code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __lowercase ( _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : List[str] = TextToVideoSDPipeline _A : Tuple = TEXT_TO_IMAGE_PARAMS _A : str = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. _A : List[Any] = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ]) def __UpperCamelCase (self ): torch.manual_seed(0 ) snake_case_ : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) snake_case_ : str = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__A , set_alpha_to_one=__A , ) torch.manual_seed(0 ) snake_case_ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) snake_case_ : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) snake_case_ : Any = CLIPTextModel(__A ) snake_case_ : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) snake_case_ : Optional[int] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def __UpperCamelCase (self , lowercase__ , lowercase__=0 ): if str(__A ).startswith("""mps""" ): snake_case_ : List[str] = torch.manual_seed(__A ) else: snake_case_ : Optional[Any] = torch.Generator(device=__A ).manual_seed(__A ) snake_case_ : Optional[int] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def __UpperCamelCase (self ): snake_case_ : Tuple = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case_ : Dict = self.get_dummy_components() snake_case_ : List[str] = TextToVideoSDPipeline(**__A ) snake_case_ : Union[str, Any] = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) snake_case_ : str = self.get_dummy_inputs(__A ) snake_case_ : Any = """np""" snake_case_ : Any = sd_pipe(**__A ).frames snake_case_ : Any = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) snake_case_ : Tuple = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase (self ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__A , expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __UpperCamelCase (self ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__A , expected_max_diff=1e-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def __UpperCamelCase (self ): pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def __UpperCamelCase (self ): pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def __UpperCamelCase (self ): pass def __UpperCamelCase (self ): return super().test_progress_bar() @slow @skip_mps class __lowercase ( unittest.TestCase): """simple docstring""" def __UpperCamelCase (self ): snake_case_ : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) snake_case_ : Optional[Any] = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) snake_case_ : str = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) snake_case_ : Union[str, Any] = pipe.to("""cuda""" ) snake_case_ : Optional[int] = """Spiderman is surfing""" snake_case_ : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case_ : Dict = pipe(__A , generator=__A , num_inference_steps=25 , output_type="""pt""" ).frames snake_case_ : int = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def __UpperCamelCase (self ): snake_case_ : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) snake_case_ : List[Any] = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) snake_case_ : List[Any] = pipe.to("""cuda""" ) snake_case_ : Optional[int] = """Spiderman is surfing""" snake_case_ : Optional[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case_ : Dict = pipe(__A , generator=__A , num_inference_steps=2 , output_type="""pt""" ).frames snake_case_ : int = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
717
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: a_ = None a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} a_ = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } a_ = { '''facebook/mbart-large-en-ro''': 1024, '''facebook/mbart-large-cc25''': 1024, } # fmt: off a_ = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Dict = VOCAB_FILES_NAMES _A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _A : str = ["""input_ids""", """attention_mask"""] _A : Tuple = MBartTokenizer _A : List[int] = [] _A : List[int] = [] def __init__(self , lowercase__=None , lowercase__=None , lowercase__="<s>" , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<mask>" , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ , ): # Mask token behave like a normal word, i.e. include the space before it snake_case_ : int = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token super().__init__( vocab_file=lowercase__ , tokenizer_file=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , unk_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , src_lang=lowercase__ , tgt_lang=lowercase__ , additional_special_tokens=lowercase__ , **lowercase__ , ) snake_case_ : Dict = vocab_file snake_case_ : Optional[int] = False if not self.vocab_file else True snake_case_ : Optional[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) snake_case_ : Any = { lang_code: self.convert_tokens_to_ids(lowercase__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } snake_case_ : Tuple = src_lang if src_lang is not None else """en_XX""" snake_case_ : Tuple = self.convert_tokens_to_ids(self._src_lang ) snake_case_ : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __UpperCamelCase (self ): return self._src_lang @src_lang.setter def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): snake_case_ : List[Any] = [self.sep_token_id] snake_case_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , **lowercase__ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) snake_case_ : int = src_lang snake_case_ : List[str] = self(lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , **lowercase__ ) snake_case_ : List[str] = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Union[str, Any] = tgt_lang_id return inputs def __UpperCamelCase (self , lowercase__ , lowercase__ = "en_XX" , lowercase__ = None , lowercase__ = "ro_RO" , **lowercase__ , ): snake_case_ : List[str] = src_lang snake_case_ : int = tgt_lang return super().prepare_seqaseq_batch(lowercase__ , lowercase__ , **lowercase__ ) def __UpperCamelCase (self ): return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCamelCase (self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Tuple = [] snake_case_ : List[Any] = [self.eos_token_id, self.cur_lang_code] snake_case_ : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Optional[int] = [] snake_case_ : Optional[Any] = [self.eos_token_id, self.cur_lang_code] snake_case_ : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ : int = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowercase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory.' ) return snake_case_ : List[str] = os.path.join( lowercase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ): copyfile(self.vocab_file , lowercase__ ) return (out_vocab_file,)
48
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings a_ = r'''\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n''' @add_start_docstrings(__snake_case) class __lowercase ( __snake_case): """simple docstring""" _A : Optional[int] = """rag""" _A : Any = True def __init__(self , lowercase__=None , lowercase__=True , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=" / " , lowercase__=" // " , lowercase__=5 , lowercase__=3_00 , lowercase__=7_68 , lowercase__=8 , lowercase__="wiki_dpr" , lowercase__="train" , lowercase__="compressed" , lowercase__=None , lowercase__=None , lowercase__=False , lowercase__=False , lowercase__=0.0 , lowercase__=True , lowercase__=False , lowercase__=False , lowercase__=False , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__( bos_token_id=_lowercase , pad_token_id=_lowercase , eos_token_id=_lowercase , decoder_start_token_id=_lowercase , forced_eos_token_id=_lowercase , is_encoder_decoder=_lowercase , prefix=_lowercase , vocab_size=_lowercase , **_lowercase , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" snake_case_ : Optional[int] = kwargs.pop("""question_encoder""" ) snake_case_ : List[str] = question_encoder_config.pop("""model_type""" ) snake_case_ : List[Any] = kwargs.pop("""generator""" ) snake_case_ : List[Any] = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig snake_case_ : Optional[Any] = AutoConfig.for_model(_lowercase , **_lowercase ) snake_case_ : Optional[Any] = AutoConfig.for_model(_lowercase , **_lowercase ) snake_case_ : Dict = reduce_loss snake_case_ : Tuple = label_smoothing snake_case_ : List[Any] = exclude_bos_score snake_case_ : Optional[int] = do_marginalize snake_case_ : int = title_sep snake_case_ : Any = doc_sep snake_case_ : str = n_docs snake_case_ : int = max_combined_length snake_case_ : List[str] = dataset snake_case_ : Optional[int] = dataset_split snake_case_ : Optional[Any] = index_name snake_case_ : Tuple = retrieval_vector_size snake_case_ : Dict = retrieval_batch_size snake_case_ : Optional[int] = passages_path snake_case_ : Optional[Any] = index_path snake_case_ : int = use_dummy_dataset snake_case_ : List[str] = output_retrieved snake_case_ : List[Any] = do_deduplication snake_case_ : int = use_cache if self.forced_eos_token_id is None: snake_case_ : str = getattr(self.generator , """forced_eos_token_id""" , _lowercase ) @classmethod def __UpperCamelCase (cls , lowercase__ , lowercase__ , **lowercase__ ): return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **_lowercase ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = copy.deepcopy(self.__dict__ ) snake_case_ : List[str] = self.question_encoder.to_dict() snake_case_ : Any = self.generator.to_dict() snake_case_ : Optional[Any] = self.__class__.model_type return output
718
"""simple docstring""" import argparse import hashlib # hashlib is only used inside the Test class import struct class __lowercase : """simple docstring""" def __init__(self , lowercase__ ): snake_case_ : Union[str, Any] = data snake_case_ : List[str] = [0X6_7_4_5_2_3_0_1, 0Xe_f_c_d_a_b_8_9, 0X9_8_b_a_d_c_f_e, 0X1_0_3_2_5_4_7_6, 0Xc_3_d_2_e_1_f_0] @staticmethod def __UpperCamelCase (lowercase__ , lowercase__ ): return ((n << b) | (n >> (32 - b))) & 0Xf_f_f_f_f_f_f_f def __UpperCamelCase (self ): snake_case_ : Any = B"""\x80""" + B"""\x00""" * (63 - (len(self.data ) + 8) % 64) snake_case_ : Tuple = self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def __UpperCamelCase (self ): return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = list(struct.unpack(""">16L""" , lowercase__ ) ) + [0] * 64 for i in range(16 , 80 ): snake_case_ : Dict = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def __UpperCamelCase (self ): snake_case_ : List[Any] = self.padding() snake_case_ : Any = self.split_blocks() for block in self.blocks: snake_case_ : Any = self.expand_block(lowercase__ ) snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = self.h for i in range(0 , 80 ): if 0 <= i < 20: snake_case_ : Optional[Any] = (b & c) | ((~b) & d) snake_case_ : List[str] = 0X5_a_8_2_7_9_9_9 elif 20 <= i < 40: snake_case_ : Union[str, Any] = b ^ c ^ d snake_case_ : Tuple = 0X6_e_d_9_e_b_a_1 elif 40 <= i < 60: snake_case_ : str = (b & c) | (b & d) | (c & d) snake_case_ : List[str] = 0X8_f_1_b_b_c_d_c elif 60 <= i < 80: snake_case_ : Tuple = b ^ c ^ d snake_case_ : str = 0Xc_a_6_2_c_1_d_6 snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Optional[Any] = ( self.rotate(lowercase__ , 5 ) + f + e + k + expanded_block[i] & 0Xf_f_f_f_f_f_f_f, a, self.rotate(lowercase__ , 30 ), c, d, ) snake_case_ : Any = ( self.h[0] + a & 0Xf_f_f_f_f_f_f_f, self.h[1] + b & 0Xf_f_f_f_f_f_f_f, self.h[2] + c & 0Xf_f_f_f_f_f_f_f, self.h[3] + d & 0Xf_f_f_f_f_f_f_f, self.h[4] + e & 0Xf_f_f_f_f_f_f_f, ) return ("{:08x}" * 5).format(*self.h ) def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Union[str, Any] = b"""Test String""" assert SHAaHash(SCREAMING_SNAKE_CASE__ ).final_hash() == hashlib.shaa(SCREAMING_SNAKE_CASE__ ).hexdigest() # noqa: S324 def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : int = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument("""--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) snake_case_ : Optional[int] = parser.parse_args() snake_case_ : Optional[int] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: snake_case_ : List[str] = f.read() else: snake_case_ : Dict = bytes(SCREAMING_SNAKE_CASE__ , """utf-8""" ) print(SHAaHash(SCREAMING_SNAKE_CASE__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
48
0
"""simple docstring""" import unittest from knapsack import greedy_knapsack as kp class __lowercase ( unittest.TestCase): """simple docstring""" def __UpperCamelCase (self ): snake_case_ : Optional[int] = [10, 20, 30, 40, 50, 60] snake_case_ : str = [2, 4, 6, 8, 10, 12] snake_case_ : Union[str, Any] = 1_00 self.assertEqual(kp.calc_profit(A__ , A__ , A__ ) , 2_10 ) def __UpperCamelCase (self ): self.assertRaisesRegex(A__ , """max_weight must greater than zero.""" ) def __UpperCamelCase (self ): self.assertRaisesRegex(A__ , """Weight can not be negative.""" ) def __UpperCamelCase (self ): self.assertRaisesRegex(A__ , """Profit can not be negative.""" ) def __UpperCamelCase (self ): self.assertRaisesRegex(A__ , """max_weight must greater than zero.""" ) def __UpperCamelCase (self ): self.assertRaisesRegex( A__ , """The length of profit and weight must be same.""" ) if __name__ == "__main__": unittest.main()
719
"""simple docstring""" from manim import * class __lowercase ( _UpperCAmelCase): """simple docstring""" def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = Rectangle(height=0.5 , width=0.5 ) snake_case_ : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) snake_case_ : Optional[Any] = [mem.copy() for i in range(6 )] snake_case_ : str = [mem.copy() for i in range(6 )] snake_case_ : str = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : Any = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[str] = VGroup(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[Any] = Text("""CPU""" , font_size=24 ) snake_case_ : Tuple = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowercase__ ) snake_case_ : List[Any] = [mem.copy() for i in range(4 )] snake_case_ : Tuple = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[str] = Text("""GPU""" , font_size=24 ) snake_case_ : Any = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) gpu.move_to([-1, -1, 0] ) self.add(lowercase__ ) snake_case_ : Optional[Any] = [mem.copy() for i in range(6 )] snake_case_ : List[Any] = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : Dict = Text("""Model""" , font_size=24 ) snake_case_ : int = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) model.move_to([3, -1.0, 0] ) self.add(lowercase__ ) snake_case_ : Dict = [] for i, rect in enumerate(lowercase__ ): rect.set_stroke(lowercase__ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) snake_case_ : List[str] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowercase__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowercase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase__ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase__ , buff=0.0 ) self.add(lowercase__ ) cpu_targs.append(lowercase__ ) snake_case_ : List[str] = [mem.copy() for i in range(6 )] snake_case_ : List[str] = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : str = Text("""Loaded Checkpoint""" , font_size=24 ) snake_case_ : Any = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , aligned_edge=lowercase__ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) snake_case_ : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) snake_case_ : Union[str, Any] = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowercase__ , lowercase__ ) snake_case_ : List[Any] = MarkupText( f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(lowercase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) snake_case_ : List[Any] = MarkupText( f'Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowercase__ ) , Write(lowercase__ ) ) self.play(Write(lowercase__ , run_time=1 ) , Create(lowercase__ , run_time=1 ) ) snake_case_ : Optional[int] = [] snake_case_ : List[str] = [] for i, rect in enumerate(lowercase__ ): snake_case_ : Optional[Any] = fill.copy().set_fill(lowercase__ , opacity=0.7 ) target.move_to(lowercase__ ) first_animations.append(GrowFromCenter(lowercase__ , run_time=1 ) ) snake_case_ : List[Any] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(lowercase__ , run_time=1.5 ) ) self.play(*lowercase__ ) self.play(*lowercase__ ) self.wait()
48
0
"""simple docstring""" import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class __lowercase ( unittest.TestCase): """simple docstring""" def __init__(self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=99 , lowercase__=32 , lowercase__=5 , lowercase__=4 , lowercase__=37 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_12 , lowercase__=16 , lowercase__=2 , lowercase__=0.02 , lowercase__=4 , ): snake_case_ : List[Any] = parent snake_case_ : List[Any] = batch_size snake_case_ : Optional[Any] = seq_length snake_case_ : Optional[int] = is_training snake_case_ : Any = use_attention_mask snake_case_ : Dict = use_token_type_ids snake_case_ : Tuple = use_labels snake_case_ : Tuple = vocab_size snake_case_ : int = hidden_size snake_case_ : List[str] = num_hidden_layers snake_case_ : Optional[int] = num_attention_heads snake_case_ : Any = intermediate_size snake_case_ : Tuple = hidden_act snake_case_ : Optional[int] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : Optional[Any] = max_position_embeddings snake_case_ : Optional[Any] = type_vocab_size snake_case_ : Optional[int] = type_sequence_label_size snake_case_ : List[str] = initializer_range snake_case_ : Optional[int] = num_choices def __UpperCamelCase (self ): snake_case_ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Any = None if self.use_attention_mask: snake_case_ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : int = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=_a , ) return config, input_ids, attention_mask def __UpperCamelCase (self ): snake_case_ : int = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ : int = config_and_inputs snake_case_ : Tuple = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __lowercase ( __SCREAMING_SNAKE_CASE , unittest.TestCase): """simple docstring""" _A : str = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def __UpperCamelCase (self ): snake_case_ : Tuple = FlaxDistilBertModelTester(self ) @slow def __UpperCamelCase (self ): for model_class_name in self.all_model_classes: snake_case_ : List[Any] = model_class_name.from_pretrained("""distilbert-base-uncased""" ) snake_case_ : Any = model(np.ones((1, 1) ) ) self.assertIsNotNone(_a ) @require_flax class __lowercase ( unittest.TestCase): """simple docstring""" @slow def __UpperCamelCase (self ): snake_case_ : Optional[Any] = FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) snake_case_ : Tuple = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) snake_case_ : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) snake_case_ : Dict = model(_a , attention_mask=_a )[0] snake_case_ : Dict = (1, 11, 7_68) self.assertEqual(output.shape , _a ) snake_case_ : List[str] = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _a , atol=1e-4 ) )
720
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" snake_case_ : Union[str, Any] = 0 if start < end: snake_case_ : Union[str, Any] = randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = a[end] snake_case_ : Dict = a[pivot] snake_case_ : Any = temp snake_case_ , snake_case_ : Dict = _in_place_partition(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , p - 1 ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE__ , p + 1 , SCREAMING_SNAKE_CASE__ ) return count def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" snake_case_ : Tuple = 0 snake_case_ : List[Any] = randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : Dict = a[end] snake_case_ : List[Any] = a[pivot] snake_case_ : Optional[Any] = temp snake_case_ : List[str] = start - 1 for index in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value snake_case_ : Any = new_pivot_index + 1 snake_case_ : Tuple = a[new_pivot_index] snake_case_ : Optional[int] = a[index] snake_case_ : Tuple = temp snake_case_ : Union[str, Any] = a[new_pivot_index + 1] snake_case_ : Union[str, Any] = a[end] snake_case_ : Union[str, Any] = temp return new_pivot_index + 1, count a_ = TemporaryFile() a_ = 100 # 1000 elements are to be sorted a_ , a_ = 0, 1 # mean and standard deviation a_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array a_ = np.load(outfile) a_ = len(M) - 1 a_ = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
48
0
"""simple docstring""" import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class __lowercase ( TensorFormatter[Mapping, """torch.Tensor""", Mapping]): """simple docstring""" def __init__(self , lowercase__=None , **lowercase__ ): super().__init__(features=UpperCamelCase__ ) snake_case_ : int = torch_tensor_kwargs import torch # noqa import torch at initialization def __UpperCamelCase (self , lowercase__ ): import torch if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and column: if all( isinstance(UpperCamelCase__ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(UpperCamelCase__ ) return column def __UpperCamelCase (self , lowercase__ ): import torch if isinstance(UpperCamelCase__ , (str, bytes, type(UpperCamelCase__ )) ): return value elif isinstance(UpperCamelCase__ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() snake_case_ : str = {} if isinstance(UpperCamelCase__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): snake_case_ : List[Any] = {"""dtype""": torch.intaa} elif isinstance(UpperCamelCase__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): snake_case_ : Tuple = {"""dtype""": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCamelCase__ , PIL.Image.Image ): snake_case_ : List[Any] = np.asarray(UpperCamelCase__ ) return torch.tensor(UpperCamelCase__ , **{**default_dtype, **self.torch_tensor_kwargs} ) def __UpperCamelCase (self , lowercase__ ): import torch # support for torch, tf, jax etc. if hasattr(UpperCamelCase__ , """__array__""" ) and not isinstance(UpperCamelCase__ , torch.Tensor ): snake_case_ : Any = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCamelCase__ , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCamelCase__ ) for substruct in data_struct] ) elif isinstance(UpperCamelCase__ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCamelCase__ ) for substruct in data_struct] ) return self._tensorize(UpperCamelCase__ ) def __UpperCamelCase (self , lowercase__ ): return map_nested(self._recursive_tensorize , UpperCamelCase__ , map_list=UpperCamelCase__ ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : str = self.numpy_arrow_extractor().extract_row(UpperCamelCase__ ) snake_case_ : Dict = self.python_features_decoder.decode_row(UpperCamelCase__ ) return self.recursive_tensorize(UpperCamelCase__ ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : List[str] = self.numpy_arrow_extractor().extract_column(UpperCamelCase__ ) snake_case_ : str = self.python_features_decoder.decode_column(UpperCamelCase__ , pa_table.column_names[0] ) snake_case_ : Union[str, Any] = self.recursive_tensorize(UpperCamelCase__ ) snake_case_ : Dict = self._consolidate(UpperCamelCase__ ) return column def __UpperCamelCase (self , lowercase__ ): snake_case_ : List[Any] = self.numpy_arrow_extractor().extract_batch(UpperCamelCase__ ) snake_case_ : Union[str, Any] = self.python_features_decoder.decode_batch(UpperCamelCase__ ) snake_case_ : Dict = self.recursive_tensorize(UpperCamelCase__ ) for column_name in batch: snake_case_ : Optional[Any] = self._consolidate(batch[column_name] ) return batch
721
"""simple docstring""" import random def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : bool = False ): """simple docstring""" snake_case_ : dict = {i: [] for i in range(SCREAMING_SNAKE_CASE__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(SCREAMING_SNAKE_CASE__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(i + 1 , SCREAMING_SNAKE_CASE__ ): if random.random() < probability: graph[i].append(SCREAMING_SNAKE_CASE__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(SCREAMING_SNAKE_CASE__ ) return graph def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" return { i: [j for j in range(SCREAMING_SNAKE_CASE__ ) if i != j] for i in range(SCREAMING_SNAKE_CASE__ ) } if __name__ == "__main__": import doctest doctest.testmod()
48
0
"""simple docstring""" from math import factorial, pi def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int = 3_0 ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE__ , (int, float) ): raise ValueError("""maclaurin_sin() requires either an int or float for theta""" ) if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or accuracy <= 0: raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" ) snake_case_ : Dict = float(SCREAMING_SNAKE_CASE__ ) snake_case_ : List[str] = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(SCREAMING_SNAKE_CASE__ ) ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] = 3_0 ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE__ , (int, float) ): raise ValueError("""maclaurin_cos() requires either an int or float for theta""" ) if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or accuracy <= 0: raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" ) snake_case_ : Optional[Any] = float(SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[int] = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
700
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json''' ), } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """dpr""" def __init__(self , lowercase__=3_05_22 , lowercase__=7_68 , lowercase__=12 , lowercase__=12 , lowercase__=30_72 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_12 , lowercase__=2 , lowercase__=0.02 , lowercase__=1e-12 , lowercase__=0 , lowercase__="absolute" , lowercase__ = 0 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , **lowercase__ ) snake_case_ : List[Any] = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : Tuple = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : int = hidden_act snake_case_ : Dict = intermediate_size snake_case_ : int = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : str = max_position_embeddings snake_case_ : List[str] = type_vocab_size snake_case_ : List[str] = initializer_range snake_case_ : Optional[int] = layer_norm_eps snake_case_ : Union[str, Any] = projection_dim snake_case_ : str = position_embedding_type
48
0
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Tuple = 0 _A : List[Any] = False _A : List[Any] = 3.0 class __lowercase ( unittest.TestCase): """simple docstring""" def __UpperCamelCase (self ): self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {"""a""": 2} ) self.assertDictEqual(MockClass(a=2 , b=lowercase__ ).to_kwargs() , {"""a""": 2, """b""": True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {"""a""": 2, """c""": 2.25} ) @require_cuda def __UpperCamelCase (self ): snake_case_ : Optional[int] = GradScalerKwargs(init_scale=10_24 , growth_factor=2 ) AcceleratorState._reset_state() snake_case_ : List[Any] = Accelerator(mixed_precision="""fp16""" , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) snake_case_ : List[str] = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 20_00 ) self.assertEqual(scaler._enabled , lowercase__ ) @require_multi_gpu def __UpperCamelCase (self ): snake_case_ : int = ["torchrun", f'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(lowercase__ , env=os.environ.copy() ) if __name__ == "__main__": a_ = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) a_ = Accelerator(kwargs_handlers=[ddp_scaler]) a_ = torch.nn.Linear(100, 200) a_ = accelerator.prepare(model) # Check the values changed in kwargs a_ = '''''' a_ = model.bucket_bytes_cap // (1024 * 1024) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
701
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm a_ = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex a_ = 10 a_ = 256 def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" if len(SCREAMING_SNAKE_CASE__ ) < MIN_NUM_TOKENS: return None snake_case_ : Union[str, Any] = MinHash(num_perm=SCREAMING_SNAKE_CASE__ ) for token in set(SCREAMING_SNAKE_CASE__ ): min_hash.update(token.encode() ) return min_hash def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" return {t for t in NON_ALPHA.split(SCREAMING_SNAKE_CASE__ ) if len(t.strip() ) > 0} class __lowercase : """simple docstring""" def __init__(self , *, lowercase__ = 0.85 , ): snake_case_ : Tuple = duplication_jaccard_threshold snake_case_ : Optional[Any] = NUM_PERM snake_case_ : Tuple = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) snake_case_ : List[Any] = defaultdict(lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : int = self._index.query(lowercase__ ) if code_key in self._index.keys: print(f'Duplicate key {code_key}' ) return self._index.insert(lowercase__ , lowercase__ ) if len(lowercase__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowercase__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(lowercase__ ) def __UpperCamelCase (self ): snake_case_ : str = [] for base, duplicates in self._duplicate_clusters.items(): snake_case_ : Optional[Any] = [base] + list(lowercase__ ) # reformat the cluster to be a list of dict snake_case_ : Any = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(lowercase__ ) return duplicate_clusters def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = self.get_duplicate_clusters() with open(lowercase__ , """w""" ) as f: json.dump(lowercase__ , lowercase__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ , snake_case_ : str = element snake_case_ : Tuple = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] ): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(SCREAMING_SNAKE_CASE__ , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ): if data is not None: yield data def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] , SCREAMING_SNAKE_CASE__ : float ): """simple docstring""" snake_case_ : int = DuplicationIndex(duplication_jaccard_threshold=SCREAMING_SNAKE_CASE__ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(SCREAMING_SNAKE_CASE__ ) ) , max_queue_size=1_0_0 ) ): di.add(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : int = get_tokens(SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = get_tokens(SCREAMING_SNAKE_CASE__ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) a_ = None def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Optional[Any] = [] for elementa in cluster: snake_case_ : Union[str, Any] = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: snake_case_ : Any = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) >= jaccard_threshold: elementa["copies"] += 1 break else: snake_case_ : Union[str, Any] = 1 extremes.append(SCREAMING_SNAKE_CASE__ ) return extremes def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" global _shared_dataset snake_case_ : str = dataset snake_case_ : int = [] snake_case_ : Optional[int] = partial(_find_cluster_extremes_shared , jaccard_threshold=SCREAMING_SNAKE_CASE__ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) , total=len(SCREAMING_SNAKE_CASE__ ) , ): extremes_list.append(SCREAMING_SNAKE_CASE__ ) return extremes_list def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] , SCREAMING_SNAKE_CASE__ : float = 0.85 ): """simple docstring""" snake_case_ : List[str] = make_duplicate_clusters(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : str = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} snake_case_ : str = {} snake_case_ : Dict = find_extremes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for extremes in extremes_clusters: for element in extremes: snake_case_ : int = element snake_case_ : Optional[int] = duplicate_indices - set(extreme_dict.keys() ) snake_case_ : List[Any] = dataset.filter(lambda SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : idx not in remove_indices , with_indices=SCREAMING_SNAKE_CASE__ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: snake_case_ : List[Any] = element["""base_index"""] in extreme_dict if element["is_extreme"]: snake_case_ : str = extreme_dict[element["""base_index"""]]["""copies"""] print(f'Original dataset size: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Number of duplicate clusters: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Files in duplicate cluster: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Unique files in duplicate cluster: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Filtered dataset size: {len(SCREAMING_SNAKE_CASE__ )}' ) return ds_filter, duplicate_clusters
48
0
"""simple docstring""" import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class __lowercase ( _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : Optional[int] = BlenderbotSmallTokenizer _A : str = False def __UpperCamelCase (self ): super().setUp() snake_case_ : Any = ['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] snake_case_ : str = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) snake_case_ : Union[str, Any] = ['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] snake_case_ : str = {'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} snake_case_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case_ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowercase__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowercase__ ) ) def __UpperCamelCase (self , **lowercase__ ): kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Union[str, Any] = 'adapt act apte' snake_case_ : List[Any] = 'adapt act apte' return input_text, output_text def __UpperCamelCase (self ): snake_case_ : Any = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case_ : Dict = 'adapt act apte' snake_case_ : str = ['adapt', 'act', 'ap@@', 'te'] snake_case_ : Dict = tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : int = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] snake_case_ : Optional[int] = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : List[Any] = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) assert tok("""sam""" ).input_ids == [13_84] snake_case_ : Any = 'I am a small frog.' snake_case_ : List[str] = tok([src_text] , padding=lowercase__ , truncation=lowercase__ )['input_ids'] snake_case_ : Union[str, Any] = tok.batch_decode(lowercase__ , skip_special_tokens=lowercase__ , clean_up_tokenization_spaces=lowercase__ )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __UpperCamelCase (self ): snake_case_ : int = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) snake_case_ : Optional[int] = 'I am a small frog .' snake_case_ : Any = '.' snake_case_ : Optional[int] = tok(lowercase__ )['input_ids'] snake_case_ : Any = tok(lowercase__ )['input_ids'] assert encoded[-1] == encoded_dot[0]
702
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) a_ = logging.getLogger(__name__) if __name__ == "__main__": a_ = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=30522, type=int) a_ = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, '''rb''') as fp: a_ = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') a_ = Counter() for tk_ids in data: counter.update(tk_ids) a_ = [0] * args.vocab_size for k, v in counter.items(): a_ = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
48
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: a_ = None a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} a_ = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), }, '''tokenizer_file''': { '''google/bigbird-roberta-base''': ( '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json''' ), '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json''' ), }, } a_ = { '''google/bigbird-roberta-base''': 4096, '''google/bigbird-roberta-large''': 4096, '''google/bigbird-base-trivia-itc''': 4096, } a_ = '''▁''' class __lowercase ( __A): """simple docstring""" _A : Union[str, Any] = VOCAB_FILES_NAMES _A : List[str] = PRETRAINED_VOCAB_FILES_MAP _A : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Optional[Any] = BigBirdTokenizer _A : Tuple = ["""input_ids""", """attention_mask"""] _A : Optional[Any] = [] def __init__(self , lowercase__=None , lowercase__=None , lowercase__="<unk>" , lowercase__="<s>" , lowercase__="</s>" , lowercase__="<pad>" , lowercase__="[SEP]" , lowercase__="[MASK]" , lowercase__="[CLS]" , **lowercase__ , ): snake_case_ : List[Any] = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else bos_token snake_case_ : Optional[Any] = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else eos_token snake_case_ : List[str] = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else unk_token snake_case_ : List[str] = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else pad_token snake_case_ : List[Any] = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else cls_token snake_case_ : Dict = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it snake_case_ : Optional[int] = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token super().__init__( lowercase__ , tokenizer_file=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , pad_token=lowercase__ , cls_token=lowercase__ , mask_token=lowercase__ , **lowercase__ , ) snake_case_ : List[str] = vocab_file snake_case_ : Dict = False if not self.vocab_file else True def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): snake_case_ : List[Any] = [self.sep_token_id] snake_case_ : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __UpperCamelCase (self , lowercase__ , lowercase__ = None , lowercase__ = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(lowercase__ )) + [1] return [1] + ([0] * len(lowercase__ )) + [1] + ([0] * len(lowercase__ )) + [1] def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): snake_case_ : Optional[Any] = [self.sep_token_id] snake_case_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowercase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return snake_case_ : Optional[Any] = os.path.join( lowercase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ): copyfile(self.vocab_file , lowercase__ ) return (out_vocab_file,)
703
"""simple docstring""" import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" snake_case_ : Optional[Any] = tmp_path / """cache""" snake_case_ : Optional[int] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : Tuple = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" snake_case_ : List[Any] = tmp_path / """cache""" snake_case_ : int = {"""text""": """string"""} snake_case_ : Any = features.copy() if features else default_expected_features snake_case_ : List[Any] = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : Dict = TextDatasetReader(SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : Union[str, Any] = tmp_path / """cache""" snake_case_ : Optional[Any] = {"""text""": """string"""} snake_case_ : Optional[int] = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , split=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" if issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : List[str] = text_path elif issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : str = [text_path] snake_case_ : List[str] = tmp_path / """cache""" snake_case_ : List[str] = {"""text""": """string"""} snake_case_ : Dict = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str]=("train",) ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for split in splits: snake_case_ : Dict = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" snake_case_ : int = tmp_path / """cache""" snake_case_ : List[str] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : Optional[Any] = TextDatasetReader({"""train""": text_path} , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Tuple = tmp_path / """cache""" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" snake_case_ : List[str] = {"""text""": """string"""} snake_case_ : int = features.copy() if features else default_expected_features snake_case_ : Tuple = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : str = TextDatasetReader({"""train""": text_path} , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" if split: snake_case_ : Union[str, Any] = {split: text_path} else: snake_case_ : Union[str, Any] = """train""" snake_case_ : int = {"""train""": text_path, """test""": text_path} snake_case_ : List[Any] = tmp_path / """cache""" snake_case_ : Tuple = {"""text""": """string"""} snake_case_ : int = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
48
0
"""simple docstring""" import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): snake_case_ : Optional[int] = filter(lambda SCREAMING_SNAKE_CASE__ : p.requires_grad , model.parameters() ) snake_case_ : int = sum([np.prod(p.size() ) for p in model_parameters] ) return params a_ = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ): if metric == "rouge2": snake_case_ : Tuple = """{val_avg_rouge2:.4f}-{step_count}""" elif metric == "bleu": snake_case_ : int = """{val_avg_bleu:.4f}-{step_count}""" elif metric == "em": snake_case_ : Optional[Any] = """{val_avg_em:.4f}-{step_count}""" else: raise NotImplementedError( f'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' """ function.""" ) snake_case_ : List[Any] = ModelCheckpoint( dirpath=__snake_case , filename=__snake_case , monitor=f'val_{metric}' , mode="""max""" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] ): return EarlyStopping( monitor=f'val_{metric}' , mode="""min""" if """loss""" in metric else """max""" , patience=__snake_case , verbose=__snake_case , ) class __lowercase ( pl.Callback): """simple docstring""" def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : int = {f'lr_group_{i}': param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_A ) @rank_zero_only def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__=True ): logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' ) snake_case_ : List[str] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} ) # Log results snake_case_ : Optional[int] = Path(pl_module.hparams.output_dir ) if type_path == "test": snake_case_ : Dict = od / """test_results.txt""" snake_case_ : int = od / """test_generations.txt""" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. snake_case_ : Optional[Any] = od / f'{type_path}_results/{trainer.global_step:05d}.txt' snake_case_ : Any = od / f'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=_A ) generations_file.parent.mkdir(exist_ok=_A ) with open(_A , """a+""" ) as writer: for key in sorted(_A ): if key in ["log", "progress_bar", "preds"]: continue snake_case_ : Tuple = metrics[key] if isinstance(_A , torch.Tensor ): snake_case_ : str = val.item() snake_case_ : List[Any] = f'{key}: {val:.6f}\n' writer.write(_A ) if not save_generations: return if "preds" in metrics: snake_case_ : Union[str, Any] = """\n""".join(metrics["""preds"""] ) generations_file.open("""w+""" ).write(_A ) @rank_zero_only def __UpperCamelCase (self , lowercase__ , lowercase__ ): try: snake_case_ : Optional[Any] = pl_module.model.model.num_parameters() except AttributeError: snake_case_ : List[Any] = pl_module.model.num_parameters() snake_case_ : Dict = count_trainable_parameters(_A ) # mp stands for million parameters trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1e6, """grad_mp""": n_trainable_pars / 1e6} ) @rank_zero_only def __UpperCamelCase (self , lowercase__ , lowercase__ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_A , _A , """test""" ) @rank_zero_only def __UpperCamelCase (self , lowercase__ , lowercase__ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
704
"""simple docstring""" from copy import deepcopy class __lowercase : """simple docstring""" def __init__(self , lowercase__ = None , lowercase__ = None ): if arr is None and size is not None: snake_case_ : str = size snake_case_ : Optional[Any] = [0] * size elif arr is not None: self.init(lowercase__ ) else: raise ValueError("""Either arr or size must be specified""" ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Optional[Any] = len(lowercase__ ) snake_case_ : int = deepcopy(lowercase__ ) for i in range(1 , self.size ): snake_case_ : Optional[Any] = self.next_(lowercase__ ) if j < self.size: self.tree[j] += self.tree[i] def __UpperCamelCase (self ): snake_case_ : Dict = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): snake_case_ : Optional[int] = self.next_(lowercase__ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def __UpperCamelCase (lowercase__ ): return index + (index & (-index)) @staticmethod def __UpperCamelCase (lowercase__ ): return index - (index & (-index)) def __UpperCamelCase (self , lowercase__ , lowercase__ ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value snake_case_ : Tuple = self.next_(lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): self.add(lowercase__ , value - self.get(lowercase__ ) ) def __UpperCamelCase (self , lowercase__ ): if right == 0: return 0 snake_case_ : List[str] = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] snake_case_ : Optional[int] = self.prev(lowercase__ ) return result def __UpperCamelCase (self , lowercase__ , lowercase__ ): return self.prefix(lowercase__ ) - self.prefix(lowercase__ ) def __UpperCamelCase (self , lowercase__ ): return self.query(lowercase__ , index + 1 ) def __UpperCamelCase (self , lowercase__ ): value -= self.tree[0] if value < 0: return -1 snake_case_ : Tuple = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 snake_case_ : Tuple = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
48
0
"""simple docstring""" # using dfs for finding eulerian path traversal def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple=None ): """simple docstring""" snake_case_ : Union[str, Any] = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: snake_case_ , snake_case_ : Optional[Any] = True, True snake_case_ : Optional[int] = dfs(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return path def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : Tuple = 0 snake_case_ : Union[str, Any] = -1 for i in range(lowerCAmelCase__ ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 snake_case_ : List[Any] = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] ): """simple docstring""" snake_case_ : str = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] snake_case_ , snake_case_ : List[Any] = check_circuit_or_path(lowerCAmelCase__ , lowerCAmelCase__ ) if check == 3: print("""graph is not Eulerian""" ) print("""no path""" ) return snake_case_ : Dict = 1 if check == 2: snake_case_ : Optional[int] = odd_node print("""graph has a Euler path""" ) if check == 1: print("""graph has a Euler cycle""" ) snake_case_ : Dict = dfs(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) print(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Optional[int] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} snake_case_ : Dict = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} snake_case_ : int = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} snake_case_ : List[Any] = {1: [2, 3], 2: [1, 3], 3: [1, 2]} snake_case_ : Any = { 1: [], 2: [] # all degree is zero } snake_case_ : int = 1_0 check_euler(lowerCAmelCase__ , lowerCAmelCase__ ) check_euler(lowerCAmelCase__ , lowerCAmelCase__ ) check_euler(lowerCAmelCase__ , lowerCAmelCase__ ) check_euler(lowerCAmelCase__ , lowerCAmelCase__ ) check_euler(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
705
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : list ): """simple docstring""" snake_case_ : Optional[int] = len(SCREAMING_SNAKE_CASE__ ) for i in range(1 , SCREAMING_SNAKE_CASE__ ): snake_case_ : Tuple = collection[i] snake_case_ : Tuple = 0 snake_case_ : str = i - 1 while low <= high: snake_case_ : Optional[int] = (low + high) // 2 if val < collection[mid]: snake_case_ : List[str] = mid - 1 else: snake_case_ : str = mid + 1 for j in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , -1 ): snake_case_ : List[str] = collection[j - 1] snake_case_ : Any = val return collection if __name__ == "__main__": a_ = input('''Enter numbers separated by a comma:\n''').strip() a_ = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
48
0
"""simple docstring""" # Algorithm for the pigeonhole sorting def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" snake_case_ : Dict = min(lowerCAmelCase_ ) # min() finds the minimum value snake_case_ : str = max(lowerCAmelCase_ ) # max() finds the maximum value snake_case_ : Dict = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size snake_case_ : int = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. snake_case_ : Optional[Any] = 0 for count in range(lowerCAmelCase_ ): while holes[count] > 0: holes[count] -= 1 snake_case_ : Optional[int] = count + min_val i += 1 def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Union[str, Any] = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(lowerCAmelCase_ ) print("""Sorted order is:""" , """ """.join(lowerCAmelCase_ ) ) if __name__ == "__main__": main()
706
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Union[str, Any] = ["""image_processor""", """tokenizer"""] _A : str = """ChineseCLIPImageProcessor""" _A : Tuple = ("""BertTokenizer""", """BertTokenizerFast""") def __init__(self , lowercase__=None , lowercase__=None , **lowercase__ ): snake_case_ : Any = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowercase__ , ) snake_case_ : Optional[Any] = kwargs.pop("""feature_extractor""" ) snake_case_ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowercase__ , lowercase__ ) snake_case_ : Union[str, Any] = self.image_processor def __call__(self , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ ): if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: snake_case_ : Any = self.tokenizer(lowercase__ , return_tensors=lowercase__ , **lowercase__ ) if images is not None: snake_case_ : Tuple = self.image_processor(lowercase__ , return_tensors=lowercase__ , **lowercase__ ) if text is not None and images is not None: snake_case_ : List[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase__ ) , tensor_type=lowercase__ ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): return self.tokenizer.batch_decode(*lowercase__ , **lowercase__ ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): return self.tokenizer.decode(*lowercase__ , **lowercase__ ) @property def __UpperCamelCase (self ): snake_case_ : Optional[int] = self.tokenizer.model_input_names snake_case_ : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __UpperCamelCase (self ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowercase__ , ) return self.image_processor_class
48
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any ): # noqa: E741 """simple docstring""" snake_case_ : str = len(_snake_case ) snake_case_ : List[str] = 0 snake_case_ : Any = [0] * n snake_case_ : Optional[int] = [False] * n snake_case_ : Optional[int] = [False] * n def dfs(SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ): if parent == root: out_edge_count += 1 snake_case_ : str = True snake_case_ : List[str] = at for to in l[at]: if to == parent: pass elif not visited[to]: snake_case_ : List[Any] = dfs(_snake_case , _snake_case , _snake_case , _snake_case ) snake_case_ : Any = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: snake_case_ : Optional[Any] = True # AP found via cycle if at == low[to]: snake_case_ : Optional[int] = True else: snake_case_ : int = min(low[at] , _snake_case ) return out_edge_count for i in range(_snake_case ): if not visited[i]: snake_case_ : str = 0 snake_case_ : Optional[Any] = dfs(_snake_case , _snake_case , -1 , _snake_case ) snake_case_ : Union[str, Any] = out_edge_count > 1 for x in range(len(_snake_case ) ): if is_art[x] is True: print(_snake_case ) # Adjacency list of graph a_ = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
707
"""simple docstring""" import argparse import copy def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" snake_case_ : List[Any] = {} with open(SCREAMING_SNAKE_CASE__ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: snake_case_ : int = [] _list.append([line.split()[1], line.split()[2]] ) snake_case_ : Optional[Any] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: snake_case_ : str = [] _list.append([line.split()[0], line.split()[2]] ) snake_case_ : Optional[Any] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" with open(SCREAMING_SNAKE_CASE__ ) as f: snake_case_ : Optional[Any] = f.read(1 ) snake_case_ : Union[str, Any] = start_node snake_case_ : Dict = [] snake_case_ : Union[str, Any] = start_node snake_case_ : Tuple = 0 while visiting not in first_solution: snake_case_ : int = 1_0_0_0_0 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(SCREAMING_SNAKE_CASE__ ) and k[0] not in first_solution: snake_case_ : Union[str, Any] = k[1] snake_case_ : Any = k[0] first_solution.append(SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = distance_of_first_solution + int(SCREAMING_SNAKE_CASE__ ) snake_case_ : List[str] = best_node first_solution.append(SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[Any] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 snake_case_ : int = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0_0_0_0 ) return first_solution, distance_of_first_solution def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" snake_case_ : Union[str, Any] = [] for n in solution[1:-1]: snake_case_ : str = solution.index(SCREAMING_SNAKE_CASE__ ) for kn in solution[1:-1]: snake_case_ : Tuple = solution.index(SCREAMING_SNAKE_CASE__ ) if n == kn: continue snake_case_ : Optional[Any] = copy.deepcopy(SCREAMING_SNAKE_CASE__ ) snake_case_ : int = kn snake_case_ : Dict = n snake_case_ : Optional[int] = 0 for k in _tmp[:-1]: snake_case_ : Dict = _tmp[_tmp.index(SCREAMING_SNAKE_CASE__ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: snake_case_ : Dict = distance + int(i[1] ) _tmp.append(SCREAMING_SNAKE_CASE__ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) snake_case_ : Optional[Any] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda SCREAMING_SNAKE_CASE__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] ): """simple docstring""" snake_case_ : Dict = 1 snake_case_ : List[Any] = first_solution snake_case_ : List[Any] = [] snake_case_ : Optional[Any] = distance_of_first_solution snake_case_ : Dict = solution while count <= iters: snake_case_ : List[str] = find_neighborhood(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = 0 snake_case_ : List[Any] = neighborhood[index_of_best_solution] snake_case_ : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ ) - 1 snake_case_ : List[str] = False while not found: snake_case_ : Tuple = 0 while i < len(SCREAMING_SNAKE_CASE__ ): if best_solution[i] != solution[i]: snake_case_ : Optional[Any] = best_solution[i] snake_case_ : int = solution[i] break snake_case_ : List[str] = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) snake_case_ : Tuple = True snake_case_ : Dict = best_solution[:-1] snake_case_ : Tuple = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: snake_case_ : Tuple = cost snake_case_ : Union[str, Any] = solution else: snake_case_ : str = index_of_best_solution + 1 snake_case_ : Tuple = neighborhood[index_of_best_solution] if len(SCREAMING_SNAKE_CASE__ ) >= size: tabu_list.pop(0 ) snake_case_ : List[str] = count + 1 return best_solution_ever, best_cost def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any]=None ): """simple docstring""" snake_case_ : Tuple = generate_neighbours(args.File ) snake_case_ , snake_case_ : Optional[Any] = generate_first_solution( args.File , SCREAMING_SNAKE_CASE__ ) snake_case_ , snake_case_ : Dict = tabu_search( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , args.Iterations , args.Size , ) print(f'Best solution: {best_sol}, with total distance: {best_cost}.' ) if __name__ == "__main__": a_ = argparse.ArgumentParser(description='''Tabu Search''') parser.add_argument( '''-f''', '''--File''', type=str, help='''Path to the file containing the data''', required=True, ) parser.add_argument( '''-i''', '''--Iterations''', type=int, help='''How many iterations the algorithm should perform''', required=True, ) parser.add_argument( '''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True ) # Pass the arguments to main method main(parser.parse_args())
48
0
"""simple docstring""" from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowercase ( lowerCAmelCase__): """simple docstring""" _A : Dict = ["image_processor", "tokenizer"] _A : List[str] = "AutoImageProcessor" _A : int = "AutoTokenizer" def __init__(self , lowercase__ , lowercase__ ): super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ : Dict = self.image_processor def __call__(self , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ ): if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: snake_case_ : Optional[int] = self.tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if images is not None: snake_case_ : Optional[Any] = self.image_processor(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if text is not None and images is not None: snake_case_ : int = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_SCREAMING_SNAKE_CASE ) , tensor_type=_SCREAMING_SNAKE_CASE ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def __UpperCamelCase (self ): return ["input_ids", "attention_mask", "pixel_values"]
708
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings a_ = r''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(_UpperCAmelCase) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """rag""" _A : Optional[Any] = True def __init__(self , lowercase__=None , lowercase__=True , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=" / " , lowercase__=" // " , lowercase__=5 , lowercase__=3_00 , lowercase__=7_68 , lowercase__=8 , lowercase__="wiki_dpr" , lowercase__="train" , lowercase__="compressed" , lowercase__=None , lowercase__=None , lowercase__=False , lowercase__=False , lowercase__=0.0 , lowercase__=True , lowercase__=False , lowercase__=False , lowercase__=False , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__( bos_token_id=lowercase__ , pad_token_id=lowercase__ , eos_token_id=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , prefix=lowercase__ , vocab_size=lowercase__ , **lowercase__ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" snake_case_ : List[Any] = kwargs.pop("""question_encoder""" ) snake_case_ : Tuple = question_encoder_config.pop("""model_type""" ) snake_case_ : List[str] = kwargs.pop("""generator""" ) snake_case_ : List[str] = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig snake_case_ : List[str] = AutoConfig.for_model(lowercase__ , **lowercase__ ) snake_case_ : Tuple = AutoConfig.for_model(lowercase__ , **lowercase__ ) snake_case_ : int = reduce_loss snake_case_ : Optional[int] = label_smoothing snake_case_ : Dict = exclude_bos_score snake_case_ : Union[str, Any] = do_marginalize snake_case_ : Union[str, Any] = title_sep snake_case_ : int = doc_sep snake_case_ : int = n_docs snake_case_ : List[str] = max_combined_length snake_case_ : Tuple = dataset snake_case_ : int = dataset_split snake_case_ : str = index_name snake_case_ : List[str] = retrieval_vector_size snake_case_ : Dict = retrieval_batch_size snake_case_ : str = passages_path snake_case_ : Union[str, Any] = index_path snake_case_ : Tuple = use_dummy_dataset snake_case_ : Dict = output_retrieved snake_case_ : str = do_deduplication snake_case_ : Any = use_cache if self.forced_eos_token_id is None: snake_case_ : Any = getattr(self.generator , """forced_eos_token_id""" , lowercase__ ) @classmethod def __UpperCamelCase (cls , lowercase__ , lowercase__ , **lowercase__ ): return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Optional[Any] = copy.deepcopy(self.__dict__ ) snake_case_ : Any = self.question_encoder.to_dict() snake_case_ : Dict = self.generator.to_dict() snake_case_ : Union[str, Any] = self.__class__.model_type return output
48
0
"""simple docstring""" from collections.abc import Callable def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] ): """simple docstring""" snake_case_ : Union[str, Any] = a snake_case_ : Any = b if function(A_ ) == 0: # one of the a or b is a root for the function return a elif function(A_ ) == 0: return b elif ( function(A_ ) * function(A_ ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("""could not find root in given interval.""" ) else: snake_case_ : List[Any] = start + (end - start) / 2.0 while abs(start - mid ) > 1_0**-7: # until precisely equals to 10^-7 if function(A_ ) == 0: return mid elif function(A_ ) * function(A_ ) < 0: snake_case_ : List[str] = mid else: snake_case_ : List[Any] = mid snake_case_ : List[str] = start + (end - start) / 2.0 return mid def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
709
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """upernet""" def __init__(self , lowercase__=None , lowercase__=5_12 , lowercase__=0.02 , lowercase__=[1, 2, 3, 6] , lowercase__=True , lowercase__=0.4 , lowercase__=3_84 , lowercase__=2_56 , lowercase__=1 , lowercase__=False , lowercase__=2_55 , **lowercase__ , ): super().__init__(**lowercase__ ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) snake_case_ : List[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(lowercase__ , lowercase__ ): snake_case_ : Tuple = backbone_config.get("""model_type""" ) snake_case_ : List[str] = CONFIG_MAPPING[backbone_model_type] snake_case_ : List[Any] = config_class.from_dict(lowercase__ ) snake_case_ : List[Any] = backbone_config snake_case_ : Optional[Any] = hidden_size snake_case_ : Any = initializer_range snake_case_ : str = pool_scales snake_case_ : Dict = use_auxiliary_head snake_case_ : str = auxiliary_loss_weight snake_case_ : List[str] = auxiliary_in_channels snake_case_ : Optional[Any] = auxiliary_channels snake_case_ : Any = auxiliary_num_convs snake_case_ : List[Any] = auxiliary_concat_input snake_case_ : List[str] = loss_ignore_index def __UpperCamelCase (self ): snake_case_ : Dict = copy.deepcopy(self.__dict__ ) snake_case_ : Union[str, Any] = self.backbone_config.to_dict() snake_case_ : Any = self.__class__.model_type return output
48
0
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False ): """simple docstring""" snake_case_ : str = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("""head""" ): snake_case_ : Optional[Any] = 'segformer.encoder.' + key if key.startswith("""backbone""" ): snake_case_ : int = key.replace("""backbone""" , """segformer.encoder""" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 snake_case_ : Any = key[key.find("""patch_embed""" ) + len("""patch_embed""" )] snake_case_ : Dict = key.replace(f'patch_embed{idx}' , f'patch_embeddings.{int(SCREAMING_SNAKE_CASE__ )-1}' ) if "norm" in key: snake_case_ : List[str] = key.replace("""norm""" , """layer_norm""" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 snake_case_ : Optional[Any] = key[key.find("""segformer.encoder.layer_norm""" ) + len("""segformer.encoder.layer_norm""" )] snake_case_ : Optional[int] = key.replace(f'layer_norm{idx}' , f'layer_norm.{int(SCREAMING_SNAKE_CASE__ )-1}' ) if "layer_norm1" in key: snake_case_ : str = key.replace("""layer_norm1""" , """layer_norm_1""" ) if "layer_norm2" in key: snake_case_ : List[str] = key.replace("""layer_norm2""" , """layer_norm_2""" ) if "block" in key: # replace for example block1 by block.0 snake_case_ : Any = key[key.find("""block""" ) + len("""block""" )] snake_case_ : Optional[Any] = key.replace(f'block{idx}' , f'block.{int(SCREAMING_SNAKE_CASE__ )-1}' ) if "attn.q" in key: snake_case_ : int = key.replace("""attn.q""" , """attention.self.query""" ) if "attn.proj" in key: snake_case_ : str = key.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in key: snake_case_ : Optional[Any] = key.replace("""attn""" , """attention.self""" ) if "fc1" in key: snake_case_ : Optional[int] = key.replace("""fc1""" , """dense1""" ) if "fc2" in key: snake_case_ : List[str] = key.replace("""fc2""" , """dense2""" ) if "linear_pred" in key: snake_case_ : str = key.replace("""linear_pred""" , """classifier""" ) if "linear_fuse" in key: snake_case_ : List[Any] = key.replace("""linear_fuse.conv""" , """linear_fuse""" ) snake_case_ : Optional[Any] = key.replace("""linear_fuse.bn""" , """batch_norm""" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 snake_case_ : Union[str, Any] = key[key.find("""linear_c""" ) + len("""linear_c""" )] snake_case_ : Dict = key.replace(f'linear_c{idx}' , f'linear_c.{int(SCREAMING_SNAKE_CASE__ )-1}' ) if key.startswith("""head""" ): snake_case_ : Dict = key.replace("""head""" , """classifier""" ) snake_case_ : int = value return new_state_dict def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple ): """simple docstring""" for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) snake_case_ : Tuple = state_dict.pop(f'segformer.encoder.block.{i}.{j}.attention.self.kv.weight' ) snake_case_ : Union[str, Any] = state_dict.pop(f'segformer.encoder.block.{i}.{j}.attention.self.kv.bias' ) # next, add keys and values (in that order) to the state dict snake_case_ : Tuple = kv_weight[ : config.hidden_sizes[i], : ] snake_case_ : List[str] = kv_bias[: config.hidden_sizes[i]] snake_case_ : Optional[Any] = kv_weight[ config.hidden_sizes[i] :, : ] snake_case_ : Tuple = kv_bias[ config.hidden_sizes[i] : ] def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Union[str, Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case_ : Tuple = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return image @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple ): """simple docstring""" snake_case_ : Optional[int] = SegformerConfig() snake_case_ : Optional[int] = False # set attributes based on model_name snake_case_ : List[Any] = 'huggingface/label-files' if "segformer" in model_name: snake_case_ : Tuple = model_name[len("""segformer.""" ) : len("""segformer.""" ) + 2] if "ade" in model_name: snake_case_ : Any = 1_5_0 snake_case_ : List[Any] = 'ade20k-id2label.json' snake_case_ : List[Any] = (1, 1_5_0, 1_2_8, 1_2_8) elif "city" in model_name: snake_case_ : Union[str, Any] = 1_9 snake_case_ : Optional[int] = 'cityscapes-id2label.json' snake_case_ : List[Any] = (1, 1_9, 1_2_8, 1_2_8) else: raise ValueError(f'Model {model_name} not supported' ) elif "mit" in model_name: snake_case_ : Union[str, Any] = True snake_case_ : List[Any] = model_name[4:6] snake_case_ : Optional[Any] = 1_0_0_0 snake_case_ : Tuple = 'imagenet-1k-id2label.json' snake_case_ : str = (1, 1_0_0_0) else: raise ValueError(f'Model {model_name} not supported' ) # set config attributes snake_case_ : List[str] = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type="""dataset""" ) , """r""" ) ) snake_case_ : Optional[Any] = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} snake_case_ : Dict = idalabel snake_case_ : Dict = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": snake_case_ : str = [6_4, 1_2_8, 3_2_0, 5_1_2] snake_case_ : Dict = 2_5_6 elif size == "b2": snake_case_ : Optional[Any] = [6_4, 1_2_8, 3_2_0, 5_1_2] snake_case_ : List[Any] = 7_6_8 snake_case_ : Any = [3, 4, 6, 3] elif size == "b3": snake_case_ : Optional[int] = [6_4, 1_2_8, 3_2_0, 5_1_2] snake_case_ : int = 7_6_8 snake_case_ : int = [3, 4, 1_8, 3] elif size == "b4": snake_case_ : int = [6_4, 1_2_8, 3_2_0, 5_1_2] snake_case_ : Tuple = 7_6_8 snake_case_ : List[Any] = [3, 8, 2_7, 3] elif size == "b5": snake_case_ : Dict = [6_4, 1_2_8, 3_2_0, 5_1_2] snake_case_ : Union[str, Any] = 7_6_8 snake_case_ : Optional[int] = [3, 6, 4_0, 3] else: raise ValueError(f'Size {size} not supported' ) # load image processor (only resize + normalize) snake_case_ : Optional[int] = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) , keep_ratio=SCREAMING_SNAKE_CASE__ , align=SCREAMING_SNAKE_CASE__ , do_random_crop=SCREAMING_SNAKE_CASE__ ) # prepare image snake_case_ : str = prepare_img() snake_case_ : Optional[int] = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).pixel_values logger.info(f'Converting model {model_name}...' ) # load original state dict if encoder_only: snake_case_ : List[Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location=torch.device("""cpu""" ) ) else: snake_case_ : int = torch.load(SCREAMING_SNAKE_CASE__ , map_location=torch.device("""cpu""" ) )['state_dict'] # rename keys snake_case_ : str = rename_keys(SCREAMING_SNAKE_CASE__ , encoder_only=SCREAMING_SNAKE_CASE__ ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # create HuggingFace model and load state dict if encoder_only: snake_case_ : List[Any] = False snake_case_ : Optional[Any] = SegformerForImageClassification(SCREAMING_SNAKE_CASE__ ) else: snake_case_ : List[str] = SegformerForSemanticSegmentation(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() # forward pass snake_case_ : str = model(SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[Any] = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": snake_case_ : int = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": snake_case_ : Tuple = torch.tensor( [ [[-7.5820, -8.7231, -8.3215], [-8.0600, -10.3529, -10.0304], [-7.5208, -9.4103, -9.6239]], [[-12.6918, -13.8994, -13.7137], [-13.3196, -15.7523, -15.4789], [-12.9343, -14.8757, -14.9689]], [[-11.1911, -11.9421, -11.3243], [-11.3342, -13.6839, -13.3581], [-10.3909, -12.1832, -12.4858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": snake_case_ : Optional[Any] = torch.tensor( [ [[-11.8173, -14.3850, -16.3128], [-14.5648, -16.5804, -18.6568], [-14.7223, -15.7387, -18.4218]], [[-15.7290, -17.9171, -19.4423], [-18.3105, -19.9448, -21.4661], [-17.9296, -18.6497, -20.7910]], [[-15.0783, -17.0336, -18.2789], [-16.8771, -18.6870, -20.1612], [-16.2454, -17.1426, -19.5055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": snake_case_ : int = torch.tensor( [ [[-9.0878, -10.2081, -10.1891], [-9.3144, -10.7941, -10.9843], [-9.2294, -10.3855, -10.5704]], [[-12.2316, -13.9068, -13.6102], [-12.9161, -14.3702, -14.3235], [-12.5233, -13.7174, -13.7932]], [[-14.6275, -15.2490, -14.9727], [-14.3400, -15.9687, -16.2827], [-14.1484, -15.4033, -15.8937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": snake_case_ : Union[str, Any] = torch.tensor( [ [[-12.3144, -13.2447, -14.0802], [-13.3614, -14.5816, -15.6117], [-13.3340, -14.4433, -16.2219]], [[-19.2781, -20.4128, -20.7506], [-20.6153, -21.6566, -22.0998], [-19.9800, -21.0430, -22.1494]], [[-18.8739, -19.7804, -21.1834], [-20.1233, -21.6765, -23.2944], [-20.0315, -21.2641, -23.6944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": snake_case_ : int = torch.tensor( [ [[-9.5524, -12.0835, -11.7348], [-10.5229, -13.6446, -14.5662], [-9.5842, -12.8851, -13.9414]], [[-15.3432, -17.5323, -17.0818], [-16.3330, -18.9255, -19.2101], [-15.1340, -17.7848, -18.3971]], [[-12.6072, -14.9486, -14.6631], [-13.7629, -17.0907, -17.7745], [-12.7899, -16.1695, -17.1671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": snake_case_ : List[str] = torch.tensor( [ [[-11.9295, -13.4057, -14.8106], [-13.3431, -14.8179, -15.3781], [-14.2836, -15.5942, -16.1588]], [[-11.4906, -12.8067, -13.6564], [-13.1189, -14.0500, -14.1543], [-13.8748, -14.5136, -14.8789]], [[0.5374, 0.1067, -0.4742], [0.1141, -0.2255, -0.7099], [-0.3000, -0.5924, -1.3105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": snake_case_ : Optional[Any] = torch.tensor( [ [[-7.8217, -9.8767, -10.1717], [-9.4438, -10.9058, -11.4047], [-9.7939, -12.3495, -12.1079]], [[-7.1514, -9.5336, -10.0860], [-9.7776, -11.6822, -11.8439], [-10.1411, -12.7655, -12.8972]], [[0.3021, 0.0805, -0.2310], [-0.0328, -0.1605, -0.2714], [-0.1408, -0.5477, -0.6976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": snake_case_ : Dict = torch.tensor( [ [ [-1.1_372E01, -1.2_787E01, -1.3_477E01], [-1.2_536E01, -1.4_194E01, -1.4_409E01], [-1.3_217E01, -1.4_888E01, -1.5_327E01], ], [ [-1.4_791E01, -1.7_122E01, -1.8_277E01], [-1.7_163E01, -1.9_192E01, -1.9_533E01], [-1.7_897E01, -1.9_991E01, -2.0_315E01], ], [ [7.6_723E-01, 4.1_921E-01, -7.7_878E-02], [4.7_772E-01, 9.5_557E-03, -2.8_082E-01], [3.6_032E-01, -2.4_826E-01, -5.1_168E-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": snake_case_ : Optional[Any] = torch.tensor( [ [[-9.4959, -11.3087, -11.7479], [-11.0025, -12.6540, -12.3319], [-11.4064, -13.0487, -12.9905]], [[-9.8905, -11.3084, -12.0854], [-11.1726, -12.7698, -12.9583], [-11.5985, -13.3278, -14.1774]], [[0.2213, 0.0192, -0.2466], [-0.1731, -0.4213, -0.4874], [-0.3126, -0.6541, -1.1389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": snake_case_ : List[Any] = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": snake_case_ : List[str] = torch.tensor( [ [[-16.0976, -16.4856, -17.3962], [-16.6234, -19.0342, -19.7685], [-16.0900, -18.0661, -19.1180]], [[-18.4750, -18.8488, -19.5074], [-19.4030, -22.1570, -22.5977], [-19.1191, -20.8486, -22.3783]], [[-4.5178, -5.5037, -6.5109], [-5.0884, -7.2174, -8.0334], [-4.4156, -5.8117, -7.2970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": snake_case_ : Optional[int] = torch.tensor( [ [[-14.2081, -14.4732, -14.1977], [-14.5867, -16.4423, -16.6356], [-13.4441, -14.9685, -16.8696]], [[-14.4576, -14.7073, -15.0451], [-15.0816, -17.6237, -17.9873], [-14.4213, -16.0199, -18.5992]], [[-4.7349, -4.9588, -5.0966], [-4.3210, -6.9325, -7.2591], [-3.4312, -4.7484, -7.1917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": snake_case_ : Tuple = torch.tensor( [ [[-11.7737, -11.9526, -11.3273], [-13.6692, -14.4574, -13.8878], [-13.8937, -14.6924, -15.9345]], [[-14.6706, -14.5330, -14.1306], [-16.1502, -16.8180, -16.4269], [-16.8338, -17.8939, -20.1746]], [[1.0491, 0.8289, 1.0310], [1.1044, 0.5219, 0.8055], [1.0899, 0.6926, 0.5590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": snake_case_ : Tuple = torch.tensor( [ [[-12.5641, -13.4777, -13.0684], [-13.9587, -15.8983, -16.6557], [-13.3109, -15.7350, -16.3141]], [[-14.7074, -15.4352, -14.5944], [-16.6353, -18.1663, -18.6120], [-15.1702, -18.0329, -18.1547]], [[-1.7990, -2.0951, -1.7784], [-2.6397, -3.8245, -3.9686], [-1.5264, -2.8126, -2.9316]], ] ) else: snake_case_ : Dict = logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-2 ) # finally, save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''segformer.b0.512x512.ade.160k''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) a_ = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
710
"""simple docstring""" import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask a_ = logging.getLogger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self , lowercase__=-1 ): # in NER datasets, the last column is usually reserved for NER label snake_case_ : Union[str, Any] = label_idx def __UpperCamelCase (self , lowercase__ , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): snake_case_ : List[str] = mode.value snake_case_ : List[Any] = os.path.join(lowercase__ , f'{mode}.txt' ) snake_case_ : Tuple = 1 snake_case_ : Any = [] with open(lowercase__ , encoding="""utf-8""" ) as f: snake_case_ : str = [] snake_case_ : List[Any] = [] for line in f: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) guid_index += 1 snake_case_ : Optional[Any] = [] snake_case_ : int = [] else: snake_case_ : Optional[Any] = line.split(""" """ ) words.append(splits[0] ) if len(lowercase__ ) > 1: labels.append(splits[self.label_idx].replace("""\n""" , """""" ) ) else: # Examples could have no label for mode = "test" labels.append("""O""" ) if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) return examples def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : str = 0 for line in test_input_reader: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": writer.write(lowercase__ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: snake_case_ : Optional[int] = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n""" writer.write(lowercase__ ) else: logger.warning("""Maximum sequence length exceeded: No prediction for '%s'.""" , line.split()[0] ) def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: snake_case_ : Dict = f.read().splitlines() if "O" not in labels: snake_case_ : List[Any] = ["""O"""] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self ): # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: snake_case_ : Any = f.read().splitlines() if "O" not in labels: snake_case_ : Tuple = ["""O"""] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __lowercase ( _UpperCAmelCase): """simple docstring""" def __UpperCamelCase (self , lowercase__ , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): snake_case_ : List[Any] = mode.value snake_case_ : Optional[int] = os.path.join(lowercase__ , f'{mode}.txt' ) snake_case_ : Tuple = 1 snake_case_ : str = [] with open(lowercase__ , encoding="""utf-8""" ) as f: for sentence in parse_incr(lowercase__ ): snake_case_ : Tuple = [] snake_case_ : Any = [] for token in sentence: words.append(token["""form"""] ) labels.append(token["""upos"""] ) assert len(lowercase__ ) == len(lowercase__ ) if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) guid_index += 1 return examples def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : Dict = 0 for sentence in parse_incr(lowercase__ ): snake_case_ : int = preds_list[example_id] snake_case_ : Dict = """""" for token in sentence: out += f'{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) ' out += "\n" writer.write(lowercase__ ) example_id += 1 def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
48
0
"""simple docstring""" import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class __lowercase : """simple docstring""" def __init__(self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=99 , lowercase__=64 , lowercase__=5 , lowercase__=4 , lowercase__=64 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_12 , lowercase__=16 , lowercase__=2 , lowercase__=0.02 , lowercase__=3 , lowercase__=4 , lowercase__=None , ): snake_case_ : List[Any] = parent snake_case_ : Any = batch_size snake_case_ : Tuple = seq_length snake_case_ : Any = is_training snake_case_ : List[str] = use_input_mask snake_case_ : Optional[int] = use_token_type_ids snake_case_ : Optional[int] = use_labels snake_case_ : Optional[int] = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : List[str] = num_hidden_layers snake_case_ : Union[str, Any] = num_attention_heads snake_case_ : Union[str, Any] = intermediate_size snake_case_ : Tuple = hidden_act snake_case_ : Dict = hidden_dropout_prob snake_case_ : Optional[Any] = attention_probs_dropout_prob snake_case_ : str = max_position_embeddings snake_case_ : Optional[Any] = type_vocab_size snake_case_ : Dict = type_sequence_label_size snake_case_ : str = initializer_range snake_case_ : Optional[int] = num_labels snake_case_ : str = num_choices snake_case_ : int = scope def __UpperCamelCase (self ): return MPNetConfig.from_pretrained("""microsoft/mpnet-base""" ) def __UpperCamelCase (self ): snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Optional[Any] = None if self.use_input_mask: snake_case_ : str = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : Dict = None snake_case_ : Optional[int] = None snake_case_ : List[Any] = None if self.use_labels: snake_case_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ : str = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase (self ): return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : int = MPNetModel(config=__a ) model.to(__a ) model.eval() snake_case_ : Union[str, Any] = model(__a , __a ) snake_case_ : List[Any] = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : Union[str, Any] = MPNetForQuestionAnswering(config=__a ) model.to(__a ) model.eval() snake_case_ : Optional[int] = model( __a , attention_mask=__a , start_positions=__a , end_positions=__a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : List[Any] = self.num_labels snake_case_ : List[Any] = MPNetForSequenceClassification(__a ) model.to(__a ) model.eval() snake_case_ : Tuple = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : Tuple = self.num_choices snake_case_ : Optional[int] = MPNetForMultipleChoice(config=__a ) model.to(__a ) model.eval() snake_case_ : List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ : List[Any] = model( __a , attention_mask=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : Dict = self.num_labels snake_case_ : Dict = MPNetForTokenClassification(config=__a ) model.to(__a ) model.eval() snake_case_ : Optional[Any] = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase (self ): snake_case_ : str = self.prepare_config_and_inputs() ((snake_case_) , (snake_case_) , (snake_case_) , (snake_case_) , (snake_case_) , (snake_case_)) : List[Any] = config_and_inputs snake_case_ : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : str = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) _A : Optional[int] = ( { """feature-extraction""": MPNetModel, """fill-mask""": MPNetForMaskedLM, """question-answering""": MPNetForQuestionAnswering, """text-classification""": MPNetForSequenceClassification, """token-classification""": MPNetForTokenClassification, """zero-shot""": MPNetForSequenceClassification, } if is_torch_available() else {} ) _A : List[Any] = False _A : str = True def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = MPNetModelTester(self ) snake_case_ : Tuple = ConfigTester(self , config_class=__a , hidden_size=37 ) def __UpperCamelCase (self ): self.config_tester.run_common_tests() def __UpperCamelCase (self ): snake_case_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*__a ) def __UpperCamelCase (self ): snake_case_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*__a ) def __UpperCamelCase (self ): snake_case_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*__a ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*__a ) def __UpperCamelCase (self ): snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*__a ) @require_torch class __lowercase ( unittest.TestCase): """simple docstring""" @slow def __UpperCamelCase (self ): snake_case_ : int = MPNetModel.from_pretrained("""microsoft/mpnet-base""" ) snake_case_ : List[Any] = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) snake_case_ : Dict = model(__a )[0] snake_case_ : Optional[Any] = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , __a ) snake_case_ : int = torch.tensor( [[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1e-4 ) )
711
"""simple docstring""" import random def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : Union[str, Any] = num - 1 snake_case_ : List[str] = 0 while s % 2 == 0: snake_case_ : str = s // 2 t += 1 for _ in range(5 ): snake_case_ : List[Any] = random.randrange(2 , num - 1 ) snake_case_ : Dict = pow(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if v != 1: snake_case_ : int = 0 while v != (num - 1): if i == t - 1: return False else: snake_case_ : str = i + 1 snake_case_ : int = (v**2) % num return True def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" if num < 2: return False snake_case_ : Dict = [ 2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1, 4_3, 4_7, 5_3, 5_9, 6_1, 6_7, 7_1, 7_3, 7_9, 8_3, 8_9, 9_7, 1_0_1, 1_0_3, 1_0_7, 1_0_9, 1_1_3, 1_2_7, 1_3_1, 1_3_7, 1_3_9, 1_4_9, 1_5_1, 1_5_7, 1_6_3, 1_6_7, 1_7_3, 1_7_9, 1_8_1, 1_9_1, 1_9_3, 1_9_7, 1_9_9, 2_1_1, 2_2_3, 2_2_7, 2_2_9, 2_3_3, 2_3_9, 2_4_1, 2_5_1, 2_5_7, 2_6_3, 2_6_9, 2_7_1, 2_7_7, 2_8_1, 2_8_3, 2_9_3, 3_0_7, 3_1_1, 3_1_3, 3_1_7, 3_3_1, 3_3_7, 3_4_7, 3_4_9, 3_5_3, 3_5_9, 3_6_7, 3_7_3, 3_7_9, 3_8_3, 3_8_9, 3_9_7, 4_0_1, 4_0_9, 4_1_9, 4_2_1, 4_3_1, 4_3_3, 4_3_9, 4_4_3, 4_4_9, 4_5_7, 4_6_1, 4_6_3, 4_6_7, 4_7_9, 4_8_7, 4_9_1, 4_9_9, 5_0_3, 5_0_9, 5_2_1, 5_2_3, 5_4_1, 5_4_7, 5_5_7, 5_6_3, 5_6_9, 5_7_1, 5_7_7, 5_8_7, 5_9_3, 5_9_9, 6_0_1, 6_0_7, 6_1_3, 6_1_7, 6_1_9, 6_3_1, 6_4_1, 6_4_3, 6_4_7, 6_5_3, 6_5_9, 6_6_1, 6_7_3, 6_7_7, 6_8_3, 6_9_1, 7_0_1, 7_0_9, 7_1_9, 7_2_7, 7_3_3, 7_3_9, 7_4_3, 7_5_1, 7_5_7, 7_6_1, 7_6_9, 7_7_3, 7_8_7, 7_9_7, 8_0_9, 8_1_1, 8_2_1, 8_2_3, 8_2_7, 8_2_9, 8_3_9, 8_5_3, 8_5_7, 8_5_9, 8_6_3, 8_7_7, 8_8_1, 8_8_3, 8_8_7, 9_0_7, 9_1_1, 9_1_9, 9_2_9, 9_3_7, 9_4_1, 9_4_7, 9_5_3, 9_6_7, 9_7_1, 9_7_7, 9_8_3, 9_9_1, 9_9_7, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int = 1_0_2_4 ): """simple docstring""" while True: snake_case_ : Tuple = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(SCREAMING_SNAKE_CASE__ ): return num if __name__ == "__main__": a_ = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
48
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''studio-ousia/luke-base''': '''https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json''', '''studio-ousia/luke-large''': '''https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json''', } class __lowercase ( lowercase_): """simple docstring""" _A : str = """luke""" def __init__(self , lowercase__=5_02_67 , lowercase__=50_00_00 , lowercase__=7_68 , lowercase__=2_56 , lowercase__=12 , lowercase__=12 , lowercase__=30_72 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_12 , lowercase__=2 , lowercase__=0.02 , lowercase__=1e-12 , lowercase__=True , lowercase__=None , lowercase__=1 , lowercase__=0 , lowercase__=2 , **lowercase__ , ): super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) snake_case_ : int = vocab_size snake_case_ : int = entity_vocab_size snake_case_ : Optional[Any] = hidden_size snake_case_ : Union[str, Any] = entity_emb_size snake_case_ : Union[str, Any] = num_hidden_layers snake_case_ : str = num_attention_heads snake_case_ : Optional[int] = hidden_act snake_case_ : Union[str, Any] = intermediate_size snake_case_ : str = hidden_dropout_prob snake_case_ : Optional[Any] = attention_probs_dropout_prob snake_case_ : Optional[int] = max_position_embeddings snake_case_ : Optional[int] = type_vocab_size snake_case_ : Any = initializer_range snake_case_ : Any = layer_norm_eps snake_case_ : str = use_entity_aware_attention snake_case_ : List[str] = classifier_dropout
712
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType a_ = logging.get_logger(__name__) a_ = { '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Dict = """deberta-v2""" def __init__(self , lowercase__=12_81_00 , lowercase__=15_36 , lowercase__=24 , lowercase__=24 , lowercase__=61_44 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_12 , lowercase__=0 , lowercase__=0.02 , lowercase__=1e-7 , lowercase__=False , lowercase__=-1 , lowercase__=0 , lowercase__=True , lowercase__=None , lowercase__=0 , lowercase__="gelu" , **lowercase__ , ): super().__init__(**lowercase__ ) snake_case_ : Union[str, Any] = hidden_size snake_case_ : str = num_hidden_layers snake_case_ : Tuple = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : Optional[int] = hidden_act snake_case_ : Union[str, Any] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : List[Any] = max_position_embeddings snake_case_ : Union[str, Any] = type_vocab_size snake_case_ : Union[str, Any] = initializer_range snake_case_ : List[Any] = relative_attention snake_case_ : Dict = max_relative_positions snake_case_ : Optional[int] = pad_token_id snake_case_ : List[str] = position_biased_input # Backwards compatibility if type(lowercase__ ) == str: snake_case_ : Union[str, Any] = [x.strip() for x in pos_att_type.lower().split("""|""" )] snake_case_ : Optional[int] = pos_att_type snake_case_ : List[str] = vocab_size snake_case_ : Tuple = layer_norm_eps snake_case_ : List[Any] = kwargs.get("""pooler_hidden_size""" , lowercase__ ) snake_case_ : List[str] = pooler_dropout snake_case_ : int = pooler_hidden_act class __lowercase ( _UpperCAmelCase): """simple docstring""" @property def __UpperCamelCase (self ): if self.task == "multiple-choice": snake_case_ : List[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case_ : int = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def __UpperCamelCase (self ): return 12 def __UpperCamelCase (self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , lowercase__ = 3 , lowercase__ = 40 , lowercase__ = 40 , lowercase__ = None , ): snake_case_ : str = super().generate_dummy_inputs(preprocessor=lowercase__ , framework=lowercase__ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
48
0
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" snake_case_ : List[Any] = s.rsplit(A__ , A__ ) return new.join(A__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" snake_case_ : Optional[int] = {} snake_case_ : Union[str, Any] = ["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: snake_case_ : Union[str, Any] = key.replace(f'{group_key}.' , f'{group_key}.group.' ) if "res_path" in key: snake_case_ : Optional[int] = key.replace("""res_path.""" , """res_path.path.""" ) if key.endswith(""".w""" ): snake_case_ : Dict = rreplace(A__ , """.w""" , """.weight""" , 1 ) if key.endswith(""".b""" ): snake_case_ : Any = rreplace(A__ , """.b""" , """.bias""" , 1 ) snake_case_ : Optional[int] = value.float() return upgrade @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=True ): """simple docstring""" from dall_e import Encoder snake_case_ : Tuple = Encoder() if os.path.exists(A__ ): snake_case_ : Any = torch.load(A__ ) else: snake_case_ : Dict = torch.hub.load_state_dict_from_url(A__ ) if isinstance(A__ , A__ ): snake_case_ : Tuple = ckpt.state_dict() encoder.load_state_dict(A__ ) if config_path is not None: snake_case_ : Any = FlavaImageCodebookConfig.from_pretrained(A__ ) else: snake_case_ : Tuple = FlavaImageCodebookConfig() snake_case_ : Optional[int] = FlavaImageCodebook(A__ ).eval() snake_case_ : Union[str, Any] = encoder.state_dict() snake_case_ : Tuple = upgrade_state_dict(A__ ) hf_model.load_state_dict(A__ ) snake_case_ : Optional[int] = hf_model.state_dict() snake_case_ : Any = count_parameters(A__ ) snake_case_ : Tuple = count_parameters(A__ ) assert torch.allclose(A__ , A__ , atol=1E-3 ) if save_checkpoint: hf_model.save_pretrained(A__ ) else: return hf_state_dict if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') a_ = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
713
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
48
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available a_ = {'''tokenization_herbert''': ['''HerbertTokenizer''']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['''HerbertTokenizerFast'''] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
714
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('''fixtures/test_sentencepiece.model''') a_ = {'''target_lang''': '''fi''', '''source_lang''': '''en'''} a_ = '''>>zh<<''' a_ = '''Helsinki-NLP/''' if is_torch_available(): a_ = '''pt''' elif is_tf_available(): a_ = '''tf''' else: a_ = '''jax''' @require_sentencepiece class __lowercase ( _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : str = MarianTokenizer _A : List[str] = False _A : List[str] = True def __UpperCamelCase (self ): super().setUp() snake_case_ : Optional[int] = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] snake_case_ : Any = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) snake_case_ : Any = Path(self.tmpdirname ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) snake_case_ : Optional[Any] = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase (self , **lowercase__ ): return MarianTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def __UpperCamelCase (self , lowercase__ ): return ( "This is a test", "This is a test", ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = """</s>""" snake_case_ : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__ ) , lowercase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__ ) , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(lowercase__ ) , 9 ) def __UpperCamelCase (self ): self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def __UpperCamelCase (self ): snake_case_ : Any = MarianTokenizer.from_pretrained(f'{ORG_NAME}opus-mt-en-de' ) snake_case_ : Tuple = en_de_tokenizer(["""I am a small frog"""] , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) snake_case_ : Dict = [38, 1_21, 14, 6_97, 3_88_48, 0] self.assertListEqual(lowercase__ , batch.input_ids[0] ) snake_case_ : Tuple = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(lowercase__ ) snake_case_ : str = [x.name for x in Path(lowercase__ ).glob("""*""" )] self.assertIn("""source.spm""" , lowercase__ ) MarianTokenizer.from_pretrained(lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = self.get_tokenizer() snake_case_ : List[str] = tok( ["""I am a small frog""" * 10_00, """I am a small frog"""] , padding=lowercase__ , truncation=lowercase__ , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(batch.input_ids.shape , (2, 5_12) ) def __UpperCamelCase (self ): snake_case_ : Tuple = self.get_tokenizer() snake_case_ : Tuple = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=lowercase__ , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def __UpperCamelCase (self ): # fmt: off snake_case_ : str = {"""input_ids""": [[4_34_95, 4_62, 20, 4_21_64, 13_69, 52, 4_64, 1_32, 17_03, 4_92, 13, 74_91, 3_89_99, 6, 8, 4_64, 1_32, 17_03, 4_92, 13, 46_69, 3_78_67, 13, 75_25, 27, 15_93, 9_88, 13, 3_39_72, 70_29, 6, 20, 82_51, 3_83, 2, 2_70, 58_66, 37_88, 2, 23_53, 82_51, 1_23_38, 2, 1_39_58, 3_87, 2, 36_29, 69_53, 1_88, 29_00, 2, 1_39_58, 80_11, 1_15_01, 23, 84_60, 40_73, 3_40_09, 20, 4_35, 1_14_39, 27, 8, 84_60, 40_73, 60_04, 20, 99_88, 3_75, 27, 33, 2_66, 19_45, 10_76, 13_50, 3_78_67, 32_88, 5, 5_77, 10_76, 43_74, 8, 50_82, 5, 2_64_53, 2_57, 5_56, 4_03, 2, 2_42, 1_32, 3_83, 3_16, 4_92, 8, 1_07_67, 6, 3_16, 3_04, 42_39, 3, 0], [1_48, 1_57_22, 19, 18_39, 12, 13_50, 13, 2_23_27, 50_82, 54_18, 4_75_67, 3_59_38, 59, 3_18, 1_95_52, 1_08, 21_83, 54, 1_49_76, 48_35, 32, 5_47, 11_14, 8, 3_15, 24_17, 5, 92, 1_90_88, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00], [36, 63_95, 1_25_70, 3_91_47, 1_15_97, 6, 2_66, 4, 4_54_05, 72_96, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase__ , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def __UpperCamelCase (self ): snake_case_ : Any = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) snake_case_ : Dict = """Tämä on testi""" snake_case_ : List[Any] = """This is a test""" snake_case_ : Optional[int] = [76, 7, 20_47, 2] snake_case_ : List[str] = [69, 12, 11, 9_40, 2] snake_case_ : Any = tokenizer(lowercase__ ).input_ids self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : str = tokenizer(text_target=lowercase__ ).input_ids self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : int = tokenizer.decode(lowercase__ , skip_special_tokens=lowercase__ ) self.assertEqual(lowercase__ , lowercase__ )
48
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = { '''configuration_electra''': ['''ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ElectraConfig''', '''ElectraOnnxConfig'''], '''tokenization_electra''': ['''ElectraTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['''ElectraTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ElectraForCausalLM''', '''ElectraForMaskedLM''', '''ElectraForMultipleChoice''', '''ElectraForPreTraining''', '''ElectraForQuestionAnswering''', '''ElectraForSequenceClassification''', '''ElectraForTokenClassification''', '''ElectraModel''', '''ElectraPreTrainedModel''', '''load_tf_weights_in_electra''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFElectraForMaskedLM''', '''TFElectraForMultipleChoice''', '''TFElectraForPreTraining''', '''TFElectraForQuestionAnswering''', '''TFElectraForSequenceClassification''', '''TFElectraForTokenClassification''', '''TFElectraModel''', '''TFElectraPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''FlaxElectraForCausalLM''', '''FlaxElectraForMaskedLM''', '''FlaxElectraForMultipleChoice''', '''FlaxElectraForPreTraining''', '''FlaxElectraForQuestionAnswering''', '''FlaxElectraForSequenceClassification''', '''FlaxElectraForTokenClassification''', '''FlaxElectraModel''', '''FlaxElectraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
715
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCAmelCase) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True}) _A : ClassVar[Features] = Features({"""audio""": Audio()}) _A : ClassVar[Features] = Features({"""transcription""": Value("""string""")}) _A : str = "audio" _A : str = "transcription" def __UpperCamelCase (self , lowercase__ ): if self.audio_column not in features: raise ValueError(f'Column {self.audio_column} is not present in features.' ) if not isinstance(features[self.audio_column] , lowercase__ ): raise ValueError(f'Column {self.audio_column} is not an Audio type.' ) snake_case_ : Optional[int] = copy.deepcopy(self ) snake_case_ : Tuple = self.input_schema.copy() snake_case_ : List[str] = features[self.audio_column] snake_case_ : Any = input_schema return task_template @property def __UpperCamelCase (self ): return {self.audio_column: "audio", self.transcription_column: "transcription"}
48
0
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( """files""" , [ ["""full:README.md""", """dataset_infos.json"""], ["""empty:README.md""", """dataset_infos.json"""], ["""dataset_infos.json"""], ["""full:README.md"""], ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : Optional[Any] = tmp_path_factory.mktemp("""dset_infos_dir""" ) if "full:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""---\ndataset_info:\n dataset_size: 42\n---""" ) if "empty:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""""" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / """dataset_infos.json""" , """w""" ) as f: f.write("""{\"default\": {\"dataset_size\": 42}}""" ) snake_case_ : Dict = DatasetInfosDict.from_directory(snake_case__ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 4_2 @pytest.mark.parametrize( """dataset_info""" , [ DatasetInfo(), DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=4_2 , ), ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : DatasetInfo ): """simple docstring""" snake_case_ : str = str(snake_case__ ) dataset_info.write_to_directory(snake_case__ ) snake_case_ : List[Any] = DatasetInfo.from_directory(snake_case__ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(snake_case__ , """dataset_info.json""" ) ) def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Tuple = DatasetInfo( description="""foo""" , citation="""bar""" , homepage="""https://foo.bar""" , license="""CC0""" , features=Features({"""a""": Value("""int32""" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train""", """num_examples""": 4_2}] , download_checksums={} , download_size=1_3_3_7 , post_processing_size=4_4_2 , dataset_size=1_2_3_4 , size_in_bytes=1_3_3_7 + 4_4_2 + 1_2_3_4 , ) snake_case_ : List[str] = dataset_info._to_yaml_dict() assert sorted(snake_case__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) snake_case_ : Optional[Any] = yaml.safe_dump(snake_case__ ) snake_case_ : str = yaml.safe_load(snake_case__ ) assert dataset_info_yaml_dict == reloaded def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Tuple = DatasetInfo() snake_case_ : int = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( """dataset_infos_dict""" , [ DatasetInfosDict(), DatasetInfosDict({"""default""": DatasetInfo()} ), DatasetInfosDict({"""my_config_name""": DatasetInfo()} ), DatasetInfosDict( { """default""": DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=4_2 , ) } ), DatasetInfosDict( { """v1""": DatasetInfo(dataset_size=4_2 ), """v2""": DatasetInfo(dataset_size=1_3_3_7 ), } ), ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : DatasetInfosDict ): """simple docstring""" snake_case_ : Optional[int] = str(snake_case__ ) dataset_infos_dict.write_to_directory(snake_case__ ) snake_case_ : List[str] = DatasetInfosDict.from_directory(snake_case__ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): snake_case_ : Tuple = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml snake_case_ : Union[str, Any] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(snake_case__ , """README.md""" ) )
716
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : int = ["""pixel_values"""] def __init__(self , lowercase__ = True , lowercase__ = None , lowercase__ = 0.9 , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = True , lowercase__ = None , lowercase__ = 1 / 2_55 , lowercase__ = True , lowercase__ = True , lowercase__ = None , lowercase__ = None , **lowercase__ , ): super().__init__(**lowercase__ ) snake_case_ : Tuple = size if size is not None else {"""shortest_edge""": 2_24} snake_case_ : Union[str, Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) snake_case_ : str = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} snake_case_ : Dict = get_size_dict(lowercase__ , param_name="""crop_size""" ) snake_case_ : Union[str, Any] = do_resize snake_case_ : List[str] = size snake_case_ : str = crop_pct snake_case_ : str = resample snake_case_ : Optional[Any] = do_center_crop snake_case_ : Dict = crop_size snake_case_ : int = do_rescale snake_case_ : Optional[int] = rescale_factor snake_case_ : str = do_normalize snake_case_ : str = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN snake_case_ : List[str] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = None , **lowercase__ , ): snake_case_ : Tuple = get_size_dict(lowercase__ , default_to_square=lowercase__ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f'size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) if crop_pct is not None: if "shortest_edge" in size: snake_case_ : Optional[int] = int(size["""shortest_edge"""] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: snake_case_ : Dict = int(size["""height"""] / crop_pct ) else: snake_case_ : List[str] = (int(size["""height"""] / crop_pct ), int(size["""width"""] / crop_pct )) else: raise ValueError("""Invalid size for resize: {}""".format(lowercase__ ) ) snake_case_ : List[Any] = get_resize_output_image_size(lowercase__ , size=lowercase__ , default_to_square=lowercase__ ) else: if "shortest_edge" in size: snake_case_ : Optional[int] = get_resize_output_image_size(lowercase__ , size=size["""shortest_edge"""] , default_to_square=lowercase__ ) elif "height" in size and "width" in size: snake_case_ : int = (size["""height"""], size["""width"""]) else: raise ValueError("""Invalid size for resize: {}""".format(lowercase__ ) ) return resize(lowercase__ , size=lowercase__ , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): snake_case_ : int = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(f'size must contain \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(lowercase__ , size=(size["""height"""], size["""width"""]) , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return normalize(lowercase__ , mean=lowercase__ , std=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ): snake_case_ : str = do_resize if do_resize is not None else self.do_resize snake_case_ : Any = crop_pct if crop_pct is not None else self.crop_pct snake_case_ : List[Any] = resample if resample is not None else self.resample snake_case_ : str = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : str = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : str = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : List[Any] = image_mean if image_mean is not None else self.image_mean snake_case_ : int = image_std if image_std is not None else self.image_std snake_case_ : List[Any] = size if size is not None else self.size snake_case_ : Optional[Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) snake_case_ : List[Any] = crop_size if crop_size is not None else self.crop_size snake_case_ : int = get_size_dict(lowercase__ , param_name="""crop_size""" ) snake_case_ : List[str] = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_pct is None: raise ValueError("""Crop_pct must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case_ : int = [to_numpy_array(lowercase__ ) for image in images] if do_resize: snake_case_ : str = [self.resize(image=lowercase__ , size=lowercase__ , crop_pct=lowercase__ , resample=lowercase__ ) for image in images] if do_center_crop: snake_case_ : Optional[int] = [self.center_crop(image=lowercase__ , size=lowercase__ ) for image in images] if do_rescale: snake_case_ : List[Any] = [self.rescale(image=lowercase__ , scale=lowercase__ ) for image in images] if do_normalize: snake_case_ : Optional[Any] = [self.normalize(image=lowercase__ , mean=lowercase__ , std=lowercase__ ) for image in images] snake_case_ : List[Any] = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] snake_case_ : Dict = {"""pixel_values""": images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
48
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : str = 'sew-d' def __init__(self , lowercase__=32 , lowercase__=7_68 , lowercase__=12 , lowercase__=12 , lowercase__=30_72 , lowercase__=2 , lowercase__=5_12 , lowercase__=2_56 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.02 , lowercase__=1e-7 , lowercase__=1e-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(64, 1_28, 1_28, 1_28, 1_28, 2_56, 2_56, 2_56, 2_56, 5_12, 5_12, 5_12, 5_12) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=1_28 , lowercase__=16 , lowercase__=True , lowercase__=0.05 , lowercase__=10 , lowercase__=2 , lowercase__=0.0 , lowercase__=10 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=2_56 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ): super().__init__(**UpperCAmelCase__ , pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ ) snake_case_ : Dict = hidden_size snake_case_ : List[str] = feat_extract_norm snake_case_ : List[str] = feat_extract_activation snake_case_ : int = list(UpperCAmelCase__ ) snake_case_ : Optional[Any] = list(UpperCAmelCase__ ) snake_case_ : Any = list(UpperCAmelCase__ ) snake_case_ : Union[str, Any] = conv_bias snake_case_ : Dict = num_conv_pos_embeddings snake_case_ : List[str] = num_conv_pos_embedding_groups snake_case_ : Any = len(self.conv_dim ) snake_case_ : Optional[int] = num_hidden_layers snake_case_ : Dict = intermediate_size snake_case_ : List[str] = squeeze_factor snake_case_ : Optional[Any] = max_position_embeddings snake_case_ : str = position_buckets snake_case_ : str = share_att_key snake_case_ : Optional[int] = relative_attention snake_case_ : Dict = norm_rel_ebd snake_case_ : str = list(UpperCAmelCase__ ) snake_case_ : Optional[int] = hidden_act snake_case_ : Union[str, Any] = num_attention_heads snake_case_ : str = hidden_dropout snake_case_ : Optional[int] = attention_dropout snake_case_ : Any = activation_dropout snake_case_ : Optional[Any] = feat_proj_dropout snake_case_ : List[Any] = final_dropout snake_case_ : Any = layer_norm_eps snake_case_ : Optional[int] = feature_layer_norm_eps snake_case_ : str = initializer_range snake_case_ : Tuple = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" f'but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)' f'= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case_ : List[str] = apply_spec_augment snake_case_ : Optional[int] = mask_time_prob snake_case_ : Union[str, Any] = mask_time_length snake_case_ : List[Any] = mask_time_min_masks snake_case_ : Dict = mask_feature_prob snake_case_ : Optional[Any] = mask_feature_length snake_case_ : int = mask_feature_min_masks # ctc loss snake_case_ : Optional[Any] = ctc_loss_reduction snake_case_ : int = ctc_zero_infinity # sequence classification snake_case_ : str = use_weighted_layer_sum snake_case_ : List[Any] = classifier_proj_size @property def __UpperCamelCase (self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
717
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: a_ = None a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} a_ = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } a_ = { '''facebook/mbart-large-en-ro''': 1024, '''facebook/mbart-large-cc25''': 1024, } # fmt: off a_ = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Dict = VOCAB_FILES_NAMES _A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _A : str = ["""input_ids""", """attention_mask"""] _A : Tuple = MBartTokenizer _A : List[int] = [] _A : List[int] = [] def __init__(self , lowercase__=None , lowercase__=None , lowercase__="<s>" , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<mask>" , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ , ): # Mask token behave like a normal word, i.e. include the space before it snake_case_ : int = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token super().__init__( vocab_file=lowercase__ , tokenizer_file=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , unk_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , src_lang=lowercase__ , tgt_lang=lowercase__ , additional_special_tokens=lowercase__ , **lowercase__ , ) snake_case_ : Dict = vocab_file snake_case_ : Optional[int] = False if not self.vocab_file else True snake_case_ : Optional[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) snake_case_ : Any = { lang_code: self.convert_tokens_to_ids(lowercase__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } snake_case_ : Tuple = src_lang if src_lang is not None else """en_XX""" snake_case_ : Tuple = self.convert_tokens_to_ids(self._src_lang ) snake_case_ : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __UpperCamelCase (self ): return self._src_lang @src_lang.setter def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): snake_case_ : List[Any] = [self.sep_token_id] snake_case_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , **lowercase__ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) snake_case_ : int = src_lang snake_case_ : List[str] = self(lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , **lowercase__ ) snake_case_ : List[str] = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Union[str, Any] = tgt_lang_id return inputs def __UpperCamelCase (self , lowercase__ , lowercase__ = "en_XX" , lowercase__ = None , lowercase__ = "ro_RO" , **lowercase__ , ): snake_case_ : List[str] = src_lang snake_case_ : int = tgt_lang return super().prepare_seqaseq_batch(lowercase__ , lowercase__ , **lowercase__ ) def __UpperCamelCase (self ): return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCamelCase (self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Tuple = [] snake_case_ : List[Any] = [self.eos_token_id, self.cur_lang_code] snake_case_ : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Optional[int] = [] snake_case_ : Optional[Any] = [self.eos_token_id, self.cur_lang_code] snake_case_ : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ : int = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowercase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory.' ) return snake_case_ : List[str] = os.path.join( lowercase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ): copyfile(self.vocab_file , lowercase__ ) return (out_vocab_file,)
48
0
"""simple docstring""" from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
718
"""simple docstring""" import argparse import hashlib # hashlib is only used inside the Test class import struct class __lowercase : """simple docstring""" def __init__(self , lowercase__ ): snake_case_ : Union[str, Any] = data snake_case_ : List[str] = [0X6_7_4_5_2_3_0_1, 0Xe_f_c_d_a_b_8_9, 0X9_8_b_a_d_c_f_e, 0X1_0_3_2_5_4_7_6, 0Xc_3_d_2_e_1_f_0] @staticmethod def __UpperCamelCase (lowercase__ , lowercase__ ): return ((n << b) | (n >> (32 - b))) & 0Xf_f_f_f_f_f_f_f def __UpperCamelCase (self ): snake_case_ : Any = B"""\x80""" + B"""\x00""" * (63 - (len(self.data ) + 8) % 64) snake_case_ : Tuple = self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def __UpperCamelCase (self ): return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = list(struct.unpack(""">16L""" , lowercase__ ) ) + [0] * 64 for i in range(16 , 80 ): snake_case_ : Dict = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def __UpperCamelCase (self ): snake_case_ : List[Any] = self.padding() snake_case_ : Any = self.split_blocks() for block in self.blocks: snake_case_ : Any = self.expand_block(lowercase__ ) snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = self.h for i in range(0 , 80 ): if 0 <= i < 20: snake_case_ : Optional[Any] = (b & c) | ((~b) & d) snake_case_ : List[str] = 0X5_a_8_2_7_9_9_9 elif 20 <= i < 40: snake_case_ : Union[str, Any] = b ^ c ^ d snake_case_ : Tuple = 0X6_e_d_9_e_b_a_1 elif 40 <= i < 60: snake_case_ : str = (b & c) | (b & d) | (c & d) snake_case_ : List[str] = 0X8_f_1_b_b_c_d_c elif 60 <= i < 80: snake_case_ : Tuple = b ^ c ^ d snake_case_ : str = 0Xc_a_6_2_c_1_d_6 snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Optional[Any] = ( self.rotate(lowercase__ , 5 ) + f + e + k + expanded_block[i] & 0Xf_f_f_f_f_f_f_f, a, self.rotate(lowercase__ , 30 ), c, d, ) snake_case_ : Any = ( self.h[0] + a & 0Xf_f_f_f_f_f_f_f, self.h[1] + b & 0Xf_f_f_f_f_f_f_f, self.h[2] + c & 0Xf_f_f_f_f_f_f_f, self.h[3] + d & 0Xf_f_f_f_f_f_f_f, self.h[4] + e & 0Xf_f_f_f_f_f_f_f, ) return ("{:08x}" * 5).format(*self.h ) def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Union[str, Any] = b"""Test String""" assert SHAaHash(SCREAMING_SNAKE_CASE__ ).final_hash() == hashlib.shaa(SCREAMING_SNAKE_CASE__ ).hexdigest() # noqa: S324 def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : int = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument("""--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) snake_case_ : Optional[int] = parser.parse_args() snake_case_ : Optional[int] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: snake_case_ : List[str] = f.read() else: snake_case_ : Dict = bytes(SCREAMING_SNAKE_CASE__ , """utf-8""" ) print(SHAaHash(SCREAMING_SNAKE_CASE__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
48
0
"""simple docstring""" import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : str = torch.exp(__a ) snake_case_ : List[Any] = torch.sum(__a , dim=1 ) # sum of exp(x_i) snake_case_ : int = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(__a ) - B / A class __lowercase ( nn.Module): """simple docstring""" def __init__(self , lowercase__ ): super().__init__() snake_case_ : List[Any] = config.output_attentions snake_case_ : Optional[Any] = config.output_hidden_states snake_case_ : Union[str, Any] = nn.ModuleList([BertLayer(SCREAMING_SNAKE_CASE_ ) for _ in range(config.num_hidden_layers )] ) snake_case_ : List[str] = nn.ModuleList([BertHighway(SCREAMING_SNAKE_CASE_ ) for _ in range(config.num_hidden_layers )] ) snake_case_ : Tuple = [-1 for _ in range(config.num_hidden_layers )] def __UpperCamelCase (self , lowercase__ ): if (type(SCREAMING_SNAKE_CASE_ ) is float) or (type(SCREAMING_SNAKE_CASE_ ) is int): for i in range(len(self.early_exit_entropy ) ): snake_case_ : List[str] = x else: snake_case_ : Optional[int] = x def __UpperCamelCase (self , lowercase__ ): snake_case_ : List[Any] = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def __UpperCamelCase (self , lowercase__ , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , ): snake_case_ : Optional[int] = () snake_case_ : List[str] = () snake_case_ : str = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: snake_case_ : Tuple = all_hidden_states + (hidden_states,) snake_case_ : Tuple = layer_module( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , head_mask[i] , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) snake_case_ : List[Any] = layer_outputs[0] if self.output_attentions: snake_case_ : Union[str, Any] = all_attentions + (layer_outputs[1],) snake_case_ : str = (hidden_states,) if self.output_hidden_states: snake_case_ : Optional[Any] = current_outputs + (all_hidden_states,) if self.output_attentions: snake_case_ : Any = current_outputs + (all_attentions,) snake_case_ : Tuple = self.highway[i](SCREAMING_SNAKE_CASE_ ) # logits, pooled_output if not self.training: snake_case_ : List[str] = highway_exit[0] snake_case_ : str = entropy(SCREAMING_SNAKE_CASE_ ) snake_case_ : Any = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy snake_case_ : List[Any] = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: snake_case_ : str = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(SCREAMING_SNAKE_CASE_ , i + 1 ) else: snake_case_ : str = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: snake_case_ : List[Any] = all_hidden_states + (hidden_states,) snake_case_ : str = (hidden_states,) if self.output_hidden_states: snake_case_ : Optional[Any] = outputs + (all_hidden_states,) if self.output_attentions: snake_case_ : Optional[int] = outputs + (all_attentions,) snake_case_ : Optional[int] = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( """The Bert Model transformer with early exiting (DeeBERT). """ , __lowerCamelCase , ) class __lowercase ( __lowerCamelCase): """simple docstring""" def __init__(self , lowercase__ ): super().__init__(SCREAMING_SNAKE_CASE_ ) snake_case_ : List[str] = config snake_case_ : Optional[Any] = BertEmbeddings(SCREAMING_SNAKE_CASE_ ) snake_case_ : Any = DeeBertEncoder(SCREAMING_SNAKE_CASE_ ) snake_case_ : Dict = BertPooler(SCREAMING_SNAKE_CASE_ ) self.init_weights() def __UpperCamelCase (self ): self.encoder.init_highway_pooler(self.pooler ) def __UpperCamelCase (self ): return self.embeddings.word_embeddings def __UpperCamelCase (self , lowercase__ ): snake_case_ : Optional[Any] = value def __UpperCamelCase (self , lowercase__ ): for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(SCREAMING_SNAKE_CASE_ ) @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE_ ) def __UpperCamelCase (self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , ): if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""" ) elif input_ids is not None: snake_case_ : int = input_ids.size() elif inputs_embeds is not None: snake_case_ : List[Any] = inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""" ) snake_case_ : Union[str, Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: snake_case_ : List[str] = torch.ones(SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ ) if encoder_attention_mask is None: snake_case_ : Tuple = torch.ones(SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ ) if token_type_ids is None: snake_case_ : Any = torch.zeros(SCREAMING_SNAKE_CASE_ , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. snake_case_ : List[str] = self.get_extended_attention_mask(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: snake_case_ : Optional[Any] = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: snake_case_ : Optional[int] = encoder_attention_mask[:, None, None, :] snake_case_ : List[str] = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility snake_case_ : Tuple = (1.0 - encoder_extended_attention_mask) * -1_00_00.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] snake_case_ : Union[str, Any] = self.get_head_mask(SCREAMING_SNAKE_CASE_ , self.config.num_hidden_layers ) snake_case_ : Dict = self.embeddings( input_ids=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , inputs_embeds=SCREAMING_SNAKE_CASE_ ) snake_case_ : Optional[int] = self.encoder( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , head_mask=SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , encoder_attention_mask=SCREAMING_SNAKE_CASE_ , ) snake_case_ : Tuple = encoder_outputs[0] snake_case_ : str = self.pooler(SCREAMING_SNAKE_CASE_ ) snake_case_ : int = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class __lowercase ( __lowerCamelCase): """simple docstring""" def __init__(self , lowercase__ , lowercase__ ): snake_case_ : Optional[Any] = message snake_case_ : str = exit_layer # start from 1! class __lowercase ( nn.Module): """simple docstring""" def __init__(self , lowercase__ ): super().__init__() snake_case_ : Any = BertPooler(SCREAMING_SNAKE_CASE_ ) snake_case_ : List[str] = nn.Dropout(config.hidden_dropout_prob ) snake_case_ : List[Any] = nn.Linear(config.hidden_size , config.num_labels ) def __UpperCamelCase (self , lowercase__ ): # Pooler snake_case_ : int = encoder_outputs[0] snake_case_ : Optional[int] = self.pooler(SCREAMING_SNAKE_CASE_ ) # "return" pooler_output # BertModel snake_case_ : str = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification snake_case_ : str = bmodel_output[1] snake_case_ : Tuple = self.dropout(SCREAMING_SNAKE_CASE_ ) snake_case_ : Optional[Any] = self.classifier(SCREAMING_SNAKE_CASE_ ) return logits, pooled_output @add_start_docstrings( """Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. """ , __lowerCamelCase , ) class __lowercase ( __lowerCamelCase): """simple docstring""" def __init__(self , lowercase__ ): super().__init__(SCREAMING_SNAKE_CASE_ ) snake_case_ : Union[str, Any] = config.num_labels snake_case_ : Any = config.num_hidden_layers snake_case_ : Optional[Any] = DeeBertModel(SCREAMING_SNAKE_CASE_ ) snake_case_ : Any = nn.Dropout(config.hidden_dropout_prob ) snake_case_ : Optional[int] = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE_ ) def __UpperCamelCase (self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=-1 , lowercase__=False , ): snake_case_ : Optional[Any] = self.num_layers try: snake_case_ : Union[str, Any] = self.bert( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , head_mask=SCREAMING_SNAKE_CASE_ , inputs_embeds=SCREAMING_SNAKE_CASE_ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits snake_case_ : str = outputs[1] snake_case_ : Dict = self.dropout(SCREAMING_SNAKE_CASE_ ) snake_case_ : Union[str, Any] = self.classifier(SCREAMING_SNAKE_CASE_ ) snake_case_ : List[str] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: snake_case_ : int = e.message snake_case_ : List[Any] = e.exit_layer snake_case_ : Tuple = outputs[0] if not self.training: snake_case_ : List[str] = entropy(SCREAMING_SNAKE_CASE_ ) snake_case_ : Dict = [] snake_case_ : Union[str, Any] = [] if labels is not None: if self.num_labels == 1: # We are doing regression snake_case_ : Union[str, Any] = MSELoss() snake_case_ : Any = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: snake_case_ : Optional[Any] = CrossEntropyLoss() snake_case_ : Optional[Any] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits snake_case_ : int = [] for highway_exit in outputs[-1]: snake_case_ : Optional[Any] = highway_exit[0] if not self.training: highway_logits_all.append(SCREAMING_SNAKE_CASE_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression snake_case_ : Optional[Any] = MSELoss() snake_case_ : str = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: snake_case_ : Union[str, Any] = CrossEntropyLoss() snake_case_ : Optional[int] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(SCREAMING_SNAKE_CASE_ ) if train_highway: snake_case_ : Tuple = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: snake_case_ : Tuple = (loss,) + outputs if not self.training: snake_case_ : List[Any] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: snake_case_ : int = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
719
"""simple docstring""" from manim import * class __lowercase ( _UpperCAmelCase): """simple docstring""" def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = Rectangle(height=0.5 , width=0.5 ) snake_case_ : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) snake_case_ : Optional[Any] = [mem.copy() for i in range(6 )] snake_case_ : str = [mem.copy() for i in range(6 )] snake_case_ : str = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : Any = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[str] = VGroup(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[Any] = Text("""CPU""" , font_size=24 ) snake_case_ : Tuple = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowercase__ ) snake_case_ : List[Any] = [mem.copy() for i in range(4 )] snake_case_ : Tuple = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[str] = Text("""GPU""" , font_size=24 ) snake_case_ : Any = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) gpu.move_to([-1, -1, 0] ) self.add(lowercase__ ) snake_case_ : Optional[Any] = [mem.copy() for i in range(6 )] snake_case_ : List[Any] = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : Dict = Text("""Model""" , font_size=24 ) snake_case_ : int = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) model.move_to([3, -1.0, 0] ) self.add(lowercase__ ) snake_case_ : Dict = [] for i, rect in enumerate(lowercase__ ): rect.set_stroke(lowercase__ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) snake_case_ : List[str] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowercase__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowercase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase__ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase__ , buff=0.0 ) self.add(lowercase__ ) cpu_targs.append(lowercase__ ) snake_case_ : List[str] = [mem.copy() for i in range(6 )] snake_case_ : List[str] = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : str = Text("""Loaded Checkpoint""" , font_size=24 ) snake_case_ : Any = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , aligned_edge=lowercase__ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) snake_case_ : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) snake_case_ : Union[str, Any] = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowercase__ , lowercase__ ) snake_case_ : List[Any] = MarkupText( f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(lowercase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) snake_case_ : List[Any] = MarkupText( f'Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowercase__ ) , Write(lowercase__ ) ) self.play(Write(lowercase__ , run_time=1 ) , Create(lowercase__ , run_time=1 ) ) snake_case_ : Optional[int] = [] snake_case_ : List[str] = [] for i, rect in enumerate(lowercase__ ): snake_case_ : Optional[Any] = fill.copy().set_fill(lowercase__ , opacity=0.7 ) target.move_to(lowercase__ ) first_animations.append(GrowFromCenter(lowercase__ , run_time=1 ) ) snake_case_ : List[Any] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(lowercase__ , run_time=1.5 ) ) self.play(*lowercase__ ) self.play(*lowercase__ ) self.wait()
48
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : List[str] = [1] snake_case_ : int = 0, 0, 0 snake_case_ : Optional[Any] = ugly_nums[ia] * 2 snake_case_ : int = ugly_nums[ia] * 3 snake_case_ : Any = ugly_nums[ia] * 5 for _ in range(1 , SCREAMING_SNAKE_CASE__ ): snake_case_ : Any = min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ugly_nums.append(SCREAMING_SNAKE_CASE__ ) if next_num == next_a: ia += 1 snake_case_ : Optional[int] = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 snake_case_ : str = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 snake_case_ : Optional[int] = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F'''{ugly_numbers(200) = }''')
720
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" snake_case_ : Union[str, Any] = 0 if start < end: snake_case_ : Union[str, Any] = randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = a[end] snake_case_ : Dict = a[pivot] snake_case_ : Any = temp snake_case_ , snake_case_ : Dict = _in_place_partition(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , p - 1 ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE__ , p + 1 , SCREAMING_SNAKE_CASE__ ) return count def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" snake_case_ : Tuple = 0 snake_case_ : List[Any] = randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : Dict = a[end] snake_case_ : List[Any] = a[pivot] snake_case_ : Optional[Any] = temp snake_case_ : List[str] = start - 1 for index in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value snake_case_ : Any = new_pivot_index + 1 snake_case_ : Tuple = a[new_pivot_index] snake_case_ : Optional[int] = a[index] snake_case_ : Tuple = temp snake_case_ : Union[str, Any] = a[new_pivot_index + 1] snake_case_ : Union[str, Any] = a[end] snake_case_ : Union[str, Any] = temp return new_pivot_index + 1, count a_ = TemporaryFile() a_ = 100 # 1000 elements are to be sorted a_ , a_ = 0, 1 # mean and standard deviation a_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array a_ = np.load(outfile) a_ = len(M) - 1 a_ = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
48
0
"""simple docstring""" from __future__ import annotations import queue class __lowercase : """simple docstring""" def __init__(self , lowercase__ ): snake_case_ : int = data snake_case_ : Tuple = None snake_case_ : Dict = None def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" print("""\n********Press N to stop entering at any point of time********\n""" ) snake_case_ : Dict = input("""Enter the value of the root node: """ ).strip().lower() snake_case_ : queue.Queue = queue.Queue() snake_case_ : str = TreeNode(int(SCREAMING_SNAKE_CASE__ ) ) q.put(SCREAMING_SNAKE_CASE__ ) while not q.empty(): snake_case_ : List[Any] = q.get() snake_case_ : Any = f'Enter the left node of {node_found.data}: ' snake_case_ : Dict = input(SCREAMING_SNAKE_CASE__ ).strip().lower() or '''n''' if check == "n": return tree_node snake_case_ : int = TreeNode(int(SCREAMING_SNAKE_CASE__ ) ) snake_case_ : List[str] = left_node q.put(SCREAMING_SNAKE_CASE__ ) snake_case_ : Union[str, Any] = f'Enter the right node of {node_found.data}: ' snake_case_ : str = input(SCREAMING_SNAKE_CASE__ ).strip().lower() or '''n''' if check == "n": return tree_node snake_case_ : List[Any] = TreeNode(int(SCREAMING_SNAKE_CASE__ ) ) snake_case_ : Dict = right_node q.put(SCREAMING_SNAKE_CASE__ ) raise def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : TreeNode ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or not node: return print(node.data , end=""",""" ) pre_order(node.left ) pre_order(node.right ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : TreeNode ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or not node: return in_order(node.left ) print(node.data , end=""",""" ) in_order(node.right ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : TreeNode ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=""",""" ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : TreeNode ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or not node: return snake_case_ : queue.Queue = queue.Queue() q.put(SCREAMING_SNAKE_CASE__ ) while not q.empty(): snake_case_ : Optional[int] = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : TreeNode ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or not node: return snake_case_ : queue.Queue = queue.Queue() q.put(SCREAMING_SNAKE_CASE__ ) while not q.empty(): snake_case_ : Dict = [] while not q.empty(): snake_case_ : Tuple = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : TreeNode ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or not node: return snake_case_ : list[TreeNode] = [] snake_case_ : Dict = node while n or stack: while n: # start from root node, find its left child print(n.data , end=""",""" ) stack.append(SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[int] = n.left # end of while means current node doesn't have left child snake_case_ : int = stack.pop() # start to traverse its right child snake_case_ : str = n.right def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : TreeNode ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or not node: return snake_case_ : list[TreeNode] = [] snake_case_ : List[str] = node while n or stack: while n: stack.append(SCREAMING_SNAKE_CASE__ ) snake_case_ : Dict = n.left snake_case_ : Union[str, Any] = stack.pop() print(n.data , end=""",""" ) snake_case_ : Tuple = n.right def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : TreeNode ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or not node: return snake_case_ : Union[str, Any] = [], [] snake_case_ : Union[str, Any] = node stacka.append(SCREAMING_SNAKE_CASE__ ) while stacka: # to find the reversed order of post order, store it in stack2 snake_case_ : List[Any] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(SCREAMING_SNAKE_CASE__ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=""",""" ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str = "" , SCREAMING_SNAKE_CASE__ : str=5_0 , SCREAMING_SNAKE_CASE__ : Dict="*" ): """simple docstring""" if not s: return "\n" + width * char snake_case_ : List[str] = divmod(width - len(SCREAMING_SNAKE_CASE__ ) - 2 , 2 ) return f'{left * char} {s} {(left + extra) * char}' if __name__ == "__main__": import doctest doctest.testmod() print(prompt('''Binary Tree Traversals''')) a_ = build_tree() print(prompt('''Pre Order Traversal''')) pre_order(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal''')) in_order(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal''')) post_order(node) print(prompt() + '''\n''') print(prompt('''Level Order Traversal''')) level_order(node) print(prompt() + '''\n''') print(prompt('''Actual Level Order Traversal''')) level_order_actual(node) print('''*''' * 50 + '''\n''') print(prompt('''Pre Order Traversal - Iteration Version''')) pre_order_iter(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal - Iteration Version''')) in_order_iter(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal - Iteration Version''')) post_order_iter(node) print(prompt())
721
"""simple docstring""" import random def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : bool = False ): """simple docstring""" snake_case_ : dict = {i: [] for i in range(SCREAMING_SNAKE_CASE__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(SCREAMING_SNAKE_CASE__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(i + 1 , SCREAMING_SNAKE_CASE__ ): if random.random() < probability: graph[i].append(SCREAMING_SNAKE_CASE__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(SCREAMING_SNAKE_CASE__ ) return graph def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" return { i: [j for j in range(SCREAMING_SNAKE_CASE__ ) if i != j] for i in range(SCREAMING_SNAKE_CASE__ ) } if __name__ == "__main__": import doctest doctest.testmod()
48
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''caidas/swin2sr-classicalsr-x2-64''': ( '''https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json''' ), } class __lowercase ( __UpperCAmelCase): """simple docstring""" _A : Optional[Any] = "swin2sr" _A : str = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__(self , lowercase__=64 , lowercase__=1 , lowercase__=3 , lowercase__=1_80 , lowercase__=[6, 6, 6, 6, 6, 6] , lowercase__=[6, 6, 6, 6, 6, 6] , lowercase__=8 , lowercase__=2.0 , lowercase__=True , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.1 , lowercase__="gelu" , lowercase__=False , lowercase__=0.02 , lowercase__=1e-5 , lowercase__=2 , lowercase__=1.0 , lowercase__="1conv" , lowercase__="pixelshuffle" , **lowercase__ , ): super().__init__(**_lowerCamelCase ) snake_case_ : Optional[Any] = image_size snake_case_ : Optional[int] = patch_size snake_case_ : Union[str, Any] = num_channels snake_case_ : List[str] = embed_dim snake_case_ : Tuple = depths snake_case_ : Any = len(_lowerCamelCase ) snake_case_ : Any = num_heads snake_case_ : Optional[int] = window_size snake_case_ : List[str] = mlp_ratio snake_case_ : Tuple = qkv_bias snake_case_ : List[Any] = hidden_dropout_prob snake_case_ : Union[str, Any] = attention_probs_dropout_prob snake_case_ : Any = drop_path_rate snake_case_ : List[str] = hidden_act snake_case_ : Optional[Any] = use_absolute_embeddings snake_case_ : Optional[int] = layer_norm_eps snake_case_ : Any = initializer_range snake_case_ : Union[str, Any] = upscale snake_case_ : Optional[int] = img_range snake_case_ : Optional[int] = resi_connection snake_case_ : List[str] = upsampler
700
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json''' ), } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """dpr""" def __init__(self , lowercase__=3_05_22 , lowercase__=7_68 , lowercase__=12 , lowercase__=12 , lowercase__=30_72 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_12 , lowercase__=2 , lowercase__=0.02 , lowercase__=1e-12 , lowercase__=0 , lowercase__="absolute" , lowercase__ = 0 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , **lowercase__ ) snake_case_ : List[Any] = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : Tuple = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : int = hidden_act snake_case_ : Dict = intermediate_size snake_case_ : int = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : str = max_position_embeddings snake_case_ : List[str] = type_vocab_size snake_case_ : List[str] = initializer_range snake_case_ : Optional[int] = layer_norm_eps snake_case_ : Union[str, Any] = projection_dim snake_case_ : str = position_embedding_type
48
0
"""simple docstring""" # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers a_ = '3' print('''Python version:''', sys.version) print('''transformers version:''', transformers.__version__) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) print('''NCCL version:''', torch.cuda.nccl.version()) except ImportError: print('''Torch version:''', None) try: import deepspeed print('''DeepSpeed version:''', deepspeed.__version__) except ImportError: print('''DeepSpeed version:''', None) try: import tensorflow as tf print('''TensorFlow version:''', tf.__version__) print('''TF GPUs available:''', bool(tf.config.list_physical_devices('''GPU'''))) print('''Number of TF GPUs available:''', len(tf.config.list_physical_devices('''GPU'''))) except ImportError: print('''TensorFlow version:''', None)
701
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm a_ = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex a_ = 10 a_ = 256 def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" if len(SCREAMING_SNAKE_CASE__ ) < MIN_NUM_TOKENS: return None snake_case_ : Union[str, Any] = MinHash(num_perm=SCREAMING_SNAKE_CASE__ ) for token in set(SCREAMING_SNAKE_CASE__ ): min_hash.update(token.encode() ) return min_hash def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" return {t for t in NON_ALPHA.split(SCREAMING_SNAKE_CASE__ ) if len(t.strip() ) > 0} class __lowercase : """simple docstring""" def __init__(self , *, lowercase__ = 0.85 , ): snake_case_ : Tuple = duplication_jaccard_threshold snake_case_ : Optional[Any] = NUM_PERM snake_case_ : Tuple = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) snake_case_ : List[Any] = defaultdict(lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : int = self._index.query(lowercase__ ) if code_key in self._index.keys: print(f'Duplicate key {code_key}' ) return self._index.insert(lowercase__ , lowercase__ ) if len(lowercase__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowercase__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(lowercase__ ) def __UpperCamelCase (self ): snake_case_ : str = [] for base, duplicates in self._duplicate_clusters.items(): snake_case_ : Optional[Any] = [base] + list(lowercase__ ) # reformat the cluster to be a list of dict snake_case_ : Any = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(lowercase__ ) return duplicate_clusters def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = self.get_duplicate_clusters() with open(lowercase__ , """w""" ) as f: json.dump(lowercase__ , lowercase__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ , snake_case_ : str = element snake_case_ : Tuple = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] ): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(SCREAMING_SNAKE_CASE__ , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ): if data is not None: yield data def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] , SCREAMING_SNAKE_CASE__ : float ): """simple docstring""" snake_case_ : int = DuplicationIndex(duplication_jaccard_threshold=SCREAMING_SNAKE_CASE__ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(SCREAMING_SNAKE_CASE__ ) ) , max_queue_size=1_0_0 ) ): di.add(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : int = get_tokens(SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = get_tokens(SCREAMING_SNAKE_CASE__ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) a_ = None def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Optional[Any] = [] for elementa in cluster: snake_case_ : Union[str, Any] = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: snake_case_ : Any = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) >= jaccard_threshold: elementa["copies"] += 1 break else: snake_case_ : Union[str, Any] = 1 extremes.append(SCREAMING_SNAKE_CASE__ ) return extremes def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" global _shared_dataset snake_case_ : str = dataset snake_case_ : int = [] snake_case_ : Optional[int] = partial(_find_cluster_extremes_shared , jaccard_threshold=SCREAMING_SNAKE_CASE__ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) , total=len(SCREAMING_SNAKE_CASE__ ) , ): extremes_list.append(SCREAMING_SNAKE_CASE__ ) return extremes_list def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] , SCREAMING_SNAKE_CASE__ : float = 0.85 ): """simple docstring""" snake_case_ : List[str] = make_duplicate_clusters(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : str = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} snake_case_ : str = {} snake_case_ : Dict = find_extremes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for extremes in extremes_clusters: for element in extremes: snake_case_ : int = element snake_case_ : Optional[int] = duplicate_indices - set(extreme_dict.keys() ) snake_case_ : List[Any] = dataset.filter(lambda SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : idx not in remove_indices , with_indices=SCREAMING_SNAKE_CASE__ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: snake_case_ : List[Any] = element["""base_index"""] in extreme_dict if element["is_extreme"]: snake_case_ : str = extreme_dict[element["""base_index"""]]["""copies"""] print(f'Original dataset size: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Number of duplicate clusters: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Files in duplicate cluster: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Unique files in duplicate cluster: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Filtered dataset size: {len(SCREAMING_SNAKE_CASE__ )}' ) return ds_filter, duplicate_clusters
48
0
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : List[Any] = """https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg""" snake_case_ : Any = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert("""RGB""" ) return image def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" snake_case_ : str = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'visual_encoder.blocks.{i}.norm1.weight', f'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm1.bias', f'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.weight', f'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.bias', f'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.qkv.weight', f'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.weight', f'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.bias', f'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.weight', f'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.bias', f'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.weight', f'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.bias', f'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.embeddings.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.embeddings.layernorm.bias""") ) # fmt: on return rename_keys def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" snake_case_ : Optional[int] = dct.pop(UpperCamelCase__ ) snake_case_ : List[Any] = val def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases snake_case_ : List[Any] = state_dict.pop(f'visual_encoder.blocks.{i}.attn.q_bias' ) snake_case_ : List[Any] = state_dict.pop(f'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict snake_case_ : int = torch.cat((q_bias, torch.zeros_like(UpperCamelCase__ , requires_grad=UpperCamelCase__ ), v_bias) ) snake_case_ : Dict = qkv_bias def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" snake_case_ : List[str] = 3_6_4 if """coco""" in model_name else 2_2_4 snake_case_ : Union[str, Any] = InstructBlipVisionConfig(image_size=UpperCamelCase__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: snake_case_ : Optional[int] = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: snake_case_ : List[Any] = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: snake_case_ : Dict = LlamaConfig.from_pretrained("""decapoda-research/llama-7b-hf""" , vocab_size=3_2_0_0_1 ).to_dict() elif "vicuna-13b" in model_name: snake_case_ : Union[str, Any] = LlamaConfig.from_pretrained("""decapoda-research/llama-13b-hf""" , vocab_size=3_2_0_0_1 ).to_dict() else: raise ValueError("""Model name not supported""" ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 snake_case_ : Optional[int] = InstructBlipQFormerConfig(vocab_size=3_0_5_2_3 ).to_dict() snake_case_ : Dict = InstructBlipConfig(vision_config=UpperCamelCase__ , text_config=UpperCamelCase__ , qformer_config=UpperCamelCase__ ) return config, image_size @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : List[Any]=False ): """simple docstring""" snake_case_ : Union[str, Any] = AutoTokenizer.from_pretrained("""bert-base-uncased""" , truncation_side="""left""" ) qformer_tokenizer.add_special_tokens({"""bos_token""": """[DEC]"""} ) if "t5" in model_name: snake_case_ : Union[str, Any] = TaTokenizerFast.from_pretrained("""google/flan-t5-xl""" , truncation_side="""left""" ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) snake_case_ : List[str] = LlamaTokenizerFast.from_pretrained( """huggyllama/llama-7b""" , truncation_side="""left""" , bos_token="""</s>""" , unk_token="""</s>""" ) tokenizer.add_special_tokens({"""pad_token""": """[PAD]"""} ) snake_case_ , snake_case_ : List[Any] = get_blipa_config(UpperCamelCase__ ) snake_case_ : List[Any] = InstructBlipForConditionalGeneration(UpperCamelCase__ ).eval() snake_case_ : Tuple = { """instructblip-vicuna-7b""": ("""blip2_vicuna_instruct""", """vicuna7b"""), """instructblip-vicuna-13b""": ("""blip2_vicuna_instruct""", """vicuna13b"""), """instructblip-flan-t5-xl""": ("""blip2_t5_instruct""", """flant5xl"""), """instructblip-flan-t5-xxl""": ("""blip2_t5_instruct""", """flant5xxl"""), } snake_case_ , snake_case_ : Any = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) snake_case_ : Union[str, Any] = """cuda:1""" if torch.cuda.is_available() else """cpu""" snake_case_ : int = """cuda:2""" if torch.cuda.is_available() else """cpu""" snake_case_ , snake_case_ , snake_case_ : List[Any] = load_model_and_preprocess( name=UpperCamelCase__ , model_type=UpperCamelCase__ , is_eval=UpperCamelCase__ , device=UpperCamelCase__ ) original_model.eval() print("""Done!""" ) # update state dict keys snake_case_ : Any = original_model.state_dict() snake_case_ : Any = create_rename_keys(UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): snake_case_ : Optional[int] = state_dict.pop(UpperCamelCase__ ) if key.startswith("""Qformer.bert""" ): snake_case_ : Dict = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: snake_case_ : Dict = key.replace("""self""" , """attention""" ) if "llm_proj" in key: snake_case_ : Optional[Any] = key.replace("""llm_proj""" , """language_projection""" ) if "t5_proj" in key: snake_case_ : Optional[int] = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""llm_model""" ): snake_case_ : List[str] = key.replace("""llm_model""" , """language_model""" ) if key.startswith("""t5""" ): snake_case_ : List[str] = key.replace("""t5""" , """language""" ) snake_case_ : Tuple = val # read in qv biases read_in_q_v_bias(UpperCamelCase__ , UpperCamelCase__ ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) snake_case_ : List[str] = load_demo_image() snake_case_ : int = """What is unusual about this image?""" # create processor snake_case_ : Union[str, Any] = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=UpperCamelCase__ , image_std=UpperCamelCase__ ) snake_case_ : int = InstructBlipProcessor( image_processor=UpperCamelCase__ , tokenizer=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ , ) snake_case_ : Any = processor(images=UpperCamelCase__ , text=UpperCamelCase__ , return_tensors="""pt""" ).to(UpperCamelCase__ ) # make sure processor creates exact same pixel values snake_case_ : List[str] = vis_processors["""eval"""](UpperCamelCase__ ).unsqueeze(0 ).to(UpperCamelCase__ ) snake_case_ : Optional[int] = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , UpperCamelCase__ ) original_model.to(UpperCamelCase__ ) hf_model.to(UpperCamelCase__ ) with torch.no_grad(): if "vicuna" in model_name: snake_case_ : Union[str, Any] = original_model({"""image""": original_pixel_values, """text_input""": [prompt]} ).logits snake_case_ : Optional[int] = hf_model(**UpperCamelCase__ ).logits else: snake_case_ : int = original_model( {"""image""": original_pixel_values, """text_input""": [prompt], """text_output""": ["""\n"""]} ).logits snake_case_ : str = tokenizer("""\n""" , return_tensors="""pt""" ).input_ids.to(UpperCamelCase__ ) snake_case_ : Optional[Any] = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -1_0_0 ) snake_case_ : List[Any] = hf_model(**UpperCamelCase__ , labels=UpperCamelCase__ ).logits print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape snake_case_ : List[str] = 1E-4 if """vicuna""" in model_name else 1E-5 assert torch.allclose(original_logits.to(logits.device ) , UpperCamelCase__ , atol=UpperCamelCase__ ) print("""Looks ok!""" ) print("""Generating with original model...""" ) snake_case_ : Any = original_model.generate({"""image""": original_pixel_values, """prompt""": prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print("""Generating with HF model...""" ) snake_case_ : str = hf_model.generate( **UpperCamelCase__ , do_sample=UpperCamelCase__ , num_beams=5 , max_length=2_5_6 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? snake_case_ : str = 2 print("""Original generation:""" , UpperCamelCase__ ) snake_case_ : Union[str, Any] = processor.batch_decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) snake_case_ : List[Any] = [text.strip() for text in output_text] print("""HF generation:""" , UpperCamelCase__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(UpperCamelCase__ ) hf_model.save_pretrained(UpperCamelCase__ ) if push_to_hub: processor.push_to_hub(f'Salesforce/{model_name}' ) hf_model.push_to_hub(f'Salesforce/{model_name}' ) if __name__ == "__main__": a_ = argparse.ArgumentParser() a_ = [ "instructblip-vicuna-7b", "instructblip-vicuna-13b", "instructblip-flan-t5-xl", "instructblip-flan-t5-xxl", ] parser.add_argument( '''--model_name''', default='''instructblip-flan-t5-xl''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) a_ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
702
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) a_ = logging.getLogger(__name__) if __name__ == "__main__": a_ = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=30522, type=int) a_ = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, '''rb''') as fp: a_ = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') a_ = Counter() for tk_ids in data: counter.update(tk_ids) a_ = [0] * args.vocab_size for k, v in counter.items(): a_ = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
48
0
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm a_ = logging.get_logger(__name__) @dataclass class __lowercase ( snake_case__): """simple docstring""" _A : Optional[int] = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__(self , **lowercase__ ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: snake_case_ : Optional[Any] = deprecated_arg[3:] setattr(self , lowercase_ , not kwargs.pop(lowercase_ ) ) logger.warning( f'{deprecated_arg} is depreciated. Please use --no_{positive_arg} or' f' {positive_arg}={kwargs[positive_arg]}' ) snake_case_ : List[str] = kwargs.pop("""torchscript""" , self.torchscript ) snake_case_ : List[str] = kwargs.pop("""torch_xla_tpu_print_metrics""" , self.torch_xla_tpu_print_metrics ) snake_case_ : Optional[int] = kwargs.pop("""fp16_opt_level""" , self.fpaa_opt_level ) super().__init__(**lowercase_ ) _A : int = field(default=snake_case__ , metadata={"""help""": """Trace the models using torchscript"""}) _A : Union[str, Any] = field(default=snake_case__ , metadata={"""help""": """Print Xla/PyTorch tpu metrics"""}) _A : List[str] = field( default="""O1""" , metadata={ """help""": ( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. """ """See details at https://nvidia.github.io/apex/amp.html""" ) } , ) @cached_property def __UpperCamelCase (self ): requires_backends(self , ["""torch"""] ) logger.info("""PyTorch: setting up devices""" ) if not self.cuda: snake_case_ : int = torch.device("""cpu""" ) snake_case_ : Union[str, Any] = 0 elif is_torch_tpu_available(): snake_case_ : List[str] = xm.xla_device() snake_case_ : Tuple = 0 else: snake_case_ : Tuple = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) snake_case_ : Optional[int] = torch.cuda.device_count() return device, n_gpu @property def __UpperCamelCase (self ): return is_torch_tpu_available() and self.tpu @property def __UpperCamelCase (self ): requires_backends(self , ["""torch"""] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def __UpperCamelCase (self ): requires_backends(self , ["""torch"""] ) return self._setup_devices[0] @property def __UpperCamelCase (self ): requires_backends(self , ["""torch"""] ) return self._setup_devices[1] @property def __UpperCamelCase (self ): return self.n_gpu > 0
703
"""simple docstring""" import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" snake_case_ : Optional[Any] = tmp_path / """cache""" snake_case_ : Optional[int] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : Tuple = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" snake_case_ : List[Any] = tmp_path / """cache""" snake_case_ : int = {"""text""": """string"""} snake_case_ : Any = features.copy() if features else default_expected_features snake_case_ : List[Any] = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : Dict = TextDatasetReader(SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : Union[str, Any] = tmp_path / """cache""" snake_case_ : Optional[Any] = {"""text""": """string"""} snake_case_ : Optional[int] = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , split=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" if issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : List[str] = text_path elif issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : str = [text_path] snake_case_ : List[str] = tmp_path / """cache""" snake_case_ : List[str] = {"""text""": """string"""} snake_case_ : Dict = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str]=("train",) ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for split in splits: snake_case_ : Dict = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" snake_case_ : int = tmp_path / """cache""" snake_case_ : List[str] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : Optional[Any] = TextDatasetReader({"""train""": text_path} , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Tuple = tmp_path / """cache""" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" snake_case_ : List[str] = {"""text""": """string"""} snake_case_ : int = features.copy() if features else default_expected_features snake_case_ : Tuple = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : str = TextDatasetReader({"""train""": text_path} , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" if split: snake_case_ : Union[str, Any] = {split: text_path} else: snake_case_ : Union[str, Any] = """train""" snake_case_ : int = {"""train""": text_path, """test""": text_path} snake_case_ : List[Any] = tmp_path / """cache""" snake_case_ : Tuple = {"""text""": """string"""} snake_case_ : int = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
48
0
"""simple docstring""" import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = (EulerDiscreteScheduler,) _A : str = 10 def __UpperCamelCase (self , **lowercase__ ): snake_case_ : int = { """num_train_timesteps""": 11_00, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**A_ ) return config def __UpperCamelCase (self ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=A_ ) def __UpperCamelCase (self ): for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=A_ , beta_end=A_ ) def __UpperCamelCase (self ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=A_ ) def __UpperCamelCase (self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A_ ) def __UpperCamelCase (self ): snake_case_ : Dict = self.scheduler_classes[0] snake_case_ : Tuple = self.get_scheduler_config() snake_case_ : Optional[int] = scheduler_class(**A_ ) scheduler.set_timesteps(self.num_inference_steps ) snake_case_ : Optional[Any] = torch.manual_seed(0 ) snake_case_ : Union[str, Any] = self.dummy_model() snake_case_ : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case_ : int = sample.to(A_ ) for i, t in enumerate(scheduler.timesteps ): snake_case_ : Any = scheduler.scale_model_input(A_ , A_ ) snake_case_ : Optional[Any] = model(A_ , A_ ) snake_case_ : List[str] = scheduler.step(A_ , A_ , A_ , generator=A_ ) snake_case_ : Union[str, Any] = output.prev_sample snake_case_ : Union[str, Any] = torch.sum(torch.abs(A_ ) ) snake_case_ : str = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def __UpperCamelCase (self ): snake_case_ : List[Any] = self.scheduler_classes[0] snake_case_ : Union[str, Any] = self.get_scheduler_config(prediction_type="""v_prediction""" ) snake_case_ : List[str] = scheduler_class(**A_ ) scheduler.set_timesteps(self.num_inference_steps ) snake_case_ : Optional[Any] = torch.manual_seed(0 ) snake_case_ : List[str] = self.dummy_model() snake_case_ : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case_ : Optional[int] = sample.to(A_ ) for i, t in enumerate(scheduler.timesteps ): snake_case_ : Optional[Any] = scheduler.scale_model_input(A_ , A_ ) snake_case_ : int = model(A_ , A_ ) snake_case_ : Optional[int] = scheduler.step(A_ , A_ , A_ , generator=A_ ) snake_case_ : str = output.prev_sample snake_case_ : str = torch.sum(torch.abs(A_ ) ) snake_case_ : Union[str, Any] = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 0.0002 ) < 1e-2 assert abs(result_mean.item() - 2.2_676e-06 ) < 1e-3 def __UpperCamelCase (self ): snake_case_ : Optional[int] = self.scheduler_classes[0] snake_case_ : List[str] = self.get_scheduler_config() snake_case_ : Optional[Any] = scheduler_class(**A_ ) scheduler.set_timesteps(self.num_inference_steps , device=A_ ) snake_case_ : Union[str, Any] = torch.manual_seed(0 ) snake_case_ : str = self.dummy_model() snake_case_ : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() snake_case_ : Any = sample.to(A_ ) for t in scheduler.timesteps: snake_case_ : Dict = scheduler.scale_model_input(A_ , A_ ) snake_case_ : int = model(A_ , A_ ) snake_case_ : Union[str, Any] = scheduler.step(A_ , A_ , A_ , generator=A_ ) snake_case_ : str = output.prev_sample snake_case_ : List[str] = torch.sum(torch.abs(A_ ) ) snake_case_ : Optional[int] = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = self.scheduler_classes[0] snake_case_ : int = self.get_scheduler_config() snake_case_ : List[Any] = scheduler_class(**A_ , use_karras_sigmas=A_ ) scheduler.set_timesteps(self.num_inference_steps , device=A_ ) snake_case_ : int = torch.manual_seed(0 ) snake_case_ : Union[str, Any] = self.dummy_model() snake_case_ : int = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() snake_case_ : Optional[Any] = sample.to(A_ ) for t in scheduler.timesteps: snake_case_ : Union[str, Any] = scheduler.scale_model_input(A_ , A_ ) snake_case_ : Optional[Any] = model(A_ , A_ ) snake_case_ : Dict = scheduler.step(A_ , A_ , A_ , generator=A_ ) snake_case_ : int = output.prev_sample snake_case_ : Any = torch.sum(torch.abs(A_ ) ) snake_case_ : Tuple = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 1_24.52_29_94_99_51_17_19 ) < 1e-2 assert abs(result_mean.item() - 0.16213932633399963 ) < 1e-3
704
"""simple docstring""" from copy import deepcopy class __lowercase : """simple docstring""" def __init__(self , lowercase__ = None , lowercase__ = None ): if arr is None and size is not None: snake_case_ : str = size snake_case_ : Optional[Any] = [0] * size elif arr is not None: self.init(lowercase__ ) else: raise ValueError("""Either arr or size must be specified""" ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Optional[Any] = len(lowercase__ ) snake_case_ : int = deepcopy(lowercase__ ) for i in range(1 , self.size ): snake_case_ : Optional[Any] = self.next_(lowercase__ ) if j < self.size: self.tree[j] += self.tree[i] def __UpperCamelCase (self ): snake_case_ : Dict = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): snake_case_ : Optional[int] = self.next_(lowercase__ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def __UpperCamelCase (lowercase__ ): return index + (index & (-index)) @staticmethod def __UpperCamelCase (lowercase__ ): return index - (index & (-index)) def __UpperCamelCase (self , lowercase__ , lowercase__ ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value snake_case_ : Tuple = self.next_(lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): self.add(lowercase__ , value - self.get(lowercase__ ) ) def __UpperCamelCase (self , lowercase__ ): if right == 0: return 0 snake_case_ : List[str] = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] snake_case_ : Optional[int] = self.prev(lowercase__ ) return result def __UpperCamelCase (self , lowercase__ , lowercase__ ): return self.prefix(lowercase__ ) - self.prefix(lowercase__ ) def __UpperCamelCase (self , lowercase__ ): return self.query(lowercase__ , index + 1 ) def __UpperCamelCase (self , lowercase__ ): value -= self.tree[0] if value < 0: return -1 snake_case_ : Tuple = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 snake_case_ : Tuple = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
48
0
"""simple docstring""" from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : list[int] ): # This function is recursive """simple docstring""" snake_case_ : Any = len(_lowerCamelCase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else snake_case_ : str = array[0] snake_case_ : int = False snake_case_ : int = 1 snake_case_ : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: snake_case_ : Optional[Any] = True snake_case_ : Tuple = [element for element in array[i:] if element >= array[i]] snake_case_ : List[str] = longest_subsequence(_lowerCamelCase ) if len(_lowerCamelCase ) > len(_lowerCamelCase ): snake_case_ : Optional[Any] = temp_array else: i += 1 snake_case_ : Any = [element for element in array[1:] if element >= pivot] snake_case_ : str = [pivot, *longest_subsequence(_lowerCamelCase )] if len(_lowerCamelCase ) > len(_lowerCamelCase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
705
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : list ): """simple docstring""" snake_case_ : Optional[int] = len(SCREAMING_SNAKE_CASE__ ) for i in range(1 , SCREAMING_SNAKE_CASE__ ): snake_case_ : Tuple = collection[i] snake_case_ : Tuple = 0 snake_case_ : str = i - 1 while low <= high: snake_case_ : Optional[int] = (low + high) // 2 if val < collection[mid]: snake_case_ : List[str] = mid - 1 else: snake_case_ : str = mid + 1 for j in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , -1 ): snake_case_ : List[str] = collection[j - 1] snake_case_ : Any = val return collection if __name__ == "__main__": a_ = input('''Enter numbers separated by a comma:\n''').strip() a_ = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
48
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class __lowercase : """simple docstring""" def __init__(self , lowercase__ , ): snake_case_ : Tuple = parent snake_case_ : Tuple = 13 snake_case_ : List[str] = 7 snake_case_ : Optional[Any] = True snake_case_ : Tuple = True snake_case_ : Optional[Any] = True snake_case_ : Dict = 99 snake_case_ : str = 32 snake_case_ : List[str] = 2 snake_case_ : int = 4 snake_case_ : List[str] = 37 snake_case_ : Dict = """gelu""" snake_case_ : Any = 0.1 snake_case_ : Dict = 0.1 snake_case_ : Union[str, Any] = 5_12 snake_case_ : List[str] = 16 snake_case_ : List[str] = 2 snake_case_ : Dict = 0.02 snake_case_ : Dict = 3 snake_case_ : Any = 4 snake_case_ : Union[str, Any] = None def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Union[str, Any] = None if self.use_input_mask: snake_case_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : List[str] = None snake_case_ : int = None snake_case_ : Any = None if self.use_labels: snake_case_ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ : Any = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ : Union[str, Any] = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase (self ): ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) : Any = self.prepare_config_and_inputs() snake_case_ : List[str] = True snake_case_ : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : int = TFEsmModel(config=__UpperCamelCase ) snake_case_ : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask} snake_case_ : Any = model(__UpperCamelCase ) snake_case_ : Optional[Any] = [input_ids, input_mask] snake_case_ : Dict = model(__UpperCamelCase ) snake_case_ : Tuple = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): snake_case_ : List[Any] = True snake_case_ : Tuple = TFEsmModel(config=__UpperCamelCase ) snake_case_ : List[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """encoder_hidden_states""": encoder_hidden_states, """encoder_attention_mask""": encoder_attention_mask, } snake_case_ : Union[str, Any] = model(__UpperCamelCase ) snake_case_ : str = [input_ids, input_mask] snake_case_ : Tuple = model(__UpperCamelCase , encoder_hidden_states=__UpperCamelCase ) # Also check the case where encoder outputs are not passed snake_case_ : Union[str, Any] = model(__UpperCamelCase , attention_mask=__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : Any = TFEsmForMaskedLM(config=__UpperCamelCase ) snake_case_ : List[Any] = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : List[Any] = self.num_labels snake_case_ : List[Any] = TFEsmForTokenClassification(config=__UpperCamelCase ) snake_case_ : Union[str, Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} snake_case_ : Union[str, Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase (self ): snake_case_ : str = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) : Optional[Any] = config_and_inputs snake_case_ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : Union[str, Any] = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) _A : Union[str, Any] = ( { """feature-extraction""": TFEsmModel, """fill-mask""": TFEsmForMaskedLM, """text-classification""": TFEsmForSequenceClassification, """token-classification""": TFEsmForTokenClassification, """zero-shot""": TFEsmForSequenceClassification, } if is_tf_available() else {} ) _A : List[str] = False _A : List[Any] = False def __UpperCamelCase (self ): snake_case_ : Dict = TFEsmModelTester(self ) snake_case_ : Dict = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=37 ) def __UpperCamelCase (self ): self.config_tester.run_common_tests() def __UpperCamelCase (self ): snake_case_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def __UpperCamelCase (self ): snake_case_ : Any = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__UpperCamelCase ) def __UpperCamelCase (self ): snake_case_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase ) def __UpperCamelCase (self ): snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase ) @slow def __UpperCamelCase (self ): for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : List[Any] = TFEsmModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @unittest.skip("""Protein models do not support embedding resizing.""" ) def __UpperCamelCase (self ): pass @unittest.skip("""Protein models do not support embedding resizing.""" ) def __UpperCamelCase (self ): pass def __UpperCamelCase (self ): snake_case_ , snake_case_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : List[str] = model_class(__UpperCamelCase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer snake_case_ : Any = model.get_bias() assert isinstance(__UpperCamelCase , __UpperCamelCase ) for k, v in name.items(): assert isinstance(__UpperCamelCase , tf.Variable ) else: snake_case_ : Union[str, Any] = model.get_output_embeddings() assert x is None snake_case_ : Union[str, Any] = model.get_bias() assert name is None @require_tf class __lowercase ( unittest.TestCase): """simple docstring""" @slow def __UpperCamelCase (self ): snake_case_ : Optional[Any] = TFEsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) snake_case_ : Optional[int] = tf.constant([[0, 1, 2, 3, 4, 5]] ) snake_case_ : Union[str, Any] = model(__UpperCamelCase )[0] snake_case_ : Tuple = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , __UpperCamelCase ) # compare the actual values for a slice. snake_case_ : Tuple = tf.constant( [ [ [8.921518, -10.58_98_14, -6.4671307], [-6.3967156, -13.91_13_77, -1.1211915], [-7.781247, -13.95_15_57, -3.740592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def __UpperCamelCase (self ): snake_case_ : List[str] = TFEsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) snake_case_ : Dict = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) snake_case_ : Tuple = model(__UpperCamelCase )[0] # compare the actual values for a slice. snake_case_ : Union[str, Any] = tf.constant( [ [ [0.14443092, 0.54125327, 0.3247739], [0.30340484, 0.00526676, 0.31077722], [0.32278043, -0.24987096, 0.3414628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
706
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Union[str, Any] = ["""image_processor""", """tokenizer"""] _A : str = """ChineseCLIPImageProcessor""" _A : Tuple = ("""BertTokenizer""", """BertTokenizerFast""") def __init__(self , lowercase__=None , lowercase__=None , **lowercase__ ): snake_case_ : Any = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowercase__ , ) snake_case_ : Optional[Any] = kwargs.pop("""feature_extractor""" ) snake_case_ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowercase__ , lowercase__ ) snake_case_ : Union[str, Any] = self.image_processor def __call__(self , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ ): if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: snake_case_ : Any = self.tokenizer(lowercase__ , return_tensors=lowercase__ , **lowercase__ ) if images is not None: snake_case_ : Tuple = self.image_processor(lowercase__ , return_tensors=lowercase__ , **lowercase__ ) if text is not None and images is not None: snake_case_ : List[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase__ ) , tensor_type=lowercase__ ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): return self.tokenizer.batch_decode(*lowercase__ , **lowercase__ ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): return self.tokenizer.decode(*lowercase__ , **lowercase__ ) @property def __UpperCamelCase (self ): snake_case_ : Optional[int] = self.tokenizer.model_input_names snake_case_ : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __UpperCamelCase (self ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowercase__ , ) return self.image_processor_class
48
0
"""simple docstring""" from typing import List from .keymap import KEYMAP, get_character def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" def decorator(SCREAMING_SNAKE_CASE__ : Dict ): snake_case_ : Optional[Any] = getattr(SCREAMING_SNAKE_CASE__ , """handle_key""" , [] ) handle += [key] setattr(SCREAMING_SNAKE_CASE__ , """handle_key""" , SCREAMING_SNAKE_CASE__ ) return func return decorator def SCREAMING_SNAKE_CASE__ ( *SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" def decorator(SCREAMING_SNAKE_CASE__ : int ): snake_case_ : str = getattr(SCREAMING_SNAKE_CASE__ , """handle_key""" , [] ) handle += keys setattr(SCREAMING_SNAKE_CASE__ , """handle_key""" , SCREAMING_SNAKE_CASE__ ) return func return decorator class __lowercase ( A_): """simple docstring""" def __new__(cls , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : int = super().__new__(cls , lowercase__ , lowercase__ , lowercase__ ) if not hasattr(lowercase__ , """key_handler""" ): setattr(lowercase__ , """key_handler""" , {} ) setattr(lowercase__ , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): snake_case_ : int = getattr(lowercase__ , """handle_key""" , [] ) for key in handled_keys: snake_case_ : Dict = value return new_cls @staticmethod def __UpperCamelCase (cls ): snake_case_ : int = get_character() if char != KEYMAP["undefined"]: snake_case_ : List[str] = ord(lowercase__ ) snake_case_ : Dict = cls.key_handler.get(lowercase__ ) if handler: snake_case_ : Union[str, Any] = char return handler(cls ) else: return None def SCREAMING_SNAKE_CASE__ ( cls : List[str] ): """simple docstring""" return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
707
"""simple docstring""" import argparse import copy def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" snake_case_ : List[Any] = {} with open(SCREAMING_SNAKE_CASE__ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: snake_case_ : int = [] _list.append([line.split()[1], line.split()[2]] ) snake_case_ : Optional[Any] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: snake_case_ : str = [] _list.append([line.split()[0], line.split()[2]] ) snake_case_ : Optional[Any] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" with open(SCREAMING_SNAKE_CASE__ ) as f: snake_case_ : Optional[Any] = f.read(1 ) snake_case_ : Union[str, Any] = start_node snake_case_ : Dict = [] snake_case_ : Union[str, Any] = start_node snake_case_ : Tuple = 0 while visiting not in first_solution: snake_case_ : int = 1_0_0_0_0 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(SCREAMING_SNAKE_CASE__ ) and k[0] not in first_solution: snake_case_ : Union[str, Any] = k[1] snake_case_ : Any = k[0] first_solution.append(SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = distance_of_first_solution + int(SCREAMING_SNAKE_CASE__ ) snake_case_ : List[str] = best_node first_solution.append(SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[Any] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 snake_case_ : int = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0_0_0_0 ) return first_solution, distance_of_first_solution def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" snake_case_ : Union[str, Any] = [] for n in solution[1:-1]: snake_case_ : str = solution.index(SCREAMING_SNAKE_CASE__ ) for kn in solution[1:-1]: snake_case_ : Tuple = solution.index(SCREAMING_SNAKE_CASE__ ) if n == kn: continue snake_case_ : Optional[Any] = copy.deepcopy(SCREAMING_SNAKE_CASE__ ) snake_case_ : int = kn snake_case_ : Dict = n snake_case_ : Optional[int] = 0 for k in _tmp[:-1]: snake_case_ : Dict = _tmp[_tmp.index(SCREAMING_SNAKE_CASE__ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: snake_case_ : Dict = distance + int(i[1] ) _tmp.append(SCREAMING_SNAKE_CASE__ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) snake_case_ : Optional[Any] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda SCREAMING_SNAKE_CASE__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] ): """simple docstring""" snake_case_ : Dict = 1 snake_case_ : List[Any] = first_solution snake_case_ : List[Any] = [] snake_case_ : Optional[Any] = distance_of_first_solution snake_case_ : Dict = solution while count <= iters: snake_case_ : List[str] = find_neighborhood(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = 0 snake_case_ : List[Any] = neighborhood[index_of_best_solution] snake_case_ : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ ) - 1 snake_case_ : List[str] = False while not found: snake_case_ : Tuple = 0 while i < len(SCREAMING_SNAKE_CASE__ ): if best_solution[i] != solution[i]: snake_case_ : Optional[Any] = best_solution[i] snake_case_ : int = solution[i] break snake_case_ : List[str] = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) snake_case_ : Tuple = True snake_case_ : Dict = best_solution[:-1] snake_case_ : Tuple = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: snake_case_ : Tuple = cost snake_case_ : Union[str, Any] = solution else: snake_case_ : str = index_of_best_solution + 1 snake_case_ : Tuple = neighborhood[index_of_best_solution] if len(SCREAMING_SNAKE_CASE__ ) >= size: tabu_list.pop(0 ) snake_case_ : List[str] = count + 1 return best_solution_ever, best_cost def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any]=None ): """simple docstring""" snake_case_ : Tuple = generate_neighbours(args.File ) snake_case_ , snake_case_ : Optional[Any] = generate_first_solution( args.File , SCREAMING_SNAKE_CASE__ ) snake_case_ , snake_case_ : Dict = tabu_search( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , args.Iterations , args.Size , ) print(f'Best solution: {best_sol}, with total distance: {best_cost}.' ) if __name__ == "__main__": a_ = argparse.ArgumentParser(description='''Tabu Search''') parser.add_argument( '''-f''', '''--File''', type=str, help='''Path to the file containing the data''', required=True, ) parser.add_argument( '''-i''', '''--Iterations''', type=int, help='''How many iterations the algorithm should perform''', required=True, ) parser.add_argument( '''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True ) # Pass the arguments to main method main(parser.parse_args())
48
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError("""Input must be an integer""" ) if input_num <= 0: raise ValueError("""Input must be positive""" ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
708
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings a_ = r''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(_UpperCAmelCase) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """rag""" _A : Optional[Any] = True def __init__(self , lowercase__=None , lowercase__=True , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=" / " , lowercase__=" // " , lowercase__=5 , lowercase__=3_00 , lowercase__=7_68 , lowercase__=8 , lowercase__="wiki_dpr" , lowercase__="train" , lowercase__="compressed" , lowercase__=None , lowercase__=None , lowercase__=False , lowercase__=False , lowercase__=0.0 , lowercase__=True , lowercase__=False , lowercase__=False , lowercase__=False , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__( bos_token_id=lowercase__ , pad_token_id=lowercase__ , eos_token_id=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , prefix=lowercase__ , vocab_size=lowercase__ , **lowercase__ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" snake_case_ : List[Any] = kwargs.pop("""question_encoder""" ) snake_case_ : Tuple = question_encoder_config.pop("""model_type""" ) snake_case_ : List[str] = kwargs.pop("""generator""" ) snake_case_ : List[str] = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig snake_case_ : List[str] = AutoConfig.for_model(lowercase__ , **lowercase__ ) snake_case_ : Tuple = AutoConfig.for_model(lowercase__ , **lowercase__ ) snake_case_ : int = reduce_loss snake_case_ : Optional[int] = label_smoothing snake_case_ : Dict = exclude_bos_score snake_case_ : Union[str, Any] = do_marginalize snake_case_ : Union[str, Any] = title_sep snake_case_ : int = doc_sep snake_case_ : int = n_docs snake_case_ : List[str] = max_combined_length snake_case_ : Tuple = dataset snake_case_ : int = dataset_split snake_case_ : str = index_name snake_case_ : List[str] = retrieval_vector_size snake_case_ : Dict = retrieval_batch_size snake_case_ : str = passages_path snake_case_ : Union[str, Any] = index_path snake_case_ : Tuple = use_dummy_dataset snake_case_ : Dict = output_retrieved snake_case_ : str = do_deduplication snake_case_ : Any = use_cache if self.forced_eos_token_id is None: snake_case_ : Any = getattr(self.generator , """forced_eos_token_id""" , lowercase__ ) @classmethod def __UpperCamelCase (cls , lowercase__ , lowercase__ , **lowercase__ ): return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Optional[Any] = copy.deepcopy(self.__dict__ ) snake_case_ : Any = self.question_encoder.to_dict() snake_case_ : Dict = self.generator.to_dict() snake_case_ : Union[str, Any] = self.__class__.model_type return output
48
0
"""simple docstring""" import mpmath # for roots of unity import numpy as np class __lowercase : """simple docstring""" def __init__(self , lowercase__=None , lowercase__=None ): # Input as list snake_case_ : str = list(poly_a or [0] )[:] snake_case_ : Union[str, Any] = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() snake_case_ : int = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() snake_case_ : int = len(self.polyB ) # Add 0 to make lengths equal a power of 2 snake_case_ : List[Any] = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform snake_case_ : List[Any] = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product snake_case_ : Optional[Any] = self.__multiply() def __UpperCamelCase (self , lowercase__ ): snake_case_ : Dict = [[x] for x in self.polyA] if which == """A""" else [[x] for x in self.polyB] # Corner case if len(lowerCamelCase_ ) <= 1: return dft[0] # snake_case_ : Union[str, Any] = self.c_max_length // 2 while next_ncol > 0: snake_case_ : Dict = [[] for i in range(lowerCamelCase_ )] snake_case_ : Tuple = self.root**next_ncol # First half of next step snake_case_ : Optional[Any] = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(lowerCamelCase_ ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step snake_case_ : List[str] = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(lowerCamelCase_ ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update snake_case_ : Any = new_dft snake_case_ : Union[str, Any] = next_ncol // 2 return dft[0] def __UpperCamelCase (self ): snake_case_ : List[Any] = self.__dft("""A""" ) snake_case_ : Optional[Any] = self.__dft("""B""" ) snake_case_ : Any = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT snake_case_ : Tuple = 2 while next_ncol <= self.c_max_length: snake_case_ : Any = [[] for i in range(lowerCamelCase_ )] snake_case_ : Dict = self.root ** (next_ncol // 2) snake_case_ : Dict = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update snake_case_ : Tuple = new_inverse_c next_ncol *= 2 # Unpack snake_case_ : int = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__(self ): snake_case_ : List[Any] = """A = """ + """ + """.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A] ) ) snake_case_ : Optional[int] = """B = """ + """ + """.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B] ) ) snake_case_ : Union[str, Any] = """A*B = """ + """ + """.join( f'{coef}*x^{i}' for coef, i in enumerate(self.product ) ) return f'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
709
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """upernet""" def __init__(self , lowercase__=None , lowercase__=5_12 , lowercase__=0.02 , lowercase__=[1, 2, 3, 6] , lowercase__=True , lowercase__=0.4 , lowercase__=3_84 , lowercase__=2_56 , lowercase__=1 , lowercase__=False , lowercase__=2_55 , **lowercase__ , ): super().__init__(**lowercase__ ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) snake_case_ : List[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(lowercase__ , lowercase__ ): snake_case_ : Tuple = backbone_config.get("""model_type""" ) snake_case_ : List[str] = CONFIG_MAPPING[backbone_model_type] snake_case_ : List[Any] = config_class.from_dict(lowercase__ ) snake_case_ : List[Any] = backbone_config snake_case_ : Optional[Any] = hidden_size snake_case_ : Any = initializer_range snake_case_ : str = pool_scales snake_case_ : Dict = use_auxiliary_head snake_case_ : str = auxiliary_loss_weight snake_case_ : List[str] = auxiliary_in_channels snake_case_ : Optional[Any] = auxiliary_channels snake_case_ : Any = auxiliary_num_convs snake_case_ : List[Any] = auxiliary_concat_input snake_case_ : List[str] = loss_ignore_index def __UpperCamelCase (self ): snake_case_ : Dict = copy.deepcopy(self.__dict__ ) snake_case_ : Union[str, Any] = self.backbone_config.to_dict() snake_case_ : Any = self.__class__.model_type return output
48
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any ): # noqa: E741 """simple docstring""" snake_case_ : int = len(SCREAMING_SNAKE_CASE__ ) snake_case_ : Dict = 0 snake_case_ : int = [0] * n snake_case_ : Optional[Any] = [False] * n snake_case_ : Optional[int] = [False] * n def dfs(SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): if parent == root: out_edge_count += 1 snake_case_ : Optional[Any] = True snake_case_ : str = at for to in l[at]: if to == parent: pass elif not visited[to]: snake_case_ : int = dfs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: snake_case_ : Optional[int] = True # AP found via cycle if at == low[to]: snake_case_ : str = True else: snake_case_ : int = min(low[at] , SCREAMING_SNAKE_CASE__ ) return out_edge_count for i in range(SCREAMING_SNAKE_CASE__ ): if not visited[i]: snake_case_ : Dict = 0 snake_case_ : List[str] = dfs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , -1 , SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[int] = out_edge_count > 1 for x in range(len(SCREAMING_SNAKE_CASE__ ) ): if is_art[x] is True: print(SCREAMING_SNAKE_CASE__ ) # Adjacency list of graph a_ = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
710
"""simple docstring""" import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask a_ = logging.getLogger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self , lowercase__=-1 ): # in NER datasets, the last column is usually reserved for NER label snake_case_ : Union[str, Any] = label_idx def __UpperCamelCase (self , lowercase__ , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): snake_case_ : List[str] = mode.value snake_case_ : List[Any] = os.path.join(lowercase__ , f'{mode}.txt' ) snake_case_ : Tuple = 1 snake_case_ : Any = [] with open(lowercase__ , encoding="""utf-8""" ) as f: snake_case_ : str = [] snake_case_ : List[Any] = [] for line in f: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) guid_index += 1 snake_case_ : Optional[Any] = [] snake_case_ : int = [] else: snake_case_ : Optional[Any] = line.split(""" """ ) words.append(splits[0] ) if len(lowercase__ ) > 1: labels.append(splits[self.label_idx].replace("""\n""" , """""" ) ) else: # Examples could have no label for mode = "test" labels.append("""O""" ) if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) return examples def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : str = 0 for line in test_input_reader: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": writer.write(lowercase__ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: snake_case_ : Optional[int] = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n""" writer.write(lowercase__ ) else: logger.warning("""Maximum sequence length exceeded: No prediction for '%s'.""" , line.split()[0] ) def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: snake_case_ : Dict = f.read().splitlines() if "O" not in labels: snake_case_ : List[Any] = ["""O"""] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self ): # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: snake_case_ : Any = f.read().splitlines() if "O" not in labels: snake_case_ : Tuple = ["""O"""] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __lowercase ( _UpperCAmelCase): """simple docstring""" def __UpperCamelCase (self , lowercase__ , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): snake_case_ : List[Any] = mode.value snake_case_ : Optional[int] = os.path.join(lowercase__ , f'{mode}.txt' ) snake_case_ : Tuple = 1 snake_case_ : str = [] with open(lowercase__ , encoding="""utf-8""" ) as f: for sentence in parse_incr(lowercase__ ): snake_case_ : Tuple = [] snake_case_ : Any = [] for token in sentence: words.append(token["""form"""] ) labels.append(token["""upos"""] ) assert len(lowercase__ ) == len(lowercase__ ) if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) guid_index += 1 return examples def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : Dict = 0 for sentence in parse_incr(lowercase__ ): snake_case_ : int = preds_list[example_id] snake_case_ : Dict = """""" for token in sentence: out += f'{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) ' out += "\n" writer.write(lowercase__ ) example_id += 1 def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
