code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from math import sqrt def _a ( lowerCAmelCase_ = 1_000_000 ): """simple docstring""" _snake_case : Union[str, Any] = 0 _snake_case : List[Any] = 0 _snake_case : str = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(UpperCAmelCase__ , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F"""{solution() = }""")
713
'''simple docstring''' import os import numpy import onnx def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : List[Any] = a.name _snake_case : List[Any] = b.name _snake_case : Tuple = '''''' _snake_case : Tuple = '''''' _snake_case : Optional[Any] = a == b _snake_case : List[Any] = name_a _snake_case : str = name_b return res def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(lowerCAmelCase_ , lowerCAmelCase_ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , lowerCAmelCase_ , lowerCAmelCase_ ) _graph_replace_input_with(node_proto.attribute[1].g , lowerCAmelCase_ , lowerCAmelCase_ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , lowerCAmelCase_ , lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for n in graph_proto.node: _node_replace_input_with(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = list(model.graph.initializer ) _snake_case : List[str] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i _snake_case : List[Any] = inits[i].name _snake_case : List[str] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , lowerCAmelCase_ , lowerCAmelCase_ ) def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Tuple = os.path.dirname(lowerCAmelCase_ ) _snake_case : str = os.path.basename(lowerCAmelCase_ ) _snake_case : Tuple = onnx.load(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) ) _snake_case : Union[str, Any] = list(model.graph.initializer ) _snake_case : Union[str, Any] = set() _snake_case : Any = {} _snake_case : str = [] _snake_case : Union[str, Any] = 0 for i in range(len(lowerCAmelCase_ ) ): if i in dup_set: continue for j in range(i + 1 , len(lowerCAmelCase_ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(lowerCAmelCase_ ) dup_set.add(lowerCAmelCase_ ) _snake_case : List[Any] = inits[j].data_type _snake_case : Dict = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('''unexpected data type: ''' , lowerCAmelCase_ ) total_reduced_size += mem_size _snake_case : Union[str, Any] = inits[i].name _snake_case : Any = inits[j].name if name_i in dup_map: dup_map[name_i].append(lowerCAmelCase_ ) else: _snake_case : Union[str, Any] = [name_j] ind_to_replace.append((j, i) ) print('''total reduced size: ''' , total_reduced_size / 1_024 / 1_024 / 1_024 , '''GB''' ) _snake_case : List[str] = sorted(lowerCAmelCase_ ) _remove_dup_initializers_from_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : List[str] = '''optimized_''' + model_file_name _snake_case : List[Any] = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) onnx.save(lowerCAmelCase_ , lowerCAmelCase_ ) return new_model
47
0
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class lowerCamelCase (a__ ): @staticmethod @abstractmethod def UpperCAmelCase_ ( lowercase__ ) -> str: """simple docstring""" raise NotImplementedError() @abstractmethod def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" raise NotImplementedError()
714
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : int = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
47
0
'''simple docstring''' from __future__ import annotations from random import random from typing import Generic, TypeVar UpperCAmelCase : List[str] = TypeVar('KT') UpperCAmelCase : Dict = TypeVar('VT') class lowerCamelCase (Generic[KT, VT] ): def __init__( self , lowercase__ = "root" , lowercase__ = None ) -> Any: """simple docstring""" _snake_case : Optional[Any] = key _snake_case : Union[str, Any] = value _snake_case : str = [] def __repr__( self ) -> Tuple: """simple docstring""" return F'''Node({self.key}: {self.value})''' @property def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" return len(self.forward ) class lowerCamelCase (Generic[KT, VT] ): def __init__( self , lowercase__ = 0.5 , lowercase__ = 16 ) -> List[Any]: """simple docstring""" _snake_case : List[Any] = Node[KT, VT]() _snake_case : List[str] = 0 _snake_case : Tuple = p _snake_case : int = max_level def __str__( self ) -> int: """simple docstring""" _snake_case : Tuple = list(self ) if len(lowercase__ ) == 0: return F'''SkipList(level={self.level})''' _snake_case : Any = max((len(str(lowercase__ ) ) for item in items) , default=4 ) _snake_case : int = max(lowercase__ , 4 ) + 4 _snake_case : List[Any] = self.head _snake_case : str = [] _snake_case : Optional[Any] = node.forward.copy() lines.append(F'''[{node.key}]'''.ljust(lowercase__ , '''-''' ) + '''* ''' * len(lowercase__ ) ) lines.append(''' ''' * label_size + '''| ''' * len(lowercase__ ) ) while len(node.forward ) != 0: _snake_case : str = node.forward[0] lines.append( F'''[{node.key}]'''.ljust(lowercase__ , '''-''' ) + ''' '''.join(str(n.key ) if n.key == node.key else '''|''' for n in forwards ) ) lines.append(''' ''' * label_size + '''| ''' * len(lowercase__ ) ) _snake_case : Any = node.forward lines.append('''None'''.ljust(lowercase__ ) + '''* ''' * len(lowercase__ ) ) return F'''SkipList(level={self.level})\n''' + "\n".join(lowercase__ ) def __iter__( self ) -> Optional[int]: """simple docstring""" _snake_case : Optional[int] = self.head while len(node.forward ) != 0: yield node.forward[0].key _snake_case : Union[str, Any] = node.forward[0] def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Union[str, Any] = 1 while random() < self.p and level < self.max_level: level += 1 return level def UpperCAmelCase_ ( self , lowercase__ ) -> Any: """simple docstring""" _snake_case : List[Any] = [] _snake_case : int = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: _snake_case : List[Any] = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(lowercase__ ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def UpperCAmelCase_ ( self , lowercase__ ) -> Any: """simple docstring""" _snake_case , _snake_case : str = self._locate_node(lowercase__ ) if node is not None: for i, update_node in enumerate(lowercase__ ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: _snake_case : List[str] = node.forward[i] else: _snake_case : Any = update_node.forward[:i] def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Optional[int]: """simple docstring""" _snake_case , _snake_case : Optional[Any] = self._locate_node(lowercase__ ) if node is not None: _snake_case : Dict = value else: _snake_case : Dict = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , lowercase__ ): update_vector.append(self.head ) _snake_case : Optional[Any] = level _snake_case : Union[str, Any] = Node(lowercase__ , lowercase__ ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(lowercase__ ) else: _snake_case : Tuple = new_node def UpperCAmelCase_ ( self , lowercase__ ) -> List[str]: """simple docstring""" _snake_case , _snake_case : Optional[Any] = self._locate_node(lowercase__ ) if node is not None: return node.value return None def _a ( ): """simple docstring""" _snake_case : int = SkipList() skip_list.insert('''Key1''' , 3 ) skip_list.insert('''Key2''' , 12 ) skip_list.insert('''Key3''' , 41 ) skip_list.insert('''Key4''' , -19 ) _snake_case : Union[str, Any] = skip_list.head _snake_case : Dict = {} while node.level != 0: _snake_case : List[str] = node.forward[0] _snake_case : List[str] = node.value assert len(_UpperCamelCase ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def _a ( ): """simple docstring""" _snake_case : List[str] = SkipList() skip_list.insert('''Key1''' , 10 ) skip_list.insert('''Key1''' , 12 ) skip_list.insert('''Key5''' , 7 ) skip_list.insert('''Key7''' , 10 ) skip_list.insert('''Key10''' , 5 ) skip_list.insert('''Key7''' , 7 ) skip_list.insert('''Key5''' , 5 ) skip_list.insert('''Key10''' , 10 ) _snake_case : List[Any] = skip_list.head _snake_case : List[Any] = {} while node.level != 0: _snake_case : Optional[Any] = node.forward[0] _snake_case : Any = node.value if len(_UpperCamelCase ) != 4: print() assert len(_UpperCamelCase ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def _a ( ): """simple docstring""" _snake_case : List[str] = SkipList() assert skip_list.find('''Some key''' ) is None def _a ( ): """simple docstring""" _snake_case : List[str] = SkipList() skip_list.insert('''Key2''' , 20 ) assert skip_list.find('''Key2''' ) == 20 skip_list.insert('''Some Key''' , 10 ) skip_list.insert('''Key2''' , 8 ) skip_list.insert('''V''' , 13 ) assert skip_list.find('''Y''' ) is None assert skip_list.find('''Key2''' ) == 8 assert skip_list.find('''Some Key''' ) == 10 assert skip_list.find('''V''' ) == 13 def _a ( ): """simple docstring""" _snake_case : Optional[int] = SkipList() skip_list.delete('''Some key''' ) assert len(skip_list.head.forward ) == 0 def _a ( ): """simple docstring""" _snake_case : Optional[Any] = SkipList() skip_list.insert('''Key1''' , 12 ) skip_list.insert('''V''' , 13 ) skip_list.insert('''X''' , 14 ) skip_list.insert('''Key2''' , 15 ) skip_list.delete('''V''' ) skip_list.delete('''Key2''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''Key2''' ) is None def _a ( ): """simple docstring""" _snake_case : Any = SkipList() skip_list.insert('''Key1''' , 12 ) skip_list.insert('''V''' , 13 ) skip_list.insert('''X''' , 14 ) skip_list.insert('''Key2''' , 15 ) skip_list.delete('''V''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''X''' ) == 14 assert skip_list.find('''Key1''' ) == 12 assert skip_list.find('''Key2''' ) == 15 skip_list.delete('''X''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''X''' ) is None assert skip_list.find('''Key1''' ) == 12 assert skip_list.find('''Key2''' ) == 15 skip_list.delete('''Key1''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''X''' ) is None assert skip_list.find('''Key1''' ) is None assert skip_list.find('''Key2''' ) == 15 skip_list.delete('''Key2''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''X''' ) is None assert skip_list.find('''Key1''' ) is None assert skip_list.find('''Key2''' ) is None def _a ( ): """simple docstring""" _snake_case : Union[str, Any] = SkipList() skip_list.insert('''Key1''' , 12 ) skip_list.insert('''V''' , 13 ) skip_list.insert('''X''' , 142 ) skip_list.insert('''Key2''' , 15 ) skip_list.delete('''X''' ) def traverse_keys(lowerCAmelCase_ ): yield node.key for forward_node in node.forward: yield from traverse_keys(_UpperCamelCase ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def _a ( ): """simple docstring""" def is_sorted(lowerCAmelCase_ ): return all(next_item >= item for item, next_item in zip(_UpperCamelCase , lst[1:] ) ) _snake_case : str = SkipList() for i in range(10 ): skip_list.insert(_UpperCamelCase , _UpperCamelCase ) assert is_sorted(list(_UpperCamelCase ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(_UpperCamelCase ) ) skip_list.insert(-12 , -12 ) skip_list.insert(77 , 77 ) assert is_sorted(list(_UpperCamelCase ) ) def _a ( ): """simple docstring""" for _ in range(100 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def _a ( ): """simple docstring""" _snake_case : int = SkipList() skip_list.insert(2 , '''2''' ) skip_list.insert(4 , '''4''' ) skip_list.insert(6 , '''4''' ) skip_list.insert(4 , '''5''' ) skip_list.insert(8 , '''4''' ) skip_list.insert(9 , '''4''' ) skip_list.delete(4 ) print(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
715
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase : Dict = logging.get_logger(__name__) class lowerCamelCase (a__ ): _lowercase : int = ["""pixel_values"""] def __init__( self , lowercase__ = True , lowercase__ = 32 , lowercase__=PILImageResampling.BILINEAR , lowercase__ = True , **lowercase__ , ) -> None: """simple docstring""" _snake_case : Any = do_resize _snake_case : List[str] = do_rescale _snake_case : Any = size_divisor _snake_case : Optional[Any] = resample super().__init__(**lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ ) -> np.ndarray: """simple docstring""" _snake_case , _snake_case : Dict = get_image_size(lowercase__ ) # Rounds the height and width down to the closest multiple of size_divisor _snake_case : Optional[int] = height // size_divisor * size_divisor _snake_case : Dict = width // size_divisor * size_divisor _snake_case : str = resize(lowercase__ , (new_h, new_w) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) return image def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ ) -> np.ndarray: """simple docstring""" return rescale(image=lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__=None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ) -> BatchFeature: """simple docstring""" _snake_case : Any = do_resize if do_resize is not None else self.do_resize _snake_case : List[Any] = do_rescale if do_rescale is not None else self.do_rescale _snake_case : List[str] = size_divisor if size_divisor is not None else self.size_divisor _snake_case : int = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) _snake_case : Tuple = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. _snake_case : Tuple = [to_numpy_array(lowercase__ ) for img in images] if do_resize: _snake_case : Optional[int] = [self.resize(lowercase__ , size_divisor=lowercase__ , resample=lowercase__ ) for image in images] if do_rescale: _snake_case : Union[str, Any] = [self.rescale(lowercase__ , scale=1 / 255 ) for image in images] _snake_case : Union[str, Any] = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] _snake_case : List[str] = {'''pixel_values''': images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
47
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase : Optional[int] = logging.get_logger(__name__) UpperCAmelCase : Optional[Any] = { """andreasmadsen/efficient_mlm_m0.40""": ( """https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json""" ), } class lowerCamelCase (__UpperCAmelCase ): _lowercase : Dict = """roberta-prelayernorm""" def __init__( self , lowercase__=50_265 , lowercase__=768 , lowercase__=12 , lowercase__=12 , lowercase__=3_072 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=512 , lowercase__=2 , lowercase__=0.02 , lowercase__=1E-1_2 , lowercase__=1 , lowercase__=0 , lowercase__=2 , lowercase__="absolute" , lowercase__=True , lowercase__=None , **lowercase__ , ) -> int: """simple docstring""" super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__ ) _snake_case : Any = vocab_size _snake_case : str = hidden_size _snake_case : Union[str, Any] = num_hidden_layers _snake_case : Any = num_attention_heads _snake_case : str = hidden_act _snake_case : Union[str, Any] = intermediate_size _snake_case : Optional[int] = hidden_dropout_prob _snake_case : Dict = attention_probs_dropout_prob _snake_case : Any = max_position_embeddings _snake_case : Optional[int] = type_vocab_size _snake_case : List[str] = initializer_range _snake_case : List[Any] = layer_norm_eps _snake_case : Optional[int] = position_embedding_type _snake_case : int = use_cache _snake_case : List[Any] = classifier_dropout class lowerCamelCase (__UpperCAmelCase ): @property def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" if self.task == "multiple-choice": _snake_case : List[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _snake_case : List[str] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
