.4) # Assert ambiguous array assert resp.all() def _lowerCamelCase ( ): lowerCamelCase :str = imread('''digital_image_processing/image_data/lena_small.jpg''' , 0) # assert ambiguous array for all == True assert canny_img.all() lowerCamelCase :Optional[Any] = canny.canny(a_) # assert canny array for at least one True assert canny_array.any() def _lowerCamelCase ( ): assert gg.gaussian_filter(a_ , 5 , sigma=0.9).all() def _lowerCamelCase ( ): # laplace diagonals lowerCamelCase :List[Any] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]]) lowerCamelCase :List[Any] = conv.img_convolve(a_ , a_).astype(a_) assert res.any() def _lowerCamelCase ( ): assert med.median_filter(a_ , 3).any() def _lowerCamelCase ( ): lowerCamelCase , lowerCamelCase :Union[str, Any] = sob.sobel_filter(a_) assert grad.any() and theta.any() def _lowerCamelCase ( ): lowerCamelCase :Dict = sp.make_sepia(a_ , 20) assert sepia.all() def _lowerCamelCase ( a_ : str = "digital_image_processing/image_data/lena_small.jpg"): lowerCamelCase :Any = bs.Burkes(imread(a_ , 1) , 1_20) burkes.process() assert burkes.output_img.any() def _lowerCamelCase ( a_ : str = "digital_image_processing/image_data/lena_small.jpg" , ): lowerCamelCase :Tuple = rs.NearestNeighbour(imread(a_ , 1) , 4_00 , 2_00) nn.process() assert nn.output.any() def _lowerCamelCase ( ): lowerCamelCase :Tuple = '''digital_image_processing/image_data/lena.jpg''' # Reading the image and converting it to grayscale. lowerCamelCase :Tuple = imread(a_ , 0) # Test for get_neighbors_pixel function() return not None lowerCamelCase :Dict = 0 lowerCamelCase :Optional[Any] = 0 lowerCamelCase :str = image[x_coordinate][y_coordinate] lowerCamelCase :Any = lbp.get_neighbors_pixel( a_ , a_ , a_ , a_) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCamelCase :int = np.zeros((image.shape[0], image.shape[1])) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0]): for j in range(0 , image.shape[1]): lowerCamelCase :Optional[int] = lbp.local_binary_value(a_ , a_ , a_) assert lbp_image.any()
49
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( unittest.TestCase ): @slow def snake_case ( self : Dict ): lowerCamelCase :Dict = TFXLMRobertaModel.from_pretrained('''jplu/tf-xlm-roberta-base''' ) lowerCamelCase :List[str] = { '''input_ids''': tf.convert_to_tensor([[0, 2646, 10269, 83, 99942, 2]] , dtype=tf.intaa ), # "My dog is cute" '''attention_mask''': tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } lowerCamelCase :Optional[Any] = model(__snake_case )['''last_hidden_state'''] lowerCamelCase :Dict = tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape , __snake_case ) # compare the actual values for a slice. lowerCamelCase :Union[str, Any] = tf.convert_to_tensor( [ [ [0.0_6_8_1_7_6_2, 0.1_0_8_9_4_4_5_1, 0.0_6_7_7_2_5_0_4], [-0.0_6_4_2_3_6_6_8, 0.0_2_3_6_6_6_1_5, 0.0_4_3_2_9_3_4_4], [-0.0_6_0_5_7_2_9_5, 0.0_9_9_7_4_1_3_5, -0.0_0_0_7_0_5_8_4], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
49
import os from math import logaa def _lowerCamelCase ( a_ : str = "base_exp.txt"): lowerCamelCase :float = 0 lowerCamelCase :Optional[int] = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(a_) , a_))): lowerCamelCase , lowerCamelCase :Optional[int] = list(map(a_ , line.split(''','''))) if x * logaa(a_) > largest: lowerCamelCase :List[Any] = x * logaa(a_) lowerCamelCase :Any = i + 1 return result if __name__ == "__main__": print(solution())
49
1
# HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers A__ = float("""nan""") class _lowerCAmelCase : def __init__( self : Union[str, Any] , __snake_case : Any ): lowerCamelCase :Optional[int] = sys.stdout lowerCamelCase :Optional[int] = open(__snake_case , '''a''' ) def __getattr__( self : str , __snake_case : List[str] ): return getattr(self.stdout , __snake_case ) def snake_case ( self : Optional[int] , __snake_case : Dict ): self.stdout.write(__snake_case ) # strip tqdm codes self.file.write(re.sub(R'''^.*\r''' , '''''' , __snake_case , 0 , re.M ) ) def _lowerCamelCase ( a_ : Tuple=80 , a_ : str=False): lowerCamelCase :Tuple = [] # deal with critical env vars lowerCamelCase :Dict = ['''CUDA_VISIBLE_DEVICES'''] for key in env_keys: lowerCamelCase :Optional[int] = os.environ.get(a_ , a_) if val is not None: cmd.append(F"{key}={val}") # python executable (not always needed if the script is executable) lowerCamelCase :str = sys.executable if full_python_path else sys.executable.split('''/''')[-1] cmd.append(a_) # now the normal args cmd += list(map(shlex.quote , sys.argv)) # split up into up to MAX_WIDTH lines with shell multi-line escapes lowerCamelCase :List[Any] = [] lowerCamelCase :Optional[int] = '''''' while len(a_) > 0: current_line += F"{cmd.pop(0)} " if len(a_) == 0 or len(a_) + len(cmd[0]) + 1 > max_width - 1: lines.append(a_) lowerCamelCase :List[Any] = '''''' return "\\\n".join(a_) def _lowerCamelCase ( a_ : str , a_ : Optional[int]): # unwrap multi-line input lowerCamelCase :Optional[int] = re.sub(R'''[\\\n]+''' , ''' ''' , args.base_cmd) # remove --output_dir if any and set our own lowerCamelCase :int = re.sub('''--output_dir\s+[^\s]+''' , '''''' , args.base_cmd) args.base_cmd += F" --output_dir {output_dir}" # ensure we have --overwrite_output_dir lowerCamelCase :Optional[Any] = re.sub('''--overwrite_output_dir\s+''' , '''''' , args.base_cmd) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd) def _lowerCamelCase ( a_ : Tuple , a_ : List[str] , a_ : str , a_ : List[Any] , a_ : List[str] , a_ : List[Any] , a_ : Tuple): # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0) return dict( {k: random.uniform(0 , 1_00) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6_666, 222.22_222_222])} , ) lowerCamelCase :Union[str, Any] = subprocess.run(a_ , capture_output=a_ , text=a_) if verbose: print('''STDOUT''' , result.stdout) print('''STDERR''' , result.stderr) # save the streams lowerCamelCase :Dict = variation.replace(''' ''' , '''-''') with open(Path(a_) / F"log.{prefix}.stdout.txt" , '''w''') as f: f.write(result.stdout) with open(Path(a_) / F"log.{prefix}.stderr.txt" , '''w''') as f: f.write(result.stderr) if result.returncode != 0: if verbose: print('''failed''') return {target_metric_key: nan} with io.open(F"{output_dir}/all_results.json" , '''r''' , encoding='''utf-8''') as f: lowerCamelCase :List[str] = json.load(a_) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def _lowerCamelCase ( a_ : List[str] , a_ : List[str] , a_ : Optional[Any] , a_ : List[Any] , a_ : Dict , a_ : int , a_ : Any , a_ : str , a_ : List[str] , a_ : int , ): lowerCamelCase :Dict = [] lowerCamelCase :List[Any] = [] lowerCamelCase :Any = F"{id}: {variation:<{longest_variation_len}}" lowerCamelCase :int = F"{preamble}: " lowerCamelCase :str = set(report_metric_keys + [target_metric_key]) for i in tqdm(range(a_) , desc=a_ , leave=a_): lowerCamelCase :Union[str, Any] = process_run_single( a_ , a_ , a_ , a_ , a_ , a_ , a_) lowerCamelCase :Optional[Any] = single_run_metrics[target_metric_key] if not math.isnan(a_): metrics.append(a_) results.append(a_) outcome += "✓" else: outcome += "✘" lowerCamelCase :List[str] = F"\33[2K\r{outcome}" if len(a_) > 0: lowerCamelCase :Tuple = {k: fmean([x[k] for x in metrics]) for k in metrics[0].keys()} lowerCamelCase :Union[str, Any] = round(mean_metrics[target_metric_key] , 2) lowerCamelCase :Optional[int] = F"{outcome} {mean_target}" if len(a_) > 1: results_str += F" {tuple(round(a_ , 2) for x in results)}" print(a_) lowerCamelCase :Union[str, Any] = variation return mean_metrics else: print(a_) return {variation_key: variation, target_metric_key: nan} def _lowerCamelCase ( ): lowerCamelCase :List[str] = torch.cuda.get_device_properties(torch.device('''cuda''')) return F"\nDatetime : {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\nSoftware:\ntransformers: {transformers.__version__}\ntorch : {torch.__version__}\ncuda : {torch.version.cuda}\npython : {platform.python_version()}\n\nHardware:\n{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB\n" def _lowerCamelCase ( a_ : int , a_ : Any , a_ : str , a_ : Optional[Any] , a_ : Optional[Any]): lowerCamelCase :Any = pd.DataFrame(a_) lowerCamelCase :Any = '''variation''' lowerCamelCase :List[Any] = '''diff_%''' lowerCamelCase :Any = nan if base_variation is not None and len(df[df[variation_key] == base_variation]): # this may still return nan lowerCamelCase :Tuple = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(a_): # as a fallback, use the minimal value as the sentinel lowerCamelCase :Optional[int] = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(a_): lowerCamelCase :Dict = df.apply( lambda a_: round(1_00 * (r[target_metric_key] - sentinel_value) / sentinel_value) if not math.isnan(r[target_metric_key]) else 0 , axis='''columns''' , ) # re-order columns lowerCamelCase :Tuple = [variation_key, target_metric_key, diff_key, *report_metric_keys] lowerCamelCase :Dict = df.reindex(a_ , axis='''columns''') # reorder cols # capitalize lowerCamelCase :List[str] = df.rename(str.capitalize , axis='''columns''') # make the cols as narrow as possible lowerCamelCase :Optional[Any] = df.rename(lambda a_: c.replace('''_''' , '''<br>''') , axis='''columns''') lowerCamelCase :Union[str, Any] = df.rename(lambda a_: c.replace('''_''' , '''\n''') , axis='''columns''') lowerCamelCase :Any = ['''''', '''Copy between the cut-here-lines and paste as is to github or a forum'''] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=a_ , floatfmt='''.2f''')] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=a_ , floatfmt='''.2f''')] print('''\n\n'''.join(a_)) def _lowerCamelCase ( ): lowerCamelCase :Dict = argparse.ArgumentParser() parser.add_argument( '''--base-cmd''' , default=a_ , type=a_ , required=a_ , help='''Base cmd''' , ) parser.add_argument( '''--variations''' , default=a_ , type=a_ , nargs='''+''' , required=a_ , help='''Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'''' , ) parser.add_argument( '''--base-variation''' , default=a_ , type=a_ , help='''Baseline variation to compare to. if None the minimal target value will be used to compare against''' , ) parser.add_argument( '''--target-metric-key''' , default=a_ , type=a_ , required=a_ , help='''Target metric key in output_dir/all_results.json, e.g., train_samples_per_second''' , ) parser.add_argument( '''--report-metric-keys''' , default='''''' , type=a_ , help='''Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples''' , ) parser.add_argument( '''--repeat-times''' , default=1 , type=a_ , help='''How many times to re-run each variation - an average will be reported''' , ) parser.add_argument( '''--output_dir''' , default='''output_benchmark''' , type=a_ , help='''The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked''' , ) parser.add_argument( '''--verbose''' , default=a_ , action='''store_true''' , help='''Whether to show the outputs of each run or just the benchmark progress''' , ) lowerCamelCase :Optional[Any] = parser.parse_args() lowerCamelCase :List[Any] = args.output_dir Path(a_).mkdir(exist_ok=a_) lowerCamelCase :List[str] = get_base_command(a_ , a_) # split each dimension into its --foo variations lowerCamelCase :int = [list(map(str.strip , re.split(R'''\|''' , a_))) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty lowerCamelCase :Optional[int] = list(map(str.strip , map(''' '''.join , itertools.product(*a_)))) lowerCamelCase :Tuple = max(len(a_) for x in variations) # split wanted keys lowerCamelCase :Tuple = args.report_metric_keys.split() # capture prints into a log file for convenience lowerCamelCase :Dict = F"benchmark-report-{datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')}.txt" print(F"\nNote: each run's output is also logged under {output_dir}/log.*.std*.txt") print(F"and this script's output is also piped into {report_fn}") lowerCamelCase :Optional[Any] = Tee(a_) print(F"\n*** Running {len(a_)} benchmarks:") print(F"Base command: {' '.join(a_)}") lowerCamelCase :Dict = '''variation''' lowerCamelCase :Optional[Any] = [] for id, variation in enumerate(tqdm(a_ , desc='''Total completion: ''' , leave=a_)): lowerCamelCase :int = base_cmd + variation.split() results.append( process_run( id + 1 , a_ , a_ , a_ , a_ , args.target_metric_key , a_ , args.repeat_times , a_ , args.verbose , )) process_results(a_ , args.target_metric_key , a_ , args.base_variation , a_) if __name__ == "__main__": main()
49
def _lowerCamelCase ( a_ : list): if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''') for cell_n in range(1 , len(grid[0])): grid[0][cell_n] += grid[0][cell_n - 1] lowerCamelCase :Any = grid[0] for row_n in range(1 , len(a_)): lowerCamelCase :List[str] = grid[row_n] lowerCamelCase :Union[str, Any] = fill_row(a_ , a_) lowerCamelCase :List[Any] = grid[row_n] return grid[-1][-1] def _lowerCamelCase ( a_ : list , a_ : list): current_row[0] += row_above[0] for cell_n in range(1 , len(a_)): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n]) return current_row if __name__ == "__main__": import doctest doctest.testmod()
49
1
from __future__ import annotations import math def _lowerCamelCase ( a_ : int): if num <= 0: lowerCamelCase :Union[str, Any] = F"{num}: Invalid input, please enter a positive integer." raise ValueError(a_) lowerCamelCase :Any = [True] * (num + 1) lowerCamelCase :Union[str, Any] = [] lowerCamelCase :List[Any] = 2 lowerCamelCase :Dict = int(math.sqrt(a_)) while start <= end: # If start is a prime if sieve[start] is True: prime.append(a_) # Set multiples of start be False for i in range(start * start , num + 1 , a_): if sieve[i] is True: lowerCamelCase :Optional[int] = False start += 1 for j in range(end + 1 , num + 1): if sieve[j] is True: prime.append(a_) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
49
import math def _lowerCamelCase ( a_ : int): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a_) + 1) , 6): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCamelCase ( a_ : float = 0.1): lowerCamelCase :Dict = 3 lowerCamelCase :List[Any] = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1): primes += is_prime(a_) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
49
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = {"""openai-gpt""": """https://huggingface.co/openai-gpt/resolve/main/config.json"""} class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'openai-gpt' _UpperCAmelCase = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Dict , __snake_case : str=40478 , __snake_case : Any=512 , __snake_case : Tuple=768 , __snake_case : Any=12 , __snake_case : Tuple=12 , __snake_case : Union[str, Any]="gelu" , __snake_case : Dict=0.1 , __snake_case : Tuple=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Union[str, Any]=1e-5 , __snake_case : str=0.0_2 , __snake_case : Optional[int]="cls_index" , __snake_case : int=True , __snake_case : List[Any]=None , __snake_case : int=True , __snake_case : Any=0.1 , **__snake_case : Any , ): lowerCamelCase :List[str] = vocab_size lowerCamelCase :str = n_positions lowerCamelCase :Any = n_embd lowerCamelCase :str = n_layer lowerCamelCase :Optional[Any] = n_head lowerCamelCase :Tuple = afn lowerCamelCase :int = resid_pdrop lowerCamelCase :Optional[Any] = embd_pdrop lowerCamelCase :Any = attn_pdrop lowerCamelCase :Optional[Any] = layer_norm_epsilon lowerCamelCase :str = initializer_range lowerCamelCase :str = summary_type lowerCamelCase :int = summary_use_proj lowerCamelCase :int = summary_activation lowerCamelCase :Optional[Any] = summary_first_dropout lowerCamelCase :int = summary_proj_to_labels super().__init__(**__snake_case )
49
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : str ): lowerCamelCase :int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :List[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :Optional[Any] = -1 lowerCamelCase :List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Tuple = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :str = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowerCamelCase :str = TextStreamer(__snake_case ) model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case , streamer=__snake_case ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCamelCase :Optional[int] = cs.out[:-1] self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : Dict ): lowerCamelCase :Tuple = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :int = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :List[Any] = -1 lowerCamelCase :Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Tuple = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :List[Any] = tokenizer.decode(greedy_ids[0] ) lowerCamelCase :List[str] = TextIteratorStreamer(__snake_case ) lowerCamelCase :List[str] = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} lowerCamelCase :Tuple = Thread(target=model.generate , kwargs=__snake_case ) thread.start() lowerCamelCase :Any = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : str ): lowerCamelCase :int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :Dict = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :List[str] = -1 lowerCamelCase :Optional[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Optional[Any] = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :List[str] = greedy_ids[:, input_ids.shape[1] :] lowerCamelCase :Union[str, Any] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowerCamelCase :List[str] = TextStreamer(__snake_case , skip_prompt=__snake_case ) model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case , streamer=__snake_case ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCamelCase :int = cs.out[:-1] self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : Optional[int] ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them lowerCamelCase :List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) lowerCamelCase :Union[str, Any] = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(__snake_case ) lowerCamelCase :Optional[int] = -1 lowerCamelCase :Union[str, Any] = torch.ones((1, 5) , device=__snake_case ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowerCamelCase :Dict = TextStreamer(__snake_case , skip_special_tokens=__snake_case ) model.generate(__snake_case , max_new_tokens=1 , do_sample=__snake_case , streamer=__snake_case ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowerCamelCase :Tuple = cs.out[:-1] # Remove the final "\n" lowerCamelCase :int = tokenizer(__snake_case , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def snake_case ( self : List[Any] ): lowerCamelCase :List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :Optional[int] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :Optional[int] = -1 lowerCamelCase :Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :List[Any] = TextIteratorStreamer(__snake_case , timeout=0.0_0_1 ) lowerCamelCase :Dict = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} lowerCamelCase :Tuple = Thread(target=model.generate , kwargs=__snake_case ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__snake_case ): lowerCamelCase :Dict = '''''' for new_text in streamer: streamer_text += new_text
49
1
def _lowerCamelCase ( a_ : str): lowerCamelCase :Union[str, Any] = 0 for ch in input_str: lowerCamelCase :Optional[Any] = ord(a_) lowerCamelCase :List[Any] = pow(2 , a_) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
49
from maths.prime_factors import prime_factors def _lowerCamelCase ( a_ : int): if not isinstance(a_ , a_): lowerCamelCase :Tuple = F"Input value of [number={number}] must be an integer" raise TypeError(a_) if number < 1: raise ValueError('''Input must be a positive integer''') return -1 if len(prime_factors(a_)) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
49
1
import torch from diffusers import StableDiffusionPipeline A__ = """path-to-your-trained-model""" A__ = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("""cuda""") A__ = """A photo of sks dog in a bucket""" A__ = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save("""dog-bucket.png""")
49
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() A__ = logging.get_logger(__name__) def _lowerCamelCase ( a_ : str , a_ : str=False): lowerCamelCase :Optional[int] = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''')) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''')) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''')) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''')) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''')) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''')) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''')) for stage_idx in range(len(config.backbone_config.depths)): for layer_idx in range(config.backbone_config.depths[stage_idx]): rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias")) # transformer encoder for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight")) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias")) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight")) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias")) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight")) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias")) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight")) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias")) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight")) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias")) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ]) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCamelCase :List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''') else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ]) # fmt: on return rename_keys def _lowerCamelCase ( a_ : Any , a_ : Any , a_ : int=False): for i in range(config.num_hidden_layers): if base_model: lowerCamelCase :Union[str, Any] = '''''' else: lowerCamelCase :Optional[int] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase :Optional[Any] = state_dict.pop(F"blocks.{i}.attn.qkv.weight") lowerCamelCase :Any = state_dict.pop(F"blocks.{i}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict lowerCamelCase :Any = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase :Tuple = in_proj_bias[: config.hidden_size] lowerCamelCase :int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase :Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase :Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase :List[Any] = in_proj_bias[-config.hidden_size :] def _lowerCamelCase ( a_ : int): lowerCamelCase :Any = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(a_ , a_) def _lowerCamelCase ( a_ : int , a_ : Any , a_ : Tuple): lowerCamelCase :Optional[Any] = dct.pop(a_) lowerCamelCase :str = val def _lowerCamelCase ( ): lowerCamelCase :Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase :Tuple = Image.open(requests.get(a_ , stream=a_).raw) return im @torch.no_grad() def _lowerCamelCase ( a_ : Optional[Any] , a_ : Optional[Any] , a_ : Optional[Any]=False): lowerCamelCase :Optional[int] = BitConfig( global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=a_ , ) lowerCamelCase :Optional[int] = ViTHybridConfig(backbone_config=a_ , image_size=3_84 , num_labels=10_00) lowerCamelCase :List[Any] = False # load original model from timm lowerCamelCase :List[str] = timm.create_model(a_ , pretrained=a_) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCamelCase :List[str] = timm_model.state_dict() if base_model: remove_classification_head_(a_) lowerCamelCase :Tuple = create_rename_keys(a_ , a_) for src, dest in rename_keys: rename_key(a_ , a_ , a_) read_in_q_k_v(a_ , a_ , a_) lowerCamelCase :List[str] = '''huggingface/label-files''' lowerCamelCase :Any = '''imagenet-1k-id2label.json''' lowerCamelCase :List[Any] = json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''') , '''r''')) lowerCamelCase :Optional[Any] = {int(a_): v for k, v in idalabel.items()} lowerCamelCase :Optional[int] = idalabel lowerCamelCase :Union[str, Any] = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": lowerCamelCase :Optional[Any] = ViTHybridModel(a_).eval() else: lowerCamelCase :Dict = ViTHybridForImageClassification(a_).eval() model.load_state_dict(a_) # create image processor lowerCamelCase :Dict = create_transform(**resolve_data_config({} , model=a_)) lowerCamelCase :str = transform.transforms lowerCamelCase :int = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } lowerCamelCase :Any = ViTHybridImageProcessor( do_resize=a_ , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=a_ , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=a_ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCamelCase :Dict = prepare_img() lowerCamelCase :str = transform(a_).unsqueeze(0) lowerCamelCase :str = processor(a_ , return_tensors='''pt''').pixel_values # verify pixel values assert torch.allclose(a_ , a_) # verify logits with torch.no_grad(): lowerCamelCase :Optional[int] = model(a_) lowerCamelCase :Union[str, Any] = outputs.logits print('''Predicted class:''' , logits.argmax(-1).item()) if base_model: lowerCamelCase :Union[str, Any] = timm_model.forward_features(a_) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(a_ , outputs.pooler_output , atol=1e-3) else: lowerCamelCase :List[str] = timm_model(a_) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(a_ , outputs.logits , atol=1e-3) print('''Looks ok!''') if pytorch_dump_folder_path is not None: Path(a_).mkdir(exist_ok=a_) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}") model.save_pretrained(a_) print(F"Saving processor to {pytorch_dump_folder_path}") processor.save_pretrained(a_) if push_to_hub: print(F"Pushing model and processor to the hub {vit_name}") model.push_to_hub(F"ybelkada/{vit_name}") processor.push_to_hub(F"ybelkada/{vit_name}") if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_r50_s16_384""", type=str, help="""Name of the hybrid ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) A__ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