48
0
"""simple docstring""" import requests a_ = "YOUR API KEY" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] = giphy_api_key ): """simple docstring""" snake_case_ : int = """+""".join(query.split() ) snake_case_ : Tuple = f'https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}' snake_case_ : Tuple = requests.get(__lowerCAmelCase ).json()["""data"""] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('''\n'''.join(get_gifs('''space ship''')))
711
"""simple docstring""" import random def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : Union[str, Any] = num - 1 snake_case_ : List[str] = 0 while s % 2 == 0: snake_case_ : str = s // 2 t += 1 for _ in range(5 ): snake_case_ : List[Any] = random.randrange(2 , num - 1 ) snake_case_ : Dict = pow(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if v != 1: snake_case_ : int = 0 while v != (num - 1): if i == t - 1: return False else: snake_case_ : str = i + 1 snake_case_ : int = (v**2) % num return True def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" if num < 2: return False snake_case_ : Dict = [ 2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1, 4_3, 4_7, 5_3, 5_9, 6_1, 6_7, 7_1, 7_3, 7_9, 8_3, 8_9, 9_7, 1_0_1, 1_0_3, 1_0_7, 1_0_9, 1_1_3, 1_2_7, 1_3_1, 1_3_7, 1_3_9, 1_4_9, 1_5_1, 1_5_7, 1_6_3, 1_6_7, 1_7_3, 1_7_9, 1_8_1, 1_9_1, 1_9_3, 1_9_7, 1_9_9, 2_1_1, 2_2_3, 2_2_7, 2_2_9, 2_3_3, 2_3_9, 2_4_1, 2_5_1, 2_5_7, 2_6_3, 2_6_9, 2_7_1, 2_7_7, 2_8_1, 2_8_3, 2_9_3, 3_0_7, 3_1_1, 3_1_3, 3_1_7, 3_3_1, 3_3_7, 3_4_7, 3_4_9, 3_5_3, 3_5_9, 3_6_7, 3_7_3, 3_7_9, 3_8_3, 3_8_9, 3_9_7, 4_0_1, 4_0_9, 4_1_9, 4_2_1, 4_3_1, 4_3_3, 4_3_9, 4_4_3, 4_4_9, 4_5_7, 4_6_1, 4_6_3, 4_6_7, 4_7_9, 4_8_7, 4_9_1, 4_9_9, 5_0_3, 5_0_9, 5_2_1, 5_2_3, 5_4_1, 5_4_7, 5_5_7, 5_6_3, 5_6_9, 5_7_1, 5_7_7, 5_8_7, 5_9_3, 5_9_9, 6_0_1, 6_0_7, 6_1_3, 6_1_7, 6_1_9, 6_3_1, 6_4_1, 6_4_3, 6_4_7, 6_5_3, 6_5_9, 6_6_1, 6_7_3, 6_7_7, 6_8_3, 6_9_1, 7_0_1, 7_0_9, 7_1_9, 7_2_7, 7_3_3, 7_3_9, 7_4_3, 7_5_1, 7_5_7, 7_6_1, 7_6_9, 7_7_3, 7_8_7, 7_9_7, 8_0_9, 8_1_1, 8_2_1, 8_2_3, 8_2_7, 8_2_9, 8_3_9, 8_5_3, 8_5_7, 8_5_9, 8_6_3, 8_7_7, 8_8_1, 8_8_3, 8_8_7, 9_0_7, 9_1_1, 9_1_9, 9_2_9, 9_3_7, 9_4_1, 9_4_7, 9_5_3, 9_6_7, 9_7_1, 9_7_7, 9_8_3, 9_9_1, 9_9_7, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int = 1_0_2_4 ): """simple docstring""" while True: snake_case_ : Tuple = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(SCREAMING_SNAKE_CASE__ ): return num if __name__ == "__main__": a_ = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
48
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class __lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase): """simple docstring""" _A : str = StableDiffusionPanoramaPipeline _A : Dict = TEXT_TO_IMAGE_PARAMS _A : Optional[int] = TEXT_TO_IMAGE_BATCH_PARAMS _A : List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS _A : List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS def __UpperCamelCase (self ): torch.manual_seed(0 ) snake_case_ : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) snake_case_ : str = DDIMScheduler() torch.manual_seed(0 ) snake_case_ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case_ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) snake_case_ : List[Any] = CLIPTextModel(_UpperCAmelCase ) snake_case_ : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) snake_case_ : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __UpperCamelCase (self , lowercase__ , lowercase__=0 ): snake_case_ : Optional[int] = torch.manual_seed(_UpperCAmelCase ) snake_case_ : Tuple = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, # Setting height and width to None to prevent OOMs on CPU. '''height''': None, '''width''': None, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __UpperCamelCase (self ): snake_case_ : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ : Union[str, Any] = self.get_dummy_components() snake_case_ : Optional[Any] = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) snake_case_ : Tuple = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) snake_case_ : Union[str, Any] = self.get_dummy_inputs(_UpperCAmelCase ) snake_case_ : Tuple = sd_pipe(**_UpperCAmelCase ).images snake_case_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ : List[str] = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase (self ): super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def __UpperCamelCase (self ): super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25e-3 ) def __UpperCamelCase (self ): snake_case_ : str = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ : List[Any] = self.get_dummy_components() snake_case_ : int = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) snake_case_ : Union[str, Any] = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) snake_case_ : Optional[int] = self.get_dummy_inputs(_UpperCAmelCase ) snake_case_ : Dict = '''french fries''' snake_case_ : List[Any] = sd_pipe(**_UpperCAmelCase , negative_prompt=_UpperCAmelCase ) snake_case_ : List[str] = output.images snake_case_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ : int = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase (self ): snake_case_ : Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ : List[Any] = self.get_dummy_components() snake_case_ : Union[str, Any] = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) snake_case_ : Any = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) snake_case_ : str = self.get_dummy_inputs(_UpperCAmelCase ) snake_case_ : List[str] = sd_pipe(**_UpperCAmelCase , view_batch_size=2 ) snake_case_ : Optional[Any] = output.images snake_case_ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ : Optional[int] = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase (self ): snake_case_ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ : Any = self.get_dummy_components() snake_case_ : Optional[Any] = EulerAncestralDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) snake_case_ : List[Any] = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) snake_case_ : Optional[Any] = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) snake_case_ : int = self.get_dummy_inputs(_UpperCAmelCase ) snake_case_ : str = sd_pipe(**_UpperCAmelCase ).images snake_case_ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ : int = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase (self ): snake_case_ : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case_ : Dict = self.get_dummy_components() snake_case_ : str = PNDMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , skip_prk_steps=_UpperCAmelCase ) snake_case_ : Dict = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) snake_case_ : Dict = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) snake_case_ : str = self.get_dummy_inputs(_UpperCAmelCase ) snake_case_ : Union[str, Any] = sd_pipe(**_UpperCAmelCase ).images snake_case_ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ : Union[str, Any] = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __lowercase ( unittest.TestCase): """simple docstring""" def __UpperCamelCase (self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase (self , lowercase__=0 ): snake_case_ : List[Any] = torch.manual_seed(_UpperCAmelCase ) snake_case_ : Any = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = '''stabilityai/stable-diffusion-2-base''' snake_case_ : List[str] = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder="""scheduler""" ) snake_case_ : Optional[Any] = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() snake_case_ : Dict = self.get_inputs() snake_case_ : Union[str, Any] = pipe(**_UpperCAmelCase ).images snake_case_ : Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) snake_case_ : Dict = np.array( [ 0.36968392, 0.27025372, 0.32446766, 0.28379387, 0.36363274, 0.30733347, 0.27100027, 0.27054125, 0.25536096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def __UpperCamelCase (self ): snake_case_ : Dict = StableDiffusionPanoramaPipeline.from_pretrained( """stabilityai/stable-diffusion-2-base""" , safety_checker=_UpperCAmelCase ) snake_case_ : List[Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() snake_case_ : Union[str, Any] = self.get_inputs() snake_case_ : Union[str, Any] = pipe(**_UpperCAmelCase ).images snake_case_ : List[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) snake_case_ : int = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def __UpperCamelCase (self ): snake_case_ : List[str] = 0 def callback_fn(lowercase__ , lowercase__ , lowercase__ ) -> None: snake_case_ : List[Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: snake_case_ : List[str] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) snake_case_ : int = latents[0, -3:, -3:, -1] snake_case_ : List[str] = np.array( [ 0.18681869, 0.33907816, 0.5361276, 0.14432865, -0.02856611, -0.73941123, 0.23397987, 0.47322682, -0.37823164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: snake_case_ : str = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) snake_case_ : str = latents[0, -3:, -3:, -1] snake_case_ : Union[str, Any] = np.array( [ 0.18539645, 0.33987248, 0.5378559, 0.14437142, -0.02455261, -0.7338317, 0.23990755, 0.47356272, -0.3786505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 snake_case_ : Union[str, Any] = False snake_case_ : Optional[int] = '''stabilityai/stable-diffusion-2-base''' snake_case_ : Tuple = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder="""scheduler""" ) snake_case_ : Union[str, Any] = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) snake_case_ : Dict = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() snake_case_ : Optional[Any] = self.get_inputs() pipe(**_UpperCAmelCase , callback=_UpperCAmelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __UpperCamelCase (self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case_ : str = '''stabilityai/stable-diffusion-2-base''' snake_case_ : Tuple = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder="""scheduler""" ) snake_case_ : Optional[Any] = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) snake_case_ : Optional[Any] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case_ : List[str] = self.get_inputs() snake_case_ : List[Any] = pipe(**_UpperCAmelCase ) snake_case_ : str = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
712
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType a_ = logging.get_logger(__name__) a_ = { '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Dict = """deberta-v2""" def __init__(self , lowercase__=12_81_00 , lowercase__=15_36 , lowercase__=24 , lowercase__=24 , lowercase__=61_44 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_12 , lowercase__=0 , lowercase__=0.02 , lowercase__=1e-7 , lowercase__=False , lowercase__=-1 , lowercase__=0 , lowercase__=True , lowercase__=None , lowercase__=0 , lowercase__="gelu" , **lowercase__ , ): super().__init__(**lowercase__ ) snake_case_ : Union[str, Any] = hidden_size snake_case_ : str = num_hidden_layers snake_case_ : Tuple = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : Optional[int] = hidden_act snake_case_ : Union[str, Any] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : List[Any] = max_position_embeddings snake_case_ : Union[str, Any] = type_vocab_size snake_case_ : Union[str, Any] = initializer_range snake_case_ : List[Any] = relative_attention snake_case_ : Dict = max_relative_positions snake_case_ : Optional[int] = pad_token_id snake_case_ : List[str] = position_biased_input # Backwards compatibility if type(lowercase__ ) == str: snake_case_ : Union[str, Any] = [x.strip() for x in pos_att_type.lower().split("""|""" )] snake_case_ : Optional[int] = pos_att_type snake_case_ : List[str] = vocab_size snake_case_ : Tuple = layer_norm_eps snake_case_ : List[Any] = kwargs.get("""pooler_hidden_size""" , lowercase__ ) snake_case_ : List[str] = pooler_dropout snake_case_ : int = pooler_hidden_act class __lowercase ( _UpperCAmelCase): """simple docstring""" @property def __UpperCamelCase (self ): if self.task == "multiple-choice": snake_case_ : List[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case_ : int = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def __UpperCamelCase (self ): return 12 def __UpperCamelCase (self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , lowercase__ = 3 , lowercase__ = 40 , lowercase__ = 40 , lowercase__ = None , ): snake_case_ : str = super().generate_dummy_inputs(preprocessor=lowercase__ , framework=lowercase__ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
48
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class __lowercase ( _a , _a , unittest.TestCase): """simple docstring""" _A : Union[str, Any] = StableDiffusionPanoramaPipeline _A : Optional[int] = TEXT_TO_IMAGE_PARAMS _A : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS _A : List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS _A : int = TEXT_TO_IMAGE_IMAGE_PARAMS def __UpperCamelCase (self ): torch.manual_seed(0 ) snake_case_ : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) snake_case_ : List[Any] = DDIMScheduler() torch.manual_seed(0 ) snake_case_ : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case_ : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) snake_case_ : Any = CLIPTextModel(_A ) snake_case_ : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) snake_case_ : Optional[int] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def __UpperCamelCase (self , lowercase__ , lowercase__=0 ): snake_case_ : Optional[int] = torch.manual_seed(_A ) snake_case_ : Union[str, Any] = { """prompt""": """a photo of the dolomites""", """generator""": generator, # Setting height and width to None to prevent OOMs on CPU. """height""": None, """width""": None, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __UpperCamelCase (self ): snake_case_ : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case_ : List[str] = self.get_dummy_components() snake_case_ : Any = StableDiffusionPanoramaPipeline(**_A ) snake_case_ : str = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) snake_case_ : Any = self.get_dummy_inputs(_A ) snake_case_ : str = sd_pipe(**_A ).images snake_case_ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ : List[Any] = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase (self ): super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def __UpperCamelCase (self ): super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25e-3 ) def __UpperCamelCase (self ): snake_case_ : str = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case_ : Optional[int] = self.get_dummy_components() snake_case_ : Any = StableDiffusionPanoramaPipeline(**_A ) snake_case_ : str = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) snake_case_ : Optional[Any] = self.get_dummy_inputs(_A ) snake_case_ : Union[str, Any] = """french fries""" snake_case_ : Any = sd_pipe(**_A , negative_prompt=_A ) snake_case_ : Optional[int] = output.images snake_case_ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ : List[Any] = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase (self ): snake_case_ : Optional[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case_ : int = self.get_dummy_components() snake_case_ : int = StableDiffusionPanoramaPipeline(**_A ) snake_case_ : int = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) snake_case_ : Dict = self.get_dummy_inputs(_A ) snake_case_ : Optional[Any] = sd_pipe(**_A , view_batch_size=2 ) snake_case_ : Any = output.images snake_case_ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ : List[str] = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase (self ): snake_case_ : Dict = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case_ : Optional[int] = self.get_dummy_components() snake_case_ : Tuple = EulerAncestralDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) snake_case_ : Optional[Any] = StableDiffusionPanoramaPipeline(**_A ) snake_case_ : Union[str, Any] = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) snake_case_ : str = self.get_dummy_inputs(_A ) snake_case_ : List[str] = sd_pipe(**_A ).images snake_case_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ : List[str] = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase (self ): snake_case_ : List[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case_ : Optional[int] = self.get_dummy_components() snake_case_ : List[Any] = PNDMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , skip_prk_steps=_A ) snake_case_ : Tuple = StableDiffusionPanoramaPipeline(**_A ) snake_case_ : Dict = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) snake_case_ : Tuple = self.get_dummy_inputs(_A ) snake_case_ : Tuple = sd_pipe(**_A ).images snake_case_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ : Optional[int] = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __lowercase ( unittest.TestCase): """simple docstring""" def __UpperCamelCase (self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase (self , lowercase__=0 ): snake_case_ : int = torch.manual_seed(_A ) snake_case_ : Union[str, Any] = { """prompt""": """a photo of the dolomites""", """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def __UpperCamelCase (self ): snake_case_ : List[str] = """stabilityai/stable-diffusion-2-base""" snake_case_ : Tuple = DDIMScheduler.from_pretrained(_A , subfolder="""scheduler""" ) snake_case_ : Union[str, Any] = StableDiffusionPanoramaPipeline.from_pretrained(_A , scheduler=_A , safety_checker=_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() snake_case_ : Any = self.get_inputs() snake_case_ : str = pipe(**_A ).images snake_case_ : Optional[int] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) snake_case_ : str = np.array( [ 0.36968392, 0.27025372, 0.32446766, 0.28379387, 0.36363274, 0.30733347, 0.27100027, 0.27054125, 0.25536096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def __UpperCamelCase (self ): snake_case_ : Optional[Any] = StableDiffusionPanoramaPipeline.from_pretrained( """stabilityai/stable-diffusion-2-base""" , safety_checker=_A ) snake_case_ : str = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() snake_case_ : Dict = self.get_inputs() snake_case_ : Union[str, Any] = pipe(**_A ).images snake_case_ : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) snake_case_ : Union[str, Any] = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def __UpperCamelCase (self ): snake_case_ : Dict = 0 def callback_fn(lowercase__ , lowercase__ , lowercase__ ) -> None: snake_case_ : Any = True nonlocal number_of_steps number_of_steps += 1 if step == 1: snake_case_ : Union[str, Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) snake_case_ : Union[str, Any] = latents[0, -3:, -3:, -1] snake_case_ : Union[str, Any] = np.array( [ 0.18681869, 0.33907816, 0.5361276, 0.14432865, -0.02856611, -0.73941123, 0.23397987, 0.47322682, -0.37823164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: snake_case_ : List[Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) snake_case_ : Tuple = latents[0, -3:, -3:, -1] snake_case_ : Any = np.array( [ 0.18539645, 0.33987248, 0.5378559, 0.14437142, -0.02455261, -0.7338317, 0.23990755, 0.47356272, -0.3786505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 snake_case_ : Any = False snake_case_ : str = """stabilityai/stable-diffusion-2-base""" snake_case_ : List[str] = DDIMScheduler.from_pretrained(_A , subfolder="""scheduler""" ) snake_case_ : str = StableDiffusionPanoramaPipeline.from_pretrained(_A , scheduler=_A , safety_checker=_A ) snake_case_ : Tuple = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() snake_case_ : List[str] = self.get_inputs() pipe(**_A , callback=_A , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __UpperCamelCase (self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case_ : List[str] = """stabilityai/stable-diffusion-2-base""" snake_case_ : Tuple = DDIMScheduler.from_pretrained(_A , subfolder="""scheduler""" ) snake_case_ : int = StableDiffusionPanoramaPipeline.from_pretrained(_A , scheduler=_A , safety_checker=_A ) snake_case_ : List[str] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case_ : Dict = self.get_inputs() snake_case_ : Optional[Any] = pipe(**_A ) snake_case_ : List[Any] = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
713
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
48
0
"""simple docstring""" import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=False , lowercase__=False , lowercase__=2 , lowercase__=99 , lowercase__=0 , lowercase__=32 , lowercase__=5 , lowercase__=4 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_12 , lowercase__=12 , lowercase__=2 , lowercase__=0.02 , lowercase__=3 , lowercase__=4 , lowercase__="last" , lowercase__=None , lowercase__=None , ): snake_case_ : str = parent snake_case_ : Tuple = batch_size snake_case_ : Any = seq_length snake_case_ : Any = is_training snake_case_ : int = use_input_lengths snake_case_ : str = use_token_type_ids snake_case_ : Tuple = use_labels snake_case_ : List[str] = gelu_activation snake_case_ : Optional[Any] = sinusoidal_embeddings snake_case_ : List[str] = causal snake_case_ : Any = asm snake_case_ : int = n_langs snake_case_ : Optional[Any] = vocab_size snake_case_ : Any = n_special snake_case_ : Tuple = hidden_size snake_case_ : Tuple = num_hidden_layers snake_case_ : Dict = num_attention_heads snake_case_ : Optional[int] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : List[str] = max_position_embeddings snake_case_ : Optional[int] = type_vocab_size snake_case_ : List[Any] = type_sequence_label_size snake_case_ : int = initializer_range snake_case_ : str = num_labels snake_case_ : str = num_choices snake_case_ : List[Any] = summary_type snake_case_ : Any = use_proj snake_case_ : int = scope def __UpperCamelCase (self ): snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : Any = None if self.use_input_lengths: snake_case_ : str = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length snake_case_ : List[str] = None if self.use_token_type_ids: snake_case_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) snake_case_ : Optional[Any] = None snake_case_ : Optional[int] = None snake_case_ : List[Any] = None if self.use_labels: snake_case_ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ : str = ids_tensor([self.batch_size] , 2 ).float() snake_case_ : Dict = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __UpperCamelCase (self ): return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): snake_case_ : int = FlaubertModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ : List[Any] = model(__UpperCamelCase , lengths=__UpperCamelCase , langs=__UpperCamelCase ) snake_case_ : Optional[Any] = model(__UpperCamelCase , langs=__UpperCamelCase ) snake_case_ : Any = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): snake_case_ : str = FlaubertWithLMHeadModel(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ : Any = model(__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): snake_case_ : Union[str, Any] = FlaubertForQuestionAnsweringSimple(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ : Any = model(__UpperCamelCase ) snake_case_ : List[Any] = model(__UpperCamelCase , start_positions=__UpperCamelCase , end_positions=__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): snake_case_ : str = FlaubertForQuestionAnswering(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ : List[str] = model(__UpperCamelCase ) snake_case_ : Optional[Any] = model( __UpperCamelCase , start_positions=__UpperCamelCase , end_positions=__UpperCamelCase , cls_index=__UpperCamelCase , is_impossible=__UpperCamelCase , p_mask=__UpperCamelCase , ) snake_case_ : int = model( __UpperCamelCase , start_positions=__UpperCamelCase , end_positions=__UpperCamelCase , cls_index=__UpperCamelCase , is_impossible=__UpperCamelCase , ) ((snake_case_ ) , ) : List[str] = result_with_labels.to_tuple() snake_case_ : str = model(__UpperCamelCase , start_positions=__UpperCamelCase , end_positions=__UpperCamelCase ) ((snake_case_ ) , ) : Dict = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): snake_case_ : Tuple = FlaubertForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ : Any = model(__UpperCamelCase ) snake_case_ : Union[str, Any] = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): snake_case_ : Union[str, Any] = self.num_labels snake_case_ : str = FlaubertForTokenClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ : str = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): snake_case_ : Optional[int] = self.num_choices snake_case_ : Tuple = FlaubertForMultipleChoice(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ : List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ : List[Any] = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase (self ): snake_case_ : Tuple = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) : List[Any] = config_and_inputs snake_case_ : int = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class __lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : List[str] = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) _A : Tuple = ( { """feature-extraction""": FlaubertModel, """fill-mask""": FlaubertWithLMHeadModel, """question-answering""": FlaubertForQuestionAnsweringSimple, """text-classification""": FlaubertForSequenceClassification, """token-classification""": FlaubertForTokenClassification, """zero-shot""": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__=False ): snake_case_ : Union[str, Any] = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": snake_case_ : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCamelCase ) snake_case_ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCamelCase ) return inputs_dict def __UpperCamelCase (self ): snake_case_ : Optional[int] = FlaubertModelTester(self ) snake_case_ : str = ConfigTester(self , config_class=__UpperCamelCase , emb_dim=37 ) def __UpperCamelCase (self ): self.config_tester.run_common_tests() def __UpperCamelCase (self ): snake_case_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__UpperCamelCase ) def __UpperCamelCase (self ): snake_case_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__UpperCamelCase ) def __UpperCamelCase (self ): snake_case_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*__UpperCamelCase ) def __UpperCamelCase (self ): snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__UpperCamelCase ) def __UpperCamelCase (self ): snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__UpperCamelCase ) def __UpperCamelCase (self ): snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*__UpperCamelCase ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*__UpperCamelCase ) @slow def __UpperCamelCase (self ): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : Dict = FlaubertModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @slow @require_torch_gpu def __UpperCamelCase (self ): snake_case_ , snake_case_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return snake_case_ : int = True snake_case_ : Dict = model_class(config=__UpperCamelCase ) snake_case_ : Any = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) snake_case_ : int = torch.jit.trace( __UpperCamelCase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__UpperCamelCase , os.path.join(__UpperCamelCase , """traced_model.pt""" ) ) snake_case_ : Dict = torch.jit.load(os.path.join(__UpperCamelCase , """traced_model.pt""" ) , map_location=__UpperCamelCase ) loaded(inputs_dict["""input_ids"""].to(__UpperCamelCase ) , inputs_dict["""attention_mask"""].to(__UpperCamelCase ) ) @require_torch class __lowercase ( unittest.TestCase): """simple docstring""" @slow def __UpperCamelCase (self ): snake_case_ : List[str] = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) snake_case_ : Tuple = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) with torch.no_grad(): snake_case_ : List[str] = model(__UpperCamelCase )[0] snake_case_ : str = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , __UpperCamelCase ) snake_case_ : str = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCamelCase , atol=1e-4 ) )
714
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('''fixtures/test_sentencepiece.model''') a_ = {'''target_lang''': '''fi''', '''source_lang''': '''en'''} a_ = '''>>zh<<''' a_ = '''Helsinki-NLP/''' if is_torch_available(): a_ = '''pt''' elif is_tf_available(): a_ = '''tf''' else: a_ = '''jax''' @require_sentencepiece class __lowercase ( _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : str = MarianTokenizer _A : List[str] = False _A : List[str] = True def __UpperCamelCase (self ): super().setUp() snake_case_ : Optional[int] = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] snake_case_ : Any = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) snake_case_ : Any = Path(self.tmpdirname ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) snake_case_ : Optional[Any] = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase (self , **lowercase__ ): return MarianTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def __UpperCamelCase (self , lowercase__ ): return ( "This is a test", "This is a test", ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = """</s>""" snake_case_ : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__ ) , lowercase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__ ) , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(lowercase__ ) , 9 ) def __UpperCamelCase (self ): self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def __UpperCamelCase (self ): snake_case_ : Any = MarianTokenizer.from_pretrained(f'{ORG_NAME}opus-mt-en-de' ) snake_case_ : Tuple = en_de_tokenizer(["""I am a small frog"""] , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) snake_case_ : Dict = [38, 1_21, 14, 6_97, 3_88_48, 0] self.assertListEqual(lowercase__ , batch.input_ids[0] ) snake_case_ : Tuple = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(lowercase__ ) snake_case_ : str = [x.name for x in Path(lowercase__ ).glob("""*""" )] self.assertIn("""source.spm""" , lowercase__ ) MarianTokenizer.from_pretrained(lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = self.get_tokenizer() snake_case_ : List[str] = tok( ["""I am a small frog""" * 10_00, """I am a small frog"""] , padding=lowercase__ , truncation=lowercase__ , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(batch.input_ids.shape , (2, 5_12) ) def __UpperCamelCase (self ): snake_case_ : Tuple = self.get_tokenizer() snake_case_ : Tuple = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=lowercase__ , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def __UpperCamelCase (self ): # fmt: off snake_case_ : str = {"""input_ids""": [[4_34_95, 4_62, 20, 4_21_64, 13_69, 52, 4_64, 1_32, 17_03, 4_92, 13, 74_91, 3_89_99, 6, 8, 4_64, 1_32, 17_03, 4_92, 13, 46_69, 3_78_67, 13, 75_25, 27, 15_93, 9_88, 13, 3_39_72, 70_29, 6, 20, 82_51, 3_83, 2, 2_70, 58_66, 37_88, 2, 23_53, 82_51, 1_23_38, 2, 1_39_58, 3_87, 2, 36_29, 69_53, 1_88, 29_00, 2, 1_39_58, 80_11, 1_15_01, 23, 84_60, 40_73, 3_40_09, 20, 4_35, 1_14_39, 27, 8, 84_60, 40_73, 60_04, 20, 99_88, 3_75, 27, 33, 2_66, 19_45, 10_76, 13_50, 3_78_67, 32_88, 5, 5_77, 10_76, 43_74, 8, 50_82, 5, 2_64_53, 2_57, 5_56, 4_03, 2, 2_42, 1_32, 3_83, 3_16, 4_92, 8, 1_07_67, 6, 3_16, 3_04, 42_39, 3, 0], [1_48, 1_57_22, 19, 18_39, 12, 13_50, 13, 2_23_27, 50_82, 54_18, 4_75_67, 3_59_38, 59, 3_18, 1_95_52, 1_08, 21_83, 54, 1_49_76, 48_35, 32, 5_47, 11_14, 8, 3_15, 24_17, 5, 92, 1_90_88, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00], [36, 63_95, 1_25_70, 3_91_47, 1_15_97, 6, 2_66, 4, 4_54_05, 72_96, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase__ , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def __UpperCamelCase (self ): snake_case_ : Any = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) snake_case_ : Dict = """Tämä on testi""" snake_case_ : List[Any] = """This is a test""" snake_case_ : Optional[int] = [76, 7, 20_47, 2] snake_case_ : List[str] = [69, 12, 11, 9_40, 2] snake_case_ : Any = tokenizer(lowercase__ ).input_ids self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : str = tokenizer(text_target=lowercase__ ).input_ids self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : int = tokenizer.decode(lowercase__ , skip_special_tokens=lowercase__ ) self.assertEqual(lowercase__ , lowercase__ )
48
0
"""simple docstring""" import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class __lowercase ( unittest.TestCase): """simple docstring""" def __UpperCamelCase (self ): snake_case_ : List[str] = """laion/clap-htsat-unfused""" snake_case_ : Any = tempfile.mkdtemp() def __UpperCamelCase (self , **lowercase__ ): return RobertaTokenizer.from_pretrained(self.checkpoint , **lowercase__ ) def __UpperCamelCase (self , **lowercase__ ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **lowercase__ ) def __UpperCamelCase (self ): shutil.rmtree(self.tmpdirname ) def __UpperCamelCase (self ): snake_case_ : str = self.get_tokenizer() snake_case_ : List[str] = self.get_feature_extractor() snake_case_ : List[Any] = ClapProcessor(tokenizer=lowercase__ , feature_extractor=lowercase__ ) processor.save_pretrained(self.tmpdirname ) snake_case_ : Dict = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase__ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : int = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) snake_case_ : str = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) snake_case_ : Any = self.get_feature_extractor(do_normalize=lowercase__ , padding_value=1.0 ) snake_case_ : Optional[int] = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowercase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase__ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Dict = self.get_feature_extractor() snake_case_ : Union[str, Any] = self.get_tokenizer() snake_case_ : Optional[Any] = ClapProcessor(tokenizer=lowercase__ , feature_extractor=lowercase__ ) snake_case_ : str = floats_list((3, 10_00) ) snake_case_ : List[Any] = feature_extractor(lowercase__ , return_tensors="""np""" ) snake_case_ : Optional[Any] = processor(audios=lowercase__ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __UpperCamelCase (self ): snake_case_ : Tuple = self.get_feature_extractor() snake_case_ : Union[str, Any] = self.get_tokenizer() snake_case_ : List[str] = ClapProcessor(tokenizer=lowercase__ , feature_extractor=lowercase__ ) snake_case_ : str = """This is a test string""" snake_case_ : Dict = processor(text=lowercase__ ) snake_case_ : int = tokenizer(lowercase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCamelCase (self ): snake_case_ : Any = self.get_feature_extractor() snake_case_ : Dict = self.get_tokenizer() snake_case_ : List[Any] = ClapProcessor(tokenizer=lowercase__ , feature_extractor=lowercase__ ) snake_case_ : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case_ : Union[str, Any] = processor.batch_decode(lowercase__ ) snake_case_ : int = tokenizer.batch_decode(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : List[str] = self.get_feature_extractor() snake_case_ : Union[str, Any] = self.get_tokenizer() snake_case_ : List[Any] = ClapProcessor(tokenizer=lowercase__ , feature_extractor=lowercase__ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
715
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCAmelCase) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True}) _A : ClassVar[Features] = Features({"""audio""": Audio()}) _A : ClassVar[Features] = Features({"""transcription""": Value("""string""")}) _A : str = "audio" _A : str = "transcription" def __UpperCamelCase (self , lowercase__ ): if self.audio_column not in features: raise ValueError(f'Column {self.audio_column} is not present in features.' ) if not isinstance(features[self.audio_column] , lowercase__ ): raise ValueError(f'Column {self.audio_column} is not an Audio type.' ) snake_case_ : Optional[int] = copy.deepcopy(self ) snake_case_ : Tuple = self.input_schema.copy() snake_case_ : List[str] = features[self.audio_column] snake_case_ : Any = input_schema return task_template @property def __UpperCamelCase (self ): return {self.audio_column: "audio", self.transcription_column: "transcription"}
48
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] = 1_0_0_0 ): """simple docstring""" snake_case_ : Optional[int] = 3 snake_case_ : int = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 1_5 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F'''{solution() = }''')
716
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : int = ["""pixel_values"""] def __init__(self , lowercase__ = True , lowercase__ = None , lowercase__ = 0.9 , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = True , lowercase__ = None , lowercase__ = 1 / 2_55 , lowercase__ = True , lowercase__ = True , lowercase__ = None , lowercase__ = None , **lowercase__ , ): super().__init__(**lowercase__ ) snake_case_ : Tuple = size if size is not None else {"""shortest_edge""": 2_24} snake_case_ : Union[str, Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) snake_case_ : str = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} snake_case_ : Dict = get_size_dict(lowercase__ , param_name="""crop_size""" ) snake_case_ : Union[str, Any] = do_resize snake_case_ : List[str] = size snake_case_ : str = crop_pct snake_case_ : str = resample snake_case_ : Optional[Any] = do_center_crop snake_case_ : Dict = crop_size snake_case_ : int = do_rescale snake_case_ : Optional[int] = rescale_factor snake_case_ : str = do_normalize snake_case_ : str = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN snake_case_ : List[str] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = None , **lowercase__ , ): snake_case_ : Tuple = get_size_dict(lowercase__ , default_to_square=lowercase__ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f'size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) if crop_pct is not None: if "shortest_edge" in size: snake_case_ : Optional[int] = int(size["""shortest_edge"""] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: snake_case_ : Dict = int(size["""height"""] / crop_pct ) else: snake_case_ : List[str] = (int(size["""height"""] / crop_pct ), int(size["""width"""] / crop_pct )) else: raise ValueError("""Invalid size for resize: {}""".format(lowercase__ ) ) snake_case_ : List[Any] = get_resize_output_image_size(lowercase__ , size=lowercase__ , default_to_square=lowercase__ ) else: if "shortest_edge" in size: snake_case_ : Optional[int] = get_resize_output_image_size(lowercase__ , size=size["""shortest_edge"""] , default_to_square=lowercase__ ) elif "height" in size and "width" in size: snake_case_ : int = (size["""height"""], size["""width"""]) else: raise ValueError("""Invalid size for resize: {}""".format(lowercase__ ) ) return resize(lowercase__ , size=lowercase__ , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): snake_case_ : int = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(f'size must contain \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(lowercase__ , size=(size["""height"""], size["""width"""]) , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return normalize(lowercase__ , mean=lowercase__ , std=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ): snake_case_ : str = do_resize if do_resize is not None else self.do_resize snake_case_ : Any = crop_pct if crop_pct is not None else self.crop_pct snake_case_ : List[Any] = resample if resample is not None else self.resample snake_case_ : str = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : str = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : str = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : List[Any] = image_mean if image_mean is not None else self.image_mean snake_case_ : int = image_std if image_std is not None else self.image_std snake_case_ : List[Any] = size if size is not None else self.size snake_case_ : Optional[Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) snake_case_ : List[Any] = crop_size if crop_size is not None else self.crop_size snake_case_ : int = get_size_dict(lowercase__ , param_name="""crop_size""" ) snake_case_ : List[str] = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_pct is None: raise ValueError("""Crop_pct must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case_ : int = [to_numpy_array(lowercase__ ) for image in images] if do_resize: snake_case_ : str = [self.resize(image=lowercase__ , size=lowercase__ , crop_pct=lowercase__ , resample=lowercase__ ) for image in images] if do_center_crop: snake_case_ : Optional[int] = [self.center_crop(image=lowercase__ , size=lowercase__ ) for image in images] if do_rescale: snake_case_ : List[Any] = [self.rescale(image=lowercase__ , scale=lowercase__ ) for image in images] if do_normalize: snake_case_ : Optional[Any] = [self.normalize(image=lowercase__ , mean=lowercase__ , std=lowercase__ ) for image in images] snake_case_ : List[Any] = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] snake_case_ : Dict = {"""pixel_values""": images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
48
0
"""simple docstring""" import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification a_ = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co a_ = "main" # Default branch name a_ = "f2c752cfc5c0ab6f4bdec59acea69eefbee381c2" # One particular commit (not the top of `main`) a_ = "aaaaaaa" # This commit does not exist, so we should 404. a_ = "d9e9f15bc825e4b2c9249e9578f884bbcb5e3684" # Sha-1 of config.json on the top of `main`, for checking purposes a_ = "4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3" @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" print("""Welcome!""" ) yield print("""Bye!""" ) @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" print("""Bonjour!""" ) yield print("""Au revoir!""" ) class __lowercase ( unittest.TestCase): """simple docstring""" def __UpperCamelCase (self ): assert transformers.__spec__ is not None assert importlib.util.find_spec("""transformers""" ) is not None class __lowercase ( unittest.TestCase): """simple docstring""" @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def __UpperCamelCase (self , lowercase__ ): with ContextManagers([] ): print("""Transformers are awesome!""" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , """Transformers are awesome!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def __UpperCamelCase (self , lowercase__ ): with ContextManagers([context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Welcome!\nTransformers are awesome!\nBye!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def __UpperCamelCase (self , lowercase__ ): with ContextManagers([context_fr(), context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n""" ) @require_torch def __UpperCamelCase (self ): self.assertEqual(find_labels(lowerCamelCase__ ) , ["""labels"""] ) self.assertEqual(find_labels(lowerCamelCase__ ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(lowerCamelCase__ ) , ["""start_positions""", """end_positions"""] ) class __lowercase ( __lowerCAmelCase): """simple docstring""" pass self.assertEqual(find_labels(lowerCamelCase__ ) , ["""labels"""] ) @require_tf def __UpperCamelCase (self ): self.assertEqual(find_labels(lowerCamelCase__ ) , ["""labels"""] ) self.assertEqual(find_labels(lowerCamelCase__ ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(lowerCamelCase__ ) , ["""start_positions""", """end_positions"""] ) class __lowercase ( __lowerCAmelCase): """simple docstring""" pass self.assertEqual(find_labels(lowerCamelCase__ ) , ["""labels"""] ) @require_flax def __UpperCamelCase (self ): self.assertEqual(find_labels(lowerCamelCase__ ) , [] ) self.assertEqual(find_labels(lowerCamelCase__ ) , [] ) self.assertEqual(find_labels(lowerCamelCase__ ) , [] ) class __lowercase ( __lowerCAmelCase): """simple docstring""" pass self.assertEqual(find_labels(lowerCamelCase__ ) , [] )
717
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: a_ = None a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} a_ = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } a_ = { '''facebook/mbart-large-en-ro''': 1024, '''facebook/mbart-large-cc25''': 1024, } # fmt: off a_ = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Dict = VOCAB_FILES_NAMES _A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _A : str = ["""input_ids""", """attention_mask"""] _A : Tuple = MBartTokenizer _A : List[int] = [] _A : List[int] = [] def __init__(self , lowercase__=None , lowercase__=None , lowercase__="<s>" , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<mask>" , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ , ): # Mask token behave like a normal word, i.e. include the space before it snake_case_ : int = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token super().__init__( vocab_file=lowercase__ , tokenizer_file=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , unk_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , src_lang=lowercase__ , tgt_lang=lowercase__ , additional_special_tokens=lowercase__ , **lowercase__ , ) snake_case_ : Dict = vocab_file snake_case_ : Optional[int] = False if not self.vocab_file else True snake_case_ : Optional[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) snake_case_ : Any = { lang_code: self.convert_tokens_to_ids(lowercase__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } snake_case_ : Tuple = src_lang if src_lang is not None else """en_XX""" snake_case_ : Tuple = self.convert_tokens_to_ids(self._src_lang ) snake_case_ : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __UpperCamelCase (self ): return self._src_lang @src_lang.setter def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): snake_case_ : List[Any] = [self.sep_token_id] snake_case_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , **lowercase__ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) snake_case_ : int = src_lang snake_case_ : List[str] = self(lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , **lowercase__ ) snake_case_ : List[str] = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Union[str, Any] = tgt_lang_id return inputs def __UpperCamelCase (self , lowercase__ , lowercase__ = "en_XX" , lowercase__ = None , lowercase__ = "ro_RO" , **lowercase__ , ): snake_case_ : List[str] = src_lang snake_case_ : int = tgt_lang return super().prepare_seqaseq_batch(lowercase__ , lowercase__ , **lowercase__ ) def __UpperCamelCase (self ): return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCamelCase (self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Tuple = [] snake_case_ : List[Any] = [self.eos_token_id, self.cur_lang_code] snake_case_ : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Optional[int] = [] snake_case_ : Optional[Any] = [self.eos_token_id, self.cur_lang_code] snake_case_ : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ : int = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowercase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory.' ) return snake_case_ : List[str] = os.path.join( lowercase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ): copyfile(self.vocab_file , lowercase__ ) return (out_vocab_file,)
48
0
"""simple docstring""" class __lowercase : """simple docstring""" def __init__(self , lowercase__ ): snake_case_ : List[Any] = size snake_case_ : Tuple = [0] * size snake_case_ : Any = [0] * size @staticmethod def __UpperCamelCase (lowercase__ ): return index | (index + 1) @staticmethod def __UpperCamelCase (lowercase__ ): return (index & (index + 1)) - 1 def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : int = value while index < self.size: snake_case_ : Union[str, Any] = self.get_prev(lowercase__ ) + 1 if current_left_border == index: snake_case_ : Any = value else: snake_case_ : List[Any] = max(lowercase__ , lowercase__ , lowercase__ ) snake_case_ : List[Any] = self.get_next(lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): right -= 1 # Because of right is exclusive snake_case_ : Union[str, Any] = 0 while left <= right: snake_case_ : Union[str, Any] = self.get_prev(lowercase__ ) if left <= current_left: snake_case_ : str = max(lowercase__ , self.tree[right] ) snake_case_ : str = current_left else: snake_case_ : List[Any] = max(lowercase__ , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
718
"""simple docstring""" import argparse import hashlib # hashlib is only used inside the Test class import struct class __lowercase : """simple docstring""" def __init__(self , lowercase__ ): snake_case_ : Union[str, Any] = data snake_case_ : List[str] = [0X6_7_4_5_2_3_0_1, 0Xe_f_c_d_a_b_8_9, 0X9_8_b_a_d_c_f_e, 0X1_0_3_2_5_4_7_6, 0Xc_3_d_2_e_1_f_0] @staticmethod def __UpperCamelCase (lowercase__ , lowercase__ ): return ((n << b) | (n >> (32 - b))) & 0Xf_f_f_f_f_f_f_f def __UpperCamelCase (self ): snake_case_ : Any = B"""\x80""" + B"""\x00""" * (63 - (len(self.data ) + 8) % 64) snake_case_ : Tuple = self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def __UpperCamelCase (self ): return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = list(struct.unpack(""">16L""" , lowercase__ ) ) + [0] * 64 for i in range(16 , 80 ): snake_case_ : Dict = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def __UpperCamelCase (self ): snake_case_ : List[Any] = self.padding() snake_case_ : Any = self.split_blocks() for block in self.blocks: snake_case_ : Any = self.expand_block(lowercase__ ) snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = self.h for i in range(0 , 80 ): if 0 <= i < 20: snake_case_ : Optional[Any] = (b & c) | ((~b) & d) snake_case_ : List[str] = 0X5_a_8_2_7_9_9_9 elif 20 <= i < 40: snake_case_ : Union[str, Any] = b ^ c ^ d snake_case_ : Tuple = 0X6_e_d_9_e_b_a_1 elif 40 <= i < 60: snake_case_ : str = (b & c) | (b & d) | (c & d) snake_case_ : List[str] = 0X8_f_1_b_b_c_d_c elif 60 <= i < 80: snake_case_ : Tuple = b ^ c ^ d snake_case_ : str = 0Xc_a_6_2_c_1_d_6 snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Optional[Any] = ( self.rotate(lowercase__ , 5 ) + f + e + k + expanded_block[i] & 0Xf_f_f_f_f_f_f_f, a, self.rotate(lowercase__ , 30 ), c, d, ) snake_case_ : Any = ( self.h[0] + a & 0Xf_f_f_f_f_f_f_f, self.h[1] + b & 0Xf_f_f_f_f_f_f_f, self.h[2] + c & 0Xf_f_f_f_f_f_f_f, self.h[3] + d & 0Xf_f_f_f_f_f_f_f, self.h[4] + e & 0Xf_f_f_f_f_f_f_f, ) return ("{:08x}" * 5).format(*self.h ) def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Union[str, Any] = b"""Test String""" assert SHAaHash(SCREAMING_SNAKE_CASE__ ).final_hash() == hashlib.shaa(SCREAMING_SNAKE_CASE__ ).hexdigest() # noqa: S324 def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : int = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument("""--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) snake_case_ : Optional[int] = parser.parse_args() snake_case_ : Optional[int] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: snake_case_ : List[str] = f.read() else: snake_case_ : Dict = bytes(SCREAMING_SNAKE_CASE__ , """utf-8""" ) print(SHAaHash(SCREAMING_SNAKE_CASE__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
48
0
"""simple docstring""" import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class __lowercase ( lowercase_): """simple docstring""" def __init__(self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=99 , lowercase__=32 , lowercase__=5 , lowercase__=4 , lowercase__=37 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_12 , lowercase__=16 , lowercase__=2 , lowercase__=0.02 , lowercase__=3 , lowercase__=4 , lowercase__=None , ): snake_case_ : Union[str, Any] = parent snake_case_ : Optional[Any] = batch_size snake_case_ : str = seq_length snake_case_ : Dict = is_training snake_case_ : Union[str, Any] = use_input_mask snake_case_ : Tuple = use_token_type_ids snake_case_ : List[str] = use_labels snake_case_ : str = vocab_size snake_case_ : Optional[int] = hidden_size snake_case_ : int = num_hidden_layers snake_case_ : int = num_attention_heads snake_case_ : int = intermediate_size snake_case_ : List[Any] = hidden_act snake_case_ : Optional[int] = hidden_dropout_prob snake_case_ : Tuple = attention_probs_dropout_prob snake_case_ : Optional[Any] = max_position_embeddings snake_case_ : Tuple = type_vocab_size snake_case_ : List[Any] = type_sequence_label_size snake_case_ : Optional[int] = initializer_range snake_case_ : int = num_labels snake_case_ : Tuple = num_choices snake_case_ : int = scope def __UpperCamelCase (self ): snake_case_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Any = None if self.use_input_mask: snake_case_ : str = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : int = None snake_case_ : str = None snake_case_ : List[Any] = None if self.use_labels: snake_case_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ : int = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ : List[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase (self ): return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : Union[str, Any] = DistilBertModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() snake_case_ : Optional[int] = model(lowercase__ , lowercase__ ) snake_case_ : Union[str, Any] = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : Optional[int] = DistilBertForMaskedLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() snake_case_ : List[Any] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : List[Any] = DistilBertForQuestionAnswering(config=lowercase__ ) model.to(lowercase__ ) model.eval() snake_case_ : Optional[int] = model( lowercase__ , attention_mask=lowercase__ , start_positions=lowercase__ , end_positions=lowercase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : List[Any] = self.num_labels snake_case_ : int = DistilBertForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() snake_case_ : str = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : List[str] = self.num_labels snake_case_ : Union[str, Any] = DistilBertForTokenClassification(config=lowercase__ ) model.to(lowercase__ ) model.eval() snake_case_ : Optional[Any] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : Optional[int] = self.num_choices snake_case_ : int = DistilBertForMultipleChoice(config=lowercase__ ) model.to(lowercase__ ) model.eval() snake_case_ : List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ : str = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ : Optional[int] = model( lowercase__ , attention_mask=lowercase__ , labels=lowercase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase (self ): snake_case_ : Any = self.prepare_config_and_inputs() ((snake_case_) , (snake_case_) , (snake_case_) , (snake_case_) , (snake_case_) , (snake_case_)) : Optional[Any] = config_and_inputs snake_case_ : Union[str, Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __lowercase ( lowercase_ , lowercase_ , unittest.TestCase): """simple docstring""" _A : str = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) _A : List[str] = ( { '''feature-extraction''': DistilBertModel, '''fill-mask''': DistilBertForMaskedLM, '''question-answering''': DistilBertForQuestionAnswering, '''text-classification''': DistilBertForSequenceClassification, '''token-classification''': DistilBertForTokenClassification, '''zero-shot''': DistilBertForSequenceClassification, } if is_torch_available() else {} ) _A : List[str] = True _A : Dict = True _A : Optional[Any] = True _A : Any = True def __UpperCamelCase (self ): snake_case_ : str = DistilBertModelTester(self ) snake_case_ : Any = ConfigTester(self , config_class=lowercase__ , dim=37 ) def __UpperCamelCase (self ): self.config_tester.run_common_tests() def __UpperCamelCase (self ): snake_case_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowercase__ ) def __UpperCamelCase (self ): snake_case_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowercase__ ) def __UpperCamelCase (self ): snake_case_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowercase__ ) def __UpperCamelCase (self ): snake_case_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowercase__ ) @slow def __UpperCamelCase (self ): for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : int = DistilBertModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @slow @require_torch_gpu def __UpperCamelCase (self ): snake_case_ , snake_case_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return snake_case_ : Any = True snake_case_ : Union[str, Any] = model_class(config=lowercase__ ) snake_case_ : List[Any] = self._prepare_for_class(lowercase__ , lowercase__ ) snake_case_ : Union[str, Any] = torch.jit.trace( lowercase__ , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowercase__ , os.path.join(lowercase__ , """traced_model.pt""" ) ) snake_case_ : Tuple = torch.jit.load(os.path.join(lowercase__ , """traced_model.pt""" ) , map_location=lowercase__ ) loaded(inputs_dict["""input_ids"""].to(lowercase__ ) , inputs_dict["""attention_mask"""].to(lowercase__ ) ) @require_torch class __lowercase ( unittest.TestCase): """simple docstring""" @slow def __UpperCamelCase (self ): snake_case_ : Dict = DistilBertModel.from_pretrained("""distilbert-base-uncased""" ) snake_case_ : Tuple = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) snake_case_ : Dict = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): snake_case_ : int = model(lowercase__ , attention_mask=lowercase__ )[0] snake_case_ : int = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , lowercase__ ) snake_case_ : Dict = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowercase__ , atol=1e-4 ) )
719
"""simple docstring""" from manim import * class __lowercase ( _UpperCAmelCase): """simple docstring""" def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = Rectangle(height=0.5 , width=0.5 ) snake_case_ : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) snake_case_ : Optional[Any] = [mem.copy() for i in range(6 )] snake_case_ : str = [mem.copy() for i in range(6 )] snake_case_ : str = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : Any = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[str] = VGroup(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[Any] = Text("""CPU""" , font_size=24 ) snake_case_ : Tuple = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowercase__ ) snake_case_ : List[Any] = [mem.copy() for i in range(4 )] snake_case_ : Tuple = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[str] = Text("""GPU""" , font_size=24 ) snake_case_ : Any = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) gpu.move_to([-1, -1, 0] ) self.add(lowercase__ ) snake_case_ : Optional[Any] = [mem.copy() for i in range(6 )] snake_case_ : List[Any] = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : Dict = Text("""Model""" , font_size=24 ) snake_case_ : int = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) model.move_to([3, -1.0, 0] ) self.add(lowercase__ ) snake_case_ : Dict = [] for i, rect in enumerate(lowercase__ ): rect.set_stroke(lowercase__ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) snake_case_ : List[str] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowercase__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowercase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase__ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase__ , buff=0.0 ) self.add(lowercase__ ) cpu_targs.append(lowercase__ ) snake_case_ : List[str] = [mem.copy() for i in range(6 )] snake_case_ : List[str] = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : str = Text("""Loaded Checkpoint""" , font_size=24 ) snake_case_ : Any = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , aligned_edge=lowercase__ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) snake_case_ : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) snake_case_ : Union[str, Any] = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowercase__ , lowercase__ ) snake_case_ : List[Any] = MarkupText( f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(lowercase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) snake_case_ : List[Any] = MarkupText( f'Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowercase__ ) , Write(lowercase__ ) ) self.play(Write(lowercase__ , run_time=1 ) , Create(lowercase__ , run_time=1 ) ) snake_case_ : Optional[int] = [] snake_case_ : List[str] = [] for i, rect in enumerate(lowercase__ ): snake_case_ : Optional[Any] = fill.copy().set_fill(lowercase__ , opacity=0.7 ) target.move_to(lowercase__ ) first_animations.append(GrowFromCenter(lowercase__ , run_time=1 ) ) snake_case_ : List[Any] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(lowercase__ , run_time=1.5 ) ) self.play(*lowercase__ ) self.play(*lowercase__ ) self.wait()
48
0
"""simple docstring""" import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __lowercase ( _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : str = RoCBertTokenizer _A : Any = None _A : Optional[int] = False _A : Optional[Any] = True _A : Tuple = filter_non_english def __UpperCamelCase (self ): super().setUp() snake_case_ : Dict = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """你""", """好""", """是""", """谁""", """a""", """b""", """c""", """d"""] snake_case_ : str = {} snake_case_ : int = {} for i, value in enumerate(lowercase__ ): snake_case_ : int = i snake_case_ : Optional[int] = i snake_case_ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case_ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_shape_file"""] ) snake_case_ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_pronunciation_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.word_shape_file , """w""" , encoding="""utf-8""" ) as word_shape_writer: json.dump(lowercase__ , lowercase__ , ensure_ascii=lowercase__ ) with open(self.word_pronunciation_file , """w""" , encoding="""utf-8""" ) as word_pronunciation_writer: json.dump(lowercase__ , lowercase__ , ensure_ascii=lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) snake_case_ : List[Any] = tokenizer.tokenize("""你好[SEP]你是谁""" ) self.assertListEqual(lowercase__ , ["""你""", """好""", """[SEP]""", """你""", """是""", """谁"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(lowercase__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(lowercase__ ) , [5, 6, 2, 5, 7, 8] ) def __UpperCamelCase (self ): snake_case_ : Dict = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def __UpperCamelCase (self ): snake_case_ : str = RoCBertBasicTokenizer(do_lower_case=lowercase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def __UpperCamelCase (self ): snake_case_ : List[str] = RoCBertBasicTokenizer(do_lower_case=lowercase__ , strip_accents=lowercase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def __UpperCamelCase (self ): snake_case_ : str = RoCBertBasicTokenizer(do_lower_case=lowercase__ , strip_accents=lowercase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def __UpperCamelCase (self ): snake_case_ : List[str] = RoCBertBasicTokenizer(do_lower_case=lowercase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def __UpperCamelCase (self ): snake_case_ : List[str] = RoCBertBasicTokenizer(do_lower_case=lowercase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def __UpperCamelCase (self ): snake_case_ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=lowercase__ , strip_accents=lowercase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def __UpperCamelCase (self ): snake_case_ : Any = RoCBertBasicTokenizer(do_lower_case=lowercase__ , strip_accents=lowercase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def __UpperCamelCase (self ): snake_case_ : Dict = RoCBertBasicTokenizer(do_lower_case=lowercase__ , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def __UpperCamelCase (self ): snake_case_ : List[Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] snake_case_ : Union[str, Any] = {} for i, token in enumerate(lowercase__ ): snake_case_ : str = i snake_case_ : int = RoCBertWordpieceTokenizer(vocab=lowercase__ , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) def __UpperCamelCase (self ): self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def __UpperCamelCase (self ): self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def __UpperCamelCase (self ): self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def __UpperCamelCase (self ): snake_case_ : List[str] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowercase__ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) if self.test_rust_tokenizer: snake_case_ : List[str] = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(lowercase__ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) def __UpperCamelCase (self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): snake_case_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) snake_case_ : List[str] = f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' snake_case_ : Union[str, Any] = tokenizer_r.encode_plus( lowercase__ , return_attention_mask=lowercase__ , return_token_type_ids=lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ , ) snake_case_ : List[str] = tokenizer_r.do_lower_case if hasattr(lowercase__ , """do_lower_case""" ) else False snake_case_ : Tuple = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""] ) def __UpperCamelCase (self ): snake_case_ : Dict = ["""的""", """人""", """有"""] snake_case_ : Optional[int] = """""".join(lowercase__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): snake_case_ : int = True snake_case_ : int = self.tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) snake_case_ : List[str] = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) snake_case_ : Any = tokenizer_p.encode(lowercase__ , add_special_tokens=lowercase__ ) snake_case_ : Tuple = tokenizer_r.encode(lowercase__ , add_special_tokens=lowercase__ ) snake_case_ : Any = tokenizer_r.convert_ids_to_tokens(lowercase__ ) snake_case_ : Dict = tokenizer_p.convert_ids_to_tokens(lowercase__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowercase__ , lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : Dict = False snake_case_ : int = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) snake_case_ : Optional[int] = self.tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) snake_case_ : Union[str, Any] = tokenizer_r.encode(lowercase__ , add_special_tokens=lowercase__ ) snake_case_ : Tuple = tokenizer_p.encode(lowercase__ , add_special_tokens=lowercase__ ) snake_case_ : int = tokenizer_r.convert_ids_to_tokens(lowercase__ ) snake_case_ : Tuple = tokenizer_p.convert_ids_to_tokens(lowercase__ ) # it is expected that only the first Chinese character is not preceded by "##". snake_case_ : Optional[Any] = [ f'##{token}' if idx != 0 else token for idx, token in enumerate(lowercase__ ) ] self.assertListEqual(lowercase__ , lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) @slow def __UpperCamelCase (self ): snake_case_ : Optional[int] = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) snake_case_ : str = tokenizer.encode("""你好""" , add_special_tokens=lowercase__ ) snake_case_ : str = tokenizer.encode("""你是谁""" , add_special_tokens=lowercase__ ) snake_case_ : Optional[int] = tokenizer.build_inputs_with_special_tokens(lowercase__ ) snake_case_ : Any = tokenizer.build_inputs_with_special_tokens(lowercase__ , lowercase__ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def __UpperCamelCase (self ): snake_case_ : List[str] = self.get_tokenizers(do_lower_case=lowercase__ ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case_ : Tuple = """你好,你是谁""" snake_case_ : Union[str, Any] = tokenizer.tokenize(lowercase__ ) snake_case_ : int = tokenizer.convert_tokens_to_ids(lowercase__ ) snake_case_ : Optional[Any] = tokenizer.convert_tokens_to_shape_ids(lowercase__ ) snake_case_ : Tuple = tokenizer.convert_tokens_to_pronunciation_ids(lowercase__ ) snake_case_ : List[Any] = tokenizer.prepare_for_model( lowercase__ , lowercase__ , lowercase__ , add_special_tokens=lowercase__ ) snake_case_ : Any = tokenizer.encode_plus(lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(lowercase__ , lowercase__ )
720
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" snake_case_ : Union[str, Any] = 0 if start < end: snake_case_ : Union[str, Any] = randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = a[end] snake_case_ : Dict = a[pivot] snake_case_ : Any = temp snake_case_ , snake_case_ : Dict = _in_place_partition(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , p - 1 ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE__ , p + 1 , SCREAMING_SNAKE_CASE__ ) return count def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" snake_case_ : Tuple = 0 snake_case_ : List[Any] = randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : Dict = a[end] snake_case_ : List[Any] = a[pivot] snake_case_ : Optional[Any] = temp snake_case_ : List[str] = start - 1 for index in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value snake_case_ : Any = new_pivot_index + 1 snake_case_ : Tuple = a[new_pivot_index] snake_case_ : Optional[int] = a[index] snake_case_ : Tuple = temp snake_case_ : Union[str, Any] = a[new_pivot_index + 1] snake_case_ : Union[str, Any] = a[end] snake_case_ : Union[str, Any] = temp return new_pivot_index + 1, count a_ = TemporaryFile() a_ = 100 # 1000 elements are to be sorted a_ , a_ = 0, 1 # mean and standard deviation a_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array a_ = np.load(outfile) a_ = len(M) - 1 a_ = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
48
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a_ = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['''DeiTFeatureExtractor'''] a_ = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
721
"""simple docstring""" import random def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : bool = False ): """simple docstring""" snake_case_ : dict = {i: [] for i in range(SCREAMING_SNAKE_CASE__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(SCREAMING_SNAKE_CASE__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(i + 1 , SCREAMING_SNAKE_CASE__ ): if random.random() < probability: graph[i].append(SCREAMING_SNAKE_CASE__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(SCREAMING_SNAKE_CASE__ ) return graph def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" return { i: [j for j in range(SCREAMING_SNAKE_CASE__ ) if i != j] for i in range(SCREAMING_SNAKE_CASE__ ) } if __name__ == "__main__": import doctest doctest.testmod()
48
0
"""simple docstring""" import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers a_ = '''python tqdm regex requests packaging filelock numpy tokenizers'''.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('''dataclasses''') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('''importlib_metadata''') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any=None ): """simple docstring""" require_version(deps[pkg] , SCREAMING_SNAKE_CASE__ )
700
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json''' ), } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """dpr""" def __init__(self , lowercase__=3_05_22 , lowercase__=7_68 , lowercase__=12 , lowercase__=12 , lowercase__=30_72 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_12 , lowercase__=2 , lowercase__=0.02 , lowercase__=1e-12 , lowercase__=0 , lowercase__="absolute" , lowercase__ = 0 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , **lowercase__ ) snake_case_ : List[Any] = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : Tuple = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : int = hidden_act snake_case_ : Dict = intermediate_size snake_case_ : int = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : str = max_position_embeddings snake_case_ : List[str] = type_vocab_size snake_case_ : List[str] = initializer_range snake_case_ : Optional[int] = layer_norm_eps snake_case_ : Union[str, Any] = projection_dim snake_case_ : str = position_embedding_type
48
0
"""simple docstring""" from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS a_ = logging.get_logger(__name__) a_ = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, '''constant''': get_constant_schedule, '''constant_w_warmup''': get_constant_schedule_with_warmup, } class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self , lowercase__=None , lowercase__=None , *lowercase__ , **lowercase__ ): super().__init__(*lowercase__ , **lowercase__ ) if config is None: assert isinstance(self.model , lowercase__ ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f' {self.model.__class__}' ) snake_case_ : Optional[int] = self.model.config else: snake_case_ : Optional[int] = config snake_case_ : Any = data_args snake_case_ : Union[str, Any] = self.config.tgt_vocab_size if isinstance(self.config , lowercase__ ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f'The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for' """ padding..""" ) if self.args.label_smoothing == 0: snake_case_ : Optional[int] = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss snake_case_ : Optional[int] = label_smoothed_nll_loss def __UpperCamelCase (self , lowercase__ ): if self.optimizer is None: snake_case_ : str = ["""bias""", """LayerNorm.weight"""] snake_case_ : str = [ { """params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], """weight_decay""": self.args.weight_decay, }, { """params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] snake_case_ : Tuple = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: snake_case_ : Dict = Adafactor snake_case_ : List[Any] = {"""scale_parameter""": False, """relative_step""": False} else: snake_case_ : Optional[int] = AdamW snake_case_ : Tuple = { """betas""": (self.args.adam_betaa, self.args.adam_betaa), """eps""": self.args.adam_epsilon, } snake_case_ : int = self.args.learning_rate if self.sharded_ddp: snake_case_ : str = OSS( params=lowercase__ , optim=lowercase__ , **lowercase__ , ) else: snake_case_ : Any = optimizer_cls(lowercase__ , **lowercase__ ) if self.lr_scheduler is None: snake_case_ : Optional[Any] = self._get_lr_scheduler(lowercase__ ) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : str = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": snake_case_ : Tuple = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": snake_case_ : Union[str, Any] = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: snake_case_ : Optional[Any] = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=lowercase__ ) return scheduler def __UpperCamelCase (self ): if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token snake_case_ : int = model(**lowercase__ , use_cache=lowercase__ )[0] snake_case_ : Dict = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models snake_case_ : Union[str, Any] = model(**lowercase__ , labels=lowercase__ , use_cache=lowercase__ )[:2] else: # compute label smoothed loss snake_case_ : int = model(**lowercase__ , use_cache=lowercase__ )[0] snake_case_ : Optional[int] = torch.nn.functional.log_softmax(lowercase__ , dim=-1 ) snake_case_ : Any = self.loss_fn(lowercase__ , lowercase__ , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : Tuple = inputs.pop("""labels""" ) snake_case_ : Union[str, Any] = self._compute_loss(lowercase__ , lowercase__ , lowercase__ ) return loss def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , ): snake_case_ : int = self._prepare_inputs(lowercase__ ) snake_case_ : Dict = { """max_length""": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, """num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: snake_case_ : int = self.model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , **lowercase__ , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: snake_case_ : Optional[Any] = self._pad_tensors_to_max_len(lowercase__ , gen_kwargs["""max_length"""] ) snake_case_ : int = inputs.pop("""labels""" ) with torch.no_grad(): # compute loss on predict data snake_case_ : str = self._compute_loss(lowercase__ , lowercase__ , lowercase__ ) snake_case_ : List[Any] = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) snake_case_ : str = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: snake_case_ : Optional[Any] = self._pad_tensors_to_max_len(lowercase__ , gen_kwargs["""max_length"""] ) return (loss, logits, labels) def __UpperCamelCase (self , lowercase__ , lowercase__ ): # If PAD token is not defined at least EOS token has to be defined snake_case_ : Tuple = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" f' padded to `max_length`={max_length}' ) snake_case_ : Dict = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) snake_case_ : List[Any] = tensor return padded_tensor
701
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm a_ = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex a_ = 10 a_ = 256 def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" if len(SCREAMING_SNAKE_CASE__ ) < MIN_NUM_TOKENS: return None snake_case_ : Union[str, Any] = MinHash(num_perm=SCREAMING_SNAKE_CASE__ ) for token in set(SCREAMING_SNAKE_CASE__ ): min_hash.update(token.encode() ) return min_hash def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" return {t for t in NON_ALPHA.split(SCREAMING_SNAKE_CASE__ ) if len(t.strip() ) > 0} class __lowercase : """simple docstring""" def __init__(self , *, lowercase__ = 0.85 , ): snake_case_ : Tuple = duplication_jaccard_threshold snake_case_ : Optional[Any] = NUM_PERM snake_case_ : Tuple = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) snake_case_ : List[Any] = defaultdict(lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : int = self._index.query(lowercase__ ) if code_key in self._index.keys: print(f'Duplicate key {code_key}' ) return self._index.insert(lowercase__ , lowercase__ ) if len(lowercase__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowercase__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(lowercase__ ) def __UpperCamelCase (self ): snake_case_ : str = [] for base, duplicates in self._duplicate_clusters.items(): snake_case_ : Optional[Any] = [base] + list(lowercase__ ) # reformat the cluster to be a list of dict snake_case_ : Any = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(lowercase__ ) return duplicate_clusters def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = self.get_duplicate_clusters() with open(lowercase__ , """w""" ) as f: json.dump(lowercase__ , lowercase__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ , snake_case_ : str = element snake_case_ : Tuple = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] ): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(SCREAMING_SNAKE_CASE__ , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ): if data is not None: yield data def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] , SCREAMING_SNAKE_CASE__ : float ): """simple docstring""" snake_case_ : int = DuplicationIndex(duplication_jaccard_threshold=SCREAMING_SNAKE_CASE__ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(SCREAMING_SNAKE_CASE__ ) ) , max_queue_size=1_0_0 ) ): di.add(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : int = get_tokens(SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = get_tokens(SCREAMING_SNAKE_CASE__ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) a_ = None def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Optional[Any] = [] for elementa in cluster: snake_case_ : Union[str, Any] = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: snake_case_ : Any = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) >= jaccard_threshold: elementa["copies"] += 1 break else: snake_case_ : Union[str, Any] = 1 extremes.append(SCREAMING_SNAKE_CASE__ ) return extremes def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" global _shared_dataset snake_case_ : str = dataset snake_case_ : int = [] snake_case_ : Optional[int] = partial(_find_cluster_extremes_shared , jaccard_threshold=SCREAMING_SNAKE_CASE__ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) , total=len(SCREAMING_SNAKE_CASE__ ) , ): extremes_list.append(SCREAMING_SNAKE_CASE__ ) return extremes_list def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] , SCREAMING_SNAKE_CASE__ : float = 0.85 ): """simple docstring""" snake_case_ : List[str] = make_duplicate_clusters(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : str = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} snake_case_ : str = {} snake_case_ : Dict = find_extremes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for extremes in extremes_clusters: for element in extremes: snake_case_ : int = element snake_case_ : Optional[int] = duplicate_indices - set(extreme_dict.keys() ) snake_case_ : List[Any] = dataset.filter(lambda SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : idx not in remove_indices , with_indices=SCREAMING_SNAKE_CASE__ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: snake_case_ : List[Any] = element["""base_index"""] in extreme_dict if element["is_extreme"]: snake_case_ : str = extreme_dict[element["""base_index"""]]["""copies"""] print(f'Original dataset size: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Number of duplicate clusters: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Files in duplicate cluster: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Unique files in duplicate cluster: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Filtered dataset size: {len(SCREAMING_SNAKE_CASE__ )}' ) return ds_filter, duplicate_clusters
48
0
"""simple docstring""" import random def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : bool = False ): """simple docstring""" snake_case_ : dict = {i: [] for i in range(SCREAMING_SNAKE_CASE__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(SCREAMING_SNAKE_CASE__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(i + 1 , SCREAMING_SNAKE_CASE__ ): if random.random() < probability: graph[i].append(SCREAMING_SNAKE_CASE__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(SCREAMING_SNAKE_CASE__ ) return graph def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" return { i: [j for j in range(SCREAMING_SNAKE_CASE__ ) if i != j] for i in range(SCREAMING_SNAKE_CASE__ ) } if __name__ == "__main__": import doctest doctest.testmod()
702
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) a_ = logging.getLogger(__name__) if __name__ == "__main__": a_ = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=30522, type=int) a_ = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, '''rb''') as fp: a_ = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') a_ = Counter() for tk_ids in data: counter.update(tk_ids) a_ = [0] * args.vocab_size for k, v in counter.items(): a_ = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
48
0
from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class __lowercase : """simple docstring""" def __init__(self , lowercase__ , ): snake_case_ : Tuple = parent snake_case_ : int = 13 snake_case_ : Dict = 7 snake_case_ : int = True snake_case_ : Union[str, Any] = True snake_case_ : int = False snake_case_ : Any = True snake_case_ : Any = 99 snake_case_ : Any = 32 snake_case_ : Any = 2 snake_case_ : Any = 4 snake_case_ : str = 37 snake_case_ : Optional[Any] = """gelu""" snake_case_ : Any = 0.1 snake_case_ : Union[str, Any] = 0.1 snake_case_ : Optional[int] = 5_12 snake_case_ : Any = 16 snake_case_ : Optional[int] = 2 snake_case_ : Optional[int] = 0.02 snake_case_ : List[str] = 3 snake_case_ : List[str] = 4 snake_case_ : List[str] = None def __UpperCamelCase (self ): snake_case_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Any = None if self.use_input_mask: snake_case_ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : Union[str, Any] = None snake_case_ : str = None snake_case_ : Optional[Any] = None if self.use_labels: snake_case_ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ : List[str] = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ : int = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : List[str] = TFDistilBertModel(config=lowercase__ ) snake_case_ : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} snake_case_ : List[Any] = model(lowercase__ ) snake_case_ : Optional[Any] = [input_ids, input_mask] snake_case_ : Dict = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : str = TFDistilBertForMaskedLM(config=lowercase__ ) snake_case_ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} snake_case_ : Optional[Any] = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : Any = TFDistilBertForQuestionAnswering(config=lowercase__ ) snake_case_ : Union[str, Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, } snake_case_ : int = model(lowercase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : Optional[Any] = self.num_labels snake_case_ : Any = TFDistilBertForSequenceClassification(lowercase__ ) snake_case_ : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask} snake_case_ : Optional[int] = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : int = self.num_choices snake_case_ : Union[str, Any] = TFDistilBertForMultipleChoice(lowercase__ ) snake_case_ : List[str] = tf.tile(tf.expand_dims(lowercase__ , 1 ) , (1, self.num_choices, 1) ) snake_case_ : Any = tf.tile(tf.expand_dims(lowercase__ , 1 ) , (1, self.num_choices, 1) ) snake_case_ : List[str] = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, } snake_case_ : Union[str, Any] = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : Union[str, Any] = self.num_labels snake_case_ : Any = TFDistilBertForTokenClassification(lowercase__ ) snake_case_ : int = {"""input_ids""": input_ids, """attention_mask""": input_mask} snake_case_ : Optional[Any] = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase (self ): snake_case_ : Optional[Any] = self.prepare_config_and_inputs() (snake_case_) : Dict = config_and_inputs snake_case_ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : List[str] = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) _A : Dict = ( { """feature-extraction""": TFDistilBertModel, """fill-mask""": TFDistilBertForMaskedLM, """question-answering""": TFDistilBertForQuestionAnswering, """text-classification""": TFDistilBertForSequenceClassification, """token-classification""": TFDistilBertForTokenClassification, """zero-shot""": TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) _A : Tuple = False _A : int = False def __UpperCamelCase (self ): snake_case_ : Any = TFDistilBertModelTester(self ) snake_case_ : Tuple = ConfigTester(self , config_class=lowercase__ , dim=37 ) def __UpperCamelCase (self ): self.config_tester.run_common_tests() def __UpperCamelCase (self ): snake_case_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowercase__ ) @slow def __UpperCamelCase (self ): for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): snake_case_ : List[Any] = TFDistilBertModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @require_tf class __lowercase ( unittest.TestCase): """simple docstring""" @slow def __UpperCamelCase (self ): snake_case_ : str = TFDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) snake_case_ : Optional[int] = tf.constant([[0, 1, 2, 3, 4, 5]] ) snake_case_ : Union[str, Any] = model(lowercase__ )[0] snake_case_ : int = [1, 6, 7_68] self.assertEqual(output.shape , lowercase__ ) snake_case_ : Optional[int] = tf.constant( [ [ [0.19261885, -0.13732955, 0.4119799], [0.22150156, -0.07422661, 0.39037204], [0.22756018, -0.0896414, 0.3701467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1e-4 )
703
"""simple docstring""" import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" snake_case_ : Optional[Any] = tmp_path / """cache""" snake_case_ : Optional[int] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : Tuple = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" snake_case_ : List[Any] = tmp_path / """cache""" snake_case_ : int = {"""text""": """string"""} snake_case_ : Any = features.copy() if features else default_expected_features snake_case_ : List[Any] = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : Dict = TextDatasetReader(SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : Union[str, Any] = tmp_path / """cache""" snake_case_ : Optional[Any] = {"""text""": """string"""} snake_case_ : Optional[int] = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , split=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" if issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : List[str] = text_path elif issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : str = [text_path] snake_case_ : List[str] = tmp_path / """cache""" snake_case_ : List[str] = {"""text""": """string"""} snake_case_ : Dict = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str]=("train",) ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for split in splits: snake_case_ : Dict = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" snake_case_ : int = tmp_path / """cache""" snake_case_ : List[str] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : Optional[Any] = TextDatasetReader({"""train""": text_path} , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Tuple = tmp_path / """cache""" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" snake_case_ : List[str] = {"""text""": """string"""} snake_case_ : int = features.copy() if features else default_expected_features snake_case_ : Tuple = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : str = TextDatasetReader({"""train""": text_path} , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" if split: snake_case_ : Union[str, Any] = {split: text_path} else: snake_case_ : Union[str, Any] = """train""" snake_case_ : int = {"""train""": text_path, """test""": text_path} snake_case_ : List[Any] = tmp_path / """cache""" snake_case_ : Tuple = {"""text""": """string"""} snake_case_ : int = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
48
0
"""simple docstring""" from typing import Any def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : dict , SCREAMING_SNAKE_CASE__ : dict , SCREAMING_SNAKE_CASE__ : dict , ): _validation( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) # Creates data structures and fill initial step snake_case_ : dict = {} snake_case_ : dict = {} for state in states_space: snake_case_ : str = observations_space[0] snake_case_ : Union[str, Any] = ( initial_probabilities[state] * emission_probabilities[state][observation] ) snake_case_ : int = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): snake_case_ : Union[str, Any] = observations_space[o] snake_case_ : Tuple = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function snake_case_ : Tuple = """""" snake_case_ : Any = -1 for k_state in states_space: snake_case_ : Optional[Any] = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: snake_case_ : Optional[Any] = probability snake_case_ : str = k_state # Update probabilities and pointers dicts snake_case_ : Optional[Any] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) snake_case_ : Any = arg_max # The final observation snake_case_ : Dict = observations_space[len(SCREAMING_SNAKE_CASE__ ) - 1] # argmax for given final observation snake_case_ : str = """""" snake_case_ : Tuple = -1 for k_state in states_space: snake_case_ : int = probabilities[(k_state, final_observation)] if probability > max_probability: snake_case_ : Dict = probability snake_case_ : List[Any] = k_state snake_case_ : Optional[int] = arg_max # Process pointers backwards snake_case_ : str = last_state snake_case_ : Dict = [] for o in range(len(SCREAMING_SNAKE_CASE__ ) - 1 , -1 , -1 ): result.append(SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = pointers[previous, observations_space[o]] result.reverse() return result def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , ): _validate_not_empty( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) _validate_lists(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _validate_dicts( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("""There's an empty parameter""" ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any ): _validate_list(SCREAMING_SNAKE_CASE__ , """observations_space""" ) _validate_list(SCREAMING_SNAKE_CASE__ , """states_space""" ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str ): if not isinstance(_object , SCREAMING_SNAKE_CASE__ ): snake_case_ : Optional[int] = f'{var_name} must be a list' raise ValueError(SCREAMING_SNAKE_CASE__ ) else: for x in _object: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : Dict = f'{var_name} must be a list of strings' raise ValueError(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , ): _validate_dict(SCREAMING_SNAKE_CASE__ , """initial_probabilities""" , SCREAMING_SNAKE_CASE__ ) _validate_nested_dict(SCREAMING_SNAKE_CASE__ , """transition_probabilities""" ) _validate_nested_dict(SCREAMING_SNAKE_CASE__ , """emission_probabilities""" ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str ): _validate_dict(_object , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for x in _object.values(): _validate_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : type , SCREAMING_SNAKE_CASE__ : bool = False ): if not isinstance(_object , SCREAMING_SNAKE_CASE__ ): snake_case_ : Optional[Any] = f'{var_name} must be a dict' raise ValueError(SCREAMING_SNAKE_CASE__ ) if not all(isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for x in _object ): snake_case_ : Optional[Any] = f'{var_name} all keys must be strings' raise ValueError(SCREAMING_SNAKE_CASE__ ) if not all(isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for x in _object.values() ): snake_case_ : Optional[Any] = """nested dictionary """ if nested else """""" snake_case_ : int = f'{var_name} {nested_text}all values must be {value_type.__name__}' raise ValueError(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": from doctest import testmod testmod()
704
"""simple docstring""" from copy import deepcopy class __lowercase : """simple docstring""" def __init__(self , lowercase__ = None , lowercase__ = None ): if arr is None and size is not None: snake_case_ : str = size snake_case_ : Optional[Any] = [0] * size elif arr is not None: self.init(lowercase__ ) else: raise ValueError("""Either arr or size must be specified""" ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Optional[Any] = len(lowercase__ ) snake_case_ : int = deepcopy(lowercase__ ) for i in range(1 , self.size ): snake_case_ : Optional[Any] = self.next_(lowercase__ ) if j < self.size: self.tree[j] += self.tree[i] def __UpperCamelCase (self ): snake_case_ : Dict = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): snake_case_ : Optional[int] = self.next_(lowercase__ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def __UpperCamelCase (lowercase__ ): return index + (index & (-index)) @staticmethod def __UpperCamelCase (lowercase__ ): return index - (index & (-index)) def __UpperCamelCase (self , lowercase__ , lowercase__ ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value snake_case_ : Tuple = self.next_(lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): self.add(lowercase__ , value - self.get(lowercase__ ) ) def __UpperCamelCase (self , lowercase__ ): if right == 0: return 0 snake_case_ : List[str] = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] snake_case_ : Optional[int] = self.prev(lowercase__ ) return result def __UpperCamelCase (self , lowercase__ , lowercase__ ): return self.prefix(lowercase__ ) - self.prefix(lowercase__ ) def __UpperCamelCase (self , lowercase__ ): return self.query(lowercase__ , index + 1 ) def __UpperCamelCase (self , lowercase__ ): value -= self.tree[0] if value < 0: return -1 snake_case_ : Tuple = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 snake_case_ : Tuple = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
48
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class __lowercase ( unittest.TestCase): """simple docstring""" _A : Optional[Any] = ViTImageProcessor if is_vision_available() else None @property def __UpperCamelCase (self ): return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase (self ): snake_case_ : List[str] = (3, 32, 1_28) snake_case_ : Any = tempfile.mkdtemp() # fmt: off snake_case_ : int = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on snake_case_ : int = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) snake_case_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowercase__ ) + """\n""" ) snake_case_ : Optional[int] = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 1_28}, } snake_case_ : Optional[Any] = os.path.join(self.tmpdirname , lowercase__ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(lowercase__ , lowercase__ ) def __UpperCamelCase (self , **lowercase__ ): return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def __UpperCamelCase (self , **lowercase__ ): return ViTImageProcessor.from_pretrained(self.tmpdirname , **lowercase__ ) def __UpperCamelCase (self ): shutil.rmtree(self.tmpdirname ) def __UpperCamelCase (self ): snake_case_ : Any = np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta ) snake_case_ : str = Image.fromarray(np.moveaxis(lowercase__ , 0 , -1 ) ) return image_input def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = self.get_tokenizer() snake_case_ : Any = self.get_image_processor() snake_case_ : List[Any] = MgpstrProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) processor.save_pretrained(self.tmpdirname ) snake_case_ : Any = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase__ ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , lowercase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : List[Any] = self.get_tokenizer() snake_case_ : Any = self.get_image_processor() snake_case_ : Optional[Any] = MgpstrProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) processor.save_pretrained(self.tmpdirname ) snake_case_ : List[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) snake_case_ : Optional[Any] = self.get_image_processor(do_normalize=lowercase__ , padding_value=1.0 ) snake_case_ : Dict = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowercase__ , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , lowercase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : List[str] = self.get_image_processor() snake_case_ : int = self.get_tokenizer() snake_case_ : int = MgpstrProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) snake_case_ : Any = self.prepare_image_inputs() snake_case_ : Optional[int] = image_processor(lowercase__ , return_tensors="""np""" ) snake_case_ : Union[str, Any] = processor(images=lowercase__ , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __UpperCamelCase (self ): snake_case_ : List[str] = self.get_image_processor() snake_case_ : Tuple = self.get_tokenizer() snake_case_ : List[str] = MgpstrProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) snake_case_ : Any = """test""" snake_case_ : str = processor(text=lowercase__ ) snake_case_ : Optional[Any] = tokenizer(lowercase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCamelCase (self ): snake_case_ : List[str] = self.get_image_processor() snake_case_ : Dict = self.get_tokenizer() snake_case_ : List[Any] = MgpstrProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) snake_case_ : Union[str, Any] = """test""" snake_case_ : Union[str, Any] = self.prepare_image_inputs() snake_case_ : Tuple = processor(text=lowercase__ , images=lowercase__ ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """labels"""] ) # test if it raises when no input is passed with pytest.raises(lowercase__ ): processor() def __UpperCamelCase (self ): snake_case_ : Optional[Any] = self.get_image_processor() snake_case_ : Union[str, Any] = self.get_tokenizer() snake_case_ : Union[str, Any] = MgpstrProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) snake_case_ : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] snake_case_ : str = processor.char_decode(lowercase__ ) snake_case_ : List[str] = tokenizer.batch_decode(lowercase__ ) snake_case_ : Optional[Any] = [seq.replace(""" """ , """""" ) for seq in decoded_tok] self.assertListEqual(lowercase__ , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Optional[Any] = self.get_image_processor() snake_case_ : List[Any] = self.get_tokenizer() snake_case_ : str = MgpstrProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) snake_case_ : List[str] = None snake_case_ : Optional[int] = self.prepare_image_inputs() snake_case_ : Optional[Any] = processor(text=lowercase__ , images=lowercase__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def __UpperCamelCase (self ): snake_case_ : List[Any] = self.get_image_processor() snake_case_ : List[str] = self.get_tokenizer() snake_case_ : Tuple = MgpstrProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) snake_case_ : Union[str, Any] = torch.randn(1 , 27 , 38 ) snake_case_ : Tuple = torch.randn(1 , 27 , 5_02_57 ) snake_case_ : str = torch.randn(1 , 27 , 3_05_22 ) snake_case_ : Tuple = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""] )
705
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : list ): """simple docstring""" snake_case_ : Optional[int] = len(SCREAMING_SNAKE_CASE__ ) for i in range(1 , SCREAMING_SNAKE_CASE__ ): snake_case_ : Tuple = collection[i] snake_case_ : Tuple = 0 snake_case_ : str = i - 1 while low <= high: snake_case_ : Optional[int] = (low + high) // 2 if val < collection[mid]: snake_case_ : List[str] = mid - 1 else: snake_case_ : str = mid + 1 for j in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , -1 ): snake_case_ : List[str] = collection[j - 1] snake_case_ : Any = val return collection if __name__ == "__main__": a_ = input('''Enter numbers separated by a comma:\n''').strip() a_ = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
48
0
"""simple docstring""" import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : Optional[Any] = RobertaPreLayerNormConfig.from_pretrained( SCREAMING_SNAKE_CASE__ , architectures=["""RobertaPreLayerNormForMaskedLM"""] ) # convert state_dict snake_case_ : Optional[Any] = torch.load(hf_hub_download(repo_id=SCREAMING_SNAKE_CASE__ , filename="""pytorch_model.bin""" ) ) snake_case_ : int = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("""roberta.""" ): snake_case_ : List[Any] = """roberta_prelayernorm.""" + tensor_key[len("""roberta.""" ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(""".self.LayerNorm.weight""" ) or tensor_key.endswith(""".self.LayerNorm.bias""" ): continue snake_case_ : Dict = tensor_value snake_case_ : Tuple = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=SCREAMING_SNAKE_CASE__ , config=SCREAMING_SNAKE_CASE__ , state_dict=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) # convert tokenizer snake_case_ : List[Any] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint-repo''', default=None, type=str, required=True, help='''Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) a_ = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
706
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Union[str, Any] = ["""image_processor""", """tokenizer"""] _A : str = """ChineseCLIPImageProcessor""" _A : Tuple = ("""BertTokenizer""", """BertTokenizerFast""") def __init__(self , lowercase__=None , lowercase__=None , **lowercase__ ): snake_case_ : Any = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowercase__ , ) snake_case_ : Optional[Any] = kwargs.pop("""feature_extractor""" ) snake_case_ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowercase__ , lowercase__ ) snake_case_ : Union[str, Any] = self.image_processor def __call__(self , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ ): if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: snake_case_ : Any = self.tokenizer(lowercase__ , return_tensors=lowercase__ , **lowercase__ ) if images is not None: snake_case_ : Tuple = self.image_processor(lowercase__ , return_tensors=lowercase__ , **lowercase__ ) if text is not None and images is not None: snake_case_ : List[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase__ ) , tensor_type=lowercase__ ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): return self.tokenizer.batch_decode(*lowercase__ , **lowercase__ ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): return self.tokenizer.decode(*lowercase__ , **lowercase__ ) @property def __UpperCamelCase (self ): snake_case_ : Optional[int] = self.tokenizer.model_input_names snake_case_ : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __UpperCamelCase (self ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowercase__ , ) return self.image_processor_class
48
0
"""simple docstring""" import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : int = RemBertConfig.from_json_file(SCREAMING_SNAKE_CASE__ ) print("""Building PyTorch model from configuration: {}""".format(str(SCREAMING_SNAKE_CASE__ ) ) ) snake_case_ : Any = RemBertModel(SCREAMING_SNAKE_CASE__ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Save pytorch-model print("""Save PyTorch model to {}""".format(SCREAMING_SNAKE_CASE__ ) ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--rembert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained RemBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) a_ = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
707
"""simple docstring""" import argparse import copy def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" snake_case_ : List[Any] = {} with open(SCREAMING_SNAKE_CASE__ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: snake_case_ : int = [] _list.append([line.split()[1], line.split()[2]] ) snake_case_ : Optional[Any] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: snake_case_ : str = [] _list.append([line.split()[0], line.split()[2]] ) snake_case_ : Optional[Any] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" with open(SCREAMING_SNAKE_CASE__ ) as f: snake_case_ : Optional[Any] = f.read(1 ) snake_case_ : Union[str, Any] = start_node snake_case_ : Dict = [] snake_case_ : Union[str, Any] = start_node snake_case_ : Tuple = 0 while visiting not in first_solution: snake_case_ : int = 1_0_0_0_0 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(SCREAMING_SNAKE_CASE__ ) and k[0] not in first_solution: snake_case_ : Union[str, Any] = k[1] snake_case_ : Any = k[0] first_solution.append(SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = distance_of_first_solution + int(SCREAMING_SNAKE_CASE__ ) snake_case_ : List[str] = best_node first_solution.append(SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[Any] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 snake_case_ : int = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0_0_0_0 ) return first_solution, distance_of_first_solution def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" snake_case_ : Union[str, Any] = [] for n in solution[1:-1]: snake_case_ : str = solution.index(SCREAMING_SNAKE_CASE__ ) for kn in solution[1:-1]: snake_case_ : Tuple = solution.index(SCREAMING_SNAKE_CASE__ ) if n == kn: continue snake_case_ : Optional[Any] = copy.deepcopy(SCREAMING_SNAKE_CASE__ ) snake_case_ : int = kn snake_case_ : Dict = n snake_case_ : Optional[int] = 0 for k in _tmp[:-1]: snake_case_ : Dict = _tmp[_tmp.index(SCREAMING_SNAKE_CASE__ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: snake_case_ : Dict = distance + int(i[1] ) _tmp.append(SCREAMING_SNAKE_CASE__ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) snake_case_ : Optional[Any] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda SCREAMING_SNAKE_CASE__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] ): """simple docstring""" snake_case_ : Dict = 1 snake_case_ : List[Any] = first_solution snake_case_ : List[Any] = [] snake_case_ : Optional[Any] = distance_of_first_solution snake_case_ : Dict = solution while count <= iters: snake_case_ : List[str] = find_neighborhood(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = 0 snake_case_ : List[Any] = neighborhood[index_of_best_solution] snake_case_ : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ ) - 1 snake_case_ : List[str] = False while not found: snake_case_ : Tuple = 0 while i < len(SCREAMING_SNAKE_CASE__ ): if best_solution[i] != solution[i]: snake_case_ : Optional[Any] = best_solution[i] snake_case_ : int = solution[i] break snake_case_ : List[str] = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) snake_case_ : Tuple = True snake_case_ : Dict = best_solution[:-1] snake_case_ : Tuple = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: snake_case_ : Tuple = cost snake_case_ : Union[str, Any] = solution else: snake_case_ : str = index_of_best_solution + 1 snake_case_ : Tuple = neighborhood[index_of_best_solution] if len(SCREAMING_SNAKE_CASE__ ) >= size: tabu_list.pop(0 ) snake_case_ : List[str] = count + 1 return best_solution_ever, best_cost def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any]=None ): """simple docstring""" snake_case_ : Tuple = generate_neighbours(args.File ) snake_case_ , snake_case_ : Optional[Any] = generate_first_solution( args.File , SCREAMING_SNAKE_CASE__ ) snake_case_ , snake_case_ : Dict = tabu_search( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , args.Iterations , args.Size , ) print(f'Best solution: {best_sol}, with total distance: {best_cost}.' ) if __name__ == "__main__": a_ = argparse.ArgumentParser(description='''Tabu Search''') parser.add_argument( '''-f''', '''--File''', type=str, help='''Path to the file containing the data''', required=True, ) parser.add_argument( '''-i''', '''--Iterations''', type=int, help='''How many iterations the algorithm should perform''', required=True, ) parser.add_argument( '''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True ) # Pass the arguments to main method main(parser.parse_args())
48
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig a_ = logging.get_logger(__name__) a_ = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Tuple = """dpt""" def __init__(self , lowercase__=7_68 , lowercase__=12 , lowercase__=12 , lowercase__=30_72 , lowercase__="gelu" , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.02 , lowercase__=1e-12 , lowercase__=3_84 , lowercase__=16 , lowercase__=3 , lowercase__=False , lowercase__=True , lowercase__=[2, 5, 8, 11] , lowercase__="project" , lowercase__=[4, 2, 1, 0.5] , lowercase__=[96, 1_92, 3_84, 7_68] , lowercase__=2_56 , lowercase__=-1 , lowercase__=False , lowercase__=True , lowercase__=0.4 , lowercase__=2_55 , lowercase__=0.1 , lowercase__=[1, 10_24, 24, 24] , lowercase__=[0, 1] , lowercase__=None , **lowercase__ , ): super().__init__(**lowercase__ ) snake_case_ : Any = hidden_size snake_case_ : List[Any] = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("""Initializing the config with a `BiT` backbone.""" ) snake_case_ : Tuple = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, } snake_case_ : Any = BitConfig(**lowercase__ ) elif isinstance(lowercase__ , lowercase__ ): logger.info("""Initializing the config with a `BiT` backbone.""" ) snake_case_ : List[Any] = BitConfig(**lowercase__ ) elif isinstance(lowercase__ , lowercase__ ): snake_case_ : str = backbone_config else: raise ValueError( f'backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.' ) snake_case_ : List[str] = backbone_featmap_shape snake_case_ : Any = neck_ignore_stages if readout_type != "project": raise ValueError("""Readout type must be 'project' when using `DPT-hybrid` mode.""" ) else: snake_case_ : Optional[int] = None snake_case_ : Dict = None snake_case_ : List[Any] = [] snake_case_ : Tuple = num_hidden_layers snake_case_ : Optional[Any] = num_attention_heads snake_case_ : Tuple = intermediate_size snake_case_ : Tuple = hidden_act snake_case_ : Optional[Any] = hidden_dropout_prob snake_case_ : Union[str, Any] = attention_probs_dropout_prob snake_case_ : int = initializer_range snake_case_ : Tuple = layer_norm_eps snake_case_ : Optional[int] = image_size snake_case_ : str = patch_size snake_case_ : Optional[Any] = num_channels snake_case_ : Union[str, Any] = qkv_bias snake_case_ : List[str] = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("""Readout_type must be one of ['ignore', 'add', 'project']""" ) snake_case_ : str = readout_type snake_case_ : List[Any] = reassemble_factors snake_case_ : Union[str, Any] = neck_hidden_sizes snake_case_ : List[Any] = fusion_hidden_size snake_case_ : Any = head_in_index snake_case_ : Tuple = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) snake_case_ : str = use_auxiliary_head snake_case_ : List[Any] = auxiliary_loss_weight snake_case_ : List[Any] = semantic_loss_ignore_index snake_case_ : Optional[Any] = semantic_classifier_dropout def __UpperCamelCase (self ): snake_case_ : Any = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: snake_case_ : Union[str, Any] = self.backbone_config.to_dict() snake_case_ : Tuple = self.__class__.model_type return output
708
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings a_ = r''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(_UpperCAmelCase) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """rag""" _A : Optional[Any] = True def __init__(self , lowercase__=None , lowercase__=True , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=" / " , lowercase__=" // " , lowercase__=5 , lowercase__=3_00 , lowercase__=7_68 , lowercase__=8 , lowercase__="wiki_dpr" , lowercase__="train" , lowercase__="compressed" , lowercase__=None , lowercase__=None , lowercase__=False , lowercase__=False , lowercase__=0.0 , lowercase__=True , lowercase__=False , lowercase__=False , lowercase__=False , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__( bos_token_id=lowercase__ , pad_token_id=lowercase__ , eos_token_id=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , prefix=lowercase__ , vocab_size=lowercase__ , **lowercase__ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" snake_case_ : List[Any] = kwargs.pop("""question_encoder""" ) snake_case_ : Tuple = question_encoder_config.pop("""model_type""" ) snake_case_ : List[str] = kwargs.pop("""generator""" ) snake_case_ : List[str] = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig snake_case_ : List[str] = AutoConfig.for_model(lowercase__ , **lowercase__ ) snake_case_ : Tuple = AutoConfig.for_model(lowercase__ , **lowercase__ ) snake_case_ : int = reduce_loss snake_case_ : Optional[int] = label_smoothing snake_case_ : Dict = exclude_bos_score snake_case_ : Union[str, Any] = do_marginalize snake_case_ : Union[str, Any] = title_sep snake_case_ : int = doc_sep snake_case_ : int = n_docs snake_case_ : List[str] = max_combined_length snake_case_ : Tuple = dataset snake_case_ : int = dataset_split snake_case_ : str = index_name snake_case_ : List[str] = retrieval_vector_size snake_case_ : Dict = retrieval_batch_size snake_case_ : str = passages_path snake_case_ : Union[str, Any] = index_path snake_case_ : Tuple = use_dummy_dataset snake_case_ : Dict = output_retrieved snake_case_ : str = do_deduplication snake_case_ : Any = use_cache if self.forced_eos_token_id is None: snake_case_ : Any = getattr(self.generator , """forced_eos_token_id""" , lowercase__ ) @classmethod def __UpperCamelCase (cls , lowercase__ , lowercase__ , **lowercase__ ): return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Optional[Any] = copy.deepcopy(self.__dict__ ) snake_case_ : Any = self.question_encoder.to_dict() snake_case_ : Dict = self.generator.to_dict() snake_case_ : Union[str, Any] = self.__class__.model_type return output
48
0
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[Any] = ["""image_processor""", """tokenizer"""] _A : str = """BlipImageProcessor""" _A : List[Any] = """AutoTokenizer""" def __init__(self , lowercase__ , lowercase__ ): snake_case_ : Any = False super().__init__(lowercase__ , lowercase__ ) snake_case_ : List[Any] = self.image_processor def __call__(self , lowercase__ = None , lowercase__ = None , lowercase__ = True , lowercase__ = False , lowercase__ = None , lowercase__ = None , lowercase__ = 0 , lowercase__ = None , lowercase__ = None , lowercase__ = False , lowercase__ = False , lowercase__ = False , lowercase__ = False , lowercase__ = False , lowercase__ = True , lowercase__ = None , **lowercase__ , ): if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: snake_case_ : Optional[Any] = self.tokenizer snake_case_ : int = self.tokenizer( text=lowercase__ , add_special_tokens=lowercase__ , padding=lowercase__ , truncation=lowercase__ , max_length=lowercase__ , stride=lowercase__ , pad_to_multiple_of=lowercase__ , return_attention_mask=lowercase__ , return_overflowing_tokens=lowercase__ , return_special_tokens_mask=lowercase__ , return_offsets_mapping=lowercase__ , return_token_type_ids=lowercase__ , return_length=lowercase__ , verbose=lowercase__ , return_tensors=lowercase__ , **lowercase__ , ) return text_encoding # add pixel_values snake_case_ : int = self.image_processor(lowercase__ , return_tensors=lowercase__ ) if text is not None: snake_case_ : Any = self.tokenizer( text=lowercase__ , add_special_tokens=lowercase__ , padding=lowercase__ , truncation=lowercase__ , max_length=lowercase__ , stride=lowercase__ , pad_to_multiple_of=lowercase__ , return_attention_mask=lowercase__ , return_overflowing_tokens=lowercase__ , return_special_tokens_mask=lowercase__ , return_offsets_mapping=lowercase__ , return_token_type_ids=lowercase__ , return_length=lowercase__ , verbose=lowercase__ , return_tensors=lowercase__ , **lowercase__ , ) else: snake_case_ : Union[str, Any] = None if text_encoding is not None: encoding_image_processor.update(lowercase__ ) return encoding_image_processor def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): return self.tokenizer.batch_decode(*lowercase__ , **lowercase__ ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): return self.tokenizer.decode(*lowercase__ , **lowercase__ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def __UpperCamelCase (self ): snake_case_ : str = self.tokenizer.model_input_names snake_case_ : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
709
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """upernet""" def __init__(self , lowercase__=None , lowercase__=5_12 , lowercase__=0.02 , lowercase__=[1, 2, 3, 6] , lowercase__=True , lowercase__=0.4 , lowercase__=3_84 , lowercase__=2_56 , lowercase__=1 , lowercase__=False , lowercase__=2_55 , **lowercase__ , ): super().__init__(**lowercase__ ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) snake_case_ : List[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(lowercase__ , lowercase__ ): snake_case_ : Tuple = backbone_config.get("""model_type""" ) snake_case_ : List[str] = CONFIG_MAPPING[backbone_model_type] snake_case_ : List[Any] = config_class.from_dict(lowercase__ ) snake_case_ : List[Any] = backbone_config snake_case_ : Optional[Any] = hidden_size snake_case_ : Any = initializer_range snake_case_ : str = pool_scales snake_case_ : Dict = use_auxiliary_head snake_case_ : str = auxiliary_loss_weight snake_case_ : List[str] = auxiliary_in_channels snake_case_ : Optional[Any] = auxiliary_channels snake_case_ : Any = auxiliary_num_convs snake_case_ : List[Any] = auxiliary_concat_input snake_case_ : List[str] = loss_ignore_index def __UpperCamelCase (self ): snake_case_ : Dict = copy.deepcopy(self.__dict__ ) snake_case_ : Union[str, Any] = self.backbone_config.to_dict() snake_case_ : Any = self.__class__.model_type return output
48
0
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('''fixtures/test_sentencepiece.model''') a_ = {'''target_lang''': '''fi''', '''source_lang''': '''en'''} a_ = '''>>zh<<''' a_ = '''Helsinki-NLP/''' if is_torch_available(): a_ = '''pt''' elif is_tf_available(): a_ = '''tf''' else: a_ = '''jax''' @require_sentencepiece class __lowercase ( _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : str = MarianTokenizer _A : List[str] = False _A : List[str] = True def __UpperCamelCase (self ): super().setUp() snake_case_ : Optional[int] = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] snake_case_ : Any = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) snake_case_ : Any = Path(self.tmpdirname ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) snake_case_ : Optional[Any] = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase (self , **lowercase__ ): return MarianTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def __UpperCamelCase (self , lowercase__ ): return ( "This is a test", "This is a test", ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = """</s>""" snake_case_ : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__ ) , lowercase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__ ) , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(lowercase__ ) , 9 ) def __UpperCamelCase (self ): self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def __UpperCamelCase (self ): snake_case_ : Any = MarianTokenizer.from_pretrained(f'{ORG_NAME}opus-mt-en-de' ) snake_case_ : Tuple = en_de_tokenizer(["""I am a small frog"""] , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) snake_case_ : Dict = [38, 1_21, 14, 6_97, 3_88_48, 0] self.assertListEqual(lowercase__ , batch.input_ids[0] ) snake_case_ : Tuple = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(lowercase__ ) snake_case_ : str = [x.name for x in Path(lowercase__ ).glob("""*""" )] self.assertIn("""source.spm""" , lowercase__ ) MarianTokenizer.from_pretrained(lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = self.get_tokenizer() snake_case_ : List[str] = tok( ["""I am a small frog""" * 10_00, """I am a small frog"""] , padding=lowercase__ , truncation=lowercase__ , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(batch.input_ids.shape , (2, 5_12) ) def __UpperCamelCase (self ): snake_case_ : Tuple = self.get_tokenizer() snake_case_ : Tuple = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=lowercase__ , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def __UpperCamelCase (self ): # fmt: off snake_case_ : str = {"""input_ids""": [[4_34_95, 4_62, 20, 4_21_64, 13_69, 52, 4_64, 1_32, 17_03, 4_92, 13, 74_91, 3_89_99, 6, 8, 4_64, 1_32, 17_03, 4_92, 13, 46_69, 3_78_67, 13, 75_25, 27, 15_93, 9_88, 13, 3_39_72, 70_29, 6, 20, 82_51, 3_83, 2, 2_70, 58_66, 37_88, 2, 23_53, 82_51, 1_23_38, 2, 1_39_58, 3_87, 2, 36_29, 69_53, 1_88, 29_00, 2, 1_39_58, 80_11, 1_15_01, 23, 84_60, 40_73, 3_40_09, 20, 4_35, 1_14_39, 27, 8, 84_60, 40_73, 60_04, 20, 99_88, 3_75, 27, 33, 2_66, 19_45, 10_76, 13_50, 3_78_67, 32_88, 5, 5_77, 10_76, 43_74, 8, 50_82, 5, 2_64_53, 2_57, 5_56, 4_03, 2, 2_42, 1_32, 3_83, 3_16, 4_92, 8, 1_07_67, 6, 3_16, 3_04, 42_39, 3, 0], [1_48, 1_57_22, 19, 18_39, 12, 13_50, 13, 2_23_27, 50_82, 54_18, 4_75_67, 3_59_38, 59, 3_18, 1_95_52, 1_08, 21_83, 54, 1_49_76, 48_35, 32, 5_47, 11_14, 8, 3_15, 24_17, 5, 92, 1_90_88, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00], [36, 63_95, 1_25_70, 3_91_47, 1_15_97, 6, 2_66, 4, 4_54_05, 72_96, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase__ , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def __UpperCamelCase (self ): snake_case_ : Any = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) snake_case_ : Dict = """Tämä on testi""" snake_case_ : List[Any] = """This is a test""" snake_case_ : Optional[int] = [76, 7, 20_47, 2] snake_case_ : List[str] = [69, 12, 11, 9_40, 2] snake_case_ : Any = tokenizer(lowercase__ ).input_ids self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : str = tokenizer(text_target=lowercase__ ).input_ids self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : int = tokenizer.decode(lowercase__ , skip_special_tokens=lowercase__ ) self.assertEqual(lowercase__ , lowercase__ )
710