716
'''simple docstring''' from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class lowerCamelCase : _lowercase : Any = LEDConfig _lowercase : Any = {} _lowercase : Optional[Any] = """gelu""" def __init__( self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=False , lowercase__=99 , lowercase__=32 , lowercase__=2 , lowercase__=4 , lowercase__=37 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=20 , lowercase__=2 , lowercase__=1 , lowercase__=0 , lowercase__=4 , ) -> Any: """simple docstring""" _snake_case : Dict = parent _snake_case : Any = batch_size _snake_case : List[str] = seq_length _snake_case : Union[str, Any] = is_training _snake_case : Tuple = use_labels _snake_case : int = vocab_size _snake_case : str = hidden_size _snake_case : Optional[Any] = num_hidden_layers _snake_case : List[Any] = num_attention_heads _snake_case : Optional[int] = intermediate_size _snake_case : List[Any] = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : Optional[int] = max_position_embeddings _snake_case : Any = eos_token_id _snake_case : List[Any] = pad_token_id _snake_case : Optional[int] = bos_token_id _snake_case : Any = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _snake_case : Any = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _snake_case : Tuple = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" _snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _snake_case : Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _snake_case : Optional[int] = tf.concat([input_ids, eos_tensor] , axis=1 ) _snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case : List[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _snake_case : Dict = prepare_led_inputs_dict(lowercase__ , lowercase__ , lowercase__ ) _snake_case : Dict = tf.concat( [tf.zeros_like(lowercase__ )[:, :-1], tf.ones_like(lowercase__ )[:, -1:]] , axis=-1 , ) _snake_case : Dict = global_attention_mask return config, inputs_dict def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> int: """simple docstring""" _snake_case : int = TFLEDModel(config=lowercase__ ).get_decoder() _snake_case : Union[str, Any] = inputs_dict['''input_ids'''] _snake_case : List[str] = input_ids[:1, :] _snake_case : Tuple = inputs_dict['''attention_mask'''][:1, :] _snake_case : Dict = 1 # first forward pass _snake_case : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__ ) _snake_case , _snake_case : Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _snake_case : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _snake_case : Tuple = tf.concat([input_ids, next_tokens] , axis=-1 ) _snake_case : List[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _snake_case : List[Any] = model(lowercase__ , attention_mask=lowercase__ )[0] _snake_case : Tuple = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _snake_case : Tuple = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _snake_case : int = output_from_no_past[:, -3:, random_slice_idx] _snake_case : Optional[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase__ , lowercase__ , rtol=1E-3 ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , ): """simple docstring""" if attention_mask is None: _snake_case : Union[str, Any] = tf.cast(tf.math.not_equal(lowerCAmelCase_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _snake_case : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _snake_case : int = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class lowerCamelCase (a__ , a__ , unittest.TestCase ): _lowercase : Optional[int] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _lowercase : int = (TFLEDForConditionalGeneration,) if is_tf_available() else () _lowercase : Dict = ( { """conversational""": TFLEDForConditionalGeneration, """feature-extraction""": TFLEDModel, """summarization""": TFLEDForConditionalGeneration, """text2text-generation""": TFLEDForConditionalGeneration, """translation""": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _lowercase : int = True _lowercase : List[Any] = False _lowercase : str = False _lowercase : Union[str, Any] = False def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : str = TFLEDModelTester(self ) _snake_case : Union[str, Any] = ConfigTester(self , config_class=lowercase__ ) def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase__ ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Any = tf.zeros_like(inputs_dict['''attention_mask'''] ) _snake_case : Optional[Any] = 2 _snake_case : Any = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) _snake_case : Dict = True _snake_case : str = self.model_tester.seq_length _snake_case : Dict = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowercase__ ): _snake_case : Optional[int] = outputs.decoder_attentions self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowercase__ ): _snake_case : int = [t.numpy() for t in outputs.encoder_attentions] _snake_case : Tuple = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _snake_case : Union[str, Any] = True _snake_case : Dict = False _snake_case : Union[str, Any] = False _snake_case : List[Any] = model_class(lowercase__ ) _snake_case : Optional[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) _snake_case : List[Any] = len(lowercase__ ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) if self.is_encoder_decoder: _snake_case : Union[str, Any] = model_class(lowercase__ ) _snake_case : List[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_decoder_attentions_output(lowercase__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _snake_case : str = True _snake_case : Tuple = model_class(lowercase__ ) _snake_case : int = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) # Check attention is always last and order is fine _snake_case : int = True _snake_case : List[str] = True _snake_case : Tuple = model_class(lowercase__ ) _snake_case : Optional[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase__ ) ) self.assertEqual(model.config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" pass def UpperCAmelCase_ ( self ) -> str: """simple docstring""" pass def _a ( lowerCAmelCase_ ): """simple docstring""" return tf.constant(lowerCAmelCase_ , dtype=tf.intaa ) UpperCAmelCase : Dict = 1E-4 @slow @require_tf class lowerCamelCase (unittest.TestCase ): def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" _snake_case : List[str] = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here _snake_case : List[str] = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : Tuple = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : Tuple = prepare_led_inputs_dict(model.config , lowercase__ , lowercase__ ) _snake_case : int = model(**lowercase__ )[0] _snake_case : Dict = (1, 1_024, 768) self.assertEqual(output.shape , lowercase__ ) # change to expected output here _snake_case : List[Any] = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1E-3 ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Any = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here _snake_case : Dict = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : Dict = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : List[str] = prepare_led_inputs_dict(model.config , lowercase__ , lowercase__ ) _snake_case : Tuple = model(**lowercase__ )[0] _snake_case : Any = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , lowercase__ ) # change to expected output here _snake_case : Dict = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1E-3 , rtol=1E-3 )
47
0
'''simple docstring''' import flax.linen as nn import jax import jax.numpy as jnp class lowerCamelCase (nn.Module ): _lowercase : int _lowercase : jnp.dtype = jnp.floataa def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" _snake_case : Dict = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , lowercase__ ) -> Optional[int]: """simple docstring""" _snake_case : Optional[Any] = hidden_states.shape _snake_case : List[Any] = jax.image.resize( lowerCamelCase__ , shape=(batch, height * 2, width * 2, channels) , method='''nearest''' , ) _snake_case : Any = self.conv(lowerCamelCase__ ) return hidden_states class lowerCamelCase (nn.Module ): _lowercase : int _lowercase : jnp.dtype = jnp.floataa def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : List[str] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , lowercase__ ) -> int: """simple docstring""" _snake_case : List[str] = self.conv(lowerCamelCase__ ) return hidden_states class lowerCamelCase (nn.Module ): _lowercase : int _lowercase : int = None _lowercase : float = 0.0 _lowercase : bool = None _lowercase : jnp.dtype = jnp.floataa def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" _snake_case : str = self.in_channels if self.out_channels is None else self.out_channels _snake_case : Any = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) _snake_case : Tuple = nn.Conv( lowerCamelCase__ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _snake_case : Union[str, Any] = nn.Dense(lowerCamelCase__ , dtype=self.dtype ) _snake_case : Optional[Any] = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) _snake_case : Tuple = nn.Dropout(self.dropout_prob ) _snake_case : List[str] = nn.Conv( lowerCamelCase__ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _snake_case : Optional[int] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut _snake_case : Optional[Any] = None if use_nin_shortcut: _snake_case : List[str] = nn.Conv( lowerCamelCase__ , kernel_size=(1, 1) , strides=(1, 1) , padding='''VALID''' , dtype=self.dtype , ) def __call__( self , lowercase__ , lowercase__ , lowercase__=True ) -> Union[str, Any]: """simple docstring""" _snake_case : Optional[int] = hidden_states _snake_case : int = self.norma(lowerCamelCase__ ) _snake_case : List[str] = nn.swish(lowerCamelCase__ ) _snake_case : Tuple = self.conva(lowerCamelCase__ ) _snake_case : List[str] = self.time_emb_proj(nn.swish(lowerCamelCase__ ) ) _snake_case : str = jnp.expand_dims(jnp.expand_dims(lowerCamelCase__ , 1 ) , 1 ) _snake_case : Tuple = hidden_states + temb _snake_case : Dict = self.norma(lowerCamelCase__ ) _snake_case : int = nn.swish(lowerCamelCase__ ) _snake_case : str = self.dropout(lowerCamelCase__ , lowerCamelCase__ ) _snake_case : int = self.conva(lowerCamelCase__ ) if self.conv_shortcut is not None: _snake_case : str = self.conv_shortcut(lowerCamelCase__ ) return hidden_states + residual
717
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase : Optional[int] = logging.get_logger(__name__) UpperCAmelCase : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase : Any = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } UpperCAmelCase : Optional[Any] = { 'gpt-neox-20b': 2_0_4_8, } class lowerCamelCase (a__ ): _lowercase : Optional[int] = VOCAB_FILES_NAMES _lowercase : str = PRETRAINED_VOCAB_FILES_MAP _lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Optional[int] = ["""input_ids""", """attention_mask"""] def __init__( self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="<|endoftext|>" , lowercase__="<|endoftext|>" , lowercase__="<|endoftext|>" , lowercase__=False , **lowercase__ , ) -> List[Any]: """simple docstring""" super().__init__( lowercase__ , lowercase__ , tokenizer_file=lowercase__ , unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , add_prefix_space=lowercase__ , **lowercase__ , ) _snake_case : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowercase__ ) != add_prefix_space: _snake_case : int = getattr(lowercase__ , pre_tok_state.pop('''type''' ) ) _snake_case : int = add_prefix_space _snake_case : Optional[Any] = pre_tok_class(**lowercase__ ) _snake_case : List[str] = add_prefix_space def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> Tuple[str]: """simple docstring""" _snake_case : Optional[int] = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> List[int]: """simple docstring""" _snake_case : List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase__ , add_special_tokens=lowercase__ ) + [self.eos_token_id] ) if len(lowercase__ ) > self.model_max_length: _snake_case : Dict = input_ids[-self.model_max_length :] return input_ids
47
0
'''simple docstring''' import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) UpperCAmelCase : Optional[Any] = [ 'cross_validation.py', 'gradient_accumulation.py', 'local_sgd.py', 'multi_process_metrics.py', 'memory.py', 'automatic_gradient_accumulation.py', 'fsdp_with_peak_mem_tracking.py', 'deepspeed_with_config_support.py', 'megatron_lm_gpt_pretraining.py', ] class lowerCamelCase (unittest.TestCase ): def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = None ) -> int: """simple docstring""" _snake_case : Optional[int] = None _snake_case : Dict = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) _snake_case : List[Any] = os.path.abspath('''examples''' ) for item in os.listdir(lowercase__ ): if item not in EXCLUDE_EXAMPLES: _snake_case : Tuple = os.path.join(lowercase__ , lowercase__ ) if os.path.isfile(lowercase__ ) and ".py" in item_path: with self.subTest( tested_script=lowercase__ , feature_script=lowercase__ , tested_section='''main()''' if parser_only else '''training_function()''' , ): _snake_case : List[Any] = compare_against_test( os.path.join(lowercase__ , lowercase__ ) , lowercase__ , lowercase__ , lowercase__ ) _snake_case : str = '''\n'''.join(lowercase__ ) if special_strings is not None: for string in special_strings: _snake_case : Union[str, Any] = diff.replace(lowercase__ , '''''' ) self.assertEqual(lowercase__ , '''''' ) def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" self.one_complete_example('''complete_nlp_example.py''' , lowercase__ ) self.one_complete_example('''complete_nlp_example.py''' , lowercase__ ) def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" _snake_case : List[Any] = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) _snake_case : Dict = [ ''' ''' * 16 + '''{\n\n''', ''' ''' * 20 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 20 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 20 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 20 + '''"epoch": epoch,\n\n''', ''' ''' * 16 + '''},\n\n''', ''' ''' * 16 + '''step=epoch,\n''', ''' ''' * 12, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , lowercase__ , lowercase__ , lowercase__ ) self.one_complete_example('''complete_cv_example.py''' , lowercase__ , lowercase__ , lowercase__ ) @mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """1"""} ) class lowerCamelCase (UpperCamelCase_ ): _lowercase : Union[str, Any] = False @classmethod def UpperCAmelCase_ ( cls ) -> List[Any]: """simple docstring""" super().setUpClass() _snake_case : List[Any] = tempfile.mkdtemp() _snake_case : Tuple = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) _snake_case : Dict = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def UpperCAmelCase_ ( cls ) -> List[Any]: """simple docstring""" super().tearDownClass() shutil.rmtree(cls._tmpdir ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : Dict = F'''\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" _snake_case : List[Any] = F'''\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n '''.split() _snake_case : List[Any] = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" _snake_case : Tuple = F'''\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )}\n '''.split() _snake_case : Dict = run_command(self._launch_args + testargs , return_stdout=lowercase__ ) self.assertNotIn('''epoch 0:''' , lowercase__ ) self.assertIn('''epoch 1:''' , lowercase__ ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Dict = F'''\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )}\n '''.split() _snake_case : Dict = run_command(self._launch_args + testargs , return_stdout=lowercase__ ) if torch.cuda.is_available(): _snake_case : List[str] = torch.cuda.device_count() else: _snake_case : List[Any] = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , lowercase__ ) self.assertIn('''epoch 1:''' , lowercase__ ) else: self.assertIn('''epoch 0:''' , lowercase__ ) self.assertIn('''epoch 1:''' , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : List[str] = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): _snake_case : Any = run_command(self._launch_args + testargs , return_stdout=lowercase__ ) _snake_case : Dict = re.findall('''({.+})''' , lowercase__ ) _snake_case : int = [r for r in results if '''accuracy''' in r][-1] _snake_case : List[str] = ast.literal_eval(lowercase__ ) self.assertGreaterEqual(results['''accuracy'''] , 0.75 ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Optional[Any] = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: _snake_case : Optional[int] = F'''\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(lowercase__ , '''tracking''' ) ) ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : int = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : List[str] = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
718
'''simple docstring''' import math from numpy import inf from scipy.integrate import quad def _a ( lowerCAmelCase_ ): """simple docstring""" if num <= 0: raise ValueError('''math domain error''' ) return quad(lowerCAmelCase_ , 0 , lowerCAmelCase_ , args=(lowerCAmelCase_) )[0] def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return math.pow(lowerCAmelCase_ , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
47
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
719
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class lowerCamelCase (unittest.TestCase ): @slow def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Union[str, Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Any = TFAutoModel.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : str = AutoModel.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Optional[Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Dict = TFAutoModelForPreTraining.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Tuple = AutoModelForPreTraining.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Optional[int] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained(lowercase__ , from_pt=lowercase__ ) _snake_case , _snake_case : Tuple = TFAutoModelForCausalLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained(lowercase__ , from_tf=lowercase__ ) _snake_case , _snake_case : Optional[Any] = AutoModelForCausalLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Tuple = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : int = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[str] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(lowercase__ , from_pt=lowercase__ ) _snake_case , _snake_case : List[str] = TFAutoModelForMaskedLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : int = AutoModelForMaskedLM.from_pretrained(lowercase__ , from_tf=lowercase__ ) _snake_case , _snake_case : Optional[int] = AutoModelForMaskedLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[str] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(lowercase__ , from_pt=lowercase__ ) _snake_case , _snake_case : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : List[str] = AutoModelForSeqaSeqLM.from_pretrained(lowercase__ , from_tf=lowercase__ ) _snake_case , _snake_case : Dict = AutoModelForSeqaSeqLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Any = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Any = TFAutoModelForSequenceClassification.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Dict = AutoModelForSequenceClassification.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : str = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : str = TFAutoModelForQuestionAnswering.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Union[str, Any] = AutoModelForQuestionAnswering.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : Union[str, Any] = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 ) _snake_case : Tuple = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : List[str] = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 ) _snake_case : int = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 )
47
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) UpperCAmelCase : Optional[int] = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys UpperCAmelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
720
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : Dict = {'configuration_timm_backbone': ['TimmBackboneConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = ['TimmBackbone'] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
47
0
'''simple docstring''' from __future__ import annotations import typing from collections.abc import Iterable import numpy as np UpperCAmelCase : Dict = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 UpperCAmelCase : int = typing.Union[np.floataa, int, float] # noqa: UP007 def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return np.sqrt(np.sum((np.asarray(lowerCAmelCase_ ) - np.asarray(lowerCAmelCase_ )) ** 2 ) ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return sum((va - va) ** 2 for va, va in zip(lowerCAmelCase_ , lowerCAmelCase_ ) ) ** (1 / 2) if __name__ == "__main__": def _a ( ): """simple docstring""" from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) ) benchmark()
721
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version UpperCAmelCase : Tuple = logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') UpperCAmelCase : str = { 'base': AutoModel, 'sequence-classification': AutoModelForSequenceClassification, 'question-answering': AutoModelForQuestionAnswering, 'pretraining': AutoModelForPreTraining, 'token-classification': AutoModelForTokenClassification, 'language-modeling': AutoModelWithLMHead, 'summarization': AutoModelForSeqaSeqLM, 'translation': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization UpperCAmelCase : Optional[Any] = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } UpperCAmelCase : Tuple = sorted(arg_to_scheduler.keys()) UpperCAmelCase : Optional[Any] = '{' + ', '.join(arg_to_scheduler_choices) + '}' class lowerCamelCase (pl.LightningModule ): def __init__( self , lowercase__ , lowercase__=None , lowercase__="base" , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ , ) -> Optional[int]: """simple docstring""" super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(lowercase__ ) _snake_case : Union[str, Any] = 0 _snake_case : int = Path(self.hparams.output_dir ) _snake_case : int = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: _snake_case : Tuple = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=lowercase__ , **lowercase__ , ) else: _snake_case : PretrainedConfig = config _snake_case : Optional[Any] = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(self.hparams , lowercase__ , lowercase__ ): assert hasattr(self.config , lowercase__ ), F'''model config doesn\'t have a `{p}` attribute''' setattr(self.config , lowercase__ , getattr(self.hparams , lowercase__ ) ) if tokenizer is None: _snake_case : Optional[int] = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=lowercase__ , ) else: _snake_case : PreTrainedTokenizer = tokenizer _snake_case : Any = MODEL_MODES[mode] if model is None: _snake_case : List[Any] = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=lowercase__ , ) else: _snake_case : Optional[Any] = model def UpperCAmelCase_ ( self , *lowercase__ , **lowercase__ ) -> List[str]: """simple docstring""" _snake_case : Dict = self.model_type.from_pretrained(*lowercase__ , **lowercase__ ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Optional[int] = arg_to_scheduler[self.hparams.lr_scheduler] _snake_case : Optional[int] = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) _snake_case : str = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1} return scheduler def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Any = self.model _snake_case : List[Any] = ['''bias''', '''LayerNorm.weight'''] _snake_case : List[str] = [ { '''params''': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters '''weight_decay''': self.hparams.weight_decay, }, { '''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] if self.hparams.adafactor: _snake_case : Any = Adafactor( lowercase__ , lr=self.hparams.learning_rate , scale_parameter=lowercase__ , relative_step=lowercase__ ) else: _snake_case : List[str] = AdamW( lowercase__ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) _snake_case : List[str] = optimizer _snake_case : Any = self.get_lr_scheduler() return [optimizer], [scheduler] def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Any: """simple docstring""" return self.validation_step(lowercase__ , lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> Tuple: """simple docstring""" return self.validation_end(lowercase__ ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Any = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores _snake_case : Optional[int] = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def UpperCAmelCase_ ( self , lowercase__ ) -> Any: """simple docstring""" if stage == "test": _snake_case : Any = len(self.test_dataloader().dataset ) else: _snake_case : Dict = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=lowercase__ ) _snake_case : Optional[int] = len(self.train_dataloader().dataset ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = False ) -> str: """simple docstring""" raise NotImplementedError('''You must implement this for your task''' ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" return self.train_loader def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=lowercase__ ) def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> Optional[int]: """simple docstring""" return os.path.join( self.hparams.data_dir , '''cached_{}_{}_{}'''.format( lowercase__ , list(filter(lowercase__ , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def UpperCAmelCase_ ( self , lowercase__ ) -> None: """simple docstring""" _snake_case : Dict = self.output_dir.joinpath('''best_tfmr''' ) _snake_case : Tuple = self.step_count self.model.save_pretrained(lowercase__ ) self.tokenizer.save_pretrained(lowercase__ ) @staticmethod def UpperCAmelCase_ ( lowercase__ , lowercase__ ) -> Tuple: """simple docstring""" parser.add_argument( '''--model_name_or_path''' , default=lowercase__ , type=lowercase__ , required=lowercase__ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--config_name''' , default='''''' , type=lowercase__ , help='''Pretrained config name or path if not the same as model_name''' ) parser.add_argument( '''--tokenizer_name''' , default=lowercase__ , type=lowercase__ , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument( '''--cache_dir''' , default=str(Path(lowercase__ ).parent / '''test_run''' / '''cache''' ) , type=lowercase__ , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , ) parser.add_argument( '''--encoder_layerdrop''' , type=lowercase__ , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--decoder_layerdrop''' , type=lowercase__ , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--dropout''' , type=lowercase__ , help='''Dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--attention_dropout''' , type=lowercase__ , help='''Attention dropout probability (Optional). Goes into model.config''' , ) parser.add_argument('''--learning_rate''' , default=5E-5 , type=lowercase__ , help='''The initial learning rate for Adam.''' ) parser.add_argument( '''--lr_scheduler''' , default='''linear''' , choices=lowercase__ , metavar=lowercase__ , type=lowercase__ , help='''Learning rate scheduler''' , ) parser.add_argument('''--weight_decay''' , default=0.0 , type=lowercase__ , help='''Weight decay if we apply some.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=lowercase__ , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--warmup_steps''' , default=0 , type=lowercase__ , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--num_workers''' , default=4 , type=lowercase__ , help='''kwarg passed to DataLoader''' ) parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=lowercase__ ) parser.add_argument('''--train_batch_size''' , default=32 , type=lowercase__ ) parser.add_argument('''--eval_batch_size''' , default=32 , type=lowercase__ ) parser.add_argument('''--adafactor''' , action='''store_true''' ) class lowerCamelCase (pl.Callback ): def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> str: """simple docstring""" if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class lowerCamelCase (pl.Callback ): def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> List[str]: """simple docstring""" for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(lowercase__ ) class lowerCamelCase (pl.Callback ): def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Any: """simple docstring""" _snake_case : Any = trainer.lr_schedulers[0]['''scheduler'''] _snake_case : Optional[int] = {F'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> List[str]: """simple docstring""" rank_zero_info('''***** Validation results *****''' ) _snake_case : Dict = trainer.callback_metrics # Log results for key in sorted(lowercase__ ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Dict: """simple docstring""" rank_zero_info('''***** Test results *****''' ) _snake_case : Dict = trainer.callback_metrics # Log and save results to file _snake_case : str = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' ) with open(lowercase__ , '''w''' ) as writer: for key in sorted(lowercase__ ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) ) writer.write('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" parser.add_argument( '''--output_dir''' , default=str(Path(lowerCAmelCase_ ).parent / '''test_run''' / '''model_checkpoints''' ) , type=lowerCAmelCase_ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=lowerCAmelCase_ , default='''O2''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=lowerCAmelCase_ ) parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=lowerCAmelCase_ , help='''Max gradient norm''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' ) parser.add_argument( '''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=lowerCAmelCase_ , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--seed''' , type=lowerCAmelCase_ , default=42 , help='''random seed for initialization''' ) parser.add_argument( '''--data_dir''' , default=str(Path(lowerCAmelCase_ ).parent / '''test_run''' / '''dummy-train-data''' ) , type=lowerCAmelCase_ , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_=[] , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , ): """simple docstring""" pl.seed_everything(args.seed ) # init model _snake_case : Union[str, Any] = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=lowerCAmelCase_ ) # add custom checkpoints if checkpoint_callback is None: _snake_case : Any = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(lowerCAmelCase_ ) if logging_callback is None: _snake_case : str = LoggingCallback() _snake_case : Tuple = {} if args.fpaa: _snake_case : Union[str, Any] = 16 if args.gpus > 1: _snake_case : Optional[Any] = '''auto''' _snake_case : Tuple = '''ddp''' _snake_case : Optional[Any] = args.accumulate_grad_batches _snake_case : Tuple = None _snake_case : str = '''auto''' _snake_case : int = pl.Trainer.from_argparse_args( lowerCAmelCase_ , weights_summary=lowerCAmelCase_ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase_ , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase_ , ) if args.do_train: trainer.fit(lowerCAmelCase_ ) else: print('''RAG modeling tests with new set functions successfuly executed!''' ) return trainer
47
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class lowerCamelCase (unittest.TestCase ): def __init__( self , lowercase__ , lowercase__=7 , lowercase__=3 , lowercase__=18 , lowercase__=30 , lowercase__=400 , lowercase__=True , lowercase__=None , lowercase__=True , lowercase__=None , lowercase__=True , lowercase__=[0.5, 0.5, 0.5] , lowercase__=[0.5, 0.5, 0.5] , ) -> List[Any]: """simple docstring""" _snake_case : int = size if size is not None else {'''shortest_edge''': 18} _snake_case : Tuple = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _snake_case : Union[str, Any] = parent _snake_case : List[str] = batch_size _snake_case : Optional[Any] = num_channels _snake_case : Any = image_size _snake_case : Union[str, Any] = min_resolution _snake_case : Optional[Any] = max_resolution _snake_case : Any = do_resize _snake_case : Union[str, Any] = size _snake_case : Optional[int] = do_center_crop _snake_case : Tuple = crop_size _snake_case : List[Any] = do_normalize _snake_case : Dict = image_mean _snake_case : str = image_std def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class lowerCamelCase (a__ , unittest.TestCase ): _lowercase : Tuple = LevitImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" _snake_case : int = LevitImageProcessingTester(self ) @property def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" _snake_case : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase__ , '''image_mean''' ) ) self.assertTrue(hasattr(lowercase__ , '''image_std''' ) ) self.assertTrue(hasattr(lowercase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowercase__ , '''do_resize''' ) ) self.assertTrue(hasattr(lowercase__ , '''do_center_crop''' ) ) self.assertTrue(hasattr(lowercase__ , '''size''' ) ) def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) _snake_case : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" pass def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" _snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , Image.Image ) # Test not batched input _snake_case : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _snake_case : Any = image_processing(lowercase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , numpify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , np.ndarray ) # Test not batched input _snake_case : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _snake_case : List[str] = image_processing(lowercase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , torchify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , torch.Tensor ) # Test not batched input _snake_case : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _snake_case : Dict = image_processing(lowercase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
700
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : Dict = { 'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowerCamelCase (a__ ): _lowercase : List[str] = """sew-d""" def __init__( self , lowercase__=32 , lowercase__=768 , lowercase__=12 , lowercase__=12 , lowercase__=3_072 , lowercase__=2 , lowercase__=512 , lowercase__=256 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.02 , lowercase__=1E-7 , lowercase__=1E-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=128 , lowercase__=16 , lowercase__=True , lowercase__=0.05 , lowercase__=10 , lowercase__=2 , lowercase__=0.0 , lowercase__=10 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=256 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ) -> Dict: """simple docstring""" super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ ) _snake_case : List[str] = hidden_size _snake_case : Optional[Any] = feat_extract_norm _snake_case : Tuple = feat_extract_activation _snake_case : Tuple = list(lowercase__ ) _snake_case : Any = list(lowercase__ ) _snake_case : Any = list(lowercase__ ) _snake_case : Any = conv_bias _snake_case : List[Any] = num_conv_pos_embeddings _snake_case : Any = num_conv_pos_embedding_groups _snake_case : Union[str, Any] = len(self.conv_dim ) _snake_case : Optional[Any] = num_hidden_layers _snake_case : Optional[int] = intermediate_size _snake_case : Any = squeeze_factor _snake_case : Optional[Any] = max_position_embeddings _snake_case : Tuple = position_buckets _snake_case : Tuple = share_att_key _snake_case : Any = relative_attention _snake_case : Optional[int] = norm_rel_ebd _snake_case : Optional[Any] = list(lowercase__ ) _snake_case : List[Any] = hidden_act _snake_case : List[Any] = num_attention_heads _snake_case : Dict = hidden_dropout _snake_case : Tuple = attention_dropout _snake_case : Union[str, Any] = activation_dropout _snake_case : List[Any] = feat_proj_dropout _snake_case : Optional[int] = final_dropout _snake_case : Optional[Any] = layer_norm_eps _snake_case : Dict = feature_layer_norm_eps _snake_case : List[Any] = initializer_range _snake_case : Dict = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _snake_case : Union[str, Any] = apply_spec_augment _snake_case : Any = mask_time_prob _snake_case : List[str] = mask_time_length _snake_case : Dict = mask_time_min_masks _snake_case : Union[str, Any] = mask_feature_prob _snake_case : Tuple = mask_feature_length _snake_case : Union[str, Any] = mask_feature_min_masks # ctc loss _snake_case : Optional[Any] = ctc_loss_reduction _snake_case : Optional[Any] = ctc_zero_infinity # sequence classification _snake_case : List[Any] = use_weighted_layer_sum _snake_case : Any = classifier_proj_size @property def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
47
0
'''simple docstring''' import os from pathlib import Path def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Dict = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, oder?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] _snake_case : Dict = { '''ru-en''': ['''[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)''', '''39.20'''], '''en-ru''': ['''[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)''', '''33.47'''], '''en-de''': ['''[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)''', '''42.83'''], '''de-en''': ['''[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)''', '''41.35'''], } _snake_case : List[Any] = f'''{src_lang}-{tgt_lang}''' _snake_case : Optional[int] = f''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "facebook/wmt19-{src_lang}-{tgt_lang}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR\'s WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) ''' os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) _snake_case : int = os.path.join(lowerCAmelCase_ , '''README.md''' ) print(f'''Generating {path}''' ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(lowerCAmelCase_ ) # make sure we are under the root of the project UpperCAmelCase : str = Path(__file__).resolve().parent.parent.parent UpperCAmelCase : int = repo_dir / 'model_cards' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: UpperCAmelCase : Union[str, Any] = model_name.split('-') UpperCAmelCase : Optional[int] = model_cards_dir / 'facebook' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
701
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : List[Any] = 0 if start < end: _snake_case : List[Any] = randint(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Any = a[end] _snake_case : List[str] = a[pivot] _snake_case : Optional[int] = temp _snake_case , _snake_case : List[Any] = _in_place_partition(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) count += _in_place_quick_sort(lowerCAmelCase_ , lowerCAmelCase_ , p - 1 ) count += _in_place_quick_sort(lowerCAmelCase_ , p + 1 , lowerCAmelCase_ ) return count def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = 0 _snake_case : Optional[int] = randint(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Tuple = a[end] _snake_case : Optional[Any] = a[pivot] _snake_case : Union[str, Any] = temp _snake_case : Union[str, Any] = start - 1 for index in range(lowerCAmelCase_ , lowerCAmelCase_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _snake_case : Optional[int] = new_pivot_index + 1 _snake_case : Optional[Any] = a[new_pivot_index] _snake_case : Tuple = a[index] _snake_case : str = temp _snake_case : Any = a[new_pivot_index + 1] _snake_case : str = a[end] _snake_case : Optional[int] = temp return new_pivot_index + 1, count UpperCAmelCase : Dict = TemporaryFile() UpperCAmelCase : Dict = 1_0_0 # 1000 elements are to be sorted UpperCAmelCase, UpperCAmelCase : str = 0, 1 # mean and standard deviation UpperCAmelCase : Optional[Any] = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array UpperCAmelCase : int = np.load(outfile) UpperCAmelCase : Optional[int] = len(M) - 1 UpperCAmelCase : str = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
47
0
'''simple docstring''' from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
702
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
47
0
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCAmelCase : Optional[Any] = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCAmelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
703
'''simple docstring''' from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def _a ( ): """simple docstring""" _snake_case : List[Any] = ArgumentParser('''Transformers CLI tool''' , usage='''transformers-cli <command> [<args>]''' ) _snake_case : List[str] = parser.add_subparsers(help='''transformers-cli command helpers''' ) # Register commands ConvertCommand.register_subcommand(lowerCAmelCase_ ) DownloadCommand.register_subcommand(lowerCAmelCase_ ) EnvironmentCommand.register_subcommand(lowerCAmelCase_ ) RunCommand.register_subcommand(lowerCAmelCase_ ) ServeCommand.register_subcommand(lowerCAmelCase_ ) UserCommands.register_subcommand(lowerCAmelCase_ ) AddNewModelCommand.register_subcommand(lowerCAmelCase_ ) AddNewModelLikeCommand.register_subcommand(lowerCAmelCase_ ) LfsCommands.register_subcommand(lowerCAmelCase_ ) PTtoTFCommand.register_subcommand(lowerCAmelCase_ ) # Let's go _snake_case : str = parser.parse_args() if not hasattr(lowerCAmelCase_ , '''func''' ): parser.print_help() exit(1 ) # Run _snake_case : Union[str, Any] = args.func(lowerCAmelCase_ ) service.run() if __name__ == "__main__": main()
47
0
def _a ( lowerCAmelCase_ = 50 ): """simple docstring""" _snake_case : str = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F"""{solution() = }""")
704
'''simple docstring''' from collections.abc import Generator def _a ( ): """simple docstring""" _snake_case , _snake_case : Union[str, Any] = 0, 1 while True: _snake_case , _snake_case : List[str] = b, a + b yield b def _a ( lowerCAmelCase_ = 1_000 ): """simple docstring""" _snake_case : List[str] = 1 _snake_case : Dict = fibonacci_generator() while len(str(next(lowerCAmelCase_ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
47
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: UpperCAmelCase : Any = None UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : List[Any] = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase : List[str] = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json' ), }, } UpperCAmelCase : int = { 'facebook/nllb-large-en-ro': 1_0_2_4, 'facebook/nllb-200-distilled-600M': 1_0_2_4, } # fmt: off UpperCAmelCase : Optional[int] = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class lowerCamelCase (a__ ): _lowercase : Dict = VOCAB_FILES_NAMES _lowercase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : List[str] = PRETRAINED_VOCAB_FILES_MAP _lowercase : Optional[Any] = ["""input_ids""", """attention_mask"""] _lowercase : List[Any] = NllbTokenizer _lowercase : List[int] = [] _lowercase : List[int] = [] def __init__( self , lowercase__=None , lowercase__=None , lowercase__="<s>" , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<mask>" , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=False , **lowercase__ , ) -> Tuple: """simple docstring""" _snake_case : List[Any] = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token _snake_case : Union[str, Any] = legacy_behaviour super().__init__( vocab_file=lowercase__ , tokenizer_file=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , unk_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , src_lang=lowercase__ , tgt_lang=lowercase__ , additional_special_tokens=lowercase__ , legacy_behaviour=lowercase__ , **lowercase__ , ) _snake_case : Tuple = vocab_file _snake_case : int = False if not self.vocab_file else True _snake_case : Tuple = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) _snake_case : Union[str, Any] = { lang_code: self.convert_tokens_to_ids(lowercase__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _snake_case : List[str] = src_lang if src_lang is not None else '''eng_Latn''' _snake_case : List[str] = self.convert_tokens_to_ids(self._src_lang ) _snake_case : Union[str, Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCAmelCase_ ( self ) -> str: """simple docstring""" return self._src_lang @src_lang.setter def UpperCAmelCase_ ( self , lowercase__ ) -> None: """simple docstring""" _snake_case : str = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> List[int]: """simple docstring""" _snake_case : List[str] = [self.sep_token_id] _snake_case : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , **lowercase__ ) -> Any: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) _snake_case : List[str] = src_lang _snake_case : Optional[Any] = self(lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , **lowercase__ ) _snake_case : str = self.convert_tokens_to_ids(lowercase__ ) _snake_case : str = tgt_lang_id return inputs def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = "eng_Latn" , lowercase__ = None , lowercase__ = "fra_Latn" , **lowercase__ , ) -> BatchEncoding: """simple docstring""" _snake_case : Optional[Any] = src_lang _snake_case : Tuple = tgt_lang return super().prepare_seqaseq_batch(lowercase__ , lowercase__ , **lowercase__ ) def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCAmelCase_ ( self , lowercase__ ) -> None: """simple docstring""" _snake_case : List[Any] = self.convert_tokens_to_ids(lowercase__ ) if self.legacy_behaviour: _snake_case : Any = [] _snake_case : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: _snake_case : int = [self.cur_lang_code] _snake_case : List[Any] = [self.eos_token_id] _snake_case : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) _snake_case : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) _snake_case : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCAmelCase_ ( self , lowercase__ ) -> None: """simple docstring""" _snake_case : str = self.convert_tokens_to_ids(lowercase__ ) if self.legacy_behaviour: _snake_case : List[str] = [] _snake_case : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: _snake_case : int = [self.cur_lang_code] _snake_case : str = [self.eos_token_id] _snake_case : Any = self.convert_ids_to_tokens(self.prefix_tokens ) _snake_case : int = self.convert_ids_to_tokens(self.suffix_tokens ) _snake_case : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(lowercase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory.''' ) return _snake_case : Optional[int] = os.path.join( lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ): copyfile(self.vocab_file , lowercase__ ) return (out_vocab_file,)
705
'''simple docstring''' import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor UpperCAmelCase : str = logging.getLogger(__name__) UpperCAmelCase : Dict = 5_0 # max width of layer names UpperCAmelCase : Union[str, Any] = 7_0 # max width of quantizer names def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Dict = parser.add_argument_group('''quant_trainer arguments''' ) group.add_argument('''--wprec''' , type=lowerCAmelCase_ , default=8 , help='''weight precision''' ) group.add_argument('''--aprec''' , type=lowerCAmelCase_ , default=8 , help='''activation precision''' ) group.add_argument('''--quant-per-tensor''' , action='''store_true''' , help='''per tensor weight scaling''' ) group.add_argument('''--quant-disable''' , action='''store_true''' , help='''disable all quantizers''' ) group.add_argument('''--quant-disable-embeddings''' , action='''store_true''' , help='''disable all embeddings quantizers''' ) group.add_argument('''--quant-disable-keyword''' , type=lowerCAmelCase_ , nargs='''+''' , help='''disable quantizers by keyword''' ) group.add_argument('''--quant-disable-layer-module''' , type=lowerCAmelCase_ , help='''disable quantizers by keyword under layer.''' ) group.add_argument('''--quant-enable-layer-module''' , type=lowerCAmelCase_ , help='''enable quantizers by keyword under layer''' ) group.add_argument('''--calibrator''' , default='''max''' , help='''which quantization range calibrator to use''' ) group.add_argument('''--percentile''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help='''percentile for PercentileCalibrator''' ) group.add_argument('''--fuse-qkv''' , action='''store_true''' , help='''use the same scale factor for qkv''' ) group.add_argument('''--clip-gelu''' , metavar='''N''' , type=lowerCAmelCase_ , help='''clip gelu output maximum value to N''' ) group.add_argument( '''--recalibrate-weights''' , action='''store_true''' , help=( '''recalibrate weight amaxes by taking the max of the weights.''' ''' amaxes will be computed with the current quantization granularity (axis).''' ) , ) def _a ( lowerCAmelCase_ ): """simple docstring""" if args.calibrator == "max": _snake_case : Optional[int] = '''max''' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('''Specify --percentile when using percentile calibrator''' ) _snake_case : Tuple = '''histogram''' elif args.calibrator == "mse": _snake_case : int = '''histogram''' else: raise ValueError(f'''Invalid calibrator {args.calibrator}''' ) _snake_case : Tuple = QuantDescriptor(num_bits=args.aprec , calib_method=lowerCAmelCase_ ) _snake_case : str = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(lowerCAmelCase_ ) quant_nn.QuantLinear.set_default_quant_desc_weight(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False , lowerCAmelCase_=False ): """simple docstring""" logger.info('''Configuring Model for Quantization''' ) logger.info(f'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(lowerCAmelCase_ , ['''embeddings'''] , which='''weight''' , _disabled=lowerCAmelCase_ ) if args.quant_disable: set_quantizer_by_name(lowerCAmelCase_ , [''''''] , _disabled=lowerCAmelCase_ ) if args.quant_disable_keyword: set_quantizer_by_name(lowerCAmelCase_ , args.quant_disable_keyword , _disabled=lowerCAmelCase_ ) if args.quant_disable_layer_module: set_quantizer_by_name(lowerCAmelCase_ , [R'''layer.\d+.''' + args.quant_disable_layer_module] , _disabled=lowerCAmelCase_ ) if args.quant_enable_layer_module: set_quantizer_by_name(lowerCAmelCase_ , [R'''layer.\d+.''' + args.quant_enable_layer_module] , _disabled=lowerCAmelCase_ ) if args.recalibrate_weights: recalibrate_weights(lowerCAmelCase_ ) if args.fuse_qkv: fuse_qkv(lowerCAmelCase_ , lowerCAmelCase_ ) if args.clip_gelu: clip_gelu(lowerCAmelCase_ , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ ): """simple docstring""" logger.info('''Enabling Calibration''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(f'''{name:80}: {module}''' ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" logger.info('''Loading calibrated amax''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('''percentile''' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" def fusea(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): for mod in [qq, qk, qv]: if not hasattr(lowerCAmelCase_ , '''_amax''' ): print(''' WARNING: NO AMAX BUFFER''' ) return _snake_case : Tuple = qq._amax.detach().item() _snake_case : Tuple = qk._amax.detach().item() _snake_case : List[Any] = qv._amax.detach().item() _snake_case : List[str] = max(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) qq._amax.fill_(lowerCAmelCase_ ) qk._amax.fill_(lowerCAmelCase_ ) qv._amax.fill_(lowerCAmelCase_ ) logger.info(f''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith('''.attention.self''' ): logger.info(f'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if name.endswith('''.output.dense''' ) and not name.endswith('''attention.output.dense''' ): _snake_case : List[Any] = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=lowerCAmelCase_ ) _snake_case : List[str] = mod._input_quantizer._amax.data.detach().item() logger.info(f'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def _a ( lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ) and mod._weight_quantizer.axis is not None: _snake_case : Dict = mod.weight.shape[0] _snake_case : Optional[int] = mod._weight_quantizer._amax.detach() _snake_case : Optional[int] = torch.ones(lowerCAmelCase_ , dtype=amax.dtype , device=amax.device ) * amax print(f'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def _a ( lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ): if not hasattr(mod.weight_quantizer , '''_amax''' ): print('''RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER''' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) _snake_case : int = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) _snake_case : Dict = set(range(len(mod.weight.size() ) ) ) - axis_set _snake_case : Optional[int] = pytorch_quantization.utils.reduce_amax(mod.weight , axis=lowerCAmelCase_ , keepdims=lowerCAmelCase_ ).detach() logger.info(f'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) _snake_case : Tuple = amax def _a ( lowerCAmelCase_ , lowerCAmelCase_=25 , lowerCAmelCase_=180 , lowerCAmelCase_=None ): """simple docstring""" if ignore is None: _snake_case : Dict = [] elif not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Optional[int] = [ignore] _snake_case : str = 0 for name, mod in model.named_modules(): if not hasattr(lowerCAmelCase_ , '''weight''' ): continue _snake_case : Optional[int] = max(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) for name, mod in model.named_modules(): _snake_case : Optional[Any] = getattr(lowerCAmelCase_ , '''_input_quantizer''' , lowerCAmelCase_ ) _snake_case : Tuple = getattr(lowerCAmelCase_ , '''_weight_quantizer''' , lowerCAmelCase_ ) if not hasattr(lowerCAmelCase_ , '''weight''' ): continue if type(lowerCAmelCase_ ) in ignore: continue if [True for s in ignore if type(lowerCAmelCase_ ) is str and s in name]: continue _snake_case : Optional[int] = f'''Act:{input_q.extra_repr()}''' _snake_case : Any = f'''Wgt:{weight_q.extra_repr()}''' _snake_case : Optional[int] = f'''{name:{name_width}} {act_str} {wgt_str}''' if len(lowerCAmelCase_ ) <= line_width: logger.info(lowerCAmelCase_ ) else: logger.info(f'''{name:{name_width}} {act_str}''' ) logger.info(f'''{" ":{name_width}} {wgt_str}''' ) def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : str = 0 for name, mod in model.named_modules(): if isinstance(lowerCAmelCase_ , pytorch_quantization.nn.TensorQuantizer ): print(f'''{name:80} {mod}''' ) count += 1 print(f'''{count} TensorQuantizers found in model''' ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if quantizer_mod is not None: assert hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: logger.warning(f'''{name} has no {quantizer}''' ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_="both" , **lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = f'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' if which in ["input", "both"]: set_quantizer(lowerCAmelCase_ , lowerCAmelCase_ , '''_input_quantizer''' , lowerCAmelCase_ , lowerCAmelCase_ ) if which in ["weight", "both"]: set_quantizer(lowerCAmelCase_ , lowerCAmelCase_ , '''_weight_quantizer''' , lowerCAmelCase_ , lowerCAmelCase_ ) logger.info(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCAmelCase_ , '''_input_quantizer''' ) or hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ): for n in names: if re.search(lowerCAmelCase_ , lowerCAmelCase_ ): set_quantizers(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) elif name.endswith('''_quantizer''' ): for n in names: if re.search(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Any = f'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) logger.info(lowerCAmelCase_ )
47
0
'''simple docstring''' from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class lowerCamelCase (a__ ): def __init__( self , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = False , lowercase__ = False , lowercase__ = None , **lowercase__ , ) -> Any: """simple docstring""" _snake_case : List[Any] = path_or_paths _snake_case : Union[str, Any] = split if split or isinstance(lowercase__ , lowercase__ ) else '''train''' _snake_case : Any = features _snake_case : Union[str, Any] = cache_dir _snake_case : int = keep_in_memory _snake_case : int = streaming _snake_case : Dict = num_proc _snake_case : str = kwargs @abstractmethod def UpperCAmelCase_ ( self ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: """simple docstring""" pass class lowerCamelCase (a__ ): def __init__( self , lowercase__ = None , lowercase__ = None , lowercase__ = False , lowercase__ = False , lowercase__ = None , **lowercase__ , ) -> List[Any]: """simple docstring""" _snake_case : Any = features _snake_case : int = cache_dir _snake_case : Any = keep_in_memory _snake_case : str = streaming _snake_case : List[Any] = num_proc _snake_case : Dict = kwargs @abstractmethod def UpperCAmelCase_ ( self ) -> Union[Dataset, IterableDataset]: """simple docstring""" pass
706
'''simple docstring''' from __future__ import annotations def _a ( lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None ): """simple docstring""" if start is None: _snake_case : Optional[Any] = 0 if end is None: _snake_case : Any = len(lowerCAmelCase_ ) - 1 if start >= end: return _snake_case : Optional[Any] = (start + end) // 2 slowsort(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) slowsort(lowerCAmelCase_ , mid + 1 , lowerCAmelCase_ ) if sequence[end] < sequence[mid]: _snake_case , _snake_case : int = sequence[mid], sequence[end] slowsort(lowerCAmelCase_ , lowerCAmelCase_ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
47
0
'''simple docstring''' import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() UpperCAmelCase : Tuple = logging.get_logger(__name__) UpperCAmelCase : Union[str, Any] = {name: getattr(transformers, name + 'Fast') for name in SLOW_TO_FAST_CONVERTERS} def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(f'''Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.''' ) if tokenizer_name is None: _snake_case : Dict = TOKENIZER_CLASSES else: _snake_case : Any = {tokenizer_name: getattr(lowerCAmelCase_ , tokenizer_name + '''Fast''' )} logger.info(f'''Loading tokenizer classes: {tokenizer_names}''' ) for tokenizer_name in tokenizer_names: _snake_case : Any = TOKENIZER_CLASSES[tokenizer_name] _snake_case : Optional[int] = True if checkpoint_name is None: _snake_case : List[Any] = list(tokenizer_class.max_model_input_sizes.keys() ) else: _snake_case : Union[str, Any] = [checkpoint_name] logger.info(f'''For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}''' ) for checkpoint in checkpoint_names: logger.info(f'''Loading {tokenizer_class.__class__.__name__} {checkpoint}''' ) # Load tokenizer _snake_case : Dict = tokenizer_class.from_pretrained(lowerCAmelCase_ , force_download=lowerCAmelCase_ ) # Save fast tokenizer logger.info(f'''Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}''' ) # For organization names we create sub-directories if "/" in checkpoint: _snake_case : Dict = checkpoint.split('''/''' ) _snake_case : Any = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) elif add_prefix: _snake_case : Any = checkpoint _snake_case : List[str] = dump_path else: _snake_case : Union[str, Any] = None _snake_case : Any = dump_path logger.info(f'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: _snake_case : str = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] _snake_case : List[str] = file_path.split(lowerCAmelCase_ )[-1][0] if next_char == "/": _snake_case : Optional[int] = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Optional[int] = None logger.info(f'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) _snake_case : List[str] = tokenizer.save_pretrained( lowerCAmelCase_ , legacy_format=lowerCAmelCase_ , filename_prefix=lowerCAmelCase_ ) logger.info(f'''=> File names {file_names}''' ) for file_name in file_names: if not file_name.endswith('''tokenizer.json''' ): os.remove(lowerCAmelCase_ ) logger.info(f'''=> removing {file_name}''' ) if __name__ == "__main__": UpperCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--dump_path', default=None, type=str, required=True, help='Path to output generated fast tokenizer files.' ) parser.add_argument( '--tokenizer_name', default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ 'download and convert all the checkpoints from AWS.' ), ) parser.add_argument( '--checkpoint_name', default=None, type=str, help='Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.', ) parser.add_argument( '--force_download', action='store_true', help='Re-download checkpoints.', ) UpperCAmelCase : Tuple = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
707
'''simple docstring''' import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class lowerCamelCase (unittest.TestCase ): @slow def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Tuple = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) _snake_case : Any = AutoTokenizer.from_pretrained('''google/mt5-small''' ) _snake_case : List[str] = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids _snake_case : Dict = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids _snake_case : Any = shift_tokens_right(lowercase__ , model.config.pad_token_id , model.config.decoder_start_token_id ) _snake_case : Any = model(lowercase__ , decoder_input_ids=lowercase__ ).logits _snake_case : Tuple = optax.softmax_cross_entropy(lowercase__ , onehot(lowercase__ , logits.shape[-1] ) ).mean() _snake_case : Tuple = -(labels.shape[-1] * loss.item()) _snake_case : Union[str, Any] = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
47
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase : Tuple = logging.get_logger(__name__) UpperCAmelCase : Optional[Any] = {'vocab_file': 'spiece.model'} UpperCAmelCase : Optional[Any] = { 'vocab_file': { 'bert_for_seq_generation': ( 'https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model' ), } } UpperCAmelCase : int = {'bert_for_seq_generation': 5_1_2} class lowerCamelCase (a__ ): _lowercase : Tuple = VOCAB_FILES_NAMES _lowercase : Tuple = PRETRAINED_VOCAB_FILES_MAP _lowercase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : List[int] = [] _lowercase : Any = ["""input_ids""", """attention_mask"""] def __init__( self , lowercase__ , lowercase__="<s>" , lowercase__="</s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<::::>" , lowercase__ = None , **lowercase__ , ) -> None: """simple docstring""" _snake_case : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=lowercase__ , eos_token=lowercase__ , unk_token=lowercase__ , pad_token=lowercase__ , sep_token=lowercase__ , sp_model_kwargs=self.sp_model_kwargs , **lowercase__ , ) _snake_case : Dict = vocab_file _snake_case : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase__ ) @property def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" return self.sp_model.get_piece_size() def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" _snake_case : str = {self.convert_ids_to_tokens(lowercase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: """simple docstring""" _snake_case : Tuple = self.__dict__.copy() _snake_case : Union[str, Any] = None return state def __setstate__( self , lowercase__ ) -> List[str]: """simple docstring""" _snake_case : Tuple = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _snake_case : List[Any] = {} _snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase_ ( self , lowercase__ ) -> List[str]: """simple docstring""" return self.sp_model.encode(lowercase__ , out_type=lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> str: """simple docstring""" return self.sp_model.piece_to_id(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> List[Any]: """simple docstring""" _snake_case : Dict = self.sp_model.IdToPiece(lowercase__ ) return token def UpperCAmelCase_ ( self , lowercase__ ) -> int: """simple docstring""" _snake_case : Any = [] _snake_case : List[Any] = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowercase__ ) + token _snake_case : str = [] else: current_sub_tokens.append(lowercase__ ) out_string += self.sp_model.decode(lowercase__ ) return out_string.strip() def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowercase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _snake_case : Optional[int] = os.path.join( lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase__ , '''wb''' ) as fi: _snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(lowercase__ ) return (out_vocab_file,)
708
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCamelCase (unittest.TestCase ): def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : Any = torch.nn.Linear(10 , 10 ) _snake_case : Optional[int] = torch.optim.SGD(model.parameters() , 0.1 ) _snake_case : List[str] = Accelerator() _snake_case : Optional[Any] = accelerator.prepare(lowercase__ ) try: pickle.loads(pickle.dumps(lowercase__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
47
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : Any = logging.get_logger(__name__) UpperCAmelCase : List[str] = { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class lowerCamelCase (a__ ): _lowercase : Union[str, Any] = """speech_to_text""" _lowercase : str = ["""past_key_values"""] _lowercase : List[str] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , lowercase__=10_000 , lowercase__=12 , lowercase__=2_048 , lowercase__=4 , lowercase__=6 , lowercase__=2_048 , lowercase__=4 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=True , lowercase__=True , lowercase__="relu" , lowercase__=256 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.02 , lowercase__=2 , lowercase__=True , lowercase__=1 , lowercase__=0 , lowercase__=2 , lowercase__=6_000 , lowercase__=1_024 , lowercase__=2 , lowercase__=(5, 5) , lowercase__=1_024 , lowercase__=80 , lowercase__=1 , **lowercase__ , ) -> List[Any]: """simple docstring""" _snake_case : int = vocab_size _snake_case : str = d_model _snake_case : Optional[Any] = encoder_ffn_dim _snake_case : List[str] = encoder_layers _snake_case : List[Any] = encoder_attention_heads _snake_case : Union[str, Any] = decoder_ffn_dim _snake_case : List[str] = decoder_layers _snake_case : Any = decoder_attention_heads _snake_case : Any = dropout _snake_case : List[str] = attention_dropout _snake_case : Dict = activation_dropout _snake_case : List[str] = activation_function _snake_case : Optional[int] = init_std _snake_case : List[str] = encoder_layerdrop _snake_case : Any = decoder_layerdrop _snake_case : Any = use_cache _snake_case : Optional[Any] = encoder_layers _snake_case : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True _snake_case : int = max_source_positions _snake_case : Optional[int] = max_target_positions _snake_case : int = num_conv_layers _snake_case : Optional[int] = list(lowercase__ ) _snake_case : List[str] = conv_channels _snake_case : Tuple = input_feat_per_channel _snake_case : int = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ''' F'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, ''' F'''`config.num_conv_layers = {self.num_conv_layers}`.''' ) super().__init__( pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , decoder_start_token_id=lowercase__ , **lowercase__ , )
709
'''simple docstring''' UpperCAmelCase : Union[str, Any] = tuple[float, float, float] UpperCAmelCase : int = tuple[float, float, float] def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : str = end_pointa[0] - end_pointa[0] _snake_case : Tuple = end_pointa[1] - end_pointa[1] _snake_case : Any = end_pointa[2] - end_pointa[2] return (x, y, z) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Dict = ab[1] * ac[2] - ab[2] * ac[1] # *i _snake_case : List[str] = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j _snake_case : Optional[int] = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return tuple(round(lowerCAmelCase_ , lowerCAmelCase_ ) for x in vector ) == (0, 0, 0) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 10 ): """simple docstring""" _snake_case : str = create_vector(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Tuple = create_vector(lowerCAmelCase_ , lowerCAmelCase_ ) return is_zero_vector(get_ad_vectors_cross(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ )
47
0
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase : str = logging.get_logger(__name__) UpperCAmelCase : List[Any] = [ ['attention', 'attn'], ['encoder_attention', 'encoder_attn'], ['q_lin', 'q_proj'], ['k_lin', 'k_proj'], ['v_lin', 'v_proj'], ['out_lin', 'out_proj'], ['norm_embeddings', 'layernorm_embedding'], ['position_embeddings', 'embed_positions'], ['embeddings', 'embed_tokens'], ['ffn.lin', 'fc'], ] def _a ( lowerCAmelCase_ ): """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: _snake_case : int = k.replace(lowerCAmelCase_ , lowerCAmelCase_ ) if k.startswith('''encoder''' ): _snake_case : Optional[int] = k.replace('''.attn''' , '''.self_attn''' ) _snake_case : str = k.replace('''norm1''' , '''self_attn_layer_norm''' ) _snake_case : Any = k.replace('''norm2''' , '''final_layer_norm''' ) elif k.startswith('''decoder''' ): _snake_case : Optional[int] = k.replace('''norm1''' , '''self_attn_layer_norm''' ) _snake_case : Any = k.replace('''norm2''' , '''encoder_attn_layer_norm''' ) _snake_case : Union[str, Any] = k.replace('''norm3''' , '''final_layer_norm''' ) return k def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : str = [ '''model.encoder.layernorm_embedding.weight''', '''model.encoder.layernorm_embedding.bias''', '''model.decoder.layernorm_embedding.weight''', '''model.decoder.layernorm_embedding.bias''', ] for k in keys: _snake_case : Optional[int] = sd.pop(lowerCAmelCase_ ) _snake_case : Tuple = k.replace('''layernorm_embedding''' , '''layer_norm''' ) assert new_k not in sd _snake_case : Any = v UpperCAmelCase : Any = ['START'] @torch.no_grad() def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : int = torch.load(lowerCAmelCase_ , map_location='''cpu''' ) _snake_case : Tuple = model['''model'''] _snake_case : Dict = BlenderbotConfig.from_json_file(lowerCAmelCase_ ) _snake_case : Union[str, Any] = BlenderbotForConditionalGeneration(lowerCAmelCase_ ) _snake_case : Optional[int] = m.model.state_dict().keys() _snake_case : Optional[Any] = [] _snake_case : Dict = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue _snake_case : Optional[int] = rename_state_dict_key(lowerCAmelCase_ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: _snake_case : str = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(lowerCAmelCase_ ) m.model.load_state_dict(lowerCAmelCase_ , strict=lowerCAmelCase_ ) m.half() m.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": UpperCAmelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin') parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.') parser.add_argument( '--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use' ) UpperCAmelCase : str = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
710
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel UpperCAmelCase : List[str] = logging.getLogger(__name__) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if os.path.exists(lowerCAmelCase_ ): if os.path.exists(os.path.join(lowerCAmelCase_ , '''config.json''' ) ) and os.path.isfile( os.path.join(lowerCAmelCase_ , '''config.json''' ) ): os.remove(os.path.join(lowerCAmelCase_ , '''config.json''' ) ) if os.path.exists(os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) ) and os.path.isfile( os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) ): os.remove(os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) ) else: os.makedirs(lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_=False ): """simple docstring""" _snake_case : Optional[Any] = 2 if unlogit: _snake_case : Any = torch.pow(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Union[str, Any] = p * torch.log(lowerCAmelCase_ ) _snake_case : Optional[Any] = 0 return -plogp.sum(dim=-1 ) def _a ( lowerCAmelCase_ ): """simple docstring""" logger.info('''lv, h >\t''' + '''\t'''.join(f'''{x + 1}''' for x in range(len(lowerCAmelCase_ ) ) ) ) for row in range(len(lowerCAmelCase_ ) ): if tensor.dtype != torch.long: logger.info(f'''layer {row + 1}:\t''' + '''\t'''.join(f'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(f'''layer {row + 1}:\t''' + '''\t'''.join(f'''{x:d}''' for x in tensor[row].cpu().data ) ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=None , lowerCAmelCase_=False ): """simple docstring""" _snake_case , _snake_case : Optional[int] = model.config.num_hidden_layers, model.config.num_attention_heads _snake_case : Tuple = torch.zeros(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device ) _snake_case : Union[str, Any] = torch.zeros(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device ) if head_mask is None: _snake_case : int = torch.ones(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device ) head_mask.requires_grad_(requires_grad=lowerCAmelCase_ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _snake_case : Dict = None _snake_case : Dict = 0.0 _snake_case : Optional[int] = 0.0 for step, inputs in enumerate(tqdm(lowerCAmelCase_ , desc='''Iteration''' , disable=args.local_rank not in [-1, 0] ) ): _snake_case : List[Any] = tuple(t.to(args.device ) for t in inputs ) ((_snake_case) , ) : Optional[Any] = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _snake_case : Any = model(lowerCAmelCase_ , labels=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _snake_case , _snake_case , _snake_case : List[Any] = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(lowerCAmelCase_ ): _snake_case : Union[str, Any] = entropy(attn.detach() , lowerCAmelCase_ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(lowerCAmelCase_ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _snake_case : Any = 2 _snake_case : List[str] = torch.pow(torch.pow(lowerCAmelCase_ , lowerCAmelCase_ ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: _snake_case : Optional[int] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''' ) print_ad_tensor(lowerCAmelCase_ ) if compute_importance: logger.info('''Head importance scores''' ) print_ad_tensor(lowerCAmelCase_ ) logger.info('''Head ranked by importance scores''' ) _snake_case : str = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _snake_case : List[Any] = torch.arange( head_importance.numel() , device=args.device ) _snake_case : List[Any] = head_ranks.view_as(lowerCAmelCase_ ) print_ad_tensor(lowerCAmelCase_ ) return attn_entropy, head_importance, total_loss def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case , _snake_case , _snake_case : str = compute_heads_importance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ ) _snake_case : Optional[Any] = 1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' , lowerCAmelCase_ , original_score * args.masking_threshold ) _snake_case : int = torch.ones_like(lowerCAmelCase_ ) _snake_case : Optional[Any] = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _snake_case : int = original_score while current_score >= original_score * args.masking_threshold: _snake_case : int = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _snake_case : Dict = float('''Inf''' ) _snake_case : Optional[Any] = head_importance.view(-1 ).sort()[1] if len(lowerCAmelCase_ ) <= num_to_mask: print('''BREAK BY num_to_mask''' ) break # mask heads _snake_case : Union[str, Any] = current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist() ) ) _snake_case : Tuple = new_head_mask.view(-1 ) _snake_case : List[str] = 0.0 _snake_case : str = new_head_mask.view_as(lowerCAmelCase_ ) _snake_case : Dict = new_head_mask.clone().detach() print_ad_tensor(lowerCAmelCase_ ) # Compute metric and head importance again _snake_case , _snake_case , _snake_case : Any = compute_heads_importance( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) _snake_case : int = 1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' , lowerCAmelCase_ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info('''Final head mask''' ) print_ad_tensor(lowerCAmelCase_ ) np.save(os.path.join(args.output_dir , '''head_mask.npy''' ) , head_mask.detach().cpu().numpy() ) return head_mask def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = datetime.now() _snake_case , _snake_case , _snake_case : Union[str, Any] = compute_heads_importance( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , compute_importance=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) _snake_case : Tuple = 1 / loss _snake_case : Dict = datetime.now() - before_time _snake_case : List[Any] = sum(p.numel() for p in model.parameters() ) _snake_case : int = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(lowerCAmelCase_ ) ) } for k, v in heads_to_prune.items(): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Union[str, Any] = [ v, ] assert sum(len(lowerCAmelCase_ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(lowerCAmelCase_ ) _snake_case : List[str] = sum(p.numel() for p in model.parameters() ) _snake_case : int = datetime.now() _snake_case , _snake_case , _snake_case : Optional[Any] = compute_heads_importance( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , compute_importance=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , actually_pruned=lowerCAmelCase_ , ) _snake_case : Optional[int] = 1 / loss _snake_case : Dict = datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , lowerCAmelCase_ , lowerCAmelCase_ , pruned_num_params / original_num_params * 100 , ) logger.info('''Pruning: score with masking: %f score with pruning: %f''' , lowerCAmelCase_ , lowerCAmelCase_ ) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 100 ) save_model(lowerCAmelCase_ , args.output_dir ) def _a ( ): """simple docstring""" _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , ) parser.add_argument( '''--model_name_or_path''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--output_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) # Other parameters parser.add_argument( '''--config_name''' , default='''''' , type=lowerCAmelCase_ , help='''Pretrained config name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--tokenizer_name''' , default='''''' , type=lowerCAmelCase_ , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--cache_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help='''Where do you want to store the pre-trained models downloaded from s3''' , ) parser.add_argument( '''--data_subset''' , type=lowerCAmelCase_ , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''' ) parser.add_argument( '''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''' ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) parser.add_argument( '''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''' ) parser.add_argument( '''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , ) parser.add_argument( '''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''' ) parser.add_argument( '''--masking_threshold''' , default=0.9 , type=lowerCAmelCase_ , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , ) parser.add_argument( '''--masking_amount''' , default=0.1 , type=lowerCAmelCase_ , help='''Amount to heads to masking at each masking step.''' ) parser.add_argument('''--metric_name''' , default='''acc''' , type=lowerCAmelCase_ , help='''Metric to use for head masking.''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=lowerCAmelCase_ , help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) , ) parser.add_argument('''--batch_size''' , default=1 , type=lowerCAmelCase_ , help='''Batch size.''' ) parser.add_argument('''--seed''' , type=lowerCAmelCase_ , default=42 ) parser.add_argument('''--local_rank''' , type=lowerCAmelCase_ , default=-1 , help='''local_rank for distributed training on gpus''' ) parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''' ) parser.add_argument('''--server_ip''' , type=lowerCAmelCase_ , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=lowerCAmelCase_ , default='''''' , help='''Can be used for distant debugging.''' ) _snake_case : Optional[Any] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowerCAmelCase_ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _snake_case : str = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''' ) _snake_case : Optional[Any] = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _snake_case : List[str] = torch.device('''cuda''' , args.local_rank ) _snake_case : int = 1 torch.distributed.init_process_group(backend='''nccl''' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _snake_case : Optional[Any] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _snake_case : Optional[int] = nn.parallel.DistributedDataParallel( lowerCAmelCase_ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=lowerCAmelCase_ ) elif args.n_gpu > 1: _snake_case : List[Any] = nn.DataParallel(lowerCAmelCase_ ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=lowerCAmelCase_ ) torch.save(lowerCAmelCase_ , os.path.join(args.output_dir , '''run_args.bin''' ) ) logger.info('''Training/evaluation parameters %s''' , lowerCAmelCase_ ) # Prepare dataset _snake_case : Dict = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _snake_case : int = (torch.from_numpy(lowerCAmelCase_ ),) _snake_case : Tuple = TensorDataset(*lowerCAmelCase_ ) _snake_case : List[str] = RandomSampler(lowerCAmelCase_ ) _snake_case : Dict = DataLoader(lowerCAmelCase_ , sampler=lowerCAmelCase_ , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _snake_case : Optional[int] = mask_heads(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) prune_heads(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
47
0
'''simple docstring''' from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar UpperCAmelCase : Optional[Any] = TypeVar('T') def _a ( lowerCAmelCase_ ): """simple docstring""" return (position - 1) // 2 def _a ( lowerCAmelCase_ ): """simple docstring""" return (2 * position) + 1 def _a ( lowerCAmelCase_ ): """simple docstring""" return (2 * position) + 2 class lowerCamelCase (Generic[T] ): def __init__( self ) -> None: """simple docstring""" _snake_case : list[tuple[T, int]] = [] _snake_case : dict[T, int] = {} _snake_case : int = 0 def __len__( self ) -> int: """simple docstring""" return self.elements def __repr__( self ) -> str: """simple docstring""" return str(self.heap ) def UpperCAmelCase_ ( self ) -> bool: """simple docstring""" return self.elements == 0 def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> None: """simple docstring""" self.heap.append((elem, weight) ) _snake_case : Optional[Any] = self.elements self.elements += 1 self._bubble_up(lowercase__ ) def UpperCAmelCase_ ( self ) -> T: """simple docstring""" if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) _snake_case : List[str] = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: _snake_case : Tuple = self.heap[0] self._bubble_down(lowercase__ ) return elem def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> None: """simple docstring""" _snake_case : List[str] = self.position_map[elem] _snake_case : Any = (elem, weight) if position > 0: _snake_case : Optional[int] = get_parent_position(lowercase__ ) _snake_case : Tuple = self.heap[parent_position] if parent_weight > weight: self._bubble_up(lowercase__ ) else: self._bubble_down(lowercase__ ) else: self._bubble_down(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> None: """simple docstring""" _snake_case : Tuple = self.position_map[elem] if curr_pos == 0: return None _snake_case : Optional[int] = get_parent_position(lowercase__ ) _snake_case : Optional[Any] = self.heap[curr_pos] _snake_case : int = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(lowercase__ , lowercase__ ) return self._bubble_up(lowercase__ ) return None def UpperCAmelCase_ ( self , lowercase__ ) -> None: """simple docstring""" _snake_case : Any = self.position_map[elem] _snake_case : List[Any] = self.heap[curr_pos] _snake_case : Dict = get_child_left_position(lowercase__ ) _snake_case : Optional[int] = get_child_right_position(lowercase__ ) if child_left_position < self.elements and child_right_position < self.elements: _snake_case : Any = self.heap[child_left_position] _snake_case : str = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(lowercase__ , lowercase__ ) return self._bubble_down(lowercase__ ) if child_left_position < self.elements: _snake_case : List[str] = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(lowercase__ , lowercase__ ) return self._bubble_down(lowercase__ ) else: return None if child_right_position < self.elements: _snake_case : Optional[int] = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(lowercase__ , lowercase__ ) return self._bubble_down(lowercase__ ) return None def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> None: """simple docstring""" _snake_case : List[Any] = self.heap[nodea_pos][0] _snake_case : str = self.heap[nodea_pos][0] _snake_case : Union[str, Any] = ( self.heap[nodea_pos], self.heap[nodea_pos], ) _snake_case : Dict = nodea_pos _snake_case : Any = nodea_pos class lowerCamelCase (Generic[T] ): def __init__( self ) -> None: """simple docstring""" _snake_case : dict[T, dict[T, int]] = {} _snake_case : int = 0 def __repr__( self ) -> str: """simple docstring""" return str(self.connections ) def __len__( self ) -> int: """simple docstring""" return self.nodes def UpperCAmelCase_ ( self , lowercase__ ) -> None: """simple docstring""" if node not in self.connections: _snake_case : Optional[int] = {} self.nodes += 1 def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ ) -> None: """simple docstring""" self.add_node(lowercase__ ) self.add_node(lowercase__ ) _snake_case : Union[str, Any] = weight _snake_case : Any = weight def _a ( lowerCAmelCase_ , ): """simple docstring""" _snake_case : dict[T, int] = {node: maxsize for node in graph.connections} _snake_case : dict[T, T | None] = {node: None for node in graph.connections} _snake_case : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(lowerCAmelCase_ , lowerCAmelCase_ ) if priority_queue.is_empty(): return dist, parent # initialization _snake_case : str = priority_queue.extract_min() _snake_case : Optional[int] = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _snake_case : Dict = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowerCAmelCase_ , dist[neighbour] ) _snake_case : int = node # running prim's algorithm while not priority_queue.is_empty(): _snake_case : Any = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _snake_case : int = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowerCAmelCase_ , dist[neighbour] ) _snake_case : List[str] = node return dist, parent
711
'''simple docstring''' def _a ( lowerCAmelCase_ ): """simple docstring""" if n == 1 or not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return 0 elif n == 2: return 1 else: _snake_case : Union[str, Any] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[int] = 0 _snake_case : int = 2 while digits < n: index += 1 _snake_case : Tuple = len(str(fibonacci(lowerCAmelCase_ ) ) ) return index def _a ( lowerCAmelCase_ = 1_000 ): """simple docstring""" return fibonacci_digits_index(lowerCAmelCase_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
47
0
'''simple docstring''' import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers UpperCAmelCase : List[str] = float('nan') class lowerCamelCase : def __init__( self , lowercase__ ) -> List[str]: """simple docstring""" _snake_case : Union[str, Any] = sys.stdout _snake_case : List[Any] = open(lowercase__ , '''a''' ) def __getattr__( self , lowercase__ ) -> Optional[int]: """simple docstring""" return getattr(self.stdout , lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> Dict: """simple docstring""" self.stdout.write(lowercase__ ) # strip tqdm codes self.file.write(re.sub(r'''^.*\r''' , '''''' , lowercase__ , 0 , re.M ) ) def _a ( lowerCAmelCase_=80 , lowerCAmelCase_=False ): """simple docstring""" _snake_case : Any = [] # deal with critical env vars _snake_case : List[str] = ['''CUDA_VISIBLE_DEVICES'''] for key in env_keys: _snake_case : List[Any] = os.environ.get(lowerCAmelCase_ , lowerCAmelCase_ ) if val is not None: cmd.append(f'''{key}={val}''' ) # python executable (not always needed if the script is executable) _snake_case : Any = sys.executable if full_python_path else sys.executable.split('''/''' )[-1] cmd.append(lowerCAmelCase_ ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes _snake_case : Union[str, Any] = [] _snake_case : str = '''''' while len(lowerCAmelCase_ ) > 0: current_line += f'''{cmd.pop(0 )} ''' if len(lowerCAmelCase_ ) == 0 or len(lowerCAmelCase_ ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(lowerCAmelCase_ ) _snake_case : Optional[Any] = '''''' return "\\\n".join(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : str = re.sub(R'''[\\\n]+''' , ''' ''' , args.base_cmd ) # remove --output_dir if any and set our own _snake_case : Optional[Any] = re.sub('''--output_dir\s+[^\s]+''' , '''''' , args.base_cmd ) args.base_cmd += f''' --output_dir {output_dir}''' # ensure we have --overwrite_output_dir _snake_case : List[str] = re.sub('''--overwrite_output_dir\s+''' , '''''' , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6_666, 222.22_222_222] )} , ) _snake_case : int = subprocess.run(lowerCAmelCase_ , capture_output=lowerCAmelCase_ , text=lowerCAmelCase_ ) if verbose: print('''STDOUT''' , result.stdout ) print('''STDERR''' , result.stderr ) # save the streams _snake_case : Optional[Any] = variation.replace(''' ''' , '''-''' ) with open(Path(lowerCAmelCase_ ) / f'''log.{prefix}.stdout.txt''' , '''w''' ) as f: f.write(result.stdout ) with open(Path(lowerCAmelCase_ ) / f'''log.{prefix}.stderr.txt''' , '''w''' ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print('''failed''' ) return {target_metric_key: nan} with io.open(f'''{output_dir}/all_results.json''' , '''r''' , encoding='''utf-8''' ) as f: _snake_case : Union[str, Any] = json.load(lowerCAmelCase_ ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ): """simple docstring""" _snake_case : Optional[Any] = [] _snake_case : Optional[Any] = [] _snake_case : Dict = f'''{id}: {variation:<{longest_variation_len}}''' _snake_case : int = f'''{preamble}: ''' _snake_case : Union[str, Any] = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(lowerCAmelCase_ ) , desc=lowerCAmelCase_ , leave=lowerCAmelCase_ ): _snake_case : Optional[Any] = process_run_single( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Union[str, Any] = single_run_metrics[target_metric_key] if not math.isnan(lowerCAmelCase_ ): metrics.append(lowerCAmelCase_ ) results.append(lowerCAmelCase_ ) outcome += "✓" else: outcome += "✘" _snake_case : Any = f'''\33[2K\r{outcome}''' if len(lowerCAmelCase_ ) > 0: _snake_case : List[str] = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} _snake_case : str = round(mean_metrics[target_metric_key] , 2 ) _snake_case : Any = f'''{outcome} {mean_target}''' if len(lowerCAmelCase_ ) > 1: results_str += f''' {tuple(round(lowerCAmelCase_ , 2 ) for x in results )}''' print(lowerCAmelCase_ ) _snake_case : List[Any] = variation return mean_metrics else: print(lowerCAmelCase_ ) return {variation_key: variation, target_metric_key: nan} def _a ( ): """simple docstring""" _snake_case : Any = torch.cuda.get_device_properties(torch.device('''cuda''' ) ) return f''' Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB ''' def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Union[str, Any] = pd.DataFrame(lowerCAmelCase_ ) _snake_case : Tuple = '''variation''' _snake_case : Any = '''diff_%''' _snake_case : Any = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan _snake_case : Optional[Any] = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(lowerCAmelCase_ ): # as a fallback, use the minimal value as the sentinel _snake_case : Any = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(lowerCAmelCase_ ): _snake_case : str = df.apply( lambda lowerCAmelCase_ : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis='''columns''' , ) # re-order columns _snake_case : Optional[int] = [variation_key, target_metric_key, diff_key, *report_metric_keys] _snake_case : List[str] = df.reindex(lowerCAmelCase_ , axis='''columns''' ) # reorder cols # capitalize _snake_case : List[str] = df.rename(str.capitalize , axis='''columns''' ) # make the cols as narrow as possible _snake_case : str = df.rename(lambda lowerCAmelCase_ : c.replace('''_''' , '''<br>''' ) , axis='''columns''' ) _snake_case : Any = df.rename(lambda lowerCAmelCase_ : c.replace('''_''' , '''\n''' ) , axis='''columns''' ) _snake_case : List[str] = ['''''', '''Copy between the cut-here-lines and paste as is to github or a forum'''] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=lowerCAmelCase_ , floatfmt='''.2f''' )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=lowerCAmelCase_ , floatfmt='''.2f''' )] print('''\n\n'''.join(lowerCAmelCase_ ) ) def _a ( ): """simple docstring""" _snake_case : Tuple = argparse.ArgumentParser() parser.add_argument( '''--base-cmd''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''Base cmd''' , ) parser.add_argument( '''--variations''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , nargs='''+''' , required=lowerCAmelCase_ , help='''Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'''' , ) parser.add_argument( '''--base-variation''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help='''Baseline variation to compare to. if None the minimal target value will be used to compare against''' , ) parser.add_argument( '''--target-metric-key''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''Target metric key in output_dir/all_results.json, e.g., train_samples_per_second''' , ) parser.add_argument( '''--report-metric-keys''' , default='''''' , type=lowerCAmelCase_ , help='''Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples''' , ) parser.add_argument( '''--repeat-times''' , default=1 , type=lowerCAmelCase_ , help='''How many times to re-run each variation - an average will be reported''' , ) parser.add_argument( '''--output_dir''' , default='''output_benchmark''' , type=lowerCAmelCase_ , help='''The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked''' , ) parser.add_argument( '''--verbose''' , default=lowerCAmelCase_ , action='''store_true''' , help='''Whether to show the outputs of each run or just the benchmark progress''' , ) _snake_case : Any = parser.parse_args() _snake_case : Dict = args.output_dir Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) _snake_case : Any = get_base_command(lowerCAmelCase_ , lowerCAmelCase_ ) # split each dimension into its --foo variations _snake_case : Optional[int] = [list(map(str.strip , re.split(R'''\|''' , lowerCAmelCase_ ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty _snake_case : int = list(map(str.strip , map(''' '''.join , itertools.product(*lowerCAmelCase_ ) ) ) ) _snake_case : Dict = max(len(lowerCAmelCase_ ) for x in variations ) # split wanted keys _snake_case : str = args.report_metric_keys.split() # capture prints into a log file for convenience _snake_case : Any = f'''benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt''' print(f'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''' ) print(f'''and this script\'s output is also piped into {report_fn}''' ) _snake_case : List[Any] = Tee(lowerCAmelCase_ ) print(f'''\n*** Running {len(lowerCAmelCase_ )} benchmarks:''' ) print(f'''Base command: {" ".join(lowerCAmelCase_ )}''' ) _snake_case : List[Any] = '''variation''' _snake_case : Tuple = [] for id, variation in enumerate(tqdm(lowerCAmelCase_ , desc='''Total completion: ''' , leave=lowerCAmelCase_ ) ): _snake_case : Optional[int] = base_cmd + variation.split() results.append( process_run( id + 1 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , args.target_metric_key , lowerCAmelCase_ , args.repeat_times , lowerCAmelCase_ , args.verbose , ) ) process_results(lowerCAmelCase_ , args.target_metric_key , lowerCAmelCase_ , args.base_variation , lowerCAmelCase_ ) if __name__ == "__main__": main()
712
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar UpperCAmelCase : Any = TypeVar('T') UpperCAmelCase : str = TypeVar('U') class lowerCamelCase (Generic[T, U] ): def __init__( self , lowercase__ , lowercase__ ) -> List[Any]: """simple docstring""" _snake_case : str = key _snake_case : Optional[int] = val _snake_case : DoubleLinkedListNode[T, U] | None = None _snake_case : DoubleLinkedListNode[T, U] | None = None def __repr__( self ) -> str: """simple docstring""" return ( F'''Node: key: {self.key}, val: {self.val}, ''' F'''has next: {bool(self.next )}, has prev: {bool(self.prev )}''' ) class lowerCamelCase (Generic[T, U] ): def __init__( self ) -> None: """simple docstring""" _snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase__ , lowercase__ ) _snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase__ , lowercase__ ) _snake_case , _snake_case : Union[str, Any] = self.rear, self.head def __repr__( self ) -> str: """simple docstring""" _snake_case : List[Any] = ['''DoubleLinkedList'''] _snake_case : str = self.head while node.next is not None: rep.append(str(lowercase__ ) ) _snake_case : List[str] = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> None: """simple docstring""" _snake_case : Tuple = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None _snake_case : Union[str, Any] = node _snake_case : Optional[Any] = previous _snake_case : int = node _snake_case : Union[str, Any] = self.rear def UpperCAmelCase_ ( self , lowercase__ ) -> DoubleLinkedListNode[T, U] | None: """simple docstring""" if node.prev is None or node.next is None: return None _snake_case : Optional[int] = node.next _snake_case : Any = node.prev _snake_case : List[str] = None _snake_case : Optional[int] = None return node class lowerCamelCase (Generic[T, U] ): _lowercase : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self , lowercase__ ) -> Union[str, Any]: """simple docstring""" _snake_case : DoubleLinkedList[T, U] = DoubleLinkedList() _snake_case : Union[str, Any] = capacity _snake_case : int = 0 _snake_case : Dict = 0 _snake_case : Union[str, Any] = 0 _snake_case : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__( self ) -> str: """simple docstring""" return ( F'''CacheInfo(hits={self.hits}, misses={self.miss}, ''' F'''capacity={self.capacity}, current size={self.num_keys})''' ) def __contains__( self , lowercase__ ) -> bool: """simple docstring""" return key in self.cache def UpperCAmelCase_ ( self , lowercase__ ) -> U | None: """simple docstring""" if key in self.cache: self.hits += 1 _snake_case : DoubleLinkedListNode[T, U] = self.cache[key] _snake_case : Tuple = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowercase__ ) return node.val self.miss += 1 return None def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> None: """simple docstring""" if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity _snake_case : Dict = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowercase__ ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 _snake_case : Optional[int] = DoubleLinkedListNode(lowercase__ , lowercase__ ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value _snake_case : Optional[Any] = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list _snake_case : Optional[Any] = value self.list.add(lowercase__ ) @classmethod def UpperCAmelCase_ ( cls , lowercase__ = 128 ) -> Callable[[Callable[[T], U]], Callable[..., U]]: """simple docstring""" def cache_decorator_inner(lowercase__ ) -> Callable[..., U]: def cache_decorator_wrapper(*lowercase__ ) -> U: if func not in cls.decorator_function_to_instance_map: _snake_case : Optional[Any] = LRUCache(lowercase__ ) _snake_case : Union[str, Any] = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: _snake_case : Tuple = func(*lowercase__ ) cls.decorator_function_to_instance_map[func].put(args[0] , lowercase__ ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowercase__ , '''cache_info''' , lowercase__ ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
47
0
'''simple docstring''' from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
713
'''simple docstring''' import os import numpy import onnx def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : List[Any] = a.name _snake_case : List[Any] = b.name _snake_case : Tuple = '''''' _snake_case : Tuple = '''''' _snake_case : Optional[Any] = a == b _snake_case : List[Any] = name_a _snake_case : str = name_b return res def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(lowerCAmelCase_ , lowerCAmelCase_ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , lowerCAmelCase_ , lowerCAmelCase_ ) _graph_replace_input_with(node_proto.attribute[1].g , lowerCAmelCase_ , lowerCAmelCase_ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , lowerCAmelCase_ , lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for n in graph_proto.node: _node_replace_input_with(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = list(model.graph.initializer ) _snake_case : List[str] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i _snake_case : List[Any] = inits[i].name _snake_case : List[str] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , lowerCAmelCase_ , lowerCAmelCase_ ) def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Tuple = os.path.dirname(lowerCAmelCase_ ) _snake_case : str = os.path.basename(lowerCAmelCase_ ) _snake_case : Tuple = onnx.load(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) ) _snake_case : Union[str, Any] = list(model.graph.initializer ) _snake_case : Union[str, Any] = set() _snake_case : Any = {} _snake_case : str = [] _snake_case : Union[str, Any] = 0 for i in range(len(lowerCAmelCase_ ) ): if i in dup_set: continue for j in range(i + 1 , len(lowerCAmelCase_ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(lowerCAmelCase_ ) dup_set.add(lowerCAmelCase_ ) _snake_case : List[Any] = inits[j].data_type _snake_case : Dict = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('''unexpected data type: ''' , lowerCAmelCase_ ) total_reduced_size += mem_size _snake_case : Union[str, Any] = inits[i].name _snake_case : Any = inits[j].name if name_i in dup_map: dup_map[name_i].append(lowerCAmelCase_ ) else: _snake_case : Union[str, Any] = [name_j] ind_to_replace.append((j, i) ) print('''total reduced size: ''' , total_reduced_size / 1_024 / 1_024 / 1_024 , '''GB''' ) _snake_case : List[str] = sorted(lowerCAmelCase_ ) _remove_dup_initializers_from_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : List[str] = '''optimized_''' + model_file_name _snake_case : List[Any] = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) onnx.save(lowerCAmelCase_ , lowerCAmelCase_ ) return new_model
47
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available UpperCAmelCase : List[Any] = {'tokenization_herbert': ['HerbertTokenizer']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[Any] = ['HerbertTokenizerFast'] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys UpperCAmelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
714
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : int = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
47
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase : int = { 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[Any] = ['ConditionalDetrFeatureExtractor'] UpperCAmelCase : Dict = ['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Tuple = [ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
715
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase : Dict = logging.get_logger(__name__) class lowerCamelCase (a__ ): _lowercase : int = ["""pixel_values"""] def __init__( self , lowercase__ = True , lowercase__ = 32 , lowercase__=PILImageResampling.BILINEAR , lowercase__ = True , **lowercase__ , ) -> None: """simple docstring""" _snake_case : Any = do_resize _snake_case : List[str] = do_rescale _snake_case : Any = size_divisor _snake_case : Optional[Any] = resample super().__init__(**lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ ) -> np.ndarray: """simple docstring""" _snake_case , _snake_case : Dict = get_image_size(lowercase__ ) # Rounds the height and width down to the closest multiple of size_divisor _snake_case : Optional[int] = height // size_divisor * size_divisor _snake_case : Dict = width // size_divisor * size_divisor _snake_case : str = resize(lowercase__ , (new_h, new_w) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) return image def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ ) -> np.ndarray: """simple docstring""" return rescale(image=lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__=None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ) -> BatchFeature: """simple docstring""" _snake_case : Any = do_resize if do_resize is not None else self.do_resize _snake_case : List[Any] = do_rescale if do_rescale is not None else self.do_rescale _snake_case : List[str] = size_divisor if size_divisor is not None else self.size_divisor _snake_case : int = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) _snake_case : Tuple = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. _snake_case : Tuple = [to_numpy_array(lowercase__ ) for img in images] if do_resize: _snake_case : