code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class __lowercase : """simple docstring""" def __init__(self , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden snake_case_ : Optional[Any] = deepcopy(lowercase__ ) elif os.path.exists(lowercase__ ): with io.open(lowercase__ , """r""" , encoding="""utf-8""" ) as f: snake_case_ : Optional[Any] = json.load(lowercase__ ) else: try: snake_case_ : Optional[int] = baseaa.urlsafe_baadecode(lowercase__ ).decode("""utf-8""" ) snake_case_ : Tuple = json.loads(lowercase__ ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f'Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}' ) snake_case_ : int = config self.set_stage_and_offload() def __UpperCamelCase (self ): # zero stage - this is done as early as possible, before model is created, to allow # ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object # during ``zero.Init()`` which needs to know the dtype, and some other hparams. snake_case_ : Optional[Any] = self.get_value("""zero_optimization.stage""" , -1 ) # offload snake_case_ : List[Any] = False if self.is_zeroa() or self.is_zeroa(): snake_case_ : Optional[Any] = set(["""cpu""", """nvme"""] ) snake_case_ : Optional[int] = set( [ self.get_value("""zero_optimization.offload_optimizer.device""" ), self.get_value("""zero_optimization.offload_param.device""" ), ] ) if len(offload_devices & offload_devices_valid ) > 0: snake_case_ : Optional[Any] = True def __UpperCamelCase (self , lowercase__ ): snake_case_ : Dict = self.config # find the config node of interest if it exists snake_case_ : Union[str, Any] = ds_key_long.split(""".""" ) snake_case_ : Optional[int] = nodes.pop() for node in nodes: snake_case_ : Optional[Any] = config.get(lowercase__ ) if config is None: return None, ds_key return config, ds_key def __UpperCamelCase (self , lowercase__ , lowercase__=None ): snake_case_ , snake_case_ : Dict = self.find_config_node(lowercase__ ) if config is None: return default return config.get(lowercase__ , lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__=False ): snake_case_ : Any = self.config # find the config node of interest if it exists snake_case_ : int = ds_key_long.split(""".""" ) for node in nodes: snake_case_ : int = config snake_case_ : int = config.get(lowercase__ ) if config is None: if must_exist: raise ValueError(f'Can\'t find {ds_key_long} entry in the config: {self.config}' ) else: return # if found remove it if parent_config is not None: parent_config.pop(lowercase__ ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Any = self.get_value(lowercase__ ) return False if value is None else bool(lowercase__ ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Dict = self.get_value(lowercase__ ) return False if value is None else not bool(lowercase__ ) def __UpperCamelCase (self ): return self._stage == 2 def __UpperCamelCase (self ): return self._stage == 3 def __UpperCamelCase (self ): return self._offload class __lowercase : """simple docstring""" def __init__(self , lowercase__ ): snake_case_ : Tuple = engine def __UpperCamelCase (self , lowercase__ , **lowercase__ ): # runs backpropagation and handles mixed precision self.engine.backward(lowercase__ , **lowercase__ ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self , lowercase__ ): super().__init__(lowercase__ , device_placement=lowercase__ , scaler=lowercase__ ) snake_case_ : Tuple = hasattr(self.optimizer , """overflow""" ) def __UpperCamelCase (self , lowercase__=None ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def __UpperCamelCase (self ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def __UpperCamelCase (self ): if self.__has_overflow__: return self.optimizer.overflow return False class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self , lowercase__ , lowercase__ ): super().__init__(lowercase__ , lowercase__ ) def __UpperCamelCase (self ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class __lowercase : """simple docstring""" def __init__(self , lowercase__ , lowercase__=0.001 , lowercase__=0 , **lowercase__ ): snake_case_ : Optional[int] = params snake_case_ : Optional[int] = lr snake_case_ : Dict = weight_decay snake_case_ : Optional[int] = kwargs class __lowercase : """simple docstring""" def __init__(self , lowercase__ , lowercase__=None , lowercase__=0 , **lowercase__ ): snake_case_ : Dict = optimizer snake_case_ : Optional[Any] = total_num_steps snake_case_ : List[str] = warmup_num_steps snake_case_ : Any = kwargs
48
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCAmelCase) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True}) _A : ClassVar[Features] = Features({"""audio""": Audio()}) _A : ClassVar[Features] = Features({"""transcription""": Value("""string""")}) _A : str = "audio" _A : str = "transcription" def __UpperCamelCase (self , lowercase__ ): if self.audio_column not in features: raise ValueError(f'Column {self.audio_column} is not present in features.' ) if not isinstance(features[self.audio_column] , lowercase__ ): raise ValueError(f'Column {self.audio_column} is not an Audio type.' ) snake_case_ : Optional[int] = copy.deepcopy(self ) snake_case_ : Tuple = self.input_schema.copy() snake_case_ : List[str] = features[self.audio_column] snake_case_ : Any = input_schema return task_template @property def __UpperCamelCase (self ): return {self.audio_column: "audio", self.transcription_column: "transcription"}
48
1
"""simple docstring""" from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class __lowercase : """simple docstring""" def __init__(self , lowercase__ = None ): if components is None: snake_case_ : Any = [] snake_case_ : Dict = list(lowercase__ ) def __len__(self ): return len(self.__components ) def __str__(self ): return "(" + ",".join(map(lowercase__ , self.__components ) ) + ")" def __add__(self , lowercase__ ): snake_case_ : Any = len(self ) if size == len(lowercase__ ): snake_case_ : Union[str, Any] = [self.__components[i] + other.component(lowercase__ ) for i in range(lowercase__ )] return Vector(lowercase__ ) else: raise Exception("""must have the same size""" ) def __sub__(self , lowercase__ ): snake_case_ : Optional[Any] = len(self ) if size == len(lowercase__ ): snake_case_ : str = [self.__components[i] - other.component(lowercase__ ) for i in range(lowercase__ )] return Vector(lowercase__ ) else: # error case raise Exception("""must have the same size""" ) @overload def __mul__(self , lowercase__ ): ... @overload def __mul__(self , lowercase__ ): ... def __mul__(self , lowercase__ ): if isinstance(lowercase__ , (float, int) ): snake_case_ : str = [c * other for c in self.__components] return Vector(lowercase__ ) elif isinstance(lowercase__ , lowercase__ ) and len(self ) == len(lowercase__ ): snake_case_ : str = len(self ) snake_case_ : List[Any] = [self.__components[i] * other.component(lowercase__ ) for i in range(lowercase__ )] return sum(lowercase__ ) else: # error case raise Exception("""invalid operand!""" ) def __UpperCamelCase (self ): return Vector(self.__components ) def __UpperCamelCase (self , lowercase__ ): if isinstance(lowercase__ , lowercase__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("""index out of range""" ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): assert -len(self.__components ) <= pos < len(self.__components ) snake_case_ : Any = value def __UpperCamelCase (self ): if len(self.__components ) == 0: raise Exception("""Vector is empty""" ) snake_case_ : int = [c**2 for c in self.__components] return math.sqrt(sum(lowercase__ ) ) def __UpperCamelCase (self , lowercase__ , lowercase__ = False ): snake_case_ : str = self * other snake_case_ : Dict = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return Vector([0] * dimension ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )) snake_case_ : int = [0] * dimension snake_case_ : Tuple = 1 return Vector(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : Vector , SCREAMING_SNAKE_CASE__ : Vector ): """simple docstring""" assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , (int, float) )) ) return x * scalar + y def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" random.seed(SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = [random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] return Vector(SCREAMING_SNAKE_CASE__ ) class __lowercase : """simple docstring""" def __init__(self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : str = matrix snake_case_ : List[Any] = w snake_case_ : List[Any] = h def __str__(self ): snake_case_ : Union[str, Any] = """""" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__(self , lowercase__ ): if self.__width == other.width() and self.__height == other.height(): snake_case_ : List[str] = [] for i in range(self.__height ): snake_case_ : List[Any] = [ self.__matrix[i][j] + other.component(lowercase__ , lowercase__ ) for j in range(self.__width ) ] matrix.append(lowercase__ ) return Matrix(lowercase__ , self.__width , self.__height ) else: raise Exception("""matrix must have the same dimension!""" ) def __sub__(self , lowercase__ ): if self.__width == other.width() and self.__height == other.height(): snake_case_ : List[str] = [] for i in range(self.__height ): snake_case_ : Dict = [ self.__matrix[i][j] - other.component(lowercase__ , lowercase__ ) for j in range(self.__width ) ] matrix.append(lowercase__ ) return Matrix(lowercase__ , self.__width , self.__height ) else: raise Exception("""matrices must have the same dimension!""" ) @overload def __mul__(self , lowercase__ ): ... @overload def __mul__(self , lowercase__ ): ... def __mul__(self , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): # matrix-vector if len(lowercase__ ) == self.__width: snake_case_ : Optional[int] = zero_vector(self.__height ) for i in range(self.__height ): snake_case_ : List[str] = [ self.__matrix[i][j] * other.component(lowercase__ ) for j in range(self.__width ) ] ans.change_component(lowercase__ , sum(lowercase__ ) ) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""" ) elif isinstance(lowercase__ , (int, float) ): # matrix-scalar snake_case_ : Optional[int] = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(lowercase__ , self.__width , self.__height ) return None def __UpperCamelCase (self ): return self.__height def __UpperCamelCase (self ): return self.__width def __UpperCamelCase (self , lowercase__ , lowercase__ ): if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""" ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): if 0 <= x < self.__height and 0 <= y < self.__width: snake_case_ : List[Any] = value else: raise Exception("""change_component: indices out of bounds""" ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): if self.__height != self.__width: raise Exception("""Matrix is not square""" ) snake_case_ : int = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(lowercase__ ) ): snake_case_ : Tuple = minor[i][:y] + minor[i][y + 1 :] return Matrix(lowercase__ , self.__width - 1 , self.__height - 1 ).determinant() def __UpperCamelCase (self , lowercase__ , lowercase__ ): if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(lowercase__ , lowercase__ ) else: raise Exception("""Indices out of bounds""" ) def __UpperCamelCase (self ): if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if self.__height < 1: raise Exception("""Matrix has no element""" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: snake_case_ : str = [ self.__matrix[0][y] * self.cofactor(0 , lowercase__ ) for y in range(self.__width ) ] return sum(lowercase__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : list[list[float]] = [[0] * n for _ in range(SCREAMING_SNAKE_CASE__ )] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" random.seed(SCREAMING_SNAKE_CASE__ ) snake_case_ : list[list[float]] = [ [random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] for _ in range(SCREAMING_SNAKE_CASE__ ) ] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
48
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : int = ["""pixel_values"""] def __init__(self , lowercase__ = True , lowercase__ = None , lowercase__ = 0.9 , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = True , lowercase__ = None , lowercase__ = 1 / 2_55 , lowercase__ = True , lowercase__ = True , lowercase__ = None , lowercase__ = None , **lowercase__ , ): super().__init__(**lowercase__ ) snake_case_ : Tuple = size if size is not None else {"""shortest_edge""": 2_24} snake_case_ : Union[str, Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) snake_case_ : str = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} snake_case_ : Dict = get_size_dict(lowercase__ , param_name="""crop_size""" ) snake_case_ : Union[str, Any] = do_resize snake_case_ : List[str] = size snake_case_ : str = crop_pct snake_case_ : str = resample snake_case_ : Optional[Any] = do_center_crop snake_case_ : Dict = crop_size snake_case_ : int = do_rescale snake_case_ : Optional[int] = rescale_factor snake_case_ : str = do_normalize snake_case_ : str = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN snake_case_ : List[str] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = None , **lowercase__ , ): snake_case_ : Tuple = get_size_dict(lowercase__ , default_to_square=lowercase__ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f'size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) if crop_pct is not None: if "shortest_edge" in size: snake_case_ : Optional[int] = int(size["""shortest_edge"""] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: snake_case_ : Dict = int(size["""height"""] / crop_pct ) else: snake_case_ : List[str] = (int(size["""height"""] / crop_pct ), int(size["""width"""] / crop_pct )) else: raise ValueError("""Invalid size for resize: {}""".format(lowercase__ ) ) snake_case_ : List[Any] = get_resize_output_image_size(lowercase__ , size=lowercase__ , default_to_square=lowercase__ ) else: if "shortest_edge" in size: snake_case_ : Optional[int] = get_resize_output_image_size(lowercase__ , size=size["""shortest_edge"""] , default_to_square=lowercase__ ) elif "height" in size and "width" in size: snake_case_ : int = (size["""height"""], size["""width"""]) else: raise ValueError("""Invalid size for resize: {}""".format(lowercase__ ) ) return resize(lowercase__ , size=lowercase__ , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): snake_case_ : int = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(f'size must contain \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(lowercase__ , size=(size["""height"""], size["""width"""]) , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return normalize(lowercase__ , mean=lowercase__ , std=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ): snake_case_ : str = do_resize if do_resize is not None else self.do_resize snake_case_ : Any = crop_pct if crop_pct is not None else self.crop_pct snake_case_ : List[Any] = resample if resample is not None else self.resample snake_case_ : str = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : str = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : str = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : List[Any] = image_mean if image_mean is not None else self.image_mean snake_case_ : int = image_std if image_std is not None else self.image_std snake_case_ : List[Any] = size if size is not None else self.size snake_case_ : Optional[Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) snake_case_ : List[Any] = crop_size if crop_size is not None else self.crop_size snake_case_ : int = get_size_dict(lowercase__ , param_name="""crop_size""" ) snake_case_ : List[str] = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_pct is None: raise ValueError("""Crop_pct must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case_ : int = [to_numpy_array(lowercase__ ) for image in images] if do_resize: snake_case_ : str = [self.resize(image=lowercase__ , size=lowercase__ , crop_pct=lowercase__ , resample=lowercase__ ) for image in images] if do_center_crop: snake_case_ : Optional[int] = [self.center_crop(image=lowercase__ , size=lowercase__ ) for image in images] if do_rescale: snake_case_ : List[Any] = [self.rescale(image=lowercase__ , scale=lowercase__ ) for image in images] if do_normalize: snake_case_ : Optional[Any] = [self.normalize(image=lowercase__ , mean=lowercase__ , std=lowercase__ ) for image in images] snake_case_ : List[Any] = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] snake_case_ : Dict = {"""pixel_values""": images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
48
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool a_ = { '''Acehnese Arabic''': '''ace_Arab''', '''Acehnese Latin''': '''ace_Latn''', '''Mesopotamian Arabic''': '''acm_Arab''', '''Ta\'izzi-Adeni Arabic''': '''acq_Arab''', '''Tunisian Arabic''': '''aeb_Arab''', '''Afrikaans''': '''afr_Latn''', '''South Levantine Arabic''': '''ajp_Arab''', '''Akan''': '''aka_Latn''', '''Amharic''': '''amh_Ethi''', '''North Levantine Arabic''': '''apc_Arab''', '''Modern Standard Arabic''': '''arb_Arab''', '''Modern Standard Arabic Romanized''': '''arb_Latn''', '''Najdi Arabic''': '''ars_Arab''', '''Moroccan Arabic''': '''ary_Arab''', '''Egyptian Arabic''': '''arz_Arab''', '''Assamese''': '''asm_Beng''', '''Asturian''': '''ast_Latn''', '''Awadhi''': '''awa_Deva''', '''Central Aymara''': '''ayr_Latn''', '''South Azerbaijani''': '''azb_Arab''', '''North Azerbaijani''': '''azj_Latn''', '''Bashkir''': '''bak_Cyrl''', '''Bambara''': '''bam_Latn''', '''Balinese''': '''ban_Latn''', '''Belarusian''': '''bel_Cyrl''', '''Bemba''': '''bem_Latn''', '''Bengali''': '''ben_Beng''', '''Bhojpuri''': '''bho_Deva''', '''Banjar Arabic''': '''bjn_Arab''', '''Banjar Latin''': '''bjn_Latn''', '''Standard Tibetan''': '''bod_Tibt''', '''Bosnian''': '''bos_Latn''', '''Buginese''': '''bug_Latn''', '''Bulgarian''': '''bul_Cyrl''', '''Catalan''': '''cat_Latn''', '''Cebuano''': '''ceb_Latn''', '''Czech''': '''ces_Latn''', '''Chokwe''': '''cjk_Latn''', '''Central Kurdish''': '''ckb_Arab''', '''Crimean Tatar''': '''crh_Latn''', '''Welsh''': '''cym_Latn''', '''Danish''': '''dan_Latn''', '''German''': '''deu_Latn''', '''Southwestern Dinka''': '''dik_Latn''', '''Dyula''': '''dyu_Latn''', '''Dzongkha''': '''dzo_Tibt''', '''Greek''': '''ell_Grek''', '''English''': '''eng_Latn''', '''Esperanto''': '''epo_Latn''', '''Estonian''': '''est_Latn''', '''Basque''': '''eus_Latn''', '''Ewe''': '''ewe_Latn''', '''Faroese''': '''fao_Latn''', '''Fijian''': '''fij_Latn''', '''Finnish''': '''fin_Latn''', '''Fon''': '''fon_Latn''', '''French''': '''fra_Latn''', '''Friulian''': '''fur_Latn''', '''Nigerian Fulfulde''': '''fuv_Latn''', '''Scottish Gaelic''': '''gla_Latn''', '''Irish''': '''gle_Latn''', '''Galician''': '''glg_Latn''', '''Guarani''': '''grn_Latn''', '''Gujarati''': '''guj_Gujr''', '''Haitian Creole''': '''hat_Latn''', '''Hausa''': '''hau_Latn''', '''Hebrew''': '''heb_Hebr''', '''Hindi''': '''hin_Deva''', '''Chhattisgarhi''': '''hne_Deva''', '''Croatian''': '''hrv_Latn''', '''Hungarian''': '''hun_Latn''', '''Armenian''': '''hye_Armn''', '''Igbo''': '''ibo_Latn''', '''Ilocano''': '''ilo_Latn''', '''Indonesian''': '''ind_Latn''', '''Icelandic''': '''isl_Latn''', '''Italian''': '''ita_Latn''', '''Javanese''': '''jav_Latn''', '''Japanese''': '''jpn_Jpan''', '''Kabyle''': '''kab_Latn''', '''Jingpho''': '''kac_Latn''', '''Kamba''': '''kam_Latn''', '''Kannada''': '''kan_Knda''', '''Kashmiri Arabic''': '''kas_Arab''', '''Kashmiri Devanagari''': '''kas_Deva''', '''Georgian''': '''kat_Geor''', '''Central Kanuri Arabic''': '''knc_Arab''', '''Central Kanuri Latin''': '''knc_Latn''', '''Kazakh''': '''kaz_Cyrl''', '''Kabiyè''': '''kbp_Latn''', '''Kabuverdianu''': '''kea_Latn''', '''Khmer''': '''khm_Khmr''', '''Kikuyu''': '''kik_Latn''', '''Kinyarwanda''': '''kin_Latn''', '''Kyrgyz''': '''kir_Cyrl''', '''Kimbundu''': '''kmb_Latn''', '''Northern Kurdish''': '''kmr_Latn''', '''Kikongo''': '''kon_Latn''', '''Korean''': '''kor_Hang''', '''Lao''': '''lao_Laoo''', '''Ligurian''': '''lij_Latn''', '''Limburgish''': '''lim_Latn''', '''Lingala''': '''lin_Latn''', '''Lithuanian''': '''lit_Latn''', '''Lombard''': '''lmo_Latn''', '''Latgalian''': '''ltg_Latn''', '''Luxembourgish''': '''ltz_Latn''', '''Luba-Kasai''': '''lua_Latn''', '''Ganda''': '''lug_Latn''', '''Luo''': '''luo_Latn''', '''Mizo''': '''lus_Latn''', '''Standard Latvian''': '''lvs_Latn''', '''Magahi''': '''mag_Deva''', '''Maithili''': '''mai_Deva''', '''Malayalam''': '''mal_Mlym''', '''Marathi''': '''mar_Deva''', '''Minangkabau Arabic ''': '''min_Arab''', '''Minangkabau Latin''': '''min_Latn''', '''Macedonian''': '''mkd_Cyrl''', '''Plateau Malagasy''': '''plt_Latn''', '''Maltese''': '''mlt_Latn''', '''Meitei Bengali''': '''mni_Beng''', '''Halh Mongolian''': '''khk_Cyrl''', '''Mossi''': '''mos_Latn''', '''Maori''': '''mri_Latn''', '''Burmese''': '''mya_Mymr''', '''Dutch''': '''nld_Latn''', '''Norwegian Nynorsk''': '''nno_Latn''', '''Norwegian Bokmål''': '''nob_Latn''', '''Nepali''': '''npi_Deva''', '''Northern Sotho''': '''nso_Latn''', '''Nuer''': '''nus_Latn''', '''Nyanja''': '''nya_Latn''', '''Occitan''': '''oci_Latn''', '''West Central Oromo''': '''gaz_Latn''', '''Odia''': '''ory_Orya''', '''Pangasinan''': '''pag_Latn''', '''Eastern Panjabi''': '''pan_Guru''', '''Papiamento''': '''pap_Latn''', '''Western Persian''': '''pes_Arab''', '''Polish''': '''pol_Latn''', '''Portuguese''': '''por_Latn''', '''Dari''': '''prs_Arab''', '''Southern Pashto''': '''pbt_Arab''', '''Ayacucho Quechua''': '''quy_Latn''', '''Romanian''': '''ron_Latn''', '''Rundi''': '''run_Latn''', '''Russian''': '''rus_Cyrl''', '''Sango''': '''sag_Latn''', '''Sanskrit''': '''san_Deva''', '''Santali''': '''sat_Olck''', '''Sicilian''': '''scn_Latn''', '''Shan''': '''shn_Mymr''', '''Sinhala''': '''sin_Sinh''', '''Slovak''': '''slk_Latn''', '''Slovenian''': '''slv_Latn''', '''Samoan''': '''smo_Latn''', '''Shona''': '''sna_Latn''', '''Sindhi''': '''snd_Arab''', '''Somali''': '''som_Latn''', '''Southern Sotho''': '''sot_Latn''', '''Spanish''': '''spa_Latn''', '''Tosk Albanian''': '''als_Latn''', '''Sardinian''': '''srd_Latn''', '''Serbian''': '''srp_Cyrl''', '''Swati''': '''ssw_Latn''', '''Sundanese''': '''sun_Latn''', '''Swedish''': '''swe_Latn''', '''Swahili''': '''swh_Latn''', '''Silesian''': '''szl_Latn''', '''Tamil''': '''tam_Taml''', '''Tatar''': '''tat_Cyrl''', '''Telugu''': '''tel_Telu''', '''Tajik''': '''tgk_Cyrl''', '''Tagalog''': '''tgl_Latn''', '''Thai''': '''tha_Thai''', '''Tigrinya''': '''tir_Ethi''', '''Tamasheq Latin''': '''taq_Latn''', '''Tamasheq Tifinagh''': '''taq_Tfng''', '''Tok Pisin''': '''tpi_Latn''', '''Tswana''': '''tsn_Latn''', '''Tsonga''': '''tso_Latn''', '''Turkmen''': '''tuk_Latn''', '''Tumbuka''': '''tum_Latn''', '''Turkish''': '''tur_Latn''', '''Twi''': '''twi_Latn''', '''Central Atlas Tamazight''': '''tzm_Tfng''', '''Uyghur''': '''uig_Arab''', '''Ukrainian''': '''ukr_Cyrl''', '''Umbundu''': '''umb_Latn''', '''Urdu''': '''urd_Arab''', '''Northern Uzbek''': '''uzn_Latn''', '''Venetian''': '''vec_Latn''', '''Vietnamese''': '''vie_Latn''', '''Waray''': '''war_Latn''', '''Wolof''': '''wol_Latn''', '''Xhosa''': '''xho_Latn''', '''Eastern Yiddish''': '''ydd_Hebr''', '''Yoruba''': '''yor_Latn''', '''Yue Chinese''': '''yue_Hant''', '''Chinese Simplified''': '''zho_Hans''', '''Chinese Traditional''': '''zho_Hant''', '''Standard Malay''': '''zsm_Latn''', '''Zulu''': '''zul_Latn''', } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[Any] = """facebook/nllb-200-distilled-600M""" _A : Any = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) _A : List[Any] = """translator""" _A : Dict = AutoTokenizer _A : List[str] = AutoModelForSeqaSeqLM _A : int = LANGUAGE_CODES _A : Dict = ["""text""", """text""", """text"""] _A : str = ["""text"""] def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): if src_lang not in self.lang_to_code: raise ValueError(f'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(f'{tgt_lang} is not a supported language.' ) snake_case_ : int = self.lang_to_code[src_lang] snake_case_ : str = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowercase__ , return_tensors="""pt""" , src_lang=lowercase__ , tgt_lang=lowercase__ ) def __UpperCamelCase (self , lowercase__ ): return self.model.generate(**lowercase__ ) def __UpperCamelCase (self , lowercase__ ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowercase__ )
48
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: a_ = None a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} a_ = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } a_ = { '''facebook/mbart-large-en-ro''': 1024, '''facebook/mbart-large-cc25''': 1024, } # fmt: off a_ = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Dict = VOCAB_FILES_NAMES _A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _A : str = ["""input_ids""", """attention_mask"""] _A : Tuple = MBartTokenizer _A : List[int] = [] _A : List[int] = [] def __init__(self , lowercase__=None , lowercase__=None , lowercase__="<s>" , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<mask>" , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ , ): # Mask token behave like a normal word, i.e. include the space before it snake_case_ : int = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token super().__init__( vocab_file=lowercase__ , tokenizer_file=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , unk_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , src_lang=lowercase__ , tgt_lang=lowercase__ , additional_special_tokens=lowercase__ , **lowercase__ , ) snake_case_ : Dict = vocab_file snake_case_ : Optional[int] = False if not self.vocab_file else True snake_case_ : Optional[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) snake_case_ : Any = { lang_code: self.convert_tokens_to_ids(lowercase__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } snake_case_ : Tuple = src_lang if src_lang is not None else """en_XX""" snake_case_ : Tuple = self.convert_tokens_to_ids(self._src_lang ) snake_case_ : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __UpperCamelCase (self ): return self._src_lang @src_lang.setter def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): snake_case_ : List[Any] = [self.sep_token_id] snake_case_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , **lowercase__ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) snake_case_ : int = src_lang snake_case_ : List[str] = self(lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , **lowercase__ ) snake_case_ : List[str] = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Union[str, Any] = tgt_lang_id return inputs def __UpperCamelCase (self , lowercase__ , lowercase__ = "en_XX" , lowercase__ = None , lowercase__ = "ro_RO" , **lowercase__ , ): snake_case_ : List[str] = src_lang snake_case_ : int = tgt_lang return super().prepare_seqaseq_batch(lowercase__ , lowercase__ , **lowercase__ ) def __UpperCamelCase (self ): return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCamelCase (self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Tuple = [] snake_case_ : List[Any] = [self.eos_token_id, self.cur_lang_code] snake_case_ : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Optional[int] = [] snake_case_ : Optional[Any] = [self.eos_token_id, self.cur_lang_code] snake_case_ : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ : int = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowercase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory.' ) return snake_case_ : List[str] = os.path.join( lowercase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ): copyfile(self.vocab_file , lowercase__ ) return (out_vocab_file,)
48
1
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int = 5_0 ): """simple docstring""" snake_case_ : Optional[Any] = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'''{solution() = }''')
48
"""simple docstring""" import argparse import hashlib # hashlib is only used inside the Test class import struct class __lowercase : """simple docstring""" def __init__(self , lowercase__ ): snake_case_ : Union[str, Any] = data snake_case_ : List[str] = [0X6_7_4_5_2_3_0_1, 0Xe_f_c_d_a_b_8_9, 0X9_8_b_a_d_c_f_e, 0X1_0_3_2_5_4_7_6, 0Xc_3_d_2_e_1_f_0] @staticmethod def __UpperCamelCase (lowercase__ , lowercase__ ): return ((n << b) | (n >> (32 - b))) & 0Xf_f_f_f_f_f_f_f def __UpperCamelCase (self ): snake_case_ : Any = B"""\x80""" + B"""\x00""" * (63 - (len(self.data ) + 8) % 64) snake_case_ : Tuple = self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def __UpperCamelCase (self ): return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = list(struct.unpack(""">16L""" , lowercase__ ) ) + [0] * 64 for i in range(16 , 80 ): snake_case_ : Dict = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def __UpperCamelCase (self ): snake_case_ : List[Any] = self.padding() snake_case_ : Any = self.split_blocks() for block in self.blocks: snake_case_ : Any = self.expand_block(lowercase__ ) snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = self.h for i in range(0 , 80 ): if 0 <= i < 20: snake_case_ : Optional[Any] = (b & c) | ((~b) & d) snake_case_ : List[str] = 0X5_a_8_2_7_9_9_9 elif 20 <= i < 40: snake_case_ : Union[str, Any] = b ^ c ^ d snake_case_ : Tuple = 0X6_e_d_9_e_b_a_1 elif 40 <= i < 60: snake_case_ : str = (b & c) | (b & d) | (c & d) snake_case_ : List[str] = 0X8_f_1_b_b_c_d_c elif 60 <= i < 80: snake_case_ : Tuple = b ^ c ^ d snake_case_ : str = 0Xc_a_6_2_c_1_d_6 snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Optional[Any] = ( self.rotate(lowercase__ , 5 ) + f + e + k + expanded_block[i] & 0Xf_f_f_f_f_f_f_f, a, self.rotate(lowercase__ , 30 ), c, d, ) snake_case_ : Any = ( self.h[0] + a & 0Xf_f_f_f_f_f_f_f, self.h[1] + b & 0Xf_f_f_f_f_f_f_f, self.h[2] + c & 0Xf_f_f_f_f_f_f_f, self.h[3] + d & 0Xf_f_f_f_f_f_f_f, self.h[4] + e & 0Xf_f_f_f_f_f_f_f, ) return ("{:08x}" * 5).format(*self.h ) def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Union[str, Any] = b"""Test String""" assert SHAaHash(SCREAMING_SNAKE_CASE__ ).final_hash() == hashlib.shaa(SCREAMING_SNAKE_CASE__ ).hexdigest() # noqa: S324 def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : int = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument("""--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) snake_case_ : Optional[int] = parser.parse_args() snake_case_ : Optional[int] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: snake_case_ : List[str] = f.read() else: snake_case_ : Dict = bytes(SCREAMING_SNAKE_CASE__ , """utf-8""" ) print(SHAaHash(SCREAMING_SNAKE_CASE__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
48
1
"""simple docstring""" import copy import random from transformers import CLIPTokenizer class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self , *lowercase__ , **lowercase__ ): super().__init__(*lowercase__ , **lowercase__ ) snake_case_ : Union[str, Any] = {} def __UpperCamelCase (self , lowercase__ , *lowercase__ , **lowercase__ ): snake_case_ : Optional[int] = super().add_tokens(lowercase__ , *lowercase__ , **lowercase__ ) if num_added_tokens == 0: raise ValueError( f'The tokenizer already contains the token {placeholder_token}. Please pass a different' """ `placeholder_token` that is not already in the tokenizer.""" ) def __UpperCamelCase (self , lowercase__ , *lowercase__ , lowercase__=1 , **lowercase__ ): snake_case_ : Optional[int] = [] if num_vec_per_token == 1: self.try_adding_tokens(lowercase__ , *lowercase__ , **lowercase__ ) output.append(lowercase__ ) else: snake_case_ : Dict = [] for i in range(lowercase__ ): snake_case_ : Union[str, Any] = placeholder_token + f'_{i}' self.try_adding_tokens(lowercase__ , *lowercase__ , **lowercase__ ) output.append(lowercase__ ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f'The tokenizer already has placeholder token {token} that can get confused with' f' {placeholder_token}keep placeholder tokens independent' ) snake_case_ : str = output def __UpperCamelCase (self , lowercase__ , lowercase__=False , lowercase__=1.0 ): if isinstance(lowercase__ , lowercase__ ): snake_case_ : Dict = [] for i in range(len(lowercase__ ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=lowercase__ ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: snake_case_ : str = self.token_map[placeholder_token] snake_case_ : str = tokens[: 1 + int(len(lowercase__ ) * prop_tokens_to_load )] if vector_shuffle: snake_case_ : Optional[Any] = copy.copy(lowercase__ ) random.shuffle(lowercase__ ) snake_case_ : Optional[int] = text.replace(lowercase__ , """ """.join(lowercase__ ) ) return text def __call__(self , lowercase__ , *lowercase__ , lowercase__=False , lowercase__=1.0 , **lowercase__ ): return super().__call__( self.replace_placeholder_tokens_in_text( lowercase__ , vector_shuffle=lowercase__ , prop_tokens_to_load=lowercase__ ) , *lowercase__ , **lowercase__ , ) def __UpperCamelCase (self , lowercase__ , *lowercase__ , lowercase__=False , lowercase__=1.0 , **lowercase__ ): return super().encode( self.replace_placeholder_tokens_in_text( lowercase__ , vector_shuffle=lowercase__ , prop_tokens_to_load=lowercase__ ) , *lowercase__ , **lowercase__ , )
48
"""simple docstring""" from manim import * class __lowercase ( _UpperCAmelCase): """simple docstring""" def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = Rectangle(height=0.5 , width=0.5 ) snake_case_ : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) snake_case_ : Optional[Any] = [mem.copy() for i in range(6 )] snake_case_ : str = [mem.copy() for i in range(6 )] snake_case_ : str = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : Any = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[str] = VGroup(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[Any] = Text("""CPU""" , font_size=24 ) snake_case_ : Tuple = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowercase__ ) snake_case_ : List[Any] = [mem.copy() for i in range(4 )] snake_case_ : Tuple = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[str] = Text("""GPU""" , font_size=24 ) snake_case_ : Any = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) gpu.move_to([-1, -1, 0] ) self.add(lowercase__ ) snake_case_ : Optional[Any] = [mem.copy() for i in range(6 )] snake_case_ : List[Any] = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : Dict = Text("""Model""" , font_size=24 ) snake_case_ : int = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) model.move_to([3, -1.0, 0] ) self.add(lowercase__ ) snake_case_ : Dict = [] for i, rect in enumerate(lowercase__ ): rect.set_stroke(lowercase__ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) snake_case_ : List[str] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowercase__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowercase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase__ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase__ , buff=0.0 ) self.add(lowercase__ ) cpu_targs.append(lowercase__ ) snake_case_ : List[str] = [mem.copy() for i in range(6 )] snake_case_ : List[str] = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : str = Text("""Loaded Checkpoint""" , font_size=24 ) snake_case_ : Any = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , aligned_edge=lowercase__ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) snake_case_ : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) snake_case_ : Union[str, Any] = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowercase__ , lowercase__ ) snake_case_ : List[Any] = MarkupText( f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(lowercase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) snake_case_ : List[Any] = MarkupText( f'Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowercase__ ) , Write(lowercase__ ) ) self.play(Write(lowercase__ , run_time=1 ) , Create(lowercase__ , run_time=1 ) ) snake_case_ : Optional[int] = [] snake_case_ : List[str] = [] for i, rect in enumerate(lowercase__ ): snake_case_ : Optional[Any] = fill.copy().set_fill(lowercase__ , opacity=0.7 ) target.move_to(lowercase__ ) first_animations.append(GrowFromCenter(lowercase__ , run_time=1 ) ) snake_case_ : List[Any] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(lowercase__ , run_time=1.5 ) ) self.play(*lowercase__ ) self.play(*lowercase__ ) self.wait()
48
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __lowercase ( unittest.TestCase): """simple docstring""" def __init__(self , lowercase__ , lowercase__=7 , lowercase__=3 , lowercase__=18 , lowercase__=30 , lowercase__=4_00 , lowercase__=True , lowercase__=None , lowercase__=True , lowercase__=None , ): snake_case_ : Dict = size if size is not None else {"""shortest_edge""": 20} snake_case_ : List[str] = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} snake_case_ : str = parent snake_case_ : Optional[Any] = batch_size snake_case_ : Union[str, Any] = num_channels snake_case_ : Optional[int] = image_size snake_case_ : Dict = min_resolution snake_case_ : Union[str, Any] = max_resolution snake_case_ : Any = do_resize snake_case_ : Dict = size snake_case_ : Union[str, Any] = do_center_crop snake_case_ : Dict = crop_size def __UpperCamelCase (self ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __lowercase ( _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : Optional[int] = MobileNetVaImageProcessor if is_vision_available() else None def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = MobileNetVaImageProcessingTester(self ) @property def __UpperCamelCase (self ): return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase (self ): snake_case_ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase__ , """size""" ) ) self.assertTrue(hasattr(lowercase__ , """do_center_crop""" ) ) self.assertTrue(hasattr(lowercase__ , """crop_size""" ) ) def __UpperCamelCase (self ): snake_case_ : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) snake_case_ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def __UpperCamelCase (self ): pass def __UpperCamelCase (self ): # Initialize image_processing snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , Image.Image ) # Test not batched input snake_case_ : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched snake_case_ : int = image_processing(lowercase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def __UpperCamelCase (self ): # Initialize image_processing snake_case_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , numpify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , np.ndarray ) # Test not batched input snake_case_ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched snake_case_ : List[Any] = image_processing(lowercase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def __UpperCamelCase (self ): # Initialize image_processing snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , torchify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , torch.Tensor ) # Test not batched input snake_case_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched snake_case_ : int = image_processing(lowercase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
48
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" snake_case_ : Union[str, Any] = 0 if start < end: snake_case_ : Union[str, Any] = randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = a[end] snake_case_ : Dict = a[pivot] snake_case_ : Any = temp snake_case_ , snake_case_ : Dict = _in_place_partition(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , p - 1 ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE__ , p + 1 , SCREAMING_SNAKE_CASE__ ) return count def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" snake_case_ : Tuple = 0 snake_case_ : List[Any] = randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : Dict = a[end] snake_case_ : List[Any] = a[pivot] snake_case_ : Optional[Any] = temp snake_case_ : List[str] = start - 1 for index in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value snake_case_ : Any = new_pivot_index + 1 snake_case_ : Tuple = a[new_pivot_index] snake_case_ : Optional[int] = a[index] snake_case_ : Tuple = temp snake_case_ : Union[str, Any] = a[new_pivot_index + 1] snake_case_ : Union[str, Any] = a[end] snake_case_ : Union[str, Any] = temp return new_pivot_index + 1, count a_ = TemporaryFile() a_ = 100 # 1000 elements are to be sorted a_ , a_ = 0, 1 # mean and standard deviation a_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array a_ = np.load(outfile) a_ = len(M) - 1 a_ = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
48
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ = { '''configuration_conditional_detr''': [ '''CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConditionalDetrConfig''', '''ConditionalDetrOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['''ConditionalDetrFeatureExtractor'''] a_ = ['''ConditionalDetrImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConditionalDetrForObjectDetection''', '''ConditionalDetrForSegmentation''', '''ConditionalDetrModel''', '''ConditionalDetrPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
48
"""simple docstring""" import random def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : bool = False ): """simple docstring""" snake_case_ : dict = {i: [] for i in range(SCREAMING_SNAKE_CASE__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(SCREAMING_SNAKE_CASE__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(i + 1 , SCREAMING_SNAKE_CASE__ ): if random.random() < probability: graph[i].append(SCREAMING_SNAKE_CASE__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(SCREAMING_SNAKE_CASE__ ) return graph def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" return { i: [j for j in range(SCREAMING_SNAKE_CASE__ ) if i != j] for i in range(SCREAMING_SNAKE_CASE__ ) } if __name__ == "__main__": import doctest doctest.testmod()
48
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class __lowercase ( metaclass=_UpperCAmelCase): """simple docstring""" _A : Tuple = ["""onnx"""] def __init__(self , *lowercase__ , **lowercase__ ): requires_backends(self , ["""onnx"""] ) @classmethod def __UpperCamelCase (cls , *lowercase__ , **lowercase__ ): requires_backends(cls , ["""onnx"""] ) @classmethod def __UpperCamelCase (cls , *lowercase__ , **lowercase__ ): requires_backends(cls , ["""onnx"""] )
48
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json''' ), } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """dpr""" def __init__(self , lowercase__=3_05_22 , lowercase__=7_68 , lowercase__=12 , lowercase__=12 , lowercase__=30_72 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_12 , lowercase__=2 , lowercase__=0.02 , lowercase__=1e-12 , lowercase__=0 , lowercase__="absolute" , lowercase__ = 0 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , **lowercase__ ) snake_case_ : List[Any] = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : Tuple = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : int = hidden_act snake_case_ : Dict = intermediate_size snake_case_ : int = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : str = max_position_embeddings snake_case_ : List[str] = type_vocab_size snake_case_ : List[str] = initializer_range snake_case_ : Optional[int] = layer_norm_eps snake_case_ : Union[str, Any] = projection_dim snake_case_ : str = position_embedding_type
48
1
"""simple docstring""" import random def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : Union[str, Any] = num - 1 snake_case_ : List[str] = 0 while s % 2 == 0: snake_case_ : str = s // 2 t += 1 for _ in range(5 ): snake_case_ : List[Any] = random.randrange(2 , num - 1 ) snake_case_ : Dict = pow(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if v != 1: snake_case_ : int = 0 while v != (num - 1): if i == t - 1: return False else: snake_case_ : str = i + 1 snake_case_ : int = (v**2) % num return True def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" if num < 2: return False snake_case_ : Dict = [ 2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1, 4_3, 4_7, 5_3, 5_9, 6_1, 6_7, 7_1, 7_3, 7_9, 8_3, 8_9, 9_7, 1_0_1, 1_0_3, 1_0_7, 1_0_9, 1_1_3, 1_2_7, 1_3_1, 1_3_7, 1_3_9, 1_4_9, 1_5_1, 1_5_7, 1_6_3, 1_6_7, 1_7_3, 1_7_9, 1_8_1, 1_9_1, 1_9_3, 1_9_7, 1_9_9, 2_1_1, 2_2_3, 2_2_7, 2_2_9, 2_3_3, 2_3_9, 2_4_1, 2_5_1, 2_5_7, 2_6_3, 2_6_9, 2_7_1, 2_7_7, 2_8_1, 2_8_3, 2_9_3, 3_0_7, 3_1_1, 3_1_3, 3_1_7, 3_3_1, 3_3_7, 3_4_7, 3_4_9, 3_5_3, 3_5_9, 3_6_7, 3_7_3, 3_7_9, 3_8_3, 3_8_9, 3_9_7, 4_0_1, 4_0_9, 4_1_9, 4_2_1, 4_3_1, 4_3_3, 4_3_9, 4_4_3, 4_4_9, 4_5_7, 4_6_1, 4_6_3, 4_6_7, 4_7_9, 4_8_7, 4_9_1, 4_9_9, 5_0_3, 5_0_9, 5_2_1, 5_2_3, 5_4_1, 5_4_7, 5_5_7, 5_6_3, 5_6_9, 5_7_1, 5_7_7, 5_8_7, 5_9_3, 5_9_9, 6_0_1, 6_0_7, 6_1_3, 6_1_7, 6_1_9, 6_3_1, 6_4_1, 6_4_3, 6_4_7, 6_5_3, 6_5_9, 6_6_1, 6_7_3, 6_7_7, 6_8_3, 6_9_1, 7_0_1, 7_0_9, 7_1_9, 7_2_7, 7_3_3, 7_3_9, 7_4_3, 7_5_1, 7_5_7, 7_6_1, 7_6_9, 7_7_3, 7_8_7, 7_9_7, 8_0_9, 8_1_1, 8_2_1, 8_2_3, 8_2_7, 8_2_9, 8_3_9, 8_5_3, 8_5_7, 8_5_9, 8_6_3, 8_7_7, 8_8_1, 8_8_3, 8_8_7, 9_0_7, 9_1_1, 9_1_9, 9_2_9, 9_3_7, 9_4_1, 9_4_7, 9_5_3, 9_6_7, 9_7_1, 9_7_7, 9_8_3, 9_9_1, 9_9_7, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int = 1_0_2_4 ): """simple docstring""" while True: snake_case_ : Tuple = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(SCREAMING_SNAKE_CASE__ ): return num if __name__ == "__main__": a_ = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
48
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm a_ = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex a_ = 10 a_ = 256 def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" if len(SCREAMING_SNAKE_CASE__ ) < MIN_NUM_TOKENS: return None snake_case_ : Union[str, Any] = MinHash(num_perm=SCREAMING_SNAKE_CASE__ ) for token in set(SCREAMING_SNAKE_CASE__ ): min_hash.update(token.encode() ) return min_hash def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" return {t for t in NON_ALPHA.split(SCREAMING_SNAKE_CASE__ ) if len(t.strip() ) > 0} class __lowercase : """simple docstring""" def __init__(self , *, lowercase__ = 0.85 , ): snake_case_ : Tuple = duplication_jaccard_threshold snake_case_ : Optional[Any] = NUM_PERM snake_case_ : Tuple = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) snake_case_ : List[Any] = defaultdict(lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : int = self._index.query(lowercase__ ) if code_key in self._index.keys: print(f'Duplicate key {code_key}' ) return self._index.insert(lowercase__ , lowercase__ ) if len(lowercase__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowercase__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(lowercase__ ) def __UpperCamelCase (self ): snake_case_ : str = [] for base, duplicates in self._duplicate_clusters.items(): snake_case_ : Optional[Any] = [base] + list(lowercase__ ) # reformat the cluster to be a list of dict snake_case_ : Any = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(lowercase__ ) return duplicate_clusters def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = self.get_duplicate_clusters() with open(lowercase__ , """w""" ) as f: json.dump(lowercase__ , lowercase__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ , snake_case_ : str = element snake_case_ : Tuple = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] ): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(SCREAMING_SNAKE_CASE__ , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ): if data is not None: yield data def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] , SCREAMING_SNAKE_CASE__ : float ): """simple docstring""" snake_case_ : int = DuplicationIndex(duplication_jaccard_threshold=SCREAMING_SNAKE_CASE__ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(SCREAMING_SNAKE_CASE__ ) ) , max_queue_size=1_0_0 ) ): di.add(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : int = get_tokens(SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = get_tokens(SCREAMING_SNAKE_CASE__ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) a_ = None def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Optional[Any] = [] for elementa in cluster: snake_case_ : Union[str, Any] = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: snake_case_ : Any = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) >= jaccard_threshold: elementa["copies"] += 1 break else: snake_case_ : Union[str, Any] = 1 extremes.append(SCREAMING_SNAKE_CASE__ ) return extremes def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" global _shared_dataset snake_case_ : str = dataset snake_case_ : int = [] snake_case_ : Optional[int] = partial(_find_cluster_extremes_shared , jaccard_threshold=SCREAMING_SNAKE_CASE__ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) , total=len(SCREAMING_SNAKE_CASE__ ) , ): extremes_list.append(SCREAMING_SNAKE_CASE__ ) return extremes_list def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] , SCREAMING_SNAKE_CASE__ : float = 0.85 ): """simple docstring""" snake_case_ : List[str] = make_duplicate_clusters(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : str = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} snake_case_ : str = {} snake_case_ : Dict = find_extremes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for extremes in extremes_clusters: for element in extremes: snake_case_ : int = element snake_case_ : Optional[int] = duplicate_indices - set(extreme_dict.keys() ) snake_case_ : List[Any] = dataset.filter(lambda SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : idx not in remove_indices , with_indices=SCREAMING_SNAKE_CASE__ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: snake_case_ : List[Any] = element["""base_index"""] in extreme_dict if element["is_extreme"]: snake_case_ : str = extreme_dict[element["""base_index"""]]["""copies"""] print(f'Original dataset size: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Number of duplicate clusters: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Files in duplicate cluster: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Unique files in duplicate cluster: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Filtered dataset size: {len(SCREAMING_SNAKE_CASE__ )}' ) return ds_filter, duplicate_clusters
48
1
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Union[str, Any] = ["""image_processor""", """tokenizer"""] _A : str = """ChineseCLIPImageProcessor""" _A : Tuple = ("""BertTokenizer""", """BertTokenizerFast""") def __init__(self , lowercase__=None , lowercase__=None , **lowercase__ ): snake_case_ : Any = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowercase__ , ) snake_case_ : Optional[Any] = kwargs.pop("""feature_extractor""" ) snake_case_ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowercase__ , lowercase__ ) snake_case_ : Union[str, Any] = self.image_processor def __call__(self , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ ): if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: snake_case_ : Any = self.tokenizer(lowercase__ , return_tensors=lowercase__ , **lowercase__ ) if images is not None: snake_case_ : Tuple = self.image_processor(lowercase__ , return_tensors=lowercase__ , **lowercase__ ) if text is not None and images is not None: snake_case_ : List[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase__ ) , tensor_type=lowercase__ ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): return self.tokenizer.batch_decode(*lowercase__ , **lowercase__ ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): return self.tokenizer.decode(*lowercase__ , **lowercase__ ) @property def __UpperCamelCase (self ): snake_case_ : Optional[int] = self.tokenizer.model_input_names snake_case_ : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __UpperCamelCase (self ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowercase__ , ) return self.image_processor_class
48
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) a_ = logging.getLogger(__name__) if __name__ == "__main__": a_ = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=30522, type=int) a_ = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, '''rb''') as fp: a_ = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') a_ = Counter() for tk_ids in data: counter.update(tk_ids) a_ = [0] * args.vocab_size for k, v in counter.items(): a_ = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
48
1
"""simple docstring""" import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers a_ = '''python tqdm regex requests packaging filelock numpy tokenizers'''.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('''dataclasses''') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('''importlib_metadata''') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any=None ): """simple docstring""" require_version(deps[pkg] , SCREAMING_SNAKE_CASE__ )
48
"""simple docstring""" import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" snake_case_ : Optional[Any] = tmp_path / """cache""" snake_case_ : Optional[int] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : Tuple = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" snake_case_ : List[Any] = tmp_path / """cache""" snake_case_ : int = {"""text""": """string"""} snake_case_ : Any = features.copy() if features else default_expected_features snake_case_ : List[Any] = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : Dict = TextDatasetReader(SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : Union[str, Any] = tmp_path / """cache""" snake_case_ : Optional[Any] = {"""text""": """string"""} snake_case_ : Optional[int] = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , split=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" if issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : List[str] = text_path elif issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : str = [text_path] snake_case_ : List[str] = tmp_path / """cache""" snake_case_ : List[str] = {"""text""": """string"""} snake_case_ : Dict = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str]=("train",) ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for split in splits: snake_case_ : Dict = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" snake_case_ : int = tmp_path / """cache""" snake_case_ : List[str] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : Optional[Any] = TextDatasetReader({"""train""": text_path} , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Tuple = tmp_path / """cache""" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" snake_case_ : List[str] = {"""text""": """string"""} snake_case_ : int = features.copy() if features else default_expected_features snake_case_ : Tuple = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : str = TextDatasetReader({"""train""": text_path} , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" if split: snake_case_ : Union[str, Any] = {split: text_path} else: snake_case_ : Union[str, Any] = """train""" snake_case_ : int = {"""train""": text_path, """test""": text_path} snake_case_ : List[Any] = tmp_path / """cache""" snake_case_ : Tuple = {"""text""": """string"""} snake_case_ : int = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
48
1
"""simple docstring""" import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_0_2_4 ): """simple docstring""" snake_case_ , snake_case_ : Any = [], [] snake_case_ : Union[str, Any] = list(zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) snake_case_ , snake_case_ : Union[str, Any] = sorted_examples[0] def is_too_big(SCREAMING_SNAKE_CASE__ : Union[str, Any] ): return tok(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): snake_case_ : Any = new_src + """ """ + src snake_case_ : str = new_tgt + """ """ + tgt if is_too_big(SCREAMING_SNAKE_CASE__ ) or is_too_big(SCREAMING_SNAKE_CASE__ ): # cant fit, finalize example finished_src.append(SCREAMING_SNAKE_CASE__ ) finished_tgt.append(SCREAMING_SNAKE_CASE__ ) snake_case_ , snake_case_ : int = src, tgt else: # can fit, keep adding snake_case_ , snake_case_ : Any = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(SCREAMING_SNAKE_CASE__ ) finished_tgt.append(SCREAMING_SNAKE_CASE__ ) return finished_src, finished_tgt def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple ): """simple docstring""" snake_case_ : Any = Path(SCREAMING_SNAKE_CASE__ ) save_path.mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) for split in ["train"]: snake_case_ , snake_case_ : List[str] = data_dir / f'{split}.source', data_dir / f'{split}.target' snake_case_ : Tuple = [x.rstrip() for x in Path(SCREAMING_SNAKE_CASE__ ).open().readlines()] snake_case_ : int = [x.rstrip() for x in Path(SCREAMING_SNAKE_CASE__ ).open().readlines()] snake_case_ , snake_case_ : Any = pack_examples(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(f'packed {split} split from {len(SCREAMING_SNAKE_CASE__ )} examples -> {len(SCREAMING_SNAKE_CASE__ )}.' ) Path(save_path / f'{split}.source' ).open("""w""" ).write("""\n""".join(SCREAMING_SNAKE_CASE__ ) ) Path(save_path / f'{split}.target' ).open("""w""" ).write("""\n""".join(SCREAMING_SNAKE_CASE__ ) ) for split in ["val", "test"]: snake_case_ , snake_case_ : Union[str, Any] = data_dir / f'{split}.source', data_dir / f'{split}.target' shutil.copyfile(SCREAMING_SNAKE_CASE__ , save_path / f'{split}.source' ) shutil.copyfile(SCREAMING_SNAKE_CASE__ , save_path / f'{split}.target' ) def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : str = argparse.ArgumentParser() parser.add_argument("""--tok_name""" , type=SCREAMING_SNAKE_CASE__ , help="""like facebook/bart-large-cnn,t5-base, etc.""" ) parser.add_argument("""--max_seq_len""" , type=SCREAMING_SNAKE_CASE__ , default=1_2_8 ) parser.add_argument("""--data_dir""" , type=SCREAMING_SNAKE_CASE__ ) parser.add_argument("""--save_path""" , type=SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[int] = parser.parse_args() snake_case_ : Optional[Any] = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(SCREAMING_SNAKE_CASE__ , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
48
"""simple docstring""" from copy import deepcopy class __lowercase : """simple docstring""" def __init__(self , lowercase__ = None , lowercase__ = None ): if arr is None and size is not None: snake_case_ : str = size snake_case_ : Optional[Any] = [0] * size elif arr is not None: self.init(lowercase__ ) else: raise ValueError("""Either arr or size must be specified""" ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Optional[Any] = len(lowercase__ ) snake_case_ : int = deepcopy(lowercase__ ) for i in range(1 , self.size ): snake_case_ : Optional[Any] = self.next_(lowercase__ ) if j < self.size: self.tree[j] += self.tree[i] def __UpperCamelCase (self ): snake_case_ : Dict = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): snake_case_ : Optional[int] = self.next_(lowercase__ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def __UpperCamelCase (lowercase__ ): return index + (index & (-index)) @staticmethod def __UpperCamelCase (lowercase__ ): return index - (index & (-index)) def __UpperCamelCase (self , lowercase__ , lowercase__ ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value snake_case_ : Tuple = self.next_(lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): self.add(lowercase__ , value - self.get(lowercase__ ) ) def __UpperCamelCase (self , lowercase__ ): if right == 0: return 0 snake_case_ : List[str] = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] snake_case_ : Optional[int] = self.prev(lowercase__ ) return result def __UpperCamelCase (self , lowercase__ , lowercase__ ): return self.prefix(lowercase__ ) - self.prefix(lowercase__ ) def __UpperCamelCase (self , lowercase__ ): return self.query(lowercase__ , index + 1 ) def __UpperCamelCase (self , lowercase__ ): value -= self.tree[0] if value < 0: return -1 snake_case_ : Tuple = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 snake_case_ : Tuple = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
48
1
"""simple docstring""" import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask a_ = logging.getLogger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self , lowercase__=-1 ): # in NER datasets, the last column is usually reserved for NER label snake_case_ : Union[str, Any] = label_idx def __UpperCamelCase (self , lowercase__ , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): snake_case_ : List[str] = mode.value snake_case_ : List[Any] = os.path.join(lowercase__ , f'{mode}.txt' ) snake_case_ : Tuple = 1 snake_case_ : Any = [] with open(lowercase__ , encoding="""utf-8""" ) as f: snake_case_ : str = [] snake_case_ : List[Any] = [] for line in f: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) guid_index += 1 snake_case_ : Optional[Any] = [] snake_case_ : int = [] else: snake_case_ : Optional[Any] = line.split(""" """ ) words.append(splits[0] ) if len(lowercase__ ) > 1: labels.append(splits[self.label_idx].replace("""\n""" , """""" ) ) else: # Examples could have no label for mode = "test" labels.append("""O""" ) if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) return examples def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : str = 0 for line in test_input_reader: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": writer.write(lowercase__ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: snake_case_ : Optional[int] = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n""" writer.write(lowercase__ ) else: logger.warning("""Maximum sequence length exceeded: No prediction for '%s'.""" , line.split()[0] ) def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: snake_case_ : Dict = f.read().splitlines() if "O" not in labels: snake_case_ : List[Any] = ["""O"""] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self ): # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: snake_case_ : Any = f.read().splitlines() if "O" not in labels: snake_case_ : Tuple = ["""O"""] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __lowercase ( _UpperCAmelCase): """simple docstring""" def __UpperCamelCase (self , lowercase__ , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): snake_case_ : List[Any] = mode.value snake_case_ : Optional[int] = os.path.join(lowercase__ , f'{mode}.txt' ) snake_case_ : Tuple = 1 snake_case_ : str = [] with open(lowercase__ , encoding="""utf-8""" ) as f: for sentence in parse_incr(lowercase__ ): snake_case_ : Tuple = [] snake_case_ : Any = [] for token in sentence: words.append(token["""form"""] ) labels.append(token["""upos"""] ) assert len(lowercase__ ) == len(lowercase__ ) if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) guid_index += 1 return examples def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : Dict = 0 for sentence in parse_incr(lowercase__ ): snake_case_ : int = preds_list[example_id] snake_case_ : Dict = """""" for token in sentence: out += f'{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) ' out += "\n" writer.write(lowercase__ ) example_id += 1 def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
48
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : list ): """simple docstring""" snake_case_ : Optional[int] = len(SCREAMING_SNAKE_CASE__ ) for i in range(1 , SCREAMING_SNAKE_CASE__ ): snake_case_ : Tuple = collection[i] snake_case_ : Tuple = 0 snake_case_ : str = i - 1 while low <= high: snake_case_ : Optional[int] = (low + high) // 2 if val < collection[mid]: snake_case_ : List[str] = mid - 1 else: snake_case_ : str = mid + 1 for j in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , -1 ): snake_case_ : List[str] = collection[j - 1] snake_case_ : Any = val return collection if __name__ == "__main__": a_ = input('''Enter numbers separated by a comma:\n''').strip() a_ = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
48
1
"""simple docstring""" import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py a_ = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. a_ = direct_transformers_import(PATH_TO_TRANSFORMERS) a_ = transformers.models.auto.configuration_auto.CONFIG_MAPPING a_ = { # used to compute the property `self.chunk_length` '''EncodecConfig''': ['''overlap'''], # used as `self.bert_model = BertModel(config, ...)` '''DPRConfig''': True, # not used in modeling files, but it's an important information '''FSMTConfig''': ['''langs'''], # used internally in the configuration class file '''GPTNeoConfig''': ['''attention_types'''], # used internally in the configuration class file '''EsmConfig''': ['''is_folding_model'''], # used during training (despite we don't have training script for these models yet) '''Mask2FormerConfig''': ['''ignore_value'''], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) '''OneFormerConfig''': ['''ignore_value''', '''norm'''], # used during preprocessing and collation, see `collating_graphormer.py` '''GraphormerConfig''': ['''spatial_pos_max'''], # used internally in the configuration class file '''T5Config''': ['''feed_forward_proj'''], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally '''MT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''], '''UMT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''], # used internally in the configuration class file '''LongT5Config''': ['''feed_forward_proj'''], # used internally in the configuration class file '''SwitchTransformersConfig''': ['''feed_forward_proj'''], # having default values other than `1e-5` - we can't fix them without breaking '''BioGptConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''GLPNConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''SegformerConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''CvtConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''PerceiverConfig''': ['''layer_norm_eps'''], # used internally to calculate the feature size '''InformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate the feature size '''TimeSeriesTransformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate the feature size '''AutoformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate `mlp_dim` '''SamVisionConfig''': ['''mlp_ratio'''], # For (head) training, but so far not implemented '''ClapAudioConfig''': ['''num_classes'''], # Not used, but providing useful information to users '''SpeechT5HifiGanConfig''': ['''sampling_rate'''], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { '''CLIPSegConfig''': True, '''DeformableDetrConfig''': True, '''DetaConfig''': True, '''DinatConfig''': True, '''DonutSwinConfig''': True, '''EfficientFormerConfig''': True, '''FSMTConfig''': True, '''JukeboxConfig''': True, '''LayoutLMv2Config''': True, '''MaskFormerSwinConfig''': True, '''MT5Config''': True, '''NatConfig''': True, '''OneFormerConfig''': True, '''PerceiverConfig''': True, '''RagConfig''': True, '''SpeechT5Config''': True, '''SwinConfig''': True, '''Swin2SRConfig''': True, '''Swinv2Config''': True, '''SwitchTransformersConfig''': True, '''TableTransformerConfig''': True, '''TapasConfig''': True, '''TransfoXLConfig''': True, '''UniSpeechConfig''': True, '''UniSpeechSatConfig''': True, '''WavLMConfig''': True, '''WhisperConfig''': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) '''JukeboxPriorConfig''': True, # TODO: @Younes (for `is_decoder`) '''Pix2StructTextConfig''': True, } ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" snake_case_ : Optional[Any] = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f'config.{attribute}' in modeling_source or f'getattr(config, "{attribute}"' in modeling_source or f'getattr(self.config, "{attribute}"' in modeling_source ): snake_case_ : Dict = True # Deal with multi-line cases elif ( re.search( Rf'getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"' , SCREAMING_SNAKE_CASE__ , ) is not None ): snake_case_ : Tuple = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: snake_case_ : Tuple = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files snake_case_ : int = [ """bos_index""", """eos_index""", """pad_index""", """unk_index""", """mask_index""", """image_size""", """use_cache""", """out_features""", """out_indices""", ] snake_case_ : str = ["""encoder_no_repeat_ngram_size"""] # Special cases to be allowed snake_case_ : str = True if not attribute_used: snake_case_ : Dict = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: snake_case_ : List[str] = True elif attribute in ["tie_word_embeddings"] and default_value is False: snake_case_ : Optional[Any] = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: snake_case_ : Optional[int] = True elif attribute.endswith("""_token_id""" ): snake_case_ : Tuple = True # configuration class specific cases if not case_allowed: snake_case_ : List[str] = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) snake_case_ : Optional[Any] = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] ): """simple docstring""" snake_case_ : List[str] = dict(inspect.signature(config_class.__init__ ).parameters ) snake_case_ : List[Any] = [x for x in list(signature.keys() ) if x not in ["""self""", """kwargs"""]] snake_case_ : List[str] = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass snake_case_ : Optional[Any] = {} if len(config_class.attribute_map ) > 0: snake_case_ : Optional[int] = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files snake_case_ : str = inspect.getsourcefile(SCREAMING_SNAKE_CASE__ ) snake_case_ : Union[str, Any] = os.path.dirname(SCREAMING_SNAKE_CASE__ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. snake_case_ : List[str] = [os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for fn in os.listdir(SCREAMING_SNAKE_CASE__ ) if fn.startswith("""modeling_""" )] # Get the source code strings snake_case_ : Union[str, Any] = [] for path in modeling_paths: if os.path.isfile(SCREAMING_SNAKE_CASE__ ): with open(SCREAMING_SNAKE_CASE__ ) as fp: modeling_sources.append(fp.read() ) snake_case_ : Any = [] for config_param, default_value in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # `attributes` here is all the variant names for `config_param` snake_case_ : int = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): unused_attributes.append(attributes[0] ) return sorted(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Optional[int] = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) snake_case_ : str = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda SCREAMING_SNAKE_CASE__ : inspect.isclass(SCREAMING_SNAKE_CASE__ ) and issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and inspect.getmodule(SCREAMING_SNAKE_CASE__ ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: snake_case_ : int = check_config_attributes_being_used(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: snake_case_ : Optional[Any] = unused_attributes if len(SCREAMING_SNAKE_CASE__ ) > 0: snake_case_ : Optional[int] = """The following configuration classes contain unused attributes in the corresponding modeling files:\n""" for name, attributes in configs_with_unused_attributes.items(): error += f'{name}: {attributes}\n' raise ValueError(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": check_config_attributes()
48
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Union[str, Any] = ["""image_processor""", """tokenizer"""] _A : str = """ChineseCLIPImageProcessor""" _A : Tuple = ("""BertTokenizer""", """BertTokenizerFast""") def __init__(self , lowercase__=None , lowercase__=None , **lowercase__ ): snake_case_ : Any = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowercase__ , ) snake_case_ : Optional[Any] = kwargs.pop("""feature_extractor""" ) snake_case_ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowercase__ , lowercase__ ) snake_case_ : Union[str, Any] = self.image_processor def __call__(self , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ ): if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: snake_case_ : Any = self.tokenizer(lowercase__ , return_tensors=lowercase__ , **lowercase__ ) if images is not None: snake_case_ : Tuple = self.image_processor(lowercase__ , return_tensors=lowercase__ , **lowercase__ ) if text is not None and images is not None: snake_case_ : List[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase__ ) , tensor_type=lowercase__ ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): return self.tokenizer.batch_decode(*lowercase__ , **lowercase__ ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): return self.tokenizer.decode(*lowercase__ , **lowercase__ ) @property def __UpperCamelCase (self ): snake_case_ : Optional[int] = self.tokenizer.model_input_names snake_case_ : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __UpperCamelCase (self ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowercase__ , ) return self.image_processor_class
48
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all BART models at https://huggingface.co/models?filter=bart a_ = { '''vocab_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''', }, '''merges_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json''', }, } a_ = { '''facebook/bart-base''': 1024, '''facebook/bart-large''': 1024, '''facebook/bart-large-mnli''': 1024, '''facebook/bart-large-cnn''': 1024, '''facebook/bart-large-xsum''': 1024, '''yjernite/bart_eli5''': 1024, } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[Any] = VOCAB_FILES_NAMES _A : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _A : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : List[Any] = ["""input_ids""", """attention_mask"""] _A : List[str] = BartTokenizer def __init__(self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="replace" , lowercase__="<s>" , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<mask>" , lowercase__=False , lowercase__=True , **lowercase__ , ): super().__init__( lowercase__ , lowercase__ , tokenizer_file=lowercase__ , errors=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , unk_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ , **lowercase__ , ) snake_case_ : int = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , lowercase__ ) != add_prefix_space: snake_case_ : List[str] = getattr(lowercase__ , pre_tok_state.pop("""type""" ) ) snake_case_ : int = add_prefix_space snake_case_ : List[Any] = pre_tok_class(**lowercase__ ) snake_case_ : List[str] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` snake_case_ : int = """post_processor""" snake_case_ : Union[str, Any] = getattr(self.backend_tokenizer , lowercase__ , lowercase__ ) if tokenizer_component_instance: snake_case_ : List[Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case_ : int = tuple(state["""sep"""] ) if "cls" in state: snake_case_ : List[Any] = tuple(state["""cls"""] ) snake_case_ : str = False if state.get("""add_prefix_space""" , lowercase__ ) != add_prefix_space: snake_case_ : Optional[int] = add_prefix_space snake_case_ : int = True if state.get("""trim_offsets""" , lowercase__ ) != trim_offsets: snake_case_ : int = trim_offsets snake_case_ : int = True if changes_to_apply: snake_case_ : int = getattr(lowercase__ , state.pop("""type""" ) ) snake_case_ : List[str] = component_class(**lowercase__ ) setattr(self.backend_tokenizer , lowercase__ , lowercase__ ) @property def __UpperCamelCase (self ): if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def __UpperCamelCase (self , lowercase__ ): snake_case_ : Optional[Any] = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else value snake_case_ : Tuple = value def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): snake_case_ : Union[str, Any] = kwargs.get("""is_split_into_words""" , lowercase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*lowercase__ , **lowercase__ ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): snake_case_ : Dict = kwargs.get("""is_split_into_words""" , lowercase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): snake_case_ : Optional[Any] = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__=None ): snake_case_ : int = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): snake_case_ : Optional[Any] = [self.sep_token_id] snake_case_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
48
"""simple docstring""" import argparse import copy def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" snake_case_ : List[Any] = {} with open(SCREAMING_SNAKE_CASE__ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: snake_case_ : int = [] _list.append([line.split()[1], line.split()[2]] ) snake_case_ : Optional[Any] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: snake_case_ : str = [] _list.append([line.split()[0], line.split()[2]] ) snake_case_ : Optional[Any] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" with open(SCREAMING_SNAKE_CASE__ ) as f: snake_case_ : Optional[Any] = f.read(1 ) snake_case_ : Union[str, Any] = start_node snake_case_ : Dict = [] snake_case_ : Union[str, Any] = start_node snake_case_ : Tuple = 0 while visiting not in first_solution: snake_case_ : int = 1_0_0_0_0 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(SCREAMING_SNAKE_CASE__ ) and k[0] not in first_solution: snake_case_ : Union[str, Any] = k[1] snake_case_ : Any = k[0] first_solution.append(SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = distance_of_first_solution + int(SCREAMING_SNAKE_CASE__ ) snake_case_ : List[str] = best_node first_solution.append(SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[Any] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 snake_case_ : int = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0_0_0_0 ) return first_solution, distance_of_first_solution def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" snake_case_ : Union[str, Any] = [] for n in solution[1:-1]: snake_case_ : str = solution.index(SCREAMING_SNAKE_CASE__ ) for kn in solution[1:-1]: snake_case_ : Tuple = solution.index(SCREAMING_SNAKE_CASE__ ) if n == kn: continue snake_case_ : Optional[Any] = copy.deepcopy(SCREAMING_SNAKE_CASE__ ) snake_case_ : int = kn snake_case_ : Dict = n snake_case_ : Optional[int] = 0 for k in _tmp[:-1]: snake_case_ : Dict = _tmp[_tmp.index(SCREAMING_SNAKE_CASE__ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: snake_case_ : Dict = distance + int(i[1] ) _tmp.append(SCREAMING_SNAKE_CASE__ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) snake_case_ : Optional[Any] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda SCREAMING_SNAKE_CASE__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] ): """simple docstring""" snake_case_ : Dict = 1 snake_case_ : List[Any] = first_solution snake_case_ : List[Any] = [] snake_case_ : Optional[Any] = distance_of_first_solution snake_case_ : Dict = solution while count <= iters: snake_case_ : List[str] = find_neighborhood(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = 0 snake_case_ : List[Any] = neighborhood[index_of_best_solution] snake_case_ : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ ) - 1 snake_case_ : List[str] = False while not found: snake_case_ : Tuple = 0 while i < len(SCREAMING_SNAKE_CASE__ ): if best_solution[i] != solution[i]: snake_case_ : Optional[Any] = best_solution[i] snake_case_ : int = solution[i] break snake_case_ : List[str] = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) snake_case_ : Tuple = True snake_case_ : Dict = best_solution[:-1] snake_case_ : Tuple = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: snake_case_ : Tuple = cost snake_case_ : Union[str, Any] = solution else: snake_case_ : str = index_of_best_solution + 1 snake_case_ : Tuple = neighborhood[index_of_best_solution] if len(SCREAMING_SNAKE_CASE__ ) >= size: tabu_list.pop(0 ) snake_case_ : List[str] = count + 1 return best_solution_ever, best_cost def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any]=None ): """simple docstring""" snake_case_ : Tuple = generate_neighbours(args.File ) snake_case_ , snake_case_ : Optional[Any] = generate_first_solution( args.File , SCREAMING_SNAKE_CASE__ ) snake_case_ , snake_case_ : Dict = tabu_search( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , args.Iterations , args.Size , ) print(f'Best solution: {best_sol}, with total distance: {best_cost}.' ) if __name__ == "__main__": a_ = argparse.ArgumentParser(description='''Tabu Search''') parser.add_argument( '''-f''', '''--File''', type=str, help='''Path to the file containing the data''', required=True, ) parser.add_argument( '''-i''', '''--Iterations''', type=int, help='''How many iterations the algorithm should perform''', required=True, ) parser.add_argument( '''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True ) # Pass the arguments to main method main(parser.parse_args())
48
1
"""simple docstring""" import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='''%(message)s''') def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : np.ndarray ): """simple docstring""" return input_array.reshape((input_array.size, 1) ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : Optional[int] = np.nan for i in range(SCREAMING_SNAKE_CASE__ ): snake_case_ : Optional[int] = features[:, labels == i] snake_case_ : Tuple = data.mean(1 ) # Centralize the data of class i snake_case_ : List[Any] = data - column_reshape(SCREAMING_SNAKE_CASE__ ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(SCREAMING_SNAKE_CASE__ , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) snake_case_ : Optional[int] = np.dot(SCREAMING_SNAKE_CASE__ , centered_data.T ) return covariance_sum / features.shape[1] def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : Union[str, Any] = features.mean(1 ) snake_case_ : Union[str, Any] = np.nan for i in range(SCREAMING_SNAKE_CASE__ ): snake_case_ : Dict = features[:, labels == i] snake_case_ : Union[str, Any] = data.shape[1] snake_case_ : List[Any] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(SCREAMING_SNAKE_CASE__ ) - column_reshape(SCREAMING_SNAKE_CASE__ ) , (column_reshape(SCREAMING_SNAKE_CASE__ ) - column_reshape(SCREAMING_SNAKE_CASE__ )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) snake_case_ : Tuple = device_data * np.dot( column_reshape(SCREAMING_SNAKE_CASE__ ) - column_reshape(SCREAMING_SNAKE_CASE__ ) , (column_reshape(SCREAMING_SNAKE_CASE__ ) - column_reshape(SCREAMING_SNAKE_CASE__ )).T , ) return covariance_sum / features.shape[1] def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" if features.any(): snake_case_ : Tuple = features.mean(1 ) # Center the dataset snake_case_ : Any = features - np.reshape(SCREAMING_SNAKE_CASE__ , (data_mean.size, 1) ) snake_case_ : Optional[int] = np.dot(SCREAMING_SNAKE_CASE__ , centered_data.T ) / features.shape[1] snake_case_ , snake_case_ : Dict = np.linalg.eigh(SCREAMING_SNAKE_CASE__ ) # Take all the columns in the reverse order (-1), and then takes only the first snake_case_ : Optional[int] = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space snake_case_ : int = np.dot(filtered_eigenvectors.T , SCREAMING_SNAKE_CASE__ ) logging.info("""Principal Component Analysis computed""" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="""%(message)s""" , force=SCREAMING_SNAKE_CASE__ ) logging.error("""Dataset empty""" ) raise AssertionError def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" assert classes > dimensions # Check if features have been already loaded if features.any: snake_case_ , snake_case_ : Union[str, Any] = eigh( covariance_between_classes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , covariance_within_classes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , ) snake_case_ : Tuple = eigenvectors[:, ::-1][:, :dimensions] snake_case_ , snake_case_ , snake_case_ : int = np.linalg.svd(SCREAMING_SNAKE_CASE__ ) snake_case_ : Any = svd_matrix[:, 0:dimensions] snake_case_ : Dict = np.dot(filtered_svd_matrix.T , SCREAMING_SNAKE_CASE__ ) logging.info("""Linear Discriminant Analysis computed""" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="""%(message)s""" , force=SCREAMING_SNAKE_CASE__ ) logging.error("""Dataset empty""" ) raise AssertionError def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : int = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) snake_case_ : Any = np.array([0, 0, 0, 1, 1] ) snake_case_ : Dict = 2 snake_case_ : Dict = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(SCREAMING_SNAKE_CASE__ ) as error_info: snake_case_ : int = linear_discriminant_analysis( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ): raise AssertionError( """Did not raise AssertionError for dimensions > classes""" ) assert error_info.type is AssertionError def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Any = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) snake_case_ : Any = 2 snake_case_ : List[Any] = np.array([[6.9282_0323, 8.6602_5404, 10.3923_0485], [3.0, 3.0, 3.0]] ) with pytest.raises(SCREAMING_SNAKE_CASE__ ) as error_info: snake_case_ : str = principal_component_analysis(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
48
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings a_ = r''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(_UpperCAmelCase) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """rag""" _A : Optional[Any] = True def __init__(self , lowercase__=None , lowercase__=True , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=" / " , lowercase__=" // " , lowercase__=5 , lowercase__=3_00 , lowercase__=7_68 , lowercase__=8 , lowercase__="wiki_dpr" , lowercase__="train" , lowercase__="compressed" , lowercase__=None , lowercase__=None , lowercase__=False , lowercase__=False , lowercase__=0.0 , lowercase__=True , lowercase__=False , lowercase__=False , lowercase__=False , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__( bos_token_id=lowercase__ , pad_token_id=lowercase__ , eos_token_id=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , prefix=lowercase__ , vocab_size=lowercase__ , **lowercase__ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" snake_case_ : List[Any] = kwargs.pop("""question_encoder""" ) snake_case_ : Tuple = question_encoder_config.pop("""model_type""" ) snake_case_ : List[str] = kwargs.pop("""generator""" ) snake_case_ : List[str] = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig snake_case_ : List[str] = AutoConfig.for_model(lowercase__ , **lowercase__ ) snake_case_ : Tuple = AutoConfig.for_model(lowercase__ , **lowercase__ ) snake_case_ : int = reduce_loss snake_case_ : Optional[int] = label_smoothing snake_case_ : Dict = exclude_bos_score snake_case_ : Union[str, Any] = do_marginalize snake_case_ : Union[str, Any] = title_sep snake_case_ : int = doc_sep snake_case_ : int = n_docs snake_case_ : List[str] = max_combined_length snake_case_ : Tuple = dataset snake_case_ : int = dataset_split snake_case_ : str = index_name snake_case_ : List[str] = retrieval_vector_size snake_case_ : Dict = retrieval_batch_size snake_case_ : str = passages_path snake_case_ : Union[str, Any] = index_path snake_case_ : Tuple = use_dummy_dataset snake_case_ : Dict = output_retrieved snake_case_ : str = do_deduplication snake_case_ : Any = use_cache if self.forced_eos_token_id is None: snake_case_ : Any = getattr(self.generator , """forced_eos_token_id""" , lowercase__ ) @classmethod def __UpperCamelCase (cls , lowercase__ , lowercase__ , **lowercase__ ): return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Optional[Any] = copy.deepcopy(self.__dict__ ) snake_case_ : Any = self.question_encoder.to_dict() snake_case_ : Dict = self.generator.to_dict() snake_case_ : Union[str, Any] = self.__class__.model_type return output
48
1
"""simple docstring""" from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch a_ = logging.get_logger(__name__) @add_end_docstrings( _UpperCAmelCase , R""" top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). """ , ) class __lowercase ( _UpperCAmelCase): """simple docstring""" def __UpperCamelCase (self , lowercase__ ): if self.framework == "tf": snake_case_ : Union[str, Any] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": snake_case_ : str = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=lowercase__ ) else: raise ValueError("""Unsupported framework""" ) return masked_index def __UpperCamelCase (self , lowercase__ ): snake_case_ : Optional[int] = self.get_masked_index(lowercase__ ) snake_case_ : Tuple = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , f'No mask_token ({self.tokenizer.mask_token}) found on the input' , ) def __UpperCamelCase (self , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["""input_ids"""][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__=None , **lowercase__ ): if return_tensors is None: snake_case_ : str = self.framework snake_case_ : Dict = self.tokenizer(lowercase__ , return_tensors=lowercase__ ) self.ensure_exactly_one_mask_token(lowercase__ ) return model_inputs def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = self.model(**lowercase__ ) snake_case_ : Optional[Any] = model_inputs["""input_ids"""] return model_outputs def __UpperCamelCase (self , lowercase__ , lowercase__=5 , lowercase__=None ): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: snake_case_ : List[str] = target_ids.shape[0] snake_case_ : Union[str, Any] = model_outputs["""input_ids"""][0] snake_case_ : str = model_outputs["""logits"""] if self.framework == "tf": snake_case_ : Optional[int] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] snake_case_ : Union[str, Any] = outputs.numpy() snake_case_ : Dict = outputs[0, masked_index, :] snake_case_ : Optional[Any] = stable_softmax(lowercase__ , axis=-1 ) if target_ids is not None: snake_case_ : Tuple = tf.gather_nd(tf.squeeze(lowercase__ , 0 ) , target_ids.reshape(-1 , 1 ) ) snake_case_ : List[str] = tf.expand_dims(lowercase__ , 0 ) snake_case_ : str = tf.math.top_k(lowercase__ , k=lowercase__ ) snake_case_ , snake_case_ : Any = topk.values.numpy(), topk.indices.numpy() else: snake_case_ : List[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=lowercase__ ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample snake_case_ : List[Any] = outputs[0, masked_index, :] snake_case_ : Any = logits.softmax(dim=-1 ) if target_ids is not None: snake_case_ : int = probs[..., target_ids] snake_case_ , snake_case_ : Dict = probs.topk(lowercase__ ) snake_case_ : Tuple = [] snake_case_ : Union[str, Any] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): snake_case_ : int = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place snake_case_ : Any = input_ids.numpy().copy() if target_ids is not None: snake_case_ : int = target_ids[p].tolist() snake_case_ : Union[str, Any] = p # Filter padding out: snake_case_ : int = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back snake_case_ : Dict = self.tokenizer.decode(lowercase__ , skip_special_tokens=lowercase__ ) snake_case_ : List[str] = {"""score""": v, """token""": p, """token_str""": self.tokenizer.decode([p] ), """sequence""": sequence} row.append(lowercase__ ) result.append(lowercase__ ) if single_mask: return result[0] return result def __UpperCamelCase (self , lowercase__ , lowercase__=None ): if isinstance(lowercase__ , lowercase__ ): snake_case_ : Union[str, Any] = [targets] try: snake_case_ : Union[str, Any] = self.tokenizer.get_vocab() except Exception: snake_case_ : Any = {} snake_case_ : Optional[int] = [] for target in targets: snake_case_ : Optional[Any] = vocab.get(lowercase__ , lowercase__ ) if id_ is None: snake_case_ : int = self.tokenizer( lowercase__ , add_special_tokens=lowercase__ , return_attention_mask=lowercase__ , return_token_type_ids=lowercase__ , max_length=1 , truncation=lowercase__ , )["""input_ids"""] if len(lowercase__ ) == 0: logger.warning( f'The specified target token `{target}` does not exist in the model vocabulary. ' """We cannot replace it with anything meaningful, ignoring it""" ) continue snake_case_ : int = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f'The specified target token `{target}` does not exist in the model vocabulary. ' f'Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.' ) target_ids.append(id_ ) snake_case_ : str = list(set(lowercase__ ) ) if len(lowercase__ ) == 0: raise ValueError("""At least one target must be provided when passed.""" ) snake_case_ : List[str] = np.array(lowercase__ ) return target_ids def __UpperCamelCase (self , lowercase__=None , lowercase__=None ): snake_case_ : List[Any] = {} if targets is not None: snake_case_ : Union[str, Any] = self.get_target_ids(lowercase__ , lowercase__ ) snake_case_ : Optional[Any] = target_ids if top_k is not None: snake_case_ : List[str] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , """The tokenizer does not define a `mask_token`.""" ) return {}, {}, postprocess_params def __call__(self , lowercase__ , *lowercase__ , **lowercase__ ): snake_case_ : Tuple = super().__call__(lowercase__ , **lowercase__ ) if isinstance(lowercase__ , lowercase__ ) and len(lowercase__ ) == 1: return outputs[0] return outputs
48
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """upernet""" def __init__(self , lowercase__=None , lowercase__=5_12 , lowercase__=0.02 , lowercase__=[1, 2, 3, 6] , lowercase__=True , lowercase__=0.4 , lowercase__=3_84 , lowercase__=2_56 , lowercase__=1 , lowercase__=False , lowercase__=2_55 , **lowercase__ , ): super().__init__(**lowercase__ ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) snake_case_ : List[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(lowercase__ , lowercase__ ): snake_case_ : Tuple = backbone_config.get("""model_type""" ) snake_case_ : List[str] = CONFIG_MAPPING[backbone_model_type] snake_case_ : List[Any] = config_class.from_dict(lowercase__ ) snake_case_ : List[Any] = backbone_config snake_case_ : Optional[Any] = hidden_size snake_case_ : Any = initializer_range snake_case_ : str = pool_scales snake_case_ : Dict = use_auxiliary_head snake_case_ : str = auxiliary_loss_weight snake_case_ : List[str] = auxiliary_in_channels snake_case_ : Optional[Any] = auxiliary_channels snake_case_ : Any = auxiliary_num_convs snake_case_ : List[Any] = auxiliary_concat_input snake_case_ : List[str] = loss_ignore_index def __UpperCamelCase (self ): snake_case_ : Dict = copy.deepcopy(self.__dict__ ) snake_case_ : Union[str, Any] = self.backbone_config.to_dict() snake_case_ : Any = self.__class__.model_type return output
48
1
"""simple docstring""" from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS a_ = logging.get_logger(__name__) a_ = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, '''constant''': get_constant_schedule, '''constant_w_warmup''': get_constant_schedule_with_warmup, } class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self , lowercase__=None , lowercase__=None , *lowercase__ , **lowercase__ ): super().__init__(*lowercase__ , **lowercase__ ) if config is None: assert isinstance(self.model , lowercase__ ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f' {self.model.__class__}' ) snake_case_ : Optional[int] = self.model.config else: snake_case_ : Optional[int] = config snake_case_ : Any = data_args snake_case_ : Union[str, Any] = self.config.tgt_vocab_size if isinstance(self.config , lowercase__ ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f'The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for' """ padding..""" ) if self.args.label_smoothing == 0: snake_case_ : Optional[int] = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss snake_case_ : Optional[int] = label_smoothed_nll_loss def __UpperCamelCase (self , lowercase__ ): if self.optimizer is None: snake_case_ : str = ["""bias""", """LayerNorm.weight"""] snake_case_ : str = [ { """params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], """weight_decay""": self.args.weight_decay, }, { """params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] snake_case_ : Tuple = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: snake_case_ : Dict = Adafactor snake_case_ : List[Any] = {"""scale_parameter""": False, """relative_step""": False} else: snake_case_ : Optional[int] = AdamW snake_case_ : Tuple = { """betas""": (self.args.adam_betaa, self.args.adam_betaa), """eps""": self.args.adam_epsilon, } snake_case_ : int = self.args.learning_rate if self.sharded_ddp: snake_case_ : str = OSS( params=lowercase__ , optim=lowercase__ , **lowercase__ , ) else: snake_case_ : Any = optimizer_cls(lowercase__ , **lowercase__ ) if self.lr_scheduler is None: snake_case_ : Optional[Any] = self._get_lr_scheduler(lowercase__ ) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : str = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": snake_case_ : Tuple = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": snake_case_ : Union[str, Any] = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: snake_case_ : Optional[Any] = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=lowercase__ ) return scheduler def __UpperCamelCase (self ): if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token snake_case_ : int = model(**lowercase__ , use_cache=lowercase__ )[0] snake_case_ : Dict = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models snake_case_ , snake_case_ : Union[str, Any] = model(**lowercase__ , labels=lowercase__ , use_cache=lowercase__ )[:2] else: # compute label smoothed loss snake_case_ : int = model(**lowercase__ , use_cache=lowercase__ )[0] snake_case_ : Optional[int] = torch.nn.functional.log_softmax(lowercase__ , dim=-1 ) snake_case_ , snake_case_ : Any = self.loss_fn(lowercase__ , lowercase__ , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : Tuple = inputs.pop("""labels""" ) snake_case_ , snake_case_ : Union[str, Any] = self._compute_loss(lowercase__ , lowercase__ , lowercase__ ) return loss def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , ): snake_case_ : int = self._prepare_inputs(lowercase__ ) snake_case_ : Dict = { """max_length""": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, """num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: snake_case_ : int = self.model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , **lowercase__ , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: snake_case_ : Optional[Any] = self._pad_tensors_to_max_len(lowercase__ , gen_kwargs["""max_length"""] ) snake_case_ : int = inputs.pop("""labels""" ) with torch.no_grad(): # compute loss on predict data snake_case_ , snake_case_ : str = self._compute_loss(lowercase__ , lowercase__ , lowercase__ ) snake_case_ : List[Any] = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) snake_case_ : str = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: snake_case_ : Optional[Any] = self._pad_tensors_to_max_len(lowercase__ , gen_kwargs["""max_length"""] ) return (loss, logits, labels) def __UpperCamelCase (self , lowercase__ , lowercase__ ): # If PAD token is not defined at least EOS token has to be defined snake_case_ : Tuple = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" f' padded to `max_length`={max_length}' ) snake_case_ : Dict = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) snake_case_ : List[Any] = tensor return padded_tensor
48
"""simple docstring""" import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask a_ = logging.getLogger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self , lowercase__=-1 ): # in NER datasets, the last column is usually reserved for NER label snake_case_ : Union[str, Any] = label_idx def __UpperCamelCase (self , lowercase__ , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): snake_case_ : List[str] = mode.value snake_case_ : List[Any] = os.path.join(lowercase__ , f'{mode}.txt' ) snake_case_ : Tuple = 1 snake_case_ : Any = [] with open(lowercase__ , encoding="""utf-8""" ) as f: snake_case_ : str = [] snake_case_ : List[Any] = [] for line in f: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) guid_index += 1 snake_case_ : Optional[Any] = [] snake_case_ : int = [] else: snake_case_ : Optional[Any] = line.split(""" """ ) words.append(splits[0] ) if len(lowercase__ ) > 1: labels.append(splits[self.label_idx].replace("""\n""" , """""" ) ) else: # Examples could have no label for mode = "test" labels.append("""O""" ) if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) return examples def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : str = 0 for line in test_input_reader: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": writer.write(lowercase__ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: snake_case_ : Optional[int] = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n""" writer.write(lowercase__ ) else: logger.warning("""Maximum sequence length exceeded: No prediction for '%s'.""" , line.split()[0] ) def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: snake_case_ : Dict = f.read().splitlines() if "O" not in labels: snake_case_ : List[Any] = ["""O"""] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self ): # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: snake_case_ : Any = f.read().splitlines() if "O" not in labels: snake_case_ : Tuple = ["""O"""] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __lowercase ( _UpperCAmelCase): """simple docstring""" def __UpperCamelCase (self , lowercase__ , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): snake_case_ : List[Any] = mode.value snake_case_ : Optional[int] = os.path.join(lowercase__ , f'{mode}.txt' ) snake_case_ : Tuple = 1 snake_case_ : str = [] with open(lowercase__ , encoding="""utf-8""" ) as f: for sentence in parse_incr(lowercase__ ): snake_case_ : Tuple = [] snake_case_ : Any = [] for token in sentence: words.append(token["""form"""] ) labels.append(token["""upos"""] ) assert len(lowercase__ ) == len(lowercase__ ) if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) guid_index += 1 return examples def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : Dict = 0 for sentence in parse_incr(lowercase__ ): snake_case_ : int = preds_list[example_id] snake_case_ : Dict = """""" for token in sentence: out += f'{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) ' out += "\n" writer.write(lowercase__ ) example_id += 1 def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
48
1
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __lowercase ( unittest.TestCase): """simple docstring""" @slow def __UpperCamelCase (self ): snake_case_ : List[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) snake_case_ : Dict = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house snake_case_ : str = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim snake_case_ : Any = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): snake_case_ : Union[str, Any] = model(lowercase__ )["""last_hidden_state"""].detach() self.assertEqual(output.shape , lowercase__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , lowercase__ , atol=1e-3 ) ) @slow def __UpperCamelCase (self ): snake_case_ : List[str] = XLMRobertaModel.from_pretrained("""xlm-roberta-large""" ) snake_case_ : Tuple = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house snake_case_ : List[Any] = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim snake_case_ : List[str] = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): snake_case_ : Optional[int] = model(lowercase__ )["""last_hidden_state"""].detach() self.assertEqual(output.shape , lowercase__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , lowercase__ , atol=1e-3 ) )
48
"""simple docstring""" import random def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : Union[str, Any] = num - 1 snake_case_ : List[str] = 0 while s % 2 == 0: snake_case_ : str = s // 2 t += 1 for _ in range(5 ): snake_case_ : List[Any] = random.randrange(2 , num - 1 ) snake_case_ : Dict = pow(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if v != 1: snake_case_ : int = 0 while v != (num - 1): if i == t - 1: return False else: snake_case_ : str = i + 1 snake_case_ : int = (v**2) % num return True def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" if num < 2: return False snake_case_ : Dict = [ 2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1, 4_3, 4_7, 5_3, 5_9, 6_1, 6_7, 7_1, 7_3, 7_9, 8_3, 8_9, 9_7, 1_0_1, 1_0_3, 1_0_7, 1_0_9, 1_1_3, 1_2_7, 1_3_1, 1_3_7, 1_3_9, 1_4_9, 1_5_1, 1_5_7, 1_6_3, 1_6_7, 1_7_3, 1_7_9, 1_8_1, 1_9_1, 1_9_3, 1_9_7, 1_9_9, 2_1_1, 2_2_3, 2_2_7, 2_2_9, 2_3_3, 2_3_9, 2_4_1, 2_5_1, 2_5_7, 2_6_3, 2_6_9, 2_7_1, 2_7_7, 2_8_1, 2_8_3, 2_9_3, 3_0_7, 3_1_1, 3_1_3, 3_1_7, 3_3_1, 3_3_7, 3_4_7, 3_4_9, 3_5_3, 3_5_9, 3_6_7, 3_7_3, 3_7_9, 3_8_3, 3_8_9, 3_9_7, 4_0_1, 4_0_9, 4_1_9, 4_2_1, 4_3_1, 4_3_3, 4_3_9, 4_4_3, 4_4_9, 4_5_7, 4_6_1, 4_6_3, 4_6_7, 4_7_9, 4_8_7, 4_9_1, 4_9_9, 5_0_3, 5_0_9, 5_2_1, 5_2_3, 5_4_1, 5_4_7, 5_5_7, 5_6_3, 5_6_9, 5_7_1, 5_7_7, 5_8_7, 5_9_3, 5_9_9, 6_0_1, 6_0_7, 6_1_3, 6_1_7, 6_1_9, 6_3_1, 6_4_1, 6_4_3, 6_4_7, 6_5_3, 6_5_9, 6_6_1, 6_7_3, 6_7_7, 6_8_3, 6_9_1, 7_0_1, 7_0_9, 7_1_9, 7_2_7, 7_3_3, 7_3_9, 7_4_3, 7_5_1, 7_5_7, 7_6_1, 7_6_9, 7_7_3, 7_8_7, 7_9_7, 8_0_9, 8_1_1, 8_2_1, 8_2_3, 8_2_7, 8_2_9, 8_3_9, 8_5_3, 8_5_7, 8_5_9, 8_6_3, 8_7_7, 8_8_1, 8_8_3, 8_8_7, 9_0_7, 9_1_1, 9_1_9, 9_2_9, 9_3_7, 9_4_1, 9_4_7, 9_5_3, 9_6_7, 9_7_1, 9_7_7, 9_8_3, 9_9_1, 9_9_7, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int = 1_0_2_4 ): """simple docstring""" while True: snake_case_ : Tuple = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(SCREAMING_SNAKE_CASE__ ): return num if __name__ == "__main__": a_ = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
48
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { '''configuration_git''': ['''GIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GitConfig''', '''GitVisionConfig'''], '''processing_git''': ['''GitProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''GIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GitForCausalLM''', '''GitModel''', '''GitPreTrainedModel''', '''GitVisionModel''', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
48
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType a_ = logging.get_logger(__name__) a_ = { '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Dict = """deberta-v2""" def __init__(self , lowercase__=12_81_00 , lowercase__=15_36 , lowercase__=24 , lowercase__=24 , lowercase__=61_44 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_12 , lowercase__=0 , lowercase__=0.02 , lowercase__=1e-7 , lowercase__=False , lowercase__=-1 , lowercase__=0 , lowercase__=True , lowercase__=None , lowercase__=0 , lowercase__="gelu" , **lowercase__ , ): super().__init__(**lowercase__ ) snake_case_ : Union[str, Any] = hidden_size snake_case_ : str = num_hidden_layers snake_case_ : Tuple = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : Optional[int] = hidden_act snake_case_ : Union[str, Any] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : List[Any] = max_position_embeddings snake_case_ : Union[str, Any] = type_vocab_size snake_case_ : Union[str, Any] = initializer_range snake_case_ : List[Any] = relative_attention snake_case_ : Dict = max_relative_positions snake_case_ : Optional[int] = pad_token_id snake_case_ : List[str] = position_biased_input # Backwards compatibility if type(lowercase__ ) == str: snake_case_ : Union[str, Any] = [x.strip() for x in pos_att_type.lower().split("""|""" )] snake_case_ : Optional[int] = pos_att_type snake_case_ : List[str] = vocab_size snake_case_ : Tuple = layer_norm_eps snake_case_ : List[Any] = kwargs.get("""pooler_hidden_size""" , lowercase__ ) snake_case_ : List[str] = pooler_dropout snake_case_ : int = pooler_hidden_act class __lowercase ( _UpperCAmelCase): """simple docstring""" @property def __UpperCamelCase (self ): if self.task == "multiple-choice": snake_case_ : List[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case_ : int = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def __UpperCamelCase (self ): return 12 def __UpperCamelCase (self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , lowercase__ = 3 , lowercase__ = 40 , lowercase__ = 40 , lowercase__ = None , ): snake_case_ : str = super().generate_dummy_inputs(preprocessor=lowercase__ , framework=lowercase__ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
48
1
"""simple docstring""" from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput a_ = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowercase ( _UpperCAmelCase , _UpperCAmelCase): """simple docstring""" @register_to_config def __init__(self , lowercase__ , lowercase__ = None , lowercase__ = None ): super().__init__() snake_case_ : Tuple = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" snake_case_ : Any = torch.zeros(lowercase__ , lowercase__ ) else: snake_case_ : Optional[int] = None snake_case_ : Dict = torch.nn.Parameter(lowercase__ ) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : VQModel _A : CLIPTextModel _A : CLIPTokenizer _A : TransformeraDModel _A : LearnedClassifierFreeSamplingEmbeddings _A : VQDiffusionScheduler def __init__(self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): super().__init__() self.register_modules( vqvae=lowercase__ , transformer=lowercase__ , text_encoder=lowercase__ , tokenizer=lowercase__ , scheduler=lowercase__ , learned_classifier_free_sampling_embeddings=lowercase__ , ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : Dict = len(lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else 1 # get prompt text embeddings snake_case_ : Union[str, Any] = self.tokenizer( lowercase__ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) snake_case_ : Any = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: snake_case_ : Optional[int] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f' {self.tokenizer.model_max_length} tokens: {removed_text}' ) snake_case_ : Union[str, Any] = text_input_ids[:, : self.tokenizer.model_max_length] snake_case_ : int = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 snake_case_ : List[str] = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=lowercase__ ) # duplicate text embeddings for each generation per prompt snake_case_ : Tuple = prompt_embeds.repeat_interleave(lowercase__ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: snake_case_ : Any = self.learned_classifier_free_sampling_embeddings.embeddings snake_case_ : Union[str, Any] = negative_prompt_embeds.unsqueeze(0 ).repeat(lowercase__ , 1 , 1 ) else: snake_case_ : Tuple = [""""""] * batch_size snake_case_ : Dict = text_input_ids.shape[-1] snake_case_ : Tuple = self.tokenizer( lowercase__ , padding="""max_length""" , max_length=lowercase__ , truncation=lowercase__ , return_tensors="""pt""" , ) snake_case_ : Optional[int] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings snake_case_ : int = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=lowercase__ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method snake_case_ : Optional[Any] = negative_prompt_embeds.shape[1] snake_case_ : Optional[int] = negative_prompt_embeds.repeat(1 , lowercase__ , 1 ) snake_case_ : int = negative_prompt_embeds.view(batch_size * num_images_per_prompt , lowercase__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes snake_case_ : Optional[Any] = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__(self , lowercase__ , lowercase__ = 1_00 , lowercase__ = 5.0 , lowercase__ = 1.0 , lowercase__ = 1 , lowercase__ = None , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , lowercase__ = None , lowercase__ = 1 , ): if isinstance(lowercase__ , lowercase__ ): snake_case_ : List[Any] = 1 elif isinstance(lowercase__ , lowercase__ ): snake_case_ : Optional[int] = len(lowercase__ ) else: raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(lowercase__ )}' ) snake_case_ : int = batch_size * num_images_per_prompt snake_case_ : Tuple = guidance_scale > 1.0 snake_case_ : List[Any] = self._encode_prompt(lowercase__ , lowercase__ , lowercase__ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowercase__ , lowercase__ ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(lowercase__ )}.' ) # get the initial completely masked latents unless the user supplied it snake_case_ : int = (batch_size, self.transformer.num_latent_pixels) if latents is None: snake_case_ : Dict = self.transformer.num_vector_embeds - 1 snake_case_ : Optional[int] = torch.full(lowercase__ , lowercase__ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( """Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,""" f' {self.transformer.num_vector_embeds - 1} (inclusive).' ) snake_case_ : Tuple = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(lowercase__ , device=self.device ) snake_case_ : Optional[Any] = self.scheduler.timesteps.to(self.device ) snake_case_ : List[str] = latents for i, t in enumerate(self.progress_bar(lowercase__ ) ): # expand the sample if we are doing classifier free guidance snake_case_ : Any = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` snake_case_ : int = self.transformer(lowercase__ , encoder_hidden_states=lowercase__ , timestep=lowercase__ ).sample if do_classifier_free_guidance: snake_case_ , snake_case_ : Union[str, Any] = model_output.chunk(2 ) snake_case_ : Optional[int] = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(lowercase__ , dim=1 , keepdim=lowercase__ ) snake_case_ : str = self.truncate(lowercase__ , lowercase__ ) # remove `log(0)`'s (`-inf`s) snake_case_ : Union[str, Any] = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 snake_case_ : Dict = self.scheduler.step(lowercase__ , timestep=lowercase__ , sample=lowercase__ , generator=lowercase__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowercase__ , lowercase__ , lowercase__ ) snake_case_ : Dict = self.vqvae.config.vq_embed_dim snake_case_ : Optional[int] = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) snake_case_ : List[Any] = self.vqvae.quantize.get_codebook_entry(lowercase__ , shape=lowercase__ ) snake_case_ : Dict = self.vqvae.decode(lowercase__ , force_not_quantize=lowercase__ ).sample snake_case_ : Union[str, Any] = (image / 2 + 0.5).clamp(0 , 1 ) snake_case_ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case_ : Tuple = self.numpy_to_pil(lowercase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ , snake_case_ : List[Any] = torch.sort(lowercase__ , 1 , descending=lowercase__ ) snake_case_ : Optional[Any] = torch.exp(lowercase__ ) snake_case_ : int = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out snake_case_ : Optional[int] = torch.full_like(keep_mask[:, 0:1, :] , lowercase__ ) snake_case_ : int = torch.cat((all_true, keep_mask) , dim=1 ) snake_case_ : List[Any] = keep_mask[:, :-1, :] snake_case_ : List[Any] = keep_mask.gather(1 , indices.argsort(1 ) ) snake_case_ : Optional[int] = log_p_x_0.clone() snake_case_ : Dict = -torch.inf # -inf = log(0) return rv
48
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
48
1
"""simple docstring""" # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union a_ = re.compile(r'''^(?P<major>\d+)''' r'''\.(?P<minor>\d+)''' r'''\.(?P<patch>\d+)$''') @total_ordering @dataclass class __lowercase : """simple docstring""" _A : str _A : Optional[str] = None _A : Optional[Union[str, int]] = None _A : Optional[Union[str, int]] = None _A : Optional[Union[str, int]] = None def __UpperCamelCase (self ): snake_case_ , snake_case_ , snake_case_ : int = _str_to_version_tuple(self.version_str ) def __repr__(self ): return f'{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}' @property def __UpperCamelCase (self ): return self.major, self.minor, self.patch def __UpperCamelCase (self , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): return Version(lowercase__ ) elif isinstance(lowercase__ , lowercase__ ): return other raise TypeError(f'{other} (type {type(lowercase__ )}) cannot be compared to version.' ) def __eq__(self , lowercase__ ): try: snake_case_ : List[Any] = self._validate_operand(lowercase__ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__(self , lowercase__ ): snake_case_ : Optional[Any] = self._validate_operand(lowercase__ ) return self.tuple < other.tuple def __hash__(self ): return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def __UpperCamelCase (cls , lowercase__ ): snake_case_ : Dict = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def __UpperCamelCase (self ): return self.version_str def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" snake_case_ : List[str] = _VERSION_REG.match(SCREAMING_SNAKE_CASE__ ) if not res: raise ValueError(f'Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.' ) return tuple(int(SCREAMING_SNAKE_CASE__ ) for v in [res.group("""major""" ), res.group("""minor""" ), res.group("""patch""" )] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" return ".".join(str(SCREAMING_SNAKE_CASE__ ) for v in version_tuple )
48
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('''fixtures/test_sentencepiece.model''') a_ = {'''target_lang''': '''fi''', '''source_lang''': '''en'''} a_ = '''>>zh<<''' a_ = '''Helsinki-NLP/''' if is_torch_available(): a_ = '''pt''' elif is_tf_available(): a_ = '''tf''' else: a_ = '''jax''' @require_sentencepiece class __lowercase ( _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : str = MarianTokenizer _A : List[str] = False _A : List[str] = True def __UpperCamelCase (self ): super().setUp() snake_case_ : Optional[int] = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] snake_case_ : Any = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) snake_case_ : Any = Path(self.tmpdirname ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) snake_case_ : Optional[Any] = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase (self , **lowercase__ ): return MarianTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def __UpperCamelCase (self , lowercase__ ): return ( "This is a test", "This is a test", ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = """</s>""" snake_case_ : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__ ) , lowercase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__ ) , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(lowercase__ ) , 9 ) def __UpperCamelCase (self ): self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def __UpperCamelCase (self ): snake_case_ : Any = MarianTokenizer.from_pretrained(f'{ORG_NAME}opus-mt-en-de' ) snake_case_ : Tuple = en_de_tokenizer(["""I am a small frog"""] , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) snake_case_ : Dict = [38, 1_21, 14, 6_97, 3_88_48, 0] self.assertListEqual(lowercase__ , batch.input_ids[0] ) snake_case_ : Tuple = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(lowercase__ ) snake_case_ : str = [x.name for x in Path(lowercase__ ).glob("""*""" )] self.assertIn("""source.spm""" , lowercase__ ) MarianTokenizer.from_pretrained(lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = self.get_tokenizer() snake_case_ : List[str] = tok( ["""I am a small frog""" * 10_00, """I am a small frog"""] , padding=lowercase__ , truncation=lowercase__ , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(batch.input_ids.shape , (2, 5_12) ) def __UpperCamelCase (self ): snake_case_ : Tuple = self.get_tokenizer() snake_case_ : Tuple = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=lowercase__ , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def __UpperCamelCase (self ): # fmt: off snake_case_ : str = {"""input_ids""": [[4_34_95, 4_62, 20, 4_21_64, 13_69, 52, 4_64, 1_32, 17_03, 4_92, 13, 74_91, 3_89_99, 6, 8, 4_64, 1_32, 17_03, 4_92, 13, 46_69, 3_78_67, 13, 75_25, 27, 15_93, 9_88, 13, 3_39_72, 70_29, 6, 20, 82_51, 3_83, 2, 2_70, 58_66, 37_88, 2, 23_53, 82_51, 1_23_38, 2, 1_39_58, 3_87, 2, 36_29, 69_53, 1_88, 29_00, 2, 1_39_58, 80_11, 1_15_01, 23, 84_60, 40_73, 3_40_09, 20, 4_35, 1_14_39, 27, 8, 84_60, 40_73, 60_04, 20, 99_88, 3_75, 27, 33, 2_66, 19_45, 10_76, 13_50, 3_78_67, 32_88, 5, 5_77, 10_76, 43_74, 8, 50_82, 5, 2_64_53, 2_57, 5_56, 4_03, 2, 2_42, 1_32, 3_83, 3_16, 4_92, 8, 1_07_67, 6, 3_16, 3_04, 42_39, 3, 0], [1_48, 1_57_22, 19, 18_39, 12, 13_50, 13, 2_23_27, 50_82, 54_18, 4_75_67, 3_59_38, 59, 3_18, 1_95_52, 1_08, 21_83, 54, 1_49_76, 48_35, 32, 5_47, 11_14, 8, 3_15, 24_17, 5, 92, 1_90_88, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00], [36, 63_95, 1_25_70, 3_91_47, 1_15_97, 6, 2_66, 4, 4_54_05, 72_96, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase__ , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def __UpperCamelCase (self ): snake_case_ : Any = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) snake_case_ : Dict = """Tämä on testi""" snake_case_ : List[Any] = """This is a test""" snake_case_ : Optional[int] = [76, 7, 20_47, 2] snake_case_ : List[str] = [69, 12, 11, 9_40, 2] snake_case_ : Any = tokenizer(lowercase__ ).input_ids self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : str = tokenizer(text_target=lowercase__ ).input_ids self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : int = tokenizer.decode(lowercase__ , skip_special_tokens=lowercase__ ) self.assertEqual(lowercase__ , lowercase__ )
48
1
"""simple docstring""" import argparse import copy def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" snake_case_ : List[Any] = {} with open(SCREAMING_SNAKE_CASE__ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: snake_case_ : int = [] _list.append([line.split()[1], line.split()[2]] ) snake_case_ : Optional[Any] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: snake_case_ : str = [] _list.append([line.split()[0], line.split()[2]] ) snake_case_ : Optional[Any] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" with open(SCREAMING_SNAKE_CASE__ ) as f: snake_case_ : Optional[Any] = f.read(1 ) snake_case_ : Union[str, Any] = start_node snake_case_ : Dict = [] snake_case_ : Union[str, Any] = start_node snake_case_ : Tuple = 0 while visiting not in first_solution: snake_case_ : int = 1_0_0_0_0 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(SCREAMING_SNAKE_CASE__ ) and k[0] not in first_solution: snake_case_ : Union[str, Any] = k[1] snake_case_ : Any = k[0] first_solution.append(SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = distance_of_first_solution + int(SCREAMING_SNAKE_CASE__ ) snake_case_ : List[str] = best_node first_solution.append(SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[Any] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 snake_case_ : int = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0_0_0_0 ) return first_solution, distance_of_first_solution def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" snake_case_ : Union[str, Any] = [] for n in solution[1:-1]: snake_case_ : str = solution.index(SCREAMING_SNAKE_CASE__ ) for kn in solution[1:-1]: snake_case_ : Tuple = solution.index(SCREAMING_SNAKE_CASE__ ) if n == kn: continue snake_case_ : Optional[Any] = copy.deepcopy(SCREAMING_SNAKE_CASE__ ) snake_case_ : int = kn snake_case_ : Dict = n snake_case_ : Optional[int] = 0 for k in _tmp[:-1]: snake_case_ : Dict = _tmp[_tmp.index(SCREAMING_SNAKE_CASE__ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: snake_case_ : Dict = distance + int(i[1] ) _tmp.append(SCREAMING_SNAKE_CASE__ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) snake_case_ : Optional[Any] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda SCREAMING_SNAKE_CASE__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] ): """simple docstring""" snake_case_ : Dict = 1 snake_case_ : List[Any] = first_solution snake_case_ : List[Any] = [] snake_case_ : Optional[Any] = distance_of_first_solution snake_case_ : Dict = solution while count <= iters: snake_case_ : List[str] = find_neighborhood(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = 0 snake_case_ : List[Any] = neighborhood[index_of_best_solution] snake_case_ : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ ) - 1 snake_case_ : List[str] = False while not found: snake_case_ : Tuple = 0 while i < len(SCREAMING_SNAKE_CASE__ ): if best_solution[i] != solution[i]: snake_case_ : Optional[Any] = best_solution[i] snake_case_ : int = solution[i] break snake_case_ : List[str] = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) snake_case_ : Tuple = True snake_case_ : Dict = best_solution[:-1] snake_case_ : Tuple = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: snake_case_ : Tuple = cost snake_case_ : Union[str, Any] = solution else: snake_case_ : str = index_of_best_solution + 1 snake_case_ : Tuple = neighborhood[index_of_best_solution] if len(SCREAMING_SNAKE_CASE__ ) >= size: tabu_list.pop(0 ) snake_case_ : List[str] = count + 1 return best_solution_ever, best_cost def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any]=None ): """simple docstring""" snake_case_ : Tuple = generate_neighbours(args.File ) snake_case_ , snake_case_ : Optional[Any] = generate_first_solution( args.File , SCREAMING_SNAKE_CASE__ ) snake_case_ , snake_case_ : Dict = tabu_search( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , args.Iterations , args.Size , ) print(f'Best solution: {best_sol}, with total distance: {best_cost}.' ) if __name__ == "__main__": a_ = argparse.ArgumentParser(description='''Tabu Search''') parser.add_argument( '''-f''', '''--File''', type=str, help='''Path to the file containing the data''', required=True, ) parser.add_argument( '''-i''', '''--Iterations''', type=int, help='''How many iterations the algorithm should perform''', required=True, ) parser.add_argument( '''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True ) # Pass the arguments to main method main(parser.parse_args())
48
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCAmelCase) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True}) _A : ClassVar[Features] = Features({"""audio""": Audio()}) _A : ClassVar[Features] = Features({"""transcription""": Value("""string""")}) _A : str = "audio" _A : str = "transcription" def __UpperCamelCase (self , lowercase__ ): if self.audio_column not in features: raise ValueError(f'Column {self.audio_column} is not present in features.' ) if not isinstance(features[self.audio_column] , lowercase__ ): raise ValueError(f'Column {self.audio_column} is not an Audio type.' ) snake_case_ : Optional[int] = copy.deepcopy(self ) snake_case_ : Tuple = self.input_schema.copy() snake_case_ : List[str] = features[self.audio_column] snake_case_ : Any = input_schema return task_template @property def __UpperCamelCase (self ): return {self.audio_column: "audio", self.transcription_column: "transcription"}
48
1
"""simple docstring""" import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple ): """simple docstring""" snake_case_ : List[str] = BigBirdConfig.from_json_file(SCREAMING_SNAKE_CASE__ ) print(f'Building PyTorch model from configuration: {config}' ) if is_trivia_qa: snake_case_ : Optional[Any] = BigBirdForQuestionAnswering(SCREAMING_SNAKE_CASE__ ) else: snake_case_ : int = BigBirdForPreTraining(SCREAMING_SNAKE_CASE__ ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , is_trivia_qa=SCREAMING_SNAKE_CASE__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--big_bird_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_trivia_qa''', action='''store_true''', help='''Whether to convert a model with a trivia_qa head.''' ) a_ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
48