"""simple docstring""" import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask a_ = logging.getLogger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self , lowercase__=-1 ): # in NER datasets, the last column is usually reserved for NER label snake_case_ : Union[str, Any] = label_idx def __UpperCamelCase (self , lowercase__ , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): snake_case_ : List[str] = mode.value snake_case_ : List[Any] = os.path.join(lowercase__ , f'{mode}.txt' ) snake_case_ : Tuple = 1 snake_case_ : Any = [] with open(lowercase__ , encoding="""utf-8""" ) as f: snake_case_ : str = [] snake_case_ : List[Any] = [] for line in f: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) guid_index += 1 snake_case_ : Optional[Any] = [] snake_case_ : int = [] else: snake_case_ : Optional[Any] = line.split(""" """ ) words.append(splits[0] ) if len(lowercase__ ) > 1: labels.append(splits[self.label_idx].replace("""\n""" , """""" ) ) else: # Examples could have no label for mode = "test" labels.append("""O""" ) if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) return examples def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : str = 0 for line in test_input_reader: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": writer.write(lowercase__ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: snake_case_ : Optional[int] = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n""" writer.write(lowercase__ ) else: logger.warning("""Maximum sequence length exceeded: No prediction for '%s'.""" , line.split()[0] ) def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: snake_case_ : Dict = f.read().splitlines() if "O" not in labels: snake_case_ : List[Any] = ["""O"""] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self ): # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: snake_case_ : Any = f.read().splitlines() if "O" not in labels: snake_case_ : Tuple = ["""O"""] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __lowercase ( _UpperCAmelCase): """simple docstring""" def __UpperCamelCase (self , lowercase__ , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): snake_case_ : List[Any] = mode.value snake_case_ : Optional[int] = os.path.join(lowercase__ , f'{mode}.txt' ) snake_case_ : Tuple = 1 snake_case_ : str = [] with open(lowercase__ , encoding="""utf-8""" ) as f: for sentence in parse_incr(lowercase__ ): snake_case_ : Tuple = [] snake_case_ : Any = [] for token in sentence: words.append(token["""form"""] ) labels.append(token["""upos"""] ) assert len(lowercase__ ) == len(lowercase__ ) if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) guid_index += 1 return examples def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : Dict = 0 for sentence in parse_incr(lowercase__ ): snake_case_ : int = preds_list[example_id] snake_case_ : Dict = """""" for token in sentence: out += f'{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) ' out += "\n" writer.write(lowercase__ ) example_id += 1 def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
48
0
"""simple docstring""" from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : list[int | str] ): """simple docstring""" create_state_space_tree(SCREAMING_SNAKE_CASE__ , [] , 0 , [0 for i in range(len(SCREAMING_SNAKE_CASE__ ) )] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : list[int | str] , SCREAMING_SNAKE_CASE__ : list[int | str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[int] , ): """simple docstring""" if index == len(SCREAMING_SNAKE_CASE__ ): print(SCREAMING_SNAKE_CASE__ ) return for i in range(len(SCREAMING_SNAKE_CASE__ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) snake_case_ : List[Any] = True create_state_space_tree(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index + 1 , SCREAMING_SNAKE_CASE__ ) current_sequence.pop() snake_case_ : int = False a_ = [3, 1, 2, 4] generate_all_permutations(sequence) a_ = ['''A''', '''B''', '''C'''] generate_all_permutations(sequence_a)
711
"""simple docstring""" import random def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : Union[str, Any] = num - 1 snake_case_ : List[str] = 0 while s % 2 == 0: snake_case_ : str = s // 2 t += 1 for _ in range(5 ): snake_case_ : List[Any] = random.randrange(2 , num - 1 ) snake_case_ : Dict = pow(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if v != 1: snake_case_ : int = 0 while v != (num - 1): if i == t - 1: return False else: snake_case_ : str = i + 1 snake_case_ : int = (v**2) % num return True def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" if num < 2: return False snake_case_ : Dict = [ 2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1, 4_3, 4_7, 5_3, 5_9, 6_1, 6_7, 7_1, 7_3, 7_9, 8_3, 8_9, 9_7, 1_0_1, 1_0_3, 1_0_7, 1_0_9, 1_1_3, 1_2_7, 1_3_1, 1_3_7, 1_3_9, 1_4_9, 1_5_1, 1_5_7, 1_6_3, 1_6_7, 1_7_3, 1_7_9, 1_8_1, 1_9_1, 1_9_3, 1_9_7, 1_9_9, 2_1_1, 2_2_3, 2_2_7, 2_2_9, 2_3_3, 2_3_9, 2_4_1, 2_5_1, 2_5_7, 2_6_3, 2_6_9, 2_7_1, 2_7_7, 2_8_1, 2_8_3, 2_9_3, 3_0_7, 3_1_1, 3_1_3, 3_1_7, 3_3_1, 3_3_7, 3_4_7, 3_4_9, 3_5_3, 3_5_9, 3_6_7, 3_7_3, 3_7_9, 3_8_3, 3_8_9, 3_9_7, 4_0_1, 4_0_9, 4_1_9, 4_2_1, 4_3_1, 4_3_3, 4_3_9, 4_4_3, 4_4_9, 4_5_7, 4_6_1, 4_6_3, 4_6_7, 4_7_9, 4_8_7, 4_9_1, 4_9_9, 5_0_3, 5_0_9, 5_2_1, 5_2_3, 5_4_1, 5_4_7, 5_5_7, 5_6_3, 5_6_9, 5_7_1, 5_7_7, 5_8_7, 5_9_3, 5_9_9, 6_0_1, 6_0_7, 6_1_3, 6_1_7, 6_1_9, 6_3_1, 6_4_1, 6_4_3, 6_4_7, 6_5_3, 6_5_9, 6_6_1, 6_7_3, 6_7_7, 6_8_3, 6_9_1, 7_0_1, 7_0_9, 7_1_9, 7_2_7, 7_3_3, 7_3_9, 7_4_3, 7_5_1, 7_5_7, 7_6_1, 7_6_9, 7_7_3, 7_8_7, 7_9_7, 8_0_9, 8_1_1, 8_2_1, 8_2_3, 8_2_7, 8_2_9, 8_3_9, 8_5_3, 8_5_7, 8_5_9, 8_6_3, 8_7_7, 8_8_1, 8_8_3, 8_8_7, 9_0_7, 9_1_1, 9_1_9, 9_2_9, 9_3_7, 9_4_1, 9_4_7, 9_5_3, 9_6_7, 9_7_1, 9_7_7, 9_8_3, 9_9_1, 9_9_7, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int = 1_0_2_4 ): """simple docstring""" while True: snake_case_ : Tuple = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(SCREAMING_SNAKE_CASE__ ): return num if __name__ == "__main__": a_ = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
48
0
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowercase ( _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : str = DiTPipeline _A : List[str] = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _A : Any = PipelineTesterMixin.required_optional_params - { """latents""", """num_images_per_prompt""", """callback""", """callback_steps""", } _A : Dict = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _A : Tuple = False def __UpperCamelCase (self ): torch.manual_seed(0 ) snake_case_ : List[str] = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=lowercase__ , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=10_00 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=lowercase__ , ) snake_case_ : Optional[int] = AutoencoderKL() snake_case_ : Dict = DDIMScheduler() snake_case_ : int = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def __UpperCamelCase (self , lowercase__ , lowercase__=0 ): if str(lowercase__ ).startswith("""mps""" ): snake_case_ : Optional[Any] = torch.manual_seed(lowercase__ ) else: snake_case_ : Any = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) snake_case_ : List[Any] = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def __UpperCamelCase (self ): snake_case_ : Tuple = """cpu""" snake_case_ : Optional[int] = self.get_dummy_components() snake_case_ : Optional[int] = self.pipeline_class(**lowercase__ ) pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) snake_case_ : Optional[Any] = self.get_dummy_inputs(lowercase__ ) snake_case_ : Union[str, Any] = pipe(**lowercase__ ).images snake_case_ : Dict = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) snake_case_ : int = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) snake_case_ : Any = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowercase__ , 1e-3 ) def __UpperCamelCase (self ): self._test_inference_batch_single_identical(relax_max_difference=lowercase__ , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __UpperCamelCase (self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __lowercase ( unittest.TestCase): """simple docstring""" def __UpperCamelCase (self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase (self ): snake_case_ : str = torch.manual_seed(0 ) snake_case_ : Tuple = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) snake_case_ : Union[str, Any] = ["""vase""", """umbrella""", """white shark""", """white wolf"""] snake_case_ : Tuple = pipe.get_label_ids(lowercase__ ) snake_case_ : Optional[Any] = pipe(lowercase__ , generator=lowercase__ , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(lowercase__ , lowercase__ ): snake_case_ : Any = load_numpy( f'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy' ) assert np.abs((expected_image - image).max() ) < 1e-2 def __UpperCamelCase (self ): snake_case_ : Tuple = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) snake_case_ : Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) snake_case_ : Any = ["""vase""", """umbrella"""] snake_case_ : Union[str, Any] = pipe.get_label_ids(lowercase__ ) snake_case_ : Tuple = torch.manual_seed(0 ) snake_case_ : Union[str, Any] = pipe(lowercase__ , generator=lowercase__ , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(lowercase__ , lowercase__ ): snake_case_ : Optional[int] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" f'/dit/{word}_512.npy' ) assert np.abs((expected_image - image).max() ) < 1e-1
712
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType a_ = logging.get_logger(__name__) a_ = { '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Dict = """deberta-v2""" def __init__(self , lowercase__=12_81_00 , lowercase__=15_36 , lowercase__=24 , lowercase__=24 , lowercase__=61_44 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_12 , lowercase__=0 , lowercase__=0.02 , lowercase__=1e-7 , lowercase__=False , lowercase__=-1 , lowercase__=0 , lowercase__=True , lowercase__=None , lowercase__=0 , lowercase__="gelu" , **lowercase__ , ): super().__init__(**lowercase__ ) snake_case_ : Union[str, Any] = hidden_size snake_case_ : str = num_hidden_layers snake_case_ : Tuple = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : Optional[int] = hidden_act snake_case_ : Union[str, Any] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : List[Any] = max_position_embeddings snake_case_ : Union[str, Any] = type_vocab_size snake_case_ : Union[str, Any] = initializer_range snake_case_ : List[Any] = relative_attention snake_case_ : Dict = max_relative_positions snake_case_ : Optional[int] = pad_token_id snake_case_ : List[str] = position_biased_input # Backwards compatibility if type(lowercase__ ) == str: snake_case_ : Union[str, Any] = [x.strip() for x in pos_att_type.lower().split("""|""" )] snake_case_ : Optional[int] = pos_att_type snake_case_ : List[str] = vocab_size snake_case_ : Tuple = layer_norm_eps snake_case_ : List[Any] = kwargs.get("""pooler_hidden_size""" , lowercase__ ) snake_case_ : List[str] = pooler_dropout snake_case_ : int = pooler_hidden_act class __lowercase ( _UpperCAmelCase): """simple docstring""" @property def __UpperCamelCase (self ): if self.task == "multiple-choice": snake_case_ : List[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case_ : int = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def __UpperCamelCase (self ): return 12 def __UpperCamelCase (self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , lowercase__ = 3 , lowercase__ = 40 , lowercase__ = 40 , lowercase__ = None , ): snake_case_ : str = super().generate_dummy_inputs(preprocessor=lowercase__ , framework=lowercase__ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
48
0
"""simple docstring""" from ...processing_utils import ProcessorMixin class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Union[str, Any] = ["""image_processor""", """feature_extractor"""] _A : List[str] = """TvltImageProcessor""" _A : Optional[Any] = """TvltFeatureExtractor""" def __init__(self , lowercase__ , lowercase__ ): super().__init__(image_processor=lowercase__ , feature_extractor=lowercase__ ) snake_case_ : str = image_processor snake_case_ : Dict = feature_extractor def __call__(self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=False , lowercase__=False , *lowercase__ , **lowercase__ , ): if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""" ) snake_case_ : Optional[Any] = None if images is not None: snake_case_ : str = self.image_processor(lowercase__ , mask_pixel=lowercase__ , *lowercase__ , **lowercase__ ) if images_mixed is not None: snake_case_ : Union[str, Any] = self.image_processor(lowercase__ , is_mixed=lowercase__ , *lowercase__ , **lowercase__ ) if audio is not None: snake_case_ : Tuple = self.feature_extractor( lowercase__ , *lowercase__ , sampling_rate=lowercase__ , mask_audio=lowercase__ , **lowercase__ ) snake_case_ : int = {} if audio is not None: output_dict.update(lowercase__ ) if images is not None: output_dict.update(lowercase__ ) if images_mixed_dict is not None: output_dict.update(lowercase__ ) return output_dict @property def __UpperCamelCase (self ): snake_case_ : List[Any] = self.image_processor.model_input_names snake_case_ : Union[str, Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
713
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
48
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: a_ = None a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} a_ = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json''' ), }, } a_ = { '''facebook/nllb-large-en-ro''': 1024, '''facebook/nllb-200-distilled-600M''': 1024, } # fmt: off a_ = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Tuple = VOCAB_FILES_NAMES _A : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _A : Union[str, Any] = ["""input_ids""", """attention_mask"""] _A : Optional[int] = NllbTokenizer _A : List[int] = [] _A : List[int] = [] def __init__(self , lowercase__=None , lowercase__=None , lowercase__="<s>" , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<mask>" , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=False , **lowercase__ , ): # Mask token behave like a normal word, i.e. include the space before it snake_case_ : int = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token snake_case_ : str = legacy_behaviour super().__init__( vocab_file=lowercase__ , tokenizer_file=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , unk_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , src_lang=lowercase__ , tgt_lang=lowercase__ , additional_special_tokens=lowercase__ , legacy_behaviour=lowercase__ , **lowercase__ , ) snake_case_ : str = vocab_file snake_case_ : str = False if not self.vocab_file else True snake_case_ : str = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) snake_case_ : List[Any] = { lang_code: self.convert_tokens_to_ids(lowercase__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } snake_case_ : Optional[Any] = src_lang if src_lang is not None else """eng_Latn""" snake_case_ : Dict = self.convert_tokens_to_ids(self._src_lang ) snake_case_ : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __UpperCamelCase (self ): return self._src_lang @src_lang.setter def __UpperCamelCase (self , lowercase__ ): snake_case_ : Union[str, Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): snake_case_ : int = [self.sep_token_id] snake_case_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , **lowercase__ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) snake_case_ : List[Any] = src_lang snake_case_ : str = self(lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , **lowercase__ ) snake_case_ : str = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : List[str] = tgt_lang_id return inputs def __UpperCamelCase (self , lowercase__ , lowercase__ = "eng_Latn" , lowercase__ = None , lowercase__ = "fra_Latn" , **lowercase__ , ): snake_case_ : List[Any] = src_lang snake_case_ : int = tgt_lang return super().prepare_seqaseq_batch(lowercase__ , lowercase__ , **lowercase__ ) def __UpperCamelCase (self ): return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCamelCase (self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = self.convert_tokens_to_ids(lowercase__ ) if self.legacy_behaviour: snake_case_ : Dict = [] snake_case_ : Optional[Any] = [self.eos_token_id, self.cur_lang_code] else: snake_case_ : Optional[int] = [self.cur_lang_code] snake_case_ : List[str] = [self.eos_token_id] snake_case_ : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ : Optional[int] = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ : Optional[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : str = self.convert_tokens_to_ids(lowercase__ ) if self.legacy_behaviour: snake_case_ : Tuple = [] snake_case_ : List[Any] = [self.eos_token_id, self.cur_lang_code] else: snake_case_ : Any = [self.cur_lang_code] snake_case_ : Union[str, Any] = [self.eos_token_id] snake_case_ : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ : Any = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ : str = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowercase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory.' ) return snake_case_ : str = os.path.join( lowercase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ): copyfile(self.vocab_file , lowercase__ ) return (out_vocab_file,)
714
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('''fixtures/test_sentencepiece.model''') a_ = {'''target_lang''': '''fi''', '''source_lang''': '''en'''} a_ = '''>>zh<<''' a_ = '''Helsinki-NLP/''' if is_torch_available(): a_ = '''pt''' elif is_tf_available(): a_ = '''tf''' else: a_ = '''jax''' @require_sentencepiece class __lowercase ( _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : str = MarianTokenizer _A : List[str] = False _A : List[str] = True def __UpperCamelCase (self ): super().setUp() snake_case_ : Optional[int] = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] snake_case_ : Any = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) snake_case_ : Any = Path(self.tmpdirname ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) snake_case_ : Optional[Any] = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase (self , **lowercase__ ): return MarianTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def __UpperCamelCase (self , lowercase__ ): return ( "This is a test", "This is a test", ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = """</s>""" snake_case_ : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__ ) , lowercase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__ ) , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(lowercase__ ) , 9 ) def __UpperCamelCase (self ): self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def __UpperCamelCase (self ): snake_case_ : Any = MarianTokenizer.from_pretrained(f'{ORG_NAME}opus-mt-en-de' ) snake_case_ : Tuple = en_de_tokenizer(["""I am a small frog"""] , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) snake_case_ : Dict = [38, 1_21, 14, 6_97, 3_88_48, 0] self.assertListEqual(lowercase__ , batch.input_ids[0] ) snake_case_ : Tuple = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(lowercase__ ) snake_case_ : str = [x.name for x in Path(lowercase__ ).glob("""*""" )] self.assertIn("""source.spm""" , lowercase__ ) MarianTokenizer.from_pretrained(lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = self.get_tokenizer() snake_case_ : List[str] = tok( ["""I am a small frog""" * 10_00, """I am a small frog"""] , padding=lowercase__ , truncation=lowercase__ , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(batch.input_ids.shape , (2, 5_12) ) def __UpperCamelCase (self ): snake_case_ : Tuple = self.get_tokenizer() snake_case_ : Tuple = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=lowercase__ , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def __UpperCamelCase (self ): # fmt: off snake_case_ : str = {"""input_ids""": [[4_34_95, 4_62, 20, 4_21_64, 13_69, 52, 4_64, 1_32, 17_03, 4_92, 13, 74_91, 3_89_99, 6, 8, 4_64, 1_32, 17_03, 4_92, 13, 46_69, 3_78_67, 13, 75_25, 27, 15_93, 9_88, 13, 3_39_72, 70_29, 6, 20, 82_51, 3_83, 2, 2_70, 58_66, 37_88, 2, 23_53, 82_51, 1_23_38, 2, 1_39_58, 3_87, 2, 36_29, 69_53, 1_88, 29_00, 2, 1_39_58, 80_11, 1_15_01, 23, 84_60, 40_73, 3_40_09, 20, 4_35, 1_14_39, 27, 8, 84_60, 40_73, 60_04, 20, 99_88, 3_75, 27, 33, 2_66, 19_45, 10_76, 13_50, 3_78_67, 32_88, 5, 5_77, 10_76, 43_74, 8, 50_82, 5, 2_64_53, 2_57, 5_56, 4_03, 2, 2_42, 1_32, 3_83, 3_16, 4_92, 8, 1_07_67, 6, 3_16, 3_04, 42_39, 3, 0], [1_48, 1_57_22, 19, 18_39, 12, 13_50, 13, 2_23_27, 50_82, 54_18, 4_75_67, 3_59_38, 59, 3_18, 1_95_52, 1_08, 21_83, 54, 1_49_76, 48_35, 32, 5_47, 11_14, 8, 3_15, 24_17, 5, 92, 1_90_88, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00], [36, 63_95, 1_25_70, 3_91_47, 1_15_97, 6, 2_66, 4, 4_54_05, 72_96, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase__ , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def __UpperCamelCase (self ): snake_case_ : Any = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) snake_case_ : Dict = """Tämä on testi""" snake_case_ : List[Any] = """This is a test""" snake_case_ : Optional[int] = [76, 7, 20_47, 2] snake_case_ : List[str] = [69, 12, 11, 9_40, 2] snake_case_ : Any = tokenizer(lowercase__ ).input_ids self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : str = tokenizer(text_target=lowercase__ ).input_ids self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : int = tokenizer.decode(lowercase__ , skip_special_tokens=lowercase__ ) self.assertEqual(lowercase__ , lowercase__ )
48
0
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller a_ = 3 def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" print("""Generating primitive root of p""" ) while True: snake_case_ : Union[str, Any] = random.randrange(3 , SCREAMING_SNAKE_CASE__ ) if pow(SCREAMING_SNAKE_CASE__ , 2 , SCREAMING_SNAKE_CASE__ ) == 1: continue if pow(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) == 1: continue return g def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" print("""Generating prime p...""" ) snake_case_ : Dict = rabin_miller.generate_large_prime(SCREAMING_SNAKE_CASE__ ) # select large prime number. snake_case_ : Tuple = primitive_root(SCREAMING_SNAKE_CASE__ ) # one primitive root on modulo p. snake_case_ : Union[str, Any] = random.randrange(3 , SCREAMING_SNAKE_CASE__ ) # private_key -> have to be greater than 2 for safety. snake_case_ : List[str] = cryptomath.find_mod_inverse(pow(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = (key_size, e_a, e_a, p) snake_case_ : Any = (key_size, d) return public_key, private_key def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" if os.path.exists(f'{name}_pubkey.txt' ) or os.path.exists(f'{name}_privkey.txt' ): print("""\nWARNING:""" ) print( f'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n' """Use a different name or delete these files and re-run this program.""" ) sys.exit() snake_case_ : Optional[int] = generate_key(SCREAMING_SNAKE_CASE__ ) print(f'\nWriting public key to file {name}_pubkey.txt...' ) with open(f'{name}_pubkey.txt' , """w""" ) as fo: fo.write(f'{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}' ) print(f'Writing private key to file {name}_privkey.txt...' ) with open(f'{name}_privkey.txt' , """w""" ) as fo: fo.write(f'{private_key[0]},{private_key[1]}' ) def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" print("""Making key files...""" ) make_key_files("""elgamal""" , 2_0_4_8 ) print("""Key files generation successful""" ) if __name__ == "__main__": main()
715
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCAmelCase) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True}) _A : ClassVar[Features] = Features({"""audio""": Audio()}) _A : ClassVar[Features] = Features({"""transcription""": Value("""string""")}) _A : str = "audio" _A : str = "transcription" def __UpperCamelCase (self , lowercase__ ): if self.audio_column not in features: raise ValueError(f'Column {self.audio_column} is not present in features.' ) if not isinstance(features[self.audio_column] , lowercase__ ): raise ValueError(f'Column {self.audio_column} is not an Audio type.' ) snake_case_ : Optional[int] = copy.deepcopy(self ) snake_case_ : Tuple = self.input_schema.copy() snake_case_ : List[str] = features[self.audio_column] snake_case_ : Any = input_schema return task_template @property def __UpperCamelCase (self ): return {self.audio_column: "audio", self.transcription_column: "transcription"}
48
0
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Union[str, Any] = ["""image_processor""", """tokenizer"""] _A : str = """ChineseCLIPImageProcessor""" _A : Tuple = ("""BertTokenizer""", """BertTokenizerFast""") def __init__(self , lowercase__=None , lowercase__=None , **lowercase__ ): snake_case_ : Any = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowercase__ , ) snake_case_ : Optional[Any] = kwargs.pop("""feature_extractor""" ) snake_case_ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowercase__ , lowercase__ ) snake_case_ : Union[str, Any] = self.image_processor def __call__(self , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ ): if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: snake_case_ : Any = self.tokenizer(lowercase__ , return_tensors=lowercase__ , **lowercase__ ) if images is not None: snake_case_ : Tuple = self.image_processor(lowercase__ , return_tensors=lowercase__ , **lowercase__ ) if text is not None and images is not None: snake_case_ : List[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase__ ) , tensor_type=lowercase__ ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): return self.tokenizer.batch_decode(*lowercase__ , **lowercase__ ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): return self.tokenizer.decode(*lowercase__ , **lowercase__ ) @property def __UpperCamelCase (self ): snake_case_ : Optional[int] = self.tokenizer.model_input_names snake_case_ : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __UpperCamelCase (self ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowercase__ , ) return self.image_processor_class
716
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : int = ["""pixel_values"""] def __init__(self , lowercase__ = True , lowercase__ = None , lowercase__ = 0.9 , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = True , lowercase__ = None , lowercase__ = 1 / 2_55 , lowercase__ = True , lowercase__ = True , lowercase__ = None , lowercase__ = None , **lowercase__ , ): super().__init__(**lowercase__ ) snake_case_ : Tuple = size if size is not None else {"""shortest_edge""": 2_24} snake_case_ : Union[str, Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) snake_case_ : str = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} snake_case_ : Dict = get_size_dict(lowercase__ , param_name="""crop_size""" ) snake_case_ : Union[str, Any] = do_resize snake_case_ : List[str] = size snake_case_ : str = crop_pct snake_case_ : str = resample snake_case_ : Optional[Any] = do_center_crop snake_case_ : Dict = crop_size snake_case_ : int = do_rescale snake_case_ : Optional[int] = rescale_factor snake_case_ : str = do_normalize snake_case_ : str = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN snake_case_ : List[str] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = None , **lowercase__ , ): snake_case_ : Tuple = get_size_dict(lowercase__ , default_to_square=lowercase__ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f'size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) if crop_pct is not None: if "shortest_edge" in size: snake_case_ : Optional[int] = int(size["""shortest_edge"""] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: snake_case_ : Dict = int(size["""height"""] / crop_pct ) else: snake_case_ : List[str] = (int(size["""height"""] / crop_pct ), int(size["""width"""] / crop_pct )) else: raise ValueError("""Invalid size for resize: {}""".format(lowercase__ ) ) snake_case_ : List[Any] = get_resize_output_image_size(lowercase__ , size=lowercase__ , default_to_square=lowercase__ ) else: if "shortest_edge" in size: snake_case_ : Optional[int] = get_resize_output_image_size(lowercase__ , size=size["""shortest_edge"""] , default_to_square=lowercase__ ) elif "height" in size and "width" in size: snake_case_ : int = (size["""height"""], size["""width"""]) else: raise ValueError("""Invalid size for resize: {}""".format(lowercase__ ) ) return resize(lowercase__ , size=lowercase__ , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): snake_case_ : int = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(f'size must contain \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(lowercase__ , size=(size["""height"""], size["""width"""]) , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return normalize(lowercase__ , mean=lowercase__ , std=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ): snake_case_ : str = do_resize if do_resize is not None else self.do_resize snake_case_ : Any = crop_pct if crop_pct is not None else self.crop_pct snake_case_ : List[Any] = resample if resample is not None else self.resample snake_case_ : str = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : str = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : str = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : List[Any] = image_mean if image_mean is not None else self.image_mean snake_case_ : int = image_std if image_std is not None else self.image_std snake_case_ : List[Any] = size if size is not None else self.size snake_case_ : Optional[Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) snake_case_ : List[Any] = crop_size if crop_size is not None else self.crop_size snake_case_ : int = get_size_dict(lowercase__ , param_name="""crop_size""" ) snake_case_ : List[str] = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_pct is None: raise ValueError("""Crop_pct must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case_ : int = [to_numpy_array(lowercase__ ) for image in images] if do_resize: snake_case_ : str = [self.resize(image=lowercase__ , size=lowercase__ , crop_pct=lowercase__ , resample=lowercase__ ) for image in images] if do_center_crop: snake_case_ : Optional[int] = [self.center_crop(image=lowercase__ , size=lowercase__ ) for image in images] if do_rescale: snake_case_ : List[Any] = [self.rescale(image=lowercase__ , scale=lowercase__ ) for image in images] if do_normalize: snake_case_ : Optional[Any] = [self.normalize(image=lowercase__ , mean=lowercase__ , std=lowercase__ ) for image in images] snake_case_ : List[Any] = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] snake_case_ : Dict = {"""pixel_values""": images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
48
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = {'''configuration_timm_backbone''': ['''TimmBackboneConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['''TimmBackbone'''] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
717
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: a_ = None a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} a_ = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } a_ = { '''facebook/mbart-large-en-ro''': 1024, '''facebook/mbart-large-cc25''': 1024, } # fmt: off a_ = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Dict = VOCAB_FILES_NAMES _A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _A : str = ["""input_ids""", """attention_mask"""] _A : Tuple = MBartTokenizer _A : List[int] = [] _A : List[int] = [] def __init__(self , lowercase__=None , lowercase__=None , lowercase__="<s>" , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<mask>" , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ , ): # Mask token behave like a normal word, i.e. include the space before it snake_case_ : int = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token super().__init__( vocab_file=lowercase__ , tokenizer_file=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , unk_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , src_lang=lowercase__ , tgt_lang=lowercase__ , additional_special_tokens=lowercase__ , **lowercase__ , ) snake_case_ : Dict = vocab_file snake_case_ : Optional[int] = False if not self.vocab_file else True snake_case_ : Optional[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) snake_case_ : Any = { lang_code: self.convert_tokens_to_ids(lowercase__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } snake_case_ : Tuple = src_lang if src_lang is not None else """en_XX""" snake_case_ : Tuple = self.convert_tokens_to_ids(self._src_lang ) snake_case_ : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __UpperCamelCase (self ): return self._src_lang @src_lang.setter def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): snake_case_ : List[Any] = [self.sep_token_id] snake_case_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , **lowercase__ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) snake_case_ : int = src_lang snake_case_ : List[str] = self(lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , **lowercase__ ) snake_case_ : List[str] = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Union[str, Any] = tgt_lang_id return inputs def __UpperCamelCase (self , lowercase__ , lowercase__ = "en_XX" , lowercase__ = None , lowercase__ = "ro_RO" , **lowercase__ , ): snake_case_ : List[str] = src_lang snake_case_ : int = tgt_lang return super().prepare_seqaseq_batch(lowercase__ , lowercase__ , **lowercase__ ) def __UpperCamelCase (self ): return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCamelCase (self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Tuple = [] snake_case_ : List[Any] = [self.eos_token_id, self.cur_lang_code] snake_case_ : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Optional[int] = [] snake_case_ : Optional[Any] = [self.eos_token_id, self.cur_lang_code] snake_case_ : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ : int = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowercase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory.' ) return snake_case_ : List[str] = os.path.join( lowercase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ): copyfile(self.vocab_file , lowercase__ ) return (out_vocab_file,)
48
0
"""simple docstring""" import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __lowercase ( unittest.TestCase): """simple docstring""" _A : int = MODEL_FOR_MASKED_LM_MAPPING _A : Dict = TF_MODEL_FOR_MASKED_LM_MAPPING def __UpperCamelCase (self ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def __UpperCamelCase (self ): snake_case_ : int = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" ) snake_case_ : Dict = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(lowercase__ , decimals=6 ) , [ {"""sequence""": """My name is grouped""", """score""": 2.1e-05, """token""": 3_80_15, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1e-05, """token""": 2_55_06, """token_str""": """ accuser"""}, ] , ) snake_case_ : Any = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(lowercase__ , decimals=6 ) , [ { """sequence""": """The largest city in France is grouped""", """score""": 2.1e-05, """token""": 3_80_15, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1e-05, """token""": 2_55_06, """token_str""": """ accuser""", }, ] , ) snake_case_ : List[Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(lowercase__ , decimals=6 ) , [ {"""sequence""": """My name is Clara""", """score""": 2e-05, """token""": 1_36_06, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2e-05, """token""": 34_99, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9e-05, """token""": 29_41, """token_str""": """ Te"""}, ] , ) @require_torch def __UpperCamelCase (self ): snake_case_ : int = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" ) snake_case_ : str = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(lowercase__ , decimals=6 ) , [ {"""sequence""": """My name is Maul""", """score""": 2.2e-05, """token""": 3_56_76, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2e-05, """token""": 1_64_16, """token_str""": """ELS"""}, ] , ) snake_case_ : str = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(lowercase__ , decimals=6 ) , [ { """sequence""": """The largest city in France is Maul""", """score""": 2.2e-05, """token""": 3_56_76, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2e-05, """token""": 1_64_16, """token_str""": """ELS"""}, ] , ) snake_case_ : Any = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(lowercase__ , decimals=6 ) , [ {"""sequence""": """My name is Patrick""", """score""": 2.1e-05, """token""": 34_99, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2e-05, """token""": 29_41, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2e-05, """token""": 1_36_06, """token_str""": """ Clara"""}, ] , ) snake_case_ : str = unmasker("""My name is <mask> <mask>""" , top_k=2 ) self.assertEqual( nested_simplify(lowercase__ , decimals=6 ) , [ [ { """score""": 2.2e-05, """token""": 3_56_76, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2e-05, """token""": 1_64_16, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2e-05, """token""": 3_56_76, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2e-05, """token""": 1_64_16, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] , ) @require_torch_gpu def __UpperCamelCase (self ): snake_case_ : List[Any] = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" ) # convert model to fp16 pipe.model.half() snake_case_ : Any = pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(lowercase__ , lowercase__ ) @slow @require_torch def __UpperCamelCase (self ): snake_case_ : Tuple = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" ) self.run_large_test(lowercase__ ) @slow @require_tf def __UpperCamelCase (self ): snake_case_ : List[Any] = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" ) self.run_large_test(lowercase__ ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Dict = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(lowercase__ ) , [ {"""sequence""": """My name is John""", """score""": 0.008, """token""": 6_10, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 15_73, """token_str""": """ Chris"""}, ] , ) snake_case_ : Optional[int] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(lowercase__ ) , [ { """sequence""": """The largest city in France is Paris""", """score""": 0.251, """token""": 22_01, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.214, """token""": 1_27_90, """token_str""": """ Lyon""", }, ] , ) snake_case_ : Dict = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(lowercase__ ) , [ {"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 34_99, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 1_36_06, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.000, """token""": 29_41, """token_str""": """ Te"""}, ] , ) @require_torch def __UpperCamelCase (self ): snake_case_ : Tuple = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" ) snake_case_ : Optional[Any] = None snake_case_ : Optional[Any] = None self.run_pipeline_test(lowercase__ , [] ) @require_tf def __UpperCamelCase (self ): snake_case_ : List[str] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" ) snake_case_ : str = None snake_case_ : str = None self.run_pipeline_test(lowercase__ , [] ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) snake_case_ : Dict = FillMaskPipeline(model=lowercase__ , tokenizer=lowercase__ ) snake_case_ : Tuple = [ f'This is another {tokenizer.mask_token} test', ] return fill_masker, examples def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : Optional[int] = fill_masker.tokenizer snake_case_ : Optional[int] = fill_masker.model snake_case_ : Any = fill_masker( f'This is a {tokenizer.mask_token}' , ) self.assertEqual( lowercase__ , [ {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, ] , ) snake_case_ : Union[str, Any] = fill_masker([f'This is a {tokenizer.mask_token}'] ) self.assertEqual( lowercase__ , [ {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, ] , ) snake_case_ : List[Any] = fill_masker([f'This is a {tokenizer.mask_token}', f'Another {tokenizer.mask_token} great test.'] ) self.assertEqual( lowercase__ , [ [ {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, ], [ {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, ], ] , ) with self.assertRaises(lowercase__ ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(lowercase__ ): fill_masker("""This is""" ) self.run_test_top_k(lowercase__ , lowercase__ ) self.run_test_targets(lowercase__ , lowercase__ ) self.run_test_top_k_targets(lowercase__ , lowercase__ ) self.fill_mask_with_duplicate_targets_and_top_k(lowercase__ , lowercase__ ) self.fill_mask_with_multiple_masks(lowercase__ , lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : Tuple = tokenizer.get_vocab() snake_case_ : Tuple = sorted(vocab.keys() )[:2] # Pipeline argument snake_case_ : Union[str, Any] = FillMaskPipeline(model=lowercase__ , tokenizer=lowercase__ , targets=lowercase__ ) snake_case_ : Any = fill_masker(f'This is a {tokenizer.mask_token}' ) self.assertEqual( lowercase__ , [ {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, ] , ) snake_case_ : str = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , lowercase__ ) snake_case_ : Union[str, Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(lowercase__ ) ) # Call argument snake_case_ : Optional[Any] = FillMaskPipeline(model=lowercase__ , tokenizer=lowercase__ ) snake_case_ : List[str] = fill_masker(f'This is a {tokenizer.mask_token}' , targets=lowercase__ ) self.assertEqual( lowercase__ , [ {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, ] , ) snake_case_ : Tuple = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , lowercase__ ) snake_case_ : Dict = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(lowercase__ ) ) # Score equivalence snake_case_ : List[Any] = fill_masker(f'This is a {tokenizer.mask_token}' , targets=lowercase__ ) snake_case_ : List[Any] = [top_mask["""token_str"""] for top_mask in outputs] snake_case_ : Dict = [top_mask["""score"""] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(lowercase__ ) == set(lowercase__ ): snake_case_ : Optional[Any] = fill_masker(f'This is a {tokenizer.mask_token}' , targets=lowercase__ ) snake_case_ : Tuple = [top_mask["""score"""] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(lowercase__ ) , nested_simplify(lowercase__ ) ) # Raises with invalid with self.assertRaises(lowercase__ ): snake_case_ : Optional[Any] = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(lowercase__ ): snake_case_ : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[""""""] ) with self.assertRaises(lowercase__ ): snake_case_ : str = fill_masker(f'This is a {tokenizer.mask_token}' , targets="""""" ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : List[str] = FillMaskPipeline(model=lowercase__ , tokenizer=lowercase__ , top_k=2 ) snake_case_ : Optional[Any] = fill_masker(f'This is a {tokenizer.mask_token}' ) self.assertEqual( lowercase__ , [ {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, ] , ) snake_case_ : Optional[Any] = FillMaskPipeline(model=lowercase__ , tokenizer=lowercase__ ) snake_case_ : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 ) self.assertEqual( lowercase__ , [ {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, ] , ) self.assertEqual(nested_simplify(lowercase__ ) , nested_simplify(lowercase__ ) ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : List[str] = tokenizer.get_vocab() snake_case_ : int = FillMaskPipeline(model=lowercase__ , tokenizer=lowercase__ ) # top_k=2, ntargets=3 snake_case_ : Optional[int] = sorted(vocab.keys() )[:3] snake_case_ : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 , targets=lowercase__ ) # If we use the most probably targets, and filter differently, we should still # have the same results snake_case_ : Any = [el["""token_str"""] for el in sorted(lowercase__ , key=lambda lowercase__ : x["score"] , reverse=lowercase__ )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(lowercase__ ).issubset(lowercase__ ): snake_case_ : Any = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=3 , targets=lowercase__ ) # They should yield exactly the same result self.assertEqual(nested_simplify(lowercase__ ) , nested_simplify(lowercase__ ) ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : List[str] = FillMaskPipeline(model=lowercase__ , tokenizer=lowercase__ ) snake_case_ : Optional[Any] = tokenizer.get_vocab() # String duplicates + id duplicates snake_case_ : str = sorted(vocab.keys() )[:3] snake_case_ : int = [targets[0], targets[1], targets[0], targets[2], targets[1]] snake_case_ : Any = fill_masker(f'My name is {tokenizer.mask_token}' , targets=lowercase__ , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(lowercase__ ) , 3 ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : List[Any] = FillMaskPipeline(model=lowercase__ , tokenizer=lowercase__ ) snake_case_ : List[str] = fill_masker( f'This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}' , top_k=2 ) self.assertEqual( lowercase__ , [ [ {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, ], [ {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, ], [ {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, ], ] , )
718
"""simple docstring""" import argparse import hashlib # hashlib is only used inside the Test class import struct class __lowercase : """simple docstring""" def __init__(self , lowercase__ ): snake_case_ : Union[str, Any] = data snake_case_ : List[str] = [0X6_7_4_5_2_3_0_1, 0Xe_f_c_d_a_b_8_9, 0X9_8_b_a_d_c_f_e, 0X1_0_3_2_5_4_7_6, 0Xc_3_d_2_e_1_f_0] @staticmethod def __UpperCamelCase (lowercase__ , lowercase__ ): return ((n << b) | (n >> (32 - b))) & 0Xf_f_f_f_f_f_f_f def __UpperCamelCase (self ): snake_case_ : Any = B"""\x80""" + B"""\x00""" * (63 - (len(self.data ) + 8) % 64) snake_case_ : Tuple = self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def __UpperCamelCase (self ): return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = list(struct.unpack(""">16L""" , lowercase__ ) ) + [0] * 64 for i in range(16 , 80 ): snake_case_ : Dict = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def __UpperCamelCase (self ): snake_case_ : List[Any] = self.padding() snake_case_ : Any = self.split_blocks() for block in self.blocks: snake_case_ : Any = self.expand_block(lowercase__ ) snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = self.h for i in range(0 , 80 ): if 0 <= i < 20: snake_case_ : Optional[Any] = (b & c) | ((~b) & d) snake_case_ : List[str] = 0X5_a_8_2_7_9_9_9 elif 20 <= i < 40: snake_case_ : Union[str, Any] = b ^ c ^ d snake_case_ : Tuple = 0X6_e_d_9_e_b_a_1 elif 40 <= i < 60: snake_case_ : str = (b & c) | (b & d) | (c & d) snake_case_ : List[str] = 0X8_f_1_b_b_c_d_c elif 60 <= i < 80: snake_case_ : Tuple = b ^ c ^ d snake_case_ : str = 0Xc_a_6_2_c_1_d_6 snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Optional[Any] = ( self.rotate(lowercase__ , 5 ) + f + e + k + expanded_block[i] & 0Xf_f_f_f_f_f_f_f, a, self.rotate(lowercase__ , 30 ), c, d, ) snake_case_ : Any = ( self.h[0] + a & 0Xf_f_f_f_f_f_f_f, self.h[1] + b & 0Xf_f_f_f_f_f_f_f, self.h[2] + c & 0Xf_f_f_f_f_f_f_f, self.h[3] + d & 0Xf_f_f_f_f_f_f_f, self.h[4] + e & 0Xf_f_f_f_f_f_f_f, ) return ("{:08x}" * 5).format(*self.h ) def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Union[str, Any] = b"""Test String""" assert SHAaHash(SCREAMING_SNAKE_CASE__ ).final_hash() == hashlib.shaa(SCREAMING_SNAKE_CASE__ ).hexdigest() # noqa: S324 def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : int = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument("""--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) snake_case_ : Optional[int] = parser.parse_args() snake_case_ : Optional[int] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: snake_case_ : List[str] = f.read() else: snake_case_ : Dict = bytes(SCREAMING_SNAKE_CASE__ , """utf-8""" ) print(SHAaHash(SCREAMING_SNAKE_CASE__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
48
0
"""simple docstring""" import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() a_ = logging.get_logger(__name__) a_ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } a_ = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" for attribute in key.split(""".""" ): snake_case_ : Optional[int] = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if weight_type is not None: snake_case_ : Any = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).shape else: snake_case_ : str = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": snake_case_ : Dict = value elif weight_type == "weight_g": snake_case_ : Optional[int] = value elif weight_type == "weight_v": snake_case_ : Optional[Any] = value elif weight_type == "bias": snake_case_ : Union[str, Any] = value else: snake_case_ : Dict = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : int = [] snake_case_ : List[Any] = fairseq_model.state_dict() snake_case_ : Union[str, Any] = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight snake_case_ : Any = None for name, value in fairseq_dict.items(): snake_case_ : List[str] = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hf_model.config.feat_extract_norm == """group""" , ) snake_case_ : Dict = True elif name.split(""".""" )[0] == "proj": snake_case_ : Any = fairseq_model.proj snake_case_ : str = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: snake_case_ : Tuple = True if "*" in mapped_key: snake_case_ : List[Any] = name.split(SCREAMING_SNAKE_CASE__ )[0].split(""".""" )[-2] snake_case_ : List[Any] = mapped_key.replace("""*""" , SCREAMING_SNAKE_CASE__ ) if "weight_g" in name: snake_case_ : Optional[Any] = """weight_g""" elif "weight_v" in name: snake_case_ : Any = """weight_v""" elif "bias" in name: snake_case_ : Tuple = """bias""" elif "weight" in name: snake_case_ : int = """weight""" else: snake_case_ : Optional[Any] = None set_recursively(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE__ ) logger.warning(f'Unused weights: {unused_weights}' ) return proj_weight def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : Union[str, Any] = full_name.split("""conv_layers.""" )[-1] snake_case_ : List[str] = name.split(""".""" ) snake_case_ : Dict = int(items[0] ) snake_case_ : str = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) snake_case_ : Optional[int] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) snake_case_ : Tuple = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) snake_case_ : int = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) snake_case_ : List[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : List[str] = emb.weight.shape snake_case_ : Optional[int] = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[int] = emb.weight.data return lin_layer def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" with open(SCREAMING_SNAKE_CASE__ , """r""" , encoding="""utf-8""" ) as f: snake_case_ : List[Any] = f.readlines() snake_case_ : List[str] = [line.split(""" """ )[0] for line in lines] snake_case_ : Optional[Any] = len(SCREAMING_SNAKE_CASE__ ) snake_case_ : str = { """<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3, } vocab_dict.update(dict(zip(SCREAMING_SNAKE_CASE__ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , ): """simple docstring""" snake_case_ : List[Any] = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case_ : Dict = SpeechaTextaConfig.from_pretrained( SCREAMING_SNAKE_CASE__ , vocab_size=SCREAMING_SNAKE_CASE__ , decoder_layers=SCREAMING_SNAKE_CASE__ , do_stable_layer_norm=SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , ) snake_case_ : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) snake_case_ : Optional[Any] = model[0].eval() # set weights for wav2vec2 encoder snake_case_ : Any = WavaVecaModel(SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[Any] = recursively_load_weights_wavaveca(model.encoder , SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = SpeechaTextaForCausalLM(SCREAMING_SNAKE_CASE__ ) snake_case_ : List[str] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=SCREAMING_SNAKE_CASE__ ) # set output linear layer unexpected_keys.remove("""embed_out""" ) snake_case_ : Any = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(f'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) snake_case_ : Dict = SpeechEncoderDecoderModel(encoder=SCREAMING_SNAKE_CASE__ , decoder=SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = False # add projection layer snake_case_ : Dict = nn.Parameter(projection_layer.weight ) snake_case_ : List[Any] = nn.Parameter(projection_layer.bias ) snake_case_ : List[Any] = create_vocab_dict(SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , """vocab.json""" ) , """w""" ) as fp: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[int] = SpeechaTextaTokenizer(os.path.join(SCREAMING_SNAKE_CASE__ , """vocab.json""" ) ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case_ : int = hf_wavavec.config.to_dict() snake_case_ : Optional[Any] = tokenizer.pad_token_id snake_case_ : Optional[Any] = tokenizer.bos_token_id snake_case_ : Union[str, Any] = tokenizer.eos_token_id snake_case_ : List[str] = """speech_to_text_2""" snake_case_ : str = """wav2vec2""" snake_case_ : Optional[Any] = SpeechEncoderDecoderConfig.from_dict(SCREAMING_SNAKE_CASE__ ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE__ ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument( '''--encoder_config_path''', default='''facebook/wav2vec2-large-lv60''', type=str, help='''Path to hf encoder wav2vec2 checkpoint config''', ) parser.add_argument( '''--decoder_config_path''', default='''facebook/s2t-small-mustc-en-fr-st''', type=str, help='''Path to hf decoder s2t checkpoint config''', ) parser.add_argument('''--vocab_size''', default=10224, type=int, help='''Vocab size of decoder''') parser.add_argument('''--num_decoder_layers''', default=7, type=int, help='''Number of decoder layers''') a_ = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
719
"""simple docstring""" from manim import * class __lowercase ( _UpperCAmelCase): """simple docstring""" def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = Rectangle(height=0.5 , width=0.5 ) snake_case_ : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) snake_case_ : Optional[Any] = [mem.copy() for i in range(6 )] snake_case_ : str = [mem.copy() for i in range(6 )] snake_case_ : str = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : Any = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[str] = VGroup(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[Any] = Text("""CPU""" , font_size=24 ) snake_case_ : Tuple = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowercase__ ) snake_case_ : List[Any] = [mem.copy() for i in range(4 )] snake_case_ : Tuple = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[str] = Text("""GPU""" , font_size=24 ) snake_case_ : Any = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) gpu.move_to([-1, -1, 0] ) self.add(lowercase__ ) snake_case_ : Optional[Any] = [mem.copy() for i in range(6 )] snake_case_ : List[Any] = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : Dict = Text("""Model""" , font_size=24 ) snake_case_ : int = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) model.move_to([3, -1.0, 0] ) self.add(lowercase__ ) snake_case_ : Dict = [] for i, rect in enumerate(lowercase__ ): rect.set_stroke(lowercase__ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) snake_case_ : List[str] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowercase__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowercase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase__ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase__ , buff=0.0 ) self.add(lowercase__ ) cpu_targs.append(lowercase__ ) snake_case_ : List[str] = [mem.copy() for i in range(6 )] snake_case_ : List[str] = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : str = Text("""Loaded Checkpoint""" , font_size=24 ) snake_case_ : Any = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , aligned_edge=lowercase__ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) snake_case_ : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) snake_case_ : Union[str, Any] = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowercase__ , lowercase__ ) snake_case_ : List[Any] = MarkupText( f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(lowercase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) snake_case_ : List[Any] = MarkupText( f'Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowercase__ ) , Write(lowercase__ ) ) self.play(Write(lowercase__ , run_time=1 ) , Create(lowercase__ , run_time=1 ) ) snake_case_ : Optional[int] = [] snake_case_ : List[str] = [] for i, rect in enumerate(lowercase__ ): snake_case_ : Optional[Any] = fill.copy().set_fill(lowercase__ , opacity=0.7 ) target.move_to(lowercase__ ) first_animations.append(GrowFromCenter(lowercase__ , run_time=1 ) ) snake_case_ : List[Any] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(lowercase__ , run_time=1.5 ) ) self.play(*lowercase__ ) self.play(*lowercase__ ) self.wait()
48
0
"""simple docstring""" import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='''%(message)s''') def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : np.ndarray ): """simple docstring""" return input_array.reshape((input_array.size, 1) ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : Optional[int] = np.nan for i in range(SCREAMING_SNAKE_CASE__ ): snake_case_ : Optional[int] = features[:, labels == i] snake_case_ : Tuple = data.mean(1 ) # Centralize the data of class i snake_case_ : List[Any] = data - column_reshape(SCREAMING_SNAKE_CASE__ ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(SCREAMING_SNAKE_CASE__ , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) snake_case_ : Optional[int] = np.dot(SCREAMING_SNAKE_CASE__ , centered_data.T ) return covariance_sum / features.shape[1] def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : Union[str, Any] = features.mean(1 ) snake_case_ : Union[str, Any] = np.nan for i in range(SCREAMING_SNAKE_CASE__ ): snake_case_ : Dict = features[:, labels == i] snake_case_ : Union[str, Any] = data.shape[1] snake_case_ : List[Any] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(SCREAMING_SNAKE_CASE__ ) - column_reshape(SCREAMING_SNAKE_CASE__ ) , (column_reshape(SCREAMING_SNAKE_CASE__ ) - column_reshape(SCREAMING_SNAKE_CASE__ )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) snake_case_ : Tuple = device_data * np.dot( column_reshape(SCREAMING_SNAKE_CASE__ ) - column_reshape(SCREAMING_SNAKE_CASE__ ) , (column_reshape(SCREAMING_SNAKE_CASE__ ) - column_reshape(SCREAMING_SNAKE_CASE__ )).T , ) return covariance_sum / features.shape[1] def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" if features.any(): snake_case_ : Tuple = features.mean(1 ) # Center the dataset snake_case_ : Any = features - np.reshape(SCREAMING_SNAKE_CASE__ , (data_mean.size, 1) ) snake_case_ : Optional[int] = np.dot(SCREAMING_SNAKE_CASE__ , centered_data.T ) / features.shape[1] snake_case_ : Dict = np.linalg.eigh(SCREAMING_SNAKE_CASE__ ) # Take all the columns in the reverse order (-1), and then takes only the first snake_case_ : Optional[int] = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space snake_case_ : int = np.dot(filtered_eigenvectors.T , SCREAMING_SNAKE_CASE__ ) logging.info("""Principal Component Analysis computed""" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="""%(message)s""" , force=SCREAMING_SNAKE_CASE__ ) logging.error("""Dataset empty""" ) raise AssertionError def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" assert classes > dimensions # Check if features have been already loaded if features.any: snake_case_ : Union[str, Any] = eigh( covariance_between_classes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , covariance_within_classes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , ) snake_case_ : Tuple = eigenvectors[:, ::-1][:, :dimensions] snake_case_ : int = np.linalg.svd(SCREAMING_SNAKE_CASE__ ) snake_case_ : Any = svd_matrix[:, 0:dimensions] snake_case_ : Dict = np.dot(filtered_svd_matrix.T , SCREAMING_SNAKE_CASE__ ) logging.info("""Linear Discriminant Analysis computed""" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="""%(message)s""" , force=SCREAMING_SNAKE_CASE__ ) logging.error("""Dataset empty""" ) raise AssertionError def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : int = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) snake_case_ : Any = np.array([0, 0, 0, 1, 1] ) snake_case_ : Dict = 2 snake_case_ : Dict = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(SCREAMING_SNAKE_CASE__ ) as error_info: snake_case_ : int = linear_discriminant_analysis( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ): raise AssertionError( """Did not raise AssertionError for dimensions > classes""" ) assert error_info.type is AssertionError def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Any = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) snake_case_ : Any = 2 snake_case_ : List[Any] = np.array([[6.9282_0323, 8.6602_5404, 10.3923_0485], [3.0, 3.0, 3.0]] ) with pytest.raises(SCREAMING_SNAKE_CASE__ ) as error_info: snake_case_ : str = principal_component_analysis(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
720
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" snake_case_ : Union[str, Any] = 0 if start < end: snake_case_ : Union[str, Any] = randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = a[end] snake_case_ : Dict = a[pivot] snake_case_ : Any = temp snake_case_ , snake_case_ : Dict = _in_place_partition(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , p - 1 ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE__ , p + 1 , SCREAMING_SNAKE_CASE__ ) return count def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" snake_case_ : Tuple = 0 snake_case_ : List[Any] = randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : Dict = a[end] snake_case_ : List[Any] = a[pivot] snake_case_ : Optional[Any] = temp snake_case_ : List[str] = start - 1 for index in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value snake_case_ : Any = new_pivot_index + 1 snake_case_ : Tuple = a[new_pivot_index] snake_case_ : Optional[int] = a[index] snake_case_ : Tuple = temp snake_case_ : Union[str, Any] = a[new_pivot_index + 1] snake_case_ : Union[str, Any] = a[end] snake_case_ : Union[str, Any] = temp return new_pivot_index + 1, count a_ = TemporaryFile() a_ = 100 # 1000 elements are to be sorted a_ , a_ = 0, 1 # mean and standard deviation a_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array a_ = np.load(outfile) a_ = len(M) - 1 a_ = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
48
0
"""simple docstring""" from manim import * class __lowercase ( _UpperCAmelCase): """simple docstring""" def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = Rectangle(height=0.5 , width=0.5 ) snake_case_ : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) snake_case_ : Optional[Any] = [mem.copy() for i in range(6 )] snake_case_ : str = [mem.copy() for i in range(6 )] snake_case_ : str = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : Any = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[str] = VGroup(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[Any] = Text("""CPU""" , font_size=24 ) snake_case_ : Tuple = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowercase__ ) snake_case_ : List[Any] = [mem.copy() for i in range(4 )] snake_case_ : Tuple = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[str] = Text("""GPU""" , font_size=24 ) snake_case_ : Any = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) gpu.move_to([-1, -1, 0] ) self.add(lowercase__ ) snake_case_ : Optional[Any] = [mem.copy() for i in range(6 )] snake_case_ : List[Any] = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : Dict = Text("""Model""" , font_size=24 ) snake_case_ : int = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) model.move_to([3, -1.0, 0] ) self.add(lowercase__ ) snake_case_ : Dict = [] for i, rect in enumerate(lowercase__ ): rect.set_stroke(lowercase__ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) snake_case_ : List[str] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowercase__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowercase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase__ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase__ , buff=0.0 ) self.add(lowercase__ ) cpu_targs.append(lowercase__ ) snake_case_ : List[str] = [mem.copy() for i in range(6 )] snake_case_ : List[str] = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : str = Text("""Loaded Checkpoint""" , font_size=24 ) snake_case_ : Any = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , aligned_edge=lowercase__ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) snake_case_ : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) snake_case_ : Union[str, Any] = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowercase__ , lowercase__ ) snake_case_ : List[Any] = MarkupText( f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(lowercase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) snake_case_ : List[Any] = MarkupText( f'Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowercase__ ) , Write(lowercase__ ) ) self.play(Write(lowercase__ , run_time=1 ) , Create(lowercase__ , run_time=1 ) ) snake_case_ : Optional[int] = [] snake_case_ : List[str] = [] for i, rect in enumerate(lowercase__ ): snake_case_ : Optional[Any] = fill.copy().set_fill(lowercase__ , opacity=0.7 ) target.move_to(lowercase__ ) first_animations.append(GrowFromCenter(lowercase__ , run_time=1 ) ) snake_case_ : List[Any] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(lowercase__ , run_time=1.5 ) ) self.play(*lowercase__ ) self.play(*lowercase__ ) self.wait()
721
"""simple docstring""" import random def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : bool = False ): """simple docstring""" snake_case_ : dict = {i: [] for i in range(SCREAMING_SNAKE_CASE__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(SCREAMING_SNAKE_CASE__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(i + 1 , SCREAMING_SNAKE_CASE__ ): if random.random() < probability: graph[i].append(SCREAMING_SNAKE_CASE__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(SCREAMING_SNAKE_CASE__ ) return graph def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" return { i: [j for j in range(SCREAMING_SNAKE_CASE__ ) if i != j] for i in range(SCREAMING_SNAKE_CASE__ ) } if __name__ == "__main__": import doctest doctest.testmod()
48
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : str = word.split() def justify(SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> str: snake_case_ : Dict = max_width - width snake_case_ : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: snake_case_ : Tuple = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] snake_case_ : str = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] snake_case_ : Tuple = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(SCREAMING_SNAKE_CASE__ ): num_spaces_between_words_list[i] += 1 snake_case_ : Union[str, Any] = [] for i in range(SCREAMING_SNAKE_CASE__ ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * """ """ ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = [] snake_case_ : list[str] = [] snake_case_ : Tuple = 0 for word in words: if width + len(SCREAMING_SNAKE_CASE__ ) + len(SCREAMING_SNAKE_CASE__ ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(SCREAMING_SNAKE_CASE__ ) width += len(SCREAMING_SNAKE_CASE__ ) else: # justify the line and add it to result answer.append(justify(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) # reset new line and new width snake_case_ : List[Any] = [word], len(SCREAMING_SNAKE_CASE__ ) snake_case_ : List[str] = max_width - width - len(SCREAMING_SNAKE_CASE__ ) answer.append(""" """.join(SCREAMING_SNAKE_CASE__ ) + (remaining_spaces + 1) * """ """ ) return answer if __name__ == "__main__": from doctest import testmod testmod()
700
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json''' ), } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """dpr""" def __init__(self , lowercase__=3_05_22 , lowercase__=7_68 , lowercase__=12 , lowercase__=12 , lowercase__=30_72 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_12 , lowercase__=2 , lowercase__=0.02 , lowercase__=1e-12 , lowercase__=0 , lowercase__="absolute" , lowercase__ = 0 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , **lowercase__ ) snake_case_ : List[Any] = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : Tuple = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : int = hidden_act snake_case_ : Dict = intermediate_size snake_case_ : int = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : str = max_position_embeddings snake_case_ : List[str] = type_vocab_size snake_case_ : List[str] = initializer_range snake_case_ : Optional[int] = layer_norm_eps snake_case_ : Union[str, Any] = projection_dim snake_case_ : str = position_embedding_type
48
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a_ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') a_ = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) a_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowercase : """simple docstring""" _A : Optional[str] = field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""}) _A : Optional[str] = field( default=_UpperCAmelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""}) _A : Optional[str] = field( default=_UpperCAmelCase , metadata={"""help""": """The column name of the images in the files. If not set, will try to use 'image' or 'img'."""} , ) _A : Optional[str] = field(default=_UpperCAmelCase , metadata={"""help""": """A folder containing the training data."""}) _A : Optional[str] = field(default=_UpperCAmelCase , metadata={"""help""": """A folder containing the validation data."""}) _A : Optional[float] = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""}) _A : int = field(default=32 , metadata={"""help""": """The size of the square patches to use for masking."""}) _A : float = field( default=0.6 , metadata={"""help""": """Percentage of patches to mask."""} , ) _A : Optional[int] = field( default=_UpperCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) _A : Optional[int] = field( default=_UpperCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def __UpperCamelCase (self ): snake_case_ : Any = {} if self.train_dir is not None: snake_case_ : Any = self.train_dir if self.validation_dir is not None: snake_case_ : Tuple = self.validation_dir snake_case_ : int = data_files if data_files else None @dataclass class __lowercase : """simple docstring""" _A : str = field( default=_UpperCAmelCase , metadata={ """help""": ( """The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a """ """checkpoint identifier on the hub. """ """Don't set if you want to train a model from scratch.""" ) } , ) _A : Optional[str] = field( default=_UpperCAmelCase , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(_UpperCAmelCase)} , ) _A : Optional[str] = field( default=_UpperCAmelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""}) _A : Optional[str] = field( default=_UpperCAmelCase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) _A : Optional[str] = field( default=_UpperCAmelCase , metadata={"""help""": """Where do you want to store (cache) the pretrained models/datasets downloaded from the hub"""} , ) _A : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) _A : str = field(default=_UpperCAmelCase , metadata={"""help""": """Name or path of preprocessor config."""}) _A : bool = field( default=_UpperCAmelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) _A : Optional[int] = field( default=_UpperCAmelCase , metadata={ """help""": ( """The size (resolution) of each image. If not specified, will use `image_size` of the configuration.""" ) } , ) _A : Optional[int] = field( default=_UpperCAmelCase , metadata={ """help""": ( """The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.""" ) } , ) _A : Optional[int] = field( default=_UpperCAmelCase , metadata={"""help""": """Stride to use for the encoder."""} , ) class __lowercase : """simple docstring""" def __init__(self , lowercase__=1_92 , lowercase__=32 , lowercase__=4 , lowercase__=0.6 ): snake_case_ : Optional[Any] = input_size snake_case_ : List[Any] = mask_patch_size snake_case_ : Tuple = model_patch_size snake_case_ : Dict = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError("""Input size must be divisible by mask patch size""" ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError("""Mask patch size must be divisible by model patch size""" ) snake_case_ : List[Any] = self.input_size // self.mask_patch_size snake_case_ : List[str] = self.mask_patch_size // self.model_patch_size snake_case_ : Optional[int] = self.rand_size**2 snake_case_ : Union[str, Any] = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__(self ): snake_case_ : Optional[int] = np.random.permutation(self.token_count )[: self.mask_count] snake_case_ : Optional[Any] = np.zeros(self.token_count , dtype=lowercase__ ) snake_case_ : Optional[Any] = 1 snake_case_ : Any = mask.reshape((self.rand_size, self.rand_size) ) snake_case_ : List[Any] = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" snake_case_ : Any = torch.stack([example["""pixel_values"""] for example in examples] ) snake_case_ : Optional[int] = torch.stack([example["""mask"""] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case_ : Tuple = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case_ : List[Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mim""" , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() snake_case_ : Optional[int] = training_args.get_process_log_level() logger.setLevel(SCREAMING_SNAKE_CASE__ ) transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. snake_case_ : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case_ : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. snake_case_ : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. snake_case_ : int = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , SCREAMING_SNAKE_CASE__ ) and data_args.train_val_split > 0.0: snake_case_ : List[Any] = ds["""train"""].train_test_split(data_args.train_val_split ) snake_case_ : List[str] = split["""train"""] snake_case_ : List[str] = split["""test"""] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ : Dict = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name_or_path: snake_case_ : str = AutoConfig.from_pretrained(model_args.config_name_or_path , **SCREAMING_SNAKE_CASE__ ) elif model_args.model_name_or_path: snake_case_ : str = AutoConfig.from_pretrained(model_args.model_name_or_path , **SCREAMING_SNAKE_CASE__ ) else: snake_case_ : Dict = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(f'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(f'New config: {config}' ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(SCREAMING_SNAKE_CASE__ , """decoder_type""" ): snake_case_ : str = """simmim""" # adapt config snake_case_ : Tuple = model_args.image_size if model_args.image_size is not None else config.image_size snake_case_ : str = model_args.patch_size if model_args.patch_size is not None else config.patch_size snake_case_ : List[Any] = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { """image_size""": model_args.image_size, """patch_size""": model_args.patch_size, """encoder_stride""": model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: snake_case_ : Union[str, Any] = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **SCREAMING_SNAKE_CASE__ ) elif model_args.model_name_or_path: snake_case_ : Optional[Any] = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **SCREAMING_SNAKE_CASE__ ) else: snake_case_ : str = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } snake_case_ : Tuple = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: snake_case_ : List[Any] = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) snake_case_ : Optional[int] = AutoModelForMaskedImageModeling.from_config(SCREAMING_SNAKE_CASE__ ) if training_args.do_train: snake_case_ : str = ds["""train"""].column_names else: snake_case_ : Union[str, Any] = ds["""validation"""].column_names if data_args.image_column_name is not None: snake_case_ : Any = data_args.image_column_name elif "image" in column_names: snake_case_ : str = """image""" elif "img" in column_names: snake_case_ : Dict = """img""" else: snake_case_ : Optional[int] = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py snake_case_ : List[str] = Compose( [ Lambda(lambda SCREAMING_SNAKE_CASE__ : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator snake_case_ : Any = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(SCREAMING_SNAKE_CASE__ : List[Any] ): snake_case_ : List[str] = [transforms(SCREAMING_SNAKE_CASE__ ) for image in examples[image_column_name]] snake_case_ : Any = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: snake_case_ : Optional[int] = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(SCREAMING_SNAKE_CASE__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: snake_case_ : Union[str, Any] = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(SCREAMING_SNAKE_CASE__ ) # Initialize our trainer snake_case_ : Tuple = Trainer( model=SCREAMING_SNAKE_CASE__ , args=SCREAMING_SNAKE_CASE__ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=SCREAMING_SNAKE_CASE__ , data_collator=SCREAMING_SNAKE_CASE__ , ) # Training if training_args.do_train: snake_case_ : Any = None if training_args.resume_from_checkpoint is not None: snake_case_ : str = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case_ : int = last_checkpoint snake_case_ : List[Any] = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: snake_case_ : List[Any] = trainer.evaluate() trainer.log_metrics("""eval""" , SCREAMING_SNAKE_CASE__ ) trainer.save_metrics("""eval""" , SCREAMING_SNAKE_CASE__ ) # Write model card and (optionally) push to hub snake_case_ : Optional[Any] = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """masked-image-modeling""", """dataset""": data_args.dataset_name, """tags""": ["""masked-image-modeling"""], } if training_args.push_to_hub: trainer.push_to_hub(**SCREAMING_SNAKE_CASE__ ) else: trainer.create_model_card(**SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
701
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm a_ = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex a_ = 10 a_ = 256 def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" if len(SCREAMING_SNAKE_CASE__ ) < MIN_NUM_TOKENS: return None snake_case_ : Union[str, Any] = MinHash(num_perm=SCREAMING_SNAKE_CASE__ ) for token in set(SCREAMING_SNAKE_CASE__ ): min_hash.update(token.encode() ) return min_hash def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" return {t for t in NON_ALPHA.split(SCREAMING_SNAKE_CASE__ ) if len(t.strip() ) > 0} class __lowercase : """simple docstring""" def __init__(self , *, lowercase__ = 0.85 , ): snake_case_ : Tuple = duplication_jaccard_threshold snake_case_ : Optional[Any] = NUM_PERM snake_case_ : Tuple = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) snake_case_ : List[Any] = defaultdict(lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : int = self._index.query(lowercase__ ) if code_key in self._index.keys: print(f'Duplicate key {code_key}' ) return self._index.insert(lowercase__ , lowercase__ ) if len(lowercase__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowercase__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(lowercase__ ) def __UpperCamelCase (self ): snake_case_ : str = [] for base, duplicates in self._duplicate_clusters.items(): snake_case_ : Optional[Any] = [base] + list(lowercase__ ) # reformat the cluster to be a list of dict snake_case_ : Any = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(lowercase__ ) return duplicate_clusters def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = self.get_duplicate_clusters() with open(lowercase__ , """w""" ) as f: json.dump(lowercase__ , lowercase__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ , snake_case_ : str = element snake_case_ : Tuple = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] ): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(SCREAMING_SNAKE_CASE__ , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ): if data is not None: yield data def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] , SCREAMING_SNAKE_CASE__ : float ): """simple docstring""" snake_case_ : int = DuplicationIndex(duplication_jaccard_threshold=SCREAMING_SNAKE_CASE__ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(SCREAMING_SNAKE_CASE__ ) ) , max_queue_size=1_0_0 ) ): di.add(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : int = get_tokens(SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = get_tokens(SCREAMING_SNAKE_CASE__ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) a_ = None def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Optional[Any] = [] for elementa in cluster: snake_case_ : Union[str, Any] = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: snake_case_ : Any = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) >= jaccard_threshold: elementa["copies"] += 1 break else: snake_case_ : Union[str, Any] = 1 extremes.append(SCREAMING_SNAKE_CASE__ ) return extremes def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" global _shared_dataset snake_case_ : str = dataset snake_case_ : int = [] snake_case_ : Optional[int] = partial(_find_cluster_extremes_shared , jaccard_threshold=SCREAMING_SNAKE_CASE__ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) , total=len(SCREAMING_SNAKE_CASE__ ) , ): extremes_list.append(SCREAMING_SNAKE_CASE__ ) return extremes_list def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] , SCREAMING_SNAKE_CASE__ : float = 0.85 ): """simple docstring""" snake_case_ : List[str] = make_duplicate_clusters(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : str = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} snake_case_ : str = {} snake_case_ : Dict = find_extremes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for extremes in extremes_clusters: for element in extremes: snake_case_ : int = element snake_case_ : Optional[int] = duplicate_indices - set(extreme_dict.keys() ) snake_case_ : List[Any] = dataset.filter(lambda SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : idx not in remove_indices , with_indices=SCREAMING_SNAKE_CASE__ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: snake_case_ : List[Any] = element["""base_index"""] in extreme_dict if element["is_extreme"]: snake_case_ : str = extreme_dict[element["""base_index"""]]["""copies"""] print(f'Original dataset size: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Number of duplicate clusters: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Files in duplicate cluster: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Unique files in duplicate cluster: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Filtered dataset size: {len(SCREAMING_SNAKE_CASE__ )}' ) return ds_filter, duplicate_clusters
48
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''tiiuae/falcon-40b''': '''https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json''', '''tiiuae/falcon-7b''': '''https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json''', } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Dict = """falcon""" _A : str = ["""past_key_values"""] def __init__(self , lowercase__=6_50_24 , lowercase__=45_44 , lowercase__=32 , lowercase__=71 , lowercase__=1e-5 , lowercase__=0.02 , lowercase__=True , lowercase__=0.0 , lowercase__=0.0 , lowercase__=None , lowercase__=False , lowercase__=False , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=11 , lowercase__=11 , **lowercase__ , ): snake_case_ : Optional[Any] = vocab_size # Backward compatibility with n_embed kwarg snake_case_ : str = kwargs.pop("""n_embed""" , lowercase__ ) snake_case_ : Any = hidden_size if n_embed is None else n_embed snake_case_ : List[str] = num_hidden_layers snake_case_ : Optional[int] = num_attention_heads snake_case_ : Optional[int] = layer_norm_epsilon snake_case_ : List[str] = initializer_range snake_case_ : Union[str, Any] = use_cache snake_case_ : Dict = hidden_dropout snake_case_ : Optional[Any] = attention_dropout snake_case_ : Tuple = bos_token_id snake_case_ : Tuple = eos_token_id snake_case_ : Optional[Any] = num_attention_heads if num_kv_heads is None else num_kv_heads snake_case_ : Union[str, Any] = alibi snake_case_ : Tuple = new_decoder_architecture snake_case_ : List[Any] = multi_query # Ignored when new_decoder_architecture is True snake_case_ : Tuple = parallel_attn snake_case_ : Union[str, Any] = bias super().__init__(bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__ ) @property def __UpperCamelCase (self ): return self.hidden_size // self.num_attention_heads @property def __UpperCamelCase (self ): return not self.alibi
702
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) a_ = logging.getLogger(__name__) if __name__ == "__main__": a_ = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=30522, type=int) a_ = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, '''rb''') as fp: a_ = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') a_ = Counter() for tk_ids in data: counter.update(tk_ids) a_ = [0] * args.vocab_size for k, v in counter.items(): a_ = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
48
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available a_ = { '''configuration_audio_spectrogram_transformer''': [ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ASTConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ASTForAudioClassification''', '''ASTModel''', '''ASTPreTrainedModel''', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['''ASTFeatureExtractor'''] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
703
"""simple docstring""" import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" snake_case_ : Optional[Any] = tmp_path / """cache""" snake_case_ : Optional[int] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : Tuple = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" snake_case_ : List[Any] = tmp_path / """cache""" snake_case_ : int = {"""text""": """string"""} snake_case_ : Any = features.copy() if features else default_expected_features snake_case_ : List[Any] = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : Dict = TextDatasetReader(SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : Union[str, Any] = tmp_path / """cache""" snake_case_ : Optional[Any] = {"""text""": """string"""} snake_case_ : Optional[int] = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , split=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" if issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : List[str] = text_path elif issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : str = [text_path] snake_case_ : List[str] = tmp_path / """cache""" snake_case_ : List[str] = {"""text""": """string"""} snake_case_ : Dict = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str]=("train",) ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for split in splits: snake_case_ : Dict = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" snake_case_ : int = tmp_path / """cache""" snake_case_ : List[str] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : Optional[Any] = TextDatasetReader({"""train""": text_path} , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Tuple = tmp_path / """cache""" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" snake_case_ : List[str] = {"""text""": """string"""} snake_case_ : int = features.copy() if features else default_expected_features snake_case_ : Tuple = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : str = TextDatasetReader({"""train""": text_path} , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" if split: snake_case_ : Union[str, Any] = {split: text_path} else: snake_case_ : Union[str, Any] = """train""" snake_case_ : int = {"""train""": text_path, """test""": text_path} snake_case_ : List[Any] = tmp_path / """cache""" snake_case_ : Tuple = {"""text""": """string"""} snake_case_ : int = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
48
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging a_ = logging.get_logger(__name__) a_ = { '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/resolve/main/config.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/config.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/config.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json''', } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[Any] = """bloom""" _A : Union[str, Any] = ["""past_key_values"""] _A : List[str] = { """num_hidden_layers""": """n_layer""", """num_attention_heads""": """n_head""", } def __init__(self , lowercase__=25_08_80 , lowercase__=64 , lowercase__=2 , lowercase__=8 , lowercase__=1e-5 , lowercase__=0.02 , lowercase__=True , lowercase__=1 , lowercase__=2 , lowercase__=False , lowercase__=0.0 , lowercase__=0.0 , lowercase__=1 , lowercase__=False , **lowercase__ , ): snake_case_ : Any = vocab_size # Backward compatibility with n_embed kwarg snake_case_ : Union[str, Any] = kwargs.pop("""n_embed""" , lowercase__ ) snake_case_ : Any = hidden_size if n_embed is None else n_embed snake_case_ : Optional[Any] = n_layer snake_case_ : Any = n_head snake_case_ : Optional[int] = layer_norm_epsilon snake_case_ : Optional[Any] = initializer_range snake_case_ : Any = use_cache snake_case_ : str = pretraining_tp snake_case_ : Dict = apply_residual_connection_post_layernorm snake_case_ : Tuple = hidden_dropout snake_case_ : str = attention_dropout snake_case_ : Union[str, Any] = bos_token_id snake_case_ : Any = eos_token_id snake_case_ : Any = slow_but_exact super().__init__(bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__ ) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Union[str, Any] = version.parse("""1.12""") def __init__(self , lowercase__ , lowercase__ = "default" , lowercase__ = None , lowercase__ = False , ): super().__init__(lowercase__ , task=lowercase__ , patching_specs=lowercase__ , use_past=lowercase__ ) if not getattr(self._config , """pad_token_id""" , lowercase__ ): # TODO: how to do that better? snake_case_ : Optional[Any] = 0 @property def __UpperCamelCase (self ): snake_case_ : Any = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(lowercase__ , direction="""inputs""" , inverted_values_shape=lowercase__ ) snake_case_ : Tuple = {0: """batch""", 1: """past_sequence + sequence"""} else: snake_case_ : int = {0: """batch""", 1: """sequence"""} return common_inputs @property def __UpperCamelCase (self ): return self._config.n_layer @property def __UpperCamelCase (self ): return self._config.n_head @property def __UpperCamelCase (self ): return 1e-3 def __UpperCamelCase (self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , ): snake_case_ : Any = super(lowercase__ , self ).generate_dummy_inputs( lowercase__ , batch_size=lowercase__ , seq_length=lowercase__ , is_pair=lowercase__ , framework=lowercase__ ) # We need to order the input in the way they appears in the forward() snake_case_ : Any = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch snake_case_ : Dict = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values snake_case_ : str = seqlen + 2 snake_case_ : List[Any] = self._config.hidden_size // self.num_attention_heads snake_case_ : int = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) snake_case_ : Any = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) snake_case_ : List[Any] = [ (torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) for _ in range(self.num_layers ) ] snake_case_ : int = common_inputs["""attention_mask"""] if self.use_past: snake_case_ : List[str] = ordered_inputs["""attention_mask"""].dtype snake_case_ : int = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(lowercase__ , lowercase__ , dtype=lowercase__ )] , dim=1 ) return ordered_inputs @property def __UpperCamelCase (self ): return 13
704
"""simple docstring""" from copy import deepcopy class __lowercase : """simple docstring""" def __init__(self , lowercase__ = None , lowercase__ = None ): if arr is None and size is not None: snake_case_ : str = size snake_case_ : Optional[Any] = [0] * size elif arr is not None: self.init(lowercase__ ) else: raise ValueError("""Either arr or size must be specified""" ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Optional[Any] = len(lowercase__ ) snake_case_ : int = deepcopy(lowercase__ ) for i in range(1 , self.size ): snake_case_ : Optional[Any] = self.next_(lowercase__ ) if j < self.size: self.tree[j] += self.tree[i] def __UpperCamelCase (self ): snake_case_ : Dict = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): snake_case_ : Optional[int] = self.next_(lowercase__ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def __UpperCamelCase (lowercase__ ): return index + (index & (-index)) @staticmethod def __UpperCamelCase (lowercase__ ): return index - (index & (-index)) def __UpperCamelCase (self , lowercase__ , lowercase__ ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value snake_case_ : Tuple = self.next_(lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): self.add(lowercase__ , value - self.get(lowercase__ ) ) def __UpperCamelCase (self , lowercase__ ): if right == 0: return 0 snake_case_ : List[str] = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] snake_case_ : Optional[int] = self.prev(lowercase__ ) return result def __UpperCamelCase (self , lowercase__ , lowercase__ ): return self.prefix(lowercase__ ) - self.prefix(lowercase__ ) def __UpperCamelCase (self , lowercase__ ): return self.query(lowercase__ , index + 1 ) def __UpperCamelCase (self , lowercase__ ): value -= self.tree[0] if value < 0: return -1 snake_case_ : Tuple = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 snake_case_ : Tuple = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
48
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : List[str] = [] snake_case_ : int = 1 while len(SCREAMING_SNAKE_CASE__ ) < 1E6: constant.append(str(SCREAMING_SNAKE_CASE__ ) ) i += 1 snake_case_ : str = """""".join(SCREAMING_SNAKE_CASE__ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[9_9] ) * int(constant[9_9_9] ) * int(constant[9_9_9_9] ) * int(constant[9_9_9_9_9] ) * int(constant[9_9_9_9_9_9] ) ) if __name__ == "__main__": print(solution())
705
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : list ): """simple docstring""" snake_case_ : Optional[int] = len(SCREAMING_SNAKE_CASE__ ) for i in range(1 , SCREAMING_SNAKE_CASE__ ): snake_case_ : Tuple = collection[i] snake_case_ : Tuple = 0 snake_case_ : str = i - 1 while low <= high: snake_case_ : Optional[int] = (low + high) // 2 if val < collection[mid]: snake_case_ : List[str] = mid - 1 else: snake_case_ : str = mid + 1 for j in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , -1 ): snake_case_ : List[str] = collection[j - 1] snake_case_ : Any = val return collection if __name__ == "__main__": a_ = input('''Enter numbers separated by a comma:\n''').strip() a_ = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
48
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Dict = ["""pixel_values"""] def __init__(self , lowercase__ = True , lowercase__ = 32 , lowercase__=PILImageResampling.BILINEAR , lowercase__ = True , **lowercase__ , ): snake_case_ : Union[str, Any] = do_resize snake_case_ : Dict = do_rescale snake_case_ : int = size_divisor snake_case_ : int = resample super().__init__(**lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ ): snake_case_ : Dict = get_image_size(lowercase__ ) # Rounds the height and width down to the closest multiple of size_divisor snake_case_ : Optional[int] = height // size_divisor * size_divisor snake_case_ : int = width // size_divisor * size_divisor snake_case_ : str = resize(lowercase__ , (new_h, new_w) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) return image def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ ): return rescale(image=lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__=None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ): snake_case_ : Optional[int] = do_resize if do_resize is not None else self.do_resize snake_case_ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : int = size_divisor if size_divisor is not None else self.size_divisor snake_case_ : List[str] = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("""size_divisor is required for resizing""" ) snake_case_ : int = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError("""Invalid image(s)""" ) # All transformations expect numpy arrays. snake_case_ : List[str] = [to_numpy_array(lowercase__ ) for img in images] if do_resize: snake_case_ : Any = [self.resize(lowercase__ , size_divisor=lowercase__ , resample=lowercase__ ) for image in images] if do_rescale: snake_case_ : Dict = [self.rescale(lowercase__ , scale=1 / 2_55 ) for image in images] snake_case_ : int = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] snake_case_ : int = {"""pixel_values""": images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
706
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Union[str, Any] = ["""image_processor""", """tokenizer"""] _A : str = """ChineseCLIPImageProcessor""" _A : Tuple = ("""BertTokenizer""", """BertTokenizerFast""") def __init__(self , lowercase__=None , lowercase__=None , **lowercase__ ): snake_case_ : Any = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowercase__ , ) snake_case_ : Optional[Any] = kwargs.pop("""feature_extractor""" ) snake_case_ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowercase__ , lowercase__ ) snake_case_ : Union[str, Any] = self.image_processor def __call__(self , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ ): if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: snake_case_ : Any = self.tokenizer(lowercase__ , return_tensors=lowercase__ , **lowercase__ ) if images is not None: snake_case_ : Tuple = self.image_processor(lowercase__ , return_tensors=lowercase__ , **lowercase__ ) if text is not None and images is not None: snake_case_ : List[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase__ ) , tensor_type=lowercase__ ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): return self.tokenizer.batch_decode(*lowercase__ , **lowercase__ ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): return self.tokenizer.decode(*lowercase__ , **lowercase__ ) @property def __UpperCamelCase (self ): snake_case_ : Optional[int] = self.tokenizer.model_input_names snake_case_ : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __UpperCamelCase (self ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowercase__ , ) return self.image_processor_class
48
0
"""simple docstring""" import argparse import hashlib # hashlib is only used inside the Test class import struct class __lowercase : """simple docstring""" def __init__(self , lowercase__ ): snake_case_ : Union[str, Any] = data snake_case_ : List[str] = [0X6_7_4_5_2_3_0_1, 0Xe_f_c_d_a_b_8_9, 0X9_8_b_a_d_c_f_e, 0X1_0_3_2_5_4_7_6, 0Xc_3_d_2_e_1_f_0] @staticmethod def __UpperCamelCase (lowercase__ , lowercase__ ): return ((n << b) | (n >> (32 - b))) & 0Xf_f_f_f_f_f_f_f def __UpperCamelCase (self ): snake_case_ : Any = B"""\x80""" + B"""\x00""" * (63 - (len(self.data ) + 8) % 64) snake_case_ : Tuple = self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def __UpperCamelCase (self ): return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = list(struct.unpack(""">16L""" , lowercase__ ) ) + [0] * 64 for i in range(16 , 80 ): snake_case_ : Dict = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def __UpperCamelCase (self ): snake_case_ : List[Any] = self.padding() snake_case_ : Any = self.split_blocks() for block in self.blocks: snake_case_ : Any = self.expand_block(lowercase__ ) snake_case_ : List[Any] = self.h for i in range(0 , 80 ): if 0 <= i < 20: snake_case_ : Optional[Any] = (b & c) | ((~b) & d) snake_case_ : List[str] = 0X5_a_8_2_7_9_9_9 elif 20 <= i < 40: snake_case_ : Union[str, Any] = b ^ c ^ d snake_case_ : Tuple = 0X6_e_d_9_e_b_a_1 elif 40 <= i < 60: snake_case_ : str = (b & c) | (b & d) | (c & d) snake_case_ : List[str] = 0X8_f_1_b_b_c_d_c elif 60 <= i < 80: snake_case_ : Tuple = b ^ c ^ d snake_case_ : str = 0Xc_a_6_2_c_1_d_6 snake_case_ : Optional[Any] = ( self.rotate(lowercase__ , 5 ) + f + e + k + expanded_block[i] & 0Xf_f_f_f_f_f_f_f, a, self.rotate(lowercase__ , 30 ), c, d, ) snake_case_ : Any = ( self.h[0] + a & 0Xf_f_f_f_f_f_f_f, self.h[1] + b & 0Xf_f_f_f_f_f_f_f, self.h[2] + c & 0Xf_f_f_f_f_f_f_f, self.h[3] + d & 0Xf_f_f_f_f_f_f_f, self.h[4] + e & 0Xf_f_f_f_f_f_f_f, ) return ("{:08x}" * 5).format(*self.h ) def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Union[str, Any] = b"""Test String""" assert SHAaHash(SCREAMING_SNAKE_CASE__ ).final_hash() == hashlib.shaa(SCREAMING_SNAKE_CASE__ ).hexdigest() # noqa: S324 def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : int = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument("""--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) snake_case_ : Optional[int] = parser.parse_args() snake_case_ : Optional[int] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: snake_case_ : List[str] = f.read() else: snake_case_ : Dict = bytes(SCREAMING_SNAKE_CASE__ , """utf-8""" ) print(SHAaHash(SCREAMING_SNAKE_CASE__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
707
"""simple docstring""" import argparse import copy def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" snake_case_ : List[Any] = {} with open(SCREAMING_SNAKE_CASE__ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: snake_case_ : int = [] _list.append([line.split()[1], line.split()[2]] ) snake_case_ : Optional[Any] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: snake_case_ : str = [] _list.append([line.split()[0], line.split()[2]] ) snake_case_ : Optional[Any] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" with open(SCREAMING_SNAKE_CASE__ ) as f: snake_case_ : Optional[Any] = f.read(1 ) snake_case_ : Union[str, Any] = start_node snake_case_ : Dict = [] snake_case_ : Union[str, Any] = start_node snake_case_ : Tuple = 0 while visiting not in first_solution: snake_case_ : int = 1_0_0_0_0 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(SCREAMING_SNAKE_CASE__ ) and k[0] not in first_solution: snake_case_ : Union[str, Any] = k[1] snake_case_ : Any = k[0] first_solution.append(SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = distance_of_first_solution + int(SCREAMING_SNAKE_CASE__ ) snake_case_ : List[str] = best_node first_solution.append(SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[Any] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 snake_case_ : int = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0_0_0_0 ) return first_solution, distance_of_first_solution def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" snake_case_ : Union[str, Any] = [] for n in solution[1:-1]: snake_case_ : str = solution.index(SCREAMING_SNAKE_CASE__ ) for kn in solution[1:-1]: snake_case_ : Tuple = solution.index(SCREAMING_SNAKE_CASE__ ) if n == kn: continue snake_case_ : Optional[Any] = copy.deepcopy(SCREAMING_SNAKE_CASE__ ) snake_case_ : int = kn snake_case_ : Dict = n snake_case_ : Optional[int] = 0 for k in _tmp[:-1]: snake_case_ : Dict = _tmp[_tmp.index(SCREAMING_SNAKE_CASE__ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: snake_case_ : Dict = distance + int(i[1] ) _tmp.append(SCREAMING_SNAKE_CASE__ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) snake_case_ : Optional[Any] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda SCREAMING_SNAKE_CASE__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] ): """simple docstring""" snake_case_ : Dict = 1 snake_case_ : List[Any] = first_solution snake_case_ : List[Any] = [] snake_case_ : Optional[Any] = distance_of_first_solution snake_case_ : Dict = solution while count <= iters: snake_case_ : List[str] = find_neighborhood(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = 0 snake_case_ : List[Any] = neighborhood[index_of_best_solution] snake_case_ : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ ) - 1 snake_case_ : List[str] = False while not found: snake_case_ : Tuple = 0 while i < len(SCREAMING_SNAKE_CASE__ ): if best_solution[i] != solution[i]: snake_case_ : Optional[Any] = best_solution[i] snake_case_ : int = solution[i] break snake_case_ : List[str] = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) snake_case_ : Tuple = True snake_case_ : Dict = best_solution[:-1] snake_case_ : Tuple = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: snake_case_ : Tuple = cost snake_case_ : Union[str, Any] = solution else: snake_case_ : str = index_of_best_solution + 1 snake_case_ : Tuple = neighborhood[index_of_best_solution] if len(SCREAMING_SNAKE_CASE__ ) >= size: tabu_list.pop(0 ) snake_case_ : List[str] = count + 1 return best_solution_ever, best_cost def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any]=None ): """simple docstring""" snake_case_ : Tuple = generate_neighbours(args.File ) snake_case_ , snake_case_ : Optional[Any] = generate_first_solution( args.File , SCREAMING_SNAKE_CASE__ ) snake_case_ , snake_case_ : Dict = tabu_search( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , args.Iterations , args.Size , ) print(f'Best solution: {best_sol}, with total distance: {best_cost}.' ) if __name__ == "__main__": a_ = argparse.ArgumentParser(description='''Tabu Search''') parser.add_argument( '''-f''', '''--File''', type=str, help='''Path to the file containing the data''', required=True, ) parser.add_argument( '''-i''', '''--Iterations''', type=int, help='''How many iterations the algorithm should perform''', required=True, ) parser.add_argument( '''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True ) # Pass the arguments to main method main(parser.parse_args())
48
0
"""simple docstring""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''google/umt5-small''': '''https://huggingface.co/google/umt5-small/resolve/main/config.json''', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Dict = """umt5""" _A : Any = ["""past_key_values"""] def __init__(self , lowercase__=25_01_12 , lowercase__=5_12 , lowercase__=64 , lowercase__=10_24 , lowercase__=8 , lowercase__=None , lowercase__=6 , lowercase__=32 , lowercase__=1_28 , lowercase__=0.1 , lowercase__=1e-6 , lowercase__=1.0 , lowercase__="gated-gelu" , lowercase__=True , lowercase__=True , lowercase__="T5Tokenizer" , lowercase__=True , lowercase__=0 , lowercase__=1 , lowercase__=0 , **lowercase__ , ): super().__init__( is_encoder_decoder=lowercase__ , tokenizer_class=lowercase__ , tie_word_embeddings=lowercase__ , pad_token_id=lowercase__ , eos_token_id=lowercase__ , decoder_start_token_id=lowercase__ , **lowercase__ , ) snake_case_ : List[Any] = vocab_size snake_case_ : Dict = d_model snake_case_ : str = d_kv snake_case_ : Optional[Any] = d_ff snake_case_ : List[Any] = num_layers snake_case_ : Dict = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry snake_case_ : List[Any] = num_heads snake_case_ : List[str] = relative_attention_num_buckets snake_case_ : Optional[Any] = relative_attention_max_distance snake_case_ : Tuple = dropout_rate snake_case_ : Optional[int] = layer_norm_epsilon snake_case_ : List[str] = initializer_factor snake_case_ : List[str] = feed_forward_proj snake_case_ : List[str] = use_cache snake_case_ : Optional[int] = self.feed_forward_proj.split("""-""" ) snake_case_ : List[Any] = act_info[-1] snake_case_ : int = act_info[0] == """gated""" if len(lowercase__ ) > 1 and act_info[0] != "gated" or len(lowercase__ ) > 2: raise ValueError( f'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) if feed_forward_proj == "gated-gelu": snake_case_ : str = """gelu_new""" @property def __UpperCamelCase (self ): return self.d_model @property def __UpperCamelCase (self ): return self.num_heads @property def __UpperCamelCase (self ): return self.num_layers class __lowercase ( _UpperCAmelCase): """simple docstring""" @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def __UpperCamelCase (self ): snake_case_ : Any = { """input_ids""": {0: """batch""", 1: """encoder_sequence"""}, """attention_mask""": {0: """batch""", 1: """encoder_sequence"""}, } if self.use_past: snake_case_ : Optional[int] = """past_encoder_sequence + sequence""" snake_case_ : Dict = {0: """batch"""} snake_case_ : str = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: snake_case_ : Tuple = {0: """batch""", 1: """decoder_sequence"""} snake_case_ : Union[str, Any] = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(lowercase__ , direction="""inputs""" ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def __UpperCamelCase (self ): return 13 @property def __UpperCamelCase (self ): return 5e-4
708
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings a_ = r''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(_UpperCAmelCase) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """rag""" _A : Optional[Any] = True def __init__(self , lowercase__=None , lowercase__=True , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=" / " , lowercase__=" // " , lowercase__=5 , lowercase__=3_00 , lowercase__=7_68 , lowercase__=8 , lowercase__="wiki_dpr" , lowercase__="train" , lowercase__="compressed" , lowercase__=None , lowercase__=None , lowercase__=False , lowercase__=False , lowercase__=0.0 , lowercase__=True , lowercase__=False , lowercase__=False , lowercase__=False , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__( bos_token_id=lowercase__ , pad_token_id=lowercase__ , eos_token_id=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , prefix=lowercase__ , vocab_size=lowercase__ , **lowercase__ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" snake_case_ : List[Any] = kwargs.pop("""question_encoder""" ) snake_case_ : Tuple = question_encoder_config.pop("""model_type""" ) snake_case_ : List[str] = kwargs.pop("""generator""" ) snake_case_ : List[str] = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig snake_case_ : List[str] = AutoConfig.for_model(lowercase__ , **lowercase__ ) snake_case_ : Tuple = AutoConfig.for_model(lowercase__ , **lowercase__ ) snake_case_ : int = reduce_loss snake_case_ : Optional[int] = label_smoothing snake_case_ : Dict = exclude_bos_score snake_case_ : Union[str, Any] = do_marginalize snake_case_ : Union[str, Any] = title_sep snake_case_ : int = doc_sep snake_case_ : int = n_docs snake_case_ : List[str] = max_combined_length snake_case_ : Tuple = dataset snake_case_ : int = dataset_split snake_case_ : str = index_name snake_case_ : List[str] = retrieval_vector_size snake_case_ : Dict = retrieval_batch_size snake_case_ : str = passages_path snake_case_ : Union[str, Any] = index_path snake_case_ : Tuple = use_dummy_dataset snake_case_ : Dict = output_retrieved snake_case_ : str = do_deduplication snake_case_ : Any = use_cache if self.forced_eos_token_id is None: snake_case_ : Any = getattr(self.generator , """forced_eos_token_id""" , lowercase__ ) @classmethod def __UpperCamelCase (cls , lowercase__ , lowercase__ , **lowercase__ ): return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Optional[Any] = copy.deepcopy(self.__dict__ ) snake_case_ : Any = self.question_encoder.to_dict() snake_case_ : Dict = self.generator.to_dict() snake_case_ : Union[str, Any] = self.__class__.model_type return output
48
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
709
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """upernet""" def __init__(self , lowercase__=None , lowercase__=5_12 , lowercase__=0.02 , lowercase__=[1, 2, 3, 6] , lowercase__=True , lowercase__=0.4 , lowercase__=3_84 , lowercase__=2_56 , lowercase__=1 , lowercase__=False , lowercase__=2_55 , **lowercase__ , ): super().__init__(**lowercase__ ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) snake_case_ : List[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(lowercase__ , lowercase__ ): snake_case_ : Tuple = backbone_config.get("""model_type""" ) snake_case_ : List[str] = CONFIG_MAPPING[backbone_model_type] snake_case_ : List[Any] = config_class.from_dict(lowercase__ ) snake_case_ : List[Any] = backbone_config snake_case_ : Optional[Any] = hidden_size snake_case_ : Any = initializer_range snake_case_ : str = pool_scales snake_case_ : Dict = use_auxiliary_head snake_case_ : str = auxiliary_loss_weight snake_case_ : List[str] = auxiliary_in_channels snake_case_ : Optional[Any] = auxiliary_channels snake_case_ : Any = auxiliary_num_convs snake_case_ : List[Any] = auxiliary_concat_input snake_case_ : List[str] = loss_ignore_index def __UpperCamelCase (self ): snake_case_ : Dict = copy.deepcopy(self.__dict__ ) snake_case_ : Union[str, Any] = self.backbone_config.to_dict() snake_case_ : Any = self.__class__.model_type return output
48
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self , *lowercase__ , **lowercase__ ): warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , lowercase__ , ) super().__init__(*lowercase__ , **lowercase__ )
710
"""simple docstring""" import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask a_ = logging.getLogger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self , lowercase__=-1 ): # in NER datasets, the last column is usually reserved for NER label snake_case_ : Union[str, Any] = label_idx def __UpperCamelCase (self , lowercase__ , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): snake_case_ : List[str] = mode.value snake_case_ : List[Any] = os.path.join(lowercase__ , f'{mode}.txt' ) snake_case_ : Tuple = 1 snake_case_ : Any = [] with open(lowercase__ , encoding="""utf-8""" ) as f: snake_case_ : str = [] snake_case_ : List[Any] = [] for line in f: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) guid_index += 1 snake_case_ : Optional[Any] = [] snake_case_ : int = [] else: snake_case_ : Optional[Any] = line.split(""" """ ) words.append(splits[0] ) if len(lowercase__ ) > 1: labels.append(splits[self.label_idx].replace("""\n""" , """""" ) ) else: # Examples could have no label for mode = "test" labels.append("""O""" ) if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) return examples def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : str = 0 for line in test_input_reader: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": writer.write(lowercase__ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: snake_case_ : Optional[int] = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n""" writer.write(lowercase__ ) else: logger.warning("""Maximum sequence length exceeded: No prediction for '%s'.""" , line.split()[0] ) def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: snake_case_ : Dict = f.read().splitlines() if "O" not in labels: snake_case_ : List[Any] = ["""O"""] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self ): # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: snake_case_ : Any = f.read().splitlines() if "O" not in labels: snake_case_ : Tuple = ["""O"""] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __lowercase ( _UpperCAmelCase): """simple docstring""" def __UpperCamelCase (self , lowercase__ , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): snake_case_ : List[Any] = mode.value snake_case_ : Optional[int] = os.path.join(lowercase__ , f'{mode}.txt' ) snake_case_ : Tuple = 1 snake_case_ : str = [] with open(lowercase__ , encoding="""utf-8""" ) as f: for sentence in parse_incr(lowercase__ ): snake_case_ : Tuple = [] snake_case_ : Any = [] for token in sentence: words.append(token["""form"""] ) labels.append(token["""upos"""] ) assert len(lowercase__ ) == len(lowercase__ ) if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) guid_index += 1 return examples def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : Dict = 0 for sentence in parse_incr(lowercase__ ): snake_case_ : int = preds_list[example_id] snake_case_ : Dict = """""" for token in sentence: out += f'{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) ' out += "\n" writer.write(lowercase__ ) example_id += 1 def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
48
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class __lowercase : """simple docstring""" _A : int = BlenderbotConfig _A : str = {} _A : List[Any] = """gelu""" def __init__(self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=False , lowercase__=99 , lowercase__=32 , lowercase__=2 , lowercase__=4 , lowercase__=37 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=20 , lowercase__=2 , lowercase__=1 , lowercase__=0 , ): snake_case_ : List[str] = parent snake_case_ : int = batch_size snake_case_ : Dict = seq_length snake_case_ : Optional[Any] = is_training snake_case_ : Any = use_labels snake_case_ : List[Any] = vocab_size snake_case_ : Any = hidden_size snake_case_ : Union[str, Any] = num_hidden_layers snake_case_ : Optional[int] = num_attention_heads snake_case_ : List[str] = intermediate_size snake_case_ : Any = hidden_dropout_prob snake_case_ : List[Any] = attention_probs_dropout_prob snake_case_ : Dict = max_position_embeddings snake_case_ : Optional[Any] = eos_token_id snake_case_ : Optional[Any] = pad_token_id snake_case_ : Dict = bos_token_id def __UpperCamelCase (self ): snake_case_ : Any = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) snake_case_ : List[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) snake_case_ : Optional[int] = tf.concat([input_ids, eos_tensor] , axis=1 ) snake_case_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : int = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) snake_case_ : List[str] = prepare_blenderbot_inputs_dict(lowercase__ , lowercase__ , lowercase__ ) return config, inputs_dict def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : str = TFBlenderbotModel(config=lowercase__ ).get_decoder() snake_case_ : Dict = inputs_dict["""input_ids"""] snake_case_ : Optional[Any] = input_ids[:1, :] snake_case_ : Dict = inputs_dict["""attention_mask"""][:1, :] snake_case_ : Dict = inputs_dict["""head_mask"""] snake_case_ : Dict = 1 # first forward pass snake_case_ : List[str] = model(lowercase__ , attention_mask=lowercase__ , head_mask=lowercase__ , use_cache=lowercase__ ) snake_case_ : Any = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case_ : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and snake_case_ : Optional[int] = tf.concat([input_ids, next_tokens] , axis=-1 ) snake_case_ : Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) snake_case_ : List[Any] = model(lowercase__ , attention_mask=lowercase__ )[0] snake_case_ : int = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice snake_case_ : str = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) snake_case_ : List[Any] = output_from_no_past[:, -3:, random_slice_idx] snake_case_ : str = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase__ , lowercase__ , rtol=1e-3 ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , ): """simple docstring""" if attention_mask is None: snake_case_ : List[Any] = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case_ : Any = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case_ : Dict = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case_ : List[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: snake_case_ : List[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : int = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () _A : Optional[Any] = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () _A : Optional[Any] = ( { """conversational""": TFBlenderbotForConditionalGeneration, """feature-extraction""": TFBlenderbotModel, """summarization""": TFBlenderbotForConditionalGeneration, """text2text-generation""": TFBlenderbotForConditionalGeneration, """translation""": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) _A : str = True _A : Optional[Any] = False _A : Any = False def __UpperCamelCase (self ): snake_case_ : Any = TFBlenderbotModelTester(self ) snake_case_ : str = ConfigTester(self , config_class=lowercase__ ) def __UpperCamelCase (self ): self.config_tester.run_common_tests() def __UpperCamelCase (self ): snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase__ ) @require_tokenizers @require_tf class __lowercase ( unittest.TestCase): """simple docstring""" _A : Dict = ["""My friends are cool but they eat too many carbs."""] _A : int = """facebook/blenderbot-400M-distill""" @cached_property def __UpperCamelCase (self ): return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def __UpperCamelCase (self ): snake_case_ : Any = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def __UpperCamelCase (self ): snake_case_ : Tuple = self.tokenizer(self.src_text , return_tensors="""tf""" ) snake_case_ : Tuple = self.model.generate( model_inputs.input_ids , ) snake_case_ : List[str] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowercase__ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
711
"""simple docstring""" import random def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : Union[str, Any] = num - 1 snake_case_ : List[str] = 0 while s % 2 == 0: snake_case_ : str = s // 2 t += 1 for _ in range(5 ): snake_case_ : List[Any] = random.randrange(2 , num - 1 ) snake_case_ : Dict = pow(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if v != 1: snake_case_ : int = 0 while v != (num - 1): if i == t - 1: return False else: snake_case_ : str = i + 1 snake_case_ : int = (v**2) % num return True def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" if num < 2: return False snake_case_ : Dict = [ 2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1, 4_3, 4_7, 5_3, 5_9, 6_1, 6_7, 7_1, 7_3, 7_9, 8_3, 8_9, 9_7, 1_0_1, 1_0_3, 1_0_7, 1_0_9, 1_1_3, 1_2_7, 1_3_1, 1_3_7, 1_3_9, 1_4_9, 1_5_1, 1_5_7, 1_6_3, 1_6_7, 1_7_3, 1_7_9, 1_8_1, 1_9_1, 1_9_3, 1_9_7, 1_9_9, 2_1_1, 2_2_3, 2_2_7, 2_2_9, 2_3_3, 2_3_9, 2_4_1, 2_5_1, 2_5_7, 2_6_3, 2_6_9, 2_7_1, 2_7_7, 2_8_1, 2_8_3, 2_9_3, 3_0_7, 3_1_1, 3_1_3, 3_1_7, 3_3_1, 3_3_7, 3_4_7, 3_4_9, 3_5_3, 3_5_9, 3_6_7, 3_7_3, 3_7_9, 3_8_3, 3_8_9, 3_9_7, 4_0_1, 4_0_9, 4_1_9, 4_2_1, 4_3_1, 4_3_3, 4_3_9, 4_4_3, 4_4_9, 4_5_7, 4_6_1, 4_6_3, 4_6_7, 4_7_9, 4_8_7, 4_9_1, 4_9_9, 5_0_3, 5_0_9, 5_2_1, 5_2_3, 5_4_1, 5_4_7, 5_5_7, 5_6_3, 5_6_9, 5_7_1, 5_7_7, 5_8_7, 5_9_3, 5_9_9, 6_0_1, 6_0_7, 6_1_3, 6_1_7, 6_1_9, 6_3_1, 6_4_1, 6_4_3, 6_4_7, 6_5_3, 6_5_9, 6_6_1, 6_7_3, 6_7_7, 6_8_3, 6_9_1, 7_0_1, 7_0_9, 7_1_9, 7_2_7, 7_3_3, 7_3_9, 7_4_3, 7_5_1, 7_5_7, 7_6_1, 7_6_9, 7_7_3, 7_8_7, 7_9_7, 8_0_9, 8_1_1, 8_2_1, 8_2_3, 8_2_7, 8_2_9, 8_3_9, 8_5_3, 8_5_7, 8_5_9, 8_6_3, 8_7_7, 8_8_1, 8_8_3, 8_8_7, 9_0_7, 9_1_1, 9_1_9, 9_2_9, 9_3_7, 9_4_1, 9_4_7, 9_5_3, 9_6_7, 9_7_1, 9_7_7, 9_8_3, 9_9_1, 9_9_7, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int = 1_0_2_4 ): """simple docstring""" while True: snake_case_ : Tuple = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(SCREAMING_SNAKE_CASE__ ): return num if __name__ == "__main__": a_ = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
48
0
"""simple docstring""" from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
712
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType a_ = logging.get_logger(__name__) a_ = { '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Dict = """deberta-v2""" def __init__(self , lowercase__=12_81_00 , lowercase__=15_36 , lowercase__=24 , lowercase__=24 , lowercase__=61_44 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_12 , lowercase__=0 , lowercase__=0.02 , lowercase__=1e-7 , lowercase__=False , lowercase__=-1 , lowercase__=0 , lowercase__=True , lowercase__=None , lowercase__=0 , lowercase__="gelu" , **lowercase__ , ): super().__init__(**lowercase__ ) snake_case_ : Union[str, Any] = hidden_size snake_case_ : str = num_hidden_layers snake_case_ : Tuple = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : Optional[int] = hidden_act snake_case_ : Union[str, Any] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : List[Any] = max_position_embeddings snake_case_ : Union[str, Any] = type_vocab_size snake_case_ : Union[str, Any] = initializer_range snake_case_ : List[Any] = relative_attention snake_case_ : Dict = max_relative_positions snake_case_ : Optional[int] = pad_token_id snake_case_ : List[str] = position_biased_input # Backwards compatibility if type(lowercase__ ) == str: snake_case_ : Union[str, Any] = [x.strip() for x in pos_att_type.lower().split("""|""" )] snake_case_ : Optional[int] = pos_att_type snake_case_ : List[str] = vocab_size snake_case_ : Tuple = layer_norm_eps snake_case_ : List[Any] = kwargs.get("""pooler_hidden_size""" , lowercase__ ) snake_case_ : List[str] = pooler_dropout snake_case_ : int = pooler_hidden_act class __lowercase ( _UpperCAmelCase): """simple docstring""" @property def __UpperCamelCase (self ): if self.task == "multiple-choice": snake_case_ : List[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case_ : int = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def __UpperCamelCase (self ): return 12 def __UpperCamelCase (self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , lowercase__ = 3 , lowercase__ = 40 , lowercase__ = 40 , lowercase__ = None , ): snake_case_ : str = super().generate_dummy_inputs(preprocessor=lowercase__ , framework=lowercase__ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
48
0
"""simple docstring""" import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py a_ = '''.''' if __name__ == "__main__": a_ = os.path.join(REPO_PATH, '''utils/documentation_tests.txt''') a_ = [] a_ = [] with open(doctest_file_path) as fp: for line in fp: a_ = line.strip() a_ = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: a_ = '''\n'''.join(non_existent_paths) raise ValueError(F'''`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}''') if all_paths != sorted(all_paths): raise ValueError('''Files in `utils/documentation_tests.txt` are not in alphabetical order.''')
713
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
48
0
"""simple docstring""" from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : Optional[Any] = 2 snake_case_ : Optional[Any] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(SCREAMING_SNAKE_CASE__ ) if n > 1: factors.append(SCREAMING_SNAKE_CASE__ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
714
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('''fixtures/test_sentencepiece.model''') a_ = {'''target_lang''': '''fi''', '''source_lang''': '''en'''} a_ = '''>>zh<<''' a_ = '''Helsinki-NLP/''' if is_torch_available(): a_ = '''pt''' elif is_tf_available(): a_ = '''tf''' else: a_ = '''jax''' @require_sentencepiece class __lowercase ( _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : str = MarianTokenizer _A : List[str] = False _A : List[str] = True def __UpperCamelCase (self ): super().setUp() snake_case_ : Optional[int] = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] snake_case_ : Any = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) snake_case_ : Any = Path(self.tmpdirname ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) snake_case_ : Optional[Any] = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase (self , **lowercase__ ): return MarianTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def __UpperCamelCase (self , lowercase__ ): return ( "This is a test", "This is a test", ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = """</s>""" snake_case_ : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__ ) , lowercase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__ ) , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(lowercase__ ) , 9 ) def __UpperCamelCase (self ): self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def __UpperCamelCase (self ): snake_case_ : Any = MarianTokenizer.from_pretrained(f'{ORG_NAME}opus-mt-en-de' ) snake_case_ : Tuple = en_de_tokenizer(["""I am a small frog"""] , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) snake_case_ : Dict = [38, 1_21, 14, 6_97, 3_88_48, 0] self.assertListEqual(lowercase__ , batch.input_ids[0] ) snake_case_ : Tuple = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(lowercase__ ) snake_case_ : str = [x.name for x in Path(lowercase__ ).glob("""*""" )] self.assertIn("""source.spm""" , lowercase__ ) MarianTokenizer.from_pretrained(lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = self.get_tokenizer() snake_case_ : List[str] = tok( ["""I am a small frog""" * 10_00, """I am a small frog"""] , padding=lowercase__ , truncation=lowercase__ , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(batch.input_ids.shape , (2, 5_12) ) def __UpperCamelCase (self ): snake_case_ : Tuple = self.get_tokenizer() snake_case_ : Tuple = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=lowercase__ , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def __UpperCamelCase (self ): # fmt: off snake_case_ : str = {"""input_ids""": [[4_34_95, 4_62, 20, 4_21_64, 13_69, 52, 4_64, 1_32, 17_03, 4_92, 13, 74_91, 3_89_99, 6, 8, 4_64, 1_32, 17_03, 4_92, 13, 46_69, 3_78_67, 13, 75_25, 27, 15_93, 9_88, 13, 3_39_72, 70_29, 6, 20, 82_51, 3_83, 2, 2_70, 58_66, 37_88, 2, 23_53, 82_51, 1_23_38, 2, 1_39_58, 3_87, 2, 36_29, 69_53, 1_88, 29_00, 2, 1_39_58, 80_11, 1_15_01, 23, 84_60, 40_73, 3_40_09, 20, 4_35, 1_14_39, 27, 8, 84_60, 40_73, 60_04, 20, 99_88, 3_75, 27, 33, 2_66, 19_45, 10_76, 13_50, 3_78_67, 32_88, 5, 5_77, 10_76, 43_74, 8, 50_82, 5, 2_64_53, 2_57, 5_56, 4_03, 2, 2_42, 1_32, 3_83, 3_16, 4_92, 8, 1_07_67, 6, 3_16, 3_04, 42_39, 3, 0], [1_48, 1_57_22, 19, 18_39, 12, 13_50, 13, 2_23_27, 50_82, 54_18, 4_75_67, 3_59_38, 59, 3_18, 1_95_52, 1_08, 21_83, 54, 1_49_76, 48_35, 32, 5_47, 11_14, 8, 3_15, 24_17, 5, 92, 1_90_88, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00], [36, 63_95, 1_25_70, 3_91_47, 1_15_97, 6, 2_66, 4, 4_54_05, 72_96, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase__ , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def __UpperCamelCase (self ): snake_case_ : Any = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) snake_case_ : Dict = """Tämä on testi""" snake_case_ : List[Any] = """This is a test""" snake_case_ : Optional[int] = [76, 7, 20_47, 2] snake_case_ : List[str] = [69, 12, 11, 9_40, 2] snake_case_ : Any = tokenizer(lowercase__ ).input_ids self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : str = tokenizer(text_target=lowercase__ ).input_ids self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : int = tokenizer.decode(lowercase__ , skip_special_tokens=lowercase__ ) self.assertEqual(lowercase__ , lowercase__ )
48
0
"""simple docstring""" from __future__ import annotations from collections import Counter from random import random class __lowercase : """simple docstring""" def __init__(self ): snake_case_ : Tuple = {} def __UpperCamelCase (self , lowercase__ ): snake_case_ : Optional[int] = {} def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): if nodea not in self.connections: self.add_node(lowercase__ ) if nodea not in self.connections: self.add_node(lowercase__ ) snake_case_ : Optional[Any] = probability def __UpperCamelCase (self ): return list(self.connections ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = 0 snake_case_ : List[str] = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : list[tuple[str, str, float]] , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : Union[str, Any] = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : Any = Counter(graph.get_nodes() ) snake_case_ : List[str] = start for _ in range(SCREAMING_SNAKE_CASE__ ): snake_case_ : List[Any] = graph.transition(SCREAMING_SNAKE_CASE__ ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
715
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCAmelCase) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True}) _A : ClassVar[Features] = Features({"""audio""": Audio()}) _A : ClassVar[Features] = Features({"""transcription""": Value("""string""")}) _A : str = "audio" _A : str = "transcription" def __UpperCamelCase (self , lowercase__ ): if self.audio_column not in features: raise ValueError(f'Column {self.audio_column} is not present in features.' ) if not isinstance(features[self.audio_column] , lowercase__ ): raise ValueError(f'Column {self.audio_column} is not an Audio type.' ) snake_case_ : Optional[int] = copy.deepcopy(self ) snake_case_ : Tuple = self.input_schema.copy() snake_case_ : List[str] = features[self.audio_column] snake_case_ : Any = input_schema return task_template @property def __UpperCamelCase (self ): return {self.audio_column: "audio", self.transcription_column: "transcription"}
48
0
"""simple docstring""" import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. a_ = abspath(join(dirname(__file__), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" config.addinivalue_line( """markers""" , """is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested""" ) config.addinivalue_line( """markers""" , """is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested""" ) config.addinivalue_line("""markers""" , """is_pipeline_test: mark test to run only when pipelines are tested""" ) config.addinivalue_line("""markers""" , """is_staging_test: mark test to run only in the staging environment""" ) config.addinivalue_line("""markers""" , """accelerate_tests: mark test that require accelerate""" ) config.addinivalue_line("""markers""" , """tool_tests: mark the tool tests that are run on their specific schedule""" ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" from transformers.testing_utils import pytest_terminal_summary_main snake_case_ : int = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(SCREAMING_SNAKE_CASE__ , id=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" if exitstatus == 5: snake_case_ : List[Any] = 0 # Doctest custom flag to ignore output. a_ = doctest.register_optionflag('''IGNORE_RESULT''') a_ = doctest.OutputChecker class __lowercase ( _UpperCAmelCase): """simple docstring""" def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , lowercase__ , lowercase__ , lowercase__ ) a_ = CustomOutputChecker a_ = HfDoctestModule a_ = HfDocTestParser
716
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : int = ["""pixel_values"""] def __init__(self , lowercase__ = True , lowercase__ = None , lowercase__ = 0.9 , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = True , lowercase__ = None , lowercase__ = 1 / 2_55 , lowercase__ = True , lowercase__ = True , lowercase__ = None , lowercase__ = None , **lowercase__ , ): super().__init__(**lowercase__ ) snake_case_ : Tuple = size if size is not None else {"""shortest_edge""": 2_24} snake_case_ : Union[str, Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) snake_case_ : str = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} snake_case_ : Dict = get_size_dict(lowercase__ , param_name="""crop_size""" ) snake_case_ : Union[str, Any] = do_resize snake_case_ : List[str] = size snake_case_ : str = crop_pct snake_case_ : str = resample snake_case_ : Optional[Any] = do_center_crop snake_case_ : Dict = crop_size snake_case_ : int = do_rescale snake_case_ : Optional[int] = rescale_factor snake_case_ : str = do_normalize snake_case_ : str = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN snake_case_ : List[str] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = None , **lowercase__ , ): snake_case_ : Tuple = get_size_dict(lowercase__ , default_to_square=lowercase__ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f'size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) if crop_pct is not None: if "shortest_edge" in size: snake_case_ : Optional[int] = int(size["""shortest_edge"""] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: snake_case_ : Dict = int(size["""height"""] / crop_pct ) else: snake_case_ : List[str] = (int(size["""height"""] / crop_pct ), int(size["""width"""] / crop_pct )) else: raise ValueError("""Invalid size for resize: {}""".format(lowercase__ ) ) snake_case_ : List[Any] = get_resize_output_image_size(lowercase__ , size=lowercase__ , default_to_square=lowercase__ ) else: if "shortest_edge" in size: snake_case_ : Optional[int] = get_resize_output_image_size(lowercase__ , size=size["""shortest_edge"""] , default_to_square=lowercase__ ) elif "height" in size and "width" in size: snake_case_ : int = (size["""height"""], size["""width"""]) else: raise ValueError("""Invalid size for resize: {}""".format(lowercase__ ) ) return resize(lowercase__ , size=lowercase__ , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): snake_case_ : int = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(f'size must contain \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(lowercase__ , size=(size["""height"""], size["""width"""]) , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return normalize(lowercase__ , mean=lowercase__ , std=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ): snake_case_ : str = do_resize if do_resize is not None else self.do_resize snake_case_ : Any = crop_pct if crop_pct is not None else self.crop_pct snake_case_ : List[Any] = resample if resample is not None else self.resample snake_case_ : str = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : str = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : str = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : List[Any] = image_mean if image_mean is not None else self.image_mean snake_case_ : int = image_std if image_std is not None else self.image_std snake_case_ : List[Any] = size if size is not None else self.size snake_case_ : Optional[Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) snake_case_ : List[Any] = crop_size if crop_size is not None else self.crop_size snake_case_ : int = get_size_dict(lowercase__ , param_name="""crop_size""" ) snake_case_ : List[str] = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_pct is None: raise ValueError("""Crop_pct must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case_ : int = [to_numpy_array(lowercase__ ) for image in images] if do_resize: snake_case_ : str = [self.resize(image=lowercase__ , size=lowercase__ , crop_pct=lowercase__ , resample=lowercase__ ) for image in images] if do_center_crop: snake_case_ : Optional[int] = [self.center_crop(image=lowercase__ , size=lowercase__ ) for image in images] if do_rescale: snake_case_ : List[Any] = [self.rescale(image=lowercase__ , scale=lowercase__ ) for image in images] if do_normalize: snake_case_ : Optional[Any] = [self.normalize(image=lowercase__ , mean=lowercase__ , std=lowercase__ ) for image in images] snake_case_ : List[Any] = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] snake_case_ : Dict = {"""pixel_values""": images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
48
0
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Any class __lowercase : """simple docstring""" def __init__(self , lowercase__ ): snake_case_ : Any = data snake_case_ : Node | None = None class __lowercase : """simple docstring""" def __init__(self ): snake_case_ : Union[str, Any] = None snake_case_ : int = None def __iter__(self ): snake_case_ : Tuple = self.head while self.head: yield node.data snake_case_ : Union[str, Any] = node.next if node == self.head: break def __len__(self ): return sum(1 for _ in self ) def __repr__(self ): return "->".join(str(lowercase__ ) for item in iter(self ) ) def __UpperCamelCase (self , lowercase__ ): self.insert_nth(len(self ) , lowercase__ ) def __UpperCamelCase (self , lowercase__ ): self.insert_nth(0 , lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): if index < 0 or index > len(self ): raise IndexError("""list index out of range.""" ) snake_case_ : Union[str, Any] = Node(lowercase__ ) if self.head is None: snake_case_ : List[Any] = new_node # first node points itself snake_case_ : Union[str, Any] = new_node elif index == 0: # insert at head snake_case_ : int = self.head snake_case_ : str = new_node else: snake_case_ : Any = self.head for _ in range(index - 1 ): snake_case_ : Union[str, Any] = temp.next snake_case_ : Dict = temp.next snake_case_ : List[str] = new_node if index == len(self ) - 1: # insert at tail snake_case_ : Tuple = new_node def __UpperCamelCase (self ): return self.delete_nth(0 ) def __UpperCamelCase (self ): return self.delete_nth(len(self ) - 1 ) def __UpperCamelCase (self , lowercase__ = 0 ): if not 0 <= index < len(self ): raise IndexError("""list index out of range.""" ) snake_case_ : Union[str, Any] = self.head if self.head == self.tail: # just one node snake_case_ : Tuple = None elif index == 0: # delete head node snake_case_ : List[str] = self.tail.next.next snake_case_ : Optional[Any] = self.head.next else: snake_case_ : Union[str, Any] = self.head for _ in range(index - 1 ): snake_case_ : Tuple = temp.next snake_case_ : str = temp.next snake_case_ : Optional[Any] = temp.next.next if index == len(self ) - 1: # delete at tail snake_case_ : List[str] = temp return delete_node.data def __UpperCamelCase (self ): return len(self ) == 0 def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Optional[Any] = CircularLinkedList() assert len(SCREAMING_SNAKE_CASE__ ) == 0 assert circular_linked_list.is_empty() is True assert str(SCREAMING_SNAKE_CASE__ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(SCREAMING_SNAKE_CASE__ ) == i circular_linked_list.insert_nth(SCREAMING_SNAKE_CASE__ , i + 1 ) assert str(SCREAMING_SNAKE_CASE__ ) == "->".join(str(SCREAMING_SNAKE_CASE__ ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(SCREAMING_SNAKE_CASE__ ) == "->".join(str(SCREAMING_SNAKE_CASE__ ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(SCREAMING_SNAKE_CASE__ ) == "->".join(str(SCREAMING_SNAKE_CASE__ ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(SCREAMING_SNAKE_CASE__ ) == "->".join(str(SCREAMING_SNAKE_CASE__ ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(SCREAMING_SNAKE_CASE__ ) == "->".join(str(SCREAMING_SNAKE_CASE__ ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
717
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: a_ = None a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} a_ = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } a_ = { '''facebook/mbart-large-en-ro''': 1024, '''facebook/mbart-large-cc25''': 1024, } # fmt: off a_ = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Dict = VOCAB_FILES_NAMES _A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _A : str = ["""input_ids""", """attention_mask"""] _A : Tuple = MBartTokenizer _A : List[int] = [] _A : List[int] = [] def __init__(self , lowercase__=None , lowercase__=None , lowercase__="<s>" , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<mask>" , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ , ): # Mask token behave like a normal word, i.e. include the space before it snake_case_ : int = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token super().__init__( vocab_file=lowercase__ , tokenizer_file=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , unk_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , src_lang=lowercase__ , tgt_lang=lowercase__ , additional_special_tokens=lowercase__ , **lowercase__ , ) snake_case_ : Dict = vocab_file snake_case_ : Optional[int] = False if not self.vocab_file else True snake_case_ : Optional[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) snake_case_ : Any = { lang_code: self.convert_tokens_to_ids(lowercase__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } snake_case_ : Tuple = src_lang if src_lang is not None else """en_XX""" snake_case_ : Tuple = self.convert_tokens_to_ids(self._src_lang ) snake_case_ : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __UpperCamelCase (self ): return self._src_lang @src_lang.setter def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): snake_case_ : List[Any] = [self.sep_token_id] snake_case_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , **lowercase__ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) snake_case_ : int = src_lang snake_case_ : List[str] = self(lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , **lowercase__ ) snake_case_ : List[str] = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Union[str, Any] = tgt_lang_id return inputs def __UpperCamelCase (self , lowercase__ , lowercase__ = "en_XX" , lowercase__ = None , lowercase__ = "ro_RO" , **lowercase__ , ): snake_case_ : List[str] = src_lang snake_case_ : int = tgt_lang return super().prepare_seqaseq_batch(lowercase__ , lowercase__ , **lowercase__ ) def __UpperCamelCase (self ): return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCamelCase (self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Tuple = [] snake_case_ : List[Any] = [self.eos_token_id, self.cur_lang_code] snake_case_ : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Optional[int] = [] snake_case_ : Optional[Any] = [self.eos_token_id, self.cur_lang_code] snake_case_ : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ : int = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowercase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory.' ) return snake_case_ : List[str] = os.path.join( lowercase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ): copyfile(self.vocab_file , lowercase__ ) return (out_vocab_file,)
48
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''facebook/data2vec-vision-base-ft''': ( '''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json''' ), } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[Any] = """data2vec-vision""" def __init__(self , lowercase__=7_68 , lowercase__=12 , lowercase__=12 , lowercase__=30_72 , lowercase__="gelu" , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.02 , lowercase__=1e-12 , lowercase__=2_24 , lowercase__=16 , lowercase__=3 , lowercase__=False , lowercase__=False , lowercase__=False , lowercase__=False , lowercase__=0.1 , lowercase__=0.1 , lowercase__=True , lowercase__=[3, 5, 7, 11] , lowercase__=[1, 2, 3, 6] , lowercase__=True , lowercase__=0.4 , lowercase__=2_56 , lowercase__=1 , lowercase__=False , lowercase__=2_55 , **lowercase__ , ): super().__init__(**lowercase__ ) snake_case_ : Dict = hidden_size snake_case_ : Optional[int] = num_hidden_layers snake_case_ : Any = num_attention_heads snake_case_ : str = intermediate_size snake_case_ : Any = hidden_act snake_case_ : Union[str, Any] = hidden_dropout_prob snake_case_ : Dict = attention_probs_dropout_prob snake_case_ : Union[str, Any] = initializer_range snake_case_ : Optional[int] = layer_norm_eps snake_case_ : str = image_size snake_case_ : str = patch_size snake_case_ : Optional[int] = num_channels snake_case_ : List[str] = use_mask_token snake_case_ : List[str] = use_absolute_position_embeddings snake_case_ : List[str] = use_relative_position_bias snake_case_ : Dict = use_shared_relative_position_bias snake_case_ : int = layer_scale_init_value snake_case_ : List[str] = drop_path_rate snake_case_ : List[str] = use_mean_pooling # decode head attributes (semantic segmentation) snake_case_ : List[str] = out_indices snake_case_ : Union[str, Any] = pool_scales # auxiliary head attributes (semantic segmentation) snake_case_ : List[str] = use_auxiliary_head snake_case_ : Optional[int] = auxiliary_loss_weight snake_case_ : int = auxiliary_channels snake_case_ : str = auxiliary_num_convs snake_case_ : Dict = auxiliary_concat_input snake_case_ : List[str] = semantic_loss_ignore_index class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Dict = version.parse("""1.11""") @property def __UpperCamelCase (self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __UpperCamelCase (self ): return 1e-4
718
"""simple docstring""" import argparse import hashlib # hashlib is only used inside the Test class import struct class __lowercase : """simple docstring""" def __init__(self , lowercase__ ): snake_case_ : Union[str, Any] = data snake_case_ : List[str] = [0X6_7_4_5_2_3_0_1, 0Xe_f_c_d_a_b_8_9, 0X9_8_b_a_d_c_f_e, 0X1_0_3_2_5_4_7_6, 0Xc_3_d_2_e_1_f_0] @staticmethod def __UpperCamelCase (lowercase__ , lowercase__ ): return ((n << b) | (n >> (32 - b))) & 0Xf_f_f_f_f_f_f_f def __UpperCamelCase (self ): snake_case_ : Any = B"""\x80""" + B"""\x00""" * (63 - (len(self.data ) + 8) % 64) snake_case_ : Tuple = self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def __UpperCamelCase (self ): return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = list(struct.unpack(""">16L""" , lowercase__ ) ) + [0] * 64 for i in range(16 , 80 ): snake_case_ : Dict = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def __UpperCamelCase (self ): snake_case_ : List[Any] = self.padding() snake_case_ : Any = self.split_blocks() for block in self.blocks: snake_case_ : Any = self.expand_block(lowercase__ ) snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = self.h for i in range(0 , 80 ): if 0 <= i < 20: snake_case_ : Optional[Any] = (b & c) | ((~b) & d) snake_case_ : List[str] = 0X5_a_8_2_7_9_9_9 elif 20 <= i < 40: snake_case_ : Union[str, Any] = b ^ c ^ d snake_case_ : Tuple = 0X6_e_d_9_e_b_a_1 elif 40 <= i < 60: snake_case_ : str = (b & c) | (b & d) | (c & d) snake_case_ : List[str] = 0X8_f_1_b_b_c_d_c elif 60 <= i < 80: snake_case_ : Tuple = b ^ c ^ d snake_case_ : str = 0Xc_a_6_2_c_1_d_6 snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Optional[Any] = ( self.rotate(lowercase__ , 5 ) + f + e + k + expanded_block[i] & 0Xf_f_f_f_f_f_f_f, a, self.rotate(lowercase__ , 30 ), c, d, ) snake_case_ : Any = ( self.h[0] + a & 0Xf_f_f_f_f_f_f_f, self.h[1] + b & 0Xf_f_f_f_f_f_f_f, self.h[2] + c & 0Xf_f_f_f_f_f_f_f, self.h[3] + d & 0Xf_f_f_f_f_f_f_f, self.h[4] + e & 0Xf_f_f_f_f_f_f_f, ) return ("{:08x}" * 5).format(*self.h ) def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Union[str, Any] = b"""Test String""" assert SHAaHash(SCREAMING_SNAKE_CASE__ ).final_hash() == hashlib.shaa(SCREAMING_SNAKE_CASE__ ).hexdigest() # noqa: S324 def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : int = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument("""--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) snake_case_ : Optional[int] = parser.parse_args() snake_case_ : Optional[int] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: snake_case_ : List[str] = f.read() else: snake_case_ : Dict = bytes(SCREAMING_SNAKE_CASE__ , """utf-8""" ) print(SHAaHash(SCREAMING_SNAKE_CASE__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
48
0
"""simple docstring""" from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
719
"""simple docstring""" from manim import * class __lowercase ( _UpperCAmelCase): """simple docstring""" def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = Rectangle(height=0.5 , width=0.5 ) snake_case_ : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) snake_case_ : Optional[Any] = [mem.copy() for i in range(6 )] snake_case_ : str = [mem.copy() for i in range(6 )] snake_case_ : str = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : Any = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[str] = VGroup(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[Any] = Text("""CPU""" , font_size=24 ) snake_case_ : Tuple = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowercase__ ) snake_case_ : List[Any] = [mem.copy() for i in range(4 )] snake_case_ : Tuple = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[str] = Text("""GPU""" , font_size=24 ) snake_case_ : Any = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) gpu.move_to([-1, -1, 0] ) self.add(lowercase__ ) snake_case_ : Optional[Any] = [mem.copy() for i in range(6 )] snake_case_ : List[Any] = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : Dict = Text("""Model""" , font_size=24 ) snake_case_ : int = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) model.move_to([3, -1.0, 0] ) self.add(lowercase__ ) snake_case_ : Dict = [] for i, rect in enumerate(lowercase__ ): rect.set_stroke(lowercase__ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) snake_case_ : List[str] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowercase__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowercase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase__ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase__ , buff=0.0 ) self.add(lowercase__ ) cpu_targs.append(lowercase__ ) snake_case_ : List[str] = [mem.copy() for i in range(6 )] snake_case_ : List[str] = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : str = Text("""Loaded Checkpoint""" , font_size=24 ) snake_case_ : Any = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , aligned_edge=lowercase__ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) snake_case_ : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) snake_case_ : Union[str, Any] = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowercase__ , lowercase__ ) snake_case_ : List[Any] = MarkupText( f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(lowercase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) snake_case_ : List[Any] = MarkupText( f'Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowercase__ ) , Write(lowercase__ ) ) self.play(Write(lowercase__ , run_time=1 ) , Create(lowercase__ , run_time=1 ) ) snake_case_ : Optional[int] = [] snake_case_ : List[str] = [] for i, rect in enumerate(lowercase__ ): snake_case_ : Optional[Any] = fill.copy().set_fill(lowercase__ , opacity=0.7 ) target.move_to(lowercase__ ) first_animations.append(GrowFromCenter(lowercase__ , run_time=1 ) ) snake_case_ : List[Any] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(lowercase__ , run_time=1.5 ) ) self.play(*lowercase__ ) self.play(*lowercase__ ) self.wait()
48
0
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" if "img_encoder.pos_embed" in name: snake_case_ : Optional[Any] = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: snake_case_ : List[Any] = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: snake_case_ : Union[str, Any] = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: snake_case_ : List[Any] = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: snake_case_ : Dict = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: snake_case_ : Union[str, Any] = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: snake_case_ : Union[str, Any] = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: snake_case_ : Dict = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: snake_case_ : Optional[Any] = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: snake_case_ : int = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: snake_case_ : Optional[Any] = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: snake_case_ : int = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: snake_case_ : Tuple = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: snake_case_ : str = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: snake_case_ : Optional[Any] = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: snake_case_ : int = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: snake_case_ : Union[str, Any] = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: snake_case_ : Union[str, Any] = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: snake_case_ : Optional[int] = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: snake_case_ : Any = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: snake_case_ : List[str] = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: snake_case_ : int = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: snake_case_ : Dict = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: snake_case_ : Dict = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" for key in orig_state_dict.copy().keys(): snake_case_ : Dict = orig_state_dict.pop(SCREAMING_SNAKE_CASE__ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors snake_case_ : Dict = key.split(""".""" ) snake_case_ : Tuple = int(key_split[2] ), int(key_split[4] ) snake_case_ : List[Any] = config.vision_config.hidden_size if "weight" in key: snake_case_ : List[str] = val[:dim, :] snake_case_ : Union[str, Any] = val[dim : dim * 2, :] snake_case_ : Tuple = val[-dim:, :] else: snake_case_ : Optional[int] = val[:dim] snake_case_ : Optional[Any] = val[dim : dim * 2] snake_case_ : Union[str, Any] = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors snake_case_ : Any = key.split(""".""" ) snake_case_ : Optional[Any] = int(key_split[3] ) snake_case_ : Optional[int] = config.text_config.hidden_size if "weight" in key: snake_case_ : Tuple = val[:dim, :] snake_case_ : Optional[Any] = val[ dim : dim * 2, : ] snake_case_ : Dict = val[-dim:, :] else: snake_case_ : Optional[int] = val[:dim] snake_case_ : Any = val[dim : dim * 2] snake_case_ : str = val[-dim:] else: snake_case_ : str = rename_key(SCREAMING_SNAKE_CASE__ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): snake_case_ : str = val.squeeze_() else: snake_case_ : Dict = val return orig_state_dict def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Dict = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case_ : Tuple = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int]="groupvit-gcc-yfcc" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False ): """simple docstring""" snake_case_ : Any = GroupViTConfig() snake_case_ : str = GroupViTModel(SCREAMING_SNAKE_CASE__ ).eval() snake_case_ : Union[str, Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" )["""model"""] snake_case_ : Union[str, Any] = convert_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : int = model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(SCREAMING_SNAKE_CASE__ ) == 0) # verify result snake_case_ : str = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) snake_case_ : int = prepare_img() snake_case_ : Optional[int] = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) with torch.no_grad(): snake_case_ : Union[str, Any] = model(**SCREAMING_SNAKE_CASE__ ) if model_name == "groupvit-gcc-yfcc": snake_case_ : Union[str, Any] = torch.tensor([[13.3523, 6.3629]] ) elif model_name == "groupvit-gcc-redcaps": snake_case_ : List[Any] = torch.tensor([[16.1873, 8.6230]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print("""Successfully saved processor and model to""" , SCREAMING_SNAKE_CASE__ ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(SCREAMING_SNAKE_CASE__ , organization="""nielsr""" ) model.push_to_hub(SCREAMING_SNAKE_CASE__ , organization="""nielsr""" ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to dump the processor and PyTorch model.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to GroupViT checkpoint''') parser.add_argument( '''--model_name''', default='''groupvit-gccy-fcc''', type=str, help='''Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.''', ) a_ = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
720
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" snake_case_ : Union[str, Any] = 0 if start < end: snake_case_ : Union[str, Any] = randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = a[end] snake_case_ : Dict = a[pivot] snake_case_ : Any = temp snake_case_ , snake_case_ : Dict = _in_place_partition(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , p - 1 ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE__ , p + 1 , SCREAMING_SNAKE_CASE__ ) return count def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" snake_case_ : Tuple = 0 snake_case_ : List[Any] = randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : Dict = a[end] snake_case_ : List[Any] = a[pivot] snake_case_ : Optional[Any] = temp snake_case_ : List[str] = start - 1 for index in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value snake_case_ : Any = new_pivot_index + 1 snake_case_ : Tuple = a[new_pivot_index] snake_case_ : Optional[int] = a[index] snake_case_ : Tuple = temp snake_case_ : Union[str, Any] = a[new_pivot_index + 1] snake_case_ : Union[str, Any] = a[end] snake_case_ : Union[str, Any] = temp return new_pivot_index + 1, count a_ = TemporaryFile() a_ = 100 # 1000 elements are to be sorted a_ , a_ = 0, 1 # mean and standard deviation a_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array a_ = np.load(outfile) a_ = len(M) - 1 a_ = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
48
0
"""simple docstring""" import heapq import sys import numpy as np a_ = tuple[int, int] class __lowercase : """simple docstring""" def __init__(self ): snake_case_ : Union[str, Any] = [] snake_case_ : List[str] = set() def __UpperCamelCase (self ): if not self.empty(): return self.elements[0][0] else: return float("""inf""" ) def __UpperCamelCase (self ): return len(self.elements ) == 0 def __UpperCamelCase (self , lowercase__ , lowercase__ ): if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(lowercase__ ) else: # update # print("update", item) snake_case_ : Optional[int] = [] (snake_case_) : int = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) (snake_case_) : Dict = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def __UpperCamelCase (self , lowercase__ ): if item in self.set: self.set.remove(lowercase__ ) snake_case_ : List[str] = [] (snake_case_) : List[Any] = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) (snake_case_) : int = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def __UpperCamelCase (self ): return self.elements[0][1] def __UpperCamelCase (self ): (snake_case_) : Dict = heapq.heappop(self.elements ) self.set.remove(lowercase__ ) return (priority, item) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : TPos , SCREAMING_SNAKE_CASE__ : TPos ): """simple docstring""" snake_case_ : Optional[Any] = np.array(SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = np.array(SCREAMING_SNAKE_CASE__ ) return np.linalg.norm(a - b ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : TPos , SCREAMING_SNAKE_CASE__ : TPos ): """simple docstring""" return consistent_heuristic(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) // t def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : TPos , SCREAMING_SNAKE_CASE__ : TPos ): """simple docstring""" return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : TPos , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : TPos , SCREAMING_SNAKE_CASE__ : dict[TPos, float] ): """simple docstring""" snake_case_ : int = g_function[start] + Wa * heuristics[i](SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return ans def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Optional[Any] = np.chararray((n, n) ) for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(SCREAMING_SNAKE_CASE__ ): snake_case_ : Dict = """*""" for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(SCREAMING_SNAKE_CASE__ ): if (j, (n - 1) - i) in blocks: snake_case_ : Dict = """#""" snake_case_ : Dict = """-""" snake_case_ : List[Any] = back_pointer[goal] while x != start: (snake_case_) : Union[str, Any] = x # print(x) snake_case_ : List[Any] = """-""" snake_case_ : Optional[Any] = back_pointer[x] snake_case_ : Optional[int] = """-""" for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(SCREAMING_SNAKE_CASE__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=""" """ ) print("""<-- End position""" , end=""" """ ) else: print(grid[i][j] , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) print("""PATH TAKEN BY THE ALGORITHM IS:-""" ) snake_case_ : int = back_pointer[goal] while x != start: print(SCREAMING_SNAKE_CASE__ , end=""" """ ) snake_case_ : int = back_pointer[x] print(SCREAMING_SNAKE_CASE__ ) sys.exit() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : TPos ): """simple docstring""" if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , ): """simple docstring""" for itera in range(SCREAMING_SNAKE_CASE__ ): open_list[itera].remove_element(SCREAMING_SNAKE_CASE__ ) # print("s", s) # print("j", j) (snake_case_) : Optional[Any] = s snake_case_ : Union[str, Any] = (x - 1, y) snake_case_ : Any = (x + 1, y) snake_case_ : Tuple = (x, y + 1) snake_case_ : int = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(SCREAMING_SNAKE_CASE__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(SCREAMING_SNAKE_CASE__ ) snake_case_ : Dict = -1 snake_case_ : Union[str, Any] = float("""inf""" ) if valid(SCREAMING_SNAKE_CASE__ ) and g_function[neighbours] > g_function[s] + 1: snake_case_ : Optional[Any] = g_function[s] + 1 snake_case_ : Tuple = s if neighbours not in close_list_anchor: open_list[0].put(SCREAMING_SNAKE_CASE__ , key(SCREAMING_SNAKE_CASE__ , 0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) if neighbours not in close_list_inad: for var in range(1 , SCREAMING_SNAKE_CASE__ ): if key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) <= Wa * key( SCREAMING_SNAKE_CASE__ , 0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): open_list[j].put( SCREAMING_SNAKE_CASE__ , key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : int = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(1_5 , 2_0 ): some_list.append((x, 1_7) ) for x in range(1_0 , 1_9 ): for y in range(1 , 1_5 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(1_2 , 1_9 ): some_list.append((x, y) ) for x in range(3 , 1_3 ): for y in range(1_6 , 1_9 ): some_list.append((x, y) ) return some_list a_ = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} a_ = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] a_ = make_common_ground() a_ = blocks_blk # hyper parameters a_ = 1 a_ = 1 a_ = 20 a_ = 3 # one consistent and two other inconsistent # start and end destination a_ = (0, 0) a_ = (n - 1, n - 1) a_ = 1 def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : TPos , SCREAMING_SNAKE_CASE__ : TPos , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : Tuple = {start: 0, goal: float("""inf""" )} snake_case_ : Tuple = {start: -1, goal: -1} snake_case_ : int = [] snake_case_ : str = set() for i in range(SCREAMING_SNAKE_CASE__ ): open_list.append(PriorityQueue() ) open_list[i].put(SCREAMING_SNAKE_CASE__ , key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) snake_case_ : list[int] = [] snake_case_ : list[int] = [] while open_list[0].minkey() < float("""inf""" ): for i in range(1 , SCREAMING_SNAKE_CASE__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("""inf""" ): do_something(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: snake_case_ : Dict = open_list[i].top_show() visited.add(SCREAMING_SNAKE_CASE__ ) expand_state( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) close_list_inad.append(SCREAMING_SNAKE_CASE__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("""inf""" ): do_something(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: snake_case_ : Optional[int] = open_list[0].top_show() visited.add(SCREAMING_SNAKE_CASE__ ) expand_state( SCREAMING_SNAKE_CASE__ , 0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) close_list_anchor.append(SCREAMING_SNAKE_CASE__ ) print("""No path found to goal""" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(SCREAMING_SNAKE_CASE__ ): if (j, i) in blocks: print("""#""" , end=""" """ ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("""*""" , end=""" """ ) else: print("""-""" , end=""" """ ) else: print("""*""" , end=""" """ ) if (j, i) == (n - 1, n - 1): print("""<-- End position""" , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
721
"""simple docstring""" import random def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : bool = False ): """simple docstring""" snake_case_ : dict = {i: [] for i in range(SCREAMING_SNAKE_CASE__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(SCREAMING_SNAKE_CASE__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(i + 1 , SCREAMING_SNAKE_CASE__ ): if random.random() < probability: graph[i].append(SCREAMING_SNAKE_CASE__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(SCREAMING_SNAKE_CASE__ ) return graph def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" return { i: [j for j in range(SCREAMING_SNAKE_CASE__ ) if i != j] for i in range(SCREAMING_SNAKE_CASE__ ) } if __name__ == "__main__": import doctest doctest.testmod()
48
0
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : Union[str, Any] = IFInpaintingPipeline _A : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} _A : Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _A : str = PipelineTesterMixin.required_optional_params - {"""latents"""} def __UpperCamelCase (self ): return self._get_dummy_components() def __UpperCamelCase (self , lowercase__ , lowercase__=0 ): if str(lowercase__ ).startswith("""mps""" ): snake_case_ : Optional[Any] = torch.manual_seed(lowercase__ ) else: snake_case_ : Optional[Any] = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) snake_case_ : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase__ ) ).to(lowercase__ ) snake_case_ : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase__ ) ).to(lowercase__ ) snake_case_ : Tuple = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __UpperCamelCase (self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def __UpperCamelCase (self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def __UpperCamelCase (self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def __UpperCamelCase (self ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def __UpperCamelCase (self ): self._test_save_load_local() def __UpperCamelCase (self ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
700
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json''' ), } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """dpr""" def __init__(self , lowercase__=3_05_22 , lowercase__=7_68 , lowercase__=12 , lowercase__=12 , lowercase__=30_72 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_12 , lowercase__=2 , lowercase__=0.02 , lowercase__=1e-12 , lowercase__=0 , lowercase__="absolute" , lowercase__ = 0 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , **lowercase__ ) snake_case_ : List[Any] = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : Tuple = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : int = hidden_act snake_case_ : Dict = intermediate_size snake_case_ : int = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : str = max_position_embeddings snake_case_ : List[str] = type_vocab_size snake_case_ : List[str] = initializer_range snake_case_ : Optional[int] = layer_norm_eps snake_case_ : Union[str, Any] = projection_dim snake_case_ : str = position_embedding_type
48
0
"""simple docstring""" import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __lowercase ( _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : int = DebertaTokenizer _A : Optional[int] = True _A : Tuple = DebertaTokenizerFast def __UpperCamelCase (self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case_ : Optional[int] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """[UNK]""", ] snake_case_ : Optional[Any] = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) snake_case_ : Tuple = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] snake_case_ : int = {"""unk_token""": """[UNK]"""} snake_case_ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowercase__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowercase__ ) ) def __UpperCamelCase (self , **lowercase__ ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase__ ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Dict = """lower newer""" snake_case_ : Tuple = """lower newer""" return input_text, output_text def __UpperCamelCase (self ): snake_case_ : int = self.get_tokenizer() snake_case_ : List[Any] = """lower newer""" snake_case_ : str = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] snake_case_ : Tuple = tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : List[str] = tokens + [tokenizer.unk_token] snake_case_ : Any = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : str = self.get_tokenizer() snake_case_ : Optional[int] = tokenizer("""Hello""" , """World""" ) snake_case_ : Dict = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["""token_type_ids"""] , lowercase__ ) @slow def __UpperCamelCase (self ): snake_case_ : Tuple = self.tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) snake_case_ : Dict = tokenizer.encode("""sequence builders""" , add_special_tokens=lowercase__ ) snake_case_ : Optional[int] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowercase__ ) snake_case_ : Union[str, Any] = tokenizer.encode( """sequence builders""" , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) snake_case_ : int = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) snake_case_ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(lowercase__ ) snake_case_ : Tuple = tokenizer.build_inputs_with_special_tokens(lowercase__ , lowercase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def __UpperCamelCase (self ): snake_case_ : str = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: snake_case_ : str = tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) snake_case_ : Optional[Any] = [ """ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""", """ALBERT incorporates two parameter reduction techniques""", """The first one is a factorized embedding parameterization. By decomposing the large vocabulary""" """ embedding matrix into two small matrices, we separate the size of the hidden layers from the size of""" """ vocabulary embedding.""", ] snake_case_ : Optional[Any] = tokenizer(lowercase__ , padding=lowercase__ ) snake_case_ : List[str] = [tokenizer.decode(lowercase__ , skip_special_tokens=lowercase__ ) for seq in encoding["""input_ids"""]] # fmt: off snake_case_ : Optional[Any] = { """input_ids""": [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], """token_type_ids""": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], """attention_mask""": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on snake_case_ : str = [ """ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""", """ALBERT incorporates two parameter reduction techniques""", """The first one is a factorized embedding parameterization. By decomposing the large vocabulary""" """ embedding matrix into two small matrices, we separate the size of the hidden layers from the size of""" """ vocabulary embedding.""", ] self.assertDictEqual(encoding.data , lowercase__ ) for expected, decoded in zip(lowercase__ , lowercase__ ): self.assertEqual(lowercase__ , lowercase__ )
701
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm a_ = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex a_ = 10 a_ = 256 def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" if len(SCREAMING_SNAKE_CASE__ ) < MIN_NUM_TOKENS: return None snake_case_ : Union[str, Any] = MinHash(num_perm=SCREAMING_SNAKE_CASE__ ) for token in set(SCREAMING_SNAKE_CASE__ ): min_hash.update(token.encode() ) return min_hash def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" return {t for t in NON_ALPHA.split(SCREAMING_SNAKE_CASE__ ) if len(t.strip() ) > 0} class __lowercase : """simple docstring""" def __init__(self , *, lowercase__ = 0.85 , ): snake_case_ : Tuple = duplication_jaccard_threshold snake_case_ : Optional[Any] = NUM_PERM snake_case_ : Tuple = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) snake_case_ : List[Any] = defaultdict(lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : int = self._index.query(lowercase__ ) if code_key in self._index.keys: print(f'Duplicate key {code_key}' ) return self._index.insert(lowercase__ , lowercase__ ) if len(lowercase__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowercase__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(lowercase__ ) def __UpperCamelCase (self ): snake_case_ : str = [] for base, duplicates in self._duplicate_clusters.items(): snake_case_ : Optional[Any] = [base] + list(lowercase__ ) # reformat the cluster to be a list of dict snake_case_ : Any = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(lowercase__ ) return duplicate_clusters def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = self.get_duplicate_clusters() with open(lowercase__ , """w""" ) as f: json.dump(lowercase__ , lowercase__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ , snake_case_ : str = element snake_case_ : Tuple = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] ): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(SCREAMING_SNAKE_CASE__ , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ): if data is not None: yield data def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] , SCREAMING_SNAKE_CASE__ : float ): """simple docstring""" snake_case_ : int = DuplicationIndex(duplication_jaccard_threshold=SCREAMING_SNAKE_CASE__ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(SCREAMING_SNAKE_CASE__ ) ) , max_queue_size=1_0_0 ) ): di.add(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : int = get_tokens(SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = get_tokens(SCREAMING_SNAKE_CASE__ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) a_ = None def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Optional[Any] = [] for elementa in cluster: snake_case_ : Union[str, Any] = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: snake_case_ : Any = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) >= jaccard_threshold: elementa["copies"] += 1 break else: snake_case_ : Union[str, Any] = 1 extremes.append(SCREAMING_SNAKE_CASE__ ) return extremes def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" global _shared_dataset snake_case_ : str = dataset snake_case_ : int = [] snake_case_ : Optional[int] = partial(_find_cluster_extremes_shared , jaccard_threshold=SCREAMING_SNAKE_CASE__ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) , total=len(SCREAMING_SNAKE_CASE__ ) , ): extremes_list.append(SCREAMING_SNAKE_CASE__ ) return extremes_list def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] , SCREAMING_SNAKE_CASE__ : float = 0.85 ): """simple docstring""" snake_case_ : List[str] = make_duplicate_clusters(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : str = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} snake_case_ : str = {} snake_case_ : Dict = find_extremes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for extremes in extremes_clusters: for element in extremes: snake_case_ : int = element snake_case_ : Optional[int] = duplicate_indices - set(extreme_dict.keys() ) snake_case_ : List[Any] = dataset.filter(lambda SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : idx not in remove_indices , with_indices=SCREAMING_SNAKE_CASE__ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: snake_case_ : List[Any] = element["""base_index"""] in extreme_dict if element["is_extreme"]: snake_case_ : str = extreme_dict[element["""base_index"""]]["""copies"""] print(f'Original dataset size: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Number of duplicate clusters: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Files in duplicate cluster: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Unique files in duplicate cluster: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Filtered dataset size: {len(SCREAMING_SNAKE_CASE__ )}' ) return ds_filter, duplicate_clusters
48
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self , *lowercase__ , **lowercase__ ): warnings.warn( """The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use OwlViTImageProcessor instead.""" , lowercase__ , ) super().__init__(*lowercase__ , **lowercase__ )
702
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) a_ = logging.getLogger(__name__) if __name__ == "__main__": a_ = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=30522, type=int) a_ = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, '''rb''') as fp: a_ = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') a_ = Counter() for tk_ids in data: counter.update(tk_ids) a_ = [0] * args.vocab_size for k, v in counter.items(): a_ = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
48
0
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowercase : """simple docstring""" def __init__(self , lowercase__ , lowercase__=13 , lowercase__=32 , lowercase__=2 , lowercase__=3 , lowercase__=16 , lowercase__=[1, 2, 1] , lowercase__=[2, 2, 4] , lowercase__=2 , lowercase__=2.0 , lowercase__=True , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.1 , lowercase__="gelu" , lowercase__=False , lowercase__=True , lowercase__=0.02 , lowercase__=1e-5 , lowercase__=True , lowercase__=None , lowercase__=True , lowercase__=10 , lowercase__=8 , ): snake_case_ : int = parent snake_case_ : Union[str, Any] = batch_size snake_case_ : List[Any] = image_size snake_case_ : int = patch_size snake_case_ : List[str] = num_channels snake_case_ : Dict = embed_dim snake_case_ : Union[str, Any] = depths snake_case_ : Any = num_heads snake_case_ : Optional[int] = window_size snake_case_ : Union[str, Any] = mlp_ratio snake_case_ : Any = qkv_bias snake_case_ : Tuple = hidden_dropout_prob snake_case_ : Optional[Any] = attention_probs_dropout_prob snake_case_ : Optional[int] = drop_path_rate snake_case_ : Tuple = hidden_act snake_case_ : Optional[Any] = use_absolute_embeddings snake_case_ : List[Any] = patch_norm snake_case_ : Optional[int] = layer_norm_eps snake_case_ : Optional[Any] = initializer_range snake_case_ : str = is_training snake_case_ : Optional[int] = scope snake_case_ : Union[str, Any] = use_labels snake_case_ : int = type_sequence_label_size snake_case_ : str = encoder_stride def __UpperCamelCase (self ): snake_case_ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ : Tuple = None if self.use_labels: snake_case_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : int = self.get_config() return config, pixel_values, labels def __UpperCamelCase (self ): return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : Tuple = SwinvaModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() snake_case_ : Union[str, Any] = model(lowercase__ ) snake_case_ : Dict = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) snake_case_ : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : Optional[Any] = SwinvaForMaskedImageModeling(config=lowercase__ ) model.to(lowercase__ ) model.eval() snake_case_ : str = model(lowercase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images snake_case_ : str = 1 snake_case_ : List[str] = SwinvaForMaskedImageModeling(lowercase__ ) model.to(lowercase__ ) model.eval() snake_case_ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ : Optional[Any] = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : List[Any] = self.type_sequence_label_size snake_case_ : Optional[Any] = SwinvaForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() snake_case_ : Any = model(lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCamelCase (self ): snake_case_ : int = self.prepare_config_and_inputs() snake_case_ : Dict = config_and_inputs snake_case_ : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : str = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) _A : Optional[Any] = ( {"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification} if is_torch_available() else {} ) _A : List[Any] = False _A : Union[str, Any] = False _A : Optional[Any] = False _A : Tuple = False def __UpperCamelCase (self ): snake_case_ : int = SwinvaModelTester(self ) snake_case_ : Union[str, Any] = ConfigTester(self , config_class=lowercase__ , embed_dim=37 ) def __UpperCamelCase (self ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCamelCase (self ): snake_case_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) @unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" ) def __UpperCamelCase (self ): pass @unittest.skip(reason="""Swinv2 does not use inputs_embeds""" ) def __UpperCamelCase (self ): pass def __UpperCamelCase (self ): snake_case_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : List[str] = model_class(lowercase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case_ : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase__ , nn.Linear ) ) def __UpperCamelCase (self ): snake_case_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : Optional[int] = model_class(lowercase__ ) snake_case_ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ : int = [*signature.parameters.keys()] snake_case_ : Dict = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Any = True for model_class in self.all_model_classes: snake_case_ : Union[str, Any] = True snake_case_ : str = False snake_case_ : Any = True snake_case_ : Tuple = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): snake_case_ : Optional[int] = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) snake_case_ : List[str] = outputs.attentions snake_case_ : List[str] = len(self.model_tester.depths ) self.assertEqual(len(lowercase__ ) , lowercase__ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case_ : List[Any] = True snake_case_ : str = config.window_size**2 snake_case_ : Any = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): snake_case_ : Any = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) snake_case_ : Optional[int] = outputs.attentions self.assertEqual(len(lowercase__ ) , lowercase__ ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) snake_case_ : int = len(lowercase__ ) # Check attention is always last and order is fine snake_case_ : Tuple = True snake_case_ : Any = True snake_case_ : List[Any] = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): snake_case_ : str = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) if hasattr(self.model_tester , """num_hidden_states_types""" ): snake_case_ : str = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states snake_case_ : List[Any] = 2 self.assertEqual(out_len + added_hidden_states , len(lowercase__ ) ) snake_case_ : Any = outputs.attentions self.assertEqual(len(lowercase__ ) , lowercase__ ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : Any = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): snake_case_ : Union[str, Any] = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) snake_case_ : List[str] = outputs.hidden_states snake_case_ : List[Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowercase__ ) , lowercase__ ) # Swinv2 has a different seq_length snake_case_ : List[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case_ : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) snake_case_ : Union[str, Any] = outputs.reshaped_hidden_states self.assertEqual(len(lowercase__ ) , lowercase__ ) snake_case_ : Union[str, Any] = reshaped_hidden_states[0].shape snake_case_ : List[str] = ( reshaped_hidden_states[0].view(lowercase__ , lowercase__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __UpperCamelCase (self ): snake_case_ : Any = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: snake_case_ : Optional[int] = True self.check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ : str = True self.check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : str = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Optional[Any] = 3 snake_case_ : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) snake_case_ : List[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case_ : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) snake_case_ : int = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: snake_case_ : Optional[int] = True self.check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ : List[str] = True self.check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ , (padded_height, padded_width) ) def __UpperCamelCase (self ): snake_case_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowercase__ ) def __UpperCamelCase (self ): snake_case_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase__ ) @slow def __UpperCamelCase (self ): for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : Dict = SwinvaModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Optional[Any] = _config_zero_init(lowercase__ ) for model_class in self.all_model_classes: snake_case_ : Union[str, Any] = model_class(config=lowercase__ ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class __lowercase ( unittest.TestCase): """simple docstring""" @cached_property def __UpperCamelCase (self ): return ( AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ) if is_vision_available() else None ) @slow def __UpperCamelCase (self ): snake_case_ : Optional[int] = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to( lowercase__ ) snake_case_ : Any = self.default_image_processor snake_case_ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) snake_case_ : int = image_processor(images=lowercase__ , return_tensors="""pt""" ).to(lowercase__ ) # forward pass with torch.no_grad(): snake_case_ : Optional[int] = model(**lowercase__ ) # verify the logits snake_case_ : Any = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowercase__ ) snake_case_ : str = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(lowercase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1e-4 ) )
703
"""simple docstring""" import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" snake_case_ : Optional[Any] = tmp_path / """cache""" snake_case_ : Optional[int] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : Tuple = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" snake_case_ : List[Any] = tmp_path / """cache""" snake_case_ : int = {"""text""": """string"""} snake_case_ : Any = features.copy() if features else default_expected_features snake_case_ : List[Any] = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : Dict = TextDatasetReader(SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : Union[str, Any] = tmp_path / """cache""" snake_case_ : Optional[Any] = {"""text""": """string"""} snake_case_ : Optional[int] = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , split=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" if issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : List[str] = text_path elif issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : str = [text_path] snake_case_ : List[str] = tmp_path / """cache""" snake_case_ : List[str] = {"""text""": """string"""} snake_case_ : Dict = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str]=("train",) ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for split in splits: snake_case_ : Dict = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" snake_case_ : int = tmp_path / """cache""" snake_case_ : List[str] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : Optional[Any] = TextDatasetReader({"""train""": text_path} , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Tuple = tmp_path / """cache""" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" snake_case_ : List[str] = {"""text""": """string"""} snake_case_ : int = features.copy() if features else default_expected_features snake_case_ : Tuple = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : str = TextDatasetReader({"""train""": text_path} , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" if split: snake_case_ : Union[str, Any] = {split: text_path} else: snake_case_ : Union[str, Any] = """train""" snake_case_ : int = {"""train""": text_path, """test""": text_path} snake_case_ : List[Any] = tmp_path / """cache""" snake_case_ : Tuple = {"""text""": """string"""} snake_case_ : int = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
48
0
"""simple docstring""" import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class __lowercase ( unittest.TestCase): """simple docstring""" def __UpperCamelCase (self ): snake_case_ : Optional[Any] = """laion/clap-htsat-unfused""" snake_case_ : Any = tempfile.mkdtemp() def __UpperCamelCase (self , **lowercase__ ): return RobertaTokenizer.from_pretrained(self.checkpoint , **lowercase__ ) def __UpperCamelCase (self , **lowercase__ ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **lowercase__ ) def __UpperCamelCase (self ): shutil.rmtree(self.tmpdirname ) def __UpperCamelCase (self ): snake_case_ : Optional[int] = self.get_tokenizer() snake_case_ : Union[str, Any] = self.get_feature_extractor() snake_case_ : List[str] = ClapProcessor(tokenizer=lowercase__ , feature_extractor=lowercase__ ) processor.save_pretrained(self.tmpdirname ) snake_case_ : Tuple = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase__ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Optional[Any] = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) snake_case_ : List[str] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) snake_case_ : List[str] = self.get_feature_extractor(do_normalize=lowercase__ , padding_value=1.0 ) snake_case_ : Tuple = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowercase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase__ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : List[str] = self.get_feature_extractor() snake_case_ : Dict = self.get_tokenizer() snake_case_ : Union[str, Any] = ClapProcessor(tokenizer=lowercase__ , feature_extractor=lowercase__ ) snake_case_ : int = floats_list((3, 10_00) ) snake_case_ : List[str] = feature_extractor(lowercase__ , return_tensors="""np""" ) snake_case_ : List[str] = processor(audios=lowercase__ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __UpperCamelCase (self ): snake_case_ : int = self.get_feature_extractor() snake_case_ : Tuple = self.get_tokenizer() snake_case_ : int = ClapProcessor(tokenizer=lowercase__ , feature_extractor=lowercase__ ) snake_case_ : int = """This is a test string""" snake_case_ : Tuple = processor(text=lowercase__ ) snake_case_ : Optional[int] = tokenizer(lowercase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCamelCase (self ): snake_case_ : Tuple = self.get_feature_extractor() snake_case_ : str = self.get_tokenizer() snake_case_ : Any = ClapProcessor(tokenizer=lowercase__ , feature_extractor=lowercase__ ) snake_case_ : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case_ : Optional[int] = processor.batch_decode(lowercase__ ) snake_case_ : Tuple = tokenizer.batch_decode(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Tuple = self.get_feature_extractor() snake_case_ : List[str] = self.get_tokenizer() snake_case_ : List[Any] = ClapProcessor(tokenizer=lowercase__ , feature_extractor=lowercase__ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
704
"""simple docstring""" from copy import deepcopy class __lowercase : """simple docstring""" def __init__(self , lowercase__ = None , lowercase__ = None ): if arr is None and size is not None: snake_case_ : str = size snake_case_ : Optional[Any] = [0] * size elif arr is not None: self.init(lowercase__ ) else: raise ValueError("""Either arr or size must be specified""" ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Optional[Any] = len(lowercase__ ) snake_case_ : int = deepcopy(lowercase__ ) for i in range(1 , self.size ): snake_case_ : Optional[Any] = self.next_(lowercase__ ) if j < self.size: self.tree[j] += self.tree[i] def __UpperCamelCase (self ): snake_case_ : Dict = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): snake_case_ : Optional[int] = self.next_(lowercase__ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def __UpperCamelCase (lowercase__ ): return index + (index & (-index)) @staticmethod def __UpperCamelCase (lowercase__ ): return index - (index & (-index)) def __UpperCamelCase (self , lowercase__ , lowercase__ ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value snake_case_ : Tuple = self.next_(lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): self.add(lowercase__ , value - self.get(lowercase__ ) ) def __UpperCamelCase (self , lowercase__ ): if right == 0: return 0 snake_case_ : List[str] = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] snake_case_ : Optional[int] = self.prev(lowercase__ ) return result def __UpperCamelCase (self , lowercase__ , lowercase__ ): return self.prefix(lowercase__ ) - self.prefix(lowercase__ ) def __UpperCamelCase (self , lowercase__ ): return self.query(lowercase__ , index + 1 ) def __UpperCamelCase (self , lowercase__ ): value -= self.tree[0] if value < 0: return -1 snake_case_ : Tuple = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 snake_case_ : Tuple = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
48
0
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" if ( (cp >= 0x4e00 and cp <= 0x9fff) or (cp >= 0x3400 and cp <= 0x4dbf) # or (cp >= 0x20000 and cp <= 0x2a6df) # or (cp >= 0x2a700 and cp <= 0x2b73f) # or (cp >= 0x2b740 and cp <= 0x2b81f) # or (cp >= 0x2b820 and cp <= 0x2ceaf) # or (cp >= 0xf900 and cp <= 0xfaff) or (cp >= 0x2f800 and cp <= 0x2fa1f) # ): # return True return False def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" for char in word: snake_case_ : int = ord(SCREAMING_SNAKE_CASE__ ) if not _is_chinese_char(SCREAMING_SNAKE_CASE__ ): return 0 return 1 def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Any = set() for token in tokens: snake_case_ : List[Any] = len(SCREAMING_SNAKE_CASE__ ) > 1 and is_chinese(SCREAMING_SNAKE_CASE__ ) if chinese_word: word_set.add(SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[Any] = list(SCREAMING_SNAKE_CASE__ ) return word_list def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : set() ): """simple docstring""" if not chinese_word_set: return bert_tokens snake_case_ : Dict = max([len(SCREAMING_SNAKE_CASE__ ) for w in chinese_word_set] ) snake_case_ : Optional[Any] = bert_tokens snake_case_ : int = 0, len(SCREAMING_SNAKE_CASE__ ) while start < end: snake_case_ : Union[str, Any] = True if is_chinese(bert_word[start] ): snake_case_ : Dict = min(end - start , SCREAMING_SNAKE_CASE__ ) for i in range(SCREAMING_SNAKE_CASE__ , 1 , -1 ): snake_case_ : str = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): snake_case_ : List[str] = """##""" + bert_word[j] snake_case_ : Tuple = start + i snake_case_ : str = False break if single_word: start += 1 return bert_word def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : LTP , SCREAMING_SNAKE_CASE__ : BertTokenizer ): """simple docstring""" snake_case_ : Optional[Any] = [] for i in range(0 , len(SCREAMING_SNAKE_CASE__ ) , 1_0_0 ): snake_case_ : Union[str, Any] = ltp_tokenizer.pipeline(lines[i : i + 1_0_0] , tasks=["""cws"""] ).cws snake_case_ : List[Any] = [get_chinese_word(SCREAMING_SNAKE_CASE__ ) for r in res] ltp_res.extend(SCREAMING_SNAKE_CASE__ ) assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) snake_case_ : Dict = [] for i in range(0 , len(SCREAMING_SNAKE_CASE__ ) , 1_0_0 ): snake_case_ : Union[str, Any] = bert_tokenizer(lines[i : i + 1_0_0] , add_special_tokens=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , max_length=5_1_2 ) bert_res.extend(res["""input_ids"""] ) assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) snake_case_ : Dict = [] for input_ids, chinese_word in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : Optional[Any] = [] for id in input_ids: snake_case_ : Optional[int] = bert_tokenizer._convert_id_to_token(SCREAMING_SNAKE_CASE__ ) input_tokens.append(SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[int] = add_sub_symbol(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : str = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(SCREAMING_SNAKE_CASE__ ): if token[:2] == "##": snake_case_ : str = token[2:] # save chinese tokens' pos if len(SCREAMING_SNAKE_CASE__ ) == 1 and _is_chinese_char(ord(SCREAMING_SNAKE_CASE__ ) ): ref_id.append(SCREAMING_SNAKE_CASE__ ) ref_ids.append(SCREAMING_SNAKE_CASE__ ) assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) return ref_ids def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: snake_case_ : Optional[Any] = f.readlines() snake_case_ : Optional[Any] = [line.strip() for line in data if len(SCREAMING_SNAKE_CASE__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' snake_case_ : Tuple = LTP(args.ltp ) # faster in GPU device snake_case_ : Optional[Any] = BertTokenizer.from_pretrained(args.bert ) snake_case_ : Optional[int] = prepare_ref(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: snake_case_ : Union[str, Any] = [json.dumps(SCREAMING_SNAKE_CASE__ ) + """\n""" for ref in ref_ids] f.writelines(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a_ = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) a_ = parser.parse_args() main(args)
705
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : list ): """simple docstring""" snake_case_ : Optional[int] = len(SCREAMING_SNAKE_CASE__ ) for i in range(1 , SCREAMING_SNAKE_CASE__ ): snake_case_ : Tuple = collection[i] snake_case_ : Tuple = 0 snake_case_ : str = i - 1 while low <= high: snake_case_ : Optional[int] = (low + high) // 2 if val < collection[mid]: snake_case_ : List[str] = mid - 1 else: snake_case_ : str = mid + 1 for j in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , -1 ): snake_case_ : List[str] = collection[j - 1] snake_case_ : Any = val return collection if __name__ == "__main__": a_ = input('''Enter numbers separated by a comma:\n''').strip() a_ = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
48
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class __lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : str = StableDiffusionPanoramaPipeline _A : Optional[Any] = TEXT_TO_IMAGE_PARAMS _A : List[Any] = TEXT_TO_IMAGE_BATCH_PARAMS _A : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS _A : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS def __UpperCamelCase (self ): torch.manual_seed(0 ) snake_case_ : int = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) snake_case_ : str = DDIMScheduler() torch.manual_seed(0 ) snake_case_ : List[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case_ : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) snake_case_ : Union[str, Any] = CLIPTextModel(lowercase__ ) snake_case_ : Optional[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) snake_case_ : List[str] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def __UpperCamelCase (self , lowercase__ , lowercase__=0 ): snake_case_ : Any = torch.manual_seed(lowercase__ ) snake_case_ : List[str] = { """prompt""": """a photo of the dolomites""", """generator""": generator, # Setting height and width to None to prevent OOMs on CPU. """height""": None, """width""": None, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case_ : List[str] = self.get_dummy_components() snake_case_ : Any = StableDiffusionPanoramaPipeline(**lowercase__ ) snake_case_ : List[str] = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) snake_case_ : str = self.get_dummy_inputs(lowercase__ ) snake_case_ : str = sd_pipe(**lowercase__ ).images snake_case_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ : str = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase (self ): super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def __UpperCamelCase (self ): super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25e-3 ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case_ : Tuple = self.get_dummy_components() snake_case_ : Any = StableDiffusionPanoramaPipeline(**lowercase__ ) snake_case_ : List[str] = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) snake_case_ : Union[str, Any] = self.get_dummy_inputs(lowercase__ ) snake_case_ : Union[str, Any] = """french fries""" snake_case_ : List[Any] = sd_pipe(**lowercase__ , negative_prompt=lowercase__ ) snake_case_ : Any = output.images snake_case_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ : List[str] = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase (self ): snake_case_ : str = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case_ : int = self.get_dummy_components() snake_case_ : Union[str, Any] = StableDiffusionPanoramaPipeline(**lowercase__ ) snake_case_ : Any = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) snake_case_ : Tuple = self.get_dummy_inputs(lowercase__ ) snake_case_ : str = sd_pipe(**lowercase__ , view_batch_size=2 ) snake_case_ : str = output.images snake_case_ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ : int = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase (self ): snake_case_ : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case_ : Any = self.get_dummy_components() snake_case_ : Any = EulerAncestralDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) snake_case_ : Any = StableDiffusionPanoramaPipeline(**lowercase__ ) snake_case_ : List[Any] = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) snake_case_ : int = self.get_dummy_inputs(lowercase__ ) snake_case_ : Dict = sd_pipe(**lowercase__ ).images snake_case_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ : int = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase (self ): snake_case_ : str = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case_ : Tuple = self.get_dummy_components() snake_case_ : int = PNDMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , skip_prk_steps=lowercase__ ) snake_case_ : Optional[int] = StableDiffusionPanoramaPipeline(**lowercase__ ) snake_case_ : List[Any] = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) snake_case_ : str = self.get_dummy_inputs(lowercase__ ) snake_case_ : Dict = sd_pipe(**lowercase__ ).images snake_case_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ : List[str] = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __lowercase ( unittest.TestCase): """simple docstring""" def __UpperCamelCase (self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase (self , lowercase__=0 ): snake_case_ : int = torch.manual_seed(lowercase__ ) snake_case_ : str = { """prompt""": """a photo of the dolomites""", """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def __UpperCamelCase (self ): snake_case_ : Tuple = """stabilityai/stable-diffusion-2-base""" snake_case_ : str = DDIMScheduler.from_pretrained(lowercase__ , subfolder="""scheduler""" ) snake_case_ : Any = StableDiffusionPanoramaPipeline.from_pretrained(lowercase__ , scheduler=lowercase__ , safety_checker=lowercase__ ) pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) pipe.enable_attention_slicing() snake_case_ : Any = self.get_inputs() snake_case_ : Tuple = pipe(**lowercase__ ).images snake_case_ : List[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) snake_case_ : List[str] = np.array( [ 0.36968392, 0.27025372, 0.32446766, 0.28379387, 0.36363274, 0.30733347, 0.27100027, 0.27054125, 0.25536096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def __UpperCamelCase (self ): snake_case_ : Optional[int] = StableDiffusionPanoramaPipeline.from_pretrained( """stabilityai/stable-diffusion-2-base""" , safety_checker=lowercase__ ) snake_case_ : Optional[int] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) pipe.enable_attention_slicing() snake_case_ : Tuple = self.get_inputs() snake_case_ : List[Any] = pipe(**lowercase__ ).images snake_case_ : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) snake_case_ : str = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = 0 def callback_fn(lowercase__ , lowercase__ , lowercase__ ) -> None: snake_case_ : Optional[int] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: snake_case_ : Optional[int] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) snake_case_ : Dict = latents[0, -3:, -3:, -1] snake_case_ : Dict = np.array( [ 0.18681869, 0.33907816, 0.5361276, 0.14432865, -0.02856611, -0.73941123, 0.23397987, 0.47322682, -0.37823164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: snake_case_ : Optional[Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) snake_case_ : Optional[int] = latents[0, -3:, -3:, -1] snake_case_ : int = np.array( [ 0.18539645, 0.33987248, 0.5378559, 0.14437142, -0.02455261, -0.7338317, 0.23990755, 0.47356272, -0.3786505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 snake_case_ : Tuple = False snake_case_ : Optional[Any] = """stabilityai/stable-diffusion-2-base""" snake_case_ : Dict = DDIMScheduler.from_pretrained(lowercase__ , subfolder="""scheduler""" ) snake_case_ : Any = StableDiffusionPanoramaPipeline.from_pretrained(lowercase__ , scheduler=lowercase__ , safety_checker=lowercase__ ) snake_case_ : Union[str, Any] = pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) pipe.enable_attention_slicing() snake_case_ : List[Any] = self.get_inputs() pipe(**lowercase__ , callback=lowercase__ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __UpperCamelCase (self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case_ : str = """stabilityai/stable-diffusion-2-base""" snake_case_ : Tuple = DDIMScheduler.from_pretrained(lowercase__ , subfolder="""scheduler""" ) snake_case_ : Tuple = StableDiffusionPanoramaPipeline.from_pretrained(lowercase__ , scheduler=lowercase__ , safety_checker=lowercase__ ) snake_case_ : Optional[int] = pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case_ : Any = self.get_inputs() snake_case_ : List[str] = pipe(**lowercase__ ) snake_case_ : int = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
706
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Union[str, Any] = ["""image_processor""", """tokenizer"""] _A : str = """ChineseCLIPImageProcessor""" _A : Tuple = ("""BertTokenizer""", """BertTokenizerFast""") def __init__(self , lowercase__=None , lowercase__=None , **lowercase__ ): snake_case_ : Any = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowercase__ , ) snake_case_ : Optional[Any] = kwargs.pop("""feature_extractor""" ) snake_case_ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowercase__ , lowercase__ ) snake_case_ : Union[str, Any] = self.image_processor def __call__(self , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ ): if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: snake_case_ : Any = self.tokenizer(lowercase__ , return_tensors=lowercase__ , **lowercase__ ) if images is not None: snake_case_ : Tuple = self.image_processor(lowercase__ , return_tensors=lowercase__ , **lowercase__ ) if text is not None and images is not None: snake_case_ : List[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase__ ) , tensor_type=lowercase__ ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): return self.tokenizer.batch_decode(*lowercase__ , **lowercase__ ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): return self.tokenizer.decode(*lowercase__ , **lowercase__ ) @property def __UpperCamelCase (self ): snake_case_ : Optional[int] = self.tokenizer.model_input_names snake_case_ : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __UpperCamelCase (self ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowercase__ , ) return self.image_processor_class
48
0