49
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() A__ = logging.get_logger(__name__) def _lowerCamelCase ( a_ : Union[str, Any]): lowerCamelCase :Union[str, Any] = SwinConfig( embed_dim=1_92 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['''stage2''', '''stage3''', '''stage4'''] , ) lowerCamelCase :Dict = DetaConfig( backbone_config=a_ , num_queries=9_00 , encoder_ffn_dim=20_48 , decoder_ffn_dim=20_48 , num_feature_levels=5 , assign_first_stage=a_ , with_box_refine=a_ , two_stage=a_ , ) # set labels lowerCamelCase :Dict = '''huggingface/label-files''' if "o365" in model_name: lowerCamelCase :int = 3_66 lowerCamelCase :str = '''object365-id2label.json''' else: lowerCamelCase :List[Any] = 91 lowerCamelCase :int = '''coco-detection-id2label.json''' lowerCamelCase :List[Any] = num_labels lowerCamelCase :Union[str, Any] = json.load(open(cached_download(hf_hub_url(a_ , a_ , repo_type='''dataset''')) , '''r''')) lowerCamelCase :List[Any] = {int(a_): v for k, v in idalabel.items()} lowerCamelCase :Dict = idalabel lowerCamelCase :List[str] = {v: k for k, v in idalabel.items()} return config def _lowerCamelCase ( a_ : Optional[Any]): lowerCamelCase :Tuple = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.patch_embed.proj.weight''', '''model.backbone.model.embeddings.patch_embeddings.projection.weight''')) rename_keys.append(('''backbone.0.body.patch_embed.proj.bias''', '''model.backbone.model.embeddings.patch_embeddings.projection.bias''')) rename_keys.append(('''backbone.0.body.patch_embed.norm.weight''', '''model.backbone.model.embeddings.norm.weight''')) rename_keys.append(('''backbone.0.body.patch_embed.norm.bias''', '''model.backbone.model.embeddings.norm.bias''')) # stages for i in range(len(config.backbone_config.depths)): for j in range(config.backbone_config.depths[i]): rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm1.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight")) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm1.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias")) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table")) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index")) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight")) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias")) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm2.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight")) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm2.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias")) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight")) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias")) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight")) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias")) if i < 3: rename_keys.append((F"backbone.0.body.layers.{i}.downsample.reduction.weight", F"model.backbone.model.encoder.layers.{i}.downsample.reduction.weight")) rename_keys.append((F"backbone.0.body.layers.{i}.downsample.norm.weight", F"model.backbone.model.encoder.layers.{i}.downsample.norm.weight")) rename_keys.append((F"backbone.0.body.layers.{i}.downsample.norm.bias", F"model.backbone.model.encoder.layers.{i}.downsample.norm.bias")) rename_keys.append(('''backbone.0.body.norm1.weight''', '''model.backbone.model.hidden_states_norms.stage2.weight''')) rename_keys.append(('''backbone.0.body.norm1.bias''', '''model.backbone.model.hidden_states_norms.stage2.bias''')) rename_keys.append(('''backbone.0.body.norm2.weight''', '''model.backbone.model.hidden_states_norms.stage3.weight''')) rename_keys.append(('''backbone.0.body.norm2.bias''', '''model.backbone.model.hidden_states_norms.stage3.bias''')) rename_keys.append(('''backbone.0.body.norm3.weight''', '''model.backbone.model.hidden_states_norms.stage4.weight''')) rename_keys.append(('''backbone.0.body.norm3.bias''', '''model.backbone.model.hidden_states_norms.stage4.bias''')) # transformer encoder for i in range(config.encoder_layers): rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight", F"model.encoder.layers.{i}.self_attn.sampling_offsets.weight")) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias", F"model.encoder.layers.{i}.self_attn.sampling_offsets.bias")) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.attention_weights.weight", F"model.encoder.layers.{i}.self_attn.attention_weights.weight")) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.attention_weights.bias", F"model.encoder.layers.{i}.self_attn.attention_weights.bias")) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.value_proj.weight", F"model.encoder.layers.{i}.self_attn.value_proj.weight")) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.value_proj.bias", F"model.encoder.layers.{i}.self_attn.value_proj.bias")) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.output_proj.weight", F"model.encoder.layers.{i}.self_attn.output_proj.weight")) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.output_proj.bias", F"model.encoder.layers.{i}.self_attn.output_proj.bias")) rename_keys.append((F"transformer.encoder.layers.{i}.norm1.weight", F"model.encoder.layers.{i}.self_attn_layer_norm.weight")) rename_keys.append((F"transformer.encoder.layers.{i}.norm1.bias", F"model.encoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.weight", F"model.encoder.layers.{i}.fc1.weight")) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.bias", F"model.encoder.layers.{i}.fc1.bias")) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.weight", F"model.encoder.layers.{i}.fc2.weight")) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.bias", F"model.encoder.layers.{i}.fc2.bias")) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.weight", F"model.encoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.bias", F"model.encoder.layers.{i}.final_layer_norm.bias")) # transformer decoder for i in range(config.decoder_layers): rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight", F"model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight")) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias", F"model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias")) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.attention_weights.weight", F"model.decoder.layers.{i}.encoder_attn.attention_weights.weight")) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.attention_weights.bias", F"model.decoder.layers.{i}.encoder_attn.attention_weights.bias")) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.value_proj.weight", F"model.decoder.layers.{i}.encoder_attn.value_proj.weight")) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.value_proj.bias", F"model.decoder.layers.{i}.encoder_attn.value_proj.bias")) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.output_proj.weight", F"model.decoder.layers.{i}.encoder_attn.output_proj.weight")) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.output_proj.bias", F"model.decoder.layers.{i}.encoder_attn.output_proj.bias")) rename_keys.append((F"transformer.decoder.layers.{i}.norm1.weight", F"model.decoder.layers.{i}.encoder_attn_layer_norm.weight")) rename_keys.append((F"transformer.decoder.layers.{i}.norm1.bias", F"model.decoder.layers.{i}.encoder_attn_layer_norm.bias")) rename_keys.append((F"transformer.decoder.layers.{i}.self_attn.out_proj.weight", F"model.decoder.layers.{i}.self_attn.out_proj.weight")) rename_keys.append((F"transformer.decoder.layers.{i}.self_attn.out_proj.bias", F"model.decoder.layers.{i}.self_attn.out_proj.bias")) rename_keys.append((F"transformer.decoder.layers.{i}.norm2.weight", F"model.decoder.layers.{i}.self_attn_layer_norm.weight")) rename_keys.append((F"transformer.decoder.layers.{i}.norm2.bias", F"model.decoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.weight", F"model.decoder.layers.{i}.fc1.weight")) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.bias", F"model.decoder.layers.{i}.fc1.bias")) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.weight", F"model.decoder.layers.{i}.fc2.weight")) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.bias", F"model.decoder.layers.{i}.fc2.bias")) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.weight", F"model.decoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.bias", F"model.decoder.layers.{i}.final_layer_norm.bias")) # fmt: on return rename_keys def _lowerCamelCase ( a_ : Any , a_ : Tuple , a_ : List[Any]): lowerCamelCase :List[Any] = dct.pop(a_) lowerCamelCase :Tuple = val def _lowerCamelCase ( a_ : Dict , a_ : Optional[Any]): lowerCamelCase :Tuple = [int(backbone_config.embed_dim * 2**i) for i in range(len(backbone_config.depths))] for i in range(len(backbone_config.depths)): lowerCamelCase :Optional[int] = num_features[i] for j in range(backbone_config.depths[i]): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowerCamelCase :List[str] = state_dict.pop(F"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight") lowerCamelCase :Dict = state_dict.pop(F"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict lowerCamelCase :Tuple = in_proj_weight[:dim, :] lowerCamelCase :List[str] = in_proj_bias[: dim] lowerCamelCase :Optional[Any] = in_proj_weight[ dim : dim * 2, : ] lowerCamelCase :Optional[int] = in_proj_bias[ dim : dim * 2 ] lowerCamelCase :Dict = in_proj_weight[ -dim :, : ] lowerCamelCase :Union[str, Any] = in_proj_bias[-dim :] # fmt: on def _lowerCamelCase ( a_ : int , a_ : Optional[Any]): # transformer decoder self-attention layers lowerCamelCase :Union[str, Any] = config.d_model for i in range(config.decoder_layers): # read in weights + bias of input projection layer of self-attention lowerCamelCase :Union[str, Any] = state_dict.pop(F"transformer.decoder.layers.{i}.self_attn.in_proj_weight") lowerCamelCase :Any = state_dict.pop(F"transformer.decoder.layers.{i}.self_attn.in_proj_bias") # next, add query, keys and values (in that order) to the state dict lowerCamelCase :Dict = in_proj_weight[:hidden_size, :] lowerCamelCase :Any = in_proj_bias[:hidden_size] lowerCamelCase :Any = in_proj_weight[ hidden_size : hidden_size * 2, : ] lowerCamelCase :Any = in_proj_bias[hidden_size : hidden_size * 2] lowerCamelCase :Optional[int] = in_proj_weight[-hidden_size:, :] lowerCamelCase :Union[str, Any] = in_proj_bias[-hidden_size:] def _lowerCamelCase ( ): lowerCamelCase :Any = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase :List[Any] = Image.open(requests.get(a_ , stream=a_).raw) return im @torch.no_grad() def _lowerCamelCase ( a_ : Tuple , a_ : Tuple , a_ : Dict): lowerCamelCase :Tuple = get_deta_config(a_) # load original state dict if model_name == "deta-swin-large": lowerCamelCase :Optional[Any] = hf_hub_download(repo_id='''nielsr/deta-checkpoints''' , filename='''adet_swin_ft.pth''') elif model_name == "deta-swin-large-o365": lowerCamelCase :Optional[Any] = hf_hub_download(repo_id='''jozhang97/deta-swin-l-o365''' , filename='''deta_swin_pt_o365.pth''') else: raise ValueError(F"Model name {model_name} not supported") lowerCamelCase :int = torch.load(a_ , map_location='''cpu''')['''model'''] # original state dict for name, param in state_dict.items(): print(a_ , param.shape) # rename keys lowerCamelCase :Union[str, Any] = create_rename_keys(a_) for src, dest in rename_keys: rename_key(a_ , a_ , a_) read_in_swin_q_k_v(a_ , config.backbone_config) read_in_decoder_q_k_v(a_ , a_) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: lowerCamelCase :List[str] = state_dict.pop(a_) lowerCamelCase :List[str] = val if "input_proj" in key: lowerCamelCase :Optional[Any] = state_dict.pop(a_) lowerCamelCase :str = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: lowerCamelCase :Dict = state_dict.pop(a_) lowerCamelCase :str = val # finally, create HuggingFace model and load state dict lowerCamelCase :Tuple = DetaForObjectDetection(a_) model.load_state_dict(a_) model.eval() lowerCamelCase :Any = '''cuda''' if torch.cuda.is_available() else '''cpu''' model.to(a_) # load image processor lowerCamelCase :Tuple = DetaImageProcessor(format='''coco_detection''') # verify our conversion on image lowerCamelCase :int = prepare_img() lowerCamelCase :List[str] = processor(images=a_ , return_tensors='''pt''') lowerCamelCase :int = encoding['''pixel_values'''] lowerCamelCase :List[str] = model(pixel_values.to(a_)) # verify logits print('''Logits:''' , outputs.logits[0, :3, :3]) print('''Boxes:''' , outputs.pred_boxes[0, :3, :3]) if model_name == "deta-swin-large": lowerCamelCase :str = torch.tensor( [[-7.6_308, -2.8_485, -5.3_737], [-7.2_037, -4.5_505, -4.8_027], [-7.2_943, -4.2_611, -4.6_617]]) lowerCamelCase :Optional[int] = torch.tensor([[0.4_987, 0.4_969, 0.9_999], [0.2_549, 0.5_498, 0.4_805], [0.5_498, 0.2_757, 0.0_569]]) elif model_name == "deta-swin-large-o365": lowerCamelCase :Optional[int] = torch.tensor( [[-8.0_122, -3.5_720, -4.9_717], [-8.1_547, -3.6_886, -4.6_389], [-7.6_610, -3.6_194, -5.0_134]]) lowerCamelCase :List[Any] = torch.tensor([[0.2_523, 0.5_549, 0.4_881], [0.7_715, 0.4_149, 0.4_601], [0.5_503, 0.2_753, 0.0_575]]) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(a_) , atol=1e-4) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(a_) , atol=1e-4) print('''Everything ok!''') if pytorch_dump_folder_path: # Save model and processor logger.info(F"Saving PyTorch model and processor to {pytorch_dump_folder_path}...") Path(a_).mkdir(exist_ok=a_) model.save_pretrained(a_) processor.save_pretrained(a_) # Push to hub if push_to_hub: print('''Pushing model and processor to hub...''') model.push_to_hub(F"jozhang97/{model_name}") processor.push_to_hub(F"jozhang97/{model_name}") if __name__ == "__main__": A__ = argparse.ArgumentParser() parser.add_argument( """--model_name""", type=str, default="""deta-swin-large""", choices=["""deta-swin-large""", """deta-swin-large-o365"""], help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) A__ = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
49
def _lowerCamelCase ( a_ : int = 4_00_00_00): lowerCamelCase :Dict = [0, 1] lowerCamelCase :Optional[Any] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1]) if fib[i + 2] > n: break i += 1 lowerCamelCase :Dict = 0 for j in range(len(a_) - 1): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F'{solution() = }')
49
1
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal A__ = logging.get_logger(__name__) A__ = TypeVar("""DatasetType""", Dataset, IterableDataset) def _lowerCamelCase ( a_ : List[DatasetType] , a_ : Optional[List[float]] = None , a_ : Optional[int] = None , a_ : Optional[DatasetInfo] = None , a_ : Optional[NamedSplit] = None , a_ : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ): from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('''Unable to interleave an empty list of datasets.''') for i, dataset in enumerate(a_): if not isinstance(a_ , (Dataset, IterableDataset)): if isinstance(a_ , (DatasetDict, IterableDatasetDict)): if not dataset: raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " '''is an empty dataset dictionary.''') raise ValueError( F"Dataset at position {i} has at least one split: {list(a_)}\n" F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(a_))}']") raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(a_).__name__}.") if i == 0: lowerCamelCase , lowerCamelCase :Tuple = ( (Dataset, IterableDataset) if isinstance(a_ , a_) else (IterableDataset, Dataset) ) elif not isinstance(a_ , a_): raise ValueError( F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.") if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F"{stopping_strategy} is not supported. Please enter a valid stopping_strategy.") if dataset_type is Dataset: return _interleave_map_style_datasets( a_ , a_ , a_ , info=a_ , split=a_ , stopping_strategy=a_) else: return _interleave_iterable_datasets( a_ , a_ , a_ , info=a_ , split=a_ , stopping_strategy=a_) def _lowerCamelCase ( a_ : List[DatasetType] , a_ : Optional[DatasetInfo] = None , a_ : Optional[NamedSplit] = None , a_ : int = 0 , ): if not dsets: raise ValueError('''Unable to concatenate an empty list of datasets.''') for i, dataset in enumerate(a_): if not isinstance(a_ , (Dataset, IterableDataset)): if isinstance(a_ , (DatasetDict, IterableDatasetDict)): if not dataset: raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " '''is an empty dataset dictionary.''') raise ValueError( F"Dataset at position {i} has at least one split: {list(a_)}\n" F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(a_))}']") raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(a_).__name__}.") if i == 0: lowerCamelCase , lowerCamelCase :Dict = ( (Dataset, IterableDataset) if isinstance(a_ , a_) else (IterableDataset, Dataset) ) elif not isinstance(a_ , a_): raise ValueError( F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.") if dataset_type is Dataset: return _concatenate_map_style_datasets(a_ , info=a_ , split=a_ , axis=a_) else: return _concatenate_iterable_datasets(a_ , info=a_ , split=a_ , axis=a_)
49
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ = { """configuration_nllb_moe""": [ """NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NllbMoeConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""", """NllbMoeForConditionalGeneration""", """NllbMoeModel""", """NllbMoePreTrainedModel""", """NllbMoeTop2Router""", """NllbMoeSparseMLP""", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
49
1
def _lowerCamelCase ( a_ : list): if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''') for cell_n in range(1 , len(grid[0])): grid[0][cell_n] += grid[0][cell_n - 1] lowerCamelCase :Any = grid[0] for row_n in range(1 , len(a_)): lowerCamelCase :List[str] = grid[row_n] lowerCamelCase :Union[str, Any] = fill_row(a_ , a_) lowerCamelCase :List[Any] = grid[row_n] return grid[-1][-1] def _lowerCamelCase ( a_ : list , a_ : list): current_row[0] += row_above[0] for cell_n in range(1 , len(a_)): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n]) return current_row if __name__ == "__main__": import doctest doctest.testmod()
49
import numpy class _lowerCAmelCase : def __init__( self : Dict , __snake_case : numpy.ndarray , __snake_case : numpy.ndarray ): lowerCamelCase :Dict = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. lowerCamelCase :Dict = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. lowerCamelCase :Dict = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. lowerCamelCase :Any = numpy.random.rand(3 , 1 ) # Real output values provided. lowerCamelCase :Union[str, Any] = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. lowerCamelCase :List[str] = numpy.zeros(output_array.shape ) def snake_case ( self : Optional[int] ): lowerCamelCase :Any = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. lowerCamelCase :Any = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. lowerCamelCase :Dict = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def snake_case ( self : Any ): lowerCamelCase :Union[str, Any] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) lowerCamelCase :Dict = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) lowerCamelCase :int = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def snake_case ( self : Dict , __snake_case : numpy.ndarray , __snake_case : int , __snake_case : bool ): for iteration in range(1 , iterations + 1 ): lowerCamelCase :Union[str, Any] = self.feedforward() self.back_propagation() if give_loss: lowerCamelCase :Tuple = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"Iteration {iteration} Loss: {loss}" ) def snake_case ( self : Optional[int] , __snake_case : numpy.ndarray ): lowerCamelCase :int = input_arr lowerCamelCase :Union[str, Any] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) lowerCamelCase :Optional[Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) lowerCamelCase :Optional[int] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def _lowerCamelCase ( a_ : numpy.ndarray): return 1 / (1 + numpy.exp(-value)) def _lowerCamelCase ( a_ : numpy.ndarray): return (value) * (1 - (value)) def _lowerCamelCase ( ): lowerCamelCase :Optional[Any] = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. lowerCamelCase :int = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa) # Calling neural network class. lowerCamelCase :List[Any] = TwoHiddenLayerNeuralNetwork( input_array=a_ , output_array=a_) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=a_ , iterations=10 , give_loss=a_) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa)) if __name__ == "__main__": example()
49
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""NllbTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""NllbTokenizerFast"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
49
def _lowerCamelCase ( a_ : str , a_ : str): lowerCamelCase :List[str] = len(a_) lowerCamelCase :List[str] = len(a_) lowerCamelCase :int = [[False for _ in range(m + 1)] for _ in range(n + 1)] lowerCamelCase :Optional[Any] = True for i in range(a_): for j in range(m + 1): if dp[i][j]: if j < m and a[i].upper() == b[j]: lowerCamelCase :Any = True if a[i].islower(): lowerCamelCase :List[str] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
49
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = ['image_processor', 'tokenizer'] _UpperCAmelCase = 'CLIPImageProcessor' _UpperCAmelCase = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : List[Any] , __snake_case : Union[str, Any]=None , __snake_case : Tuple=None , **__snake_case : Dict ): lowerCamelCase :int = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __snake_case , ) lowerCamelCase :Dict = kwargs.pop('''feature_extractor''' ) lowerCamelCase :Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__snake_case , __snake_case ) def __call__( self : Tuple , __snake_case : str=None , __snake_case : Dict=None , __snake_case : int=None , **__snake_case : str ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: lowerCamelCase :Dict = self.tokenizer(__snake_case , return_tensors=__snake_case , **__snake_case ) if images is not None: lowerCamelCase :Union[str, Any] = self.image_processor(__snake_case , return_tensors=__snake_case , **__snake_case ) if text is not None and images is not None: lowerCamelCase :Optional[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__snake_case ) , tensor_type=__snake_case ) def snake_case ( self : int , *__snake_case : int , **__snake_case : List[Any] ): return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def snake_case ( self : Optional[int] , *__snake_case : int , **__snake_case : Any ): return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def snake_case ( self : int ): lowerCamelCase :int = self.tokenizer.model_input_names lowerCamelCase :Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def snake_case ( self : List[str] ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __snake_case , ) return self.image_processor_class @property def snake_case ( self : Dict ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __snake_case , ) return self.image_processor
49
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : def __init__( self : Any , __snake_case : Optional[int] , __snake_case : int=13 , __snake_case : str=[30, 30] , __snake_case : Tuple=2 , __snake_case : Optional[Any]=3 , __snake_case : int=True , __snake_case : Tuple=True , __snake_case : List[Any]=32 , __snake_case : int=5 , __snake_case : Optional[Any]=4 , __snake_case : Union[str, Any]=37 , __snake_case : str="gelu" , __snake_case : Tuple=0.1 , __snake_case : List[Any]=0.1 , __snake_case : Union[str, Any]=10 , __snake_case : str=0.0_2 , __snake_case : Union[str, Any]=3 , __snake_case : Union[str, Any]=None , __snake_case : List[str]=8 , __snake_case : Any=10 , ): lowerCamelCase :Optional[Any] = parent lowerCamelCase :List[Any] = batch_size lowerCamelCase :Any = image_size lowerCamelCase :Union[str, Any] = patch_size lowerCamelCase :Any = num_channels lowerCamelCase :List[Any] = is_training lowerCamelCase :Optional[Any] = use_labels lowerCamelCase :Any = hidden_size lowerCamelCase :List[Any] = num_hidden_layers lowerCamelCase :List[str] = num_attention_heads lowerCamelCase :Tuple = intermediate_size lowerCamelCase :List[str] = hidden_act lowerCamelCase :List[str] = hidden_dropout_prob lowerCamelCase :Any = attention_probs_dropout_prob lowerCamelCase :List[Any] = type_sequence_label_size lowerCamelCase :Optional[int] = initializer_range lowerCamelCase :List[Any] = num_labels lowerCamelCase :Any = scope lowerCamelCase :Union[str, Any] = n_targets lowerCamelCase :Optional[Any] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowerCamelCase :Tuple = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowerCamelCase :str = num_patches + 1 + self.num_detection_tokens def snake_case ( self : List[str] ): lowerCamelCase :str = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowerCamelCase :List[str] = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowerCamelCase :Optional[int] = [] for i in range(self.batch_size ): lowerCamelCase :List[str] = {} lowerCamelCase :Tuple = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=__snake_case ) lowerCamelCase :List[str] = torch.rand(self.n_targets , 4 , device=__snake_case ) labels.append(__snake_case ) lowerCamelCase :str = self.get_config() return config, pixel_values, labels def snake_case ( self : Union[str, Any] ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__snake_case , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def snake_case ( self : Tuple , __snake_case : Tuple , __snake_case : Tuple , __snake_case : Any ): lowerCamelCase :Optional[Any] = YolosModel(config=__snake_case ) model.to(__snake_case ) model.eval() lowerCamelCase :Union[str, Any] = model(__snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def snake_case ( self : Dict , __snake_case : str , __snake_case : Optional[int] , __snake_case : Optional[Any] ): lowerCamelCase :int = YolosForObjectDetection(__snake_case ) model.to(__snake_case ) model.eval() lowerCamelCase :str = model(pixel_values=__snake_case ) lowerCamelCase :Any = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) lowerCamelCase :int = model(pixel_values=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def snake_case ( self : int ): lowerCamelCase :List[Any] = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase :str = config_and_inputs lowerCamelCase :Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () _UpperCAmelCase = ( {'feature-extraction': YolosModel, 'object-detection': YolosForObjectDetection} if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def snake_case ( self : Any , __snake_case : List[Any] , __snake_case : Tuple , __snake_case : Dict=False ): lowerCamelCase :Optional[int] = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowerCamelCase :Dict = [] for i in range(self.model_tester.batch_size ): lowerCamelCase :Optional[Any] = {} lowerCamelCase :List[Any] = torch.ones( size=(self.model_tester.n_targets,) , device=__snake_case , dtype=torch.long ) lowerCamelCase :str = torch.ones( self.model_tester.n_targets , 4 , device=__snake_case , dtype=torch.float ) labels.append(__snake_case ) lowerCamelCase :Union[str, Any] = labels return inputs_dict def snake_case ( self : Tuple ): lowerCamelCase :Union[str, Any] = YolosModelTester(self ) lowerCamelCase :Dict = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=37 ) def snake_case ( self : Union[str, Any] ): self.config_tester.run_common_tests() def snake_case ( self : Optional[Any] ): # YOLOS does not use inputs_embeds pass def snake_case ( self : Tuple ): lowerCamelCase , lowerCamelCase :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :Optional[int] = model_class(__snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase :str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case , nn.Linear ) ) def snake_case ( self : str ): lowerCamelCase , lowerCamelCase :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :str = model_class(__snake_case ) lowerCamelCase :Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase :Tuple = [*signature.parameters.keys()] lowerCamelCase :Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __snake_case ) def snake_case ( self : int ): lowerCamelCase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def snake_case ( self : str ): lowerCamelCase , lowerCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase :int = True # in YOLOS, the seq_len is different lowerCamelCase :str = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowerCamelCase :str = True lowerCamelCase :Tuple = False lowerCamelCase :Optional[int] = True lowerCamelCase :int = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :str = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :str = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase :Optional[Any] = True lowerCamelCase :str = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :Tuple = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Tuple = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowerCamelCase :Optional[int] = len(__snake_case ) # Check attention is always last and order is fine lowerCamelCase :Union[str, Any] = True lowerCamelCase :List[Any] = True lowerCamelCase :Tuple = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :int = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Dict = 1 self.assertEqual(out_len + added_hidden_states , len(__snake_case ) ) lowerCamelCase :Dict = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def snake_case ( self : List[str] ): def check_hidden_states_output(__snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Tuple ): lowerCamelCase :Union[str, Any] = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :Any = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Optional[Any] = outputs.hidden_states lowerCamelCase :Any = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__snake_case ) , __snake_case ) # YOLOS has a different seq_length lowerCamelCase :List[str] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowerCamelCase , lowerCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :Union[str, Any] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase :Any = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*__snake_case ) @slow def snake_case ( self : Dict ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase :Tuple = YolosModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def _lowerCamelCase ( ): lowerCamelCase :int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): @cached_property def snake_case ( self : Tuple ): return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def snake_case ( self : Dict ): lowerCamelCase :Union[str, Any] = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(__snake_case ) lowerCamelCase :Optional[Any] = self.default_image_processor lowerCamelCase :str = prepare_img() lowerCamelCase :Dict = image_processor(images=__snake_case , return_tensors='''pt''' ).to(__snake_case ) # forward pass with torch.no_grad(): lowerCamelCase :Optional[Any] = model(inputs.pixel_values ) # verify outputs lowerCamelCase :int = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , __snake_case ) lowerCamelCase :Any = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=__snake_case , ) lowerCamelCase :Any = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __snake_case , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , __snake_case , atol=1e-4 ) ) # verify postprocessing lowerCamelCase :List[str] = image_processor.post_process_object_detection( __snake_case , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] lowerCamelCase :List[str] = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(__snake_case ) lowerCamelCase :str = [75, 75, 17, 63, 17] lowerCamelCase :Tuple = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(__snake_case ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , __snake_case , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , __snake_case ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , __snake_case ) )
49
1
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : int ): lowerCamelCase :Optional[int] = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() lowerCamelCase :Any = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) lowerCamelCase :Optional[Any] = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } lowerCamelCase :List[Any] = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 16000, '''return_attention_mask''': False, '''do_normalize''': True, } lowerCamelCase :int = tempfile.mkdtemp() lowerCamelCase :List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase :Tuple = os.path.join(self.tmpdirname , __snake_case ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) # load decoder from hub lowerCamelCase :Dict = '''hf-internal-testing/ngram-beam-search-decoder''' def snake_case ( self : Optional[int] , **__snake_case : Any ): lowerCamelCase :Dict = self.add_kwargs_tokens_map.copy() kwargs.update(__snake_case ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Optional[int] , **__snake_case : List[Any] ): return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Union[str, Any] , **__snake_case : List[Any] ): return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__snake_case ) def snake_case ( self : Any ): shutil.rmtree(self.tmpdirname ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Dict = self.get_tokenizer() lowerCamelCase :Tuple = self.get_feature_extractor() lowerCamelCase :Optional[int] = self.get_decoder() lowerCamelCase :str = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase :Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __snake_case ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __snake_case ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __snake_case ) def snake_case ( self : List[str] ): lowerCamelCase :Dict = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match lowerCamelCase :Any = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def snake_case ( self : Optional[int] ): lowerCamelCase :Optional[Any] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(__snake_case , '''include''' ): WavaVecaProcessorWithLM( tokenizer=__snake_case , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def snake_case ( self : str ): lowerCamelCase :Optional[Any] = self.get_feature_extractor() lowerCamelCase :List[Any] = self.get_tokenizer() lowerCamelCase :Any = self.get_decoder() lowerCamelCase :Any = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) lowerCamelCase :Tuple = floats_list((3, 1000) ) lowerCamelCase :Union[str, Any] = feature_extractor(__snake_case , return_tensors='''np''' ) lowerCamelCase :Optional[Any] = processor(__snake_case , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def snake_case ( self : Any ): lowerCamelCase :Union[str, Any] = self.get_feature_extractor() lowerCamelCase :List[Any] = self.get_tokenizer() lowerCamelCase :Optional[Any] = self.get_decoder() lowerCamelCase :List[str] = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) lowerCamelCase :Union[str, Any] = '''This is a test string''' lowerCamelCase :Optional[int] = processor(text=__snake_case ) lowerCamelCase :Dict = tokenizer(__snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case ( self : Dict , __snake_case : List[str]=(2, 10, 16) , __snake_case : Tuple=77 ): np.random.seed(__snake_case ) return np.random.rand(*__snake_case ) def snake_case ( self : Any ): lowerCamelCase :Any = self.get_feature_extractor() lowerCamelCase :int = self.get_tokenizer() lowerCamelCase :int = self.get_decoder() lowerCamelCase :int = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) lowerCamelCase :Dict = self._get_dummy_logits(shape=(10, 16) , seed=13 ) lowerCamelCase :Optional[Any] = processor.decode(__snake_case ) lowerCamelCase :Optional[int] = decoder.decode_beams(__snake_case )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def snake_case ( self : Any , __snake_case : str ): lowerCamelCase :str = self.get_feature_extractor() lowerCamelCase :str = self.get_tokenizer() lowerCamelCase :Any = self.get_decoder() lowerCamelCase :Any = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) lowerCamelCase :Tuple = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: lowerCamelCase :int = processor.batch_decode(__snake_case ) else: with get_context(__snake_case ).Pool() as pool: lowerCamelCase :List[str] = processor.batch_decode(__snake_case , __snake_case ) lowerCamelCase :List[Any] = list(__snake_case ) with get_context('''fork''' ).Pool() as p: lowerCamelCase :int = decoder.decode_beams_batch(__snake_case , __snake_case ) lowerCamelCase , lowerCamelCase , lowerCamelCase :Optional[int] = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(__snake_case , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(__snake_case , decoded_processor.logit_score ) self.assertListEqual(__snake_case , decoded_processor.lm_score ) def snake_case ( self : Dict ): lowerCamelCase :str = self.get_feature_extractor() lowerCamelCase :int = self.get_tokenizer() lowerCamelCase :List[Any] = self.get_decoder() lowerCamelCase :str = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) lowerCamelCase :Dict = self._get_dummy_logits() lowerCamelCase :Optional[int] = 15 lowerCamelCase :Optional[Any] = -2_0.0 lowerCamelCase :int = -4.0 lowerCamelCase :int = processor.batch_decode( __snake_case , beam_width=__snake_case , beam_prune_logp=__snake_case , token_min_logp=__snake_case , ) lowerCamelCase :List[str] = decoded_processor_out.text lowerCamelCase :List[str] = list(__snake_case ) with get_context('''fork''' ).Pool() as pool: lowerCamelCase :List[Any] = decoder.decode_beams_batch( __snake_case , __snake_case , beam_width=__snake_case , beam_prune_logp=__snake_case , token_min_logp=__snake_case , ) lowerCamelCase :Dict = [d[0][0] for d in decoded_decoder_out] lowerCamelCase :Optional[int] = [d[0][2] for d in decoded_decoder_out] lowerCamelCase :Tuple = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__snake_case , __snake_case ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , __snake_case ) self.assertTrue(np.array_equal(__snake_case , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] , __snake_case , atol=1e-3 ) ) self.assertTrue(np.array_equal(__snake_case , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] , __snake_case , atol=1e-3 ) ) def snake_case ( self : Dict ): lowerCamelCase :List[str] = self.get_feature_extractor() lowerCamelCase :List[Any] = self.get_tokenizer() lowerCamelCase :List[str] = self.get_decoder() lowerCamelCase :str = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) lowerCamelCase :Dict = self._get_dummy_logits() lowerCamelCase :str = 2.0 lowerCamelCase :Any = 5.0 lowerCamelCase :Optional[Any] = -2_0.0 lowerCamelCase :List[Any] = True lowerCamelCase :List[Any] = processor.batch_decode( __snake_case , alpha=__snake_case , beta=__snake_case , unk_score_offset=__snake_case , lm_score_boundary=__snake_case , ) lowerCamelCase :Dict = decoded_processor_out.text lowerCamelCase :List[Any] = list(__snake_case ) decoder.reset_params( alpha=__snake_case , beta=__snake_case , unk_score_offset=__snake_case , lm_score_boundary=__snake_case , ) with get_context('''fork''' ).Pool() as pool: lowerCamelCase :Dict = decoder.decode_beams_batch( __snake_case , __snake_case , ) lowerCamelCase :Optional[Any] = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__snake_case , __snake_case ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , __snake_case ) lowerCamelCase :List[Any] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -2_0.0 ) self.assertEqual(lm_model.score_boundary , __snake_case ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Dict = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) lowerCamelCase :Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] lowerCamelCase :Tuple = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() lowerCamelCase :Any = os.listdir(__snake_case ) lowerCamelCase :Tuple = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__snake_case , __snake_case ) def snake_case ( self : Any ): lowerCamelCase :Union[str, Any] = snapshot_download('''hf-internal-testing/processor_with_lm''' ) lowerCamelCase :Tuple = WavaVecaProcessorWithLM.from_pretrained(__snake_case ) lowerCamelCase :Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] lowerCamelCase :Union[str, Any] = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() lowerCamelCase :List[Any] = os.listdir(__snake_case ) lowerCamelCase :Any = os.listdir(__snake_case ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__snake_case , __snake_case ) def snake_case ( self : Union[str, Any] ): lowerCamelCase :Tuple = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) lowerCamelCase :List[Any] = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) lowerCamelCase :List[Any] = floats_list((3, 1000) ) lowerCamelCase :Optional[Any] = processor_wavaveca(__snake_case , return_tensors='''np''' ) lowerCamelCase :int = processor_auto(__snake_case , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) lowerCamelCase :Union[str, Any] = self._get_dummy_logits() lowerCamelCase :Optional[Any] = processor_wavaveca.batch_decode(__snake_case ) lowerCamelCase :Optional[Any] = processor_auto.batch_decode(__snake_case ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def snake_case ( self : List[str] ): lowerCamelCase :Optional[int] = self.get_feature_extractor() lowerCamelCase :int = self.get_tokenizer() lowerCamelCase :Dict = self.get_decoder() lowerCamelCase :str = WavaVecaProcessorWithLM(tokenizer=__snake_case , feature_extractor=__snake_case , decoder=__snake_case ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def snake_case ( __snake_case : Optional[Any] , __snake_case : Union[str, Any] ): lowerCamelCase :Union[str, Any] = [d[key] for d in offsets] return retrieved_list def snake_case ( self : Optional[Any] ): lowerCamelCase :Dict = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) lowerCamelCase :List[str] = self._get_dummy_logits()[0] lowerCamelCase :Any = processor.decode(__snake_case , output_word_offsets=__snake_case ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(__snake_case , __snake_case ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def snake_case ( self : List[str] ): lowerCamelCase :List[str] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) lowerCamelCase :Optional[int] = self._get_dummy_logits() lowerCamelCase :List[str] = processor.batch_decode(__snake_case , output_word_offsets=__snake_case ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(__snake_case , __snake_case ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(__snake_case , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def snake_case ( self : Dict ): import torch lowerCamelCase :Union[str, Any] = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=__snake_case ) lowerCamelCase :Optional[Any] = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=16000 ) ) lowerCamelCase :Dict = iter(__snake_case ) lowerCamelCase :Tuple = next(__snake_case ) lowerCamelCase :str = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) lowerCamelCase :Dict = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train lowerCamelCase :Optional[Any] = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): lowerCamelCase :Dict = model(__snake_case ).logits.cpu().numpy() lowerCamelCase :Dict = processor.decode(logits[0] , output_word_offsets=__snake_case ) lowerCamelCase :str = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate lowerCamelCase :Tuple = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] lowerCamelCase :Dict = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(__snake_case , '''word''' ) ) , __snake_case ) self.assertEqual(''' '''.join(self.get_from_offsets(__snake_case , '''word''' ) ) , output.text ) # output times lowerCamelCase :List[Any] = torch.tensor(self.get_from_offsets(__snake_case , '''start_time''' ) ) lowerCamelCase :Any = torch.tensor(self.get_from_offsets(__snake_case , '''end_time''' ) ) # fmt: off lowerCamelCase :Union[str, Any] = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) lowerCamelCase :Optional[Any] = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=0.0_1 ) ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=0.0_1 ) )
49
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Tuple ): lowerCamelCase :List[Any] = inspect.getfile(accelerate.test_utils ) lowerCamelCase :Dict = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 lowerCamelCase :Any = test_metrics @require_cpu def snake_case ( self : Dict ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def snake_case ( self : int ): debug_launcher(self.test_metrics.main ) @require_single_gpu def snake_case ( self : Any ): self.test_metrics.main() @require_multi_gpu def snake_case ( self : Optional[int] ): print(F"Found {torch.cuda.device_count()} devices." ) lowerCamelCase :Optional[int] = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__snake_case , env=os.environ.copy() )
49
1
from itertools import product def _lowerCamelCase ( a_ : int , a_ : int): lowerCamelCase :List[Any] = sides_number lowerCamelCase :List[Any] = max_face_number * dice_number lowerCamelCase :Dict = [0] * (max_total + 1) lowerCamelCase :Tuple = 1 lowerCamelCase :Dict = range(a_ , max_face_number + 1) for dice_numbers in product(a_ , repeat=a_): lowerCamelCase :Optional[Any] = sum(a_) totals_frequencies[total] += 1 return totals_frequencies def _lowerCamelCase ( ): lowerCamelCase :int = total_frequency_distribution( sides_number=4 , dice_number=9) lowerCamelCase :Any = total_frequency_distribution( sides_number=6 , dice_number=6) lowerCamelCase :Optional[int] = 0 lowerCamelCase :Union[str, Any] = 9 lowerCamelCase :List[Any] = 4 * 9 lowerCamelCase :List[Any] = 6 for peter_total in range(a_ , max_peter_total + 1): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total]) lowerCamelCase :Union[str, Any] = (4**9) * (6**6) lowerCamelCase :Tuple = peter_wins_count / total_games_number lowerCamelCase :Optional[int] = round(a_ , ndigits=7) return rounded_peter_win_probability if __name__ == "__main__": print(F'{solution() = }')
49
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = '' _UpperCAmelCase = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) _UpperCAmelCase = None # compression type in fsspec. ex: "gzip" _UpperCAmelCase = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : str , __snake_case : str = "" , __snake_case : Optional[str] = None , __snake_case : Optional[dict] = None , **__snake_case : Dict ): super().__init__(self , **__snake_case ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode lowerCamelCase :Optional[Any] = fsspec.open( __snake_case , mode='''rb''' , protocol=__snake_case , compression=self.compression , client_kwargs={ '''requote_redirect_url''': False, # see https://github.com/huggingface/datasets/pull/5459 '''trust_env''': True, # Enable reading proxy env variables. **(target_options or {}).pop('''client_kwargs''' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) lowerCamelCase :List[str] = os.path.basename(self.file.path.split('''::''' )[0] ) lowerCamelCase :Dict = ( self.compressed_name[: self.compressed_name.rindex('''.''' )] if '''.''' in self.compressed_name else self.compressed_name ) lowerCamelCase :List[str] = None @classmethod def snake_case ( cls : Any , __snake_case : Any ): # compressed file paths are always relative to the archive root return super()._strip_protocol(__snake_case ).lstrip('''/''' ) def snake_case ( self : Any ): if self.dir_cache is None: lowerCamelCase :Optional[Any] = {**self.file.fs.info(self.file.path ), '''name''': self.uncompressed_name} lowerCamelCase :Optional[Any] = {f['''name''']: f} def snake_case ( self : Union[str, Any] , __snake_case : str ): return self.file.open().read() def snake_case ( self : Optional[int] , __snake_case : str , __snake_case : str = "rb" , __snake_case : int=None , __snake_case : Optional[int]=True , __snake_case : str=None , **__snake_case : str , ): lowerCamelCase :List[str] = self._strip_protocol(__snake_case ) if mode != "rb": raise ValueError(F"Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'" ) return self.file.open() class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'bz2' _UpperCAmelCase = 'bz2' _UpperCAmelCase = '.bz2' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'gzip' _UpperCAmelCase = 'gzip' _UpperCAmelCase = '.gz' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'lz4' _UpperCAmelCase = 'lz4' _UpperCAmelCase = '.lz4' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'xz' _UpperCAmelCase = 'xz' _UpperCAmelCase = '.xz' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'zstd' _UpperCAmelCase = 'zstd' _UpperCAmelCase = '.zst' def __init__( self : str , __snake_case : str , __snake_case : str = "rb" , __snake_case : Optional[str] = None , __snake_case : Optional[dict] = None , __snake_case : int = DEFAULT_BLOCK_SIZE , **__snake_case : int , ): super().__init__( fo=__snake_case , mode=__snake_case , target_protocol=__snake_case , target_options=__snake_case , block_size=__snake_case , **__snake_case , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 lowerCamelCase :Tuple = self.file.__enter__ class _lowerCAmelCase : def __init__( self : Dict , __snake_case : Tuple ): lowerCamelCase :Optional[int] = file_ def __enter__( self : Optional[int] ): self._file.__enter__() return self def __exit__( self : str , *__snake_case : Optional[Any] , **__snake_case : List[Any] ): self._file.__exit__(*__snake_case , **__snake_case ) def __iter__( self : Optional[Any] ): return iter(self._file ) def snake_case ( self : List[Any] ): return next(self._file ) def __getattr__( self : Any , __snake_case : str ): return getattr(self._file , __snake_case ) def fixed_enter(*__snake_case : Optional[int] , **__snake_case : str ): return WrappedFile(_enter(*__snake_case , **__snake_case ) ) lowerCamelCase :Dict = fixed_enter
49
1
import unittest import numpy as np def _lowerCamelCase ( a_ : np.ndarray , a_ : np.ndarray , a_ : np.ndarray , a_ : np.ndarray | None = None , ): lowerCamelCase :List[str] = np.shape(a_) lowerCamelCase :str = np.shape(a_) lowerCamelCase :int = np.shape(a_) if shape_a[0] != shape_b[0]: lowerCamelCase :Union[str, Any] = ( '''Expected the same number of rows for A and B. ''' F"Instead found A of size {shape_a} and B of size {shape_b}" ) raise ValueError(a_) if shape_b[1] != shape_c[1]: lowerCamelCase :int = ( '''Expected the same number of columns for B and C. ''' F"Instead found B of size {shape_b} and C of size {shape_c}" ) raise ValueError(a_) lowerCamelCase :List[str] = pseudo_inv if a_inv is None: try: lowerCamelCase :Tuple = np.linalg.inv(a_) except np.linalg.LinAlgError: raise ValueError( '''Input matrix A is not invertible. Cannot compute Schur complement.''') return mat_c - mat_b.T @ a_inv @ mat_b class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Union[str, Any] ): lowerCamelCase :Tuple = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowerCamelCase :List[str] = np.array([[0, 3], [3, 0], [2, 3]] ) lowerCamelCase :List[Any] = np.array([[2, 1], [6, 3]] ) lowerCamelCase :List[Any] = schur_complement(__snake_case , __snake_case , __snake_case ) lowerCamelCase :Union[str, Any] = np.block([[a, b], [b.T, c]] ) lowerCamelCase :List[Any] = np.linalg.det(__snake_case ) lowerCamelCase :Optional[int] = np.linalg.det(__snake_case ) lowerCamelCase :str = np.linalg.det(__snake_case ) self.assertAlmostEqual(__snake_case , det_a * det_s ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Dict = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowerCamelCase :Optional[int] = np.array([[0, 3], [3, 0], [2, 3]] ) lowerCamelCase :Tuple = np.array([[2, 1], [6, 3]] ) with self.assertRaises(__snake_case ): schur_complement(__snake_case , __snake_case , __snake_case ) def snake_case ( self : int ): lowerCamelCase :Any = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowerCamelCase :Optional[Any] = np.array([[0, 3], [3, 0], [2, 3]] ) lowerCamelCase :Optional[Any] = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(__snake_case ): schur_complement(__snake_case , __snake_case , __snake_case ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
49
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = LEDTokenizer _UpperCAmelCase = LEDTokenizerFast _UpperCAmelCase = True def snake_case ( self : Any ): super().setUp() lowerCamelCase :Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] lowerCamelCase :Any = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) lowerCamelCase :List[str] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCamelCase :int = {'''unk_token''': '''<unk>'''} lowerCamelCase :Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__snake_case ) ) def snake_case ( self : int , **__snake_case : int ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Dict , **__snake_case : Any ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Optional[Any] , __snake_case : Union[str, Any] ): return "lower newer", "lower newer" @cached_property def snake_case ( self : Any ): return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' ) @cached_property def snake_case ( self : int ): return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' ) @require_torch def snake_case ( self : str ): lowerCamelCase :Any = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowerCamelCase :List[Any] = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[Any] = tokenizer(__snake_case , max_length=len(__snake_case ) , padding=__snake_case , return_tensors='''pt''' ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowerCamelCase :List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(__snake_case , __snake_case ) @require_torch def snake_case ( self : Tuple ): lowerCamelCase :Dict = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Union[str, Any] = tokenizer(__snake_case , padding=__snake_case , return_tensors='''pt''' ) self.assertIn('''input_ids''' , __snake_case ) self.assertIn('''attention_mask''' , __snake_case ) self.assertNotIn('''labels''' , __snake_case ) self.assertNotIn('''decoder_attention_mask''' , __snake_case ) @require_torch def snake_case ( self : Union[str, Any] ): lowerCamelCase :Union[str, Any] = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :List[Any] = tokenizer(text_target=__snake_case , max_length=32 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) @require_torch def snake_case ( self : List[Any] ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[Any] = tokenizer( ['''I am a small frog''' * 1024, '''I am a small frog'''] , padding=__snake_case , truncation=__snake_case , return_tensors='''pt''' ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def snake_case ( self : Optional[int] ): lowerCamelCase :Union[str, Any] = ['''A long paragraph for summarization.'''] lowerCamelCase :Any = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Union[str, Any] = tokenizer(__snake_case , return_tensors='''pt''' ) lowerCamelCase :Any = tokenizer(text_target=__snake_case , return_tensors='''pt''' ) lowerCamelCase :Optional[int] = inputs['''input_ids'''] lowerCamelCase :Any = targets['''input_ids'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def snake_case ( self : Dict ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[int] = ['''Summary of the text.''', '''Another summary.'''] lowerCamelCase :List[Any] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] lowerCamelCase :Optional[int] = tokenizer(__snake_case , padding=__snake_case ) lowerCamelCase :Union[str, Any] = [[0] * len(__snake_case ) for x in encoded_output['''input_ids''']] lowerCamelCase :str = tokenizer.pad(__snake_case ) self.assertSequenceEqual(outputs['''global_attention_mask'''] , __snake_case ) def snake_case ( self : Tuple ): pass def snake_case ( self : Optional[int] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase :Optional[Any] = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :Tuple = self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :int = '''A, <mask> AllenNLP sentence.''' lowerCamelCase :str = tokenizer_r.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case ) lowerCamelCase :str = tokenizer_p.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case ) self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) lowerCamelCase :Optional[int] = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) lowerCamelCase :Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __snake_case , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __snake_case , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
49
1
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def _lowerCamelCase ( a_ : ndarray): return np.dot(a_ , a_) class _lowerCAmelCase : def __init__( self : Any , *, __snake_case : float = np.inf , __snake_case : str = "linear" , __snake_case : float = 0.0 , ): lowerCamelCase :Optional[int] = regularization lowerCamelCase :Optional[Any] = gamma if kernel == "linear": lowerCamelCase :Tuple = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('''rbf kernel requires gamma''' ) if not isinstance(self.gamma , (float, int) ): raise ValueError('''gamma must be float or int''' ) if not self.gamma > 0: raise ValueError('''gamma must be > 0''' ) lowerCamelCase :Tuple = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: lowerCamelCase :str = F"Unknown kernel: {kernel}" raise ValueError(__snake_case ) def snake_case ( self : Union[str, Any] , __snake_case : ndarray , __snake_case : ndarray ): return np.dot(__snake_case , __snake_case ) def snake_case ( self : List[Any] , __snake_case : ndarray , __snake_case : ndarray ): return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def snake_case ( self : List[str] , __snake_case : list[ndarray] , __snake_case : ndarray ): lowerCamelCase :str = observations lowerCamelCase :Optional[Any] = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((lowerCamelCase) , ) :str = np.shape(__snake_case ) def to_minimize(__snake_case : ndarray ) -> float: lowerCamelCase :Dict = 0 ((lowerCamelCase) , ) :Dict = np.shape(__snake_case ) for i in range(__snake_case ): for j in range(__snake_case ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(__snake_case ) lowerCamelCase :Tuple = LinearConstraint(__snake_case , 0 , 0 ) lowerCamelCase :Dict = Bounds(0 , self.regularization ) lowerCamelCase :Union[str, Any] = minimize( __snake_case , np.ones(__snake_case ) , bounds=__snake_case , constraints=[ly_contraint] ).x lowerCamelCase :List[str] = l_star # calculating mean offset of separation plane to points lowerCamelCase :Union[str, Any] = 0 for i in range(__snake_case ): for j in range(__snake_case ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) lowerCamelCase :Any = s / n def snake_case ( self : str , __snake_case : ndarray ): lowerCamelCase :List[Any] = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , __snake_case ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
49
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) A__ = { """configuration_layoutlmv2""": ["""LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv2Config"""], """processing_layoutlmv2""": ["""LayoutLMv2Processor"""], """tokenization_layoutlmv2""": ["""LayoutLMv2Tokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""LayoutLMv2TokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""LayoutLMv2FeatureExtractor"""] A__ = ["""LayoutLMv2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """LayoutLMv2ForQuestionAnswering""", """LayoutLMv2ForSequenceClassification""", """LayoutLMv2ForTokenClassification""", """LayoutLMv2Layer""", """LayoutLMv2Model""", """LayoutLMv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
49
1
import numpy as np import datasets A__ = """ Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] """ A__ = """\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } """ A__ = """ Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric(\"mahalanobis\") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {'mahalanobis': array([0.5])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): def snake_case ( self : Optional[int] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''X''': datasets.Sequence(datasets.Value('''float''' , id='''sequence''' ) , id='''X''' ), } ) , ) def snake_case ( self : List[Any] , __snake_case : str , __snake_case : Union[str, Any] ): # convert to numpy arrays lowerCamelCase :List[Any] = np.array(__snake_case ) lowerCamelCase :str = np.array(__snake_case ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError('''Expected `X` to be a 2D vector''' ) if len(reference_distribution.shape ) != 2: raise ValueError('''Expected `reference_distribution` to be a 2D vector''' ) if reference_distribution.shape[0] < 2: raise ValueError( '''Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension''' ) # Get mahalanobis distance for each prediction lowerCamelCase :Dict = X - np.mean(__snake_case ) lowerCamelCase :Optional[int] = np.cov(reference_distribution.T ) try: lowerCamelCase :List[Any] = np.linalg.inv(__snake_case ) except np.linalg.LinAlgError: lowerCamelCase :int = np.linalg.pinv(__snake_case ) lowerCamelCase :Optional[Any] = np.dot(__snake_case , __snake_case ) lowerCamelCase :Optional[int] = np.dot(__snake_case , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
49
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _lowerCAmelCase : @staticmethod def snake_case ( *__snake_case : str , **__snake_case : str ): pass @is_pipeline_test @require_vision class _lowerCAmelCase ( unittest.TestCase ): @require_torch def snake_case ( self : Union[str, Any] ): lowerCamelCase :Optional[int] = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Dict = image_classifier(__snake_case , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__snake_case ) , [ [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}], [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}], ] , ) lowerCamelCase :Tuple = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], ] , ) @require_tf def snake_case ( self : Tuple ): lowerCamelCase :Tuple = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Optional[Any] = image_classifier(__snake_case , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(__snake_case ) , [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}] , ) lowerCamelCase :int = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], ] , ) @slow @require_torch def snake_case ( self : Any ): lowerCamelCase :str = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Optional[Any] = image_classifier(__snake_case , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) lowerCamelCase :Any = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def snake_case ( self : Optional[Any] ): lowerCamelCase :Union[str, Any] = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes lowerCamelCase :Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Dict = image_classifier(__snake_case , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) lowerCamelCase :Any = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , )
49
1
def _lowerCamelCase ( a_ : int = 1_00): lowerCamelCase :List[str] = n * (n + 1) * (2 * n + 1) / 6 lowerCamelCase :Tuple = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares) if __name__ == "__main__": print(F'{solution() = }')
49
import operator as op def _lowerCamelCase ( a_ : Tuple): lowerCamelCase :int = [] lowerCamelCase :List[str] = lambda a_ , a_: int(x / y) # noqa: E731 integer division operation lowerCamelCase :Optional[int] = { '''^''': op.pow, '''*''': op.mul, '''/''': div, '''+''': op.add, '''-''': op.sub, } # operators & their respective operation # print table header print('''Symbol'''.center(8) , '''Action'''.center(12) , '''Stack''' , sep=''' | ''') print('''-''' * (30 + len(a_))) for x in post_fix: if x.isdigit(): # if x in digit stack.append(a_) # append x to stack # output in tabular format print(x.rjust(8) , ('''push(''' + x + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') else: lowerCamelCase :Optional[Any] = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8) , ('''pop(''' + b + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') lowerCamelCase :str = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8) , ('''pop(''' + a + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''') stack.append( str(opr[x](int(a_) , int(a_)))) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8) , ('''push(''' + a + x + b + ''')''').ljust(12) , ''','''.join(a_) , sep=''' | ''' , ) return int(stack[0]) if __name__ == "__main__": A__ = input("""\n\nEnter a Postfix Equation (space separated) = """).split(""" """) print("""\n\tResult = """, solve(Postfix))
49
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { """funnel-transformer/small""": """https://huggingface.co/funnel-transformer/small/resolve/main/config.json""", """funnel-transformer/small-base""": """https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json""", """funnel-transformer/medium""": """https://huggingface.co/funnel-transformer/medium/resolve/main/config.json""", """funnel-transformer/medium-base""": """https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json""", """funnel-transformer/intermediate""": ( """https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json""" ), """funnel-transformer/intermediate-base""": ( """https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json""" ), """funnel-transformer/large""": """https://huggingface.co/funnel-transformer/large/resolve/main/config.json""", """funnel-transformer/large-base""": """https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json""", """funnel-transformer/xlarge""": """https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json""", """funnel-transformer/xlarge-base""": """https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json""", } class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'funnel' _UpperCAmelCase = { 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', } def __init__( self : Any , __snake_case : List[Any]=30522 , __snake_case : Dict=[4, 4, 4] , __snake_case : Dict=None , __snake_case : Optional[int]=2 , __snake_case : Any=768 , __snake_case : Union[str, Any]=12 , __snake_case : Optional[int]=64 , __snake_case : Any=3072 , __snake_case : int="gelu_new" , __snake_case : Dict=0.1 , __snake_case : int=0.1 , __snake_case : Union[str, Any]=0.0 , __snake_case : int=0.1 , __snake_case : Optional[int]=None , __snake_case : List[str]=1e-9 , __snake_case : Optional[Any]="mean" , __snake_case : Any="relative_shift" , __snake_case : str=True , __snake_case : Optional[Any]=True , __snake_case : Dict=True , **__snake_case : Union[str, Any] , ): lowerCamelCase :str = vocab_size lowerCamelCase :Dict = block_sizes lowerCamelCase :Any = [1] * len(__snake_case ) if block_repeats is None else block_repeats assert len(__snake_case ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." lowerCamelCase :str = num_decoder_layers lowerCamelCase :List[str] = d_model lowerCamelCase :Dict = n_head lowerCamelCase :Any = d_head lowerCamelCase :Optional[int] = d_inner lowerCamelCase :List[Any] = hidden_act lowerCamelCase :Optional[int] = hidden_dropout lowerCamelCase :Optional[int] = attention_dropout lowerCamelCase :Dict = activation_dropout lowerCamelCase :Union[str, Any] = initializer_range lowerCamelCase :List[str] = initializer_std lowerCamelCase :Tuple = layer_norm_eps assert pooling_type in [ "mean", "max", ], F"Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported." lowerCamelCase :List[str] = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F"Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported." lowerCamelCase :List[Any] = attention_type lowerCamelCase :List[Any] = separate_cls lowerCamelCase :Optional[Any] = truncate_seq lowerCamelCase :List[Any] = pool_q_only super().__init__(**__snake_case ) @property def snake_case ( self : str ): return sum(self.block_sizes ) @num_hidden_layers.setter def snake_case ( self : Union[str, Any] , __snake_case : Optional[Any] ): raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''' ) @property def snake_case ( self : Any ): return len(self.block_sizes ) @num_blocks.setter def snake_case ( self : Optional[Any] , __snake_case : Optional[int] ): raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''' )
49
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() A__ = logging.get_logger(__name__) A__ = """Hello, World!""" A__ = """en_XX""" def _lowerCamelCase ( a_ : str , a_ : str , a_ : bool): lowerCamelCase :int = Path('''data_bin''') lowerCamelCase :Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(a_).parent) , checkpoint_file=Path(a_).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(a_) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(a_).parent / '''sentencepiece.bpe.model''') , src_dict=str(data_dir / '''dict.txt''') , ) xmod.eval() # disable dropout print(a_) lowerCamelCase :Any = xmod.model.encoder.sentence_encoder lowerCamelCase :List[str] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: lowerCamelCase :Dict = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our X-MOD config:''' , a_) lowerCamelCase :List[Any] = XmodForSequenceClassification(a_) if classification_head else XmodForMaskedLM(a_) model.eval() # Now let's copy all the weights. # Embeddings lowerCamelCase :Union[str, Any] = xmod_sent_encoder.embed_tokens.weight lowerCamelCase :Tuple = xmod_sent_encoder.embed_positions.weight lowerCamelCase :List[str] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight) # just zero them out b/c xmod doesn't use them. lowerCamelCase :List[Any] = xmod_sent_encoder.layernorm_embedding.weight lowerCamelCase :Optional[int] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers): # Encoder: start of layer lowerCamelCase :Union[str, Any] = model.roberta.encoder.layer[i] lowerCamelCase :List[str] = xmod_sent_encoder.layers[i] # self attention lowerCamelCase :Optional[int] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size)) ): raise AssertionError('''Dimensions of self-attention weights do not match.''') lowerCamelCase :Optional[int] = xmod_layer.self_attn.q_proj.weight lowerCamelCase :List[str] = xmod_layer.self_attn.q_proj.bias lowerCamelCase :str = xmod_layer.self_attn.k_proj.weight lowerCamelCase :Optional[Any] = xmod_layer.self_attn.k_proj.bias lowerCamelCase :Dict = xmod_layer.self_attn.v_proj.weight lowerCamelCase :Optional[int] = xmod_layer.self_attn.v_proj.bias # self-attention output lowerCamelCase :Optional[int] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('''Dimensions of self-attention output weights do not match.''') lowerCamelCase :List[Any] = xmod_layer.self_attn.out_proj.weight lowerCamelCase :Union[str, Any] = xmod_layer.self_attn.out_proj.bias lowerCamelCase :str = xmod_layer.self_attn_layer_norm.weight lowerCamelCase :List[Any] = xmod_layer.self_attn_layer_norm.bias # intermediate lowerCamelCase :Optional[int] = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of intermediate weights do not match.''') lowerCamelCase :int = xmod_layer.fca.weight lowerCamelCase :Union[str, Any] = xmod_layer.fca.bias # output lowerCamelCase :List[str] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of feed-forward weights do not match.''') lowerCamelCase :str = xmod_layer.fca.weight lowerCamelCase :int = xmod_layer.fca.bias lowerCamelCase :List[Any] = xmod_layer.final_layer_norm.weight lowerCamelCase :List[str] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: lowerCamelCase :List[str] = xmod_layer.adapter_layer_norm.weight lowerCamelCase :int = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys()) != sorted(xmod_layer.adapter_modules.keys()): raise AssertionError('''Lists of language adapters do not match.''') for lang_code, adapter in xmod_layer.adapter_modules.items(): lowerCamelCase :Optional[int] = bert_output.adapter_modules[lang_code] lowerCamelCase :Dict = xmod_layer.adapter_modules[lang_code] lowerCamelCase :List[Any] = from_adapter.fca.weight lowerCamelCase :List[Any] = from_adapter.fca.bias lowerCamelCase :Dict = from_adapter.fca.weight lowerCamelCase :Optional[Any] = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: lowerCamelCase :Dict = xmod_sent_encoder.layer_norm.weight lowerCamelCase :List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: lowerCamelCase :Union[str, Any] = xmod.model.classification_heads['''mnli'''].dense.weight lowerCamelCase :Tuple = xmod.model.classification_heads['''mnli'''].dense.bias lowerCamelCase :Optional[Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight lowerCamelCase :List[Any] = xmod.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head lowerCamelCase :int = xmod.model.encoder.lm_head.dense.weight lowerCamelCase :List[Any] = xmod.model.encoder.lm_head.dense.bias lowerCamelCase :Optional[int] = xmod.model.encoder.lm_head.layer_norm.weight lowerCamelCase :List[Any] = xmod.model.encoder.lm_head.layer_norm.bias lowerCamelCase :List[Any] = xmod.model.encoder.lm_head.weight lowerCamelCase :Any = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCamelCase :str = xmod.encode(a_).unsqueeze(0) # batch of size 1 model.roberta.set_default_language(a_) lowerCamelCase :Any = model(a_)[0] if classification_head: lowerCamelCase :Dict = xmod.model.classification_heads['''mnli'''](xmod.extract_features(a_)) else: lowerCamelCase :int = xmod.model(a_ , lang_id=[SAMPLE_LANGUAGE])[0] print(our_output.shape , their_output.shape) lowerCamelCase :List[str] = torch.max(torch.abs(our_output - their_output)).item() print(F"max_absolute_diff = {max_absolute_diff}") # ~ 1e-7 lowerCamelCase :str = torch.allclose(a_ , a_ , atol=1e-3) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''') if not success: raise Exception('''Something went wRoNg''') Path(a_).mkdir(parents=a_ , exist_ok=a_) print(F"Saving model to {pytorch_dump_folder_path}") model.save_pretrained(a_) if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) A__ = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
49
1
def _lowerCamelCase ( a_ : int , a_ : int): return base * power(a_ , (exponent - 1)) if exponent else 1 if __name__ == "__main__": print("""Raise base to the power of exponent using recursion...""") A__ = int(input("""Enter the base: """).strip()) A__ = int(input("""Enter the exponent: """).strip()) A__ = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents A__ = 1 / result print(F'{base} to the power of {exponent} is {result}')
49
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { """andreasmadsen/efficient_mlm_m0.40""": ( """https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json""" ), } class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'roberta-prelayernorm' def __init__( self : str , __snake_case : List[str]=50265 , __snake_case : Union[str, Any]=768 , __snake_case : Tuple=12 , __snake_case : int=12 , __snake_case : Any=3072 , __snake_case : Optional[int]="gelu" , __snake_case : List[Any]=0.1 , __snake_case : int=0.1 , __snake_case : Union[str, Any]=512 , __snake_case : Dict=2 , __snake_case : int=0.0_2 , __snake_case : Any=1e-1_2 , __snake_case : Optional[int]=1 , __snake_case : Dict=0 , __snake_case : Optional[int]=2 , __snake_case : Any="absolute" , __snake_case : Union[str, Any]=True , __snake_case : List[str]=None , **__snake_case : Optional[int] , ): super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) lowerCamelCase :Optional[int] = vocab_size lowerCamelCase :Dict = hidden_size lowerCamelCase :Tuple = num_hidden_layers lowerCamelCase :Optional[int] = num_attention_heads lowerCamelCase :Any = hidden_act lowerCamelCase :List[Any] = intermediate_size lowerCamelCase :Union[str, Any] = hidden_dropout_prob lowerCamelCase :str = attention_probs_dropout_prob lowerCamelCase :Tuple = max_position_embeddings lowerCamelCase :int = type_vocab_size lowerCamelCase :Optional[Any] = initializer_range lowerCamelCase :Union[str, Any] = layer_norm_eps lowerCamelCase :Dict = position_embedding_type lowerCamelCase :List[Any] = use_cache lowerCamelCase :Optional[int] = classifier_dropout class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): @property def snake_case ( self : Any ): if self.task == "multiple-choice": lowerCamelCase :Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase :List[str] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
49
1
def _lowerCamelCase ( a_ : str , a_ : str): lowerCamelCase :List[str] = len(a_) lowerCamelCase :List[str] = len(a_) lowerCamelCase :int = [[False for _ in range(m + 1)] for _ in range(n + 1)] lowerCamelCase :Optional[Any] = True for i in range(a_): for j in range(m + 1): if dp[i][j]: if j < m and a[i].upper() == b[j]: lowerCamelCase :Any = True if a[i].islower(): lowerCamelCase :List[str] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
49
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = DebertaTokenizer _UpperCAmelCase = True _UpperCAmelCase = DebertaTokenizerFast def snake_case ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase :Dict = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] lowerCamelCase :List[str] = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) lowerCamelCase :Any = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCamelCase :Dict = {'''unk_token''': '''[UNK]'''} lowerCamelCase :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase :List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__snake_case ) ) def snake_case ( self : str , **__snake_case : Dict ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Optional[Any] , __snake_case : int ): lowerCamelCase :List[Any] = '''lower newer''' lowerCamelCase :List[str] = '''lower newer''' return input_text, output_text def snake_case ( self : str ): lowerCamelCase :Optional[int] = self.get_tokenizer() lowerCamelCase :Union[str, Any] = '''lower newer''' lowerCamelCase :str = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] lowerCamelCase :Optional[int] = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) lowerCamelCase :List[str] = tokens + [tokenizer.unk_token] lowerCamelCase :Optional[int] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def snake_case ( self : Optional[int] ): lowerCamelCase :List[str] = self.get_tokenizer() lowerCamelCase :Optional[int] = tokenizer('''Hello''' , '''World''' ) lowerCamelCase :List[str] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __snake_case ) @slow def snake_case ( self : str ): lowerCamelCase :Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) lowerCamelCase :Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__snake_case ) lowerCamelCase :Tuple = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__snake_case ) lowerCamelCase :Union[str, Any] = tokenizer.encode( '''sequence builders''' , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) lowerCamelCase :str = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) lowerCamelCase :Any = tokenizer.build_inputs_with_special_tokens(__snake_case ) lowerCamelCase :Dict = tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def snake_case ( self : str ): lowerCamelCase :List[str] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: lowerCamelCase :int = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) lowerCamelCase :Tuple = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] lowerCamelCase :List[Any] = tokenizer(__snake_case , padding=__snake_case ) lowerCamelCase :Union[str, Any] = [tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) for seq in encoding['''input_ids''']] # fmt: off lowerCamelCase :Any = { '''input_ids''': [ [1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on lowerCamelCase :Optional[int] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __snake_case ) for expected, decoded in zip(__snake_case , __snake_case ): self.assertEqual(__snake_case , __snake_case )
49
1
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class _lowerCAmelCase ( unittest.TestCase ): def __init__( self : Dict , __snake_case : Tuple , __snake_case : Optional[int]=13 , __snake_case : Any=7 , __snake_case : List[str]=True , __snake_case : Any=True , __snake_case : Tuple=True , __snake_case : Tuple=True , __snake_case : Tuple=99 , __snake_case : Optional[int]=32 , __snake_case : List[Any]=5 , __snake_case : Dict=4 , __snake_case : str=37 , __snake_case : List[str]="gelu" , __snake_case : List[str]=0.1 , __snake_case : int=0.1 , __snake_case : Optional[Any]=512 , __snake_case : List[str]=16 , __snake_case : Optional[Any]=2 , __snake_case : List[str]=0.0_2 , __snake_case : Optional[Any]=4 , ): lowerCamelCase :Union[str, Any] = parent lowerCamelCase :int = batch_size lowerCamelCase :Any = seq_length lowerCamelCase :str = is_training lowerCamelCase :Optional[int] = use_attention_mask lowerCamelCase :Dict = use_token_type_ids lowerCamelCase :Any = use_labels lowerCamelCase :List[Any] = vocab_size lowerCamelCase :List[Any] = hidden_size lowerCamelCase :Any = num_hidden_layers lowerCamelCase :Union[str, Any] = num_attention_heads lowerCamelCase :Optional[Any] = intermediate_size lowerCamelCase :str = hidden_act lowerCamelCase :Optional[Any] = hidden_dropout_prob lowerCamelCase :List[str] = attention_probs_dropout_prob lowerCamelCase :str = max_position_embeddings lowerCamelCase :Union[str, Any] = type_vocab_size lowerCamelCase :Optional[int] = type_sequence_label_size lowerCamelCase :str = initializer_range lowerCamelCase :Tuple = num_choices def snake_case ( self : Dict ): lowerCamelCase :Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase :Optional[int] = None if self.use_attention_mask: lowerCamelCase :str = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase :int = None if self.use_token_type_ids: lowerCamelCase :int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase :List[str] = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def snake_case ( self : Tuple ): lowerCamelCase :Union[str, Any] = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase :List[Any] = config_and_inputs lowerCamelCase :Tuple = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def snake_case ( self : Dict ): lowerCamelCase :List[Any] = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase :str = config_and_inputs lowerCamelCase :Dict = True lowerCamelCase :List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCamelCase :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = True _UpperCAmelCase = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def snake_case ( self : int ): lowerCamelCase :int = FlaxRobertaModelTester(self ) @slow def snake_case ( self : Any ): for model_class_name in self.all_model_classes: lowerCamelCase :List[str] = model_class_name.from_pretrained('''roberta-base''' , from_pt=__snake_case ) lowerCamelCase :Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__snake_case )
49
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) A__ = [ """cross_validation.py""", """gradient_accumulation.py""", """local_sgd.py""", """multi_process_metrics.py""", """memory.py""", """automatic_gradient_accumulation.py""", """fsdp_with_peak_mem_tracking.py""", """deepspeed_with_config_support.py""", """megatron_lm_gpt_pretraining.py""", ] class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Any , __snake_case : str , __snake_case : bool , __snake_case : str = None , __snake_case : list = None ): lowerCamelCase :Tuple = None lowerCamelCase :Tuple = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) lowerCamelCase :Optional[int] = os.path.abspath('''examples''' ) for item in os.listdir(__snake_case ): if item not in EXCLUDE_EXAMPLES: lowerCamelCase :Optional[int] = os.path.join(__snake_case , __snake_case ) if os.path.isfile(__snake_case ) and ".py" in item_path: with self.subTest( tested_script=__snake_case , feature_script=__snake_case , tested_section='''main()''' if parser_only else '''training_function()''' , ): lowerCamelCase :Union[str, Any] = compare_against_test( os.path.join(__snake_case , __snake_case ) , __snake_case , __snake_case , __snake_case ) lowerCamelCase :int = '''\n'''.join(__snake_case ) if special_strings is not None: for string in special_strings: lowerCamelCase :int = diff.replace(__snake_case , '''''' ) self.assertEqual(__snake_case , '''''' ) def snake_case ( self : Dict ): self.one_complete_example('''complete_nlp_example.py''' , __snake_case ) self.one_complete_example('''complete_nlp_example.py''' , __snake_case ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Union[str, Any] = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) lowerCamelCase :Optional[int] = [ ''' ''' * 16 + '''{\n\n''', ''' ''' * 20 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 20 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 20 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 20 + '''"epoch": epoch,\n\n''', ''' ''' * 16 + '''},\n\n''', ''' ''' * 16 + '''step=epoch,\n''', ''' ''' * 12, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , __snake_case , __snake_case , __snake_case ) self.one_complete_example('''complete_cv_example.py''' , __snake_case , __snake_case , __snake_case ) @mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '1'} ) class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = False @classmethod def snake_case ( cls : Optional[Any] ): super().setUpClass() lowerCamelCase :Any = tempfile.mkdtemp() lowerCamelCase :Optional[int] = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) lowerCamelCase :List[str] = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def snake_case ( cls : Dict ): super().tearDownClass() shutil.rmtree(cls._tmpdir ) def snake_case ( self : int ): lowerCamelCase :Any = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def snake_case ( self : List[Any] ): lowerCamelCase :Tuple = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n ".split() lowerCamelCase :List[Any] = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def snake_case ( self : List[str] ): lowerCamelCase :Dict = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}\n ".split() lowerCamelCase :Dict = run_command(self._launch_args + testargs , return_stdout=__snake_case ) self.assertNotIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) def snake_case ( self : str ): lowerCamelCase :List[Any] = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}\n ".split() lowerCamelCase :Optional[int] = run_command(self._launch_args + testargs , return_stdout=__snake_case ) if torch.cuda.is_available(): lowerCamelCase :Union[str, Any] = torch.cuda.device_count() else: lowerCamelCase :Dict = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) else: self.assertIn('''epoch 0:''' , __snake_case ) self.assertIn('''epoch 1:''' , __snake_case ) @slow def snake_case ( self : Any ): lowerCamelCase :Tuple = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): lowerCamelCase :Dict = run_command(self._launch_args + testargs , return_stdout=__snake_case ) lowerCamelCase :Tuple = re.findall('''({.+})''' , __snake_case ) lowerCamelCase :Optional[Any] = [r for r in results if '''accuracy''' in r][-1] lowerCamelCase :List[str] = ast.literal_eval(__snake_case ) self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 ) def snake_case ( self : int ): lowerCamelCase :Dict = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case ( self : Any ): with tempfile.TemporaryDirectory() as tmpdir: lowerCamelCase :Tuple = F"\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__snake_case , '''tracking''' ) ) ) def snake_case ( self : Tuple ): lowerCamelCase :Tuple = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def snake_case ( self : Optional[Any] ): lowerCamelCase :int = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
49
1
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = StableUnCLIPPipeline _UpperCAmelCase = TEXT_TO_IMAGE_PARAMS _UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false _UpperCAmelCase = False def snake_case ( self : Union[str, Any] ): lowerCamelCase :List[str] = 32 lowerCamelCase :List[Any] = embedder_hidden_size # prior components torch.manual_seed(0 ) lowerCamelCase :Any = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) lowerCamelCase :Union[str, Any] = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__snake_case , projection_dim=__snake_case , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowerCamelCase :Optional[int] = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=__snake_case , num_layers=1 , ) torch.manual_seed(0 ) lowerCamelCase :List[Any] = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=__snake_case , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) lowerCamelCase :Dict = StableUnCLIPImageNormalizer(embedding_dim=__snake_case ) lowerCamelCase :Union[str, Any] = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) lowerCamelCase :Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) lowerCamelCase :Any = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__snake_case , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowerCamelCase :List[str] = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__snake_case , layers_per_block=1 , upcast_attention=__snake_case , use_linear_projection=__snake_case , ) torch.manual_seed(0 ) lowerCamelCase :List[str] = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type='''v_prediction''' , set_alpha_to_one=__snake_case , steps_offset=1 , ) torch.manual_seed(0 ) lowerCamelCase :Union[str, Any] = AutoencoderKL() lowerCamelCase :int = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def snake_case ( self : int , __snake_case : Tuple , __snake_case : str=0 ): if str(__snake_case ).startswith('''mps''' ): lowerCamelCase :int = torch.manual_seed(__snake_case ) else: lowerCamelCase :str = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) lowerCamelCase :int = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def snake_case ( self : Optional[Any] ): lowerCamelCase :List[Any] = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=__snake_case ) def snake_case ( self : Dict ): lowerCamelCase :Dict = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=__snake_case ) @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self : Any ): lowerCamelCase :List[str] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) lowerCamelCase :List[str] = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCamelCase :Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowerCamelCase :Optional[Any] = pipe('''anime turle''' , generator=__snake_case , output_type='''np''' ) lowerCamelCase :Any = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__snake_case , __snake_case ) def snake_case ( self : Optional[int] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCamelCase :str = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) lowerCamelCase :Union[str, Any] = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCamelCase :Optional[int] = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) lowerCamelCase :str = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
49
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs A__ = imread(R"""digital_image_processing/image_data/lena_small.jpg""") A__ = cvtColor(img, COLOR_BGR2GRAY) def _lowerCamelCase ( ): lowerCamelCase :int = cn.convert_to_negative(a_) # assert negative_img array for at least one True assert negative_img.any() def _lowerCamelCase ( ): with Image.open('''digital_image_processing/image_data/lena_small.jpg''') as img: # Work around assertion for response assert str(cc.change_contrast(a_ , 1_10)).startswith( '''<PIL.Image.Image image mode=RGB size=100x100 at''') def _lowerCamelCase ( ): lowerCamelCase :Optional[Any] = canny.gen_gaussian_kernel(9 , sigma=1.4) # Assert ambiguous array assert resp.all() def _lowerCamelCase ( ): lowerCamelCase :str = imread('''digital_image_processing/image_data/lena_small.jpg''' , 0) # assert ambiguous array for all == True assert canny_img.all() lowerCamelCase :Optional[Any] = canny.canny(a_) # assert canny array for at least one True assert canny_array.any() def _lowerCamelCase ( ): assert gg.gaussian_filter(a_ , 5 , sigma=0.9).all() def _lowerCamelCase ( ): # laplace diagonals lowerCamelCase :List[Any] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]]) lowerCamelCase :List[Any] = conv.img_convolve(a_ , a_).astype(a_) assert res.any() def _lowerCamelCase ( ): assert med.median_filter(a_ , 3).any() def _lowerCamelCase ( ): lowerCamelCase , lowerCamelCase :Union[str, Any] = sob.sobel_filter(a_) assert grad.any() and theta.any() def _lowerCamelCase ( ): lowerCamelCase :Dict = sp.make_sepia(a_ , 20) assert sepia.all() def _lowerCamelCase ( a_ : str = "digital_image_processing/image_data/lena_small.jpg"): lowerCamelCase :Any = bs.Burkes(imread(a_ , 1) , 1_20) burkes.process() assert burkes.output_img.any() def _lowerCamelCase ( a_ : str = "digital_image_processing/image_data/lena_small.jpg" , ): lowerCamelCase :Tuple = rs.NearestNeighbour(imread(a_ , 1) , 4_00 , 2_00) nn.process() assert nn.output.any() def _lowerCamelCase ( ): lowerCamelCase :Tuple = '''digital_image_processing/image_data/lena.jpg''' # Reading the image and converting it to grayscale. lowerCamelCase :Tuple = imread(a_ , 0) # Test for get_neighbors_pixel function() return not None lowerCamelCase :Dict = 0 lowerCamelCase :Optional[Any] = 0 lowerCamelCase :str = image[x_coordinate][y_coordinate] lowerCamelCase :Any = lbp.get_neighbors_pixel( a_ , a_ , a_ , a_) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCamelCase :int = np.zeros((image.shape[0], image.shape[1])) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0]): for j in range(0 , image.shape[1]): lowerCamelCase :Optional[int] = lbp.local_binary_value(a_ , a_ , a_) assert lbp_image.any()
49
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ = { """configuration_table_transformer""": [ """TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TableTransformerConfig""", """TableTransformerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TableTransformerForObjectDetection""", """TableTransformerModel""", """TableTransformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
49
import os from math import logaa def _lowerCamelCase ( a_ : str = "base_exp.txt"): lowerCamelCase :float = 0 lowerCamelCase :Optional[int] = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(a_) , a_))): lowerCamelCase , lowerCamelCase :Optional[int] = list(map(a_ , line.split(''','''))) if x * logaa(a_) > largest: lowerCamelCase :List[Any] = x * logaa(a_) lowerCamelCase :Any = i + 1 return result if __name__ == "__main__": print(solution())
49
1
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def _lowerCamelCase ( a_ : List[str]): lowerCamelCase :List[str] = args.pruning_method lowerCamelCase :Tuple = args.threshold lowerCamelCase :List[str] = args.model_name_or_path.rstrip('''/''') lowerCamelCase :Optional[int] = args.target_model_path print(F"Load fine-pruned model from {model_name_or_path}") lowerCamelCase :Optional[int] = torch.load(os.path.join(a_ , '''pytorch_model.bin''')) lowerCamelCase :List[str] = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: lowerCamelCase :int = tensor print(F"Copied layer {name}") elif "classifier" in name or "qa_output" in name: lowerCamelCase :int = tensor print(F"Copied layer {name}") elif "bias" in name: lowerCamelCase :Optional[int] = tensor print(F"Copied layer {name}") else: if pruning_method == "magnitude": lowerCamelCase :List[Any] = MagnitudeBinarizer.apply(inputs=a_ , threshold=a_) lowerCamelCase :Optional[Any] = tensor * mask print(F"Pruned layer {name}") elif pruning_method == "topK": if "mask_scores" in name: continue lowerCamelCase :Any = name[:-6] lowerCamelCase :int = model[F"{prefix_}mask_scores"] lowerCamelCase :List[str] = TopKBinarizer.apply(a_ , a_) lowerCamelCase :Optional[int] = tensor * mask print(F"Pruned layer {name}") elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue lowerCamelCase :List[Any] = name[:-6] lowerCamelCase :Optional[Any] = model[F"{prefix_}mask_scores"] lowerCamelCase :Any = ThresholdBinarizer.apply(a_ , a_ , a_) lowerCamelCase :Optional[int] = tensor * mask print(F"Pruned layer {name}") elif pruning_method == "l0": if "mask_scores" in name: continue lowerCamelCase :List[str] = name[:-6] lowerCamelCase :Optional[Any] = model[F"{prefix_}mask_scores"] lowerCamelCase , lowerCamelCase :Optional[Any] = -0.1, 1.1 lowerCamelCase :int = torch.sigmoid(a_) lowerCamelCase :Any = s * (r - l) + l lowerCamelCase :List[str] = s_bar.clamp(min=0.0 , max=1.0) lowerCamelCase :Optional[Any] = tensor * mask print(F"Pruned layer {name}") else: raise ValueError('''Unknown pruning method''') if target_model_path is None: lowerCamelCase :int = os.path.join( os.path.dirname(a_) , F"bertarized_{os.path.basename(a_)}") if not os.path.isdir(a_): shutil.copytree(a_ , a_) print(F"\nCreated folder {target_model_path}") torch.save(a_ , os.path.join(a_ , '''pytorch_model.bin''')) print('''\nPruned model saved! See you later!''') if __name__ == "__main__": A__ = argparse.ArgumentParser() parser.add_argument( """--pruning_method""", choices=["""l0""", """magnitude""", """topK""", """sigmoied_threshold"""], type=str, required=True, help=( """Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,""" """ sigmoied_threshold = Soft movement pruning)""" ), ) parser.add_argument( """--threshold""", type=float, required=False, help=( """For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.""" """For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.""" """Not needed for `l0`""" ), ) parser.add_argument( """--model_name_or_path""", type=str, required=True, help="""Folder containing the model that was previously fine-pruned""", ) parser.add_argument( """--target_model_path""", default=None, type=str, required=False, help="""Folder containing the model that was previously fine-pruned""", ) A__ = parser.parse_args() main(args)
49
def _lowerCamelCase ( a_ : list): if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''') for cell_n in range(1 , len(grid[0])): grid[0][cell_n] += grid[0][cell_n - 1] lowerCamelCase :Any = grid[0] for row_n in range(1 , len(a_)): lowerCamelCase :List[str] = grid[row_n] lowerCamelCase :Union[str, Any] = fill_row(a_ , a_) lowerCamelCase :List[Any] = grid[row_n] return grid[-1][-1] def _lowerCamelCase ( a_ : list , a_ : list): current_row[0] += row_above[0] for cell_n in range(1 , len(a_)): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n]) return current_row if __name__ == "__main__": import doctest doctest.testmod()
49
1
def _lowerCamelCase ( ): return [list(range(10_00 - i , -10_00 - i , -1)) for i in range(10_00)] A__ = generate_large_matrix() A__ = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def _lowerCamelCase ( a_ : list[list[int]]): assert all(row == sorted(a_ , reverse=a_) for row in grid) assert all(list(a_) == sorted(a_ , reverse=a_) for col in zip(*a_)) def _lowerCamelCase ( a_ : list[int]): lowerCamelCase :Optional[Any] = 0 lowerCamelCase :Dict = len(a_) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: lowerCamelCase :str = (left + right) // 2 lowerCamelCase :Optional[Any] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: lowerCamelCase :Any = mid + 1 else: lowerCamelCase :int = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(a_) def _lowerCamelCase ( a_ : list[list[int]]): lowerCamelCase :Dict = 0 lowerCamelCase :Optional[Any] = len(grid[0]) for i in range(len(a_)): lowerCamelCase :str = find_negative_index(grid[i][:bound]) total += bound return (len(a_) * len(grid[0])) - total def _lowerCamelCase ( a_ : list[list[int]]): return len([number for row in grid for number in row if number < 0]) def _lowerCamelCase ( a_ : list[list[int]]): lowerCamelCase :Tuple = 0 for row in grid: for i, number in enumerate(a_): if number < 0: total += len(a_) - i break return total def _lowerCamelCase ( ): from timeit import timeit print('''Running benchmarks''') lowerCamelCase :List[Any] = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): lowerCamelCase :Optional[int] = timeit(F"{func}(grid=grid)" , setup=a_ , number=5_00) print(F"{func}() took {time:0.4f} seconds") if __name__ == "__main__": import doctest doctest.testmod() benchmark()
49
import math def _lowerCamelCase ( a_ : int): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a_) + 1) , 6): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCamelCase ( a_ : float = 0.1): lowerCamelCase :Dict = 3 lowerCamelCase :List[Any] = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1): primes += is_prime(a_) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
49
1
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer A__ = """bart""" A__ = True @st.cache(allow_output_mutation=a_) def _lowerCamelCase ( ): if LOAD_DENSE_INDEX: lowerCamelCase :Any = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''') lowerCamelCase :Dict = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''').to('''cuda:0''') lowerCamelCase :Any = qar_model.eval() else: lowerCamelCase , lowerCamelCase :Tuple = (None, None) if MODEL_TYPE == "bart": lowerCamelCase :List[str] = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''') lowerCamelCase :Tuple = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''').to('''cuda:0''') lowerCamelCase :Optional[int] = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''') sas_model.load_state_dict(save_dict['''model''']) lowerCamelCase :str = sas_model.eval() else: lowerCamelCase , lowerCamelCase :int = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''') return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=a_) def _lowerCamelCase ( ): if LOAD_DENSE_INDEX: lowerCamelCase :Union[str, Any] = faiss.StandardGpuResources() lowerCamelCase :Optional[int] = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''')['''train'''] lowerCamelCase :Dict = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 1_28) , ) lowerCamelCase :List[str] = faiss.IndexFlatIP(1_28) lowerCamelCase :List[str] = faiss.index_cpu_to_gpu(a_ , 1 , a_) wikiaab_gpu_index_flat.add(a_) # TODO fix for larger GPU else: lowerCamelCase , lowerCamelCase :Any = (None, None) lowerCamelCase :Union[str, Any] = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}]) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=a_) def _lowerCamelCase ( ): lowerCamelCase :Optional[Any] = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''') lowerCamelCase :List[Any] = elia['''train_eli5'''] lowerCamelCase :Optional[int] = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 1_28)) lowerCamelCase :str = faiss.IndexFlatIP(1_28) eli5_train_q_index.add(a_) return (elia_train, eli5_train_q_index) A__ , A__ , A__ = load_indexes() A__ , A__ , A__ , A__ = load_models() A__ , A__ = load_train_data() def _lowerCamelCase ( a_ : Tuple , a_ : Dict=10): lowerCamelCase :Any = embed_questions_for_retrieval([question] , a_ , a_) lowerCamelCase , lowerCamelCase :Any = eli5_train_q_index.search(a_ , a_) lowerCamelCase :Dict = [elia_train[int(a_)] for i in I[0]] return nn_examples def _lowerCamelCase ( a_ : Union[str, Any] , a_ : List[Any]="wiki40b" , a_ : Tuple="dense" , a_ : str=10): if source == "none": lowerCamelCase , lowerCamelCase :int = (''' <P> '''.join(['''''' for _ in range(11)]).strip(), []) else: if method == "dense": lowerCamelCase , lowerCamelCase :List[str] = query_qa_dense_index( a_ , a_ , a_ , a_ , a_ , a_) else: lowerCamelCase , lowerCamelCase :Dict = query_es_index( a_ , a_ , index_name='''english_wiki40b_snippets_100w''' , n_results=a_ , ) lowerCamelCase :Any = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] lowerCamelCase :List[Any] = '''question: {} context: {}'''.format(a_ , a_) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda a_: None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda a_: None), }) def _lowerCamelCase ( a_ : Any , a_ : Union[str, Any] , a_ : int , a_ : Dict=64 , a_ : List[str]=2_56 , a_ : Optional[Any]=False , a_ : Any=2 , a_ : Any=0.95 , a_ : List[Any]=0.8): with torch.no_grad(): lowerCamelCase :Optional[Any] = qa_sas_generate( a_ , a_ , a_ , num_answers=1 , num_beams=a_ , min_len=a_ , max_len=a_ , do_sample=a_ , temp=a_ , top_p=a_ , top_k=a_ , max_input_length=10_24 , device='''cuda:0''' , )[0] return (answer, support_list) st.title("""Long Form Question Answering with ELI5""") # Start sidebar A__ = """<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>""" A__ = """ <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class=\"img-container\"> <!-- Inline parent element --> %s </span> </body> </html> """ % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia A__ = """ This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. """ st.sidebar.markdown(description, unsafe_allow_html=True) A__ = [ """Answer the question""", """View the retrieved document only""", """View the most similar ELI5 question and answer""", """Show me everything, please!""", ] A__ = st.sidebar.checkbox("""Demo options""") if demo_options: A__ = st.sidebar.selectbox( """""", action_list, index=3, ) A__ = action_list.index(action_st) A__ = st.sidebar.selectbox( """""", ["""Show full text of passages""", """Show passage section titles"""], index=0, ) A__ = show_type == """Show full text of passages""" else: A__ = 3 A__ = True A__ = st.sidebar.checkbox("""Retrieval options""") if retrieval_options: A__ = """ ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. """ st.sidebar.markdown(retriever_info) A__ = st.sidebar.selectbox("""Which Wikipedia format should the model use?""", ["""wiki40b""", """none"""]) A__ = st.sidebar.selectbox("""Which Wikipedia indexer should the model use?""", ["""dense""", """sparse""", """mixed"""]) else: A__ = """wiki40b""" A__ = """dense""" A__ = """beam""" A__ = 2 A__ = 64 A__ = 256 A__ = None A__ = None A__ = st.sidebar.checkbox("""Generation options""") if generate_options: A__ = """ ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder's output probabilities. """ st.sidebar.markdown(generate_info) A__ = st.sidebar.selectbox("""Would you like to use beam search or sample an answer?""", ["""beam""", """sampled"""]) A__ = st.sidebar.slider( """Minimum generation length""", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) A__ = st.sidebar.slider( """Maximum generation length""", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": A__ = st.sidebar.slider("""Beam size""", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: A__ = st.sidebar.slider( """Nucleus sampling p""", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) A__ = st.sidebar.slider( """Temperature""", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) A__ = None # start main text A__ = [ """<MY QUESTION>""", """How do people make chocolate?""", """Why do we get a fever when we are sick?""", """How can different animals perceive different colors?""", """What is natural language processing?""", """What's the best way to treat a sunburn?""", """What exactly are vitamins ?""", """How does nuclear energy provide electricity?""", """What's the difference between viruses and bacteria?""", """Why are flutes classified as woodwinds when most of them are made out of metal ?""", """Why do people like drinking coffee even though it tastes so bad?""", """What happens when wine ages? How does it make the wine taste better?""", """If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?""", """How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?""", """How does New Zealand have so many large bird predators?""", ] A__ = st.selectbox( """What would you like to ask? ---- select <MY QUESTION> to enter a new query""", questions_list, index=1, ) if question_s == "<MY QUESTION>": A__ = st.text_input("""Enter your question here:""", """""") else: A__ = question_s if st.button("""Show me!"""): if action in [0, 1, 3]: if index_type == "mixed": A__ , A__ = make_support(question, source=wiki_source, method="""dense""", n_results=10) A__ , A__ = make_support(question, source=wiki_source, method="""sparse""", n_results=10) A__ = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] A__ = support_list[:10] A__ = """<P> """ + """ <P> """.join([res[-1] for res in support_list]) else: A__ , A__ = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: A__ , A__ = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == """sampled"""), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("""### The model generated answer is:""") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("""--- \n ### The model is drawing information from the following Wikipedia passages:""") for i, res in enumerate(support_list): A__ = """https://en.wikipedia.org/wiki/{}""".format(res[0].replace(""" """, """_""")) A__ = res[1].strip() if sec_titles == "": A__ = """[{}]({})""".format(res[0], wiki_url) else: A__ = sec_titles.split(""" & """) A__ = """ & """.join( ["""[{}]({}#{})""".format(sec.strip(), wiki_url, sec.strip().replace(""" """, """_""")) for sec in sec_list] ) st.markdown( """{0:02d} - **Article**: {1:<18} <br> _Section_: {2}""".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( """> <span style=\"font-family:arial; font-size:10pt;\">""" + res[-1] + """</span>""", unsafe_allow_html=True ) if action in [2, 3]: A__ = find_nearest_training(question) A__ = nn_train_list[0] st.markdown( """--- \n ### The most similar question in the ELI5 training set was: \n\n {}""".format(train_exple["""title"""]) ) A__ = [ """{}. {}""".format(i + 1, """ \n""".join([line.strip() for line in ans.split("""\n""") if line.strip() != """"""])) for i, (ans, sc) in enumerate(zip(train_exple["""answers"""]["""text"""], train_exple["""answers"""]["""score"""])) if i == 0 or sc > 2 ] st.markdown("""##### Its answers were: \n\n {}""".format("""\n""".join(answers_st))) A__ = """ --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* """ st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
49
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : str ): lowerCamelCase :int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :List[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :Optional[Any] = -1 lowerCamelCase :List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Tuple = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :str = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowerCamelCase :str = TextStreamer(__snake_case ) model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case , streamer=__snake_case ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCamelCase :Optional[int] = cs.out[:-1] self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : Dict ): lowerCamelCase :Tuple = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :int = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :List[Any] = -1 lowerCamelCase :Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Tuple = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :List[Any] = tokenizer.decode(greedy_ids[0] ) lowerCamelCase :List[str] = TextIteratorStreamer(__snake_case ) lowerCamelCase :List[str] = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} lowerCamelCase :Tuple = Thread(target=model.generate , kwargs=__snake_case ) thread.start() lowerCamelCase :Any = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : str ): lowerCamelCase :int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :Dict = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :List[str] = -1 lowerCamelCase :Optional[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :Optional[Any] = model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case ) lowerCamelCase :List[str] = greedy_ids[:, input_ids.shape[1] :] lowerCamelCase :Union[str, Any] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowerCamelCase :List[str] = TextStreamer(__snake_case , skip_prompt=__snake_case ) model.generate(__snake_case , max_new_tokens=10 , do_sample=__snake_case , streamer=__snake_case ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCamelCase :int = cs.out[:-1] self.assertEqual(__snake_case , __snake_case ) def snake_case ( self : Optional[int] ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them lowerCamelCase :List[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) lowerCamelCase :Union[str, Any] = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(__snake_case ) lowerCamelCase :Optional[int] = -1 lowerCamelCase :Union[str, Any] = torch.ones((1, 5) , device=__snake_case ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowerCamelCase :Dict = TextStreamer(__snake_case , skip_special_tokens=__snake_case ) model.generate(__snake_case , max_new_tokens=1 , do_sample=__snake_case , streamer=__snake_case ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowerCamelCase :Tuple = cs.out[:-1] # Remove the final "\n" lowerCamelCase :int = tokenizer(__snake_case , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def snake_case ( self : List[Any] ): lowerCamelCase :List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) lowerCamelCase :Optional[int] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(__snake_case ) lowerCamelCase :Optional[int] = -1 lowerCamelCase :Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__snake_case ) lowerCamelCase :List[Any] = TextIteratorStreamer(__snake_case , timeout=0.0_0_1 ) lowerCamelCase :Dict = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} lowerCamelCase :Tuple = Thread(target=model.generate , kwargs=__snake_case ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__snake_case ): lowerCamelCase :Dict = '''''' for new_text in streamer: streamer_text += new_text
49
1
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def _lowerCamelCase ( a_ : str , a_ : str , a_ : str , a_ : PreTrainedTokenizer , a_ : int , a_ : Optional[int] = None , ): lowerCamelCase :List[str] = {} if train_file is not None: lowerCamelCase :Tuple = [train_file] if eval_file is not None: lowerCamelCase :Optional[Any] = [eval_file] if test_file is not None: lowerCamelCase :Union[str, Any] = [test_file] lowerCamelCase :Optional[int] = datasets.load_dataset('''csv''' , data_files=a_) lowerCamelCase :List[str] = list(ds[list(files.keys())[0]].features.keys()) lowerCamelCase :Optional[Any] = features_name.pop(a_) lowerCamelCase :Dict = list(set(ds[list(files.keys())[0]][label_name])) lowerCamelCase :int = {label: i for i, label in enumerate(a_)} lowerCamelCase :Dict = tokenizer.model_input_names lowerCamelCase :int = {} if len(a_) == 1: for k in files.keys(): lowerCamelCase :int = ds[k].map( lambda a_: tokenizer.batch_encode_plus( example[features_name[0]] , truncation=a_ , max_length=a_ , padding='''max_length''') , batched=a_ , ) elif len(a_) == 2: for k in files.keys(): lowerCamelCase :int = ds[k].map( lambda a_: tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=a_ , max_length=a_ , padding='''max_length''' , ) , batched=a_ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: lowerCamelCase :Tuple = {k: v for k, v in ex.items() if k in input_names} lowerCamelCase :Any = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: lowerCamelCase :int = {k: v for k, v in ex.items() if k in input_names} lowerCamelCase :List[str] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: lowerCamelCase :Tuple = {k: v for k, v in ex.items() if k in input_names} lowerCamelCase :Union[str, Any] = labelaid[ex[label_name]] yield (d, label) lowerCamelCase :Dict = ( tf.data.Dataset.from_generator( a_ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None]) for k in input_names}, tf.TensorShape([])) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: lowerCamelCase :List[Any] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN]))) lowerCamelCase :str = ( tf.data.Dataset.from_generator( a_ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None]) for k in input_names}, tf.TensorShape([])) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: lowerCamelCase :Optional[int] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION]))) lowerCamelCase :Tuple = ( tf.data.Dataset.from_generator( a_ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None]) for k in input_names}, tf.TensorShape([])) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: lowerCamelCase :List[str] = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST]))) return train_ds, val_ds, test_ds, labelaid A__ = logging.getLogger(__name__) @dataclass class _lowerCAmelCase : _UpperCAmelCase = field(metadata={'help': 'Which column contains the label'} ) _UpperCAmelCase = field(default=__SCREAMING_SNAKE_CASE , metadata={'help': 'The path of the training file'} ) _UpperCAmelCase = field(default=__SCREAMING_SNAKE_CASE , metadata={'help': 'The path of the development file'} ) _UpperCAmelCase = field(default=__SCREAMING_SNAKE_CASE , metadata={'help': 'The path of the test file'} ) _UpperCAmelCase = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) _UpperCAmelCase = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) @dataclass class _lowerCAmelCase : _UpperCAmelCase = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) _UpperCAmelCase = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) _UpperCAmelCase = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) _UpperCAmelCase = field(default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Set this flag to use fast tokenization.'} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _UpperCAmelCase = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) def _lowerCamelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase :Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments)) lowerCamelCase , lowerCamelCase , lowerCamelCase :Tuple = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''') # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info( F"n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1)}, " F"16-bits training: {training_args.fpaa}") logger.info(F"Training/evaluation parameters {training_args}") # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase :str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase :str = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=a_ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) lowerCamelCase :Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(a_) , labelaid=a_ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): lowerCamelCase :List[str] = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path) , config=a_ , cache_dir=model_args.cache_dir , ) def compute_metrics(a_ : EvalPrediction) -> Dict: lowerCamelCase :List[Any] = np.argmax(p.predictions , axis=1) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer lowerCamelCase :str = TFTrainer( model=a_ , args=a_ , train_dataset=a_ , eval_dataset=a_ , compute_metrics=a_ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir) # Evaluation lowerCamelCase :Tuple = {} if training_args.do_eval: logger.info('''*** Evaluate ***''') lowerCamelCase :Union[str, Any] = trainer.evaluate() lowerCamelCase :Tuple = os.path.join(training_args.output_dir , '''eval_results.txt''') with open(a_ , '''w''') as writer: logger.info('''***** Eval results *****''') for key, value in result.items(): logger.info(F" {key} = {value}") writer.write(F"{key} = {value}\n") results.update(a_) return results if __name__ == "__main__": main()
49
from maths.prime_factors import prime_factors def _lowerCamelCase ( a_ : int): if not isinstance(a_ , a_): lowerCamelCase :Tuple = F"Input value of [number={number}] must be an integer" raise TypeError(a_) if number < 1: raise ValueError('''Input must be a positive integer''') return -1 if len(prime_factors(a_)) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
49
1
from math import ceil def _lowerCamelCase ( a_ : int = 10_01): lowerCamelCase :Union[str, Any] = 1 for i in range(1 , int(ceil(n / 2.0))): lowerCamelCase :Any = 2 * i + 1 lowerCamelCase :str = 2 * i lowerCamelCase :Tuple = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: A__ = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number""")
49
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() A__ = logging.get_logger(__name__) def _lowerCamelCase ( a_ : str , a_ : str=False): lowerCamelCase :Optional[int] = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''')) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''')) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''')) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''')) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''')) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''')) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''')) for stage_idx in range(len(config.backbone_config.depths)): for layer_idx in range(config.backbone_config.depths[stage_idx]): rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias")) # transformer encoder for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight")) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias")) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight")) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias")) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight")) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias")) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight")) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias")) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight")) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias")) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ]) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCamelCase :List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''') else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ]) # fmt: on return rename_keys def _lowerCamelCase ( a_ : Any , a_ : Any , a_ : int=False): for i in range(config.num_hidden_layers): if base_model: lowerCamelCase :Union[str, Any] = '''''' else: lowerCamelCase :Optional[int] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase :Optional[Any] = state_dict.pop(F"blocks.{i}.attn.qkv.weight") lowerCamelCase :Any = state_dict.pop(F"blocks.{i}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict lowerCamelCase :Any = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase :Tuple = in_proj_bias[: config.hidden_size] lowerCamelCase :int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase :Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase :Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase :List[Any] = in_proj_bias[-config.hidden_size :] def _lowerCamelCase ( a_ : int): lowerCamelCase :Any = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(a_ , a_) def _lowerCamelCase ( a_ : int , a_ : Any , a_ : Tuple): lowerCamelCase :Optional[Any] = dct.pop(a_) lowerCamelCase :str = val def _lowerCamelCase ( ): lowerCamelCase :Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase :Tuple = Image.open(requests.get(a_ , stream=a_).raw) return im @torch.no_grad() def _lowerCamelCase ( a_ : Optional[Any] , a_ : Optional[Any] , a_ : Optional[Any]=False): lowerCamelCase :Optional[int] = BitConfig( global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=a_ , ) lowerCamelCase :Optional[int] = ViTHybridConfig(backbone_config=a_ , image_size=3_84 , num_labels=10_00) lowerCamelCase :List[Any] = False # load original model from timm lowerCamelCase :List[str] = timm.create_model(a_ , pretrained=a_) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCamelCase :List[str] = timm_model.state_dict() if base_model: remove_classification_head_(a_) lowerCamelCase :Tuple = create_rename_keys(a_ , a_) for src, dest in rename_keys: rename_key(a_ , a_ , a_) read_in_q_k_v(a_ , a_ , a_) lowerCamelCase :List[str] = '''huggingface/label-files''' lowerCamelCase :Any = '''imagenet-1k-id2label.json''' lowerCamelCase :List[Any] = json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''') , '''r''')) lowerCamelCase :Optional[Any] = {int(a_): v for k, v in idalabel.items()} lowerCamelCase :Optional[int] = idalabel lowerCamelCase :Union[str, Any] = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": lowerCamelCase :Optional[Any] = ViTHybridModel(a_).eval() else: lowerCamelCase :Dict = ViTHybridForImageClassification(a_).eval() model.load_state_dict(a_) # create image processor lowerCamelCase :Dict = create_transform(**resolve_data_config({} , model=a_)) lowerCamelCase :str = transform.transforms lowerCamelCase :int = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } lowerCamelCase :Any = ViTHybridImageProcessor( do_resize=a_ , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=a_ , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=a_ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCamelCase :Dict = prepare_img() lowerCamelCase :str = transform(a_).unsqueeze(0) lowerCamelCase :str = processor(a_ , return_tensors='''pt''').pixel_values # verify pixel values assert torch.allclose(a_ , a_) # verify logits with torch.no_grad(): lowerCamelCase :Optional[int] = model(a_) lowerCamelCase :Union[str, Any] = outputs.logits print('''Predicted class:''' , logits.argmax(-1).item()) if base_model: lowerCamelCase :Union[str, Any] = timm_model.forward_features(a_) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(a_ , outputs.pooler_output , atol=1e-3) else: lowerCamelCase :List[str] = timm_model(a_) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(a_ , outputs.logits , atol=1e-3) print('''Looks ok!''') if pytorch_dump_folder_path is not None: Path(a_).mkdir(exist_ok=a_) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}") model.save_pretrained(a_) print(F"Saving processor to {pytorch_dump_folder_path}") processor.save_pretrained(a_) if push_to_hub: print(F"Pushing model and processor to the hub {vit_name}") model.push_to_hub(F"ybelkada/{vit_name}") processor.push_to_hub(F"ybelkada/{vit_name}") if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_r50_s16_384""", type=str, help="""Name of the hybrid ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) A__ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
49
1
def _lowerCamelCase ( a_ : float , a_ : float): if density <= 0: raise ValueError('''Impossible fluid density''') if bulk_modulus <= 0: raise ValueError('''Impossible bulk modulus''') return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
49
def _lowerCamelCase ( a_ : int = 4_00_00_00): lowerCamelCase :Dict = [0, 1] lowerCamelCase :Optional[Any] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1]) if fib[i + 2] > n: break i += 1 lowerCamelCase :Dict = 0 for j in range(len(a_) - 1): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F'{solution() = }')
49
1
from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class _lowerCAmelCase : pass
49
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ = { """configuration_nllb_moe""": [ """NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NllbMoeConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""", """NllbMoeForConditionalGeneration""", """NllbMoeModel""", """NllbMoePreTrainedModel""", """NllbMoeTop2Router""", """NllbMoeSparseMLP""", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
49
1
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = DebertaTokenizer _UpperCAmelCase = True _UpperCAmelCase = DebertaTokenizerFast def snake_case ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase :Dict = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] lowerCamelCase :List[str] = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) lowerCamelCase :Any = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCamelCase :Dict = {'''unk_token''': '''[UNK]'''} lowerCamelCase :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase :List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__snake_case ) ) def snake_case ( self : str , **__snake_case : Dict ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Optional[Any] , __snake_case : int ): lowerCamelCase :List[Any] = '''lower newer''' lowerCamelCase :List[str] = '''lower newer''' return input_text, output_text def snake_case ( self : str ): lowerCamelCase :Optional[int] = self.get_tokenizer() lowerCamelCase :Union[str, Any] = '''lower newer''' lowerCamelCase :str = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] lowerCamelCase :Optional[int] = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) lowerCamelCase :List[str] = tokens + [tokenizer.unk_token] lowerCamelCase :Optional[int] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def snake_case ( self : Optional[int] ): lowerCamelCase :List[str] = self.get_tokenizer() lowerCamelCase :Optional[int] = tokenizer('''Hello''' , '''World''' ) lowerCamelCase :List[str] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __snake_case ) @slow def snake_case ( self : str ): lowerCamelCase :Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) lowerCamelCase :Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__snake_case ) lowerCamelCase :Tuple = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__snake_case ) lowerCamelCase :Union[str, Any] = tokenizer.encode( '''sequence builders''' , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) lowerCamelCase :str = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) lowerCamelCase :Any = tokenizer.build_inputs_with_special_tokens(__snake_case ) lowerCamelCase :Dict = tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def snake_case ( self : str ): lowerCamelCase :List[str] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: lowerCamelCase :int = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) lowerCamelCase :Tuple = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] lowerCamelCase :List[Any] = tokenizer(__snake_case , padding=__snake_case ) lowerCamelCase :Union[str, Any] = [tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) for seq in encoding['''input_ids''']] # fmt: off lowerCamelCase :Any = { '''input_ids''': [ [1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on lowerCamelCase :Optional[int] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __snake_case ) for expected, decoded in zip(__snake_case , __snake_case ): self.assertEqual(__snake_case , __snake_case )
49
import numpy class _lowerCAmelCase : def __init__( self : Dict , __snake_case : numpy.ndarray , __snake_case : numpy.ndarray ): lowerCamelCase :Dict = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. lowerCamelCase :Dict = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. lowerCamelCase :Dict = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. lowerCamelCase :Any = numpy.random.rand(3 , 1 ) # Real output values provided. lowerCamelCase :Union[str, Any] = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. lowerCamelCase :List[str] = numpy.zeros(output_array.shape ) def snake_case ( self : Optional[int] ): lowerCamelCase :Any = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. lowerCamelCase :Any = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. lowerCamelCase :Dict = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def snake_case ( self : Any ): lowerCamelCase :Union[str, Any] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) lowerCamelCase :Dict = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) lowerCamelCase :int = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def snake_case ( self : Dict , __snake_case : numpy.ndarray , __snake_case : int , __snake_case : bool ): for iteration in range(1 , iterations + 1 ): lowerCamelCase :Union[str, Any] = self.feedforward() self.back_propagation() if give_loss: lowerCamelCase :Tuple = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"Iteration {iteration} Loss: {loss}" ) def snake_case ( self : Optional[int] , __snake_case : numpy.ndarray ): lowerCamelCase :int = input_arr lowerCamelCase :Union[str, Any] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) lowerCamelCase :Optional[Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) lowerCamelCase :Optional[int] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def _lowerCamelCase ( a_ : numpy.ndarray): return 1 / (1 + numpy.exp(-value)) def _lowerCamelCase ( a_ : numpy.ndarray): return (value) * (1 - (value)) def _lowerCamelCase ( ): lowerCamelCase :Optional[Any] = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. lowerCamelCase :int = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa) # Calling neural network class. lowerCamelCase :List[Any] = TwoHiddenLayerNeuralNetwork( input_array=a_ , output_array=a_) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=a_ , iterations=10 , give_loss=a_) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa)) if __name__ == "__main__": example()
49
1
def _lowerCamelCase ( a_ : int): if p < 2: raise ValueError('''p should not be less than 2!''') elif p == 2: return True lowerCamelCase :int = 4 lowerCamelCase :List[str] = (1 << p) - 1 for _ in range(p - 2): lowerCamelCase :Union[str, Any] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
49
def _lowerCamelCase ( a_ : str , a_ : str): lowerCamelCase :List[str] = len(a_) lowerCamelCase :List[str] = len(a_) lowerCamelCase :int = [[False for _ in range(m + 1)] for _ in range(n + 1)] lowerCamelCase :Optional[Any] = True for i in range(a_): for j in range(m + 1): if dp[i][j]: if j < m and a[i].upper() == b[j]: lowerCamelCase :Any = True if a[i].islower(): lowerCamelCase :List[str] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
49
1
from math import sqrt def _lowerCamelCase ( a_ : int): lowerCamelCase :List[Any] = 0 for i in range(1 , int(sqrt(a_) + 1)): if n % i == 0 and i != sqrt(a_): total += i + n // i elif i == sqrt(a_): total += i return total - n def _lowerCamelCase ( a_ : int = 1_00_00): lowerCamelCase :int = sum( i for i in range(1 , a_) if sum_of_divisors(sum_of_divisors(a_)) == i and sum_of_divisors(a_) != i) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
49
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : def __init__( self : Any , __snake_case : Optional[int] , __snake_case : int=13 , __snake_case : str=[30, 30] , __snake_case : Tuple=2 , __snake_case : Optional[Any]=3 , __snake_case : int=True , __snake_case : Tuple=True , __snake_case : List[Any]=32 , __snake_case : int=5 , __snake_case : Optional[Any]=4 , __snake_case : Union[str, Any]=37 , __snake_case : str="gelu" , __snake_case : Tuple=0.1 , __snake_case : List[Any]=0.1 , __snake_case : Union[str, Any]=10 , __snake_case : str=0.0_2 , __snake_case : Union[str, Any]=3 , __snake_case : Union[str, Any]=None , __snake_case : List[str]=8 , __snake_case : Any=10 , ): lowerCamelCase :Optional[Any] = parent lowerCamelCase :List[Any] = batch_size lowerCamelCase :Any = image_size lowerCamelCase :Union[str, Any] = patch_size lowerCamelCase :Any = num_channels lowerCamelCase :List[Any] = is_training lowerCamelCase :Optional[Any] = use_labels lowerCamelCase :Any = hidden_size lowerCamelCase :List[Any] = num_hidden_layers lowerCamelCase :List[str] = num_attention_heads lowerCamelCase :Tuple = intermediate_size lowerCamelCase :List[str] = hidden_act lowerCamelCase :List[str] = hidden_dropout_prob lowerCamelCase :Any = attention_probs_dropout_prob lowerCamelCase :List[Any] = type_sequence_label_size lowerCamelCase :Optional[int] = initializer_range lowerCamelCase :List[Any] = num_labels lowerCamelCase :Any = scope lowerCamelCase :Union[str, Any] = n_targets lowerCamelCase :Optional[Any] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowerCamelCase :Tuple = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowerCamelCase :str = num_patches + 1 + self.num_detection_tokens def snake_case ( self : List[str] ): lowerCamelCase :str = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowerCamelCase :List[str] = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowerCamelCase :Optional[int] = [] for i in range(self.batch_size ): lowerCamelCase :List[str] = {} lowerCamelCase :Tuple = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=__snake_case ) lowerCamelCase :List[str] = torch.rand(self.n_targets , 4 , device=__snake_case ) labels.append(__snake_case ) lowerCamelCase :str = self.get_config() return config, pixel_values, labels def snake_case ( self : Union[str, Any] ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__snake_case , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def snake_case ( self : Tuple , __snake_case : Tuple , __snake_case : Tuple , __snake_case : Any ): lowerCamelCase :Optional[Any] = YolosModel(config=__snake_case ) model.to(__snake_case ) model.eval() lowerCamelCase :Union[str, Any] = model(__snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def snake_case ( self : Dict , __snake_case : str , __snake_case : Optional[int] , __snake_case : Optional[Any] ): lowerCamelCase :int = YolosForObjectDetection(__snake_case ) model.to(__snake_case ) model.eval() lowerCamelCase :str = model(pixel_values=__snake_case ) lowerCamelCase :Any = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) lowerCamelCase :int = model(pixel_values=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def snake_case ( self : int ): lowerCamelCase :List[Any] = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase :str = config_and_inputs lowerCamelCase :Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () _UpperCAmelCase = ( {'feature-extraction': YolosModel, 'object-detection': YolosForObjectDetection} if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def snake_case ( self : Any , __snake_case : List[Any] , __snake_case : Tuple , __snake_case : Dict=False ): lowerCamelCase :Optional[int] = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowerCamelCase :Dict = [] for i in range(self.model_tester.batch_size ): lowerCamelCase :Optional[Any] = {} lowerCamelCase :List[Any] = torch.ones( size=(self.model_tester.n_targets,) , device=__snake_case , dtype=torch.long ) lowerCamelCase :str = torch.ones( self.model_tester.n_targets , 4 , device=__snake_case , dtype=torch.float ) labels.append(__snake_case ) lowerCamelCase :Union[str, Any] = labels return inputs_dict def snake_case ( self : Tuple ): lowerCamelCase :Union[str, Any] = YolosModelTester(self ) lowerCamelCase :Dict = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=37 ) def snake_case ( self : Union[str, Any] ): self.config_tester.run_common_tests() def snake_case ( self : Optional[Any] ): # YOLOS does not use inputs_embeds pass def snake_case ( self : Tuple ): lowerCamelCase , lowerCamelCase :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :Optional[int] = model_class(__snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase :str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case , nn.Linear ) ) def snake_case ( self : str ): lowerCamelCase , lowerCamelCase :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :str = model_class(__snake_case ) lowerCamelCase :Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase :Tuple = [*signature.parameters.keys()] lowerCamelCase :Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __snake_case ) def snake_case ( self : int ): lowerCamelCase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def snake_case ( self : str ): lowerCamelCase , lowerCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase :int = True # in YOLOS, the seq_len is different lowerCamelCase :str = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowerCamelCase :str = True lowerCamelCase :Tuple = False lowerCamelCase :Optional[int] = True lowerCamelCase :int = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :str = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :str = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase :Optional[Any] = True lowerCamelCase :str = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :Tuple = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Tuple = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowerCamelCase :Optional[int] = len(__snake_case ) # Check attention is always last and order is fine lowerCamelCase :Union[str, Any] = True lowerCamelCase :List[Any] = True lowerCamelCase :Tuple = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :int = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Dict = 1 self.assertEqual(out_len + added_hidden_states , len(__snake_case ) ) lowerCamelCase :Dict = outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def snake_case ( self : List[str] ): def check_hidden_states_output(__snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Tuple ): lowerCamelCase :Union[str, Any] = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): lowerCamelCase :Any = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :Optional[Any] = outputs.hidden_states lowerCamelCase :Any = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__snake_case ) , __snake_case ) # YOLOS has a different seq_length lowerCamelCase :List[str] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowerCamelCase , lowerCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :Union[str, Any] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase :Any = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def snake_case ( self : Optional[Any] ): lowerCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*__snake_case ) @slow def snake_case ( self : Dict ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase :Tuple = YolosModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def _lowerCamelCase ( ): lowerCamelCase :int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): @cached_property def snake_case ( self : Tuple ): return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def snake_case ( self : Dict ): lowerCamelCase :Union[str, Any] = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(__snake_case ) lowerCamelCase :Optional[Any] = self.default_image_processor lowerCamelCase :str = prepare_img() lowerCamelCase :Dict = image_processor(images=__snake_case , return_tensors='''pt''' ).to(__snake_case ) # forward pass with torch.no_grad(): lowerCamelCase :Optional[Any] = model(inputs.pixel_values ) # verify outputs lowerCamelCase :int = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , __snake_case ) lowerCamelCase :Any = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=__snake_case , ) lowerCamelCase :Any = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __snake_case , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , __snake_case , atol=1e-4 ) ) # verify postprocessing lowerCamelCase :List[str] = image_processor.post_process_object_detection( __snake_case , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] lowerCamelCase :List[str] = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(__snake_case ) lowerCamelCase :str = [75, 75, 17, 63, 17] lowerCamelCase :Tuple = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(__snake_case ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , __snake_case , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , __snake_case ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , __snake_case ) )
49
1
class _lowerCAmelCase : def __init__( self : int , __snake_case : int , __snake_case : List[Any]=None , __snake_case : List[str]=None ): lowerCamelCase :Union[str, Any] = data lowerCamelCase :str = previous lowerCamelCase :Optional[int] = next_node def __str__( self : List[Any] ): return F"{self.data}" def snake_case ( self : List[str] ): return self.data def snake_case ( self : int ): return self.next def snake_case ( self : str ): return self.previous class _lowerCAmelCase : def __init__( self : Union[str, Any] , __snake_case : Any ): lowerCamelCase :str = head def __iter__( self : Union[str, Any] ): return self def snake_case ( self : Any ): if not self.current: raise StopIteration else: lowerCamelCase :Dict = self.current.get_data() lowerCamelCase :Union[str, Any] = self.current.get_next() return value class _lowerCAmelCase : def __init__( self : str ): lowerCamelCase :Optional[Any] = None # First node in list lowerCamelCase :Union[str, Any] = None # Last node in list def __str__( self : Dict ): lowerCamelCase :Tuple = self.head lowerCamelCase :Any = [] while current is not None: nodes.append(current.get_data() ) lowerCamelCase :Optional[Any] = current.get_next() return " ".join(str(__snake_case ) for node in nodes ) def __contains__( self : List[Any] , __snake_case : int ): lowerCamelCase :Optional[int] = self.head while current: if current.get_data() == value: return True lowerCamelCase :Union[str, Any] = current.get_next() return False def __iter__( self : Any ): return LinkedListIterator(self.head ) def snake_case ( self : Union[str, Any] ): if self.head: return self.head.get_data() return None def snake_case ( self : List[str] ): if self.tail: return self.tail.get_data() return None def snake_case ( self : Optional[Any] , __snake_case : Node ): if self.head is None: lowerCamelCase :Optional[int] = node lowerCamelCase :Dict = node else: self.insert_before_node(self.head , __snake_case ) def snake_case ( self : List[str] , __snake_case : Node ): if self.head is None: self.set_head(__snake_case ) else: self.insert_after_node(self.tail , __snake_case ) def snake_case ( self : int , __snake_case : int ): lowerCamelCase :List[Any] = Node(__snake_case ) if self.head is None: self.set_head(__snake_case ) else: self.set_tail(__snake_case ) def snake_case ( self : Tuple , __snake_case : Node , __snake_case : Node ): lowerCamelCase :Any = node lowerCamelCase :Dict = node.previous if node.get_previous() is None: lowerCamelCase :Optional[Any] = node_to_insert else: lowerCamelCase :Optional[Any] = node_to_insert lowerCamelCase :int = node_to_insert def snake_case ( self : Optional[Any] , __snake_case : Node , __snake_case : Node ): lowerCamelCase :Dict = node lowerCamelCase :Optional[int] = node.next if node.get_next() is None: lowerCamelCase :Union[str, Any] = node_to_insert else: lowerCamelCase :Dict = node_to_insert lowerCamelCase :List[str] = node_to_insert def snake_case ( self : int , __snake_case : int , __snake_case : int ): lowerCamelCase :Tuple = 1 lowerCamelCase :int = Node(__snake_case ) lowerCamelCase :List[Any] = self.head while node: if current_position == position: self.insert_before_node(__snake_case , __snake_case ) return current_position += 1 lowerCamelCase :str = node.next self.insert_after_node(self.tail , __snake_case ) def snake_case ( self : Any , __snake_case : int ): lowerCamelCase :Dict = self.head while node: if node.get_data() == item: return node lowerCamelCase :List[Any] = node.get_next() raise Exception('''Node not found''' ) def snake_case ( self : Any , __snake_case : Tuple ): if (node := self.get_node(__snake_case )) is not None: if node == self.head: lowerCamelCase :Optional[Any] = self.head.get_next() if node == self.tail: lowerCamelCase :Optional[Any] = self.tail.get_previous() self.remove_node_pointers(__snake_case ) @staticmethod def snake_case ( __snake_case : Node ): if node.get_next(): lowerCamelCase :Any = node.previous if node.get_previous(): lowerCamelCase :Any = node.next lowerCamelCase :Any = None lowerCamelCase :Tuple = None def snake_case ( self : List[str] ): return self.head is None def _lowerCamelCase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
49
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : Tuple ): lowerCamelCase :List[Any] = inspect.getfile(accelerate.test_utils ) lowerCamelCase :Dict = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 lowerCamelCase :Any = test_metrics @require_cpu def snake_case ( self : Dict ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def snake_case ( self : int ): debug_launcher(self.test_metrics.main ) @require_single_gpu def snake_case ( self : Any ): self.test_metrics.main() @require_multi_gpu def snake_case ( self : Optional[int] ): print(F"Found {torch.cuda.device_count()} devices." ) lowerCamelCase :Optional[int] = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__snake_case , env=os.environ.copy() )
49
1
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/config.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/config.json""", } class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'xlnet' _UpperCAmelCase = ['mems'] _UpperCAmelCase = { 'n_token': 'vocab_size', # Backward compatibility 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : List[str] , __snake_case : List[str]=32000 , __snake_case : List[Any]=1024 , __snake_case : List[str]=24 , __snake_case : Union[str, Any]=16 , __snake_case : Tuple=4096 , __snake_case : Any="gelu" , __snake_case : Dict=True , __snake_case : Tuple="bi" , __snake_case : Tuple=0.0_2 , __snake_case : Dict=1e-1_2 , __snake_case : Union[str, Any]=0.1 , __snake_case : str=512 , __snake_case : int=None , __snake_case : Optional[int]=True , __snake_case : Optional[int]=False , __snake_case : Optional[Any]=False , __snake_case : Any=-1 , __snake_case : Any=False , __snake_case : Optional[int]="last" , __snake_case : int=True , __snake_case : Any="tanh" , __snake_case : Any=0.1 , __snake_case : int=5 , __snake_case : str=5 , __snake_case : Optional[int]=5 , __snake_case : Dict=1 , __snake_case : Optional[int]=2 , **__snake_case : Union[str, Any] , ): lowerCamelCase :Optional[int] = vocab_size lowerCamelCase :Any = d_model lowerCamelCase :Union[str, Any] = n_layer lowerCamelCase :Union[str, Any] = n_head if d_model % n_head != 0: raise ValueError(F"'d_model % n_head' ({d_model % n_head}) should be equal to 0" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" ) lowerCamelCase :str = d_model // n_head lowerCamelCase :int = ff_activation lowerCamelCase :Dict = d_inner lowerCamelCase :int = untie_r lowerCamelCase :Optional[int] = attn_type lowerCamelCase :Optional[Any] = initializer_range lowerCamelCase :Dict = layer_norm_eps lowerCamelCase :Union[str, Any] = dropout lowerCamelCase :Union[str, Any] = mem_len lowerCamelCase :Optional[int] = reuse_len lowerCamelCase :List[str] = bi_data lowerCamelCase :Any = clamp_len lowerCamelCase :Dict = same_length lowerCamelCase :Optional[Any] = summary_type lowerCamelCase :Union[str, Any] = summary_use_proj lowerCamelCase :Optional[Any] = summary_activation lowerCamelCase :Optional[Any] = summary_last_dropout lowerCamelCase :List[str] = start_n_top lowerCamelCase :int = end_n_top lowerCamelCase :Any = bos_token_id lowerCamelCase :Optional[Any] = pad_token_id lowerCamelCase :Union[str, Any] = eos_token_id if "use_cache" in kwargs: warnings.warn( '''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`''' ''' instead.''' , __snake_case , ) lowerCamelCase :Optional[int] = kwargs['''use_cache'''] lowerCamelCase :Optional[int] = use_mems_eval lowerCamelCase :Optional[int] = use_mems_train super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) @property def snake_case ( self : Dict ): logger.info(F"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def snake_case ( self : Optional[Any] , __snake_case : int ): # Message copied from Transformer-XL documentation raise NotImplementedError( F"The model {self.model_type} is one of the few models that has no sequence length limit." )
49
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = '' _UpperCAmelCase = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) _UpperCAmelCase = None # compression type in fsspec. ex: "gzip" _UpperCAmelCase = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : str , __snake_case : str = "" , __snake_case : Optional[str] = None , __snake_case : Optional[dict] = None , **__snake_case : Dict ): super().__init__(self , **__snake_case ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode lowerCamelCase :Optional[Any] = fsspec.open( __snake_case , mode='''rb''' , protocol=__snake_case , compression=self.compression , client_kwargs={ '''requote_redirect_url''': False, # see https://github.com/huggingface/datasets/pull/5459 '''trust_env''': True, # Enable reading proxy env variables. **(target_options or {}).pop('''client_kwargs''' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) lowerCamelCase :List[str] = os.path.basename(self.file.path.split('''::''' )[0] ) lowerCamelCase :Dict = ( self.compressed_name[: self.compressed_name.rindex('''.''' )] if '''.''' in self.compressed_name else self.compressed_name ) lowerCamelCase :List[str] = None @classmethod def snake_case ( cls : Any , __snake_case : Any ): # compressed file paths are always relative to the archive root return super()._strip_protocol(__snake_case ).lstrip('''/''' ) def snake_case ( self : Any ): if self.dir_cache is None: lowerCamelCase :Optional[Any] = {**self.file.fs.info(self.file.path ), '''name''': self.uncompressed_name} lowerCamelCase :Optional[Any] = {f['''name''']: f} def snake_case ( self : Union[str, Any] , __snake_case : str ): return self.file.open().read() def snake_case ( self : Optional[int] , __snake_case : str , __snake_case : str = "rb" , __snake_case : int=None , __snake_case : Optional[int]=True , __snake_case : str=None , **__snake_case : str , ): lowerCamelCase :List[str] = self._strip_protocol(__snake_case ) if mode != "rb": raise ValueError(F"Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'" ) return self.file.open() class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'bz2' _UpperCAmelCase = 'bz2' _UpperCAmelCase = '.bz2' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'gzip' _UpperCAmelCase = 'gzip' _UpperCAmelCase = '.gz' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'lz4' _UpperCAmelCase = 'lz4' _UpperCAmelCase = '.lz4' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'xz' _UpperCAmelCase = 'xz' _UpperCAmelCase = '.xz' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'zstd' _UpperCAmelCase = 'zstd' _UpperCAmelCase = '.zst' def __init__( self : str , __snake_case : str , __snake_case : str = "rb" , __snake_case : Optional[str] = None , __snake_case : Optional[dict] = None , __snake_case : int = DEFAULT_BLOCK_SIZE , **__snake_case : int , ): super().__init__( fo=__snake_case , mode=__snake_case , target_protocol=__snake_case , target_options=__snake_case , block_size=__snake_case , **__snake_case , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 lowerCamelCase :Tuple = self.file.__enter__ class _lowerCAmelCase : def __init__( self : Dict , __snake_case : Tuple ): lowerCamelCase :Optional[int] = file_ def __enter__( self : Optional[int] ): self._file.__enter__() return self def __exit__( self : str , *__snake_case : Optional[Any] , **__snake_case : List[Any] ): self._file.__exit__(*__snake_case , **__snake_case ) def __iter__( self : Optional[Any] ): return iter(self._file ) def snake_case ( self : List[Any] ): return next(self._file ) def __getattr__( self : Any , __snake_case : str ): return getattr(self._file , __snake_case ) def fixed_enter(*__snake_case : Optional[int] , **__snake_case : str ): return WrappedFile(_enter(*__snake_case , **__snake_case ) ) lowerCamelCase :Dict = fixed_enter
49
1
def _lowerCamelCase ( a_ : list): lowerCamelCase :str = len(a_) for _ in range(a_): for i in range(_ % 2 , arr_size - 1 , 2): if arr[i + 1] < arr[i]: lowerCamelCase , lowerCamelCase :Optional[Any] = arr[i + 1], arr[i] return arr if __name__ == "__main__": A__ = list(range(10, 0, -1)) print(F'Original: {arr}. Sorted: {odd_even_transposition(arr)}')
49
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = LEDTokenizer _UpperCAmelCase = LEDTokenizerFast _UpperCAmelCase = True def snake_case ( self : Any ): super().setUp() lowerCamelCase :Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] lowerCamelCase :Any = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) lowerCamelCase :List[str] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCamelCase :int = {'''unk_token''': '''<unk>'''} lowerCamelCase :Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__snake_case ) ) def snake_case ( self : int , **__snake_case : int ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Dict , **__snake_case : Any ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def snake_case ( self : Optional[Any] , __snake_case : Union[str, Any] ): return "lower newer", "lower newer" @cached_property def snake_case ( self : Any ): return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' ) @cached_property def snake_case ( self : int ): return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' ) @require_torch def snake_case ( self : str ): lowerCamelCase :Any = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowerCamelCase :List[Any] = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[Any] = tokenizer(__snake_case , max_length=len(__snake_case ) , padding=__snake_case , return_tensors='''pt''' ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowerCamelCase :List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(__snake_case , __snake_case ) @require_torch def snake_case ( self : Tuple ): lowerCamelCase :Dict = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Union[str, Any] = tokenizer(__snake_case , padding=__snake_case , return_tensors='''pt''' ) self.assertIn('''input_ids''' , __snake_case ) self.assertIn('''attention_mask''' , __snake_case ) self.assertNotIn('''labels''' , __snake_case ) self.assertNotIn('''decoder_attention_mask''' , __snake_case ) @require_torch def snake_case ( self : Union[str, Any] ): lowerCamelCase :Union[str, Any] = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :List[Any] = tokenizer(text_target=__snake_case , max_length=32 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) @require_torch def snake_case ( self : List[Any] ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[Any] = tokenizer( ['''I am a small frog''' * 1024, '''I am a small frog'''] , padding=__snake_case , truncation=__snake_case , return_tensors='''pt''' ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def snake_case ( self : Optional[int] ): lowerCamelCase :Union[str, Any] = ['''A long paragraph for summarization.'''] lowerCamelCase :Any = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Union[str, Any] = tokenizer(__snake_case , return_tensors='''pt''' ) lowerCamelCase :Any = tokenizer(text_target=__snake_case , return_tensors='''pt''' ) lowerCamelCase :Optional[int] = inputs['''input_ids'''] lowerCamelCase :Any = targets['''input_ids'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def snake_case ( self : Dict ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase :Optional[int] = ['''Summary of the text.''', '''Another summary.'''] lowerCamelCase :List[Any] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] lowerCamelCase :Optional[int] = tokenizer(__snake_case , padding=__snake_case ) lowerCamelCase :Union[str, Any] = [[0] * len(__snake_case ) for x in encoded_output['''input_ids''']] lowerCamelCase :str = tokenizer.pad(__snake_case ) self.assertSequenceEqual(outputs['''global_attention_mask'''] , __snake_case ) def snake_case ( self : Tuple ): pass def snake_case ( self : Optional[int] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase :Optional[Any] = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :Tuple = self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) lowerCamelCase :int = '''A, <mask> AllenNLP sentence.''' lowerCamelCase :str = tokenizer_r.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case ) lowerCamelCase :str = tokenizer_p.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case ) self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) lowerCamelCase :Optional[int] = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) lowerCamelCase :Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __snake_case , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __snake_case , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
49
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available A__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""GPTSw3Tokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
49
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) A__ = { """configuration_layoutlmv2""": ["""LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv2Config"""], """processing_layoutlmv2""": ["""LayoutLMv2Processor"""], """tokenization_layoutlmv2""": ["""LayoutLMv2Tokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""LayoutLMv2TokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""LayoutLMv2FeatureExtractor"""] A__ = ["""LayoutLMv2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """LayoutLMv2ForQuestionAnswering""", """LayoutLMv2ForSequenceClassification""", """LayoutLMv2ForTokenClassification""", """LayoutLMv2Layer""", """LayoutLMv2Model""", """LayoutLMv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
49
1
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() A__ = logging.get_logger(__name__) def _lowerCamelCase ( a_ : str): lowerCamelCase :int = SwinConfig.from_pretrained( '''microsoft/swin-tiny-patch4-window7-224''' , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4''']) lowerCamelCase :Tuple = MaskFormerConfig(backbone_config=a_) lowerCamelCase :Tuple = '''huggingface/label-files''' if "ade20k-full" in model_name: # this should be ok lowerCamelCase :Any = 8_47 lowerCamelCase :List[Any] = '''maskformer-ade20k-full-id2label.json''' elif "ade" in model_name: # this should be ok lowerCamelCase :Union[str, Any] = 1_50 lowerCamelCase :str = '''ade20k-id2label.json''' elif "coco-stuff" in model_name: # this should be ok lowerCamelCase :List[Any] = 1_71 lowerCamelCase :str = '''maskformer-coco-stuff-id2label.json''' elif "coco" in model_name: # TODO lowerCamelCase :Optional[Any] = 1_33 lowerCamelCase :Tuple = '''coco-panoptic-id2label.json''' elif "cityscapes" in model_name: # this should be ok lowerCamelCase :Optional[Any] = 19 lowerCamelCase :List[Any] = '''cityscapes-id2label.json''' elif "vistas" in model_name: # this should be ok lowerCamelCase :str = 65 lowerCamelCase :Optional[Any] = '''mapillary-vistas-id2label.json''' lowerCamelCase :Tuple = json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''') , '''r''')) lowerCamelCase :Union[str, Any] = {int(a_): v for k, v in idalabel.items()} return config def _lowerCamelCase ( a_ : Optional[Any]): lowerCamelCase :Any = [] # stem # fmt: off rename_keys.append(('''backbone.patch_embed.proj.weight''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight''')) rename_keys.append(('''backbone.patch_embed.proj.bias''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias''')) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''model.pixel_level_module.encoder.model.embeddings.norm.weight''')) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''model.pixel_level_module.encoder.model.embeddings.norm.bias''')) # stages for i in range(len(config.backbone_config.depths)): for j in range(config.backbone_config.depths[i]): rename_keys.append((F"backbone.layers.{i}.blocks.{j}.norm1.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight")) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.norm1.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias")) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table")) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.attn.relative_position_index", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index")) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.attn.proj.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight")) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.attn.proj.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias")) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.norm2.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight")) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.norm2.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias")) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.mlp.fc1.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight")) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.mlp.fc1.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias")) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.mlp.fc2.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight")) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.mlp.fc2.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias")) if i < 3: rename_keys.append((F"backbone.layers.{i}.downsample.reduction.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight")) rename_keys.append((F"backbone.layers.{i}.downsample.norm.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight")) rename_keys.append((F"backbone.layers.{i}.downsample.norm.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias")) rename_keys.append((F"backbone.norm{i}.weight", F"model.pixel_level_module.encoder.hidden_states_norms.{i}.weight")) rename_keys.append((F"backbone.norm{i}.bias", F"model.pixel_level_module.encoder.hidden_states_norms.{i}.bias")) # FPN rename_keys.append(('''sem_seg_head.layer_4.weight''', '''model.pixel_level_module.decoder.fpn.stem.0.weight''')) rename_keys.append(('''sem_seg_head.layer_4.norm.weight''', '''model.pixel_level_module.decoder.fpn.stem.1.weight''')) rename_keys.append(('''sem_seg_head.layer_4.norm.bias''', '''model.pixel_level_module.decoder.fpn.stem.1.bias''')) for source_index, target_index in zip(range(3 , 0 , -1) , range(0 , 3)): rename_keys.append((F"sem_seg_head.adapter_{source_index}.weight", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight")) rename_keys.append((F"sem_seg_head.adapter_{source_index}.norm.weight", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight")) rename_keys.append((F"sem_seg_head.adapter_{source_index}.norm.bias", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias")) rename_keys.append((F"sem_seg_head.layer_{source_index}.weight", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight")) rename_keys.append((F"sem_seg_head.layer_{source_index}.norm.weight", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight")) rename_keys.append((F"sem_seg_head.layer_{source_index}.norm.bias", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias")) rename_keys.append(('''sem_seg_head.mask_features.weight''', '''model.pixel_level_module.decoder.mask_projection.weight''')) rename_keys.append(('''sem_seg_head.mask_features.bias''', '''model.pixel_level_module.decoder.mask_projection.bias''')) # Transformer decoder for idx in range(config.decoder_config.decoder_layers): # self-attention out projection rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight", F"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight")) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias", F"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias")) # cross-attention out projection rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight", F"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight")) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias", F"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias")) # MLP 1 rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight", F"model.transformer_module.decoder.layers.{idx}.fc1.weight")) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias", F"model.transformer_module.decoder.layers.{idx}.fc1.bias")) # MLP 2 rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight", F"model.transformer_module.decoder.layers.{idx}.fc2.weight")) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias", F"model.transformer_module.decoder.layers.{idx}.fc2.bias")) # layernorm 1 (self-attention layernorm) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight", F"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight")) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias", F"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias")) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight", F"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight")) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias", F"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias")) # layernorm 3 (final layernorm) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight", F"model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight")) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias", F"model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias")) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.weight''', '''model.transformer_module.decoder.layernorm.weight''')) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.bias''', '''model.transformer_module.decoder.layernorm.bias''')) # heads on top rename_keys.append(('''sem_seg_head.predictor.query_embed.weight''', '''model.transformer_module.queries_embedder.weight''')) rename_keys.append(('''sem_seg_head.predictor.input_proj.weight''', '''model.transformer_module.input_projection.weight''')) rename_keys.append(('''sem_seg_head.predictor.input_proj.bias''', '''model.transformer_module.input_projection.bias''')) rename_keys.append(('''sem_seg_head.predictor.class_embed.weight''', '''class_predictor.weight''')) rename_keys.append(('''sem_seg_head.predictor.class_embed.bias''', '''class_predictor.bias''')) for i in range(3): rename_keys.append((F"sem_seg_head.predictor.mask_embed.layers.{i}.weight", F"mask_embedder.{i}.0.weight")) rename_keys.append((F"sem_seg_head.predictor.mask_embed.layers.{i}.bias", F"mask_embedder.{i}.0.bias")) # fmt: on return rename_keys def _lowerCamelCase ( a_ : str , a_ : List[str] , a_ : List[Any]): lowerCamelCase :Optional[int] = dct.pop(a_) lowerCamelCase :int = val def _lowerCamelCase ( a_ : Union[str, Any] , a_ : List[str]): lowerCamelCase :Optional[Any] = [int(backbone_config.embed_dim * 2**i) for i in range(len(backbone_config.depths))] for i in range(len(backbone_config.depths)): lowerCamelCase :str = num_features[i] for j in range(backbone_config.depths[i]): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowerCamelCase :Union[str, Any] = state_dict.pop(F"backbone.layers.{i}.blocks.{j}.attn.qkv.weight") lowerCamelCase :Tuple = state_dict.pop(F"backbone.layers.{i}.blocks.{j}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict lowerCamelCase :Dict = in_proj_weight[:dim, :] lowerCamelCase :str = in_proj_bias[: dim] lowerCamelCase :Any = in_proj_weight[ dim : dim * 2, : ] lowerCamelCase :List[Any] = in_proj_bias[ dim : dim * 2 ] lowerCamelCase :Union[str, Any] = in_proj_weight[ -dim :, : ] lowerCamelCase :Optional[int] = in_proj_bias[-dim :] # fmt: on def _lowerCamelCase ( a_ : Tuple , a_ : Optional[int]): # fmt: off lowerCamelCase :Dict = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) lowerCamelCase :str = state_dict.pop(F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight") lowerCamelCase :List[str] = state_dict.pop(F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias") # next, add query, keys and values (in that order) to the state dict lowerCamelCase :Any = in_proj_weight[: hidden_size, :] lowerCamelCase :Optional[Any] = in_proj_bias[:config.hidden_size] lowerCamelCase :Any = in_proj_weight[hidden_size : hidden_size * 2, :] lowerCamelCase :Tuple = in_proj_bias[hidden_size : hidden_size * 2] lowerCamelCase :Union[str, Any] = in_proj_weight[-hidden_size :, :] lowerCamelCase :int = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) lowerCamelCase :Optional[Any] = state_dict.pop(F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight") lowerCamelCase :List[str] = state_dict.pop(F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias") # next, add query, keys and values (in that order) to the state dict lowerCamelCase :List[Any] = in_proj_weight[: hidden_size, :] lowerCamelCase :List[str] = in_proj_bias[:config.hidden_size] lowerCamelCase :Optional[int] = in_proj_weight[hidden_size : hidden_size * 2, :] lowerCamelCase :Any = in_proj_bias[hidden_size : hidden_size * 2] lowerCamelCase :List[str] = in_proj_weight[-hidden_size :, :] lowerCamelCase :str = in_proj_bias[-hidden_size :] # fmt: on def _lowerCamelCase ( ): lowerCamelCase :Optional[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase :Union[str, Any] = Image.open(requests.get(a_ , stream=a_).raw) return im @torch.no_grad() def _lowerCamelCase ( a_ : str , a_ : str , a_ : str , a_ : bool = False): lowerCamelCase :Dict = get_maskformer_config(a_) # load original state_dict with open(a_ , '''rb''') as f: lowerCamelCase :str = pickle.load(a_) lowerCamelCase :int = data['''model'''] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys lowerCamelCase :Union[str, Any] = create_rename_keys(a_) for src, dest in rename_keys: rename_key(a_ , a_ , a_) read_in_swin_q_k_v(a_ , config.backbone_config) read_in_decoder_q_k_v(a_ , a_) # update to torch tensors for key, value in state_dict.items(): lowerCamelCase :Any = torch.from_numpy(a_) # load 🤗 model lowerCamelCase :str = MaskFormerForInstanceSegmentation(a_) model.eval() for name, param in model.named_parameters(): print(a_ , param.shape) lowerCamelCase , lowerCamelCase :str = model.load_state_dict(a_ , strict=a_) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(a_) == 0, F"Unexpected keys: {unexpected_keys}" # verify results lowerCamelCase :Dict = prepare_img() if "vistas" in model_name: lowerCamelCase :Dict = 65 elif "cityscapes" in model_name: lowerCamelCase :List[str] = 6_55_35 else: lowerCamelCase :Optional[Any] = 2_55 lowerCamelCase :str = True if '''ade''' in model_name else False lowerCamelCase :Tuple = MaskFormerImageProcessor(ignore_index=a_ , reduce_labels=a_) lowerCamelCase :int = image_processor(a_ , return_tensors='''pt''') lowerCamelCase :List[str] = model(**a_) print('''Logits:''' , outputs.class_queries_logits[0, :3, :3]) if model_name == "maskformer-swin-tiny-ade": lowerCamelCase :List[Any] = torch.tensor( [[3.6_353, -4.4_770, -2.6_065], [0.5_081, -4.2_394, -3.5_343], [2.1_909, -5.0_353, -1.9_323]]) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , a_ , atol=1e-4) print('''Looks ok!''') if pytorch_dump_folder_path is not None: print(F"Saving model and image processor to {pytorch_dump_folder_path}") Path(a_).mkdir(exist_ok=a_) model.save_pretrained(a_) image_processor.save_pretrained(a_) if push_to_hub: print('''Pushing model and image processor to the hub...''') model.push_to_hub(F"nielsr/{model_name}") image_processor.push_to_hub(F"nielsr/{model_name}") if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) A__ = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
49
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _lowerCAmelCase : @staticmethod def snake_case ( *__snake_case : str , **__snake_case : str ): pass @is_pipeline_test @require_vision class _lowerCAmelCase ( unittest.TestCase ): @require_torch def snake_case ( self : Union[str, Any] ): lowerCamelCase :Optional[int] = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Dict = image_classifier(__snake_case , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__snake_case ) , [ [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}], [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}], ] , ) lowerCamelCase :Tuple = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], ] , ) @require_tf def snake_case ( self : Tuple ): lowerCamelCase :Tuple = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Optional[Any] = image_classifier(__snake_case , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(__snake_case ) , [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}] , ) lowerCamelCase :int = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], ] , ) @slow @require_torch def snake_case ( self : Any ): lowerCamelCase :str = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Optional[Any] = image_classifier(__snake_case , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) lowerCamelCase :Any = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def snake_case ( self : Optional[Any] ): lowerCamelCase :Union[str, Any] = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes lowerCamelCase :Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Dict = image_classifier(__snake_case , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) lowerCamelCase :Any = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , )
49
1