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : int = ["""pixel_values"""] def __init__(self , lowercase__ = True , lowercase__ = None , lowercase__ = 0.9 , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = True , lowercase__ = None , lowercase__ = 1 / 2_55 , lowercase__ = True , lowercase__ = True , lowercase__ = None , lowercase__ = None , **lowercase__ , ): super().__init__(**lowercase__ ) snake_case_ : Tuple = size if size is not None else {"""shortest_edge""": 2_24} snake_case_ : Union[str, Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) snake_case_ : str = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} snake_case_ : Dict = get_size_dict(lowercase__ , param_name="""crop_size""" ) snake_case_ : Union[str, Any] = do_resize snake_case_ : List[str] = size snake_case_ : str = crop_pct snake_case_ : str = resample snake_case_ : Optional[Any] = do_center_crop snake_case_ : Dict = crop_size snake_case_ : int = do_rescale snake_case_ : Optional[int] = rescale_factor snake_case_ : str = do_normalize snake_case_ : str = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN snake_case_ : List[str] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = None , **lowercase__ , ): snake_case_ : Tuple = get_size_dict(lowercase__ , default_to_square=lowercase__ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f'size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) if crop_pct is not None: if "shortest_edge" in size: snake_case_ : Optional[int] = int(size["""shortest_edge"""] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: snake_case_ : Dict = int(size["""height"""] / crop_pct ) else: snake_case_ : List[str] = (int(size["""height"""] / crop_pct ), int(size["""width"""] / crop_pct )) else: raise ValueError("""Invalid size for resize: {}""".format(lowercase__ ) ) snake_case_ : List[Any] = get_resize_output_image_size(lowercase__ , size=lowercase__ , default_to_square=lowercase__ ) else: if "shortest_edge" in size: snake_case_ : Optional[int] = get_resize_output_image_size(lowercase__ , size=size["""shortest_edge"""] , default_to_square=lowercase__ ) elif "height" in size and "width" in size: snake_case_ : int = (size["""height"""], size["""width"""]) else: raise ValueError("""Invalid size for resize: {}""".format(lowercase__ ) ) return resize(lowercase__ , size=lowercase__ , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): snake_case_ : int = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(f'size must contain \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(lowercase__ , size=(size["""height"""], size["""width"""]) , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return normalize(lowercase__ , mean=lowercase__ , std=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ): snake_case_ : str = do_resize if do_resize is not None else self.do_resize snake_case_ : Any = crop_pct if crop_pct is not None else self.crop_pct snake_case_ : List[Any] = resample if resample is not None else self.resample snake_case_ : str = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : str = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : str = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : List[Any] = image_mean if image_mean is not None else self.image_mean snake_case_ : int = image_std if image_std is not None else self.image_std snake_case_ : List[Any] = size if size is not None else self.size snake_case_ : Optional[Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) snake_case_ : List[Any] = crop_size if crop_size is not None else self.crop_size snake_case_ : int = get_size_dict(lowercase__ , param_name="""crop_size""" ) snake_case_ : List[str] = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_pct is None: raise ValueError("""Crop_pct must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case_ : int = [to_numpy_array(lowercase__ ) for image in images] if do_resize: snake_case_ : str = [self.resize(image=lowercase__ , size=lowercase__ , crop_pct=lowercase__ , resample=lowercase__ ) for image in images] if do_center_crop: snake_case_ : Optional[int] = [self.center_crop(image=lowercase__ , size=lowercase__ ) for image in images] if do_rescale: snake_case_ : List[Any] = [self.rescale(image=lowercase__ , scale=lowercase__ ) for image in images] if do_normalize: snake_case_ : Optional[Any] = [self.normalize(image=lowercase__ , mean=lowercase__ , std=lowercase__ ) for image in images] snake_case_ : List[Any] = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] snake_case_ : Dict = {"""pixel_values""": images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
48
1
"""simple docstring""" import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput a_ = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self , *lowercase__ , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ ): super().__init__(*lowercase__ , **lowercase__ ) snake_case_ : List[Any] = eval_examples snake_case_ : Tuple = post_process_function snake_case_ : str = quant_trainer_args snake_case_ : int = 1_28 # default number of calibration samples def __UpperCamelCase (self , lowercase__=None ): if calib_dataset is None and self.calib_dataset is None: raise ValueError("""Trainer: calibration requires an calib_dataset.""" ) snake_case_ : List[Any] = calib_dataset if calib_dataset is not None else self.calib_dataset snake_case_ : str = self._remove_unused_columns(lowercase__ , description="""Calibration""" ) return DataLoader( lowercase__ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=lowercase__ , ) def __UpperCamelCase (self , lowercase__=None ): snake_case_ : List[Any] = self.train_dataset if calib_dataset is None else calib_dataset snake_case_ : Optional[Any] = self.get_calib_dataloader(lowercase__ ) snake_case_ : List[str] = self.model quant_trainer.configure_model(lowercase__ , self.quant_trainer_args , calib=lowercase__ ) model.eval() quant_trainer.enable_calibration(lowercase__ ) logger.info("""***** Running calibration *****""" ) logger.info(f' Num examples = {self.calib_num}' ) logger.info(f' Batch size = {calib_dataloader.batch_size}' ) for step, inputs in enumerate(lowercase__ ): # Prediction step snake_case_ , snake_case_ , snake_case_ : Union[str, Any] = self.prediction_step(lowercase__ , lowercase__ , prediction_loss_only=lowercase__ ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(lowercase__ , self.quant_trainer_args ) snake_case_ : int = model def __UpperCamelCase (self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__ = "eval" ): snake_case_ : Optional[Any] = self.eval_dataset if eval_dataset is None else eval_dataset snake_case_ : Any = self.get_eval_dataloader(lowercase__ ) snake_case_ : str = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. snake_case_ : Tuple = self.compute_metrics snake_case_ : Union[str, Any] = None snake_case_ : Optional[int] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: snake_case_ : List[Any] = eval_loop( lowercase__ , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase__ , ) finally: snake_case_ : Optional[int] = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: snake_case_ : Dict = self.post_process_function(lowercase__ , lowercase__ , output.predictions ) snake_case_ : int = self.compute_metrics(lowercase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): snake_case_ : int = metrics.pop(lowercase__ ) self.log(lowercase__ ) else: snake_case_ : Union[str, Any] = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) snake_case_ : Union[str, Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase__ ) return metrics def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__=None , lowercase__ = "test" ): snake_case_ : str = self.get_test_dataloader(lowercase__ ) # Temporarily disable metric computation, we will do it in the loop here. snake_case_ : Optional[Any] = self.compute_metrics snake_case_ : Any = None snake_case_ : List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: snake_case_ : Any = eval_loop( lowercase__ , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase__ , ) finally: snake_case_ : Optional[Any] = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output snake_case_ : Optional[Any] = self.post_process_function(lowercase__ , lowercase__ , output.predictions , """predict""" ) snake_case_ : Optional[int] = self.compute_metrics(lowercase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): snake_case_ : Optional[int] = metrics.pop(lowercase__ ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase__ ) def __UpperCamelCase (self , lowercase__="./" ): snake_case_ : Any = self.eval_dataset snake_case_ : Dict = self.get_eval_dataloader(lowercase__ ) snake_case_ : str = next(iter(lowercase__ ) ) # saving device - to make it consistent snake_case_ : List[str] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) # convert to tuple snake_case_ : Any = tuple(v.to(lowercase__ ) for k, v in batch.items() ) logger.info("""Converting model to be onnx compatible""" ) from pytorch_quantization.nn import TensorQuantizer snake_case_ : Optional[Any] = True snake_case_ : Union[str, Any] = self.model.to(lowercase__ ) model.eval() model.float() snake_case_ : List[str] = model.module if hasattr(lowercase__ , """module""" ) else model quant_trainer.configure_model(lowercase__ , self.quant_trainer_args ) snake_case_ : Dict = os.path.join(lowercase__ , """model.onnx""" ) logger.info(f'exporting model to {output_model_file}' ) snake_case_ : Union[str, Any] = {0: """batch_size""", 1: """seq_len"""} torch.onnx.export( lowercase__ , lowercase__ , lowercase__ , export_params=lowercase__ , opset_version=13 , do_constant_folding=lowercase__ , input_names=["""input_ids""", """attention_mask""", """token_type_ids"""] , output_names=["""output_start_logits""", """output_end_logits"""] , dynamic_axes={ """input_ids""": axes, """attention_mask""": axes, """token_type_ids""": axes, """output_start_logits""": axes, """output_end_logits""": axes, } , verbose=lowercase__ , ) logger.info("""onnx export finished""" )
48
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: a_ = None a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} a_ = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } a_ = { '''facebook/mbart-large-en-ro''': 1024, '''facebook/mbart-large-cc25''': 1024, } # fmt: off a_ = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Dict = VOCAB_FILES_NAMES _A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _A : str = ["""input_ids""", """attention_mask"""] _A : Tuple = MBartTokenizer _A : List[int] = [] _A : List[int] = [] def __init__(self , lowercase__=None , lowercase__=None , lowercase__="<s>" , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<mask>" , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ , ): # Mask token behave like a normal word, i.e. include the space before it snake_case_ : int = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token super().__init__( vocab_file=lowercase__ , tokenizer_file=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , unk_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , src_lang=lowercase__ , tgt_lang=lowercase__ , additional_special_tokens=lowercase__ , **lowercase__ , ) snake_case_ : Dict = vocab_file snake_case_ : Optional[int] = False if not self.vocab_file else True snake_case_ : Optional[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) snake_case_ : Any = { lang_code: self.convert_tokens_to_ids(lowercase__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } snake_case_ : Tuple = src_lang if src_lang is not None else """en_XX""" snake_case_ : Tuple = self.convert_tokens_to_ids(self._src_lang ) snake_case_ : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __UpperCamelCase (self ): return self._src_lang @src_lang.setter def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): snake_case_ : List[Any] = [self.sep_token_id] snake_case_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , **lowercase__ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) snake_case_ : int = src_lang snake_case_ : List[str] = self(lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , **lowercase__ ) snake_case_ : List[str] = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Union[str, Any] = tgt_lang_id return inputs def __UpperCamelCase (self , lowercase__ , lowercase__ = "en_XX" , lowercase__ = None , lowercase__ = "ro_RO" , **lowercase__ , ): snake_case_ : List[str] = src_lang snake_case_ : int = tgt_lang return super().prepare_seqaseq_batch(lowercase__ , lowercase__ , **lowercase__ ) def __UpperCamelCase (self ): return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCamelCase (self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Tuple = [] snake_case_ : List[Any] = [self.eos_token_id, self.cur_lang_code] snake_case_ : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Optional[int] = [] snake_case_ : Optional[Any] = [self.eos_token_id, self.cur_lang_code] snake_case_ : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ : int = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowercase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory.' ) return snake_case_ : List[str] = os.path.join( lowercase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ): copyfile(self.vocab_file , lowercase__ ) return (out_vocab_file,)
48
1
"""simple docstring""" from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract a_ = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : Optional[str] , SCREAMING_SNAKE_CASE__ : Optional[str] = None ): """simple docstring""" snake_case_ : Optional[Any] = tesseract_config if tesseract_config is not None else """""" # apply OCR snake_case_ : Optional[int] = to_pil_image(SCREAMING_SNAKE_CASE__ ) snake_case_ , snake_case_ : Union[str, Any] = pil_image.size snake_case_ : Optional[Any] = pytesseract.image_to_data(SCREAMING_SNAKE_CASE__ , lang=SCREAMING_SNAKE_CASE__ , output_type="""dict""" , config=SCREAMING_SNAKE_CASE__ ) snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Dict = data["""text"""], data["""left"""], data["""top"""], data["""width"""], data["""height"""] # filter empty words and corresponding coordinates snake_case_ : List[Any] = [idx for idx, word in enumerate(SCREAMING_SNAKE_CASE__ ) if not word.strip()] snake_case_ : Any = [word for idx, word in enumerate(SCREAMING_SNAKE_CASE__ ) if idx not in irrelevant_indices] snake_case_ : Optional[int] = [coord for idx, coord in enumerate(SCREAMING_SNAKE_CASE__ ) if idx not in irrelevant_indices] snake_case_ : List[Any] = [coord for idx, coord in enumerate(SCREAMING_SNAKE_CASE__ ) if idx not in irrelevant_indices] snake_case_ : Any = [coord for idx, coord in enumerate(SCREAMING_SNAKE_CASE__ ) if idx not in irrelevant_indices] snake_case_ : List[Any] = [coord for idx, coord in enumerate(SCREAMING_SNAKE_CASE__ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format snake_case_ : List[Any] = [] for x, y, w, h in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : Tuple = [x, y, x + w, y + h] actual_boxes.append(SCREAMING_SNAKE_CASE__ ) # finally, normalize the bounding boxes snake_case_ : Union[str, Any] = [] for box in actual_boxes: normalized_boxes.append(normalize_box(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : int = ["""pixel_values"""] def __init__(self , lowercase__ = True , lowercase__ = None , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = True , lowercase__ = None , lowercase__ = "" , **lowercase__ , ): super().__init__(**lowercase__ ) snake_case_ : List[Any] = size if size is not None else {"""height""": 2_24, """width""": 2_24} snake_case_ : Any = get_size_dict(lowercase__ ) snake_case_ : Optional[int] = do_resize snake_case_ : Any = size snake_case_ : Optional[int] = resample snake_case_ : Optional[int] = apply_ocr snake_case_ : List[Any] = ocr_lang snake_case_ : Tuple = tesseract_config def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = None , **lowercase__ , ): snake_case_ : int = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) snake_case_ : Dict = (size["""height"""], size["""width"""]) return resize(lowercase__ , size=lowercase__ , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ): snake_case_ : str = do_resize if do_resize is not None else self.do_resize snake_case_ : List[str] = size if size is not None else self.size snake_case_ : List[str] = get_size_dict(lowercase__ ) snake_case_ : str = resample if resample is not None else self.resample snake_case_ : Any = apply_ocr if apply_ocr is not None else self.apply_ocr snake_case_ : str = ocr_lang if ocr_lang is not None else self.ocr_lang snake_case_ : str = tesseract_config if tesseract_config is not None else self.tesseract_config snake_case_ : List[str] = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) # All transformations expect numpy arrays. snake_case_ : str = [to_numpy_array(lowercase__ ) for image in images] if apply_ocr: requires_backends(self , """pytesseract""" ) snake_case_ : Tuple = [] snake_case_ : Tuple = [] for image in images: snake_case_ , snake_case_ : Optional[int] = apply_tesseract(lowercase__ , lowercase__ , lowercase__ ) words_batch.append(lowercase__ ) boxes_batch.append(lowercase__ ) if do_resize: snake_case_ : Union[str, Any] = [self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__ ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) snake_case_ : Any = [flip_channel_order(lowercase__ ) for image in images] snake_case_ : int = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] snake_case_ : str = BatchFeature(data={"""pixel_values""": images} , tensor_type=lowercase__ ) if apply_ocr: snake_case_ : List[str] = words_batch snake_case_ : Tuple = boxes_batch return data
48
"""simple docstring""" import argparse import hashlib # hashlib is only used inside the Test class import struct class __lowercase : """simple docstring""" def __init__(self , lowercase__ ): snake_case_ : Union[str, Any] = data snake_case_ : List[str] = [0X6_7_4_5_2_3_0_1, 0Xe_f_c_d_a_b_8_9, 0X9_8_b_a_d_c_f_e, 0X1_0_3_2_5_4_7_6, 0Xc_3_d_2_e_1_f_0] @staticmethod def __UpperCamelCase (lowercase__ , lowercase__ ): return ((n << b) | (n >> (32 - b))) & 0Xf_f_f_f_f_f_f_f def __UpperCamelCase (self ): snake_case_ : Any = B"""\x80""" + B"""\x00""" * (63 - (len(self.data ) + 8) % 64) snake_case_ : Tuple = self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def __UpperCamelCase (self ): return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = list(struct.unpack(""">16L""" , lowercase__ ) ) + [0] * 64 for i in range(16 , 80 ): snake_case_ : Dict = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def __UpperCamelCase (self ): snake_case_ : List[Any] = self.padding() snake_case_ : Any = self.split_blocks() for block in self.blocks: snake_case_ : Any = self.expand_block(lowercase__ ) snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = self.h for i in range(0 , 80 ): if 0 <= i < 20: snake_case_ : Optional[Any] = (b & c) | ((~b) & d) snake_case_ : List[str] = 0X5_a_8_2_7_9_9_9 elif 20 <= i < 40: snake_case_ : Union[str, Any] = b ^ c ^ d snake_case_ : Tuple = 0X6_e_d_9_e_b_a_1 elif 40 <= i < 60: snake_case_ : str = (b & c) | (b & d) | (c & d) snake_case_ : List[str] = 0X8_f_1_b_b_c_d_c elif 60 <= i < 80: snake_case_ : Tuple = b ^ c ^ d snake_case_ : str = 0Xc_a_6_2_c_1_d_6 snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Optional[Any] = ( self.rotate(lowercase__ , 5 ) + f + e + k + expanded_block[i] & 0Xf_f_f_f_f_f_f_f, a, self.rotate(lowercase__ , 30 ), c, d, ) snake_case_ : Any = ( self.h[0] + a & 0Xf_f_f_f_f_f_f_f, self.h[1] + b & 0Xf_f_f_f_f_f_f_f, self.h[2] + c & 0Xf_f_f_f_f_f_f_f, self.h[3] + d & 0Xf_f_f_f_f_f_f_f, self.h[4] + e & 0Xf_f_f_f_f_f_f_f, ) return ("{:08x}" * 5).format(*self.h ) def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Union[str, Any] = b"""Test String""" assert SHAaHash(SCREAMING_SNAKE_CASE__ ).final_hash() == hashlib.shaa(SCREAMING_SNAKE_CASE__ ).hexdigest() # noqa: S324 def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : int = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument("""--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) snake_case_ : Optional[int] = parser.parse_args() snake_case_ : Optional[int] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: snake_case_ : List[str] = f.read() else: snake_case_ : Dict = bytes(SCREAMING_SNAKE_CASE__ , """utf-8""" ) print(SHAaHash(SCREAMING_SNAKE_CASE__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
48
1
"""simple docstring""" import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--txt2img_unclip''', default='''kakaobrain/karlo-v1-alpha''', type=str, required=False, help='''The pretrained txt2img unclip.''', ) a_ = parser.parse_args() a_ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) a_ = CLIPImageProcessor() a_ = CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''') a_ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
48
"""simple docstring""" from manim import * class __lowercase ( _UpperCAmelCase): """simple docstring""" def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = Rectangle(height=0.5 , width=0.5 ) snake_case_ : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) snake_case_ : Optional[Any] = [mem.copy() for i in range(6 )] snake_case_ : str = [mem.copy() for i in range(6 )] snake_case_ : str = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : Any = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[str] = VGroup(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[Any] = Text("""CPU""" , font_size=24 ) snake_case_ : Tuple = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowercase__ ) snake_case_ : List[Any] = [mem.copy() for i in range(4 )] snake_case_ : Tuple = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[str] = Text("""GPU""" , font_size=24 ) snake_case_ : Any = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) gpu.move_to([-1, -1, 0] ) self.add(lowercase__ ) snake_case_ : Optional[Any] = [mem.copy() for i in range(6 )] snake_case_ : List[Any] = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : Dict = Text("""Model""" , font_size=24 ) snake_case_ : int = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) model.move_to([3, -1.0, 0] ) self.add(lowercase__ ) snake_case_ : Dict = [] for i, rect in enumerate(lowercase__ ): rect.set_stroke(lowercase__ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) snake_case_ : List[str] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowercase__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowercase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase__ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase__ , buff=0.0 ) self.add(lowercase__ ) cpu_targs.append(lowercase__ ) snake_case_ : List[str] = [mem.copy() for i in range(6 )] snake_case_ : List[str] = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : str = Text("""Loaded Checkpoint""" , font_size=24 ) snake_case_ : Any = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , aligned_edge=lowercase__ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) snake_case_ : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) snake_case_ : Union[str, Any] = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowercase__ , lowercase__ ) snake_case_ : List[Any] = MarkupText( f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(lowercase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) snake_case_ : List[Any] = MarkupText( f'Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowercase__ ) , Write(lowercase__ ) ) self.play(Write(lowercase__ , run_time=1 ) , Create(lowercase__ , run_time=1 ) ) snake_case_ : Optional[int] = [] snake_case_ : List[str] = [] for i, rect in enumerate(lowercase__ ): snake_case_ : Optional[Any] = fill.copy().set_fill(lowercase__ , opacity=0.7 ) target.move_to(lowercase__ ) first_animations.append(GrowFromCenter(lowercase__ , run_time=1 ) ) snake_case_ : List[Any] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(lowercase__ , run_time=1.5 ) ) self.play(*lowercase__ ) self.play(*lowercase__ ) self.wait()
48
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[Any] = """trocr""" _A : Union[str, Any] = ["""past_key_values"""] _A : str = { """num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model""", """num_hidden_layers""": """decoder_layers""", } def __init__(self , lowercase__=5_02_65 , lowercase__=10_24 , lowercase__=12 , lowercase__=16 , lowercase__=40_96 , lowercase__="gelu" , lowercase__=5_12 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=2 , lowercase__=0.02 , lowercase__=0.0 , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=True , lowercase__=1 , lowercase__=0 , lowercase__=2 , **lowercase__ , ): snake_case_ : Union[str, Any] = vocab_size snake_case_ : int = d_model snake_case_ : Any = decoder_layers snake_case_ : str = decoder_attention_heads snake_case_ : Optional[Any] = decoder_ffn_dim snake_case_ : str = activation_function snake_case_ : Dict = max_position_embeddings snake_case_ : Dict = dropout snake_case_ : Optional[int] = attention_dropout snake_case_ : Dict = activation_dropout snake_case_ : Tuple = init_std snake_case_ : Optional[int] = decoder_layerdrop snake_case_ : Optional[int] = use_cache snake_case_ : Union[str, Any] = scale_embedding snake_case_ : Optional[Any] = use_learned_position_embeddings snake_case_ : Dict = layernorm_embedding super().__init__( pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , decoder_start_token_id=lowercase__ , **lowercase__ , )
48
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" snake_case_ : Union[str, Any] = 0 if start < end: snake_case_ : Union[str, Any] = randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = a[end] snake_case_ : Dict = a[pivot] snake_case_ : Any = temp snake_case_ , snake_case_ : Dict = _in_place_partition(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , p - 1 ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE__ , p + 1 , SCREAMING_SNAKE_CASE__ ) return count def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" snake_case_ : Tuple = 0 snake_case_ : List[Any] = randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : Dict = a[end] snake_case_ : List[Any] = a[pivot] snake_case_ : Optional[Any] = temp snake_case_ : List[str] = start - 1 for index in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value snake_case_ : Any = new_pivot_index + 1 snake_case_ : Tuple = a[new_pivot_index] snake_case_ : Optional[int] = a[index] snake_case_ : Tuple = temp snake_case_ : Union[str, Any] = a[new_pivot_index + 1] snake_case_ : Union[str, Any] = a[end] snake_case_ : Union[str, Any] = temp return new_pivot_index + 1, count a_ = TemporaryFile() a_ = 100 # 1000 elements are to be sorted a_ , a_ = 0, 1 # mean and standard deviation a_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array a_ = np.load(outfile) a_ = len(M) - 1 a_ = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
48
1
"""simple docstring""" import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py a_ = '''.''' if __name__ == "__main__": a_ = os.path.join(REPO_PATH, '''utils/documentation_tests.txt''') a_ = [] a_ = [] with open(doctest_file_path) as fp: for line in fp: a_ = line.strip() a_ = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: a_ = '''\n'''.join(non_existent_paths) raise ValueError(F'''`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}''') if all_paths != sorted(all_paths): raise ValueError('''Files in `utils/documentation_tests.txt` are not in alphabetical order.''')
48
"""simple docstring""" import random def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : bool = False ): """simple docstring""" snake_case_ : dict = {i: [] for i in range(SCREAMING_SNAKE_CASE__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(SCREAMING_SNAKE_CASE__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(i + 1 , SCREAMING_SNAKE_CASE__ ): if random.random() < probability: graph[i].append(SCREAMING_SNAKE_CASE__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(SCREAMING_SNAKE_CASE__ ) return graph def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" return { i: [j for j in range(SCREAMING_SNAKE_CASE__ ) if i != j] for i in range(SCREAMING_SNAKE_CASE__ ) } if __name__ == "__main__": import doctest doctest.testmod()
48
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class __lowercase : """simple docstring""" _A : int = BlenderbotConfig _A : str = {} _A : List[Any] = """gelu""" def __init__(self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=False , lowercase__=99 , lowercase__=32 , lowercase__=2 , lowercase__=4 , lowercase__=37 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=20 , lowercase__=2 , lowercase__=1 , lowercase__=0 , ): snake_case_ : List[str] = parent snake_case_ : int = batch_size snake_case_ : Dict = seq_length snake_case_ : Optional[Any] = is_training snake_case_ : Any = use_labels snake_case_ : List[Any] = vocab_size snake_case_ : Any = hidden_size snake_case_ : Union[str, Any] = num_hidden_layers snake_case_ : Optional[int] = num_attention_heads snake_case_ : List[str] = intermediate_size snake_case_ : Any = hidden_dropout_prob snake_case_ : List[Any] = attention_probs_dropout_prob snake_case_ : Dict = max_position_embeddings snake_case_ : Optional[Any] = eos_token_id snake_case_ : Optional[Any] = pad_token_id snake_case_ : Dict = bos_token_id def __UpperCamelCase (self ): snake_case_ : Any = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) snake_case_ : List[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) snake_case_ : Optional[int] = tf.concat([input_ids, eos_tensor] , axis=1 ) snake_case_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : int = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) snake_case_ : List[str] = prepare_blenderbot_inputs_dict(lowercase__ , lowercase__ , lowercase__ ) return config, inputs_dict def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : str = TFBlenderbotModel(config=lowercase__ ).get_decoder() snake_case_ : Dict = inputs_dict["""input_ids"""] snake_case_ : Optional[Any] = input_ids[:1, :] snake_case_ : Dict = inputs_dict["""attention_mask"""][:1, :] snake_case_ : Dict = inputs_dict["""head_mask"""] snake_case_ : Dict = 1 # first forward pass snake_case_ : List[str] = model(lowercase__ , attention_mask=lowercase__ , head_mask=lowercase__ , use_cache=lowercase__ ) snake_case_ , snake_case_ : Any = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case_ : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and snake_case_ : Optional[int] = tf.concat([input_ids, next_tokens] , axis=-1 ) snake_case_ : Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) snake_case_ : List[Any] = model(lowercase__ , attention_mask=lowercase__ )[0] snake_case_ : int = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice snake_case_ : str = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) snake_case_ : List[Any] = output_from_no_past[:, -3:, random_slice_idx] snake_case_ : str = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase__ , lowercase__ , rtol=1e-3 ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , ): """simple docstring""" if attention_mask is None: snake_case_ : List[Any] = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case_ : Any = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case_ : Dict = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case_ : List[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: snake_case_ : List[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : int = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () _A : Optional[Any] = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () _A : Optional[Any] = ( { """conversational""": TFBlenderbotForConditionalGeneration, """feature-extraction""": TFBlenderbotModel, """summarization""": TFBlenderbotForConditionalGeneration, """text2text-generation""": TFBlenderbotForConditionalGeneration, """translation""": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) _A : str = True _A : Optional[Any] = False _A : Any = False def __UpperCamelCase (self ): snake_case_ : Any = TFBlenderbotModelTester(self ) snake_case_ : str = ConfigTester(self , config_class=lowercase__ ) def __UpperCamelCase (self ): self.config_tester.run_common_tests() def __UpperCamelCase (self ): snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase__ ) @require_tokenizers @require_tf class __lowercase ( unittest.TestCase): """simple docstring""" _A : Dict = ["""My friends are cool but they eat too many carbs."""] _A : int = """facebook/blenderbot-400M-distill""" @cached_property def __UpperCamelCase (self ): return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def __UpperCamelCase (self ): snake_case_ : Any = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def __UpperCamelCase (self ): snake_case_ : Tuple = self.tokenizer(self.src_text , return_tensors="""tf""" ) snake_case_ : Tuple = self.model.generate( model_inputs.input_ids , ) snake_case_ : List[str] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowercase__ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
48
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json''' ), } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """dpr""" def __init__(self , lowercase__=3_05_22 , lowercase__=7_68 , lowercase__=12 , lowercase__=12 , lowercase__=30_72 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_12 , lowercase__=2 , lowercase__=0.02 , lowercase__=1e-12 , lowercase__=0 , lowercase__="absolute" , lowercase__ = 0 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , **lowercase__ ) snake_case_ : List[Any] = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : Tuple = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : int = hidden_act snake_case_ : Dict = intermediate_size snake_case_ : int = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : str = max_position_embeddings snake_case_ : List[str] = type_vocab_size snake_case_ : List[str] = initializer_range snake_case_ : Optional[int] = layer_norm_eps snake_case_ : Union[str, Any] = projection_dim snake_case_ : str = position_embedding_type
48
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json''' ), } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """dpr""" def __init__(self , lowercase__=3_05_22 , lowercase__=7_68 , lowercase__=12 , lowercase__=12 , lowercase__=30_72 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_12 , lowercase__=2 , lowercase__=0.02 , lowercase__=1e-12 , lowercase__=0 , lowercase__="absolute" , lowercase__ = 0 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , **lowercase__ ) snake_case_ : List[Any] = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : Tuple = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : int = hidden_act snake_case_ : Dict = intermediate_size snake_case_ : int = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : str = max_position_embeddings snake_case_ : List[str] = type_vocab_size snake_case_ : List[str] = initializer_range snake_case_ : Optional[int] = layer_norm_eps snake_case_ : Union[str, Any] = projection_dim snake_case_ : str = position_embedding_type
48
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm a_ = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex a_ = 10 a_ = 256 def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" if len(SCREAMING_SNAKE_CASE__ ) < MIN_NUM_TOKENS: return None snake_case_ : Union[str, Any] = MinHash(num_perm=SCREAMING_SNAKE_CASE__ ) for token in set(SCREAMING_SNAKE_CASE__ ): min_hash.update(token.encode() ) return min_hash def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" return {t for t in NON_ALPHA.split(SCREAMING_SNAKE_CASE__ ) if len(t.strip() ) > 0} class __lowercase : """simple docstring""" def __init__(self , *, lowercase__ = 0.85 , ): snake_case_ : Tuple = duplication_jaccard_threshold snake_case_ : Optional[Any] = NUM_PERM snake_case_ : Tuple = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) snake_case_ : List[Any] = defaultdict(lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : int = self._index.query(lowercase__ ) if code_key in self._index.keys: print(f'Duplicate key {code_key}' ) return self._index.insert(lowercase__ , lowercase__ ) if len(lowercase__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowercase__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(lowercase__ ) def __UpperCamelCase (self ): snake_case_ : str = [] for base, duplicates in self._duplicate_clusters.items(): snake_case_ : Optional[Any] = [base] + list(lowercase__ ) # reformat the cluster to be a list of dict snake_case_ : Any = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(lowercase__ ) return duplicate_clusters def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = self.get_duplicate_clusters() with open(lowercase__ , """w""" ) as f: json.dump(lowercase__ , lowercase__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ , snake_case_ : str = element snake_case_ : Tuple = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] ): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(SCREAMING_SNAKE_CASE__ , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ): if data is not None: yield data def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] , SCREAMING_SNAKE_CASE__ : float ): """simple docstring""" snake_case_ : int = DuplicationIndex(duplication_jaccard_threshold=SCREAMING_SNAKE_CASE__ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(SCREAMING_SNAKE_CASE__ ) ) , max_queue_size=1_0_0 ) ): di.add(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : int = get_tokens(SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = get_tokens(SCREAMING_SNAKE_CASE__ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) a_ = None def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Optional[Any] = [] for elementa in cluster: snake_case_ : Union[str, Any] = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: snake_case_ : Any = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) >= jaccard_threshold: elementa["copies"] += 1 break else: snake_case_ : Union[str, Any] = 1 extremes.append(SCREAMING_SNAKE_CASE__ ) return extremes def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" global _shared_dataset snake_case_ : str = dataset snake_case_ : int = [] snake_case_ : Optional[int] = partial(_find_cluster_extremes_shared , jaccard_threshold=SCREAMING_SNAKE_CASE__ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) , total=len(SCREAMING_SNAKE_CASE__ ) , ): extremes_list.append(SCREAMING_SNAKE_CASE__ ) return extremes_list def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] , SCREAMING_SNAKE_CASE__ : float = 0.85 ): """simple docstring""" snake_case_ : List[str] = make_duplicate_clusters(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : str = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} snake_case_ : str = {} snake_case_ : Dict = find_extremes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for extremes in extremes_clusters: for element in extremes: snake_case_ : int = element snake_case_ : Optional[int] = duplicate_indices - set(extreme_dict.keys() ) snake_case_ : List[Any] = dataset.filter(lambda SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : idx not in remove_indices , with_indices=SCREAMING_SNAKE_CASE__ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: snake_case_ : List[Any] = element["""base_index"""] in extreme_dict if element["is_extreme"]: snake_case_ : str = extreme_dict[element["""base_index"""]]["""copies"""] print(f'Original dataset size: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Number of duplicate clusters: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Files in duplicate cluster: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Unique files in duplicate cluster: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Filtered dataset size: {len(SCREAMING_SNAKE_CASE__ )}' ) return ds_filter, duplicate_clusters
48
1
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[Any] = ["""image_processor""", """tokenizer"""] _A : str = """BlipImageProcessor""" _A : List[Any] = """AutoTokenizer""" def __init__(self , lowercase__ , lowercase__ ): snake_case_ : Any = False super().__init__(lowercase__ , lowercase__ ) snake_case_ : List[Any] = self.image_processor def __call__(self , lowercase__ = None , lowercase__ = None , lowercase__ = True , lowercase__ = False , lowercase__ = None , lowercase__ = None , lowercase__ = 0 , lowercase__ = None , lowercase__ = None , lowercase__ = False , lowercase__ = False , lowercase__ = False , lowercase__ = False , lowercase__ = False , lowercase__ = True , lowercase__ = None , **lowercase__ , ): if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: snake_case_ : Optional[Any] = self.tokenizer snake_case_ : int = self.tokenizer( text=lowercase__ , add_special_tokens=lowercase__ , padding=lowercase__ , truncation=lowercase__ , max_length=lowercase__ , stride=lowercase__ , pad_to_multiple_of=lowercase__ , return_attention_mask=lowercase__ , return_overflowing_tokens=lowercase__ , return_special_tokens_mask=lowercase__ , return_offsets_mapping=lowercase__ , return_token_type_ids=lowercase__ , return_length=lowercase__ , verbose=lowercase__ , return_tensors=lowercase__ , **lowercase__ , ) return text_encoding # add pixel_values snake_case_ : int = self.image_processor(lowercase__ , return_tensors=lowercase__ ) if text is not None: snake_case_ : Any = self.tokenizer( text=lowercase__ , add_special_tokens=lowercase__ , padding=lowercase__ , truncation=lowercase__ , max_length=lowercase__ , stride=lowercase__ , pad_to_multiple_of=lowercase__ , return_attention_mask=lowercase__ , return_overflowing_tokens=lowercase__ , return_special_tokens_mask=lowercase__ , return_offsets_mapping=lowercase__ , return_token_type_ids=lowercase__ , return_length=lowercase__ , verbose=lowercase__ , return_tensors=lowercase__ , **lowercase__ , ) else: snake_case_ : Union[str, Any] = None if text_encoding is not None: encoding_image_processor.update(lowercase__ ) return encoding_image_processor def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): return self.tokenizer.batch_decode(*lowercase__ , **lowercase__ ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): return self.tokenizer.decode(*lowercase__ , **lowercase__ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def __UpperCamelCase (self ): snake_case_ : str = self.tokenizer.model_input_names snake_case_ : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
48
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) a_ = logging.getLogger(__name__) if __name__ == "__main__": a_ = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=30522, type=int) a_ = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, '''rb''') as fp: a_ = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') a_ = Counter() for tk_ids in data: counter.update(tk_ids) a_ = [0] * args.vocab_size for k, v in counter.items(): a_ = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
48
1
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : Union[str, Any] = IFInpaintingPipeline _A : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} _A : Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _A : str = PipelineTesterMixin.required_optional_params - {"""latents"""} def __UpperCamelCase (self ): return self._get_dummy_components() def __UpperCamelCase (self , lowercase__ , lowercase__=0 ): if str(lowercase__ ).startswith("""mps""" ): snake_case_ : Optional[Any] = torch.manual_seed(lowercase__ ) else: snake_case_ : Optional[Any] = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) snake_case_ : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase__ ) ).to(lowercase__ ) snake_case_ : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase__ ) ).to(lowercase__ ) snake_case_ : Tuple = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __UpperCamelCase (self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def __UpperCamelCase (self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def __UpperCamelCase (self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def __UpperCamelCase (self ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def __UpperCamelCase (self ): self._test_save_load_local() def __UpperCamelCase (self ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
48
"""simple docstring""" import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" snake_case_ : Optional[Any] = tmp_path / """cache""" snake_case_ : Optional[int] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : Tuple = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" snake_case_ : List[Any] = tmp_path / """cache""" snake_case_ : int = {"""text""": """string"""} snake_case_ : Any = features.copy() if features else default_expected_features snake_case_ : List[Any] = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : Dict = TextDatasetReader(SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : Union[str, Any] = tmp_path / """cache""" snake_case_ : Optional[Any] = {"""text""": """string"""} snake_case_ : Optional[int] = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , split=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" if issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : List[str] = text_path elif issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : str = [text_path] snake_case_ : List[str] = tmp_path / """cache""" snake_case_ : List[str] = {"""text""": """string"""} snake_case_ : Dict = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str]=("train",) ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for split in splits: snake_case_ : Dict = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" snake_case_ : int = tmp_path / """cache""" snake_case_ : List[str] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : Optional[Any] = TextDatasetReader({"""train""": text_path} , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Tuple = tmp_path / """cache""" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" snake_case_ : List[str] = {"""text""": """string"""} snake_case_ : int = features.copy() if features else default_expected_features snake_case_ : Tuple = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : str = TextDatasetReader({"""train""": text_path} , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" if split: snake_case_ : Union[str, Any] = {split: text_path} else: snake_case_ : Union[str, Any] = """train""" snake_case_ : int = {"""train""": text_path, """test""": text_path} snake_case_ : List[Any] = tmp_path / """cache""" snake_case_ : Tuple = {"""text""": """string"""} snake_case_ : int = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
48
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
48
"""simple docstring""" from copy import deepcopy class __lowercase : """simple docstring""" def __init__(self , lowercase__ = None , lowercase__ = None ): if arr is None and size is not None: snake_case_ : str = size snake_case_ : Optional[Any] = [0] * size elif arr is not None: self.init(lowercase__ ) else: raise ValueError("""Either arr or size must be specified""" ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Optional[Any] = len(lowercase__ ) snake_case_ : int = deepcopy(lowercase__ ) for i in range(1 , self.size ): snake_case_ : Optional[Any] = self.next_(lowercase__ ) if j < self.size: self.tree[j] += self.tree[i] def __UpperCamelCase (self ): snake_case_ : Dict = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): snake_case_ : Optional[int] = self.next_(lowercase__ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def __UpperCamelCase (lowercase__ ): return index + (index & (-index)) @staticmethod def __UpperCamelCase (lowercase__ ): return index - (index & (-index)) def __UpperCamelCase (self , lowercase__ , lowercase__ ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value snake_case_ : Tuple = self.next_(lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): self.add(lowercase__ , value - self.get(lowercase__ ) ) def __UpperCamelCase (self , lowercase__ ): if right == 0: return 0 snake_case_ : List[str] = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] snake_case_ : Optional[int] = self.prev(lowercase__ ) return result def __UpperCamelCase (self , lowercase__ , lowercase__ ): return self.prefix(lowercase__ ) - self.prefix(lowercase__ ) def __UpperCamelCase (self , lowercase__ ): return self.query(lowercase__ , index + 1 ) def __UpperCamelCase (self , lowercase__ ): value -= self.tree[0] if value < 0: return -1 snake_case_ : Tuple = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 snake_case_ : Tuple = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
48
1
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : Tuple = int(SCREAMING_SNAKE_CASE__ ) if decimal in (0, 1): # Exit cases for the recursion return str(SCREAMING_SNAKE_CASE__ ) snake_case_ , snake_case_ : List[Any] = divmod(SCREAMING_SNAKE_CASE__ , 2 ) return binary_recursive(SCREAMING_SNAKE_CASE__ ) + str(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : Optional[int] = str(SCREAMING_SNAKE_CASE__ ).strip() if not number: raise ValueError("""No input value was provided""" ) snake_case_ : str = """-""" if number.startswith("""-""" ) else """""" snake_case_ : Dict = number.lstrip("""-""" ) if not number.isnumeric(): raise ValueError("""Input value is not an integer""" ) return f'{negative}0b{binary_recursive(int(SCREAMING_SNAKE_CASE__ ) )}' if __name__ == "__main__": from doctest import testmod testmod()
48
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : list ): """simple docstring""" snake_case_ : Optional[int] = len(SCREAMING_SNAKE_CASE__ ) for i in range(1 , SCREAMING_SNAKE_CASE__ ): snake_case_ : Tuple = collection[i] snake_case_ : Tuple = 0 snake_case_ : str = i - 1 while low <= high: snake_case_ : Optional[int] = (low + high) // 2 if val < collection[mid]: snake_case_ : List[str] = mid - 1 else: snake_case_ : str = mid + 1 for j in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , -1 ): snake_case_ : List[str] = collection[j - 1] snake_case_ : Any = val return collection if __name__ == "__main__": a_ = input('''Enter numbers separated by a comma:\n''').strip() a_ = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
48
1
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model a_ = '''0.12''' # assumed parallelism: 8 if is_torch_available(): import torch def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int]=None ): """simple docstring""" if rng is None: snake_case_ : Union[str, Any] = random.Random() snake_case_ : Optional[Any] = 1 for dim in shape: total_dims *= dim snake_case_ : List[Any] = [] for _ in range(SCREAMING_SNAKE_CASE__ ): values.append(rng.randint(0 , vocab_size - 1 ) ) snake_case_ : Dict = np.array(SCREAMING_SNAKE_CASE__ , dtype=jnp.intaa ).reshape(SCREAMING_SNAKE_CASE__ ) return output def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str]=None ): """simple docstring""" snake_case_ : Tuple = ids_tensor(SCREAMING_SNAKE_CASE__ , vocab_size=2 , rng=SCREAMING_SNAKE_CASE__ ) # make sure that at least one token is attended to for each batch snake_case_ : int = 1 return attn_mask @require_flax class __lowercase : """simple docstring""" _A : Optional[int] = None _A : Tuple = () def __UpperCamelCase (self ): snake_case_ , snake_case_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 snake_case_ : List[Any] = 2 snake_case_ : Tuple = inputs["""input_ids"""].shape[-1] // 2 snake_case_ : Tuple = inputs["""input_ids"""][:max_batch_size, :sequence_length] snake_case_ : int = jnp.ones_like(lowercase__ ) snake_case_ : List[str] = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens snake_case_ : Dict = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` snake_case_ : Union[str, Any] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def __UpperCamelCase (self ): snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = self._get_input_ids_and_config() snake_case_ : Any = False snake_case_ : int = max_length snake_case_ : Dict = 0 for model_class in self.all_generative_model_classes: snake_case_ : Tuple = model_class(lowercase__ ) snake_case_ : Any = model_class.__name__[4:] # Skip the "Flax" at the beginning snake_case_ : Dict = getattr(lowercase__ , lowercase__ ) snake_case_ : Optional[Any] = pt_model_class(lowercase__ ).eval() snake_case_ : Optional[Any] = load_flax_weights_in_pytorch_model(lowercase__ , flax_model.params ) snake_case_ : Tuple = flax_model.generate(lowercase__ ).sequences snake_case_ : Dict = pt_model.generate(torch.tensor(lowercase__ , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: snake_case_ : Optional[int] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def __UpperCamelCase (self ): snake_case_ , snake_case_ , snake_case_ , snake_case_ : str = self._get_input_ids_and_config() snake_case_ : List[str] = False snake_case_ : List[Any] = max_length for model_class in self.all_generative_model_classes: snake_case_ : Tuple = model_class(lowercase__ ) snake_case_ : Tuple = model.generate(lowercase__ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase__ ) snake_case_ : List[str] = jit(model.generate ) snake_case_ : Union[str, Any] = jit_generate(lowercase__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCamelCase (self ): snake_case_ , snake_case_ , snake_case_ , snake_case_ : str = self._get_input_ids_and_config() snake_case_ : List[Any] = True snake_case_ : Tuple = max_length for model_class in self.all_generative_model_classes: snake_case_ : Optional[Any] = model_class(lowercase__ ) snake_case_ : List[Any] = model.generate(lowercase__ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase__ ) snake_case_ : List[str] = jit(model.generate ) snake_case_ : Optional[int] = jit_generate(lowercase__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCamelCase (self ): snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[str] = self._get_input_ids_and_config() snake_case_ : Tuple = False snake_case_ : Union[str, Any] = max_length snake_case_ : Optional[Any] = 2 for model_class in self.all_generative_model_classes: snake_case_ : Dict = model_class(lowercase__ ) snake_case_ : Optional[int] = model.generate(lowercase__ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase__ ) snake_case_ : List[Any] = jit(model.generate ) snake_case_ : Optional[Any] = jit_generate(lowercase__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCamelCase (self ): snake_case_ , snake_case_ , snake_case_ , snake_case_ : Optional[int] = self._get_input_ids_and_config() snake_case_ : Optional[Any] = False snake_case_ : Tuple = max_length snake_case_ : Union[str, Any] = 2 snake_case_ : int = 2 for model_class in self.all_generative_model_classes: snake_case_ : int = model_class(lowercase__ ) snake_case_ : Optional[int] = model.generate(lowercase__ ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def __UpperCamelCase (self ): snake_case_ , snake_case_ , snake_case_ , snake_case_ : Union[str, Any] = self._get_input_ids_and_config() snake_case_ : List[str] = True snake_case_ : List[Any] = max_length snake_case_ : str = 0.8 snake_case_ : Optional[Any] = 10 snake_case_ : str = 0.3 snake_case_ : str = 1 snake_case_ : Optional[Any] = 8 snake_case_ : int = 9 for model_class in self.all_generative_model_classes: snake_case_ : int = model_class(lowercase__ ) snake_case_ : Optional[int] = model.generate(lowercase__ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase__ ) snake_case_ : Optional[int] = jit(model.generate ) snake_case_ : str = jit_generate(lowercase__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCamelCase (self ): snake_case_ , snake_case_ , snake_case_ , snake_case_ : Any = self._get_input_ids_and_config() snake_case_ : str = max_length snake_case_ : Optional[Any] = 1 snake_case_ : Optional[int] = 8 snake_case_ : Union[str, Any] = 9 for model_class in self.all_generative_model_classes: snake_case_ : str = model_class(lowercase__ ) snake_case_ : Any = model.generate(lowercase__ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase__ ) snake_case_ : Any = jit(model.generate ) snake_case_ : List[str] = jit_generate(lowercase__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCamelCase (self ): snake_case_ , snake_case_ , snake_case_ , snake_case_ : Tuple = self._get_input_ids_and_config() snake_case_ : List[str] = max_length snake_case_ : Optional[int] = 2 snake_case_ : List[Any] = 1 snake_case_ : Optional[Any] = 8 snake_case_ : str = 9 for model_class in self.all_generative_model_classes: snake_case_ : Tuple = model_class(lowercase__ ) snake_case_ : Optional[int] = model.generate(lowercase__ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase__ ) snake_case_ : List[Any] = jit(model.generate ) snake_case_ : List[str] = jit_generate(lowercase__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCamelCase (self ): snake_case_ , snake_case_ , snake_case_ , snake_case_ : Union[str, Any] = self._get_input_ids_and_config() # pad attention mask on the left snake_case_ : Tuple = attention_mask.at[(0, 0)].set(0 ) snake_case_ : List[str] = False snake_case_ : Tuple = max_length for model_class in self.all_generative_model_classes: snake_case_ : Dict = model_class(lowercase__ ) snake_case_ : Optional[Any] = model.generate(lowercase__ , attention_mask=lowercase__ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase__ ) snake_case_ : str = jit(model.generate ) snake_case_ : int = jit_generate(lowercase__ , attention_mask=lowercase__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCamelCase (self ): snake_case_ , snake_case_ , snake_case_ , snake_case_ : Any = self._get_input_ids_and_config() # pad attention mask on the left snake_case_ : Tuple = attention_mask.at[(0, 0)].set(0 ) snake_case_ : Dict = True snake_case_ : Optional[int] = max_length for model_class in self.all_generative_model_classes: snake_case_ : str = model_class(lowercase__ ) snake_case_ : Dict = model.generate(lowercase__ , attention_mask=lowercase__ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase__ ) snake_case_ : Tuple = jit(model.generate ) snake_case_ : List[str] = jit_generate(lowercase__ , attention_mask=lowercase__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def __UpperCamelCase (self ): snake_case_ , snake_case_ , snake_case_ , snake_case_ : int = self._get_input_ids_and_config() # pad attention mask on the left snake_case_ : Any = attention_mask.at[(0, 0)].set(0 ) snake_case_ : Tuple = 2 snake_case_ : Any = max_length for model_class in self.all_generative_model_classes: snake_case_ : Any = model_class(lowercase__ ) snake_case_ : Union[str, Any] = model.generate(lowercase__ , attention_mask=lowercase__ ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase__ ) snake_case_ : List[str] = jit(model.generate ) snake_case_ : Optional[Any] = jit_generate(lowercase__ , attention_mask=lowercase__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class __lowercase ( unittest.TestCase): """simple docstring""" def __UpperCamelCase (self ): snake_case_ : List[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-bert""" ) snake_case_ : int = FlaxAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) snake_case_ : List[Any] = """Hello world""" snake_case_ : Optional[int] = tokenizer(lowercase__ , return_tensors="""np""" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(lowercase__ , """do_samples""" ): model.generate(lowercase__ , do_samples=lowercase__ ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(lowercase__ , """foo""" ): snake_case_ : Optional[int] = {"""foo""": """bar"""} model.generate(lowercase__ , **lowercase__ )
48
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Union[str, Any] = ["""image_processor""", """tokenizer"""] _A : str = """ChineseCLIPImageProcessor""" _A : Tuple = ("""BertTokenizer""", """BertTokenizerFast""") def __init__(self , lowercase__=None , lowercase__=None , **lowercase__ ): snake_case_ : Any = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowercase__ , ) snake_case_ : Optional[Any] = kwargs.pop("""feature_extractor""" ) snake_case_ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowercase__ , lowercase__ ) snake_case_ : Union[str, Any] = self.image_processor def __call__(self , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ ): if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: snake_case_ : Any = self.tokenizer(lowercase__ , return_tensors=lowercase__ , **lowercase__ ) if images is not None: snake_case_ : Tuple = self.image_processor(lowercase__ , return_tensors=lowercase__ , **lowercase__ ) if text is not None and images is not None: snake_case_ : List[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase__ ) , tensor_type=lowercase__ ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): return self.tokenizer.batch_decode(*lowercase__ , **lowercase__ ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): return self.tokenizer.decode(*lowercase__ , **lowercase__ ) @property def __UpperCamelCase (self ): snake_case_ : Optional[int] = self.tokenizer.model_input_names snake_case_ : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __UpperCamelCase (self ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowercase__ , ) return self.image_processor_class
48
1
"""simple docstring""" import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : str = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" ) snake_case_ : Tuple = chkpt["""model"""] # We have the base model one level deeper than the original XLM repository snake_case_ : int = {} for k, v in state_dict.items(): if "pred_layer" in k: snake_case_ : Any = v else: snake_case_ : Optional[int] = v snake_case_ : int = chkpt["""params"""] snake_case_ : List[Any] = {n: v for n, v in config.items() if not isinstance(SCREAMING_SNAKE_CASE__ , (torch.FloatTensor, numpy.ndarray) )} snake_case_ : List[str] = chkpt["""dico_word2id"""] snake_case_ : Any = {s + """</w>""" if s.find("""@@""" ) == -1 and i > 1_3 else s.replace("""@@""" , """""" ): i for s, i in vocab.items()} # Save pytorch-model snake_case_ : Optional[int] = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME snake_case_ : int = pytorch_dump_folder_path + """/""" + CONFIG_NAME snake_case_ : Union[str, Any] = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""vocab_file"""] print(f'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(f'Save configuration file to {pytorch_config_dump_path}' ) with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ , indent=2 ) + """\n""" ) print(f'Save vocab file to {pytorch_config_dump_path}' ) with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ , indent=2 ) + """\n""" ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xlm_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) a_ = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
48
"""simple docstring""" import argparse import copy def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" snake_case_ : List[Any] = {} with open(SCREAMING_SNAKE_CASE__ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: snake_case_ : int = [] _list.append([line.split()[1], line.split()[2]] ) snake_case_ : Optional[Any] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: snake_case_ : str = [] _list.append([line.split()[0], line.split()[2]] ) snake_case_ : Optional[Any] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" with open(SCREAMING_SNAKE_CASE__ ) as f: snake_case_ : Optional[Any] = f.read(1 ) snake_case_ : Union[str, Any] = start_node snake_case_ : Dict = [] snake_case_ : Union[str, Any] = start_node snake_case_ : Tuple = 0 while visiting not in first_solution: snake_case_ : int = 1_0_0_0_0 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(SCREAMING_SNAKE_CASE__ ) and k[0] not in first_solution: snake_case_ : Union[str, Any] = k[1] snake_case_ : Any = k[0] first_solution.append(SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = distance_of_first_solution + int(SCREAMING_SNAKE_CASE__ ) snake_case_ : List[str] = best_node first_solution.append(SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[Any] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 snake_case_ : int = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0_0_0_0 ) return first_solution, distance_of_first_solution def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" snake_case_ : Union[str, Any] = [] for n in solution[1:-1]: snake_case_ : str = solution.index(SCREAMING_SNAKE_CASE__ ) for kn in solution[1:-1]: snake_case_ : Tuple = solution.index(SCREAMING_SNAKE_CASE__ ) if n == kn: continue snake_case_ : Optional[Any] = copy.deepcopy(SCREAMING_SNAKE_CASE__ ) snake_case_ : int = kn snake_case_ : Dict = n snake_case_ : Optional[int] = 0 for k in _tmp[:-1]: snake_case_ : Dict = _tmp[_tmp.index(SCREAMING_SNAKE_CASE__ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: snake_case_ : Dict = distance + int(i[1] ) _tmp.append(SCREAMING_SNAKE_CASE__ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) snake_case_ : Optional[Any] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda SCREAMING_SNAKE_CASE__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] ): """simple docstring""" snake_case_ : Dict = 1 snake_case_ : List[Any] = first_solution snake_case_ : List[Any] = [] snake_case_ : Optional[Any] = distance_of_first_solution snake_case_ : Dict = solution while count <= iters: snake_case_ : List[str] = find_neighborhood(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = 0 snake_case_ : List[Any] = neighborhood[index_of_best_solution] snake_case_ : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ ) - 1 snake_case_ : List[str] = False while not found: snake_case_ : Tuple = 0 while i < len(SCREAMING_SNAKE_CASE__ ): if best_solution[i] != solution[i]: snake_case_ : Optional[Any] = best_solution[i] snake_case_ : int = solution[i] break snake_case_ : List[str] = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) snake_case_ : Tuple = True snake_case_ : Dict = best_solution[:-1] snake_case_ : Tuple = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: snake_case_ : Tuple = cost snake_case_ : Union[str, Any] = solution else: snake_case_ : str = index_of_best_solution + 1 snake_case_ : Tuple = neighborhood[index_of_best_solution] if len(SCREAMING_SNAKE_CASE__ ) >= size: tabu_list.pop(0 ) snake_case_ : List[str] = count + 1 return best_solution_ever, best_cost def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any]=None ): """simple docstring""" snake_case_ : Tuple = generate_neighbours(args.File ) snake_case_ , snake_case_ : Optional[Any] = generate_first_solution( args.File , SCREAMING_SNAKE_CASE__ ) snake_case_ , snake_case_ : Dict = tabu_search( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , args.Iterations , args.Size , ) print(f'Best solution: {best_sol}, with total distance: {best_cost}.' ) if __name__ == "__main__": a_ = argparse.ArgumentParser(description='''Tabu Search''') parser.add_argument( '''-f''', '''--File''', type=str, help='''Path to the file containing the data''', required=True, ) parser.add_argument( '''-i''', '''--Iterations''', type=int, help='''How many iterations the algorithm should perform''', required=True, ) parser.add_argument( '''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True ) # Pass the arguments to main method main(parser.parse_args())
48
1
"""simple docstring""" import argparse import math import traceback import dateutil.parser as date_parser import requests def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : Optional[Any] = {} snake_case_ : Optional[Any] = job["""started_at"""] snake_case_ : Tuple = job["""completed_at"""] snake_case_ : Tuple = date_parser.parse(SCREAMING_SNAKE_CASE__ ) snake_case_ : Union[str, Any] = date_parser.parse(SCREAMING_SNAKE_CASE__ ) snake_case_ : Any = round((end_datetime - start_datetime).total_seconds() / 60.0 ) snake_case_ : int = start snake_case_ : str = end snake_case_ : Optional[Any] = duration_in_min return job_info def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any]=None ): """simple docstring""" snake_case_ : List[str] = None if token is not None: snake_case_ : Optional[int] = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'Bearer {token}'} snake_case_ : Optional[int] = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100' snake_case_ : Optional[Any] = requests.get(SCREAMING_SNAKE_CASE__ , headers=SCREAMING_SNAKE_CASE__ ).json() snake_case_ : Optional[int] = {} try: job_time.update({job["""name"""]: extract_time_from_single_job(SCREAMING_SNAKE_CASE__ ) for job in result["""jobs"""]} ) snake_case_ : Optional[int] = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE__ ): snake_case_ : Optional[int] = requests.get(url + f'&page={i + 2}' , headers=SCREAMING_SNAKE_CASE__ ).json() job_time.update({job["""name"""]: extract_time_from_single_job(SCREAMING_SNAKE_CASE__ ) for job in result["""jobs"""]} ) return job_time except Exception: print(f'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') a_ = parser.parse_args() a_ = get_job_time(args.workflow_run_id) a_ = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(F'''{k}: {v['duration']}''')
48
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings a_ = r''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(_UpperCAmelCase) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """rag""" _A : Optional[Any] = True def __init__(self , lowercase__=None , lowercase__=True , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=" / " , lowercase__=" // " , lowercase__=5 , lowercase__=3_00 , lowercase__=7_68 , lowercase__=8 , lowercase__="wiki_dpr" , lowercase__="train" , lowercase__="compressed" , lowercase__=None , lowercase__=None , lowercase__=False , lowercase__=False , lowercase__=0.0 , lowercase__=True , lowercase__=False , lowercase__=False , lowercase__=False , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__( bos_token_id=lowercase__ , pad_token_id=lowercase__ , eos_token_id=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , prefix=lowercase__ , vocab_size=lowercase__ , **lowercase__ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" snake_case_ : List[Any] = kwargs.pop("""question_encoder""" ) snake_case_ : Tuple = question_encoder_config.pop("""model_type""" ) snake_case_ : List[str] = kwargs.pop("""generator""" ) snake_case_ : List[str] = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig snake_case_ : List[str] = AutoConfig.for_model(lowercase__ , **lowercase__ ) snake_case_ : Tuple = AutoConfig.for_model(lowercase__ , **lowercase__ ) snake_case_ : int = reduce_loss snake_case_ : Optional[int] = label_smoothing snake_case_ : Dict = exclude_bos_score snake_case_ : Union[str, Any] = do_marginalize snake_case_ : Union[str, Any] = title_sep snake_case_ : int = doc_sep snake_case_ : int = n_docs snake_case_ : List[str] = max_combined_length snake_case_ : Tuple = dataset snake_case_ : int = dataset_split snake_case_ : str = index_name snake_case_ : List[str] = retrieval_vector_size snake_case_ : Dict = retrieval_batch_size snake_case_ : str = passages_path snake_case_ : Union[str, Any] = index_path snake_case_ : Tuple = use_dummy_dataset snake_case_ : Dict = output_retrieved snake_case_ : str = do_deduplication snake_case_ : Any = use_cache if self.forced_eos_token_id is None: snake_case_ : Any = getattr(self.generator , """forced_eos_token_id""" , lowercase__ ) @classmethod def __UpperCamelCase (cls , lowercase__ , lowercase__ , **lowercase__ ): return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Optional[Any] = copy.deepcopy(self.__dict__ ) snake_case_ : Any = self.question_encoder.to_dict() snake_case_ : Dict = self.generator.to_dict() snake_case_ : Union[str, Any] = self.__class__.model_type return output
48
1
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller a_ = 3 def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" print("""Generating primitive root of p""" ) while True: snake_case_ : Union[str, Any] = random.randrange(3 , SCREAMING_SNAKE_CASE__ ) if pow(SCREAMING_SNAKE_CASE__ , 2 , SCREAMING_SNAKE_CASE__ ) == 1: continue if pow(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) == 1: continue return g def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" print("""Generating prime p...""" ) snake_case_ : Dict = rabin_miller.generate_large_prime(SCREAMING_SNAKE_CASE__ ) # select large prime number. snake_case_ : Tuple = primitive_root(SCREAMING_SNAKE_CASE__ ) # one primitive root on modulo p. snake_case_ : Union[str, Any] = random.randrange(3 , SCREAMING_SNAKE_CASE__ ) # private_key -> have to be greater than 2 for safety. snake_case_ : List[str] = cryptomath.find_mod_inverse(pow(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = (key_size, e_a, e_a, p) snake_case_ : Any = (key_size, d) return public_key, private_key def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" if os.path.exists(f'{name}_pubkey.txt' ) or os.path.exists(f'{name}_privkey.txt' ): print("""\nWARNING:""" ) print( f'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n' """Use a different name or delete these files and re-run this program.""" ) sys.exit() snake_case_ , snake_case_ : Optional[int] = generate_key(SCREAMING_SNAKE_CASE__ ) print(f'\nWriting public key to file {name}_pubkey.txt...' ) with open(f'{name}_pubkey.txt' , """w""" ) as fo: fo.write(f'{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}' ) print(f'Writing private key to file {name}_privkey.txt...' ) with open(f'{name}_privkey.txt' , """w""" ) as fo: fo.write(f'{private_key[0]},{private_key[1]}' ) def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" print("""Making key files...""" ) make_key_files("""elgamal""" , 2_0_4_8 ) print("""Key files generation successful""" ) if __name__ == "__main__": main()
48
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """upernet""" def __init__(self , lowercase__=None , lowercase__=5_12 , lowercase__=0.02 , lowercase__=[1, 2, 3, 6] , lowercase__=True , lowercase__=0.4 , lowercase__=3_84 , lowercase__=2_56 , lowercase__=1 , lowercase__=False , lowercase__=2_55 , **lowercase__ , ): super().__init__(**lowercase__ ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) snake_case_ : List[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(lowercase__ , lowercase__ ): snake_case_ : Tuple = backbone_config.get("""model_type""" ) snake_case_ : List[str] = CONFIG_MAPPING[backbone_model_type] snake_case_ : List[Any] = config_class.from_dict(lowercase__ ) snake_case_ : List[Any] = backbone_config snake_case_ : Optional[Any] = hidden_size snake_case_ : Any = initializer_range snake_case_ : str = pool_scales snake_case_ : Dict = use_auxiliary_head snake_case_ : str = auxiliary_loss_weight snake_case_ : List[str] = auxiliary_in_channels snake_case_ : Optional[Any] = auxiliary_channels snake_case_ : Any = auxiliary_num_convs snake_case_ : List[Any] = auxiliary_concat_input snake_case_ : List[str] = loss_ignore_index def __UpperCamelCase (self ): snake_case_ : Dict = copy.deepcopy(self.__dict__ ) snake_case_ : Union[str, Any] = self.backbone_config.to_dict() snake_case_ : Any = self.__class__.model_type return output
48
1
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('''fixtures/test_sentencepiece.model''') a_ = {'''target_lang''': '''fi''', '''source_lang''': '''en'''} a_ = '''>>zh<<''' a_ = '''Helsinki-NLP/''' if is_torch_available(): a_ = '''pt''' elif is_tf_available(): a_ = '''tf''' else: a_ = '''jax''' @require_sentencepiece class __lowercase ( _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : str = MarianTokenizer _A : List[str] = False _A : List[str] = True def __UpperCamelCase (self ): super().setUp() snake_case_ : Optional[int] = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] snake_case_ : Any = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) snake_case_ : Any = Path(self.tmpdirname ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) snake_case_ : Optional[Any] = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase (self , **lowercase__ ): return MarianTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def __UpperCamelCase (self , lowercase__ ): return ( "This is a test", "This is a test", ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = """</s>""" snake_case_ : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__ ) , lowercase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__ ) , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(lowercase__ ) , 9 ) def __UpperCamelCase (self ): self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def __UpperCamelCase (self ): snake_case_ : Any = MarianTokenizer.from_pretrained(f'{ORG_NAME}opus-mt-en-de' ) snake_case_ : Tuple = en_de_tokenizer(["""I am a small frog"""] , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) snake_case_ : Dict = [38, 1_21, 14, 6_97, 3_88_48, 0] self.assertListEqual(lowercase__ , batch.input_ids[0] ) snake_case_ : Tuple = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(lowercase__ ) snake_case_ : str = [x.name for x in Path(lowercase__ ).glob("""*""" )] self.assertIn("""source.spm""" , lowercase__ ) MarianTokenizer.from_pretrained(lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = self.get_tokenizer() snake_case_ : List[str] = tok( ["""I am a small frog""" * 10_00, """I am a small frog"""] , padding=lowercase__ , truncation=lowercase__ , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(batch.input_ids.shape , (2, 5_12) ) def __UpperCamelCase (self ): snake_case_ : Tuple = self.get_tokenizer() snake_case_ : Tuple = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=lowercase__ , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def __UpperCamelCase (self ): # fmt: off snake_case_ : str = {"""input_ids""": [[4_34_95, 4_62, 20, 4_21_64, 13_69, 52, 4_64, 1_32, 17_03, 4_92, 13, 74_91, 3_89_99, 6, 8, 4_64, 1_32, 17_03, 4_92, 13, 46_69, 3_78_67, 13, 75_25, 27, 15_93, 9_88, 13, 3_39_72, 70_29, 6, 20, 82_51, 3_83, 2, 2_70, 58_66, 37_88, 2, 23_53, 82_51, 1_23_38, 2, 1_39_58, 3_87, 2, 36_29, 69_53, 1_88, 29_00, 2, 1_39_58, 80_11, 1_15_01, 23, 84_60, 40_73, 3_40_09, 20, 4_35, 1_14_39, 27, 8, 84_60, 40_73, 60_04, 20, 99_88, 3_75, 27, 33, 2_66, 19_45, 10_76, 13_50, 3_78_67, 32_88, 5, 5_77, 10_76, 43_74, 8, 50_82, 5, 2_64_53, 2_57, 5_56, 4_03, 2, 2_42, 1_32, 3_83, 3_16, 4_92, 8, 1_07_67, 6, 3_16, 3_04, 42_39, 3, 0], [1_48, 1_57_22, 19, 18_39, 12, 13_50, 13, 2_23_27, 50_82, 54_18, 4_75_67, 3_59_38, 59, 3_18, 1_95_52, 1_08, 21_83, 54, 1_49_76, 48_35, 32, 5_47, 11_14, 8, 3_15, 24_17, 5, 92, 1_90_88, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00], [36, 63_95, 1_25_70, 3_91_47, 1_15_97, 6, 2_66, 4, 4_54_05, 72_96, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase__ , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def __UpperCamelCase (self ): snake_case_ : Any = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) snake_case_ : Dict = """Tämä on testi""" snake_case_ : List[Any] = """This is a test""" snake_case_ : Optional[int] = [76, 7, 20_47, 2] snake_case_ : List[str] = [69, 12, 11, 9_40, 2] snake_case_ : Any = tokenizer(lowercase__ ).input_ids self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : str = tokenizer(text_target=lowercase__ ).input_ids self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : int = tokenizer.decode(lowercase__ , skip_special_tokens=lowercase__ ) self.assertEqual(lowercase__ , lowercase__ )
48
"""simple docstring""" import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask a_ = logging.getLogger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self , lowercase__=-1 ): # in NER datasets, the last column is usually reserved for NER label snake_case_ : Union[str, Any] = label_idx def __UpperCamelCase (self , lowercase__ , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): snake_case_ : List[str] = mode.value snake_case_ : List[Any] = os.path.join(lowercase__ , f'{mode}.txt' ) snake_case_ : Tuple = 1 snake_case_ : Any = [] with open(lowercase__ , encoding="""utf-8""" ) as f: snake_case_ : str = [] snake_case_ : List[Any] = [] for line in f: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) guid_index += 1 snake_case_ : Optional[Any] = [] snake_case_ : int = [] else: snake_case_ : Optional[Any] = line.split(""" """ ) words.append(splits[0] ) if len(lowercase__ ) > 1: labels.append(splits[self.label_idx].replace("""\n""" , """""" ) ) else: # Examples could have no label for mode = "test" labels.append("""O""" ) if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) return examples def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : str = 0 for line in test_input_reader: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": writer.write(lowercase__ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: snake_case_ : Optional[int] = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n""" writer.write(lowercase__ ) else: logger.warning("""Maximum sequence length exceeded: No prediction for '%s'.""" , line.split()[0] ) def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: snake_case_ : Dict = f.read().splitlines() if "O" not in labels: snake_case_ : List[Any] = ["""O"""] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self ): # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: snake_case_ : Any = f.read().splitlines() if "O" not in labels: snake_case_ : Tuple = ["""O"""] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __lowercase ( _UpperCAmelCase): """simple docstring""" def __UpperCamelCase (self , lowercase__ , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): snake_case_ : List[Any] = mode.value snake_case_ : Optional[int] = os.path.join(lowercase__ , f'{mode}.txt' ) snake_case_ : Tuple = 1 snake_case_ : str = [] with open(lowercase__ , encoding="""utf-8""" ) as f: for sentence in parse_incr(lowercase__ ): snake_case_ : Tuple = [] snake_case_ : Any = [] for token in sentence: words.append(token["""form"""] ) labels.append(token["""upos"""] ) assert len(lowercase__ ) == len(lowercase__ ) if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) guid_index += 1 return examples def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : Dict = 0 for sentence in parse_incr(lowercase__ ): snake_case_ : int = preds_list[example_id] snake_case_ : Dict = """""" for token in sentence: out += f'{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) ' out += "\n" writer.write(lowercase__ ) example_id += 1 def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
48
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : List[str] = """Salesforce/blip-image-captioning-base""" _A : List[Any] = ( """This is a tool that generates a description of an image. It takes an input named `image` which should be the """ """image to caption, and returns a text that contains the description in English.""" ) _A : Optional[int] = """image_captioner""" _A : Union[str, Any] = AutoModelForVisionaSeq _A : Any = ["""image"""] _A : Dict = ["""text"""] def __init__(self , *lowercase__ , **lowercase__ ): requires_backends(self , ["""vision"""] ) super().__init__(*lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ ): return self.pre_processor(images=lowercase__ , return_tensors="""pt""" ) def __UpperCamelCase (self , lowercase__ ): return self.model.generate(**lowercase__ ) def __UpperCamelCase (self , lowercase__ ): return self.pre_processor.batch_decode(lowercase__ , skip_special_tokens=lowercase__ )[0].strip()
48
"""simple docstring""" import random def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : Union[str, Any] = num - 1 snake_case_ : List[str] = 0 while s % 2 == 0: snake_case_ : str = s // 2 t += 1 for _ in range(5 ): snake_case_ : List[Any] = random.randrange(2 , num - 1 ) snake_case_ : Dict = pow(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if v != 1: snake_case_ : int = 0 while v != (num - 1): if i == t - 1: return False else: snake_case_ : str = i + 1 snake_case_ : int = (v**2) % num return True def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" if num < 2: return False snake_case_ : Dict = [ 2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1, 4_3, 4_7, 5_3, 5_9, 6_1, 6_7, 7_1, 7_3, 7_9, 8_3, 8_9, 9_7, 1_0_1, 1_0_3, 1_0_7, 1_0_9, 1_1_3, 1_2_7, 1_3_1, 1_3_7, 1_3_9, 1_4_9, 1_5_1, 1_5_7, 1_6_3, 1_6_7, 1_7_3, 1_7_9, 1_8_1, 1_9_1, 1_9_3, 1_9_7, 1_9_9, 2_1_1, 2_2_3, 2_2_7, 2_2_9, 2_3_3, 2_3_9, 2_4_1, 2_5_1, 2_5_7, 2_6_3, 2_6_9, 2_7_1, 2_7_7, 2_8_1, 2_8_3, 2_9_3, 3_0_7, 3_1_1, 3_1_3, 3_1_7, 3_3_1, 3_3_7, 3_4_7, 3_4_9, 3_5_3, 3_5_9, 3_6_7, 3_7_3, 3_7_9, 3_8_3, 3_8_9, 3_9_7, 4_0_1, 4_0_9, 4_1_9, 4_2_1, 4_3_1, 4_3_3, 4_3_9, 4_4_3, 4_4_9, 4_5_7, 4_6_1, 4_6_3, 4_6_7, 4_7_9, 4_8_7, 4_9_1, 4_9_9, 5_0_3, 5_0_9, 5_2_1, 5_2_3, 5_4_1, 5_4_7, 5_5_7, 5_6_3, 5_6_9, 5_7_1, 5_7_7, 5_8_7, 5_9_3, 5_9_9, 6_0_1, 6_0_7, 6_1_3, 6_1_7, 6_1_9, 6_3_1, 6_4_1, 6_4_3, 6_4_7, 6_5_3, 6_5_9, 6_6_1, 6_7_3, 6_7_7, 6_8_3, 6_9_1, 7_0_1, 7_0_9, 7_1_9, 7_2_7, 7_3_3, 7_3_9, 7_4_3, 7_5_1, 7_5_7, 7_6_1, 7_6_9, 7_7_3, 7_8_7, 7_9_7, 8_0_9, 8_1_1, 8_2_1, 8_2_3, 8_2_7, 8_2_9, 8_3_9, 8_5_3, 8_5_7, 8_5_9, 8_6_3, 8_7_7, 8_8_1, 8_8_3, 8_8_7, 9_0_7, 9_1_1, 9_1_9, 9_2_9, 9_3_7, 9_4_1, 9_4_7, 9_5_3, 9_6_7, 9_7_1, 9_7_7, 9_8_3, 9_9_1, 9_9_7, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int = 1_0_2_4 ): """simple docstring""" while True: snake_case_ : Tuple = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(SCREAMING_SNAKE_CASE__ ): return num if __name__ == "__main__": a_ = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
48
1
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" snake_case_ : Union[str, Any] = 0 if start < end: snake_case_ : Union[str, Any] = randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = a[end] snake_case_ : Dict = a[pivot] snake_case_ : Any = temp snake_case_ , snake_case_ : Dict = _in_place_partition(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , p - 1 ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE__ , p + 1 , SCREAMING_SNAKE_CASE__ ) return count def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" snake_case_ : Tuple = 0 snake_case_ : List[Any] = randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : Dict = a[end] snake_case_ : List[Any] = a[pivot] snake_case_ : Optional[Any] = temp snake_case_ : List[str] = start - 1 for index in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value snake_case_ : Any = new_pivot_index + 1 snake_case_ : Tuple = a[new_pivot_index] snake_case_ : Optional[int] = a[index] snake_case_ : Tuple = temp snake_case_ : Union[str, Any] = a[new_pivot_index + 1] snake_case_ : Union[str, Any] = a[end] snake_case_ : Union[str, Any] = temp return new_pivot_index + 1, count a_ = TemporaryFile() a_ = 100 # 1000 elements are to be sorted a_ , a_ = 0, 1 # mean and standard deviation a_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array a_ = np.load(outfile) a_ = len(M) - 1 a_ = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
48
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType a_ = logging.get_logger(__name__) a_ = { '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Dict = """deberta-v2""" def __init__(self , lowercase__=12_81_00 , lowercase__=15_36 , lowercase__=24 , lowercase__=24 , lowercase__=61_44 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_12 , lowercase__=0 , lowercase__=0.02 , lowercase__=1e-7 , lowercase__=False , lowercase__=-1 , lowercase__=0 , lowercase__=True , lowercase__=None , lowercase__=0 , lowercase__="gelu" , **lowercase__ , ): super().__init__(**lowercase__ ) snake_case_ : Union[str, Any] = hidden_size snake_case_ : str = num_hidden_layers snake_case_ : Tuple = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : Optional[int] = hidden_act snake_case_ : Union[str, Any] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : List[Any] = max_position_embeddings snake_case_ : Union[str, Any] = type_vocab_size snake_case_ : Union[str, Any] = initializer_range snake_case_ : List[Any] = relative_attention snake_case_ : Dict = max_relative_positions snake_case_ : Optional[int] = pad_token_id snake_case_ : List[str] = position_biased_input # Backwards compatibility if type(lowercase__ ) == str: snake_case_ : Union[str, Any] = [x.strip() for x in pos_att_type.lower().split("""|""" )] snake_case_ : Optional[int] = pos_att_type snake_case_ : List[str] = vocab_size snake_case_ : Tuple = layer_norm_eps snake_case_ : List[Any] = kwargs.get("""pooler_hidden_size""" , lowercase__ ) snake_case_ : List[str] = pooler_dropout snake_case_ : int = pooler_hidden_act class __lowercase ( _UpperCAmelCase): """simple docstring""" @property def __UpperCamelCase (self ): if self.task == "multiple-choice": snake_case_ : List[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case_ : int = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def __UpperCamelCase (self ): return 12 def __UpperCamelCase (self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , lowercase__ = 3 , lowercase__ = 40 , lowercase__ = 40 , lowercase__ = None , ): snake_case_ : str = super().generate_dummy_inputs(preprocessor=lowercase__ , framework=lowercase__ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
48
1
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
48
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
48
1
"""simple docstring""" import colorsys from PIL import Image # type: ignore def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : str = x snake_case_ : Dict = y for step in range(SCREAMING_SNAKE_CASE__ ): # noqa: B007 snake_case_ : List[str] = a * a - b * b + x snake_case_ : Optional[int] = 2 * a * b + y snake_case_ : int = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : float ): """simple docstring""" if distance == 1: return (0, 0, 0) else: return (2_5_5, 2_5_5, 2_5_5) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : float ): """simple docstring""" if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_5_5 ) for i in colorsys.hsv_to_rgb(SCREAMING_SNAKE_CASE__ , 1 , 1 ) ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int = 8_0_0 , SCREAMING_SNAKE_CASE__ : int = 6_0_0 , SCREAMING_SNAKE_CASE__ : float = -0.6 , SCREAMING_SNAKE_CASE__ : float = 0 , SCREAMING_SNAKE_CASE__ : float = 3.2 , SCREAMING_SNAKE_CASE__ : int = 5_0 , SCREAMING_SNAKE_CASE__ : bool = True , ): """simple docstring""" snake_case_ : Dict = Image.new("""RGB""" , (image_width, image_height) ) snake_case_ : Tuple = img.load() # loop through the image-coordinates for image_x in range(SCREAMING_SNAKE_CASE__ ): for image_y in range(SCREAMING_SNAKE_CASE__ ): # determine the figure-coordinates based on the image-coordinates snake_case_ : Union[str, Any] = figure_width / image_width * image_height snake_case_ : Optional[Any] = figure_center_x + (image_x / image_width - 0.5) * figure_width snake_case_ : int = figure_center_y + (image_y / image_height - 0.5) * figure_height snake_case_ : Optional[Any] = get_distance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: snake_case_ : List[Any] = get_color_coded_rgb(SCREAMING_SNAKE_CASE__ ) else: snake_case_ : int = get_black_and_white_rgb(SCREAMING_SNAKE_CASE__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure a_ = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
48
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('''fixtures/test_sentencepiece.model''') a_ = {'''target_lang''': '''fi''', '''source_lang''': '''en'''} a_ = '''>>zh<<''' a_ = '''Helsinki-NLP/''' if is_torch_available(): a_ = '''pt''' elif is_tf_available(): a_ = '''tf''' else: a_ = '''jax''' @require_sentencepiece class __lowercase ( _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : str = MarianTokenizer _A : List[str] = False _A : List[str] = True def __UpperCamelCase (self ): super().setUp() snake_case_ : Optional[int] = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] snake_case_ : Any = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) snake_case_ : Any = Path(self.tmpdirname ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) snake_case_ : Optional[Any] = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase (self , **lowercase__ ): return MarianTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def __UpperCamelCase (self , lowercase__ ): return ( "This is a test", "This is a test", ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = """</s>""" snake_case_ : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__ ) , lowercase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__ ) , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(lowercase__ ) , 9 ) def __UpperCamelCase (self ): self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def __UpperCamelCase (self ): snake_case_ : Any = MarianTokenizer.from_pretrained(f'{ORG_NAME}opus-mt-en-de' ) snake_case_ : Tuple = en_de_tokenizer(["""I am a small frog"""] , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) snake_case_ : Dict = [38, 1_21, 14, 6_97, 3_88_48, 0] self.assertListEqual(lowercase__ , batch.input_ids[0] ) snake_case_ : Tuple = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(lowercase__ ) snake_case_ : str = [x.name for x in Path(lowercase__ ).glob("""*""" )] self.assertIn("""source.spm""" , lowercase__ ) MarianTokenizer.from_pretrained(lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = self.get_tokenizer() snake_case_ : List[str] = tok( ["""I am a small frog""" * 10_00, """I am a small frog"""] , padding=lowercase__ , truncation=lowercase__ , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(batch.input_ids.shape , (2, 5_12) ) def __UpperCamelCase (self ): snake_case_ : Tuple = self.get_tokenizer() snake_case_ : Tuple = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=lowercase__ , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def __UpperCamelCase (self ): # fmt: off snake_case_ : str = {"""input_ids""": [[4_34_95, 4_62, 20, 4_21_64, 13_69, 52, 4_64, 1_32, 17_03, 4_92, 13, 74_91, 3_89_99, 6, 8, 4_64, 1_32, 17_03, 4_92, 13, 46_69, 3_78_67, 13, 75_25, 27, 15_93, 9_88, 13, 3_39_72, 70_29, 6, 20, 82_51, 3_83, 2, 2_70, 58_66, 37_88, 2, 23_53, 82_51, 1_23_38, 2, 1_39_58, 3_87, 2, 36_29, 69_53, 1_88, 29_00, 2, 1_39_58, 80_11, 1_15_01, 23, 84_60, 40_73, 3_40_09, 20, 4_35, 1_14_39, 27, 8, 84_60, 40_73, 60_04, 20, 99_88, 3_75, 27, 33, 2_66, 19_45, 10_76, 13_50, 3_78_67, 32_88, 5, 5_77, 10_76, 43_74, 8, 50_82, 5, 2_64_53, 2_57, 5_56, 4_03, 2, 2_42, 1_32, 3_83, 3_16, 4_92, 8, 1_07_67, 6, 3_16, 3_04, 42_39, 3, 0], [1_48, 1_57_22, 19, 18_39, 12, 13_50, 13, 2_23_27, 50_82, 54_18, 4_75_67, 3_59_38, 59, 3_18, 1_95_52, 1_08, 21_83, 54, 1_49_76, 48_35, 32, 5_47, 11_14, 8, 3_15, 24_17, 5, 92, 1_90_88, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00], [36, 63_95, 1_25_70, 3_91_47, 1_15_97, 6, 2_66, 4, 4_54_05, 72_96, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase__ , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def __UpperCamelCase (self ): snake_case_ : Any = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) snake_case_ : Dict = """Tämä on testi""" snake_case_ : List[Any] = """This is a test""" snake_case_ : Optional[int] = [76, 7, 20_47, 2] snake_case_ : List[str] = [69, 12, 11, 9_40, 2] snake_case_ : Any = tokenizer(lowercase__ ).input_ids self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : str = tokenizer(text_target=lowercase__ ).input_ids self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : int = tokenizer.decode(lowercase__ , skip_special_tokens=lowercase__ ) self.assertEqual(lowercase__ , lowercase__ )
48
1
"""simple docstring""" from manim import * class __lowercase ( _UpperCAmelCase): """simple docstring""" def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = Rectangle(height=0.5 , width=0.5 ) snake_case_ : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) snake_case_ : Optional[Any] = [mem.copy() for i in range(6 )] snake_case_ : str = [mem.copy() for i in range(6 )] snake_case_ : str = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : Any = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[str] = VGroup(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[Any] = Text("""CPU""" , font_size=24 ) snake_case_ : Tuple = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowercase__ ) snake_case_ : List[Any] = [mem.copy() for i in range(4 )] snake_case_ : Tuple = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[str] = Text("""GPU""" , font_size=24 ) snake_case_ : Any = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) gpu.move_to([-1, -1, 0] ) self.add(lowercase__ ) snake_case_ : Optional[Any] = [mem.copy() for i in range(6 )] snake_case_ : List[Any] = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : Dict = Text("""Model""" , font_size=24 ) snake_case_ : int = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) model.move_to([3, -1.0, 0] ) self.add(lowercase__ ) snake_case_ : Dict = [] for i, rect in enumerate(lowercase__ ): rect.set_stroke(lowercase__ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) snake_case_ : List[str] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowercase__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowercase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase__ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase__ , buff=0.0 ) self.add(lowercase__ ) cpu_targs.append(lowercase__ ) snake_case_ : List[str] = [mem.copy() for i in range(6 )] snake_case_ : List[str] = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : str = Text("""Loaded Checkpoint""" , font_size=24 ) snake_case_ : Any = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , aligned_edge=lowercase__ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) snake_case_ : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) snake_case_ : Union[str, Any] = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowercase__ , lowercase__ ) snake_case_ : List[Any] = MarkupText( f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(lowercase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) snake_case_ : List[Any] = MarkupText( f'Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowercase__ ) , Write(lowercase__ ) ) self.play(Write(lowercase__ , run_time=1 ) , Create(lowercase__ , run_time=1 ) ) snake_case_ : Optional[int] = [] snake_case_ : List[str] = [] for i, rect in enumerate(lowercase__ ): snake_case_ : Optional[Any] = fill.copy().set_fill(lowercase__ , opacity=0.7 ) target.move_to(lowercase__ ) first_animations.append(GrowFromCenter(lowercase__ , run_time=1 ) ) snake_case_ : List[Any] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(lowercase__ , run_time=1.5 ) ) self.play(*lowercase__ ) self.play(*lowercase__ ) self.wait()
48
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCAmelCase) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True}) _A : ClassVar[Features] = Features({"""audio""": Audio()}) _A : ClassVar[Features] = Features({"""transcription""": Value("""string""")}) _A : str = "audio" _A : str = "transcription" def __UpperCamelCase (self , lowercase__ ): if self.audio_column not in features: raise ValueError(f'Column {self.audio_column} is not present in features.' ) if not isinstance(features[self.audio_column] , lowercase__ ): raise ValueError(f'Column {self.audio_column} is not an Audio type.' ) snake_case_ : Optional[int] = copy.deepcopy(self ) snake_case_ : Tuple = self.input_schema.copy() snake_case_ : List[str] = features[self.audio_column] snake_case_ : Any = input_schema return task_template @property def __UpperCamelCase (self ): return {self.audio_column: "audio", self.transcription_column: "transcription"}
48
1
"""simple docstring""" import heapq import sys import numpy as np a_ = tuple[int, int] class __lowercase : """simple docstring""" def __init__(self ): snake_case_ : Union[str, Any] = [] snake_case_ : List[str] = set() def __UpperCamelCase (self ): if not self.empty(): return self.elements[0][0] else: return float("""inf""" ) def __UpperCamelCase (self ): return len(self.elements ) == 0 def __UpperCamelCase (self , lowercase__ , lowercase__ ): if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(lowercase__ ) else: # update # print("update", item) snake_case_ : Optional[int] = [] ((snake_case_) , (snake_case_)) : int = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((snake_case_) , (snake_case_)) : Dict = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def __UpperCamelCase (self , lowercase__ ): if item in self.set: self.set.remove(lowercase__ ) snake_case_ : List[str] = [] ((snake_case_) , (snake_case_)) : List[Any] = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((snake_case_) , (snake_case_)) : int = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def __UpperCamelCase (self ): return self.elements[0][1] def __UpperCamelCase (self ): ((snake_case_) , (snake_case_)) : Dict = heapq.heappop(self.elements ) self.set.remove(lowercase__ ) return (priority, item) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : TPos , SCREAMING_SNAKE_CASE__ : TPos ): """simple docstring""" snake_case_ : Optional[Any] = np.array(SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = np.array(SCREAMING_SNAKE_CASE__ ) return np.linalg.norm(a - b ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : TPos , SCREAMING_SNAKE_CASE__ : TPos ): """simple docstring""" return consistent_heuristic(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) // t def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : TPos , SCREAMING_SNAKE_CASE__ : TPos ): """simple docstring""" return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : TPos , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : TPos , SCREAMING_SNAKE_CASE__ : dict[TPos, float] ): """simple docstring""" snake_case_ : int = g_function[start] + Wa * heuristics[i](SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return ans def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Optional[Any] = np.chararray((n, n) ) for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(SCREAMING_SNAKE_CASE__ ): snake_case_ : Dict = """*""" for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(SCREAMING_SNAKE_CASE__ ): if (j, (n - 1) - i) in blocks: snake_case_ : Dict = """#""" snake_case_ : Dict = """-""" snake_case_ : List[Any] = back_pointer[goal] while x != start: ((snake_case_) , (snake_case_)) : Union[str, Any] = x # print(x) snake_case_ : List[Any] = """-""" snake_case_ : Optional[Any] = back_pointer[x] snake_case_ : Optional[int] = """-""" for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(SCREAMING_SNAKE_CASE__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=""" """ ) print("""<-- End position""" , end=""" """ ) else: print(grid[i][j] , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) print("""PATH TAKEN BY THE ALGORITHM IS:-""" ) snake_case_ : int = back_pointer[goal] while x != start: print(SCREAMING_SNAKE_CASE__ , end=""" """ ) snake_case_ : int = back_pointer[x] print(SCREAMING_SNAKE_CASE__ ) sys.exit() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : TPos ): """simple docstring""" if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , ): """simple docstring""" for itera in range(SCREAMING_SNAKE_CASE__ ): open_list[itera].remove_element(SCREAMING_SNAKE_CASE__ ) # print("s", s) # print("j", j) ((snake_case_) , (snake_case_)) : Optional[Any] = s snake_case_ : Union[str, Any] = (x - 1, y) snake_case_ : Any = (x + 1, y) snake_case_ : Tuple = (x, y + 1) snake_case_ : int = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(SCREAMING_SNAKE_CASE__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(SCREAMING_SNAKE_CASE__ ) snake_case_ : Dict = -1 snake_case_ : Union[str, Any] = float("""inf""" ) if valid(SCREAMING_SNAKE_CASE__ ) and g_function[neighbours] > g_function[s] + 1: snake_case_ : Optional[Any] = g_function[s] + 1 snake_case_ : Tuple = s if neighbours not in close_list_anchor: open_list[0].put(SCREAMING_SNAKE_CASE__ , key(SCREAMING_SNAKE_CASE__ , 0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) if neighbours not in close_list_inad: for var in range(1 , SCREAMING_SNAKE_CASE__ ): if key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) <= Wa * key( SCREAMING_SNAKE_CASE__ , 0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): open_list[j].put( SCREAMING_SNAKE_CASE__ , key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : int = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(1_5 , 2_0 ): some_list.append((x, 1_7) ) for x in range(1_0 , 1_9 ): for y in range(1 , 1_5 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(1_2 , 1_9 ): some_list.append((x, y) ) for x in range(3 , 1_3 ): for y in range(1_6 , 1_9 ): some_list.append((x, y) ) return some_list a_ = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} a_ = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] a_ = make_common_ground() a_ = blocks_blk # hyper parameters a_ = 1 a_ = 1 a_ = 20 a_ = 3 # one consistent and two other inconsistent # start and end destination a_ = (0, 0) a_ = (n - 1, n - 1) a_ = 1 def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : TPos , SCREAMING_SNAKE_CASE__ : TPos , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : Tuple = {start: 0, goal: float("""inf""" )} snake_case_ : Tuple = {start: -1, goal: -1} snake_case_ : int = [] snake_case_ : str = set() for i in range(SCREAMING_SNAKE_CASE__ ): open_list.append(PriorityQueue() ) open_list[i].put(SCREAMING_SNAKE_CASE__ , key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) snake_case_ : list[int] = [] snake_case_ : list[int] = [] while open_list[0].minkey() < float("""inf""" ): for i in range(1 , SCREAMING_SNAKE_CASE__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("""inf""" ): do_something(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: snake_case_ , snake_case_ : Dict = open_list[i].top_show() visited.add(SCREAMING_SNAKE_CASE__ ) expand_state( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) close_list_inad.append(SCREAMING_SNAKE_CASE__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("""inf""" ): do_something(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: snake_case_ : Optional[int] = open_list[0].top_show() visited.add(SCREAMING_SNAKE_CASE__ ) expand_state( SCREAMING_SNAKE_CASE__ , 0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) close_list_anchor.append(SCREAMING_SNAKE_CASE__ ) print("""No path found to goal""" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(SCREAMING_SNAKE_CASE__ ): if (j, i) in blocks: print("""#""" , end=""" """ ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("""*""" , end=""" """ ) else: print("""-""" , end=""" """ ) else: print("""*""" , end=""" """ ) if (j, i) == (n - 1, n - 1): print("""<-- End position""" , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
48
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : int = ["""pixel_values"""] def __init__(self , lowercase__ = True , lowercase__ = None , lowercase__ = 0.9 , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = True , lowercase__ = None , lowercase__ = 1 / 2_55 , lowercase__ = True , lowercase__ = True , lowercase__ = None , lowercase__ = None , **lowercase__ , ): super().__init__(**lowercase__ ) snake_case_ : Tuple = size if size is not None else {"""shortest_edge""": 2_24} snake_case_ : Union[str, Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) snake_case_ : str = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} snake_case_ : Dict = get_size_dict(lowercase__ , param_name="""crop_size""" ) snake_case_ : Union[str, Any] = do_resize snake_case_ : List[str] = size snake_case_ : str = crop_pct snake_case_ : str = resample snake_case_ : Optional[Any] = do_center_crop snake_case_ : Dict = crop_size snake_case_ : int = do_rescale snake_case_ : Optional[int] = rescale_factor snake_case_ : str = do_normalize snake_case_ : str = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN snake_case_ : List[str] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = None , **lowercase__ , ): snake_case_ : Tuple = get_size_dict(lowercase__ , default_to_square=lowercase__ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f'size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) if crop_pct is not None: if "shortest_edge" in size: snake_case_ : Optional[int] = int(size["""shortest_edge"""] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: snake_case_ : Dict = int(size["""height"""] / crop_pct ) else: snake_case_ : List[str] = (int(size["""height"""] / crop_pct ), int(size["""width"""] / crop_pct )) else: raise ValueError("""Invalid size for resize: {}""".format(lowercase__ ) ) snake_case_ : List[Any] = get_resize_output_image_size(lowercase__ , size=lowercase__ , default_to_square=lowercase__ ) else: if "shortest_edge" in size: snake_case_ : Optional[int] = get_resize_output_image_size(lowercase__ , size=size["""shortest_edge"""] , default_to_square=lowercase__ ) elif "height" in size and "width" in size: snake_case_ : int = (size["""height"""], size["""width"""]) else: raise ValueError("""Invalid size for resize: {}""".format(lowercase__ ) ) return resize(lowercase__ , size=lowercase__ , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): snake_case_ : int = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(f'size must contain \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(lowercase__ , size=(size["""height"""], size["""width"""]) , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return normalize(lowercase__ , mean=lowercase__ , std=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ): snake_case_ : str = do_resize if do_resize is not None else self.do_resize snake_case_ : Any = crop_pct if crop_pct is not None else self.crop_pct snake_case_ : List[Any] = resample if resample is not None else self.resample snake_case_ : str = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : str = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : str = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : List[Any] = image_mean if image_mean is not None else self.image_mean snake_case_ : int = image_std if image_std is not None else self.image_std snake_case_ : List[Any] = size if size is not None else self.size snake_case_ : Optional[Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) snake_case_ : List[Any] = crop_size if crop_size is not None else self.crop_size snake_case_ : int = get_size_dict(lowercase__ , param_name="""crop_size""" ) snake_case_ : List[str] = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_pct is None: raise ValueError("""Crop_pct must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case_ : int = [to_numpy_array(lowercase__ ) for image in images] if do_resize: snake_case_ : str = [self.resize(image=lowercase__ , size=lowercase__ , crop_pct=lowercase__ , resample=lowercase__ ) for image in images] if do_center_crop: snake_case_ : Optional[int] = [self.center_crop(image=lowercase__ , size=lowercase__ ) for image in images] if do_rescale: snake_case_ : List[Any] = [self.rescale(image=lowercase__ , scale=lowercase__ ) for image in images] if do_normalize: snake_case_ : Optional[Any] = [self.normalize(image=lowercase__ , mean=lowercase__ , std=lowercase__ ) for image in images] snake_case_ : List[Any] = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] snake_case_ : Dict = {"""pixel_values""": images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
48
1
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
48
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: a_ = None a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} a_ = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } a_ = { '''facebook/mbart-large-en-ro''': 1024, '''facebook/mbart-large-cc25''': 1024, } # fmt: off a_ = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Dict = VOCAB_FILES_NAMES _A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _A : str = ["""input_ids""", """attention_mask"""] _A : Tuple = MBartTokenizer _A : List[int] = [] _A : List[int] = [] def __init__(self , lowercase__=None , lowercase__=None , lowercase__="<s>" , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<mask>" , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ , ): # Mask token behave like a normal word, i.e. include the space before it snake_case_ : int = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token super().__init__( vocab_file=lowercase__ , tokenizer_file=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , unk_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , src_lang=lowercase__ , tgt_lang=lowercase__ , additional_special_tokens=lowercase__ , **lowercase__ , ) snake_case_ : Dict = vocab_file snake_case_ : Optional[int] = False if not self.vocab_file else True snake_case_ : Optional[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) snake_case_ : Any = { lang_code: self.convert_tokens_to_ids(lowercase__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } snake_case_ : Tuple = src_lang if src_lang is not None else """en_XX""" snake_case_ : Tuple = self.convert_tokens_to_ids(self._src_lang ) snake_case_ : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __UpperCamelCase (self ): return self._src_lang @src_lang.setter def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): snake_case_ : List[Any] = [self.sep_token_id] snake_case_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , **lowercase__ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) snake_case_ : int = src_lang snake_case_ : List[str] = self(lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , **lowercase__ ) snake_case_ : List[str] = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Union[str, Any] = tgt_lang_id return inputs def __UpperCamelCase (self , lowercase__ , lowercase__ = "en_XX" , lowercase__ = None , lowercase__ = "ro_RO" , **lowercase__ , ): snake_case_ : List[str] = src_lang snake_case_ : int = tgt_lang return super().prepare_seqaseq_batch(lowercase__ , lowercase__ , **lowercase__ ) def __UpperCamelCase (self ): return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCamelCase (self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Tuple = [] snake_case_ : List[Any] = [self.eos_token_id, self.cur_lang_code] snake_case_ : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Optional[int] = [] snake_case_ : Optional[Any] = [self.eos_token_id, self.cur_lang_code] snake_case_ : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ : int = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowercase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory.' ) return snake_case_ : List[str] = os.path.join( lowercase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ): copyfile(self.vocab_file , lowercase__ ) return (out_vocab_file,)
48
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = { '''configuration_rembert''': ['''REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RemBertConfig''', '''RemBertOnnxConfig'''] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['''RemBertTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['''RemBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RemBertForCausalLM''', '''RemBertForMaskedLM''', '''RemBertForMultipleChoice''', '''RemBertForQuestionAnswering''', '''RemBertForSequenceClassification''', '''RemBertForTokenClassification''', '''RemBertLayer''', '''RemBertModel''', '''RemBertPreTrainedModel''', '''load_tf_weights_in_rembert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRemBertForCausalLM''', '''TFRemBertForMaskedLM''', '''TFRemBertForMultipleChoice''', '''TFRemBertForQuestionAnswering''', '''TFRemBertForSequenceClassification''', '''TFRemBertForTokenClassification''', '''TFRemBertLayer''', '''TFRemBertModel''', '''TFRemBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
48
"""simple docstring""" import argparse import hashlib # hashlib is only used inside the Test class import struct class __lowercase : """simple docstring""" def __init__(self , lowercase__ ): snake_case_ : Union[str, Any] = data snake_case_ : List[str] = [0X6_7_4_5_2_3_0_1, 0Xe_f_c_d_a_b_8_9, 0X9_8_b_a_d_c_f_e, 0X1_0_3_2_5_4_7_6, 0Xc_3_d_2_e_1_f_0] @staticmethod def __UpperCamelCase (lowercase__ , lowercase__ ): return ((n << b) | (n >> (32 - b))) & 0Xf_f_f_f_f_f_f_f def __UpperCamelCase (self ): snake_case_ : Any = B"""\x80""" + B"""\x00""" * (63 - (len(self.data ) + 8) % 64) snake_case_ : Tuple = self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def __UpperCamelCase (self ): return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = list(struct.unpack(""">16L""" , lowercase__ ) ) + [0] * 64 for i in range(16 , 80 ): snake_case_ : Dict = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def __UpperCamelCase (self ): snake_case_ : List[Any] = self.padding() snake_case_ : Any = self.split_blocks() for block in self.blocks: snake_case_ : Any = self.expand_block(lowercase__ ) snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = self.h for i in range(0 , 80 ): if 0 <= i < 20: snake_case_ : Optional[Any] = (b & c) | ((~b) & d) snake_case_ : List[str] = 0X5_a_8_2_7_9_9_9 elif 20 <= i < 40: snake_case_ : Union[str, Any] = b ^ c ^ d snake_case_ : Tuple = 0X6_e_d_9_e_b_a_1 elif 40 <= i < 60: snake_case_ : str = (b & c) | (b & d) | (c & d) snake_case_ : List[str] = 0X8_f_1_b_b_c_d_c elif 60 <= i < 80: snake_case_ : Tuple = b ^ c ^ d snake_case_ : str = 0Xc_a_6_2_c_1_d_6 snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Optional[Any] = ( self.rotate(lowercase__ , 5 ) + f + e + k + expanded_block[i] & 0Xf_f_f_f_f_f_f_f, a, self.rotate(lowercase__ , 30 ), c, d, ) snake_case_ : Any = ( self.h[0] + a & 0Xf_f_f_f_f_f_f_f, self.h[1] + b & 0Xf_f_f_f_f_f_f_f, self.h[2] + c & 0Xf_f_f_f_f_f_f_f, self.h[3] + d & 0Xf_f_f_f_f_f_f_f, self.h[4] + e & 0Xf_f_f_f_f_f_f_f, ) return ("{:08x}" * 5).format(*self.h ) def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Union[str, Any] = b"""Test String""" assert SHAaHash(SCREAMING_SNAKE_CASE__ ).final_hash() == hashlib.shaa(SCREAMING_SNAKE_CASE__ ).hexdigest() # noqa: S324 def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : int = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument("""--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) snake_case_ : Optional[int] = parser.parse_args() snake_case_ : Optional[int] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: snake_case_ : List[str] = f.read() else: snake_case_ : Dict = bytes(SCREAMING_SNAKE_CASE__ , """utf-8""" ) print(SHAaHash(SCREAMING_SNAKE_CASE__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
48
1
"""simple docstring""" from __future__ import annotations import math def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" if num <= 0: snake_case_ : Tuple = f'{num}: Invalid input, please enter a positive integer.' raise ValueError(SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = [True] * (num + 1) snake_case_ : List[Any] = [] snake_case_ : Union[str, Any] = 2 snake_case_ : List[str] = int(math.sqrt(SCREAMING_SNAKE_CASE__ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(SCREAMING_SNAKE_CASE__ ) # Set multiples of start be False for i in range(start * start , num + 1 , SCREAMING_SNAKE_CASE__ ): if sieve[i] is True: snake_case_ : Union[str, Any] = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(SCREAMING_SNAKE_CASE__ ) return prime if __name__ == "__main__": print(prime_sieve(int(input('''Enter a positive integer: ''').strip())))
48
"""simple docstring""" from manim import * class __lowercase ( _UpperCAmelCase): """simple docstring""" def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = Rectangle(height=0.5 , width=0.5 ) snake_case_ : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) snake_case_ : Optional[Any] = [mem.copy() for i in range(6 )] snake_case_ : str = [mem.copy() for i in range(6 )] snake_case_ : str = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : Any = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[str] = VGroup(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[Any] = Text("""CPU""" , font_size=24 ) snake_case_ : Tuple = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowercase__ ) snake_case_ : List[Any] = [mem.copy() for i in range(4 )] snake_case_ : Tuple = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[str] = Text("""GPU""" , font_size=24 ) snake_case_ : Any = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) gpu.move_to([-1, -1, 0] ) self.add(lowercase__ ) snake_case_ : Optional[Any] = [mem.copy() for i in range(6 )] snake_case_ : List[Any] = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : Dict = Text("""Model""" , font_size=24 ) snake_case_ : int = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) model.move_to([3, -1.0, 0] ) self.add(lowercase__ ) snake_case_ : Dict = [] for i, rect in enumerate(lowercase__ ): rect.set_stroke(lowercase__ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) snake_case_ : List[str] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowercase__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowercase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase__ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase__ , buff=0.0 ) self.add(lowercase__ ) cpu_targs.append(lowercase__ ) snake_case_ : List[str] = [mem.copy() for i in range(6 )] snake_case_ : List[str] = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : str = Text("""Loaded Checkpoint""" , font_size=24 ) snake_case_ : Any = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , aligned_edge=lowercase__ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) snake_case_ : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) snake_case_ : Union[str, Any] = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowercase__ , lowercase__ ) snake_case_ : List[Any] = MarkupText( f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(lowercase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) snake_case_ : List[Any] = MarkupText( f'Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowercase__ ) , Write(lowercase__ ) ) self.play(Write(lowercase__ , run_time=1 ) , Create(lowercase__ , run_time=1 ) ) snake_case_ : Optional[int] = [] snake_case_ : List[str] = [] for i, rect in enumerate(lowercase__ ): snake_case_ : Optional[Any] = fill.copy().set_fill(lowercase__ , opacity=0.7 ) target.move_to(lowercase__ ) first_animations.append(GrowFromCenter(lowercase__ , run_time=1 ) ) snake_case_ : List[Any] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(lowercase__ , run_time=1.5 ) ) self.play(*lowercase__ ) self.play(*lowercase__ ) self.wait()
48
1
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCAmelCase) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True}) _A : ClassVar[Features] = Features({"""audio""": Audio()}) _A : ClassVar[Features] = Features({"""transcription""": Value("""string""")}) _A : str = "audio" _A : str = "transcription" def __UpperCamelCase (self , lowercase__ ): if self.audio_column not in features: raise ValueError(f'Column {self.audio_column} is not present in features.' ) if not isinstance(features[self.audio_column] , lowercase__ ): raise ValueError(f'Column {self.audio_column} is not an Audio type.' ) snake_case_ : Optional[int] = copy.deepcopy(self ) snake_case_ : Tuple = self.input_schema.copy() snake_case_ : List[str] = features[self.audio_column] snake_case_ : Any = input_schema return task_template @property def __UpperCamelCase (self ): return {self.audio_column: "audio", self.transcription_column: "transcription"}
48
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" snake_case_ : Union[str, Any] = 0 if start < end: snake_case_ : Union[str, Any] = randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = a[end] snake_case_ : Dict = a[pivot] snake_case_ : Any = temp snake_case_ , snake_case_ : Dict = _in_place_partition(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , p - 1 ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE__ , p + 1 , SCREAMING_SNAKE_CASE__ ) return count def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" snake_case_ : Tuple = 0 snake_case_ : List[Any] = randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : Dict = a[end] snake_case_ : List[Any] = a[pivot] snake_case_ : Optional[Any] = temp snake_case_ : List[str] = start - 1 for index in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value snake_case_ : Any = new_pivot_index + 1 snake_case_ : Tuple = a[new_pivot_index] snake_case_ : Optional[int] = a[index] snake_case_ : Tuple = temp snake_case_ : Union[str, Any] = a[new_pivot_index + 1] snake_case_ : Union[str, Any] = a[end] snake_case_ : Union[str, Any] = temp return new_pivot_index + 1, count a_ = TemporaryFile() a_ = 100 # 1000 elements are to be sorted a_ , a_ = 0, 1 # mean and standard deviation a_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array a_ = np.load(outfile) a_ = len(M) - 1 a_ = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
48
1
"""simple docstring""" from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
48
"""simple docstring""" import random def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : bool = False ): """simple docstring""" snake_case_ : dict = {i: [] for i in range(SCREAMING_SNAKE_CASE__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(SCREAMING_SNAKE_CASE__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(i + 1 , SCREAMING_SNAKE_CASE__ ): if random.random() < probability: graph[i].append(SCREAMING_SNAKE_CASE__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(SCREAMING_SNAKE_CASE__ ) return graph def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" return { i: [j for j in range(SCREAMING_SNAKE_CASE__ ) if i != j] for i in range(SCREAMING_SNAKE_CASE__ ) } if __name__ == "__main__": import doctest doctest.testmod()
48
1
"""simple docstring""" # Imports import numpy as np class __lowercase : """simple docstring""" def __init__(self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None ): self.set_matricies(red=lowercase__ , green=lowercase__ , blue=lowercase__ , red_edge=lowercase__ , nir=lowercase__ ) def __UpperCamelCase (self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None ): if red is not None: snake_case_ : int = red if green is not None: snake_case_ : List[Any] = green if blue is not None: snake_case_ : Tuple = blue if red_edge is not None: snake_case_ : Any = red_edge if nir is not None: snake_case_ : Optional[int] = nir return True def __UpperCamelCase (self , lowercase__="" , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None ): self.set_matricies(red=lowercase__ , green=lowercase__ , blue=lowercase__ , red_edge=lowercase__ , nir=lowercase__ ) snake_case_ : Union[str, Any] = { """ARVI2""": self.arvaa, """CCCI""": self.ccci, """CVI""": self.cvi, """GLI""": self.gli, """NDVI""": self.ndvi, """BNDVI""": self.bndvi, """redEdgeNDVI""": self.red_edge_ndvi, """GNDVI""": self.gndvi, """GBNDVI""": self.gbndvi, """GRNDVI""": self.grndvi, """RBNDVI""": self.rbndvi, """PNDVI""": self.pndvi, """ATSAVI""": self.atsavi, """BWDRVI""": self.bwdrvi, """CIgreen""": self.ci_green, """CIrededge""": self.ci_rededge, """CI""": self.ci, """CTVI""": self.ctvi, """GDVI""": self.gdvi, """EVI""": self.evi, """GEMI""": self.gemi, """GOSAVI""": self.gosavi, """GSAVI""": self.gsavi, """Hue""": self.hue, """IVI""": self.ivi, """IPVI""": self.ipvi, """I""": self.i, """RVI""": self.rvi, """MRVI""": self.mrvi, """MSAVI""": self.m_savi, """NormG""": self.norm_g, """NormNIR""": self.norm_nir, """NormR""": self.norm_r, """NGRDI""": self.ngrdi, """RI""": self.ri, """S""": self.s, """IF""": self._if, """DVI""": self.dvi, """TVI""": self.tvi, """NDRE""": self.ndre, } try: return funcs[index]() except KeyError: print("""Index not in the list!""" ) return False def __UpperCamelCase (self ): return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def __UpperCamelCase (self ): return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def __UpperCamelCase (self ): return self.nir * (self.red / (self.green**2)) def __UpperCamelCase (self ): return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def __UpperCamelCase (self ): return (self.nir - self.red) / (self.nir + self.red) def __UpperCamelCase (self ): return (self.nir - self.blue) / (self.nir + self.blue) def __UpperCamelCase (self ): return (self.redEdge - self.red) / (self.redEdge + self.red) def __UpperCamelCase (self ): return (self.nir - self.green) / (self.nir + self.green) def __UpperCamelCase (self ): return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def __UpperCamelCase (self ): return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def __UpperCamelCase (self ): return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def __UpperCamelCase (self ): return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def __UpperCamelCase (self , lowercase__=0.08 , lowercase__=1.22 , lowercase__=0.03 ): return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def __UpperCamelCase (self ): return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def __UpperCamelCase (self ): return (self.nir / self.green) - 1 def __UpperCamelCase (self ): return (self.nir / self.redEdge) - 1 def __UpperCamelCase (self ): return (self.red - self.blue) / self.red def __UpperCamelCase (self ): snake_case_ : Tuple = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def __UpperCamelCase (self ): return self.nir - self.green def __UpperCamelCase (self ): return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def __UpperCamelCase (self ): snake_case_ : List[Any] = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def __UpperCamelCase (self , lowercase__=0.16 ): return (self.nir - self.green) / (self.nir + self.green + y) def __UpperCamelCase (self , lowercase__=0.5 ): return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def __UpperCamelCase (self ): return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def __UpperCamelCase (self , lowercase__=None , lowercase__=None ): return (self.nir - b) / (a * self.red) def __UpperCamelCase (self ): return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def __UpperCamelCase (self ): return (self.red + self.green + self.blue) / 30.5 def __UpperCamelCase (self ): return self.nir / self.red def __UpperCamelCase (self ): return (self.rvi() - 1) / (self.rvi() + 1) def __UpperCamelCase (self ): return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def __UpperCamelCase (self ): return self.green / (self.nir + self.red + self.green) def __UpperCamelCase (self ): return self.nir / (self.nir + self.red + self.green) def __UpperCamelCase (self ): return self.red / (self.nir + self.red + self.green) def __UpperCamelCase (self ): return (self.green - self.red) / (self.green + self.red) def __UpperCamelCase (self ): return (self.red - self.green) / (self.red + self.green) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) snake_case_ : Optional[Any] = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def __UpperCamelCase (self ): return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def __UpperCamelCase (self ): return self.nir / self.red def __UpperCamelCase (self ): return (self.ndvi() + 0.5) ** (1 / 2) def __UpperCamelCase (self ): return (self.nir - self.redEdge) / (self.nir + self.redEdge)
48
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json''' ), } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """dpr""" def __init__(self , lowercase__=3_05_22 , lowercase__=7_68 , lowercase__=12 , lowercase__=12 , lowercase__=30_72 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_12 , lowercase__=2 , lowercase__=0.02 , lowercase__=1e-12 , lowercase__=0 , lowercase__="absolute" , lowercase__ = 0 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , **lowercase__ ) snake_case_ : List[Any] = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : Tuple = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : int = hidden_act snake_case_ : Dict = intermediate_size snake_case_ : int = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : str = max_position_embeddings snake_case_ : List[str] = type_vocab_size snake_case_ : List[str] = initializer_range snake_case_ : Optional[int] = layer_norm_eps snake_case_ : Union[str, Any] = projection_dim snake_case_ : str = position_embedding_type
48
1
"""simple docstring""" import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" snake_case_ : int = fname.split(os.path.sep )[-1] return re.search(R"""^(.*)_\d+\.jpg$""" , SCREAMING_SNAKE_CASE__ ).groups()[0] class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self , lowercase__ , lowercase__=None , lowercase__=None ): snake_case_ : Union[str, Any] = file_names snake_case_ : Tuple = image_transform snake_case_ : Union[str, Any] = label_to_id def __len__(self ): return len(self.file_names ) def __getitem__(self , lowercase__ ): snake_case_ : Optional[Any] = self.file_names[idx] snake_case_ : Dict = PIL.Image.open(lowercase__ ) snake_case_ : Union[str, Any] = raw_image.convert("""RGB""" ) if self.image_transform is not None: snake_case_ : Union[str, Any] = self.image_transform(lowercase__ ) snake_case_ : Dict = extract_label(lowercase__ ) if self.label_to_id is not None: snake_case_ : Union[str, Any] = self.label_to_id[label] return {"image": image, "label": label} def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] ): """simple docstring""" if args.with_tracking: snake_case_ : Union[str, Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="""all""" , project_dir=args.project_dir ) else: snake_case_ : List[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case_ : Tuple = config["""lr"""] snake_case_ : Any = int(config["""num_epochs"""] ) snake_case_ : str = int(config["""seed"""] ) snake_case_ : Any = int(config["""batch_size"""] ) snake_case_ : Any = config["""image_size"""] if not isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ): snake_case_ : Dict = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , """isdigit""" ): if args.checkpointing_steps == "epoch": snake_case_ : List[str] = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): snake_case_ : Any = int(args.checkpointing_steps ) else: raise ValueError( f'Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.' ) else: snake_case_ : Dict = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: snake_case_ : Any = os.path.split(SCREAMING_SNAKE_CASE__ )[-1].split(""".""" )[0] accelerator.init_trackers(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Grab all the image filenames snake_case_ : Any = [os.path.join(args.data_dir , SCREAMING_SNAKE_CASE__ ) for fname in os.listdir(args.data_dir ) if fname.endswith(""".jpg""" )] # Build the label correspondences snake_case_ : int = [extract_label(SCREAMING_SNAKE_CASE__ ) for fname in file_names] snake_case_ : List[str] = list(set(SCREAMING_SNAKE_CASE__ ) ) id_to_label.sort() snake_case_ : str = {lbl: i for i, lbl in enumerate(SCREAMING_SNAKE_CASE__ )} # Set the seed before splitting the data. np.random.seed(SCREAMING_SNAKE_CASE__ ) torch.manual_seed(SCREAMING_SNAKE_CASE__ ) torch.cuda.manual_seed_all(SCREAMING_SNAKE_CASE__ ) # Split our filenames between train and validation snake_case_ : Union[str, Any] = np.random.permutation(len(SCREAMING_SNAKE_CASE__ ) ) snake_case_ : Dict = int(0.8 * len(SCREAMING_SNAKE_CASE__ ) ) snake_case_ : Union[str, Any] = random_perm[:cut] snake_case_ : Optional[int] = random_perm[cut:] # For training we use a simple RandomResizedCrop snake_case_ : Any = Compose([RandomResizedCrop(SCREAMING_SNAKE_CASE__ , scale=(0.5, 1.0) ), ToTensor()] ) snake_case_ : Tuple = PetsDataset( [file_names[i] for i in train_split] , image_transform=SCREAMING_SNAKE_CASE__ , label_to_id=SCREAMING_SNAKE_CASE__ ) # For evaluation, we use a deterministic Resize snake_case_ : Tuple = Compose([Resize(SCREAMING_SNAKE_CASE__ ), ToTensor()] ) snake_case_ : str = PetsDataset([file_names[i] for i in eval_split] , image_transform=SCREAMING_SNAKE_CASE__ , label_to_id=SCREAMING_SNAKE_CASE__ ) # Instantiate dataloaders. snake_case_ : int = DataLoader(SCREAMING_SNAKE_CASE__ , shuffle=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , num_workers=4 ) snake_case_ : Optional[int] = DataLoader(SCREAMING_SNAKE_CASE__ , shuffle=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case_ : Tuple = create_model("""resnet50d""" , pretrained=SCREAMING_SNAKE_CASE__ , num_classes=len(SCREAMING_SNAKE_CASE__ ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case_ : Tuple = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): snake_case_ : Any = False for param in model.get_classifier().parameters(): snake_case_ : List[str] = True # We normalize the batches of images to be a bit faster. snake_case_ : Dict = torch.tensor(model.default_cfg["""mean"""] )[None, :, None, None].to(accelerator.device ) snake_case_ : Any = torch.tensor(model.default_cfg["""std"""] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer snake_case_ : str = torch.optim.Adam(params=model.parameters() , lr=lr / 2_5 ) # Instantiate learning rate scheduler snake_case_ : Dict = OneCycleLR(optimizer=SCREAMING_SNAKE_CASE__ , max_lr=SCREAMING_SNAKE_CASE__ , epochs=SCREAMING_SNAKE_CASE__ , steps_per_epoch=len(SCREAMING_SNAKE_CASE__ ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Any = accelerator.prepare( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # We need to keep track of how many total steps we have iterated over snake_case_ : Optional[Any] = 0 # We also need to keep track of the starting epoch so files are named properly snake_case_ : List[str] = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f'Resumed from checkpoint: {args.resume_from_checkpoint}' ) accelerator.load_state(args.resume_from_checkpoint ) snake_case_ : Tuple = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint snake_case_ : List[Any] = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) snake_case_ : int = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` snake_case_ : Union[str, Any] = os.path.splitext(SCREAMING_SNAKE_CASE__ )[0] if "epoch" in training_difference: snake_case_ : Tuple = int(training_difference.replace("""epoch_""" , """""" ) ) + 1 snake_case_ : str = None else: snake_case_ : Tuple = int(training_difference.replace("""step_""" , """""" ) ) snake_case_ : Optional[Any] = resume_step // len(SCREAMING_SNAKE_CASE__ ) resume_step -= starting_epoch * len(SCREAMING_SNAKE_CASE__ ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): model.train() if args.with_tracking: snake_case_ : Dict = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step snake_case_ : Tuple = accelerator.skip_first_batches(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader snake_case_ : Dict = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. snake_case_ : Any = {k: v.to(accelerator.device ) for k, v in batch.items()} snake_case_ : List[str] = (batch["""image"""] - mean) / std snake_case_ : int = model(SCREAMING_SNAKE_CASE__ ) snake_case_ : List[str] = torch.nn.functional.cross_entropy(SCREAMING_SNAKE_CASE__ , batch["""label"""] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(SCREAMING_SNAKE_CASE__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : Dict = f'step_{overall_step}' if overall_step % checkpointing_steps == 0: if args.output_dir is not None: snake_case_ : Dict = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE__ ) accelerator.save_state(SCREAMING_SNAKE_CASE__ ) model.eval() snake_case_ : List[str] = 0 snake_case_ : Any = 0 for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. snake_case_ : List[str] = {k: v.to(accelerator.device ) for k, v in batch.items()} snake_case_ : Optional[Any] = (batch["""image"""] - mean) / std with torch.no_grad(): snake_case_ : int = model(SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = outputs.argmax(dim=-1 ) snake_case_ , snake_case_ : Optional[int] = accelerator.gather_for_metrics((predictions, batch["""label"""]) ) snake_case_ : Dict = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() snake_case_ : Tuple = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}: {1_0_0 * eval_metric:.2f}' ) if args.with_tracking: accelerator.log( { """accuracy""": 1_0_0 * eval_metric, """train_loss""": total_loss.item() / len(SCREAMING_SNAKE_CASE__ ), """epoch""": epoch, } , step=SCREAMING_SNAKE_CASE__ , ) if checkpointing_steps == "epoch": snake_case_ : Dict = f'epoch_{epoch}' if args.output_dir is not None: snake_case_ : Dict = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE__ ) accelerator.save_state(SCREAMING_SNAKE_CASE__ ) if args.with_tracking: accelerator.end_training() def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Tuple = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument("""--data_dir""" , required=SCREAMING_SNAKE_CASE__ , help="""The data folder on disk.""" ) parser.add_argument("""--fp16""" , action="""store_true""" , help="""If passed, will use FP16 training.""" ) parser.add_argument( """--mixed_precision""" , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) parser.add_argument( """--checkpointing_steps""" , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help="""Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.""" , ) parser.add_argument( """--output_dir""" , type=SCREAMING_SNAKE_CASE__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--resume_from_checkpoint""" , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help="""If the training should continue from a checkpoint folder.""" , ) parser.add_argument( """--with_tracking""" , action="""store_true""" , help="""Whether to load in all available experiment trackers from the environment and use them for logging.""" , ) parser.add_argument( """--project_dir""" , type=SCREAMING_SNAKE_CASE__ , default="""logs""" , help="""Location on where to store experiment tracking logs` and relevent project information""" , ) snake_case_ : Tuple = parser.parse_args() snake_case_ : Dict = {"""lr""": 3E-2, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 6_4, """image_size""": 2_2_4} training_function(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
48
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm a_ = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex a_ = 10 a_ = 256 def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" if len(SCREAMING_SNAKE_CASE__ ) < MIN_NUM_TOKENS: return None snake_case_ : Union[str, Any] = MinHash(num_perm=SCREAMING_SNAKE_CASE__ ) for token in set(SCREAMING_SNAKE_CASE__ ): min_hash.update(token.encode() ) return min_hash def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" return {t for t in NON_ALPHA.split(SCREAMING_SNAKE_CASE__ ) if len(t.strip() ) > 0} class __lowercase : """simple docstring""" def __init__(self , *, lowercase__ = 0.85 , ): snake_case_ : Tuple = duplication_jaccard_threshold snake_case_ : Optional[Any] = NUM_PERM snake_case_ : Tuple = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) snake_case_ : List[Any] = defaultdict(lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : int = self._index.query(lowercase__ ) if code_key in self._index.keys: print(f'Duplicate key {code_key}' ) return self._index.insert(lowercase__ , lowercase__ ) if len(lowercase__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowercase__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(lowercase__ ) def __UpperCamelCase (self ): snake_case_ : str = [] for base, duplicates in self._duplicate_clusters.items(): snake_case_ : Optional[Any] = [base] + list(lowercase__ ) # reformat the cluster to be a list of dict snake_case_ : Any = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(lowercase__ ) return duplicate_clusters def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = self.get_duplicate_clusters() with open(lowercase__ , """w""" ) as f: json.dump(lowercase__ , lowercase__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ , snake_case_ : str = element snake_case_ : Tuple = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] ): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(SCREAMING_SNAKE_CASE__ , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ): if data is not None: yield data def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] , SCREAMING_SNAKE_CASE__ : float ): """simple docstring""" snake_case_ : int = DuplicationIndex(duplication_jaccard_threshold=SCREAMING_SNAKE_CASE__ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(SCREAMING_SNAKE_CASE__ ) ) , max_queue_size=1_0_0 ) ): di.add(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : int = get_tokens(SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = get_tokens(SCREAMING_SNAKE_CASE__ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) a_ = None def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Optional[Any] = [] for elementa in cluster: snake_case_ : Union[str, Any] = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: snake_case_ : Any = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) >= jaccard_threshold: elementa["copies"] += 1 break else: snake_case_ : Union[str, Any] = 1 extremes.append(SCREAMING_SNAKE_CASE__ ) return extremes def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" global _shared_dataset snake_case_ : str = dataset snake_case_ : int = [] snake_case_ : Optional[int] = partial(_find_cluster_extremes_shared , jaccard_threshold=SCREAMING_SNAKE_CASE__ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) , total=len(SCREAMING_SNAKE_CASE__ ) , ): extremes_list.append(SCREAMING_SNAKE_CASE__ ) return extremes_list def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] , SCREAMING_SNAKE_CASE__ : float = 0.85 ): """simple docstring""" snake_case_ : List[str] = make_duplicate_clusters(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : str = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} snake_case_ : str = {} snake_case_ : Dict = find_extremes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for extremes in extremes_clusters: for element in extremes: snake_case_ : int = element snake_case_ : Optional[int] = duplicate_indices - set(extreme_dict.keys() ) snake_case_ : List[Any] = dataset.filter(lambda SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : idx not in remove_indices , with_indices=SCREAMING_SNAKE_CASE__ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: snake_case_ : List[Any] = element["""base_index"""] in extreme_dict if element["is_extreme"]: snake_case_ : str = extreme_dict[element["""base_index"""]]["""copies"""] print(f'Original dataset size: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Number of duplicate clusters: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Files in duplicate cluster: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Unique files in duplicate cluster: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Filtered dataset size: {len(SCREAMING_SNAKE_CASE__ )}' ) return ds_filter, duplicate_clusters
48
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __lowercase ( unittest.TestCase): """simple docstring""" def __init__(self , lowercase__ , lowercase__=7 , lowercase__=3 , lowercase__=18 , lowercase__=30 , lowercase__=4_00 , lowercase__=True , lowercase__=None , lowercase__=True , ): snake_case_ : List[str] = size if size is not None else {"""height""": 18, """width""": 18} snake_case_ : Union[str, Any] = parent snake_case_ : Any = batch_size snake_case_ : List[Any] = num_channels snake_case_ : Dict = image_size snake_case_ : List[Any] = min_resolution snake_case_ : Optional[int] = max_resolution snake_case_ : int = do_resize snake_case_ : Dict = size snake_case_ : Optional[Any] = apply_ocr def __UpperCamelCase (self ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class __lowercase ( _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : List[str] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def __UpperCamelCase (self ): snake_case_ : Optional[Any] = LayoutLMvaImageProcessingTester(self ) @property def __UpperCamelCase (self ): return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase (self ): snake_case_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase__ , """size""" ) ) self.assertTrue(hasattr(lowercase__ , """apply_ocr""" ) ) def __UpperCamelCase (self ): snake_case_ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) snake_case_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def __UpperCamelCase (self ): pass def __UpperCamelCase (self ): # Initialize image_processing snake_case_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , Image.Image ) # Test not batched input snake_case_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) self.assertIsInstance(encoding.words , lowercase__ ) self.assertIsInstance(encoding.boxes , lowercase__ ) # Test batched snake_case_ : int = image_processing(lowercase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __UpperCamelCase (self ): # Initialize image_processing snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , numpify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , np.ndarray ) # Test not batched input snake_case_ : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case_ : Optional[int] = image_processing(lowercase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __UpperCamelCase (self ): # Initialize image_processing snake_case_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , torchify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , torch.Tensor ) # Test not batched input snake_case_ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case_ : str = image_processing(lowercase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __UpperCamelCase (self ): # with apply_OCR = True snake_case_ : List[Any] = LayoutLMvaImageProcessor() from datasets import load_dataset snake_case_ : Optional[Any] = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" ) snake_case_ : int = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) snake_case_ : Optional[Any] = image_processing(lowercase__ , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 snake_case_ : Tuple = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 snake_case_ : List[Any] = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , lowercase__ ) self.assertListEqual(encoding.boxes , lowercase__ ) # with apply_OCR = False snake_case_ : str = LayoutLMvaImageProcessor(apply_ocr=lowercase__ ) snake_case_ : Any = image_processing(lowercase__ , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
48
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) a_ = logging.getLogger(__name__) if __name__ == "__main__": a_ = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=30522, type=int) a_ = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, '''rb''') as fp: a_ = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') a_ = Counter() for tk_ids in data: counter.update(tk_ids) a_ = [0] * args.vocab_size for k, v in counter.items(): a_ = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
48
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: a_ = None a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} a_ = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json''' ), }, } a_ = { '''facebook/nllb-large-en-ro''': 1024, '''facebook/nllb-200-distilled-600M''': 1024, } # fmt: off a_ = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Tuple = VOCAB_FILES_NAMES _A : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _A : Union[str, Any] = ["""input_ids""", """attention_mask"""] _A : Optional[int] = NllbTokenizer _A : List[int] = [] _A : List[int] = [] def __init__(self , lowercase__=None , lowercase__=None , lowercase__="<s>" , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<mask>" , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=False , **lowercase__ , ): # Mask token behave like a normal word, i.e. include the space before it snake_case_ : int = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token snake_case_ : str = legacy_behaviour super().__init__( vocab_file=lowercase__ , tokenizer_file=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , unk_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , src_lang=lowercase__ , tgt_lang=lowercase__ , additional_special_tokens=lowercase__ , legacy_behaviour=lowercase__ , **lowercase__ , ) snake_case_ : str = vocab_file snake_case_ : str = False if not self.vocab_file else True snake_case_ : str = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) snake_case_ : List[Any] = { lang_code: self.convert_tokens_to_ids(lowercase__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } snake_case_ : Optional[Any] = src_lang if src_lang is not None else """eng_Latn""" snake_case_ : Dict = self.convert_tokens_to_ids(self._src_lang ) snake_case_ : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __UpperCamelCase (self ): return self._src_lang @src_lang.setter def __UpperCamelCase (self , lowercase__ ): snake_case_ : Union[str, Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): snake_case_ : int = [self.sep_token_id] snake_case_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , **lowercase__ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) snake_case_ : List[Any] = src_lang snake_case_ : str = self(lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , **lowercase__ ) snake_case_ : str = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : List[str] = tgt_lang_id return inputs def __UpperCamelCase (self , lowercase__ , lowercase__ = "eng_Latn" , lowercase__ = None , lowercase__ = "fra_Latn" , **lowercase__ , ): snake_case_ : List[Any] = src_lang snake_case_ : int = tgt_lang return super().prepare_seqaseq_batch(lowercase__ , lowercase__ , **lowercase__ ) def __UpperCamelCase (self ): return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCamelCase (self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = self.convert_tokens_to_ids(lowercase__ ) if self.legacy_behaviour: snake_case_ : Dict = [] snake_case_ : Optional[Any] = [self.eos_token_id, self.cur_lang_code] else: snake_case_ : Optional[int] = [self.cur_lang_code] snake_case_ : List[str] = [self.eos_token_id] snake_case_ : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ : Optional[int] = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ : Optional[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : str = self.convert_tokens_to_ids(lowercase__ ) if self.legacy_behaviour: snake_case_ : Tuple = [] snake_case_ : List[Any] = [self.eos_token_id, self.cur_lang_code] else: snake_case_ : Any = [self.cur_lang_code] snake_case_ : Union[str, Any] = [self.eos_token_id] snake_case_ : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ : Any = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ : str = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowercase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory.' ) return snake_case_ : str = os.path.join( lowercase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ): copyfile(self.vocab_file , lowercase__ ) return (out_vocab_file,)
48
"""simple docstring""" import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" snake_case_ : Optional[Any] = tmp_path / """cache""" snake_case_ : Optional[int] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : Tuple = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" snake_case_ : List[Any] = tmp_path / """cache""" snake_case_ : int = {"""text""": """string"""} snake_case_ : Any = features.copy() if features else default_expected_features snake_case_ : List[Any] = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : Dict = TextDatasetReader(SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : Union[str, Any] = tmp_path / """cache""" snake_case_ : Optional[Any] = {"""text""": """string"""} snake_case_ : Optional[int] = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , split=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" if issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : List[str] = text_path elif issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : str = [text_path] snake_case_ : List[str] = tmp_path / """cache""" snake_case_ : List[str] = {"""text""": """string"""} snake_case_ : Dict = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str]=("train",) ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for split in splits: snake_case_ : Dict = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" snake_case_ : int = tmp_path / """cache""" snake_case_ : List[str] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : Optional[Any] = TextDatasetReader({"""train""": text_path} , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Tuple = tmp_path / """cache""" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" snake_case_ : List[str] = {"""text""": """string"""} snake_case_ : int = features.copy() if features else default_expected_features snake_case_ : Tuple = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : str = TextDatasetReader({"""train""": text_path} , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" if split: snake_case_ : Union[str, Any] = {split: text_path} else: snake_case_ : Union[str, Any] = """train""" snake_case_ : int = {"""train""": text_path, """test""": text_path} snake_case_ : List[Any] = tmp_path / """cache""" snake_case_ : Tuple = {"""text""": """string"""} snake_case_ : int = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
48
1
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black a_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. a_ = ''' def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states ''' class __lowercase ( unittest.TestCase): """simple docstring""" def __UpperCamelCase (self ): snake_case_ : Dict = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , """models/bert/""" ) ) snake_case_ : str = self.transformer_dir shutil.copy( os.path.join(lowercase__ , """src/transformers/models/bert/modeling_bert.py""" ) , os.path.join(self.transformer_dir , """models/bert/modeling_bert.py""" ) , ) def __UpperCamelCase (self ): snake_case_ : Optional[Any] = """src/transformers""" shutil.rmtree(self.transformer_dir ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__=None ): snake_case_ : Optional[Any] = comment + f'\nclass {class_name}(nn.Module):\n' + class_code if overwrite_result is not None: snake_case_ : List[Any] = comment + f'\nclass {class_name}(nn.Module):\n' + overwrite_result snake_case_ : str = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) snake_case_ : Optional[int] = black.format_str(lowercase__ , mode=lowercase__ ) snake_case_ : Any = os.path.join(self.transformer_dir , """new_code.py""" ) with open(lowercase__ , """w""" , newline="""\n""" ) as f: f.write(lowercase__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowercase__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowercase__ ) with open(lowercase__ , """r""" ) as f: self.assertTrue(f.read() , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Optional[Any] = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""" ) self.assertEqual(lowercase__ , lowercase__ ) def __UpperCamelCase (self ): # Base copy consistency self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , lowercase__ , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , re.sub("""Bert""" , """TestModel""" , lowercase__ ) , ) # Copy consistency with a really long name snake_case_ : List[Any] = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( f'# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}' , f'{long_class_name}LMPredictionHead' , re.sub("""Bert""" , lowercase__ , lowercase__ ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , lowercase__ , overwrite_result=re.sub("""Bert""" , """TestModel""" , lowercase__ ) , ) def __UpperCamelCase (self ): snake_case_ : List[Any] = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""] snake_case_ : List[Any] = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),""" """ released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**""" """ (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders""" """ as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang""" """ Luong, Quoc V. Le, Christopher D. Manning.""" ) snake_case_ : Optional[int] = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) snake_case_ : Tuple = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文""" """ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自""" """ Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather""" """ than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,""" """ Christopher D. Manning 发布。\n""" ) snake_case_ , snake_case_ : Any = check_copies.convert_to_localized_md( lowercase__ , lowercase__ , localized_readme["""format_model_list"""] ) self.assertFalse(lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) snake_case_ , snake_case_ : Tuple = check_copies.convert_to_localized_md( lowercase__ , lowercase__ , localized_readme["""format_model_list"""] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(lowercase__ ) snake_case_ : str = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.""" ) snake_case_ : Union[str, Any] = ( """1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and""" """ the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) snake_case_ : str = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) snake_case_ , snake_case_ : Dict = check_copies.convert_to_localized_md( lowercase__ , lowercase__ , localized_readme["""format_model_list"""] ) # Check if the model link is synchronized. self.assertEqual(lowercase__ , lowercase__ )
48
"""simple docstring""" from copy import deepcopy class __lowercase : """simple docstring""" def __init__(self , lowercase__ = None , lowercase__ = None ): if arr is None and size is not None: snake_case_ : str = size snake_case_ : Optional[Any] = [0] * size elif arr is not None: self.init(lowercase__ ) else: raise ValueError("""Either arr or size must be specified""" ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Optional[Any] = len(lowercase__ ) snake_case_ : int = deepcopy(lowercase__ ) for i in range(1 , self.size ): snake_case_ : Optional[Any] = self.next_(lowercase__ ) if j < self.size: self.tree[j] += self.tree[i] def __UpperCamelCase (self ): snake_case_ : Dict = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): snake_case_ : Optional[int] = self.next_(lowercase__ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def __UpperCamelCase (lowercase__ ): return index + (index & (-index)) @staticmethod def __UpperCamelCase (lowercase__ ): return index - (index & (-index)) def __UpperCamelCase (self , lowercase__ , lowercase__ ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value snake_case_ : Tuple = self.next_(lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): self.add(lowercase__ , value - self.get(lowercase__ ) ) def __UpperCamelCase (self , lowercase__ ): if right == 0: return 0 snake_case_ : List[str] = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] snake_case_ : Optional[int] = self.prev(lowercase__ ) return result def __UpperCamelCase (self , lowercase__ , lowercase__ ): return self.prefix(lowercase__ ) - self.prefix(lowercase__ ) def __UpperCamelCase (self , lowercase__ ): return self.query(lowercase__ , index + 1 ) def __UpperCamelCase (self , lowercase__ ): value -= self.tree[0] if value < 0: return -1 snake_case_ : Tuple = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 snake_case_ : Tuple = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
48
1
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Union[str, Any] = ["""pixel_values"""] def __init__(self , lowercase__ = True , lowercase__ = None , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = True , lowercase__ = 1 / 2_55 , lowercase__ = True , lowercase__ = None , lowercase__ = True , **lowercase__ , ): super().__init__(**lowercase__ ) snake_case_ : Dict = size if size is not None else {"""shortest_edge""": 2_24} snake_case_ : Optional[Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) snake_case_ : Union[str, Any] = crop_size if crop_size is not None else {"""height""": 2_56, """width""": 2_56} snake_case_ : Tuple = get_size_dict(lowercase__ , param_name="""crop_size""" ) snake_case_ : Dict = do_resize snake_case_ : Optional[Any] = size snake_case_ : Optional[Any] = resample snake_case_ : List[Any] = do_rescale snake_case_ : int = rescale_factor snake_case_ : Dict = do_center_crop snake_case_ : Union[str, Any] = crop_size snake_case_ : str = do_flip_channel_order def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = PIL.Image.BILINEAR , lowercase__ = None , **lowercase__ , ): snake_case_ : Tuple = get_size_dict(lowercase__ , default_to_square=lowercase__ ) if "shortest_edge" not in size: raise ValueError(f'The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}' ) snake_case_ : int = get_resize_output_image_size(lowercase__ , size=size["""shortest_edge"""] , default_to_square=lowercase__ ) return resize(lowercase__ , size=lowercase__ , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): snake_case_ : List[Any] = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(lowercase__ , size=(size["""height"""], size["""width"""]) , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): return flip_channel_order(lowercase__ , data_format=lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ): snake_case_ : List[str] = do_resize if do_resize is not None else self.do_resize snake_case_ : Tuple = resample if resample is not None else self.resample snake_case_ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : int = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : int = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : Tuple = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) snake_case_ : Any = size if size is not None else self.size snake_case_ : int = get_size_dict(lowercase__ , default_to_square=lowercase__ ) snake_case_ : Optional[int] = crop_size if crop_size is not None else self.crop_size snake_case_ : str = get_size_dict(lowercase__ , param_name="""crop_size""" ) snake_case_ : List[str] = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) # All transformations expect numpy arrays. snake_case_ : Union[str, Any] = [to_numpy_array(lowercase__ ) for image in images] if do_resize: snake_case_ : str = [self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__ ) for image in images] if do_center_crop: snake_case_ : Any = [self.center_crop(image=lowercase__ , size=lowercase__ ) for image in images] if do_rescale: snake_case_ : str = [self.rescale(image=lowercase__ , scale=lowercase__ ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: snake_case_ : Tuple = [self.flip_channel_order(image=lowercase__ ) for image in images] snake_case_ : Any = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] snake_case_ : Tuple = {"""pixel_values""": images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): snake_case_ : List[str] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase__ ) != len(lowercase__ ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(lowercase__ ): snake_case_ : str = target_sizes.numpy() snake_case_ : int = [] for idx in range(len(lowercase__ ) ): snake_case_ : List[Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=lowercase__ ) snake_case_ : Optional[Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase__ ) else: snake_case_ : int = logits.argmax(dim=1 ) snake_case_ : Union[str, Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
48
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : list ): """simple docstring""" snake_case_ : Optional[int] = len(SCREAMING_SNAKE_CASE__ ) for i in range(1 , SCREAMING_SNAKE_CASE__ ): snake_case_ : Tuple = collection[i] snake_case_ : Tuple = 0 snake_case_ : str = i - 1 while low <= high: snake_case_ : Optional[int] = (low + high) // 2 if val < collection[mid]: snake_case_ : List[str] = mid - 1 else: snake_case_ : str = mid + 1 for j in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , -1 ): snake_case_ : List[str] = collection[j - 1] snake_case_ : Any = val return collection if __name__ == "__main__": a_ = input('''Enter numbers separated by a comma:\n''').strip() a_ = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
48
1
"""simple docstring""" import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class __lowercase ( _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : int = CpmAntTokenizer _A : List[Any] = False def __UpperCamelCase (self ): super().setUp() snake_case_ : Optional[int] = [ """<d>""", """</d>""", """<s>""", """</s>""", """</_>""", """<unk>""", """<pad>""", """</n>""", """我""", """是""", """C""", """P""", """M""", """A""", """n""", """t""", ] snake_case_ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) @tooslow def __UpperCamelCase (self ): snake_case_ : Optional[int] = CpmAntTokenizer.from_pretrained("""openbmb/cpm-ant-10b""" ) snake_case_ : str = """今天天气真好!""" snake_case_ : Dict = ["""今天""", """天气""", """真""", """好""", """!"""] snake_case_ : Any = tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : Dict = """今天天气真好!""" snake_case_ : Union[str, Any] = [tokenizer.bos_token] + tokens snake_case_ : Union[str, Any] = [6, 98_02, 1_49_62, 20_82, 8_31, 2_44] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , lowercase__ ) snake_case_ : int = tokenizer.decode(lowercase__ ) self.assertEqual(lowercase__ , lowercase__ )
48
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Union[str, Any] = ["""image_processor""", """tokenizer"""] _A : str = """ChineseCLIPImageProcessor""" _A : Tuple = ("""BertTokenizer""", """BertTokenizerFast""") def __init__(self , lowercase__=None , lowercase__=None , **lowercase__ ): snake_case_ : Any = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowercase__ , ) snake_case_ : Optional[Any] = kwargs.pop("""feature_extractor""" ) snake_case_ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowercase__ , lowercase__ ) snake_case_ : Union[str, Any] = self.image_processor def __call__(self , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ ): if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: snake_case_ : Any = self.tokenizer(lowercase__ , return_tensors=lowercase__ , **lowercase__ ) if images is not None: snake_case_ : Tuple = self.image_processor(lowercase__ , return_tensors=lowercase__ , **lowercase__ ) if text is not None and images is not None: snake_case_ : List[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase__ ) , tensor_type=lowercase__ ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): return self.tokenizer.batch_decode(*lowercase__ , **lowercase__ ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): return self.tokenizer.decode(*lowercase__ , **lowercase__ ) @property def __UpperCamelCase (self ): snake_case_ : Optional[int] = self.tokenizer.model_input_names snake_case_ : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __UpperCamelCase (self ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowercase__ , ) return self.image_processor_class
48
1
"""simple docstring""" from ...processing_utils import ProcessorMixin class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Union[str, Any] = ["""image_processor""", """feature_extractor"""] _A : List[str] = """TvltImageProcessor""" _A : Optional[Any] = """TvltFeatureExtractor""" def __init__(self , lowercase__ , lowercase__ ): super().__init__(image_processor=lowercase__ , feature_extractor=lowercase__ ) snake_case_ : str = image_processor snake_case_ : Dict = feature_extractor def __call__(self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=False , lowercase__=False , *lowercase__ , **lowercase__ , ): if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""" ) snake_case_ : Optional[Any] = None if images is not None: snake_case_ : str = self.image_processor(lowercase__ , mask_pixel=lowercase__ , *lowercase__ , **lowercase__ ) if images_mixed is not None: snake_case_ : Union[str, Any] = self.image_processor(lowercase__ , is_mixed=lowercase__ , *lowercase__ , **lowercase__ ) if audio is not None: snake_case_ : Tuple = self.feature_extractor( lowercase__ , *lowercase__ , sampling_rate=lowercase__ , mask_audio=lowercase__ , **lowercase__ ) snake_case_ : int = {} if audio is not None: output_dict.update(lowercase__ ) if images is not None: output_dict.update(lowercase__ ) if images_mixed_dict is not None: output_dict.update(lowercase__ ) return output_dict @property def __UpperCamelCase (self ): snake_case_ : List[Any] = self.image_processor.model_input_names snake_case_ : Union[str, Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
48
"""simple docstring""" import argparse import copy def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" snake_case_ : List[Any] = {} with open(SCREAMING_SNAKE_CASE__ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: snake_case_ : int = [] _list.append([line.split()[1], line.split()[2]] ) snake_case_ : Optional[Any] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: snake_case_ : str = [] _list.append([line.split()[0], line.split()[2]] ) snake_case_ : Optional[Any] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" with open(SCREAMING_SNAKE_CASE__ ) as f: snake_case_ : Optional[Any] = f.read(1 ) snake_case_ : Union[str, Any] = start_node snake_case_ : Dict = [] snake_case_ : Union[str, Any] = start_node snake_case_ : Tuple = 0 while visiting not in first_solution: snake_case_ : int = 1_0_0_0_0 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(SCREAMING_SNAKE_CASE__ ) and k[0] not in first_solution: snake_case_ : Union[str, Any] = k[1] snake_case_ : Any = k[0] first_solution.append(SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = distance_of_first_solution + int(SCREAMING_SNAKE_CASE__ ) snake_case_ : List[str] = best_node first_solution.append(SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[Any] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 snake_case_ : int = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0_0_0_0 ) return first_solution, distance_of_first_solution def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" snake_case_ : Union[str, Any] = [] for n in solution[1:-1]: snake_case_ : str = solution.index(SCREAMING_SNAKE_CASE__ ) for kn in solution[1:-1]: snake_case_ : Tuple = solution.index(SCREAMING_SNAKE_CASE__ ) if n == kn: continue snake_case_ : Optional[Any] = copy.deepcopy(SCREAMING_SNAKE_CASE__ ) snake_case_ : int = kn snake_case_ : Dict = n snake_case_ : Optional[int] = 0 for k in _tmp[:-1]: snake_case_ : Dict = _tmp[_tmp.index(SCREAMING_SNAKE_CASE__ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: snake_case_ : Dict = distance + int(i[1] ) _tmp.append(SCREAMING_SNAKE_CASE__ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) snake_case_ : Optional[Any] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda SCREAMING_SNAKE_CASE__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] ): """simple docstring""" snake_case_ : Dict = 1 snake_case_ : List[Any] = first_solution snake_case_ : List[Any] = [] snake_case_ : Optional[Any] = distance_of_first_solution snake_case_ : Dict = solution while count <= iters: snake_case_ : List[str] = find_neighborhood(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = 0 snake_case_ : List[Any] = neighborhood[index_of_best_solution] snake_case_ : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ ) - 1 snake_case_ : List[str] = False while not found: snake_case_ : Tuple = 0 while i < len(SCREAMING_SNAKE_CASE__ ): if best_solution[i] != solution[i]: snake_case_ : Optional[Any] = best_solution[i] snake_case_ : int = solution[i] break snake_case_ : List[str] = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) snake_case_ : Tuple = True snake_case_ : Dict = best_solution[:-1] snake_case_ : Tuple = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: snake_case_ : Tuple = cost snake_case_ : Union[str, Any] = solution else: snake_case_ : str = index_of_best_solution + 1 snake_case_ : Tuple = neighborhood[index_of_best_solution] if len(SCREAMING_SNAKE_CASE__ ) >= size: tabu_list.pop(0 ) snake_case_ : List[str] = count + 1 return best_solution_ever, best_cost def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any]=None ): """simple docstring""" snake_case_ : Tuple = generate_neighbours(args.File ) snake_case_ , snake_case_ : Optional[Any] = generate_first_solution( args.File , SCREAMING_SNAKE_CASE__ ) snake_case_ , snake_case_ : Dict = tabu_search( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , args.Iterations , args.Size , ) print(f'Best solution: {best_sol}, with total distance: {best_cost}.' ) if __name__ == "__main__": a_ = argparse.ArgumentParser(description='''Tabu Search''') parser.add_argument( '''-f''', '''--File''', type=str, help='''Path to the file containing the data''', required=True, ) parser.add_argument( '''-i''', '''--Iterations''', type=int, help='''How many iterations the algorithm should perform''', required=True, ) parser.add_argument( '''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True ) # Pass the arguments to main method main(parser.parse_args())
48
1
"""simple docstring""" import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" return EnvironmentCommand() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" return EnvironmentCommand(args.accelerate_config_file ) class __lowercase ( _UpperCAmelCase): """simple docstring""" @staticmethod def __UpperCamelCase (lowercase__ ): snake_case_ : str = parser.add_parser("""env""" ) download_parser.set_defaults(func=lowercase__ ) download_parser.add_argument( """--accelerate-config_file""" , default=lowercase__ , help="""The accelerate config file to use for the default values in the launching script.""" , ) download_parser.set_defaults(func=lowercase__ ) def __init__(self , lowercase__ , *lowercase__ ): snake_case_ : Any = accelerate_config_file def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = """not installed""" if is_safetensors_available(): import safetensors snake_case_ : str = safetensors.__version__ elif importlib.util.find_spec("""safetensors""" ) is not None: import safetensors snake_case_ : Union[str, Any] = f'{safetensors.__version__} but is ignored because of PyTorch version too old.' snake_case_ : Any = """not installed""" snake_case_ : List[str] = """not found""" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file snake_case_ : Optional[int] = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(lowercase__ ): snake_case_ : Optional[int] = load_config_from_file(self._accelerate_config_file ).to_dict() snake_case_ : str = ( """\n""".join([f'\t- {prop}: {val}' for prop, val in accelerate_config.items()] ) if isinstance(lowercase__ , lowercase__ ) else f'\t{accelerate_config}' ) snake_case_ : List[str] = """not installed""" snake_case_ : Dict = """NA""" if is_torch_available(): import torch snake_case_ : Optional[Any] = torch.__version__ snake_case_ : List[Any] = torch.cuda.is_available() snake_case_ : Dict = """not installed""" snake_case_ : Any = """NA""" if is_tf_available(): import tensorflow as tf snake_case_ : Dict = tf.__version__ try: # deprecated in v2.1 snake_case_ : Any = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool snake_case_ : List[str] = bool(tf.config.list_physical_devices("""GPU""" ) ) snake_case_ : Optional[Any] = """not installed""" snake_case_ : Union[str, Any] = """not installed""" snake_case_ : Dict = """not installed""" snake_case_ : Tuple = """NA""" if is_flax_available(): import flax import jax import jaxlib snake_case_ : Tuple = flax.__version__ snake_case_ : str = jax.__version__ snake_case_ : Optional[int] = jaxlib.__version__ snake_case_ : List[Any] = jax.lib.xla_bridge.get_backend().platform snake_case_ : Any = { """`transformers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Huggingface_hub version""": huggingface_hub.__version__, """Safetensors version""": f'{safetensors_version}', """Accelerate version""": f'{accelerate_version}', """Accelerate config""": f'{accelerate_config_str}', """PyTorch version (GPU?)""": f'{pt_version} ({pt_cuda_available})', """Tensorflow version (GPU?)""": f'{tf_version} ({tf_cuda_available})', """Flax version (CPU?/GPU?/TPU?)""": f'{flax_version} ({jax_backend})', """Jax version""": f'{jax_version}', """JaxLib version""": f'{jaxlib_version}', """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(lowercase__ ) ) return info @staticmethod def __UpperCamelCase (lowercase__ ): return "\n".join([f'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
48
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings a_ = r''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(_UpperCAmelCase) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """rag""" _A : Optional[Any] = True def __init__(self , lowercase__=None , lowercase__=True , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=" / " , lowercase__=" // " , lowercase__=5 , lowercase__=3_00 , lowercase__=7_68 , lowercase__=8 , lowercase__="wiki_dpr" , lowercase__="train" , lowercase__="compressed" , lowercase__=None , lowercase__=None , lowercase__=False , lowercase__=False , lowercase__=0.0 , lowercase__=True , lowercase__=False , lowercase__=False , lowercase__=False , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__( bos_token_id=lowercase__ , pad_token_id=lowercase__ , eos_token_id=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , prefix=lowercase__ , vocab_size=lowercase__ , **lowercase__ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" snake_case_ : List[Any] = kwargs.pop("""question_encoder""" ) snake_case_ : Tuple = question_encoder_config.pop("""model_type""" ) snake_case_ : List[str] = kwargs.pop("""generator""" ) snake_case_ : List[str] = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig snake_case_ : List[str] = AutoConfig.for_model(lowercase__ , **lowercase__ ) snake_case_ : Tuple = AutoConfig.for_model(lowercase__ , **lowercase__ ) snake_case_ : int = reduce_loss snake_case_ : Optional[int] = label_smoothing snake_case_ : Dict = exclude_bos_score snake_case_ : Union[str, Any] = do_marginalize snake_case_ : Union[str, Any] = title_sep snake_case_ : int = doc_sep snake_case_ : int = n_docs snake_case_ : List[str] = max_combined_length snake_case_ : Tuple = dataset snake_case_ : int = dataset_split snake_case_ : str = index_name snake_case_ : List[str] = retrieval_vector_size snake_case_ : Dict = retrieval_batch_size snake_case_ : str = passages_path snake_case_ : Union[str, Any] = index_path snake_case_ : Tuple = use_dummy_dataset snake_case_ : Dict = output_retrieved snake_case_ : str = do_deduplication snake_case_ : Any = use_cache if self.forced_eos_token_id is None: snake_case_ : Any = getattr(self.generator , """forced_eos_token_id""" , lowercase__ ) @classmethod def __UpperCamelCase (cls , lowercase__ , lowercase__ , **lowercase__ ): return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Optional[Any] = copy.deepcopy(self.__dict__ ) snake_case_ : Any = self.question_encoder.to_dict() snake_case_ : Dict = self.generator.to_dict() snake_case_ : Union[str, Any] = self.__class__.model_type return output
48
1
"""simple docstring""" import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __lowercase : """simple docstring""" def __init__(self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=99 , lowercase__=32 , lowercase__=5 , lowercase__=4 , lowercase__=37 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_12 , lowercase__=16 , lowercase__=2 , lowercase__=0.02 , lowercase__=3 , lowercase__=4 , lowercase__=None , ): snake_case_ : List[str] = parent snake_case_ : int = batch_size snake_case_ : int = seq_length snake_case_ : Dict = is_training snake_case_ : List[Any] = use_input_mask snake_case_ : List[Any] = use_token_type_ids snake_case_ : Union[str, Any] = use_labels snake_case_ : Optional[int] = vocab_size snake_case_ : Dict = hidden_size snake_case_ : Optional[Any] = num_hidden_layers snake_case_ : Any = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : Union[str, Any] = hidden_act snake_case_ : Dict = hidden_dropout_prob snake_case_ : Dict = attention_probs_dropout_prob snake_case_ : Union[str, Any] = max_position_embeddings snake_case_ : Any = type_vocab_size snake_case_ : List[Any] = type_sequence_label_size snake_case_ : Optional[int] = initializer_range snake_case_ : Union[str, Any] = num_labels snake_case_ : List[str] = num_choices snake_case_ : Optional[int] = scope def __UpperCamelCase (self ): snake_case_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Any = None if self.use_input_mask: snake_case_ : str = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : str = None if self.use_token_type_ids: snake_case_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Optional[int] = None snake_case_ : List[str] = None snake_case_ : str = None if self.use_labels: snake_case_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase (self ): return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , use_stable_embedding=lowercase__ , ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : Optional[int] = OpenLlamaModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() snake_case_ : Dict = model(lowercase__ , attention_mask=lowercase__ ) snake_case_ : Optional[int] = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): snake_case_ : List[Any] = True snake_case_ : Tuple = OpenLlamaModel(lowercase__ ) model.to(lowercase__ ) model.eval() snake_case_ : List[Any] = model( lowercase__ , attention_mask=lowercase__ , encoder_hidden_states=lowercase__ , encoder_attention_mask=lowercase__ , ) snake_case_ : Dict = model( lowercase__ , attention_mask=lowercase__ , encoder_hidden_states=lowercase__ , ) snake_case_ : Any = model(lowercase__ , attention_mask=lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): snake_case_ : str = OpenLlamaForCausalLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() snake_case_ : Dict = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): snake_case_ : List[str] = True snake_case_ : Dict = True snake_case_ : int = OpenLlamaForCausalLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() # first forward pass snake_case_ : Optional[Any] = model( lowercase__ , attention_mask=lowercase__ , encoder_hidden_states=lowercase__ , encoder_attention_mask=lowercase__ , use_cache=lowercase__ , ) snake_case_ : Optional[int] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case_ : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case_ : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ : Optional[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case_ : List[str] = model( lowercase__ , attention_mask=lowercase__ , encoder_hidden_states=lowercase__ , encoder_attention_mask=lowercase__ , output_hidden_states=lowercase__ , )["""hidden_states"""][0] snake_case_ : List[Any] = model( lowercase__ , attention_mask=lowercase__ , encoder_hidden_states=lowercase__ , encoder_attention_mask=lowercase__ , past_key_values=lowercase__ , output_hidden_states=lowercase__ , )["""hidden_states"""][0] # select random slice snake_case_ : Union[str, Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ : str = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case_ : List[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3 ) ) def __UpperCamelCase (self ): snake_case_ : str = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) : Union[str, Any] = config_and_inputs snake_case_ : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : Any = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) _A : Union[str, Any] = (OpenLlamaForCausalLM,) if is_torch_available() else () _A : List[str] = ( { """feature-extraction""": OpenLlamaModel, """text-classification""": OpenLlamaForSequenceClassification, """text-generation""": OpenLlamaForCausalLM, """zero-shot""": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) _A : Optional[int] = False _A : Tuple = False def __UpperCamelCase (self ): snake_case_ : Tuple = OpenLlamaModelTester(self ) snake_case_ : Optional[int] = ConfigTester(self , config_class=lowercase__ , hidden_size=37 ) def __UpperCamelCase (self ): self.config_tester.run_common_tests() def __UpperCamelCase (self ): snake_case_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case_ : List[str] = type self.model_tester.create_and_check_model(*lowercase__ ) def __UpperCamelCase (self ): snake_case_ , snake_case_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Optional[Any] = 3 snake_case_ : Dict = input_dict["""input_ids"""] snake_case_ : List[str] = input_ids.ne(1 ).to(lowercase__ ) snake_case_ : Optional[int] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case_ : List[str] = OpenLlamaForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() snake_case_ : List[str] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __UpperCamelCase (self ): snake_case_ , snake_case_ : str = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : int = 3 snake_case_ : str = """single_label_classification""" snake_case_ : Optional[Any] = input_dict["""input_ids"""] snake_case_ : Optional[int] = input_ids.ne(1 ).to(lowercase__ ) snake_case_ : Optional[int] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case_ : Optional[Any] = OpenLlamaForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() snake_case_ : Dict = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __UpperCamelCase (self ): snake_case_ , snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : int = 3 snake_case_ : Any = """multi_label_classification""" snake_case_ : Optional[int] = input_dict["""input_ids"""] snake_case_ : Tuple = input_ids.ne(1 ).to(lowercase__ ) snake_case_ : Union[str, Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case_ : Any = OpenLlamaForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() snake_case_ : str = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def __UpperCamelCase (self ): pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def __UpperCamelCase (self , lowercase__ ): snake_case_ , snake_case_ : int = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : List[Any] = ids_tensor([1, 10] , config.vocab_size ) snake_case_ : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case_ : Tuple = OpenLlamaModel(lowercase__ ) original_model.to(lowercase__ ) original_model.eval() snake_case_ : str = original_model(lowercase__ ).last_hidden_state snake_case_ : Optional[Any] = original_model(lowercase__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case_ : Union[str, Any] = {"""type""": scaling_type, """factor""": 10.0} snake_case_ : int = OpenLlamaModel(lowercase__ ) scaled_model.to(lowercase__ ) scaled_model.eval() snake_case_ : str = scaled_model(lowercase__ ).last_hidden_state snake_case_ : Optional[Any] = scaled_model(lowercase__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(lowercase__ , lowercase__ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowercase__ , lowercase__ , atol=1e-5 ) )
48
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """upernet""" def __init__(self , lowercase__=None , lowercase__=5_12 , lowercase__=0.02 , lowercase__=[1, 2, 3, 6] , lowercase__=True , lowercase__=0.4 , lowercase__=3_84 , lowercase__=2_56 , lowercase__=1 , lowercase__=False , lowercase__=2_55 , **lowercase__ , ): super().__init__(**lowercase__ ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) snake_case_ : List[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(lowercase__ , lowercase__ ): snake_case_ : Tuple = backbone_config.get("""model_type""" ) snake_case_ : List[str] = CONFIG_MAPPING[backbone_model_type] snake_case_ : List[Any] = config_class.from_dict(lowercase__ ) snake_case_ : List[Any] = backbone_config snake_case_ : Optional[Any] = hidden_size snake_case_ : Any = initializer_range snake_case_ : str = pool_scales snake_case_ : Dict = use_auxiliary_head snake_case_ : str = auxiliary_loss_weight snake_case_ : List[str] = auxiliary_in_channels snake_case_ : Optional[Any] = auxiliary_channels snake_case_ : Any = auxiliary_num_convs snake_case_ : List[Any] = auxiliary_concat_input snake_case_ : List[str] = loss_ignore_index def __UpperCamelCase (self ): snake_case_ : Dict = copy.deepcopy(self.__dict__ ) snake_case_ : Union[str, Any] = self.backbone_config.to_dict() snake_case_ : Any = self.__class__.model_type return output
48
1
"""simple docstring""" from copy import deepcopy class __lowercase : """simple docstring""" def __init__(self , lowercase__ = None , lowercase__ = None ): if arr is None and size is not None: snake_case_ : str = size snake_case_ : Optional[Any] = [0] * size elif arr is not None: self.init(lowercase__ ) else: raise ValueError("""Either arr or size must be specified""" ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Optional[Any] = len(lowercase__ ) snake_case_ : int = deepcopy(lowercase__ ) for i in range(1 , self.size ): snake_case_ : Optional[Any] = self.next_(lowercase__ ) if j < self.size: self.tree[j] += self.tree[i] def __UpperCamelCase (self ): snake_case_ : Dict = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): snake_case_ : Optional[int] = self.next_(lowercase__ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def __UpperCamelCase (lowercase__ ): return index + (index & (-index)) @staticmethod def __UpperCamelCase (lowercase__ ): return index - (index & (-index)) def __UpperCamelCase (self , lowercase__ , lowercase__ ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value snake_case_ : Tuple = self.next_(lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): self.add(lowercase__ , value - self.get(lowercase__ ) ) def __UpperCamelCase (self , lowercase__ ): if right == 0: return 0 snake_case_ : List[str] = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] snake_case_ : Optional[int] = self.prev(lowercase__ ) return result def __UpperCamelCase (self , lowercase__ , lowercase__ ): return self.prefix(lowercase__ ) - self.prefix(lowercase__ ) def __UpperCamelCase (self , lowercase__ ): return self.query(lowercase__ , index + 1 ) def __UpperCamelCase (self , lowercase__ ): value -= self.tree[0] if value < 0: return -1 snake_case_ : Tuple = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 snake_case_ : Tuple = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
48
"""simple docstring""" import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask a_ = logging.getLogger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self , lowercase__=-1 ): # in NER datasets, the last column is usually reserved for NER label snake_case_ : Union[str, Any] = label_idx def __UpperCamelCase (self , lowercase__ , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): snake_case_ : List[str] = mode.value snake_case_ : List[Any] = os.path.join(lowercase__ , f'{mode}.txt' ) snake_case_ : Tuple = 1 snake_case_ : Any = [] with open(lowercase__ , encoding="""utf-8""" ) as f: snake_case_ : str = [] snake_case_ : List[Any] = [] for line in f: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) guid_index += 1 snake_case_ : Optional[Any] = [] snake_case_ : int = [] else: snake_case_ : Optional[Any] = line.split(""" """ ) words.append(splits[0] ) if len(lowercase__ ) > 1: labels.append(splits[self.label_idx].replace("""\n""" , """""" ) ) else: # Examples could have no label for mode = "test" labels.append("""O""" ) if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) return examples def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : str = 0 for line in test_input_reader: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": writer.write(lowercase__ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: snake_case_ : Optional[int] = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n""" writer.write(lowercase__ ) else: logger.warning("""Maximum sequence length exceeded: No prediction for '%s'.""" , line.split()[0] ) def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: snake_case_ : Dict = f.read().splitlines() if "O" not in labels: snake_case_ : List[Any] = ["""O"""] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self ): # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: snake_case_ : Any = f.read().splitlines() if "O" not in labels: snake_case_ : Tuple = ["""O"""] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __lowercase ( _UpperCAmelCase): """simple docstring""" def __UpperCamelCase (self , lowercase__ , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): snake_case_ : List[Any] = mode.value snake_case_ : Optional[int] = os.path.join(lowercase__ , f'{mode}.txt' ) snake_case_ : Tuple = 1 snake_case_ : str = [] with open(lowercase__ , encoding="""utf-8""" ) as f: for sentence in parse_incr(lowercase__ ): snake_case_ : Tuple = [] snake_case_ : Any = [] for token in sentence: words.append(token["""form"""] ) labels.append(token["""upos"""] ) assert len(lowercase__ ) == len(lowercase__ ) if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) guid_index += 1 return examples def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : Dict = 0 for sentence in parse_incr(lowercase__ ): snake_case_ : int = preds_list[example_id] snake_case_ : Dict = """""" for token in sentence: out += f'{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) ' out += "\n" writer.write(lowercase__ ) example_id += 1 def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
48
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class __lowercase : """simple docstring""" _A : int = BlenderbotSmallConfig _A : int = {} _A : List[str] = """gelu""" def __init__(self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=False , lowercase__=99 , lowercase__=32 , lowercase__=2 , lowercase__=4 , lowercase__=37 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=20 , lowercase__=2 , lowercase__=1 , lowercase__=0 , ): snake_case_ : Any = parent snake_case_ : Optional[Any] = batch_size snake_case_ : Optional[int] = seq_length snake_case_ : Optional[int] = is_training snake_case_ : Tuple = use_labels snake_case_ : Dict = vocab_size snake_case_ : Any = hidden_size snake_case_ : int = num_hidden_layers snake_case_ : Optional[int] = num_attention_heads snake_case_ : Union[str, Any] = intermediate_size snake_case_ : List[Any] = hidden_dropout_prob snake_case_ : Union[str, Any] = attention_probs_dropout_prob snake_case_ : Dict = max_position_embeddings snake_case_ : List[Any] = eos_token_id snake_case_ : List[Any] = pad_token_id snake_case_ : str = bos_token_id def __UpperCamelCase (self ): snake_case_ : List[str] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) snake_case_ : int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) snake_case_ : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) snake_case_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Dict = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) snake_case_ : int = prepare_blenderbot_small_inputs_dict(lowercase__ , lowercase__ , lowercase__ ) return config, inputs_dict def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : Tuple = TFBlenderbotSmallModel(config=lowercase__ ).get_decoder() snake_case_ : List[str] = inputs_dict["""input_ids"""] snake_case_ : int = input_ids[:1, :] snake_case_ : List[Any] = inputs_dict["""attention_mask"""][:1, :] snake_case_ : Optional[Any] = inputs_dict["""head_mask"""] snake_case_ : List[str] = 1 # first forward pass snake_case_ : Dict = model(lowercase__ , attention_mask=lowercase__ , head_mask=lowercase__ , use_cache=lowercase__ ) snake_case_ , snake_case_ : str = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case_ : str = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ : str = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and snake_case_ : Dict = tf.concat([input_ids, next_tokens] , axis=-1 ) snake_case_ : Optional[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) snake_case_ : Optional[int] = model(lowercase__ , attention_mask=lowercase__ )[0] snake_case_ : List[str] = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice snake_case_ : Optional[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) snake_case_ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx] snake_case_ : Optional[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase__ , lowercase__ , rtol=1e-3 ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : int=None , ): """simple docstring""" if attention_mask is None: snake_case_ : Optional[int] = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case_ : List[Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case_ : Dict = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case_ : Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: snake_case_ : Optional[int] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : Dict = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) _A : Any = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () _A : List[Any] = ( { """conversational""": TFBlenderbotSmallForConditionalGeneration, """feature-extraction""": TFBlenderbotSmallModel, """summarization""": TFBlenderbotSmallForConditionalGeneration, """text2text-generation""": TFBlenderbotSmallForConditionalGeneration, """translation""": TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) _A : int = True _A : Optional[int] = False _A : Dict = False def __UpperCamelCase (self ): snake_case_ : Any = TFBlenderbotSmallModelTester(self ) snake_case_ : Tuple = ConfigTester(self , config_class=lowercase__ ) def __UpperCamelCase (self ): self.config_tester.run_common_tests() def __UpperCamelCase (self ): snake_case_ : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase__ ) @require_tokenizers @require_tf class __lowercase ( unittest.TestCase): """simple docstring""" _A : Optional[Any] = [ """Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like """ """ i'm going to throw up.\nand why is that?""" ] _A : Optional[Any] = """facebook/blenderbot_small-90M""" @cached_property def __UpperCamelCase (self ): # use "old" tokenizer here because of bug when downloading new tokenizer return BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) @cached_property def __UpperCamelCase (self ): snake_case_ : str = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def __UpperCamelCase (self ): snake_case_ : List[str] = self.tokenizer(self.src_text , return_tensors="""tf""" ) snake_case_ : List[str] = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=lowercase__ , ) snake_case_ : Union[str, Any] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowercase__ )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
48
"""simple docstring""" import random def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : Union[str, Any] = num - 1 snake_case_ : List[str] = 0 while s % 2 == 0: snake_case_ : str = s // 2 t += 1 for _ in range(5 ): snake_case_ : List[Any] = random.randrange(2 , num - 1 ) snake_case_ : Dict = pow(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if v != 1: snake_case_ : int = 0 while v != (num - 1): if i == t - 1: return False else: snake_case_ : str = i + 1 snake_case_ : int = (v**2) % num return True def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" if num < 2: return False snake_case_ : Dict = [ 2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1, 4_3, 4_7, 5_3, 5_9, 6_1, 6_7, 7_1, 7_3, 7_9, 8_3, 8_9, 9_7, 1_0_1, 1_0_3, 1_0_7, 1_0_9, 1_1_3, 1_2_7, 1_3_1, 1_3_7, 1_3_9, 1_4_9, 1_5_1, 1_5_7, 1_6_3, 1_6_7, 1_7_3, 1_7_9, 1_8_1, 1_9_1, 1_9_3, 1_9_7, 1_9_9, 2_1_1, 2_2_3, 2_2_7, 2_2_9, 2_3_3, 2_3_9, 2_4_1, 2_5_1, 2_5_7, 2_6_3, 2_6_9, 2_7_1, 2_7_7, 2_8_1, 2_8_3, 2_9_3, 3_0_7, 3_1_1, 3_1_3, 3_1_7, 3_3_1, 3_3_7, 3_4_7, 3_4_9, 3_5_3, 3_5_9, 3_6_7, 3_7_3, 3_7_9, 3_8_3, 3_8_9, 3_9_7, 4_0_1, 4_0_9, 4_1_9, 4_2_1, 4_3_1, 4_3_3, 4_3_9, 4_4_3, 4_4_9, 4_5_7, 4_6_1, 4_6_3, 4_6_7, 4_7_9, 4_8_7, 4_9_1, 4_9_9, 5_0_3, 5_0_9, 5_2_1, 5_2_3, 5_4_1, 5_4_7, 5_5_7, 5_6_3, 5_6_9, 5_7_1, 5_7_7, 5_8_7, 5_9_3, 5_9_9, 6_0_1, 6_0_7, 6_1_3, 6_1_7, 6_1_9, 6_3_1, 6_4_1, 6_4_3, 6_4_7, 6_5_3, 6_5_9, 6_6_1, 6_7_3, 6_7_7, 6_8_3, 6_9_1, 7_0_1, 7_0_9, 7_1_9, 7_2_7, 7_3_3, 7_3_9, 7_4_3, 7_5_1, 7_5_7, 7_6_1, 7_6_9, 7_7_3, 7_8_7, 7_9_7, 8_0_9, 8_1_1, 8_2_1, 8_2_3, 8_2_7, 8_2_9, 8_3_9, 8_5_3, 8_5_7, 8_5_9, 8_6_3, 8_7_7, 8_8_1, 8_8_3, 8_8_7, 9_0_7, 9_1_1, 9_1_9, 9_2_9, 9_3_7, 9_4_1, 9_4_7, 9_5_3, 9_6_7, 9_7_1, 9_7_7, 9_8_3, 9_9_1, 9_9_7, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int = 1_0_2_4 ): """simple docstring""" while True: snake_case_ : Tuple = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(SCREAMING_SNAKE_CASE__ ): return num if __name__ == "__main__": a_ = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
48
1
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : str = word.split() def justify(SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> str: snake_case_ : Dict = max_width - width snake_case_ : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: snake_case_ : Tuple = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] snake_case_ : str = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] snake_case_ : Tuple = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(SCREAMING_SNAKE_CASE__ ): num_spaces_between_words_list[i] += 1 snake_case_ : Union[str, Any] = [] for i in range(SCREAMING_SNAKE_CASE__ ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * """ """ ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = [] snake_case_ : list[str] = [] snake_case_ : Tuple = 0 for word in words: if width + len(SCREAMING_SNAKE_CASE__ ) + len(SCREAMING_SNAKE_CASE__ ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(SCREAMING_SNAKE_CASE__ ) width += len(SCREAMING_SNAKE_CASE__ ) else: # justify the line and add it to result answer.append(justify(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) # reset new line and new width snake_case_ , snake_case_ : List[Any] = [word], len(SCREAMING_SNAKE_CASE__ ) snake_case_ : List[str] = max_width - width - len(SCREAMING_SNAKE_CASE__ ) answer.append(""" """.join(SCREAMING_SNAKE_CASE__ ) + (remaining_spaces + 1) * """ """ ) return answer if __name__ == "__main__": from doctest import testmod testmod()
48
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType a_ = logging.get_logger(__name__) a_ = { '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Dict = """deberta-v2""" def __init__(self , lowercase__=12_81_00 , lowercase__=15_36 , lowercase__=24 , lowercase__=24 , lowercase__=61_44 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_12 , lowercase__=0 , lowercase__=0.02 , lowercase__=1e-7 , lowercase__=False , lowercase__=-1 , lowercase__=0 , lowercase__=True , lowercase__=None , lowercase__=0 , lowercase__="gelu" , **lowercase__ , ): super().__init__(**lowercase__ ) snake_case_ : Union[str, Any] = hidden_size snake_case_ : str = num_hidden_layers snake_case_ : Tuple = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : Optional[int] = hidden_act snake_case_ : Union[str, Any] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : List[Any] = max_position_embeddings snake_case_ : Union[str, Any] = type_vocab_size snake_case_ : Union[str, Any] = initializer_range snake_case_ : List[Any] = relative_attention snake_case_ : Dict = max_relative_positions snake_case_ : Optional[int] = pad_token_id snake_case_ : List[str] = position_biased_input # Backwards compatibility if type(lowercase__ ) == str: snake_case_ : Union[str, Any] = [x.strip() for x in pos_att_type.lower().split("""|""" )] snake_case_ : Optional[int] = pos_att_type snake_case_ : List[str] = vocab_size snake_case_ : Tuple = layer_norm_eps snake_case_ : List[Any] = kwargs.get("""pooler_hidden_size""" , lowercase__ ) snake_case_ : List[str] = pooler_dropout snake_case_ : int = pooler_hidden_act class __lowercase ( _UpperCAmelCase): """simple docstring""" @property def __UpperCamelCase (self ): if self.task == "multiple-choice": snake_case_ : List[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case_ : int = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def __UpperCamelCase (self ): return 12 def __UpperCamelCase (self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , lowercase__ = 3 , lowercase__ = 40 , lowercase__ = 40 , lowercase__ = None , ): snake_case_ : str = super().generate_dummy_inputs(preprocessor=lowercase__ , framework=lowercase__ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
48
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} a_ = { '''vocab_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json''' ), }, '''merges_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt''' ), }, '''tokenizer_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''', '''roberta-base-openai-detector''': ( '''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json''' ), '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json''' ), }, } a_ = { '''roberta-base''': 512, '''roberta-large''': 512, '''roberta-large-mnli''': 512, '''distilroberta-base''': 512, '''roberta-base-openai-detector''': 512, '''roberta-large-openai-detector''': 512, } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[Any] = VOCAB_FILES_NAMES _A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Optional[Any] = ["""input_ids""", """attention_mask"""] _A : Optional[Any] = RobertaTokenizer def __init__(self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="replace" , lowercase__="<s>" , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<mask>" , lowercase__=False , lowercase__=True , **lowercase__ , ): super().__init__( lowercase__ , lowercase__ , tokenizer_file=lowercase__ , errors=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , unk_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ , **lowercase__ , ) snake_case_ : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , lowercase__ ) != add_prefix_space: snake_case_ : Optional[int] = getattr(lowercase__ , pre_tok_state.pop("""type""" ) ) snake_case_ : Union[str, Any] = add_prefix_space snake_case_ : str = pre_tok_class(**lowercase__ ) snake_case_ : int = add_prefix_space snake_case_ : Dict = """post_processor""" snake_case_ : Dict = getattr(self.backend_tokenizer , lowercase__ , lowercase__ ) if tokenizer_component_instance: snake_case_ : Dict = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case_ : Dict = tuple(state["""sep"""] ) if "cls" in state: snake_case_ : Dict = tuple(state["""cls"""] ) snake_case_ : List[Any] = False if state.get("""add_prefix_space""" , lowercase__ ) != add_prefix_space: snake_case_ : str = add_prefix_space snake_case_ : Optional[Any] = True if state.get("""trim_offsets""" , lowercase__ ) != trim_offsets: snake_case_ : Optional[int] = trim_offsets snake_case_ : Optional[Any] = True if changes_to_apply: snake_case_ : Dict = getattr(lowercase__ , state.pop("""type""" ) ) snake_case_ : Any = component_class(**lowercase__ ) setattr(self.backend_tokenizer , lowercase__ , lowercase__ ) @property def __UpperCamelCase (self ): if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def __UpperCamelCase (self , lowercase__ ): snake_case_ : List[Any] = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else value snake_case_ : Any = value def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): snake_case_ : List[Any] = kwargs.get("""is_split_into_words""" , lowercase__ ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowercase__ , **lowercase__ ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): snake_case_ : List[Any] = kwargs.get("""is_split_into_words""" , lowercase__ ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): snake_case_ : Any = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__=None ): snake_case_ : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): snake_case_ : Dict = [self.sep_token_id] snake_case_ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
48
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
48
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class __lowercase : """simple docstring""" _A : List[str] = PegasusConfig _A : str = {} _A : Dict = """gelu""" def __init__(self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=False , lowercase__=99 , lowercase__=32 , lowercase__=2 , lowercase__=4 , lowercase__=37 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=40 , lowercase__=2 , lowercase__=1 , lowercase__=0 , ): snake_case_ : Optional[Any] = parent snake_case_ : str = batch_size snake_case_ : Any = seq_length snake_case_ : Tuple = is_training snake_case_ : Optional[int] = use_labels snake_case_ : Optional[Any] = vocab_size snake_case_ : int = hidden_size snake_case_ : Optional[int] = num_hidden_layers snake_case_ : Tuple = num_attention_heads snake_case_ : Optional[int] = intermediate_size snake_case_ : Tuple = hidden_dropout_prob snake_case_ : Optional[Any] = attention_probs_dropout_prob snake_case_ : List[Any] = max_position_embeddings snake_case_ : Any = eos_token_id snake_case_ : List[Any] = pad_token_id snake_case_ : Union[str, Any] = bos_token_id def __UpperCamelCase (self ): snake_case_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) snake_case_ : Any = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) snake_case_ : List[Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Any = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) snake_case_ : int = prepare_pegasus_inputs_dict(lowercase__ , lowercase__ , lowercase__ ) return config, inputs_dict def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : Dict = TFPegasusModel(config=lowercase__ ).get_decoder() snake_case_ : int = inputs_dict["""input_ids"""] snake_case_ : Dict = input_ids[:1, :] snake_case_ : Tuple = inputs_dict["""attention_mask"""][:1, :] snake_case_ : Optional[Any] = inputs_dict["""head_mask"""] snake_case_ : Dict = 1 # first forward pass snake_case_ : Tuple = model(lowercase__ , attention_mask=lowercase__ , head_mask=lowercase__ , use_cache=lowercase__ ) snake_case_ , snake_case_ : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case_ : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ : Tuple = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and snake_case_ : Optional[int] = tf.concat([input_ids, next_tokens] , axis=-1 ) snake_case_ : List[str] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) snake_case_ : Optional[int] = model(lowercase__ , attention_mask=lowercase__ )[0] snake_case_ : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice snake_case_ : str = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) snake_case_ : Optional[int] = output_from_no_past[:, -3:, random_slice_idx] snake_case_ : List[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase__ , lowercase__ , rtol=1e-3 ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Dict=None , ): """simple docstring""" if attention_mask is None: snake_case_ : Tuple = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case_ : Dict = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case_ : int = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case_ : Optional[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: snake_case_ : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : Union[str, Any] = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () _A : Optional[Any] = (TFPegasusForConditionalGeneration,) if is_tf_available() else () _A : List[str] = ( { """conversational""": TFPegasusForConditionalGeneration, """feature-extraction""": TFPegasusModel, """summarization""": TFPegasusForConditionalGeneration, """text2text-generation""": TFPegasusForConditionalGeneration, """translation""": TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) _A : Union[str, Any] = True _A : Optional[Any] = False _A : Optional[int] = False def __UpperCamelCase (self ): snake_case_ : List[Any] = TFPegasusModelTester(self ) snake_case_ : Tuple = ConfigTester(self , config_class=lowercase__ ) def __UpperCamelCase (self ): self.config_tester.run_common_tests() def __UpperCamelCase (self ): snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase__ ) @require_sentencepiece @require_tokenizers @require_tf class __lowercase ( unittest.TestCase): """simple docstring""" _A : Dict = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] _A : Optional[Any] = [ """California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to""" """ reduce the risk of wildfires.""", """N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.""", ] # differs slightly from pytorch, likely due to numerical differences in linear layers _A : int = """google/pegasus-xsum""" @cached_property def __UpperCamelCase (self ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __UpperCamelCase (self ): snake_case_ : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __UpperCamelCase (self , **lowercase__ ): snake_case_ : Any = self.translate_src_text(**lowercase__ ) assert self.expected_text == generated_words def __UpperCamelCase (self , **lowercase__ ): snake_case_ : Dict = self.tokenizer(self.src_text , **lowercase__ , padding=lowercase__ , return_tensors="""tf""" ) snake_case_ : Dict = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=lowercase__ , ) snake_case_ : Union[str, Any] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowercase__ ) return generated_words @slow def __UpperCamelCase (self ): self._assert_generated_batch_equal_expected()
48
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('''fixtures/test_sentencepiece.model''') a_ = {'''target_lang''': '''fi''', '''source_lang''': '''en'''} a_ = '''>>zh<<''' a_ = '''Helsinki-NLP/''' if is_torch_available(): a_ = '''pt''' elif is_tf_available(): a_ = '''tf''' else: a_ = '''jax''' @require_sentencepiece class __lowercase ( _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : str = MarianTokenizer _A : List[str] = False _A : List[str] = True def __UpperCamelCase (self ): super().setUp() snake_case_ : Optional[int] = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] snake_case_ : Any = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) snake_case_ : Any = Path(self.tmpdirname ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) snake_case_ : Optional[Any] = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase (self , **lowercase__ ): return MarianTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def __UpperCamelCase (self , lowercase__ ): return ( "This is a test", "This is a test", ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = """</s>""" snake_case_ : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__ ) , lowercase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__ ) , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(lowercase__ ) , 9 ) def __UpperCamelCase (self ): self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def __UpperCamelCase (self ): snake_case_ : Any = MarianTokenizer.from_pretrained(f'{ORG_NAME}opus-mt-en-de' ) snake_case_ : Tuple = en_de_tokenizer(["""I am a small frog"""] , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) snake_case_ : Dict = [38, 1_21, 14, 6_97, 3_88_48, 0] self.assertListEqual(lowercase__ , batch.input_ids[0] ) snake_case_ : Tuple = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(lowercase__ ) snake_case_ : str = [x.name for x in Path(lowercase__ ).glob("""*""" )] self.assertIn("""source.spm""" , lowercase__ ) MarianTokenizer.from_pretrained(lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = self.get_tokenizer() snake_case_ : List[str] = tok( ["""I am a small frog""" * 10_00, """I am a small frog"""] , padding=lowercase__ , truncation=lowercase__ , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(batch.input_ids.shape , (2, 5_12) ) def __UpperCamelCase (self ): snake_case_ : Tuple = self.get_tokenizer() snake_case_ : Tuple = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=lowercase__ , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def __UpperCamelCase (self ): # fmt: off snake_case_ : str = {"""input_ids""": [[4_34_95, 4_62, 20, 4_21_64, 13_69, 52, 4_64, 1_32, 17_03, 4_92, 13, 74_91, 3_89_99, 6, 8, 4_64, 1_32, 17_03, 4_92, 13, 46_69, 3_78_67, 13, 75_25, 27, 15_93, 9_88, 13, 3_39_72, 70_29, 6, 20, 82_51, 3_83, 2, 2_70, 58_66, 37_88, 2, 23_53, 82_51, 1_23_38, 2, 1_39_58, 3_87, 2, 36_29, 69_53, 1_88, 29_00, 2, 1_39_58, 80_11, 1_15_01, 23, 84_60, 40_73, 3_40_09, 20, 4_35, 1_14_39, 27, 8, 84_60, 40_73, 60_04, 20, 99_88, 3_75, 27, 33, 2_66, 19_45, 10_76, 13_50, 3_78_67, 32_88, 5, 5_77, 10_76, 43_74, 8, 50_82, 5, 2_64_53, 2_57, 5_56, 4_03, 2, 2_42, 1_32, 3_83, 3_16, 4_92, 8, 1_07_67, 6, 3_16, 3_04, 42_39, 3, 0], [1_48, 1_57_22, 19, 18_39, 12, 13_50, 13, 2_23_27, 50_82, 54_18, 4_75_67, 3_59_38, 59, 3_18, 1_95_52, 1_08, 21_83, 54, 1_49_76, 48_35, 32, 5_47, 11_14, 8, 3_15, 24_17, 5, 92, 1_90_88, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00], [36, 63_95, 1_25_70, 3_91_47, 1_15_97, 6, 2_66, 4, 4_54_05, 72_96, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase__ , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def __UpperCamelCase (self ): snake_case_ : Any = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) snake_case_ : Dict = """Tämä on testi""" snake_case_ : List[Any] = """This is a test""" snake_case_ : Optional[int] = [76, 7, 20_47, 2] snake_case_ : List[str] = [69, 12, 11, 9_40, 2] snake_case_ : Any = tokenizer(lowercase__ ).input_ids self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : str = tokenizer(text_target=lowercase__ ).input_ids self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : int = tokenizer.decode(lowercase__ , skip_special_tokens=lowercase__ ) self.assertEqual(lowercase__ , lowercase__ )
48
1
"""simple docstring""" import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class __lowercase ( unittest.TestCase): """simple docstring""" def __UpperCamelCase (self ): snake_case_ : Optional[Any] = """laion/clap-htsat-unfused""" snake_case_ : Any = tempfile.mkdtemp() def __UpperCamelCase (self , **lowercase__ ): return RobertaTokenizer.from_pretrained(self.checkpoint , **lowercase__ ) def __UpperCamelCase (self , **lowercase__ ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **lowercase__ ) def __UpperCamelCase (self ): shutil.rmtree(self.tmpdirname ) def __UpperCamelCase (self ): snake_case_ : Optional[int] = self.get_tokenizer() snake_case_ : Union[str, Any] = self.get_feature_extractor() snake_case_ : List[str] = ClapProcessor(tokenizer=lowercase__ , feature_extractor=lowercase__ ) processor.save_pretrained(self.tmpdirname ) snake_case_ : Tuple = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase__ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Optional[Any] = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) snake_case_ : List[str] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) snake_case_ : List[str] = self.get_feature_extractor(do_normalize=lowercase__ , padding_value=1.0 ) snake_case_ : Tuple = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowercase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase__ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : List[str] = self.get_feature_extractor() snake_case_ : Dict = self.get_tokenizer() snake_case_ : Union[str, Any] = ClapProcessor(tokenizer=lowercase__ , feature_extractor=lowercase__ ) snake_case_ : int = floats_list((3, 10_00) ) snake_case_ : List[str] = feature_extractor(lowercase__ , return_tensors="""np""" ) snake_case_ : List[str] = processor(audios=lowercase__ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __UpperCamelCase (self ): snake_case_ : int = self.get_feature_extractor() snake_case_ : Tuple = self.get_tokenizer() snake_case_ : int = ClapProcessor(tokenizer=lowercase__ , feature_extractor=lowercase__ ) snake_case_ : int = """This is a test string""" snake_case_ : Tuple = processor(text=lowercase__ ) snake_case_ : Optional[int] = tokenizer(lowercase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCamelCase (self ): snake_case_ : Tuple = self.get_feature_extractor() snake_case_ : str = self.get_tokenizer() snake_case_ : Any = ClapProcessor(tokenizer=lowercase__ , feature_extractor=lowercase__ ) snake_case_ : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case_ : Optional[int] = processor.batch_decode(lowercase__ ) snake_case_ : Tuple = tokenizer.batch_decode(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Tuple = self.get_feature_extractor() snake_case_ : List[str] = self.get_tokenizer() snake_case_ : List[Any] = ClapProcessor(tokenizer=lowercase__ , feature_extractor=lowercase__ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
48
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCAmelCase) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True}) _A : ClassVar[Features] = Features({"""audio""": Audio()}) _A : ClassVar[Features] = Features({"""transcription""": Value("""string""")}) _A : str = "audio" _A : str = "transcription" def __UpperCamelCase (self , lowercase__ ): if self.audio_column not in features: raise ValueError(f'Column {self.audio_column} is not present in features.' ) if not isinstance(features[self.audio_column] , lowercase__ ): raise ValueError(f'Column {self.audio_column} is not an Audio type.' ) snake_case_ : Optional[int] = copy.deepcopy(self ) snake_case_ : Tuple = self.input_schema.copy() snake_case_ : List[str] = features[self.audio_column] snake_case_ : Any = input_schema return task_template @property def __UpperCamelCase (self ): return {self.audio_column: "audio", self.transcription_column: "transcription"}
48
1
"""simple docstring""" from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance a_ = 6_3_7_8_1_3_7.0 a_ = 6_3_5_6_7_5_2.3_1_4_2_4_5 a_ = 6378137 def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ): """simple docstring""" snake_case_ : Dict = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude snake_case_ : Union[str, Any] = atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE__ ) ) ) snake_case_ : List[Any] = atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE__ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius snake_case_ : Union[str, Any] = haversine_distance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) / EQUATORIAL_RADIUS # Intermediate P and Q values snake_case_ : Union[str, Any] = (b_lata + b_lata) / 2 snake_case_ : Optional[int] = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) snake_case_ : int = (sin(SCREAMING_SNAKE_CASE__ ) ** 2) * (cos(SCREAMING_SNAKE_CASE__ ) ** 2) snake_case_ : Optional[Any] = cos(sigma / 2 ) ** 2 snake_case_ : Optional[Any] = (sigma - sin(SCREAMING_SNAKE_CASE__ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) snake_case_ : Optional[int] = (cos(SCREAMING_SNAKE_CASE__ ) ** 2) * (sin(SCREAMING_SNAKE_CASE__ ) ** 2) snake_case_ : List[str] = sin(sigma / 2 ) ** 2 snake_case_ : Optional[Any] = (sigma + sin(SCREAMING_SNAKE_CASE__ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
48
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : int = ["""pixel_values"""] def __init__(self , lowercase__ = True , lowercase__ = None , lowercase__ = 0.9 , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = True , lowercase__ = None , lowercase__ = 1 / 2_55 , lowercase__ = True , lowercase__ = True , lowercase__ = None , lowercase__ = None , **lowercase__ , ): super().__init__(**lowercase__ ) snake_case_ : Tuple = size if size is not None else {"""shortest_edge""": 2_24} snake_case_ : Union[str, Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) snake_case_ : str = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} snake_case_ : Dict = get_size_dict(lowercase__ , param_name="""crop_size""" ) snake_case_ : Union[str, Any] = do_resize snake_case_ : List[str] = size snake_case_ : str = crop_pct snake_case_ : str = resample snake_case_ : Optional[Any] = do_center_crop snake_case_ : Dict = crop_size snake_case_ : int = do_rescale snake_case_ : Optional[int] = rescale_factor snake_case_ : str = do_normalize snake_case_ : str = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN snake_case_ : List[str] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = None , **lowercase__ , ): snake_case_ : Tuple = get_size_dict(lowercase__ , default_to_square=lowercase__ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f'size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) if crop_pct is not None: if "shortest_edge" in size: snake_case_ : Optional[int] = int(size["""shortest_edge"""] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: snake_case_ : Dict = int(size["""height"""] / crop_pct ) else: snake_case_ : List[str] = (int(size["""height"""] / crop_pct ), int(size["""width"""] / crop_pct )) else: raise ValueError("""Invalid size for resize: {}""".format(lowercase__ ) ) snake_case_ : List[Any] = get_resize_output_image_size(lowercase__ , size=lowercase__ , default_to_square=lowercase__ ) else: if "shortest_edge" in size: snake_case_ : Optional[int] = get_resize_output_image_size(lowercase__ , size=size["""shortest_edge"""] , default_to_square=lowercase__ ) elif "height" in size and "width" in size: snake_case_ : int = (size["""height"""], size["""width"""]) else: raise ValueError("""Invalid size for resize: {}""".format(lowercase__ ) ) return resize(lowercase__ , size=lowercase__ , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): snake_case_ : int = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(f'size must contain \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(lowercase__ , size=(size["""height"""], size["""width"""]) , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return normalize(lowercase__ , mean=lowercase__ , std=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ): snake_case_ : str = do_resize if do_resize is not None else self.do_resize snake_case_ : Any = crop_pct if crop_pct is not None else self.crop_pct snake_case_ : List[Any] = resample if resample is not None else self.resample snake_case_ : str = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : str = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : str = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : List[Any] = image_mean if image_mean is not None else self.image_mean snake_case_ : int = image_std if image_std is not None else self.image_std snake_case_ : List[Any] = size if size is not None else self.size snake_case_ : Optional[Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) snake_case_ : List[Any] = crop_size if crop_size is not None else self.crop_size snake_case_ : int = get_size_dict(lowercase__ , param_name="""crop_size""" ) snake_case_ : List[str] = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_pct is None: raise ValueError("""Crop_pct must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case_ : int = [to_numpy_array(lowercase__ ) for image in images] if do_resize: snake_case_ : str = [self.resize(image=lowercase__ , size=lowercase__ , crop_pct=lowercase__ , resample=lowercase__ ) for image in images] if do_center_crop: snake_case_ : Optional[int] = [self.center_crop(image=lowercase__ , size=lowercase__ ) for image in images] if do_rescale: snake_case_ : List[Any] = [self.rescale(image=lowercase__ , scale=lowercase__ ) for image in images] if do_normalize: snake_case_ : Optional[Any] = [self.normalize(image=lowercase__ , mean=lowercase__ , std=lowercase__ ) for image in images] snake_case_ : List[Any] = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] snake_case_ : Dict = {"""pixel_values""": images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
48
1
"""simple docstring""" from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : list[str] | None = None ): """simple docstring""" snake_case_ : List[Any] = word_bank or [] # create a table snake_case_ : int = len(SCREAMING_SNAKE_CASE__ ) + 1 snake_case_ : list[list[list[str]]] = [] for _ in range(SCREAMING_SNAKE_CASE__ ): table.append([] ) # seed value snake_case_ : Union[str, Any] = [[]] # because empty string has empty combination # iterate through the indices for i in range(SCREAMING_SNAKE_CASE__ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(SCREAMING_SNAKE_CASE__ )] == word: snake_case_ : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(SCREAMING_SNAKE_CASE__ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(SCREAMING_SNAKE_CASE__ )]: combination.reverse() return table[len(SCREAMING_SNAKE_CASE__ )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
48
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: a_ = None a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} a_ = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } a_ = { '''facebook/mbart-large-en-ro''': 1024, '''facebook/mbart-large-cc25''': 1024, } # fmt: off a_ = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Dict = VOCAB_FILES_NAMES _A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _A : str = ["""input_ids""", """attention_mask"""] _A : Tuple = MBartTokenizer _A : List[int] = [] _A : List[int] = [] def __init__(self , lowercase__=None , lowercase__=None , lowercase__="<s>" , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<mask>" , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ , ): # Mask token behave like a normal word, i.e. include the space before it snake_case_ : int = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token super().__init__( vocab_file=lowercase__ , tokenizer_file=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , unk_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , src_lang=lowercase__ , tgt_lang=lowercase__ , additional_special_tokens=lowercase__ , **lowercase__ , ) snake_case_ : Dict = vocab_file snake_case_ : Optional[int] = False if not self.vocab_file else True snake_case_ : Optional[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) snake_case_ : Any = { lang_code: self.convert_tokens_to_ids(lowercase__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } snake_case_ : Tuple = src_lang if src_lang is not None else """en_XX""" snake_case_ : Tuple = self.convert_tokens_to_ids(self._src_lang ) snake_case_ : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __UpperCamelCase (self ): return self._src_lang @src_lang.setter def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): snake_case_ : List[Any] = [self.sep_token_id] snake_case_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , **lowercase__ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) snake_case_ : int = src_lang snake_case_ : List[str] = self(lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , **lowercase__ ) snake_case_ : List[str] = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Union[str, Any] = tgt_lang_id return inputs def __UpperCamelCase (self , lowercase__ , lowercase__ = "en_XX" , lowercase__ = None , lowercase__ = "ro_RO" , **lowercase__ , ): snake_case_ : List[str] = src_lang snake_case_ : int = tgt_lang return super().prepare_seqaseq_batch(lowercase__ , lowercase__ , **lowercase__ ) def __UpperCamelCase (self ): return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCamelCase (self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Tuple = [] snake_case_ : List[Any] = [self.eos_token_id, self.cur_lang_code] snake_case_ : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Optional[int] = [] snake_case_ : Optional[Any] = [self.eos_token_id, self.cur_lang_code] snake_case_ : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ : int = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowercase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory.' ) return snake_case_ : List[str] = os.path.join( lowercase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ): copyfile(self.vocab_file , lowercase__ ) return (out_vocab_file,)
48
1
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=_UpperCAmelCase) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : str = field(default="""question-answering-extractive""" , metadata={"""include_in_asdict_even_if_is_default""": True}) _A : ClassVar[Features] = Features({"""question""": Value("""string"""), """context""": Value("""string""")}) _A : ClassVar[Features] = Features( { """answers""": Sequence( { """text""": Value("""string"""), """answer_start""": Value("""int32"""), }) }) _A : str = "question" _A : str = "context" _A : str = "answers" @property def __UpperCamelCase (self ): return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
48
"""simple docstring""" import argparse import hashlib # hashlib is only used inside the Test class import struct class __lowercase : """simple docstring""" def __init__(self , lowercase__ ): snake_case_ : Union[str, Any] = data snake_case_ : List[str] = [0X6_7_4_5_2_3_0_1, 0Xe_f_c_d_a_b_8_9, 0X9_8_b_a_d_c_f_e, 0X1_0_3_2_5_4_7_6, 0Xc_3_d_2_e_1_f_0] @staticmethod def __UpperCamelCase (lowercase__ , lowercase__ ): return ((n << b) | (n >> (32 - b))) & 0Xf_f_f_f_f_f_f_f def __UpperCamelCase (self ): snake_case_ : Any = B"""\x80""" + B"""\x00""" * (63 - (len(self.data ) + 8) % 64) snake_case_ : Tuple = self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def __UpperCamelCase (self ): return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = list(struct.unpack(""">16L""" , lowercase__ ) ) + [0] * 64 for i in range(16 , 80 ): snake_case_ : Dict = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def __UpperCamelCase (self ): snake_case_ : List[Any] = self.padding() snake_case_ : Any = self.split_blocks() for block in self.blocks: snake_case_ : Any = self.expand_block(lowercase__ ) snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = self.h for i in range(0 , 80 ): if 0 <= i < 20: snake_case_ : Optional[Any] = (b & c) | ((~b) & d) snake_case_ : List[str] = 0X5_a_8_2_7_9_9_9 elif 20 <= i < 40: snake_case_ : Union[str, Any] = b ^ c ^ d snake_case_ : Tuple = 0X6_e_d_9_e_b_a_1 elif 40 <= i < 60: snake_case_ : str = (b & c) | (b & d) | (c & d) snake_case_ : List[str] = 0X8_f_1_b_b_c_d_c elif 60 <= i < 80: snake_case_ : Tuple = b ^ c ^ d snake_case_ : str = 0Xc_a_6_2_c_1_d_6 snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Optional[Any] = ( self.rotate(lowercase__ , 5 ) + f + e + k + expanded_block[i] & 0Xf_f_f_f_f_f_f_f, a, self.rotate(lowercase__ , 30 ), c, d, ) snake_case_ : Any = ( self.h[0] + a & 0Xf_f_f_f_f_f_f_f, self.h[1] + b & 0Xf_f_f_f_f_f_f_f, self.h[2] + c & 0Xf_f_f_f_f_f_f_f, self.h[3] + d & 0Xf_f_f_f_f_f_f_f, self.h[4] + e & 0Xf_f_f_f_f_f_f_f, ) return ("{:08x}" * 5).format(*self.h ) def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Union[str, Any] = b"""Test String""" assert SHAaHash(SCREAMING_SNAKE_CASE__ ).final_hash() == hashlib.shaa(SCREAMING_SNAKE_CASE__ ).hexdigest() # noqa: S324 def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : int = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument("""--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) snake_case_ : Optional[int] = parser.parse_args() snake_case_ : Optional[int] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: snake_case_ : List[str] = f.read() else: snake_case_ : Dict = bytes(SCREAMING_SNAKE_CASE__ , """utf-8""" ) print(SHAaHash(SCREAMING_SNAKE_CASE__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
48
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''facebook/data2vec-vision-base-ft''': ( '''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json''' ), } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[Any] = """data2vec-vision""" def __init__(self , lowercase__=7_68 , lowercase__=12 , lowercase__=12 , lowercase__=30_72 , lowercase__="gelu" , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.02 , lowercase__=1e-12 , lowercase__=2_24 , lowercase__=16 , lowercase__=3 , lowercase__=False , lowercase__=False , lowercase__=False , lowercase__=False , lowercase__=0.1 , lowercase__=0.1 , lowercase__=True , lowercase__=[3, 5, 7, 11] , lowercase__=[1, 2, 3, 6] , lowercase__=True , lowercase__=0.4 , lowercase__=2_56 , lowercase__=1 , lowercase__=False , lowercase__=2_55 , **lowercase__ , ): super().__init__(**lowercase__ ) snake_case_ : Dict = hidden_size snake_case_ : Optional[int] = num_hidden_layers snake_case_ : Any = num_attention_heads snake_case_ : str = intermediate_size snake_case_ : Any = hidden_act snake_case_ : Union[str, Any] = hidden_dropout_prob snake_case_ : Dict = attention_probs_dropout_prob snake_case_ : Union[str, Any] = initializer_range snake_case_ : Optional[int] = layer_norm_eps snake_case_ : str = image_size snake_case_ : str = patch_size snake_case_ : Optional[int] = num_channels snake_case_ : List[str] = use_mask_token snake_case_ : List[str] = use_absolute_position_embeddings snake_case_ : List[str] = use_relative_position_bias snake_case_ : Dict = use_shared_relative_position_bias snake_case_ : int = layer_scale_init_value snake_case_ : List[str] = drop_path_rate snake_case_ : List[str] = use_mean_pooling # decode head attributes (semantic segmentation) snake_case_ : List[str] = out_indices snake_case_ : Union[str, Any] = pool_scales # auxiliary head attributes (semantic segmentation) snake_case_ : List[str] = use_auxiliary_head snake_case_ : Optional[int] = auxiliary_loss_weight snake_case_ : int = auxiliary_channels snake_case_ : str = auxiliary_num_convs snake_case_ : Dict = auxiliary_concat_input snake_case_ : List[str] = semantic_loss_ignore_index class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Dict = version.parse("""1.11""") @property def __UpperCamelCase (self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __UpperCamelCase (self ): return 1e-4
48
"""simple docstring""" from manim import * class __lowercase ( _UpperCAmelCase): """simple docstring""" def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = Rectangle(height=0.5 , width=0.5 ) snake_case_ : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) snake_case_ : Optional[Any] = [mem.copy() for i in range(6 )] snake_case_ : str = [mem.copy() for i in range(6 )] snake_case_ : str = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : Any = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[str] = VGroup(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[Any] = Text("""CPU""" , font_size=24 ) snake_case_ : Tuple = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowercase__ ) snake_case_ : List[Any] = [mem.copy() for i in range(4 )] snake_case_ : Tuple = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[str] = Text("""GPU""" , font_size=24 ) snake_case_ : Any = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) gpu.move_to([-1, -1, 0] ) self.add(lowercase__ ) snake_case_ : Optional[Any] = [mem.copy() for i in range(6 )] snake_case_ : List[Any] = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : Dict = Text("""Model""" , font_size=24 ) snake_case_ : int = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) model.move_to([3, -1.0, 0] ) self.add(lowercase__ ) snake_case_ : Dict = [] for i, rect in enumerate(lowercase__ ): rect.set_stroke(lowercase__ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) snake_case_ : List[str] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowercase__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowercase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase__ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase__ , buff=0.0 ) self.add(lowercase__ ) cpu_targs.append(lowercase__ ) snake_case_ : List[str] = [mem.copy() for i in range(6 )] snake_case_ : List[str] = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : str = Text("""Loaded Checkpoint""" , font_size=24 ) snake_case_ : Any = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , aligned_edge=lowercase__ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) snake_case_ : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) snake_case_ : Union[str, Any] = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowercase__ , lowercase__ ) snake_case_ : List[Any] = MarkupText( f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(lowercase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) snake_case_ : List[Any] = MarkupText( f'Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowercase__ ) , Write(lowercase__ ) ) self.play(Write(lowercase__ , run_time=1 ) , Create(lowercase__ , run_time=1 ) ) snake_case_ : Optional[int] = [] snake_case_ : List[str] = [] for i, rect in enumerate(lowercase__ ): snake_case_ : Optional[Any] = fill.copy().set_fill(lowercase__ , opacity=0.7 ) target.move_to(lowercase__ ) first_animations.append(GrowFromCenter(lowercase__ , run_time=1 ) ) snake_case_ : List[Any] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(lowercase__ , run_time=1.5 ) ) self.play(*lowercase__ ) self.play(*lowercase__ ) self.wait()
48
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : int=False ): """simple docstring""" snake_case_ : str = """backbone.""" if is_semantic else """""" snake_case_ : str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'{prefix}blocks.{i}.norm1.weight', f'beit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'{prefix}blocks.{i}.norm1.bias', f'beit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (f'{prefix}blocks.{i}.attn.proj.weight', f'beit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (f'{prefix}blocks.{i}.attn.proj.bias', f'beit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'{prefix}blocks.{i}.norm2.weight', f'beit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'{prefix}blocks.{i}.norm2.bias', f'beit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc1.weight', f'beit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc1.bias', f'beit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc2.weight', f'beit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc2.bias', f'beit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ (f'{prefix}cls_token', """beit.embeddings.cls_token"""), (f'{prefix}patch_embed.proj.weight', """beit.embeddings.patch_embeddings.projection.weight"""), (f'{prefix}patch_embed.proj.bias', """beit.embeddings.patch_embeddings.projection.bias"""), (f'{prefix}pos_embed', """beit.embeddings.position_embeddings"""), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("""mask_token""", """beit.embeddings.mask_token"""), ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) else: # layernorm + classification head rename_keys.extend( [ ("""fc_norm.weight""", """beit.pooler.layernorm.weight"""), ("""fc_norm.bias""", """beit.pooler.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : int=False ): """simple docstring""" for i in range(config.num_hidden_layers ): snake_case_ : Union[str, Any] = """backbone.""" if is_semantic else """""" # queries, keys and values snake_case_ : Union[str, Any] = state_dict.pop(f'{prefix}blocks.{i}.attn.qkv.weight' ) snake_case_ : str = state_dict.pop(f'{prefix}blocks.{i}.attn.q_bias' ) snake_case_ : Tuple = state_dict.pop(f'{prefix}blocks.{i}.attn.v_bias' ) snake_case_ : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] snake_case_ : List[Any] = q_bias snake_case_ : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case_ : Optional[int] = in_proj_weight[ -config.hidden_size :, : ] snake_case_ : Any = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained snake_case_ : Dict = state_dict.pop(f'{prefix}blocks.{i}.gamma_1' ) snake_case_ : List[Any] = state_dict.pop(f'{prefix}blocks.{i}.gamma_2' ) snake_case_ : int = gamma_a snake_case_ : Any = gamma_a def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : str = dct.pop(SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = val def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Tuple = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case_ : int = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False ): """simple docstring""" snake_case_ : Optional[Any] = False if """rvlcdip""" in checkpoint_url else True snake_case_ : Optional[int] = BeitConfig(use_absolute_position_embeddings=SCREAMING_SNAKE_CASE__ , use_mask_token=SCREAMING_SNAKE_CASE__ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: snake_case_ : Any = 1_0_2_4 snake_case_ : Optional[Any] = 4_0_9_6 snake_case_ : Any = 2_4 snake_case_ : Optional[int] = 1_6 # labels if "rvlcdip" in checkpoint_url: snake_case_ : List[Any] = 1_6 snake_case_ : Tuple = """huggingface/label-files""" snake_case_ : Tuple = """rvlcdip-id2label.json""" snake_case_ : List[Any] = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type="""dataset""" ) , """r""" ) ) snake_case_ : str = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} snake_case_ : Any = idalabel snake_case_ : Optional[int] = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys snake_case_ : Tuple = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" )["""model"""] snake_case_ : int = create_rename_keys(SCREAMING_SNAKE_CASE__ , has_lm_head=SCREAMING_SNAKE_CASE__ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) read_in_q_k_v(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , has_lm_head=SCREAMING_SNAKE_CASE__ ) # load HuggingFace model snake_case_ : List[Any] = BeitForMaskedImageModeling(SCREAMING_SNAKE_CASE__ ) if has_lm_head else BeitForImageClassification(SCREAMING_SNAKE_CASE__ ) model.eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) # Check outputs on an image snake_case_ : Any = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = prepare_img() snake_case_ : Dict = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) snake_case_ : Optional[int] = encoding["""pixel_values"""] snake_case_ : int = model(SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[int] = outputs.logits # verify logits snake_case_ : Any = [1, 1_6] if """rvlcdip""" in checkpoint_url else [1, 1_9_6, 8_1_9_2] assert logits.shape == torch.Size(SCREAMING_SNAKE_CASE__ ), "Shape of logits not as expected" Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: if has_lm_head: snake_case_ : int = """dit-base""" if """base""" in checkpoint_url else """dit-large""" else: snake_case_ : Tuple = """dit-base-finetuned-rvlcdip""" if """dit-b""" in checkpoint_url else """dit-large-finetuned-rvlcdip""" image_processor.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=SCREAMING_SNAKE_CASE__ , ) model.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=SCREAMING_SNAKE_CASE__ , ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) a_ = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
48
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" snake_case_ : Union[str, Any] = 0 if start < end: snake_case_ : Union[str, Any] = randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = a[end] snake_case_ : Dict = a[pivot] snake_case_ : Any = temp snake_case_ , snake_case_ : Dict = _in_place_partition(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , p - 1 ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE__ , p + 1 , SCREAMING_SNAKE_CASE__ ) return count def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" snake_case_ : Tuple = 0 snake_case_ : List[Any] = randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : Dict = a[end] snake_case_ : List[Any] = a[pivot] snake_case_ : Optional[Any] = temp snake_case_ : List[str] = start - 1 for index in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value snake_case_ : Any = new_pivot_index + 1 snake_case_ : Tuple = a[new_pivot_index] snake_case_ : Optional[int] = a[index] snake_case_ : Tuple = temp snake_case_ : Union[str, Any] = a[new_pivot_index + 1] snake_case_ : Union[str, Any] = a[end] snake_case_ : Union[str, Any] = temp return new_pivot_index + 1, count a_ = TemporaryFile() a_ = 100 # 1000 elements are to be sorted a_ , a_ = 0, 1 # mean and standard deviation a_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array a_ = np.load(outfile) a_ = len(M) - 1 a_ = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
48
1
"""simple docstring""" from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : list[int | str] ): """simple docstring""" create_state_space_tree(SCREAMING_SNAKE_CASE__ , [] , 0 , [0 for i in range(len(SCREAMING_SNAKE_CASE__ ) )] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : list[int | str] , SCREAMING_SNAKE_CASE__ : list[int | str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[int] , ): """simple docstring""" if index == len(SCREAMING_SNAKE_CASE__ ): print(SCREAMING_SNAKE_CASE__ ) return for i in range(len(SCREAMING_SNAKE_CASE__ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) snake_case_ : List[Any] = True create_state_space_tree(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index + 1 , SCREAMING_SNAKE_CASE__ ) current_sequence.pop() snake_case_ : int = False a_ = [3, 1, 2, 4] generate_all_permutations(sequence) a_ = ["A", "B", "C"] generate_all_permutations(sequence_a)
48
"""simple docstring""" import random def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : bool = False ): """simple docstring""" snake_case_ : dict = {i: [] for i in range(SCREAMING_SNAKE_CASE__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(SCREAMING_SNAKE_CASE__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(i + 1 , SCREAMING_SNAKE_CASE__ ): if random.random() < probability: graph[i].append(SCREAMING_SNAKE_CASE__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(SCREAMING_SNAKE_CASE__ ) return graph def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" return { i: [j for j in range(SCREAMING_SNAKE_CASE__ ) if i != j] for i in range(SCREAMING_SNAKE_CASE__ ) } if __name__ == "__main__": import doctest doctest.testmod()
48
1
"""simple docstring""" from __future__ import annotations from collections import Counter from random import random class __lowercase : """simple docstring""" def __init__(self ): snake_case_ : Tuple = {} def __UpperCamelCase (self , lowercase__ ): snake_case_ : Optional[int] = {} def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): if nodea not in self.connections: self.add_node(lowercase__ ) if nodea not in self.connections: self.add_node(lowercase__ ) snake_case_ : Optional[Any] = probability def __UpperCamelCase (self ): return list(self.connections ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = 0 snake_case_ : List[str] = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : list[tuple[str, str, float]] , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : Union[str, Any] = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : Any = Counter(graph.get_nodes() ) snake_case_ : List[str] = start for _ in range(SCREAMING_SNAKE_CASE__ ): snake_case_ : List[Any] = graph.transition(SCREAMING_SNAKE_CASE__ ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
48
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json''' ), } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """dpr""" def __init__(self , lowercase__=3_05_22 , lowercase__=7_68 , lowercase__=12 , lowercase__=12 , lowercase__=30_72 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_12 , lowercase__=2 , lowercase__=0.02 , lowercase__=1e-12 , lowercase__=0 , lowercase__="absolute" , lowercase__ = 0 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , **lowercase__ ) snake_case_ : List[Any] = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : Tuple = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : int = hidden_act snake_case_ : Dict = intermediate_size snake_case_ : int = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : str = max_position_embeddings snake_case_ : List[str] = type_vocab_size snake_case_ : List[str] = initializer_range snake_case_ : Optional[int] = layer_norm_eps snake_case_ : Union[str, Any] = projection_dim snake_case_ : str = position_embedding_type
48
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" if "resnet-50" in model_name: snake_case_ : Union[str, Any] = ResNetConfig.from_pretrained("""microsoft/resnet-50""" ) elif "resnet-101" in model_name: snake_case_ : Optional[int] = ResNetConfig.from_pretrained("""microsoft/resnet-101""" ) else: raise ValueError("""Model name should include either resnet50 or resnet101""" ) snake_case_ : List[str] = DetrConfig(use_timm_backbone=SCREAMING_SNAKE_CASE__ , backbone_config=SCREAMING_SNAKE_CASE__ ) # set label attributes snake_case_ : Union[str, Any] = """panoptic""" in model_name if is_panoptic: snake_case_ : Tuple = 2_5_0 else: snake_case_ : Optional[Any] = 9_1 snake_case_ : Union[str, Any] = """huggingface/label-files""" snake_case_ : List[Any] = """coco-detection-id2label.json""" snake_case_ : Any = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type="""dataset""" ) , """r""" ) ) snake_case_ : Tuple = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} snake_case_ : List[Any] = idalabel snake_case_ : int = {v: k for k, v in idalabel.items()} return config, is_panoptic def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" snake_case_ : Optional[Any] = [] # stem # fmt: off rename_keys.append(("""backbone.0.body.conv1.weight""", """backbone.conv_encoder.model.embedder.embedder.convolution.weight""") ) rename_keys.append(("""backbone.0.body.bn1.weight""", """backbone.conv_encoder.model.embedder.embedder.normalization.weight""") ) rename_keys.append(("""backbone.0.body.bn1.bias""", """backbone.conv_encoder.model.embedder.embedder.normalization.bias""") ) rename_keys.append(("""backbone.0.body.bn1.running_mean""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_mean""") ) rename_keys.append(("""backbone.0.body.bn1.running_var""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_var""") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight', ) ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias') ) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append( (f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight', ) ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) return rename_keys def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" snake_case_ : Optional[int] = state_dict.pop(SCREAMING_SNAKE_CASE__ ) snake_case_ : Any = val def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str=False ): """simple docstring""" snake_case_ : Tuple = """""" if is_panoptic: snake_case_ : str = """detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) snake_case_ : List[Any] = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) snake_case_ : Union[str, Any] = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict snake_case_ : List[Any] = in_proj_weight[:2_5_6, :] snake_case_ : Dict = in_proj_bias[:2_5_6] snake_case_ : List[Any] = in_proj_weight[2_5_6:5_1_2, :] snake_case_ : Optional[int] = in_proj_bias[2_5_6:5_1_2] snake_case_ : Dict = in_proj_weight[-2_5_6:, :] snake_case_ : Dict = in_proj_bias[-2_5_6:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention snake_case_ : Optional[Any] = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) snake_case_ : Optional[Any] = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict snake_case_ : Any = in_proj_weight[:2_5_6, :] snake_case_ : Tuple = in_proj_bias[:2_5_6] snake_case_ : str = in_proj_weight[2_5_6:5_1_2, :] snake_case_ : Optional[int] = in_proj_bias[2_5_6:5_1_2] snake_case_ : Optional[int] = in_proj_weight[-2_5_6:, :] snake_case_ : str = in_proj_bias[-2_5_6:] # read in weights + bias of input projection layer of cross-attention snake_case_ : List[str] = state_dict.pop( f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) snake_case_ : Any = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict snake_case_ : Dict = in_proj_weight_cross_attn[:2_5_6, :] snake_case_ : int = in_proj_bias_cross_attn[:2_5_6] snake_case_ : Dict = in_proj_weight_cross_attn[2_5_6:5_1_2, :] snake_case_ : Any = in_proj_bias_cross_attn[2_5_6:5_1_2] snake_case_ : Tuple = in_proj_weight_cross_attn[-2_5_6:, :] snake_case_ : int = in_proj_bias_cross_attn[-2_5_6:] def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case_ : int = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : List[Any]=False ): """simple docstring""" snake_case_ , snake_case_ : Any = get_detr_config(SCREAMING_SNAKE_CASE__ ) # load original model from torch hub snake_case_ : str = { """detr-resnet-50""": """detr_resnet50""", """detr-resnet-101""": """detr_resnet101""", } logger.info(f'Converting model {model_name}...' ) snake_case_ : List[str] = torch.hub.load("""facebookresearch/detr""" , model_name_to_original_name[model_name] , pretrained=SCREAMING_SNAKE_CASE__ ).eval() snake_case_ : Dict = detr.state_dict() # rename keys for src, dest in create_rename_keys(SCREAMING_SNAKE_CASE__ ): if is_panoptic: snake_case_ : Union[str, Any] = """detr.""" + src rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # query, key and value matrices need special treatment read_in_q_k_v(SCREAMING_SNAKE_CASE__ , is_panoptic=SCREAMING_SNAKE_CASE__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them snake_case_ : Union[str, Any] = """detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): snake_case_ : Optional[int] = state_dict.pop(SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[Any] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: snake_case_ : int = state_dict.pop(SCREAMING_SNAKE_CASE__ ) snake_case_ : Union[str, Any] = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: snake_case_ : Any = state_dict.pop(SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[Any] = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): snake_case_ : Dict = state_dict.pop(SCREAMING_SNAKE_CASE__ ) snake_case_ : Dict = val # finally, create HuggingFace model and load state dict snake_case_ : Optional[Any] = DetrForSegmentation(SCREAMING_SNAKE_CASE__ ) if is_panoptic else DetrForObjectDetection(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() # verify our conversion on an image snake_case_ : int = """coco_panoptic""" if is_panoptic else """coco_detection""" snake_case_ : List[Any] = DetrImageProcessor(format=SCREAMING_SNAKE_CASE__ ) snake_case_ : int = processor(images=prepare_img() , return_tensors="""pt""" ) snake_case_ : Optional[Any] = encoding["""pixel_values"""] snake_case_ : Optional[Any] = detr(SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[Any] = model(SCREAMING_SNAKE_CASE__ ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1E-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1E-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: # Upload model and image processor to the hub logger.info("""Uploading PyTorch model and image processor to the hub...""" ) model.push_to_hub(f'nielsr/{model_name}' ) processor.push_to_hub(f'nielsr/{model_name}' ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''detr-resnet-50''', type=str, choices=['''detr-resnet-50''', '''detr-resnet-101'''], help='''Name of the DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the model to the hub or not.''') a_ = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
48
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm a_ = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex a_ = 10 a_ = 256 def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" if len(SCREAMING_SNAKE_CASE__ ) < MIN_NUM_TOKENS: return None snake_case_ : Union[str, Any] = MinHash(num_perm=SCREAMING_SNAKE_CASE__ ) for token in set(SCREAMING_SNAKE_CASE__ ): min_hash.update(token.encode() ) return min_hash def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" return {t for t in NON_ALPHA.split(SCREAMING_SNAKE_CASE__ ) if len(t.strip() ) > 0} class __lowercase : """simple docstring""" def __init__(self , *, lowercase__ = 0.85 , ): snake_case_ : Tuple = duplication_jaccard_threshold snake_case_ : Optional[Any] = NUM_PERM snake_case_ : Tuple = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) snake_case_ : List[Any] = defaultdict(lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : int = self._index.query(lowercase__ ) if code_key in self._index.keys: print(f'Duplicate key {code_key}' ) return self._index.insert(lowercase__ , lowercase__ ) if len(lowercase__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowercase__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(lowercase__ ) def __UpperCamelCase (self ): snake_case_ : str = [] for base, duplicates in self._duplicate_clusters.items(): snake_case_ : Optional[Any] = [base] + list(lowercase__ ) # reformat the cluster to be a list of dict snake_case_ : Any = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(lowercase__ ) return duplicate_clusters def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = self.get_duplicate_clusters() with open(lowercase__ , """w""" ) as f: json.dump(lowercase__ , lowercase__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ , snake_case_ : str = element snake_case_ : Tuple = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] ): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(SCREAMING_SNAKE_CASE__ , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ): if data is not None: yield data def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] , SCREAMING_SNAKE_CASE__ : float ): """simple docstring""" snake_case_ : int = DuplicationIndex(duplication_jaccard_threshold=SCREAMING_SNAKE_CASE__ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(SCREAMING_SNAKE_CASE__ ) ) , max_queue_size=1_0_0 ) ): di.add(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : int = get_tokens(SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = get_tokens(SCREAMING_SNAKE_CASE__ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) a_ = None def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Optional[Any] = [] for elementa in cluster: snake_case_ : Union[str, Any] = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: snake_case_ : Any = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) >= jaccard_threshold: elementa["copies"] += 1 break else: snake_case_ : Union[str, Any] = 1 extremes.append(SCREAMING_SNAKE_CASE__ ) return extremes def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" global _shared_dataset snake_case_ : str = dataset snake_case_ : int = [] snake_case_ : Optional[int] = partial(_find_cluster_extremes_shared , jaccard_threshold=SCREAMING_SNAKE_CASE__ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) , total=len(SCREAMING_SNAKE_CASE__ ) , ): extremes_list.append(SCREAMING_SNAKE_CASE__ ) return extremes_list def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] , SCREAMING_SNAKE_CASE__ : float = 0.85 ): """simple docstring""" snake_case_ : List[str] = make_duplicate_clusters(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : str = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} snake_case_ : str = {} snake_case_ : Dict = find_extremes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for extremes in extremes_clusters: for element in extremes: snake_case_ : int = element snake_case_ : Optional[int] = duplicate_indices - set(extreme_dict.keys() ) snake_case_ : List[Any] = dataset.filter(lambda SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : idx not in remove_indices , with_indices=SCREAMING_SNAKE_CASE__ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: snake_case_ : List[Any] = element["""base_index"""] in extreme_dict if element["is_extreme"]: snake_case_ : str = extreme_dict[element["""base_index"""]]["""copies"""] print(f'Original dataset size: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Number of duplicate clusters: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Files in duplicate cluster: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Unique files in duplicate cluster: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Filtered dataset size: {len(SCREAMING_SNAKE_CASE__ )}' ) return ds_filter, duplicate_clusters
48
1
"""simple docstring""" import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : Optional[Any] = RobertaPreLayerNormConfig.from_pretrained( SCREAMING_SNAKE_CASE__ , architectures=["""RobertaPreLayerNormForMaskedLM"""] ) # convert state_dict snake_case_ : Optional[Any] = torch.load(hf_hub_download(repo_id=SCREAMING_SNAKE_CASE__ , filename="""pytorch_model.bin""" ) ) snake_case_ : int = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("""roberta.""" ): snake_case_ : List[Any] = """roberta_prelayernorm.""" + tensor_key[len("""roberta.""" ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(""".self.LayerNorm.weight""" ) or tensor_key.endswith(""".self.LayerNorm.bias""" ): continue snake_case_ : Dict = tensor_value snake_case_ : Tuple = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=SCREAMING_SNAKE_CASE__ , config=SCREAMING_SNAKE_CASE__ , state_dict=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) # convert tokenizer snake_case_ : List[Any] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint-repo''', default=None, type=str, required=True, help='''Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) a_ = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
48
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) a_ = logging.getLogger(__name__) if __name__ == "__main__": a_ = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=30522, type=int) a_ = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, '''rb''') as fp: a_ = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') a_ = Counter() for tk_ids in data: counter.update(tk_ids) a_ = [0] * args.vocab_size for k, v in counter.items(): a_ = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
48
1
"""simple docstring""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''google/umt5-small''': '''https://huggingface.co/google/umt5-small/resolve/main/config.json''', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Dict = """umt5""" _A : Any = ["""past_key_values"""] def __init__(self , lowercase__=25_01_12 , lowercase__=5_12 , lowercase__=64 , lowercase__=10_24 , lowercase__=8 , lowercase__=None , lowercase__=6 , lowercase__=32 , lowercase__=1_28 , lowercase__=0.1 , lowercase__=1e-6 , lowercase__=1.0 , lowercase__="gated-gelu" , lowercase__=True , lowercase__=True , lowercase__="T5Tokenizer" , lowercase__=True , lowercase__=0 , lowercase__=1 , lowercase__=0 , **lowercase__ , ): super().__init__( is_encoder_decoder=lowercase__ , tokenizer_class=lowercase__ , tie_word_embeddings=lowercase__ , pad_token_id=lowercase__ , eos_token_id=lowercase__ , decoder_start_token_id=lowercase__ , **lowercase__ , ) snake_case_ : List[Any] = vocab_size snake_case_ : Dict = d_model snake_case_ : str = d_kv snake_case_ : Optional[Any] = d_ff snake_case_ : List[Any] = num_layers snake_case_ : Dict = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry snake_case_ : List[Any] = num_heads snake_case_ : List[str] = relative_attention_num_buckets snake_case_ : Optional[Any] = relative_attention_max_distance snake_case_ : Tuple = dropout_rate snake_case_ : Optional[int] = layer_norm_epsilon snake_case_ : List[str] = initializer_factor snake_case_ : List[str] = feed_forward_proj snake_case_ : List[str] = use_cache snake_case_ : Optional[int] = self.feed_forward_proj.split("""-""" ) snake_case_ : List[Any] = act_info[-1] snake_case_ : int = act_info[0] == """gated""" if len(lowercase__ ) > 1 and act_info[0] != "gated" or len(lowercase__ ) > 2: raise ValueError( f'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) if feed_forward_proj == "gated-gelu": snake_case_ : str = """gelu_new""" @property def __UpperCamelCase (self ): return self.d_model @property def __UpperCamelCase (self ): return self.num_heads @property def __UpperCamelCase (self ): return self.num_layers class __lowercase ( _UpperCAmelCase): """simple docstring""" @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def __UpperCamelCase (self ): snake_case_ : Any = { """input_ids""": {0: """batch""", 1: """encoder_sequence"""}, """attention_mask""": {0: """batch""", 1: """encoder_sequence"""}, } if self.use_past: snake_case_ : Optional[int] = """past_encoder_sequence + sequence""" snake_case_ : Dict = {0: """batch"""} snake_case_ : str = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: snake_case_ : Tuple = {0: """batch""", 1: """decoder_sequence"""} snake_case_ : Union[str, Any] = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(lowercase__ , direction="""inputs""" ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def __UpperCamelCase (self ): return 13 @property def __UpperCamelCase (self ): return 5e-4
48
"""simple docstring""" import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" snake_case_ : Optional[Any] = tmp_path / """cache""" snake_case_ : Optional[int] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : Tuple = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" snake_case_ : List[Any] = tmp_path / """cache""" snake_case_ : int = {"""text""": """string"""} snake_case_ : Any = features.copy() if features else default_expected_features snake_case_ : List[Any] = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : Dict = TextDatasetReader(SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : Union[str, Any] = tmp_path / """cache""" snake_case_ : Optional[Any] = {"""text""": """string"""} snake_case_ : Optional[int] = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , split=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" if issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : List[str] = text_path elif issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : str = [text_path] snake_case_ : List[str] = tmp_path / """cache""" snake_case_ : List[str] = {"""text""": """string"""} snake_case_ : Dict = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str]=("train",) ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for split in splits: snake_case_ : Dict = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" snake_case_ : int = tmp_path / """cache""" snake_case_ : List[str] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : Optional[Any] = TextDatasetReader({"""train""": text_path} , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Tuple = tmp_path / """cache""" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" snake_case_ : List[str] = {"""text""": """string"""} snake_case_ : int = features.copy() if features else default_expected_features snake_case_ : Tuple = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : str = TextDatasetReader({"""train""": text_path} , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" if split: snake_case_ : Union[str, Any] = {split: text_path} else: snake_case_ : Union[str, Any] = """train""" snake_case_ : int = {"""train""": text_path, """test""": text_path} snake_case_ : List[Any] = tmp_path / """cache""" snake_case_ : Tuple = {"""text""": """string"""} snake_case_ : int = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
48
1
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. a_ = abspath(join(dirname(__file__), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" config.addinivalue_line( """markers""" , """is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested""" ) config.addinivalue_line( """markers""" , """is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested""" ) config.addinivalue_line("""markers""" , """is_pipeline_test: mark test to run only when pipelines are tested""" ) config.addinivalue_line("""markers""" , """is_staging_test: mark test to run only in the staging environment""" ) config.addinivalue_line("""markers""" , """accelerate_tests: mark test that require accelerate""" ) config.addinivalue_line("""markers""" , """tool_tests: mark the tool tests that are run on their specific schedule""" ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" from transformers.testing_utils import pytest_terminal_summary_main snake_case_ : int = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(SCREAMING_SNAKE_CASE__ , id=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" if exitstatus == 5: snake_case_ : List[Any] = 0 # Doctest custom flag to ignore output. a_ = doctest.register_optionflag('''IGNORE_RESULT''') a_ = doctest.OutputChecker class __lowercase ( _UpperCAmelCase): """simple docstring""" def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , lowercase__ , lowercase__ , lowercase__ ) a_ = CustomOutputChecker a_ = HfDoctestModule a_ = HfDocTestParser
48
"""simple docstring""" from copy import deepcopy class __lowercase : """simple docstring""" def __init__(self , lowercase__ = None , lowercase__ = None ): if arr is None and size is not None: snake_case_ : str = size snake_case_ : Optional[Any] = [0] * size elif arr is not None: self.init(lowercase__ ) else: raise ValueError("""Either arr or size must be specified""" ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Optional[Any] = len(lowercase__ ) snake_case_ : int = deepcopy(lowercase__ ) for i in range(1 , self.size ): snake_case_ : Optional[Any] = self.next_(lowercase__ ) if j < self.size: self.tree[j] += self.tree[i] def __UpperCamelCase (self ): snake_case_ : Dict = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): snake_case_ : Optional[int] = self.next_(lowercase__ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def __UpperCamelCase (lowercase__ ): return index + (index & (-index)) @staticmethod def __UpperCamelCase (lowercase__ ): return index - (index & (-index)) def __UpperCamelCase (self , lowercase__ , lowercase__ ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value snake_case_ : Tuple = self.next_(lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): self.add(lowercase__ , value - self.get(lowercase__ ) ) def __UpperCamelCase (self , lowercase__ ): if right == 0: return 0 snake_case_ : List[str] = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] snake_case_ : Optional[int] = self.prev(lowercase__ ) return result def __UpperCamelCase (self , lowercase__ , lowercase__ ): return self.prefix(lowercase__ ) - self.prefix(lowercase__ ) def __UpperCamelCase (self , lowercase__ ): return self.query(lowercase__ , index + 1 ) def __UpperCamelCase (self , lowercase__ ): value -= self.tree[0] if value < 0: return -1 snake_case_ : Tuple = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 snake_case_ : Tuple = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
48
1
"""simple docstring""" from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''microsoft/xprophetnet-large-wiki100-cased''': ( '''https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json''' ), } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Any = """xlm-prophetnet""" _A : Union[str, Any] = ["""past_key_values"""] _A : Optional[int] = { """num_attention_heads""": """num_encoder_attention_heads""", } def __init__(self , lowercase__ = 0.1 , lowercase__ = "gelu" , lowercase__ = 3_05_22 , lowercase__ = 10_24 , lowercase__ = 40_96 , lowercase__ = 12 , lowercase__ = 16 , lowercase__ = 40_96 , lowercase__ = 12 , lowercase__ = 16 , lowercase__ = 0.1 , lowercase__ = 0.1 , lowercase__ = 5_12 , lowercase__ = 0.02 , lowercase__ = True , lowercase__ = True , lowercase__ = 0 , lowercase__ = 2 , lowercase__ = 32 , lowercase__ = 1_28 , lowercase__ = False , lowercase__ = 0.0 , lowercase__ = True , lowercase__ = 0 , lowercase__ = 1 , lowercase__ = 2 , **lowercase__ , ): snake_case_ : Dict = vocab_size snake_case_ : Optional[int] = hidden_size snake_case_ : Tuple = encoder_ffn_dim snake_case_ : Optional[Any] = num_encoder_layers snake_case_ : Dict = num_encoder_attention_heads snake_case_ : Dict = decoder_ffn_dim snake_case_ : Union[str, Any] = num_decoder_layers snake_case_ : Tuple = num_decoder_attention_heads snake_case_ : Optional[int] = max_position_embeddings snake_case_ : str = init_std # Normal(0, this parameter) snake_case_ : Optional[Any] = activation_function # parameters for xlmprophetnet snake_case_ : Dict = ngram snake_case_ : List[Any] = num_buckets snake_case_ : Union[str, Any] = relative_max_distance snake_case_ : Optional[int] = disable_ngram_loss snake_case_ : Optional[int] = eps # 3 Types of Dropout snake_case_ : Optional[Any] = attention_dropout snake_case_ : Optional[int] = activation_dropout snake_case_ : Any = dropout snake_case_ : Tuple = use_cache super().__init__( pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , add_cross_attention=lowercase__ , decoder_start_token_id=lowercase__ , **lowercase__ , ) @property def __UpperCamelCase (self ): return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def __UpperCamelCase (self , lowercase__ ): raise NotImplementedError( """This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and""" """ `num_decoder_layers`.""" )
48
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : list ): """simple docstring""" snake_case_ : Optional[int] = len(SCREAMING_SNAKE_CASE__ ) for i in range(1 , SCREAMING_SNAKE_CASE__ ): snake_case_ : Tuple = collection[i] snake_case_ : Tuple = 0 snake_case_ : str = i - 1 while low <= high: snake_case_ : Optional[int] = (low + high) // 2 if val < collection[mid]: snake_case_ : List[str] = mid - 1 else: snake_case_ : str = mid + 1 for j in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , -1 ): snake_case_ : List[str] = collection[j - 1] snake_case_ : Any = val return collection if __name__ == "__main__": a_ = input('''Enter numbers separated by a comma:\n''').strip() a_ = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
48
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available a_ = { '''configuration_audio_spectrogram_transformer''': [ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ASTConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ASTForAudioClassification''', '''ASTModel''', '''ASTPreTrainedModel''', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['''ASTFeatureExtractor'''] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
48
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Union[str, Any] = ["""image_processor""", """tokenizer"""] _A : str = """ChineseCLIPImageProcessor""" _A : Tuple = ("""BertTokenizer""", """BertTokenizerFast""") def __init__(self , lowercase__=None , lowercase__=None , **lowercase__ ): snake_case_ : Any = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowercase__ , ) snake_case_ : Optional[Any] = kwargs.pop("""feature_extractor""" ) snake_case_ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowercase__ , lowercase__ ) snake_case_ : Union[str, Any] = self.image_processor def __call__(self , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ ): if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: snake_case_ : Any = self.tokenizer(lowercase__ , return_tensors=lowercase__ , **lowercase__ ) if images is not None: snake_case_ : Tuple = self.image_processor(lowercase__ , return_tensors=lowercase__ , **lowercase__ ) if text is not None and images is not None: snake_case_ : List[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase__ ) , tensor_type=lowercase__ ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): return self.tokenizer.batch_decode(*lowercase__ , **lowercase__ ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): return self.tokenizer.decode(*lowercase__ , **lowercase__ ) @property def __UpperCamelCase (self ): snake_case_ : Optional[int] = self.tokenizer.model_input_names snake_case_ : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __UpperCamelCase (self ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowercase__ , ) return self.image_processor_class
48
1
"""simple docstring""" import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __lowercase ( _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : List[str] = """hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline""" def __UpperCamelCase (self , lowercase__=0 ): snake_case_ : List[str] = np.random.RandomState(lowercase__ ) snake_case_ : List[str] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def __UpperCamelCase (self ): snake_case_ : Dict = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=lowercase__ ) snake_case_ : Optional[Any] = self.get_dummy_inputs() snake_case_ : Dict = pipe(**lowercase__ ).images snake_case_ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) snake_case_ : Union[str, Any] = np.array([0.65072, 0.58492, 0.48219, 0.55521, 0.53180, 0.55939, 0.50697, 0.39800, 0.46455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase (self ): snake_case_ : str = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) snake_case_ : Union[str, Any] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) snake_case_ : Optional[Any] = self.get_dummy_inputs() snake_case_ : str = pipe(**lowercase__ ).images snake_case_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) snake_case_ : Tuple = np.array([0.65863, 0.59425, 0.49326, 0.56313, 0.53875, 0.56627, 0.51065, 0.39777, 0.46330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase (self ): snake_case_ : str = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) snake_case_ : Any = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowercase__ ) snake_case_ : int = self.get_dummy_inputs() snake_case_ : Any = pipe(**lowercase__ ).images snake_case_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) snake_case_ : Dict = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase (self ): snake_case_ : List[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) snake_case_ : Optional[int] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowercase__ ) snake_case_ : Optional[Any] = self.get_dummy_inputs() snake_case_ : Optional[Any] = pipe(**lowercase__ ).images snake_case_ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) snake_case_ : Tuple = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase (self ): snake_case_ : int = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) snake_case_ : Optional[int] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowercase__ ) snake_case_ : Union[str, Any] = self.get_dummy_inputs() snake_case_ : Optional[Any] = pipe(**lowercase__ ).images snake_case_ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) snake_case_ : str = np.array([0.53817, 0.60812, 0.47384, 0.49530, 0.51894, 0.49814, 0.47984, 0.38958, 0.44271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase (self ): snake_case_ : Any = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) snake_case_ : Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowercase__ ) snake_case_ : int = self.get_dummy_inputs() snake_case_ : Optional[int] = pipe(**lowercase__ ).images snake_case_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) snake_case_ : Tuple = np.array([0.53895, 0.60808, 0.47933, 0.49608, 0.51886, 0.49950, 0.48053, 0.38957, 0.44200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase (self ): snake_case_ : Dict = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=lowercase__ ) snake_case_ : Tuple = self.get_dummy_inputs() snake_case_ : List[Any] = 3 * [inputs["""prompt"""]] # forward snake_case_ : Optional[Any] = pipe(**lowercase__ ) snake_case_ : Optional[Any] = output.images[0, -3:, -3:, -1] snake_case_ : Optional[int] = self.get_dummy_inputs() snake_case_ : Optional[int] = 3 * [inputs.pop("""prompt""" )] snake_case_ : str = pipe.tokenizer( lowercase__ , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=lowercase__ , return_tensors="""np""" , ) snake_case_ : Any = text_inputs["""input_ids"""] snake_case_ : Dict = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] snake_case_ : Optional[int] = prompt_embeds # forward snake_case_ : Optional[int] = pipe(**lowercase__ ) snake_case_ : int = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 def __UpperCamelCase (self ): snake_case_ : str = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=lowercase__ ) snake_case_ : Tuple = self.get_dummy_inputs() snake_case_ : List[Any] = 3 * ["""this is a negative prompt"""] snake_case_ : Any = negative_prompt snake_case_ : Dict = 3 * [inputs["""prompt"""]] # forward snake_case_ : Optional[int] = pipe(**lowercase__ ) snake_case_ : List[Any] = output.images[0, -3:, -3:, -1] snake_case_ : Optional[int] = self.get_dummy_inputs() snake_case_ : List[Any] = 3 * [inputs.pop("""prompt""" )] snake_case_ : List[Any] = [] for p in [prompt, negative_prompt]: snake_case_ : str = pipe.tokenizer( lowercase__ , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=lowercase__ , return_tensors="""np""" , ) snake_case_ : Any = text_inputs["""input_ids"""] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) snake_case_ , snake_case_ : str = embeds # forward snake_case_ : str = pipe(**lowercase__ ) snake_case_ : int = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class __lowercase ( unittest.TestCase): """simple docstring""" @property def __UpperCamelCase (self ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __UpperCamelCase (self ): snake_case_ : str = ort.SessionOptions() snake_case_ : Any = False return options def __UpperCamelCase (self ): # using the PNDM scheduler by default snake_case_ : List[Any] = OnnxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=lowercase__ , feature_extractor=lowercase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) snake_case_ : Any = """A painting of a squirrel eating a burger""" np.random.seed(0 ) snake_case_ : Dict = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="""np""" ) snake_case_ : List[Any] = output.images snake_case_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) snake_case_ : Dict = np.array([0.0452, 0.0390, 0.0087, 0.0350, 0.0617, 0.0364, 0.0544, 0.0523, 0.0720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __UpperCamelCase (self ): snake_case_ : str = DDIMScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) snake_case_ : List[str] = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=lowercase__ , safety_checker=lowercase__ , feature_extractor=lowercase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) snake_case_ : List[Any] = """open neural network exchange""" snake_case_ : str = np.random.RandomState(0 ) snake_case_ : Dict = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=lowercase__ , output_type="""np""" ) snake_case_ : int = output.images snake_case_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) snake_case_ : str = np.array([0.2867, 0.1974, 0.1481, 0.7294, 0.7251, 0.6667, 0.4194, 0.5642, 0.6486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __UpperCamelCase (self ): snake_case_ : Optional[Any] = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) snake_case_ : List[Any] = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=lowercase__ , safety_checker=lowercase__ , feature_extractor=lowercase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) snake_case_ : Dict = """open neural network exchange""" snake_case_ : Any = np.random.RandomState(0 ) snake_case_ : str = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=lowercase__ , output_type="""np""" ) snake_case_ : Union[str, Any] = output.images snake_case_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) snake_case_ : Optional[int] = np.array([0.2306, 0.1959, 0.1593, 0.6549, 0.6394, 0.5408, 0.5065, 0.6010, 0.6161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __UpperCamelCase (self ): snake_case_ : str = 0 def test_callback_fn(lowercase__ , lowercase__ , lowercase__ ) -> None: snake_case_ : Optional[int] = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) snake_case_ : str = latents[0, -3:, -3:, -1] snake_case_ : str = np.array( [-0.6772, -0.3835, -1.2456, 0.1905, -1.0974, 0.6967, -1.9353, 0.0178, 1.0167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) snake_case_ : Union[str, Any] = latents[0, -3:, -3:, -1] snake_case_ : Optional[Any] = np.array( [-0.3351, 0.2241, -0.1837, -0.2325, -0.6577, 0.3393, -0.0241, 0.5899, 1.3875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 snake_case_ : Union[str, Any] = False snake_case_ : Any = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=lowercase__ , feature_extractor=lowercase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase__ ) snake_case_ : Optional[int] = """Andromeda galaxy in a bottle""" snake_case_ : Union[str, Any] = np.random.RandomState(0 ) pipe( prompt=lowercase__ , num_inference_steps=5 , guidance_scale=7.5 , generator=lowercase__ , callback=lowercase__ , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def __UpperCamelCase (self ): snake_case_ : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=lowercase__ , feature_extractor=lowercase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(lowercase__ , lowercase__ ) assert pipe.safety_checker is None snake_case_ : int = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowercase__ ) snake_case_ : int = OnnxStableDiffusionPipeline.from_pretrained(lowercase__ ) # sanity check that the pipeline still works assert pipe.safety_checker is None snake_case_ : Optional[Any] = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None
48
"""simple docstring""" import argparse import copy def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" snake_case_ : List[Any] = {} with open(SCREAMING_SNAKE_CASE__ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: snake_case_ : int = [] _list.append([line.split()[1], line.split()[2]] ) snake_case_ : Optional[Any] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: snake_case_ : str = [] _list.append([line.split()[0], line.split()[2]] ) snake_case_ : Optional[Any] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" with open(SCREAMING_SNAKE_CASE__ ) as f: snake_case_ : Optional[Any] = f.read(1 ) snake_case_ : Union[str, Any] = start_node snake_case_ : Dict = [] snake_case_ : Union[str, Any] = start_node snake_case_ : Tuple = 0 while visiting not in first_solution: snake_case_ : int = 1_0_0_0_0 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(SCREAMING_SNAKE_CASE__ ) and k[0] not in first_solution: snake_case_ : Union[str, Any] = k[1] snake_case_ : Any = k[0] first_solution.append(SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = distance_of_first_solution + int(SCREAMING_SNAKE_CASE__ ) snake_case_ : List[str] = best_node first_solution.append(SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[Any] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 snake_case_ : int = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0_0_0_0 ) return first_solution, distance_of_first_solution def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" snake_case_ : Union[str, Any] = [] for n in solution[1:-1]: snake_case_ : str = solution.index(SCREAMING_SNAKE_CASE__ ) for kn in solution[1:-1]: snake_case_ : Tuple = solution.index(SCREAMING_SNAKE_CASE__ ) if n == kn: continue snake_case_ : Optional[Any] = copy.deepcopy(SCREAMING_SNAKE_CASE__ ) snake_case_ : int = kn snake_case_ : Dict = n snake_case_ : Optional[int] = 0 for k in _tmp[:-1]: snake_case_ : Dict = _tmp[_tmp.index(SCREAMING_SNAKE_CASE__ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: snake_case_ : Dict = distance + int(i[1] ) _tmp.append(SCREAMING_SNAKE_CASE__ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) snake_case_ : Optional[Any] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda SCREAMING_SNAKE_CASE__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] ): """simple docstring""" snake_case_ : Dict = 1 snake_case_ : List[Any] = first_solution snake_case_ : List[Any] = [] snake_case_ : Optional[Any] = distance_of_first_solution snake_case_ : Dict = solution while count <= iters: snake_case_ : List[str] = find_neighborhood(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = 0 snake_case_ : List[Any] = neighborhood[index_of_best_solution] snake_case_ : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ ) - 1 snake_case_ : List[str] = False while not found: snake_case_ : Tuple = 0 while i < len(SCREAMING_SNAKE_CASE__ ): if best_solution[i] != solution[i]: snake_case_ : Optional[Any] = best_solution[i] snake_case_ : int = solution[i] break snake_case_ : List[str] = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) snake_case_ : Tuple = True snake_case_ : Dict = best_solution[:-1] snake_case_ : Tuple = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: snake_case_ : Tuple = cost snake_case_ : Union[str, Any] = solution else: snake_case_ : str = index_of_best_solution + 1 snake_case_ : Tuple = neighborhood[index_of_best_solution] if len(SCREAMING_SNAKE_CASE__ ) >= size: tabu_list.pop(0 ) snake_case_ : List[str] = count + 1 return best_solution_ever, best_cost def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any]=None ): """simple docstring""" snake_case_ : Tuple = generate_neighbours(args.File ) snake_case_ , snake_case_ : Optional[Any] = generate_first_solution( args.File , SCREAMING_SNAKE_CASE__ ) snake_case_ , snake_case_ : Dict = tabu_search( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , args.Iterations , args.Size , ) print(f'Best solution: {best_sol}, with total distance: {best_cost}.' ) if __name__ == "__main__": a_ = argparse.ArgumentParser(description='''Tabu Search''') parser.add_argument( '''-f''', '''--File''', type=str, help='''Path to the file containing the data''', required=True, ) parser.add_argument( '''-i''', '''--Iterations''', type=int, help='''How many iterations the algorithm should perform''', required=True, ) parser.add_argument( '''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True ) # Pass the arguments to main method main(parser.parse_args())
48
1
"""simple docstring""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''vocab.json'''} a_ = { '''vocab_file''': { '''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''', } } a_ = {'''mgp-str''': 27} class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Tuple = VOCAB_FILES_NAMES _A : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _A : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__(self , lowercase__ , lowercase__="[GO]" , lowercase__="[GO]" , lowercase__="[s]" , lowercase__="[GO]" , **lowercase__ ): super().__init__( unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , pad_token=lowercase__ , **lowercase__ , ) with open(lowercase__ , encoding="""utf-8""" ) as vocab_handle: snake_case_ : str = json.load(lowercase__ ) snake_case_ : Optional[int] = {v: k for k, v in self.vocab.items()} @property def __UpperCamelCase (self ): return len(self.vocab ) def __UpperCamelCase (self ): return dict(self.vocab , **self.added_tokens_encoder ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Any = [] for s in text: char_tokens.extend(lowercase__ ) return char_tokens def __UpperCamelCase (self , lowercase__ ): return self.vocab.get(lowercase__ , self.vocab.get(self.unk_token ) ) def __UpperCamelCase (self , lowercase__ ): return self.decoder.get(lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if not os.path.isdir(lowercase__ ): logger.error("""Vocabulary path ({}) should be a directory""".format(lowercase__ ) ) return snake_case_ : Optional[Any] = os.path.join( lowercase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) with open(lowercase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowercase__ , ensure_ascii=lowercase__ ) + """\n""" ) return (vocab_file,)
48
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings a_ = r''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(_UpperCAmelCase) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """rag""" _A : Optional[Any] = True def __init__(self , lowercase__=None , lowercase__=True , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=" / " , lowercase__=" // " , lowercase__=5 , lowercase__=3_00 , lowercase__=7_68 , lowercase__=8 , lowercase__="wiki_dpr" , lowercase__="train" , lowercase__="compressed" , lowercase__=None , lowercase__=None , lowercase__=False , lowercase__=False , lowercase__=0.0 , lowercase__=True , lowercase__=False , lowercase__=False , lowercase__=False , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__( bos_token_id=lowercase__ , pad_token_id=lowercase__ , eos_token_id=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , prefix=lowercase__ , vocab_size=lowercase__ , **lowercase__ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" snake_case_ : List[Any] = kwargs.pop("""question_encoder""" ) snake_case_ : Tuple = question_encoder_config.pop("""model_type""" ) snake_case_ : List[str] = kwargs.pop("""generator""" ) snake_case_ : List[str] = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig snake_case_ : List[str] = AutoConfig.for_model(lowercase__ , **lowercase__ ) snake_case_ : Tuple = AutoConfig.for_model(lowercase__ , **lowercase__ ) snake_case_ : int = reduce_loss snake_case_ : Optional[int] = label_smoothing snake_case_ : Dict = exclude_bos_score snake_case_ : Union[str, Any] = do_marginalize snake_case_ : Union[str, Any] = title_sep snake_case_ : int = doc_sep snake_case_ : int = n_docs snake_case_ : List[str] = max_combined_length snake_case_ : Tuple = dataset snake_case_ : int = dataset_split snake_case_ : str = index_name snake_case_ : List[str] = retrieval_vector_size snake_case_ : Dict = retrieval_batch_size snake_case_ : str = passages_path snake_case_ : Union[str, Any] = index_path snake_case_ : Tuple = use_dummy_dataset snake_case_ : Dict = output_retrieved snake_case_ : str = do_deduplication snake_case_ : Any = use_cache if self.forced_eos_token_id is None: snake_case_ : Any = getattr(self.generator , """forced_eos_token_id""" , lowercase__ ) @classmethod def __UpperCamelCase (cls , lowercase__ , lowercase__ , **lowercase__ ): return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Optional[Any] = copy.deepcopy(self.__dict__ ) snake_case_ : Any = self.question_encoder.to_dict() snake_case_ : Dict = self.generator.to_dict() snake_case_ : Union[str, Any] = self.__class__.model_type return output
48
1
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. a_ = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class __lowercase ( unittest.TestCase): """simple docstring""" _A : List[Any] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _A : Tuple = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: _A : Tuple = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: _A : Dict = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def __UpperCamelCase (self ): snake_case_ : str = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" ) snake_case_ : Any = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(lowercase__ ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) snake_case_ : Dict = text_classifier("""This is great !""" , top_k=2 ) self.assertEqual( nested_simplify(lowercase__ ) , [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}] ) snake_case_ : int = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 ) self.assertEqual( nested_simplify(lowercase__ ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) snake_case_ : Tuple = text_classifier("""This is great !""" , top_k=1 ) self.assertEqual(nested_simplify(lowercase__ ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) # Legacy behavior snake_case_ : Optional[Any] = text_classifier("""This is great !""" , return_all_scores=lowercase__ ) self.assertEqual(nested_simplify(lowercase__ ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) snake_case_ : List[Any] = text_classifier("""This is great !""" , return_all_scores=lowercase__ ) self.assertEqual( nested_simplify(lowercase__ ) , [[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}]] ) snake_case_ : Any = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=lowercase__ ) self.assertEqual( nested_simplify(lowercase__ ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) snake_case_ : Optional[int] = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=lowercase__ ) self.assertEqual( nested_simplify(lowercase__ ) , [ {"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_0""", """score""": 0.504}, ] , ) @require_torch def __UpperCamelCase (self ): import torch snake_case_ : Optional[int] = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , ) snake_case_ : Optional[Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(lowercase__ ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @require_tf def __UpperCamelCase (self ): snake_case_ : str = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" ) snake_case_ : Optional[int] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(lowercase__ ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @slow @require_torch def __UpperCamelCase (self ): snake_case_ : Tuple = pipeline("""text-classification""" ) snake_case_ : str = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(lowercase__ ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) snake_case_ : List[Any] = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(lowercase__ ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) snake_case_ : List[str] = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(lowercase__ ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) @slow @require_tf def __UpperCamelCase (self ): snake_case_ : int = pipeline("""text-classification""" , framework="""tf""" ) snake_case_ : Optional[int] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(lowercase__ ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) snake_case_ : List[Any] = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(lowercase__ ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) snake_case_ : Optional[int] = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(lowercase__ ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : int = TextClassificationPipeline(model=lowercase__ , tokenizer=lowercase__ ) return text_classifier, ["HuggingFace is in", "This is another test"] def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : Dict = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 snake_case_ : Union[str, Any] = """HuggingFace is in""" snake_case_ : str = text_classifier(lowercase__ ) self.assertEqual(nested_simplify(lowercase__ ) , [{"""label""": ANY(lowercase__ ), """score""": ANY(lowercase__ )}] ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) snake_case_ : Optional[int] = ["""HuggingFace is in """, """Paris is in France"""] snake_case_ : List[str] = text_classifier(lowercase__ ) self.assertEqual( nested_simplify(lowercase__ ) , [{"""label""": ANY(lowercase__ ), """score""": ANY(lowercase__ )}, {"""label""": ANY(lowercase__ ), """score""": ANY(lowercase__ )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format snake_case_ : List[Any] = text_classifier(lowercase__ , top_k=lowercase__ ) snake_case_ : int = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(lowercase__ ) , [[{"""label""": ANY(lowercase__ ), """score""": ANY(lowercase__ )}] * N, [{"""label""": ANY(lowercase__ ), """score""": ANY(lowercase__ )}] * N] , ) snake_case_ : List[str] = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""} snake_case_ : Optional[int] = text_classifier(lowercase__ ) self.assertEqual( nested_simplify(lowercase__ ) , {"""label""": ANY(lowercase__ ), """score""": ANY(lowercase__ )} , ) self.assertTrue(outputs["""label"""] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. snake_case_ : Optional[int] = [["""HuggingFace is in """, """Paris is in France"""]] with self.assertRaises(lowercase__ ): text_classifier(lowercase__ ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility snake_case_ : Union[str, Any] = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] ) self.assertEqual( nested_simplify(lowercase__ ) , [{"""label""": ANY(lowercase__ ), """score""": ANY(lowercase__ )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
48
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """upernet""" def __init__(self , lowercase__=None , lowercase__=5_12 , lowercase__=0.02 , lowercase__=[1, 2, 3, 6] , lowercase__=True , lowercase__=0.4 , lowercase__=3_84 , lowercase__=2_56 , lowercase__=1 , lowercase__=False , lowercase__=2_55 , **lowercase__ , ): super().__init__(**lowercase__ ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) snake_case_ : List[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(lowercase__ , lowercase__ ): snake_case_ : Tuple = backbone_config.get("""model_type""" ) snake_case_ : List[str] = CONFIG_MAPPING[backbone_model_type] snake_case_ : List[Any] = config_class.from_dict(lowercase__ ) snake_case_ : List[Any] = backbone_config snake_case_ : Optional[Any] = hidden_size snake_case_ : Any = initializer_range snake_case_ : str = pool_scales snake_case_ : Dict = use_auxiliary_head snake_case_ : str = auxiliary_loss_weight snake_case_ : List[str] = auxiliary_in_channels snake_case_ : Optional[Any] = auxiliary_channels snake_case_ : Any = auxiliary_num_convs snake_case_ : List[Any] = auxiliary_concat_input snake_case_ : List[str] = loss_ignore_index def __UpperCamelCase (self ): snake_case_ : Dict = copy.deepcopy(self.__dict__ ) snake_case_ : Union[str, Any] = self.backbone_config.to_dict() snake_case_ : Any = self.__class__.model_type return output
48
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { '''configuration_jukebox''': [ '''JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''JukeboxConfig''', '''JukeboxPriorConfig''', '''JukeboxVQVAEConfig''', ], '''tokenization_jukebox''': ['''JukeboxTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST''', '''JukeboxModel''', '''JukeboxPreTrainedModel''', '''JukeboxVQVAE''', '''JukeboxPrior''', ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
48
"""simple docstring""" import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask a_ = logging.getLogger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self , lowercase__=-1 ): # in NER datasets, the last column is usually reserved for NER label snake_case_ : Union[str, Any] = label_idx def __UpperCamelCase (self , lowercase__ , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): snake_case_ : List[str] = mode.value snake_case_ : List[Any] = os.path.join(lowercase__ , f'{mode}.txt' ) snake_case_ : Tuple = 1 snake_case_ : Any = [] with open(lowercase__ , encoding="""utf-8""" ) as f: snake_case_ : str = [] snake_case_ : List[Any] = [] for line in f: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) guid_index += 1 snake_case_ : Optional[Any] = [] snake_case_ : int = [] else: snake_case_ : Optional[Any] = line.split(""" """ ) words.append(splits[0] ) if len(lowercase__ ) > 1: labels.append(splits[self.label_idx].replace("""\n""" , """""" ) ) else: # Examples could have no label for mode = "test" labels.append("""O""" ) if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) return examples def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : str = 0 for line in test_input_reader: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": writer.write(lowercase__ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: snake_case_ : Optional[int] = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n""" writer.write(lowercase__ ) else: logger.warning("""Maximum sequence length exceeded: No prediction for '%s'.""" , line.split()[0] ) def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: snake_case_ : Dict = f.read().splitlines() if "O" not in labels: snake_case_ : List[Any] = ["""O"""] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self ): # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: snake_case_ : Any = f.read().splitlines() if "O" not in labels: snake_case_ : Tuple = ["""O"""] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __lowercase ( _UpperCAmelCase): """simple docstring""" def __UpperCamelCase (self , lowercase__ , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): snake_case_ : List[Any] = mode.value snake_case_ : Optional[int] = os.path.join(lowercase__ , f'{mode}.txt' ) snake_case_ : Tuple = 1 snake_case_ : str = [] with open(lowercase__ , encoding="""utf-8""" ) as f: for sentence in parse_incr(lowercase__ ): snake_case_ : Tuple = [] snake_case_ : Any = [] for token in sentence: words.append(token["""form"""] ) labels.append(token["""upos"""] ) assert len(lowercase__ ) == len(lowercase__ ) if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) guid_index += 1 return examples def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : Dict = 0 for sentence in parse_incr(lowercase__ ): snake_case_ : int = preds_list[example_id] snake_case_ : Dict = """""" for token in sentence: out += f'{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) ' out += "\n" writer.write(lowercase__ ) example_id += 1 def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
48
1
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) a_ = logging.getLogger(__name__) if __name__ == "__main__": a_ = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=30522, type=int) a_ = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, '''rb''') as fp: a_ = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') a_ = Counter() for tk_ids in data: counter.update(tk_ids) a_ = [0] * args.vocab_size for k, v in counter.items(): a_ = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
48
"""simple docstring""" import random def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : Union[str, Any] = num - 1 snake_case_ : List[str] = 0 while s % 2 == 0: snake_case_ : str = s // 2 t += 1 for _ in range(5 ): snake_case_ : List[Any] = random.randrange(2 , num - 1 ) snake_case_ : Dict = pow(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if v != 1: snake_case_ : int = 0 while v != (num - 1): if i == t - 1: return False else: snake_case_ : str = i + 1 snake_case_ : int = (v**2) % num return True def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" if num < 2: return False snake_case_ : Dict = [ 2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1, 4_3, 4_7, 5_3, 5_9, 6_1, 6_7, 7_1, 7_3, 7_9, 8_3, 8_9, 9_7, 1_0_1, 1_0_3, 1_0_7, 1_0_9, 1_1_3, 1_2_7, 1_3_1, 1_3_7, 1_3_9, 1_4_9, 1_5_1, 1_5_7, 1_6_3, 1_6_7, 1_7_3, 1_7_9, 1_8_1, 1_9_1, 1_9_3, 1_9_7, 1_9_9, 2_1_1, 2_2_3, 2_2_7, 2_2_9, 2_3_3, 2_3_9, 2_4_1, 2_5_1, 2_5_7, 2_6_3, 2_6_9, 2_7_1, 2_7_7, 2_8_1, 2_8_3, 2_9_3, 3_0_7, 3_1_1, 3_1_3, 3_1_7, 3_3_1, 3_3_7, 3_4_7, 3_4_9, 3_5_3, 3_5_9, 3_6_7, 3_7_3, 3_7_9, 3_8_3, 3_8_9, 3_9_7, 4_0_1, 4_0_9, 4_1_9, 4_2_1, 4_3_1, 4_3_3, 4_3_9, 4_4_3, 4_4_9, 4_5_7, 4_6_1, 4_6_3, 4_6_7, 4_7_9, 4_8_7, 4_9_1, 4_9_9, 5_0_3, 5_0_9, 5_2_1, 5_2_3, 5_4_1, 5_4_7, 5_5_7, 5_6_3, 5_6_9, 5_7_1, 5_7_7, 5_8_7, 5_9_3, 5_9_9, 6_0_1, 6_0_7, 6_1_3, 6_1_7, 6_1_9, 6_3_1, 6_4_1, 6_4_3, 6_4_7, 6_5_3, 6_5_9, 6_6_1, 6_7_3, 6_7_7, 6_8_3, 6_9_1, 7_0_1, 7_0_9, 7_1_9, 7_2_7, 7_3_3, 7_3_9, 7_4_3, 7_5_1, 7_5_7, 7_6_1, 7_6_9, 7_7_3, 7_8_7, 7_9_7, 8_0_9, 8_1_1, 8_2_1, 8_2_3, 8_2_7, 8_2_9, 8_3_9, 8_5_3, 8_5_7, 8_5_9, 8_6_3, 8_7_7, 8_8_1, 8_8_3, 8_8_7, 9_0_7, 9_1_1, 9_1_9, 9_2_9, 9_3_7, 9_4_1, 9_4_7, 9_5_3, 9_6_7, 9_7_1, 9_7_7, 9_8_3, 9_9_1, 9_9_7, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int = 1_0_2_4 ): """simple docstring""" while True: snake_case_ : Tuple = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(SCREAMING_SNAKE_CASE__ ): return num if __name__ == "__main__": a_ = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
48
1
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process a_ = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ): """simple docstring""" return (preds == labels).mean() @dataclass class __lowercase : """simple docstring""" _A : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""}) _A : Optional[str] = field( default=_UpperCAmelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""}) _A : Optional[str] = field( default=_UpperCAmelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""}) _A : Optional[str] = field( default=_UpperCAmelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __lowercase : """simple docstring""" _A : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys())}) _A : str = field(metadata={"""help""": """Should contain the data files for the task."""}) _A : int = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _A : bool = field( default=_UpperCAmelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""}) def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) snake_case_ , snake_case_ , snake_case_ : Union[str, Any] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. Use' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , SCREAMING_SNAKE_CASE__ ) # Set seed set_seed(training_args.seed ) try: snake_case_ : str = processors[data_args.task_name]() snake_case_ : Optional[Any] = processor.get_labels() snake_case_ : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ ) except KeyError: raise ValueError("""Task not found: %s""" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ : List[str] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=SCREAMING_SNAKE_CASE__ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) snake_case_ : int = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case_ : Any = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE__ , cache_dir=model_args.cache_dir , ) # Get datasets snake_case_ : str = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=SCREAMING_SNAKE_CASE__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) snake_case_ : str = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=SCREAMING_SNAKE_CASE__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(SCREAMING_SNAKE_CASE__ : EvalPrediction ) -> Dict: snake_case_ : str = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(SCREAMING_SNAKE_CASE__ , p.label_ids )} # Data collator snake_case_ : Tuple = DataCollatorWithPadding(SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer snake_case_ : Optional[Any] = Trainer( model=SCREAMING_SNAKE_CASE__ , args=SCREAMING_SNAKE_CASE__ , train_dataset=SCREAMING_SNAKE_CASE__ , eval_dataset=SCREAMING_SNAKE_CASE__ , compute_metrics=SCREAMING_SNAKE_CASE__ , data_collator=SCREAMING_SNAKE_CASE__ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation snake_case_ : int = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) snake_case_ : Any = trainer.evaluate() snake_case_ : Any = os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_master(): with open(SCREAMING_SNAKE_CASE__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) writer.write("""%s = %s\n""" % (key, value) ) results.update(SCREAMING_SNAKE_CASE__ ) return results def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple ): """simple docstring""" main() if __name__ == "__main__": main()
48
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType a_ = logging.get_logger(__name__) a_ = { '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Dict = """deberta-v2""" def __init__(self , lowercase__=12_81_00 , lowercase__=15_36 , lowercase__=24 , lowercase__=24 , lowercase__=61_44 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_12 , lowercase__=0 , lowercase__=0.02 , lowercase__=1e-7 , lowercase__=False , lowercase__=-1 , lowercase__=0 , lowercase__=True , lowercase__=None , lowercase__=0 , lowercase__="gelu" , **lowercase__ , ): super().__init__(**lowercase__ ) snake_case_ : Union[str, Any] = hidden_size snake_case_ : str = num_hidden_layers snake_case_ : Tuple = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : Optional[int] = hidden_act snake_case_ : Union[str, Any] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : List[Any] = max_position_embeddings snake_case_ : Union[str, Any] = type_vocab_size snake_case_ : Union[str, Any] = initializer_range snake_case_ : List[Any] = relative_attention snake_case_ : Dict = max_relative_positions snake_case_ : Optional[int] = pad_token_id snake_case_ : List[str] = position_biased_input # Backwards compatibility if type(lowercase__ ) == str: snake_case_ : Union[str, Any] = [x.strip() for x in pos_att_type.lower().split("""|""" )] snake_case_ : Optional[int] = pos_att_type snake_case_ : List[str] = vocab_size snake_case_ : Tuple = layer_norm_eps snake_case_ : List[Any] = kwargs.get("""pooler_hidden_size""" , lowercase__ ) snake_case_ : List[str] = pooler_dropout snake_case_ : int = pooler_hidden_act class __lowercase ( _UpperCAmelCase): """simple docstring""" @property def __UpperCamelCase (self ): if self.task == "multiple-choice": snake_case_ : List[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case_ : int = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def __UpperCamelCase (self ): return 12 def __UpperCamelCase (self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , lowercase__ = 3 , lowercase__ = 40 , lowercase__ = 40 , lowercase__ = None , ): snake_case_ : str = super().generate_dummy_inputs(preprocessor=lowercase__ , framework=lowercase__ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
48
1
"""simple docstring""" a_ = 65521 def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : List[Any] = 1 snake_case_ : Tuple = 0 for plain_chr in plain_text: snake_case_ : Optional[int] = (a + ord(SCREAMING_SNAKE_CASE__ )) % MOD_ADLER snake_case_ : Tuple = (b + a) % MOD_ADLER return (b << 1_6) | a
48
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
48
1
"""simple docstring""" import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration a_ = pytest.mark.integration a_ = {'''comet'''} a_ = importlib.util.find_spec('''fairseq''') is not None a_ = {'''code_eval'''} a_ = os.name == '''nt''' a_ = {'''bertscore''', '''frugalscore''', '''perplexity'''} a_ = importlib.util.find_spec('''transformers''') is not None def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" @wraps(SCREAMING_SNAKE_CASE__ ) def wrapper(self : Any , SCREAMING_SNAKE_CASE__ : List[str] ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("""\"test requires Fairseq\"""" ) else: test_case(self , SCREAMING_SNAKE_CASE__ ) return wrapper def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" @wraps(SCREAMING_SNAKE_CASE__ ) def wrapper(self : Dict , SCREAMING_SNAKE_CASE__ : List[str] ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("""\"test requires transformers\"""" ) else: test_case(self , SCREAMING_SNAKE_CASE__ ) return wrapper def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple ): """simple docstring""" @wraps(SCREAMING_SNAKE_CASE__ ) def wrapper(self : List[str] , SCREAMING_SNAKE_CASE__ : Dict ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("""\"test not supported on Windows\"""" ) else: test_case(self , SCREAMING_SNAKE_CASE__ ) return wrapper def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Union[str, Any] = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("""./metrics/*/""" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names()) @for_all_test_methods( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) @local class __lowercase ( parameterized.TestCase): """simple docstring""" _A : Optional[Any] = {} _A : Any = None @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:load_metric is deprecated:FutureWarning""" ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Union[str, Any] = """[...]""" snake_case_ : Optional[int] = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , lowercase__ ) ).module_path ) snake_case_ : Optional[Any] = datasets.load.import_main_class(metric_module.__name__ , dataset=lowercase__ ) # check parameters snake_case_ : Dict = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(lowercase__ , metric_module.__name__ ): with self.use_local_metrics(): try: snake_case_ : Optional[int] = doctest.testmod(lowercase__ , verbose=lowercase__ , raise_on_error=lowercase__ ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def __UpperCamelCase (self , lowercase__ ): snake_case_ : Any = """[...]""" snake_case_ : Any = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , lowercase__ ) ).module_path ) # run doctest with self.use_local_metrics(): snake_case_ : Optional[int] = doctest.testmod(lowercase__ , verbose=lowercase__ , raise_on_error=lowercase__ ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def __UpperCamelCase (self , lowercase__ , lowercase__ ): if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](lowercase__ ): yield else: yield @contextmanager def __UpperCamelCase (self ): def load_local_metric(lowercase__ , *lowercase__ , **lowercase__ ): return load_metric(os.path.join("""metrics""" , lowercase__ ) , *lowercase__ , **lowercase__ ) with patch("""datasets.load_metric""" ) as mock_load_metric: snake_case_ : Union[str, Any] = load_local_metric yield @classmethod def __UpperCamelCase (cls , lowercase__ ): def wrapper(lowercase__ ): snake_case_ : List[str] = contextmanager(lowercase__ ) snake_case_ : int = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("""bleurt""" ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("""sv""" , """""" , """""" ) # handle pytest cli flags class __lowercase ( _UpperCAmelCase): """simple docstring""" def __UpperCamelCase (self , lowercase__ ): assert len(input_dict["""input_ids"""] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("""bleurt.score._create_predictor""" ) as mock_create_predictor: snake_case_ : Optional[int] = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("""bertscore""" ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] ): """simple docstring""" import torch def bert_cos_score_idf(SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , *SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : str ): return torch.tensor([[1.0, 1.0, 1.0]] * len(SCREAMING_SNAKE_CASE__ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("""bert_score.scorer.get_model""" ), patch( """bert_score.scorer.bert_cos_score_idf""" ) as mock_bert_cos_score_idf: snake_case_ : int = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("""comet""" ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" def load_from_checkpoint(SCREAMING_SNAKE_CASE__ : int ): class __lowercase : """simple docstring""" def __UpperCamelCase (self , lowercase__ , *lowercase__ , **lowercase__ ): assert len(lowercase__ ) == 2 snake_case_ : List[str] = [0.19, 0.92] return scores, sum(lowercase__ ) / len(lowercase__ ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("""comet.download_model""" ) as mock_download_model: snake_case_ : List[Any] = None with patch("""comet.load_from_checkpoint""" ) as mock_load_from_checkpoint: snake_case_ : List[Any] = load_from_checkpoint yield def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : str = load_metric(os.path.join("""metrics""" , """seqeval""" ) ) snake_case_ : Optional[Any] = """ERROR""" snake_case_ : Dict = f'Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}' with pytest.raises(SCREAMING_SNAKE_CASE__ , match=re.escape(SCREAMING_SNAKE_CASE__ ) ): metric.compute(predictions=[] , references=[] , scheme=SCREAMING_SNAKE_CASE__ )
48
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('''fixtures/test_sentencepiece.model''') a_ = {'''target_lang''': '''fi''', '''source_lang''': '''en'''} a_ = '''>>zh<<''' a_ = '''Helsinki-NLP/''' if is_torch_available(): a_ = '''pt''' elif is_tf_available(): a_ = '''tf''' else: a_ = '''jax''' @require_sentencepiece class __lowercase ( _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : str = MarianTokenizer _A : List[str] = False _A : List[str] = True def __UpperCamelCase (self ): super().setUp() snake_case_ : Optional[int] = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] snake_case_ : Any = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) snake_case_ : Any = Path(self.tmpdirname ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) snake_case_ : Optional[Any] = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase (self , **lowercase__ ): return MarianTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def __UpperCamelCase (self , lowercase__ ): return ( "This is a test", "This is a test", ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = """</s>""" snake_case_ : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__ ) , lowercase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__ ) , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(lowercase__ ) , 9 ) def __UpperCamelCase (self ): self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def __UpperCamelCase (self ): snake_case_ : Any = MarianTokenizer.from_pretrained(f'{ORG_NAME}opus-mt-en-de' ) snake_case_ : Tuple = en_de_tokenizer(["""I am a small frog"""] , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) snake_case_ : Dict = [38, 1_21, 14, 6_97, 3_88_48, 0] self.assertListEqual(lowercase__ , batch.input_ids[0] ) snake_case_ : Tuple = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(lowercase__ ) snake_case_ : str = [x.name for x in Path(lowercase__ ).glob("""*""" )] self.assertIn("""source.spm""" , lowercase__ ) MarianTokenizer.from_pretrained(lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = self.get_tokenizer() snake_case_ : List[str] = tok( ["""I am a small frog""" * 10_00, """I am a small frog"""] , padding=lowercase__ , truncation=lowercase__ , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(batch.input_ids.shape , (2, 5_12) ) def __UpperCamelCase (self ): snake_case_ : Tuple = self.get_tokenizer() snake_case_ : Tuple = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=lowercase__ , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def __UpperCamelCase (self ): # fmt: off snake_case_ : str = {"""input_ids""": [[4_34_95, 4_62, 20, 4_21_64, 13_69, 52, 4_64, 1_32, 17_03, 4_92, 13, 74_91, 3_89_99, 6, 8, 4_64, 1_32, 17_03, 4_92, 13, 46_69, 3_78_67, 13, 75_25, 27, 15_93, 9_88, 13, 3_39_72, 70_29, 6, 20, 82_51, 3_83, 2, 2_70, 58_66, 37_88, 2, 23_53, 82_51, 1_23_38, 2, 1_39_58, 3_87, 2, 36_29, 69_53, 1_88, 29_00, 2, 1_39_58, 80_11, 1_15_01, 23, 84_60, 40_73, 3_40_09, 20, 4_35, 1_14_39, 27, 8, 84_60, 40_73, 60_04, 20, 99_88, 3_75, 27, 33, 2_66, 19_45, 10_76, 13_50, 3_78_67, 32_88, 5, 5_77, 10_76, 43_74, 8, 50_82, 5, 2_64_53, 2_57, 5_56, 4_03, 2, 2_42, 1_32, 3_83, 3_16, 4_92, 8, 1_07_67, 6, 3_16, 3_04, 42_39, 3, 0], [1_48, 1_57_22, 19, 18_39, 12, 13_50, 13, 2_23_27, 50_82, 54_18, 4_75_67, 3_59_38, 59, 3_18, 1_95_52, 1_08, 21_83, 54, 1_49_76, 48_35, 32, 5_47, 11_14, 8, 3_15, 24_17, 5, 92, 1_90_88, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00], [36, 63_95, 1_25_70, 3_91_47, 1_15_97, 6, 2_66, 4, 4_54_05, 72_96, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase__ , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def __UpperCamelCase (self ): snake_case_ : Any = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) snake_case_ : Dict = """Tämä on testi""" snake_case_ : List[Any] = """This is a test""" snake_case_ : Optional[int] = [76, 7, 20_47, 2] snake_case_ : List[str] = [69, 12, 11, 9_40, 2] snake_case_ : Any = tokenizer(lowercase__ ).input_ids self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : str = tokenizer(text_target=lowercase__ ).input_ids self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : int = tokenizer.decode(lowercase__ , skip_special_tokens=lowercase__ ) self.assertEqual(lowercase__ , lowercase__ )
48
1
"""simple docstring""" from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : Optional[Any] = 2 snake_case_ : Optional[Any] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(SCREAMING_SNAKE_CASE__ ) if n > 1: factors.append(SCREAMING_SNAKE_CASE__ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
48
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCAmelCase) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True}) _A : ClassVar[Features] = Features({"""audio""": Audio()}) _A : ClassVar[Features] = Features({"""transcription""": Value("""string""")}) _A : str = "audio" _A : str = "transcription" def __UpperCamelCase (self , lowercase__ ): if self.audio_column not in features: raise ValueError(f'Column {self.audio_column} is not present in features.' ) if not isinstance(features[self.audio_column] , lowercase__ ): raise ValueError(f'Column {self.audio_column} is not an Audio type.' ) snake_case_ : Optional[int] = copy.deepcopy(self ) snake_case_ : Tuple = self.input_schema.copy() snake_case_ : List[str] = features[self.audio_column] snake_case_ : Any = input_schema return task_template @property def __UpperCamelCase (self ): return {self.audio_column: "audio", self.transcription_column: "transcription"}
48
1
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm a_ = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex a_ = 10 a_ = 256 def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" if len(SCREAMING_SNAKE_CASE__ ) < MIN_NUM_TOKENS: return None snake_case_ : Union[str, Any] = MinHash(num_perm=SCREAMING_SNAKE_CASE__ ) for token in set(SCREAMING_SNAKE_CASE__ ): min_hash.update(token.encode() ) return min_hash def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" return {t for t in NON_ALPHA.split(SCREAMING_SNAKE_CASE__ ) if len(t.strip() ) > 0} class __lowercase : """simple docstring""" def __init__(self , *, lowercase__ = 0.85 , ): snake_case_ : Tuple = duplication_jaccard_threshold snake_case_ : Optional[Any] = NUM_PERM snake_case_ : Tuple = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) snake_case_ : List[Any] = defaultdict(lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : int = self._index.query(lowercase__ ) if code_key in self._index.keys: print(f'Duplicate key {code_key}' ) return self._index.insert(lowercase__ , lowercase__ ) if len(lowercase__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowercase__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(lowercase__ ) def __UpperCamelCase (self ): snake_case_ : str = [] for base, duplicates in self._duplicate_clusters.items(): snake_case_ : Optional[Any] = [base] + list(lowercase__ ) # reformat the cluster to be a list of dict snake_case_ : Any = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(lowercase__ ) return duplicate_clusters def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = self.get_duplicate_clusters() with open(lowercase__ , """w""" ) as f: json.dump(lowercase__ , lowercase__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ , snake_case_ : str = element snake_case_ : Tuple = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] ): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(SCREAMING_SNAKE_CASE__ , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ): if data is not None: yield data def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] , SCREAMING_SNAKE_CASE__ : float ): """simple docstring""" snake_case_ : int = DuplicationIndex(duplication_jaccard_threshold=SCREAMING_SNAKE_CASE__ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(SCREAMING_SNAKE_CASE__ ) ) , max_queue_size=1_0_0 ) ): di.add(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : int = get_tokens(SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = get_tokens(SCREAMING_SNAKE_CASE__ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) a_ = None def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Optional[Any] = [] for elementa in cluster: snake_case_ : Union[str, Any] = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: snake_case_ : Any = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) >= jaccard_threshold: elementa["copies"] += 1 break else: snake_case_ : Union[str, Any] = 1 extremes.append(SCREAMING_SNAKE_CASE__ ) return extremes def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" global _shared_dataset snake_case_ : str = dataset snake_case_ : int = [] snake_case_ : Optional[int] = partial(_find_cluster_extremes_shared , jaccard_threshold=SCREAMING_SNAKE_CASE__ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) , total=len(SCREAMING_SNAKE_CASE__ ) , ): extremes_list.append(SCREAMING_SNAKE_CASE__ ) return extremes_list def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] , SCREAMING_SNAKE_CASE__ : float = 0.85 ): """simple docstring""" snake_case_ : List[str] = make_duplicate_clusters(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : str = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} snake_case_ : str = {} snake_case_ : Dict = find_extremes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for extremes in extremes_clusters: for element in extremes: snake_case_ : int = element snake_case_ : Optional[int] = duplicate_indices - set(extreme_dict.keys() ) snake_case_ : List[Any] = dataset.filter(lambda SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : idx not in remove_indices , with_indices=SCREAMING_SNAKE_CASE__ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: snake_case_ : List[Any] = element["""base_index"""] in extreme_dict if element["is_extreme"]: snake_case_ : str = extreme_dict[element["""base_index"""]]["""copies"""] print(f'Original dataset size: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Number of duplicate clusters: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Files in duplicate cluster: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Unique files in duplicate cluster: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Filtered dataset size: {len(SCREAMING_SNAKE_CASE__ )}' ) return ds_filter, duplicate_clusters
48
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : int = ["""pixel_values"""] def __init__(self , lowercase__ = True , lowercase__ = None , lowercase__ = 0.9 , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = True , lowercase__ = None , lowercase__ = 1 / 2_55 , lowercase__ = True , lowercase__ = True , lowercase__ = None , lowercase__ = None , **lowercase__ , ): super().__init__(**lowercase__ ) snake_case_ : Tuple = size if size is not None else {"""shortest_edge""": 2_24} snake_case_ : Union[str, Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) snake_case_ : str = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} snake_case_ : Dict = get_size_dict(lowercase__ , param_name="""crop_size""" ) snake_case_ : Union[str, Any] = do_resize snake_case_ : List[str] = size snake_case_ : str = crop_pct snake_case_ : str = resample snake_case_ : Optional[Any] = do_center_crop snake_case_ : Dict = crop_size snake_case_ : int = do_rescale snake_case_ : Optional[int] = rescale_factor snake_case_ : str = do_normalize snake_case_ : str = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN snake_case_ : List[str] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = None , **lowercase__ , ): snake_case_ : Tuple = get_size_dict(lowercase__ , default_to_square=lowercase__ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f'size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) if crop_pct is not None: if "shortest_edge" in size: snake_case_ : Optional[int] = int(size["""shortest_edge"""] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: snake_case_ : Dict = int(size["""height"""] / crop_pct ) else: snake_case_ : List[str] = (int(size["""height"""] / crop_pct ), int(size["""width"""] / crop_pct )) else: raise ValueError("""Invalid size for resize: {}""".format(lowercase__ ) ) snake_case_ : List[Any] = get_resize_output_image_size(lowercase__ , size=lowercase__ , default_to_square=lowercase__ ) else: if "shortest_edge" in size: snake_case_ : Optional[int] = get_resize_output_image_size(lowercase__ , size=size["""shortest_edge"""] , default_to_square=lowercase__ ) elif "height" in size and "width" in size: snake_case_ : int = (size["""height"""], size["""width"""]) else: raise ValueError("""Invalid size for resize: {}""".format(lowercase__ ) ) return resize(lowercase__ , size=lowercase__ , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): snake_case_ : int = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(f'size must contain \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(lowercase__ , size=(size["""height"""], size["""width"""]) , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return normalize(lowercase__ , mean=lowercase__ , std=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ): snake_case_ : str = do_resize if do_resize is not None else self.do_resize snake_case_ : Any = crop_pct if crop_pct is not None else self.crop_pct snake_case_ : List[Any] = resample if resample is not None else self.resample snake_case_ : str = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : str = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : str = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : List[Any] = image_mean if image_mean is not None else self.image_mean snake_case_ : int = image_std if image_std is not None else self.image_std snake_case_ : List[Any] = size if size is not None else self.size snake_case_ : Optional[Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) snake_case_ : List[Any] = crop_size if crop_size is not None else self.crop_size snake_case_ : int = get_size_dict(lowercase__ , param_name="""crop_size""" ) snake_case_ : List[str] = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_pct is None: raise ValueError("""Crop_pct must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case_ : int = [to_numpy_array(lowercase__ ) for image in images] if do_resize: snake_case_ : str = [self.resize(image=lowercase__ , size=lowercase__ , crop_pct=lowercase__ , resample=lowercase__ ) for image in images] if do_center_crop: snake_case_ : Optional[int] = [self.center_crop(image=lowercase__ , size=lowercase__ ) for image in images] if do_rescale: snake_case_ : List[Any] = [self.rescale(image=lowercase__ , scale=lowercase__ ) for image in images] if do_normalize: snake_case_ : Optional[Any] = [self.normalize(image=lowercase__ , mean=lowercase__ , std=lowercase__ ) for image in images] snake_case_ : List[Any] = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] snake_case_ : Dict = {"""pixel_values""": images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
48
1
"""simple docstring""" import re from filelock import FileLock try: import nltk a_ = True except (ImportError, ModuleNotFoundError): a_ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" re.sub("""<n>""" , """""" , SCREAMING_SNAKE_CASE__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(SCREAMING_SNAKE_CASE__ ) )
48
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: a_ = None a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} a_ = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } a_ = { '''facebook/mbart-large-en-ro''': 1024, '''facebook/mbart-large-cc25''': 1024, } # fmt: off a_ = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Dict = VOCAB_FILES_NAMES _A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _A : str = ["""input_ids""", """attention_mask"""] _A : Tuple = MBartTokenizer _A : List[int] = [] _A : List[int] = [] def __init__(self , lowercase__=None , lowercase__=None , lowercase__="<s>" , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<mask>" , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ , ): # Mask token behave like a normal word, i.e. include the space before it snake_case_ : int = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token super().__init__( vocab_file=lowercase__ , tokenizer_file=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , unk_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , src_lang=lowercase__ , tgt_lang=lowercase__ , additional_special_tokens=lowercase__ , **lowercase__ , ) snake_case_ : Dict = vocab_file snake_case_ : Optional[int] = False if not self.vocab_file else True snake_case_ : Optional[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) snake_case_ : Any = { lang_code: self.convert_tokens_to_ids(lowercase__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } snake_case_ : Tuple = src_lang if src_lang is not None else """en_XX""" snake_case_ : Tuple = self.convert_tokens_to_ids(self._src_lang ) snake_case_ : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __UpperCamelCase (self ): return self._src_lang @src_lang.setter def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): snake_case_ : List[Any] = [self.sep_token_id] snake_case_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , **lowercase__ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) snake_case_ : int = src_lang snake_case_ : List[str] = self(lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , **lowercase__ ) snake_case_ : List[str] = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Union[str, Any] = tgt_lang_id return inputs def __UpperCamelCase (self , lowercase__ , lowercase__ = "en_XX" , lowercase__ = None , lowercase__ = "ro_RO" , **lowercase__ , ): snake_case_ : List[str] = src_lang snake_case_ : int = tgt_lang return super().prepare_seqaseq_batch(lowercase__ , lowercase__ , **lowercase__ ) def __UpperCamelCase (self ): return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCamelCase (self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Tuple = [] snake_case_ : List[Any] = [self.eos_token_id, self.cur_lang_code] snake_case_ : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Optional[int] = [] snake_case_ : Optional[Any] = [self.eos_token_id, self.cur_lang_code] snake_case_ : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ : int = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowercase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory.' ) return snake_case_ : List[str] = os.path.join( lowercase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ): copyfile(self.vocab_file , lowercase__ ) return (out_vocab_file,)
48
1
"""simple docstring""" import re import string import numpy as np import datasets a_ = ''' Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. ''' a_ = ''' Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 25.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 50.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 75.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results["exact_match"], 1)) 100.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."] >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 33.3 ''' a_ = ''' ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class __lowercase ( datasets.Metric): """simple docstring""" def __UpperCamelCase (self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , reference_urls=[] , ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__=None , lowercase__=False , lowercase__=False , lowercase__=False , ): if regexes_to_ignore is not None: for s in regexes_to_ignore: snake_case_ : Optional[int] = np.array([re.sub(lowercase__ , """""" , lowercase__ ) for x in predictions] ) snake_case_ : Dict = np.array([re.sub(lowercase__ , """""" , lowercase__ ) for x in references] ) else: snake_case_ : Dict = np.asarray(lowercase__ ) snake_case_ : Optional[int] = np.asarray(lowercase__ ) if ignore_case: snake_case_ : Optional[int] = np.char.lower(lowercase__ ) snake_case_ : int = np.char.lower(lowercase__ ) if ignore_punctuation: snake_case_ : str = string.punctuation.maketrans("""""" , """""" , string.punctuation ) snake_case_ : Optional[int] = np.char.translate(lowercase__ , table=lowercase__ ) snake_case_ : Dict = np.char.translate(lowercase__ , table=lowercase__ ) if ignore_numbers: snake_case_ : Union[str, Any] = string.digits.maketrans("""""" , """""" , string.digits ) snake_case_ : Union[str, Any] = np.char.translate(lowercase__ , table=lowercase__ ) snake_case_ : Optional[Any] = np.char.translate(lowercase__ , table=lowercase__ ) snake_case_ : Optional[int] = predictions == references return {"exact_match": np.mean(lowercase__ ) * 1_00}
48
"""simple docstring""" import argparse import hashlib # hashlib is only used inside the Test class import struct class __lowercase : """simple docstring""" def __init__(self , lowercase__ ): snake_case_ : Union[str, Any] = data snake_case_ : List[str] = [0X6_7_4_5_2_3_0_1, 0Xe_f_c_d_a_b_8_9, 0X9_8_b_a_d_c_f_e, 0X1_0_3_2_5_4_7_6, 0Xc_3_d_2_e_1_f_0] @staticmethod def __UpperCamelCase (lowercase__ , lowercase__ ): return ((n << b) | (n >> (32 - b))) & 0Xf_f_f_f_f_f_f_f def __UpperCamelCase (self ): snake_case_ : Any = B"""\x80""" + B"""\x00""" * (63 - (len(self.data ) + 8) % 64) snake_case_ : Tuple = self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def __UpperCamelCase (self ): return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = list(struct.unpack(""">16L""" , lowercase__ ) ) + [0] * 64 for i in range(16 , 80 ): snake_case_ : Dict = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def __UpperCamelCase (self ): snake_case_ : List[Any] = self.padding() snake_case_ : Any = self.split_blocks() for block in self.blocks: snake_case_ : Any = self.expand_block(lowercase__ ) snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = self.h for i in range(0 , 80 ): if 0 <= i < 20: snake_case_ : Optional[Any] = (b & c) | ((~b) & d) snake_case_ : List[str] = 0X5_a_8_2_7_9_9_9 elif 20 <= i < 40: snake_case_ : Union[str, Any] = b ^ c ^ d snake_case_ : Tuple = 0X6_e_d_9_e_b_a_1 elif 40 <= i < 60: snake_case_ : str = (b & c) | (b & d) | (c & d) snake_case_ : List[str] = 0X8_f_1_b_b_c_d_c elif 60 <= i < 80: snake_case_ : Tuple = b ^ c ^ d snake_case_ : str = 0Xc_a_6_2_c_1_d_6 snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Optional[Any] = ( self.rotate(lowercase__ , 5 ) + f + e + k + expanded_block[i] & 0Xf_f_f_f_f_f_f_f, a, self.rotate(lowercase__ , 30 ), c, d, ) snake_case_ : Any = ( self.h[0] + a & 0Xf_f_f_f_f_f_f_f, self.h[1] + b & 0Xf_f_f_f_f_f_f_f, self.h[2] + c & 0Xf_f_f_f_f_f_f_f, self.h[3] + d & 0Xf_f_f_f_f_f_f_f, self.h[4] + e & 0Xf_f_f_f_f_f_f_f, ) return ("{:08x}" * 5).format(*self.h ) def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Union[str, Any] = b"""Test String""" assert SHAaHash(SCREAMING_SNAKE_CASE__ ).final_hash() == hashlib.shaa(SCREAMING_SNAKE_CASE__ ).hexdigest() # noqa: S324 def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : int = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument("""--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) snake_case_ : Optional[int] = parser.parse_args() snake_case_ : Optional[int] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: snake_case_ : List[str] = f.read() else: snake_case_ : Dict = bytes(SCREAMING_SNAKE_CASE__ , """utf-8""" ) print(SHAaHash(SCREAMING_SNAKE_CASE__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
48
1
"""simple docstring""" from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int | float | str , SCREAMING_SNAKE_CASE__ : int | float | str ): """simple docstring""" if nth_term == "": return [""] snake_case_ : List[Any] = int(SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[Any] = int(SCREAMING_SNAKE_CASE__ ) snake_case_ : list[str] = [] for temp in range(int(SCREAMING_SNAKE_CASE__ ) ): series.append(f'1 / {pow(temp + 1 , int(SCREAMING_SNAKE_CASE__ ) )}' if series else """1""" ) return series if __name__ == "__main__": import doctest doctest.testmod() a_ = int(input('''Enter the last number (nth term) of the P-Series''')) a_ = int(input('''Enter the power for P-Series''')) print('''Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p''') print(p_series(nth_term, power))
48
"""simple docstring""" from manim import * class __lowercase ( _UpperCAmelCase): """simple docstring""" def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = Rectangle(height=0.5 , width=0.5 ) snake_case_ : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) snake_case_ : Optional[Any] = [mem.copy() for i in range(6 )] snake_case_ : str = [mem.copy() for i in range(6 )] snake_case_ : str = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : Any = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[str] = VGroup(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[Any] = Text("""CPU""" , font_size=24 ) snake_case_ : Tuple = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowercase__ ) snake_case_ : List[Any] = [mem.copy() for i in range(4 )] snake_case_ : Tuple = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[str] = Text("""GPU""" , font_size=24 ) snake_case_ : Any = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) gpu.move_to([-1, -1, 0] ) self.add(lowercase__ ) snake_case_ : Optional[Any] = [mem.copy() for i in range(6 )] snake_case_ : List[Any] = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : Dict = Text("""Model""" , font_size=24 ) snake_case_ : int = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) model.move_to([3, -1.0, 0] ) self.add(lowercase__ ) snake_case_ : Dict = [] for i, rect in enumerate(lowercase__ ): rect.set_stroke(lowercase__ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) snake_case_ : List[str] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowercase__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowercase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase__ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase__ , buff=0.0 ) self.add(lowercase__ ) cpu_targs.append(lowercase__ ) snake_case_ : List[str] = [mem.copy() for i in range(6 )] snake_case_ : List[str] = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : str = Text("""Loaded Checkpoint""" , font_size=24 ) snake_case_ : Any = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , aligned_edge=lowercase__ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) snake_case_ : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) snake_case_ : Union[str, Any] = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowercase__ , lowercase__ ) snake_case_ : List[Any] = MarkupText( f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(lowercase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) snake_case_ : List[Any] = MarkupText( f'Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowercase__ ) , Write(lowercase__ ) ) self.play(Write(lowercase__ , run_time=1 ) , Create(lowercase__ , run_time=1 ) ) snake_case_ : Optional[int] = [] snake_case_ : List[str] = [] for i, rect in enumerate(lowercase__ ): snake_case_ : Optional[Any] = fill.copy().set_fill(lowercase__ , opacity=0.7 ) target.move_to(lowercase__ ) first_animations.append(GrowFromCenter(lowercase__ , run_time=1 ) ) snake_case_ : List[Any] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(lowercase__ , run_time=1.5 ) ) self.play(*lowercase__ ) self.play(*lowercase__ ) self.wait()
48
1
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = {'''configuration_timm_backbone''': ['''TimmBackboneConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['''TimmBackbone'''] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
48
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" snake_case_ : Union[str, Any] = 0 if start < end: snake_case_ : Union[str, Any] = randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = a[end] snake_case_ : Dict = a[pivot] snake_case_ : Any = temp snake_case_ , snake_case_ : Dict = _in_place_partition(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , p - 1 ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE__ , p + 1 , SCREAMING_SNAKE_CASE__ ) return count def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" snake_case_ : Tuple = 0 snake_case_ : List[Any] = randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : Dict = a[end] snake_case_ : List[Any] = a[pivot] snake_case_ : Optional[Any] = temp snake_case_ : List[str] = start - 1 for index in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value snake_case_ : Any = new_pivot_index + 1 snake_case_ : Tuple = a[new_pivot_index] snake_case_ : Optional[int] = a[index] snake_case_ : Tuple = temp snake_case_ : Union[str, Any] = a[new_pivot_index + 1] snake_case_ : Union[str, Any] = a[end] snake_case_ : Union[str, Any] = temp return new_pivot_index + 1, count a_ = TemporaryFile() a_ = 100 # 1000 elements are to be sorted a_ , a_ = 0, 1 # mean and standard deviation a_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array a_ = np.load(outfile) a_ = len(M) - 1 a_ = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
48
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging a_ = logging.get_logger(__name__) a_ = '''▁''' a_ = {'''vocab_file''': '''sentencepiece.bpe.model'''} a_ = { '''vocab_file''': { '''facebook/mbart-large-50-one-to-many-mmt''': ( '''https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model''' ), } } a_ = { '''facebook/mbart-large-50-one-to-many-mmt''': 1024, } # fmt: off a_ = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN''', '''af_ZA''', '''az_AZ''', '''bn_IN''', '''fa_IR''', '''he_IL''', '''hr_HR''', '''id_ID''', '''ka_GE''', '''km_KH''', '''mk_MK''', '''ml_IN''', '''mn_MN''', '''mr_IN''', '''pl_PL''', '''ps_AF''', '''pt_XX''', '''sv_SE''', '''sw_KE''', '''ta_IN''', '''te_IN''', '''th_TH''', '''tl_XX''', '''uk_UA''', '''ur_PK''', '''xh_ZA''', '''gl_ES''', '''sl_SI'''] class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Tuple = VOCAB_FILES_NAMES _A : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _A : Any = ["""input_ids""", """attention_mask"""] _A : List[int] = [] _A : List[int] = [] def __init__(self , lowercase__ , lowercase__=None , lowercase__=None , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<mask>" , lowercase__ = None , **lowercase__ , ): # Mask token behave like a normal word, i.e. include the space before it snake_case_ : Optional[Any] = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token snake_case_ : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs snake_case_ : Any = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowercase__ , tgt_lang=lowercase__ , eos_token=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , sp_model_kwargs=self.sp_model_kwargs , **lowercase__ , ) snake_case_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowercase__ ) ) snake_case_ : Optional[int] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token snake_case_ : Optional[int] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case_ : Dict = 1 snake_case_ : Any = len(self.sp_model ) snake_case_ : str = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowercase__ ) } snake_case_ : Any = {v: k for k, v in self.lang_code_to_id.items()} snake_case_ : Union[str, Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) snake_case_ : Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} snake_case_ : str = src_lang if src_lang is not None else """en_XX""" snake_case_ : Optional[int] = self.lang_code_to_id[self._src_lang] snake_case_ : Optional[int] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __UpperCamelCase (self ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __UpperCamelCase (self ): return self._src_lang @src_lang.setter def __UpperCamelCase (self , lowercase__ ): snake_case_ : str = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__(self ): snake_case_ : Tuple = self.__dict__.copy() snake_case_ : Any = None return state def __setstate__(self , lowercase__ ): snake_case_ : Optional[int] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case_ : Dict = {} snake_case_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __UpperCamelCase (self ): snake_case_ : Tuple = {self.convert_ids_to_tokens(lowercase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __UpperCamelCase (self , lowercase__ ): return self.sp_model.encode(lowercase__ , out_type=lowercase__ ) def __UpperCamelCase (self , lowercase__ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case_ : List[Any] = self.sp_model.PieceToId(lowercase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __UpperCamelCase (self , lowercase__ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : List[str] = [] snake_case_ : int = """""" snake_case_ : str = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowercase__ ) + token snake_case_ : Optional[Any] = True snake_case_ : List[str] = [] else: current_sub_tokens.append(lowercase__ ) snake_case_ : Optional[int] = False out_string += self.sp_model.decode(lowercase__ ) return out_string.strip() def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if not os.path.isdir(lowercase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return snake_case_ : str = os.path.join( lowercase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase__ , """wb""" ) as fi: snake_case_ : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(lowercase__ ) return (out_vocab_file,) def __UpperCamelCase (self , lowercase__ , lowercase__ = None , lowercase__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase__ , token_ids_a=lowercase__ , already_has_special_tokens=lowercase__ ) snake_case_ : Dict = [1] * len(self.prefix_tokens ) snake_case_ : int = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowercase__ )) + suffix_ones return prefix_ones + ([0] * len(lowercase__ )) + ([0] * len(lowercase__ )) + suffix_ones def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , **lowercase__ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) snake_case_ : Tuple = src_lang snake_case_ : int = self(lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , **lowercase__ ) snake_case_ : str = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : str = tgt_lang_id return inputs def __UpperCamelCase (self , lowercase__ , lowercase__ = "en_XX" , lowercase__ = None , lowercase__ = "ro_RO" , **lowercase__ , ): snake_case_ : Union[str, Any] = src_lang snake_case_ : Union[str, Any] = tgt_lang return super().prepare_seqaseq_batch(lowercase__ , lowercase__ , **lowercase__ ) def __UpperCamelCase (self ): return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCamelCase (self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : str = self.lang_code_to_id[src_lang] snake_case_ : str = [self.cur_lang_code_id] snake_case_ : str = [self.eos_token_id] def __UpperCamelCase (self , lowercase__ ): snake_case_ : List[str] = self.lang_code_to_id[tgt_lang] snake_case_ : str = [self.cur_lang_code_id] snake_case_ : str = [self.eos_token_id]
48
"""simple docstring""" import random def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : bool = False ): """simple docstring""" snake_case_ : dict = {i: [] for i in range(SCREAMING_SNAKE_CASE__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(SCREAMING_SNAKE_CASE__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(i + 1 , SCREAMING_SNAKE_CASE__ ): if random.random() < probability: graph[i].append(SCREAMING_SNAKE_CASE__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(SCREAMING_SNAKE_CASE__ ) return graph def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" return { i: [j for j in range(SCREAMING_SNAKE_CASE__ ) if i != j] for i in range(SCREAMING_SNAKE_CASE__ ) } if __name__ == "__main__": import doctest doctest.testmod()
48
1
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" raise RuntimeError("""CUDA out of memory.""" ) class __lowercase ( nn.Module): """simple docstring""" def __init__(self ): super().__init__() snake_case_ : Union[str, Any] = nn.Linear(3 , 4 ) snake_case_ : Union[str, Any] = nn.BatchNormad(4 ) snake_case_ : Optional[Any] = nn.Linear(4 , 5 ) def __UpperCamelCase (self , lowercase__ ): return self.lineara(self.batchnorm(self.lineara(lowercase__ ) ) ) class __lowercase ( unittest.TestCase): """simple docstring""" def __UpperCamelCase (self ): snake_case_ : Any = [] @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(lowercase__ ): nonlocal batch_sizes batch_sizes.append(lowercase__ ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(lowercase__ , [1_28, 64, 32, 16, 8] ) def __UpperCamelCase (self ): snake_case_ : List[str] = [] @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(lowercase__ , lowercase__ ): nonlocal batch_sizes batch_sizes.append(lowercase__ ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga snake_case_ , snake_case_ : Tuple = mock_training_loop_function("""hello""" ) self.assertListEqual(lowercase__ , [1_28, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, """hello"""] ) def __UpperCamelCase (self ): @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(lowercase__ ): pass with self.assertRaises(lowercase__ ) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0] ) def __UpperCamelCase (self ): @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(lowercase__ ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(lowercase__ ) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0] ) def __UpperCamelCase (self ): @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(lowercase__ , lowercase__ , lowercase__ ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(lowercase__ ) as cm: mock_training_loop_function(1_28 , """hello""" , """world""" ) self.assertIn("""Batch size was passed into `f`""" , cm.exception.args[0] ) self.assertIn("""`f(arg1='hello', arg2='world')""" , cm.exception.args[0] ) def __UpperCamelCase (self ): @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(lowercase__ ): raise ValueError("""Oops, we had an error!""" ) with self.assertRaises(lowercase__ ) as cm: mock_training_loop_function() self.assertIn("""Oops, we had an error!""" , cm.exception.args[0] ) @require_cuda def __UpperCamelCase (self ): snake_case_ : Tuple = torch.cuda.memory_allocated() snake_case_ : int = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , lowercase__ ) snake_case_ : int = release_memory(lowercase__ ) self.assertEqual(torch.cuda.memory_allocated() , lowercase__ )
48
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json''' ), } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """dpr""" def __init__(self , lowercase__=3_05_22 , lowercase__=7_68 , lowercase__=12 , lowercase__=12 , lowercase__=30_72 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_12 , lowercase__=2 , lowercase__=0.02 , lowercase__=1e-12 , lowercase__=0 , lowercase__="absolute" , lowercase__ = 0 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , **lowercase__ ) snake_case_ : List[Any] = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : Tuple = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : int = hidden_act snake_case_ : Dict = intermediate_size snake_case_ : int = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : str = max_position_embeddings snake_case_ : List[str] = type_vocab_size snake_case_ : List[str] = initializer_range snake_case_ : Optional[int] = layer_norm_eps snake_case_ : Union[str, Any] = projection_dim snake_case_ : str = position_embedding_type
48
1
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """upernet""" def __init__(self , lowercase__=None , lowercase__=5_12 , lowercase__=0.02 , lowercase__=[1, 2, 3, 6] , lowercase__=True , lowercase__=0.4 , lowercase__=3_84 , lowercase__=2_56 , lowercase__=1 , lowercase__=False , lowercase__=2_55 , **lowercase__ , ): super().__init__(**lowercase__ ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) snake_case_ : List[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(lowercase__ , lowercase__ ): snake_case_ : Tuple = backbone_config.get("""model_type""" ) snake_case_ : List[str] = CONFIG_MAPPING[backbone_model_type] snake_case_ : List[Any] = config_class.from_dict(lowercase__ ) snake_case_ : List[Any] = backbone_config snake_case_ : Optional[Any] = hidden_size snake_case_ : Any = initializer_range snake_case_ : str = pool_scales snake_case_ : Dict = use_auxiliary_head snake_case_ : str = auxiliary_loss_weight snake_case_ : List[str] = auxiliary_in_channels snake_case_ : Optional[Any] = auxiliary_channels snake_case_ : Any = auxiliary_num_convs snake_case_ : List[Any] = auxiliary_concat_input snake_case_ : List[str] = loss_ignore_index def __UpperCamelCase (self ): snake_case_ : Dict = copy.deepcopy(self.__dict__ ) snake_case_ : Union[str, Any] = self.backbone_config.to_dict() snake_case_ : Any = self.__class__.model_type return output
48
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm a_ = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex a_ = 10 a_ = 256 def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" if len(SCREAMING_SNAKE_CASE__ ) < MIN_NUM_TOKENS: return None snake_case_ : Union[str, Any] = MinHash(num_perm=SCREAMING_SNAKE_CASE__ ) for token in set(SCREAMING_SNAKE_CASE__ ): min_hash.update(token.encode() ) return min_hash def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" return {t for t in NON_ALPHA.split(SCREAMING_SNAKE_CASE__ ) if len(t.strip() ) > 0} class __lowercase : """simple docstring""" def __init__(self , *, lowercase__ = 0.85 , ): snake_case_ : Tuple = duplication_jaccard_threshold snake_case_ : Optional[Any] = NUM_PERM snake_case_ : Tuple = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) snake_case_ : List[Any] = defaultdict(lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : int = self._index.query(lowercase__ ) if code_key in self._index.keys: print(f'Duplicate key {code_key}' ) return self._index.insert(lowercase__ , lowercase__ ) if len(lowercase__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowercase__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(lowercase__ ) def __UpperCamelCase (self ): snake_case_ : str = [] for base, duplicates in self._duplicate_clusters.items(): snake_case_ : Optional[Any] = [base] + list(lowercase__ ) # reformat the cluster to be a list of dict snake_case_ : Any = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(lowercase__ ) return duplicate_clusters def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = self.get_duplicate_clusters() with open(lowercase__ , """w""" ) as f: json.dump(lowercase__ , lowercase__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ , snake_case_ : str = element snake_case_ : Tuple = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] ): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(SCREAMING_SNAKE_CASE__ , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ): if data is not None: yield data def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] , SCREAMING_SNAKE_CASE__ : float ): """simple docstring""" snake_case_ : int = DuplicationIndex(duplication_jaccard_threshold=SCREAMING_SNAKE_CASE__ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(SCREAMING_SNAKE_CASE__ ) ) , max_queue_size=1_0_0 ) ): di.add(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : int = get_tokens(SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = get_tokens(SCREAMING_SNAKE_CASE__ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) a_ = None def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Optional[Any] = [] for elementa in cluster: snake_case_ : Union[str, Any] = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: snake_case_ : Any = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) >= jaccard_threshold: elementa["copies"] += 1 break else: snake_case_ : Union[str, Any] = 1 extremes.append(SCREAMING_SNAKE_CASE__ ) return extremes def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" global _shared_dataset snake_case_ : str = dataset snake_case_ : int = [] snake_case_ : Optional[int] = partial(_find_cluster_extremes_shared , jaccard_threshold=SCREAMING_SNAKE_CASE__ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) , total=len(SCREAMING_SNAKE_CASE__ ) , ): extremes_list.append(SCREAMING_SNAKE_CASE__ ) return extremes_list def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] , SCREAMING_SNAKE_CASE__ : float = 0.85 ): """simple docstring""" snake_case_ : List[str] = make_duplicate_clusters(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : str = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} snake_case_ : str = {} snake_case_ : Dict = find_extremes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for extremes in extremes_clusters: for element in extremes: snake_case_ : int = element snake_case_ : Optional[int] = duplicate_indices - set(extreme_dict.keys() ) snake_case_ : List[Any] = dataset.filter(lambda SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : idx not in remove_indices , with_indices=SCREAMING_SNAKE_CASE__ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: snake_case_ : List[Any] = element["""base_index"""] in extreme_dict if element["is_extreme"]: snake_case_ : str = extreme_dict[element["""base_index"""]]["""copies"""] print(f'Original dataset size: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Number of duplicate clusters: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Files in duplicate cluster: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Unique files in duplicate cluster: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Filtered dataset size: {len(SCREAMING_SNAKE_CASE__ )}' ) return ds_filter, duplicate_clusters
48
1
"""simple docstring""" import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase ( _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : Dict = CLIPTokenizer _A : Any = CLIPTokenizerFast _A : List[Any] = True _A : Optional[Any] = {} _A : int = False def __UpperCamelCase (self ): super().setUp() # fmt: off snake_case_ : Optional[Any] = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on snake_case_ : List[Any] = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) snake_case_ : Optional[Any] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>"""] snake_case_ : Optional[int] = {"""unk_token""": """<unk>"""} snake_case_ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case_ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowercase__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowercase__ ) ) def __UpperCamelCase (self , **lowercase__ ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def __UpperCamelCase (self , **lowercase__ ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowercase__ ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = """lower newer""" snake_case_ : str = """lower newer""" return input_text, output_text def __UpperCamelCase (self ): snake_case_ : Optional[int] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case_ : Optional[Any] = """lower newer""" snake_case_ : Union[str, Any] = ["""lo""", """w""", """er</w>""", """n""", """e""", """w""", """er</w>"""] snake_case_ : Any = tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : Any = tokens + [tokenizer.unk_token] snake_case_ : Dict = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , lowercase__ ) @require_ftfy def __UpperCamelCase (self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): snake_case_ : List[str] = self.tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) snake_case_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) snake_case_ : List[Any] = """A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d.""" snake_case_ : List[Any] = tokenizer_s.tokenize(lowercase__ ) snake_case_ : Optional[Any] = tokenizer_r.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways snake_case_ : str = """xa\u0303y""" + """ """ + """x\xe3y""" snake_case_ : Dict = tokenizer_s.tokenize(lowercase__ ) snake_case_ : List[str] = tokenizer_r.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) # Test that the tokenization is identical on unicode of space type snake_case_ : Optional[Any] = [ """\u0009""", # (horizontal tab, '\t') """\u000B""", # (vertical tab) """\u000C""", # (form feed) """\u0020""", # (space, ' ') """\u200E""", # (left-to-right mark):w """\u200F""", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: snake_case_ : Tuple = tokenizer_s.tokenize(lowercase__ ) snake_case_ : List[Any] = tokenizer_r.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) # Test that the tokenization is identical on unicode of line break type snake_case_ : Dict = [ """\u000A""", # (line feed, '\n') """\r\n""", # (carriage return and line feed, '\r\n') """\u000D""", # (carriage return, '\r') """\r""", # (carriage return, '\r') """\u000D""", # (carriage return, '\r') """\u2028""", # (line separator) """\u2029""", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: snake_case_ : Any = tokenizer_s.tokenize(lowercase__ ) snake_case_ : Optional[int] = tokenizer_r.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) def __UpperCamelCase (self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): snake_case_ : List[str] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` snake_case_ : Dict = f'{text_of_1_token} {text_of_1_token}' snake_case_ : List[str] = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , ) snake_case_ : Union[str, Any] = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , ) snake_case_ : Optional[int] = f' {text}' snake_case_ : int = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , ) snake_case_ : List[Any] = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ) + 1, 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , ) def __UpperCamelCase (self ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(lowercase__ ) as context: self.rust_tokenizer_class.from_pretrained("""robot-test/old-clip-tokenizer""" ) self.assertTrue( context.exception.args[0].startswith( """The `backend_tokenizer` provided does not match the expected format.""" ) ) @require_ftfy def __UpperCamelCase (self ): super().test_tokenization_python_rust_equals() def __UpperCamelCase (self ): # CLIP always lower cases letters pass
48
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) a_ = logging.getLogger(__name__) if __name__ == "__main__": a_ = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=30522, type=int) a_ = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, '''rb''') as fp: a_ = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') a_ = Counter() for tk_ids in data: counter.update(tk_ids) a_ = [0] * args.vocab_size for k, v in counter.items(): a_ = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
48
1
"""simple docstring""" import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __lowercase ( _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : int = DebertaTokenizer _A : Optional[int] = True _A : Tuple = DebertaTokenizerFast def __UpperCamelCase (self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case_ : Optional[int] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """[UNK]""", ] snake_case_ : Optional[Any] = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) snake_case_ : Tuple = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] snake_case_ : int = {"""unk_token""": """[UNK]"""} snake_case_ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowercase__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowercase__ ) ) def __UpperCamelCase (self , **lowercase__ ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase__ ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Dict = """lower newer""" snake_case_ : Tuple = """lower newer""" return input_text, output_text def __UpperCamelCase (self ): snake_case_ : int = self.get_tokenizer() snake_case_ : List[Any] = """lower newer""" snake_case_ : str = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] snake_case_ : Tuple = tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : List[str] = tokens + [tokenizer.unk_token] snake_case_ : Any = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : str = self.get_tokenizer() snake_case_ : Optional[int] = tokenizer("""Hello""" , """World""" ) snake_case_ : Dict = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["""token_type_ids"""] , lowercase__ ) @slow def __UpperCamelCase (self ): snake_case_ : Tuple = self.tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) snake_case_ : Dict = tokenizer.encode("""sequence builders""" , add_special_tokens=lowercase__ ) snake_case_ : Optional[int] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowercase__ ) snake_case_ : Union[str, Any] = tokenizer.encode( """sequence builders""" , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) snake_case_ : int = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=lowercase__ , add_prefix_space=lowercase__ ) snake_case_ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(lowercase__ ) snake_case_ : Tuple = tokenizer.build_inputs_with_special_tokens(lowercase__ , lowercase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def __UpperCamelCase (self ): snake_case_ : str = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: snake_case_ : str = tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) snake_case_ : Optional[Any] = [ """ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""", """ALBERT incorporates two parameter reduction techniques""", """The first one is a factorized embedding parameterization. By decomposing the large vocabulary""" """ embedding matrix into two small matrices, we separate the size of the hidden layers from the size of""" """ vocabulary embedding.""", ] snake_case_ : Optional[Any] = tokenizer(lowercase__ , padding=lowercase__ ) snake_case_ : List[str] = [tokenizer.decode(lowercase__ , skip_special_tokens=lowercase__ ) for seq in encoding["""input_ids"""]] # fmt: off snake_case_ : Optional[Any] = { """input_ids""": [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], """token_type_ids""": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], """attention_mask""": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on snake_case_ : str = [ """ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""", """ALBERT incorporates two parameter reduction techniques""", """The first one is a factorized embedding parameterization. By decomposing the large vocabulary""" """ embedding matrix into two small matrices, we separate the size of the hidden layers from the size of""" """ vocabulary embedding.""", ] self.assertDictEqual(encoding.data , lowercase__ ) for expected, decoded in zip(lowercase__ , lowercase__ ): self.assertEqual(lowercase__ , lowercase__ )
48
"""simple docstring""" import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" snake_case_ : Optional[Any] = tmp_path / """cache""" snake_case_ : Optional[int] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : Tuple = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" snake_case_ : List[Any] = tmp_path / """cache""" snake_case_ : int = {"""text""": """string"""} snake_case_ : Any = features.copy() if features else default_expected_features snake_case_ : List[Any] = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : Dict = TextDatasetReader(SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : Union[str, Any] = tmp_path / """cache""" snake_case_ : Optional[Any] = {"""text""": """string"""} snake_case_ : Optional[int] = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , split=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" if issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : List[str] = text_path elif issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : str = [text_path] snake_case_ : List[str] = tmp_path / """cache""" snake_case_ : List[str] = {"""text""": """string"""} snake_case_ : Dict = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str]=("train",) ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for split in splits: snake_case_ : Dict = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" snake_case_ : int = tmp_path / """cache""" snake_case_ : List[str] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : Optional[Any] = TextDatasetReader({"""train""": text_path} , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Tuple = tmp_path / """cache""" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" snake_case_ : List[str] = {"""text""": """string"""} snake_case_ : int = features.copy() if features else default_expected_features snake_case_ : Tuple = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : str = TextDatasetReader({"""train""": text_path} , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" if split: snake_case_ : Union[str, Any] = {split: text_path} else: snake_case_ : Union[str, Any] = """train""" snake_case_ : int = {"""train""": text_path, """test""": text_path} snake_case_ : List[Any] = tmp_path / """cache""" snake_case_ : Tuple = {"""text""": """string"""} snake_case_ : int = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
48
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = {} class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Tuple = """llama""" _A : List[str] = ["""past_key_values"""] def __init__(self , lowercase__=3_20_00 , lowercase__=40_96 , lowercase__=1_10_08 , lowercase__=32 , lowercase__=32 , lowercase__=None , lowercase__="silu" , lowercase__=20_48 , lowercase__=0.02 , lowercase__=1e-6 , lowercase__=True , lowercase__=0 , lowercase__=1 , lowercase__=2 , lowercase__=1 , lowercase__=False , lowercase__=None , **lowercase__ , ): snake_case_ : Tuple = vocab_size snake_case_ : Dict = max_position_embeddings snake_case_ : List[Any] = hidden_size snake_case_ : List[Any] = intermediate_size snake_case_ : int = num_hidden_layers snake_case_ : Union[str, Any] = num_attention_heads # for backward compatibility if num_key_value_heads is None: snake_case_ : int = num_attention_heads snake_case_ : Tuple = num_key_value_heads snake_case_ : Optional[Any] = hidden_act snake_case_ : Any = initializer_range snake_case_ : Any = rms_norm_eps snake_case_ : Tuple = pretraining_tp snake_case_ : List[Any] = use_cache snake_case_ : str = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , tie_word_embeddings=lowercase__ , **lowercase__ , ) def __UpperCamelCase (self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowercase__ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f'got {self.rope_scaling}' ) snake_case_ : int = self.rope_scaling.get("""type""" , lowercase__ ) snake_case_ : Optional[Any] = self.rope_scaling.get("""factor""" , lowercase__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(lowercase__ , lowercase__ ) or rope_scaling_factor <= 1.0: raise ValueError(f'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
48
"""simple docstring""" from copy import deepcopy class __lowercase : """simple docstring""" def __init__(self , lowercase__ = None , lowercase__ = None ): if arr is None and size is not None: snake_case_ : str = size snake_case_ : Optional[Any] = [0] * size elif arr is not None: self.init(lowercase__ ) else: raise ValueError("""Either arr or size must be specified""" ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Optional[Any] = len(lowercase__ ) snake_case_ : int = deepcopy(lowercase__ ) for i in range(1 , self.size ): snake_case_ : Optional[Any] = self.next_(lowercase__ ) if j < self.size: self.tree[j] += self.tree[i] def __UpperCamelCase (self ): snake_case_ : Dict = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): snake_case_ : Optional[int] = self.next_(lowercase__ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def __UpperCamelCase (lowercase__ ): return index + (index & (-index)) @staticmethod def __UpperCamelCase (lowercase__ ): return index - (index & (-index)) def __UpperCamelCase (self , lowercase__ , lowercase__ ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value snake_case_ : Tuple = self.next_(lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): self.add(lowercase__ , value - self.get(lowercase__ ) ) def __UpperCamelCase (self , lowercase__ ): if right == 0: return 0 snake_case_ : List[str] = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] snake_case_ : Optional[int] = self.prev(lowercase__ ) return result def __UpperCamelCase (self , lowercase__ , lowercase__ ): return self.prefix(lowercase__ ) - self.prefix(lowercase__ ) def __UpperCamelCase (self , lowercase__ ): return self.query(lowercase__ , index + 1 ) def __UpperCamelCase (self , lowercase__ ): value -= self.tree[0] if value < 0: return -1 snake_case_ : Tuple = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 snake_case_ : Tuple = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
48
1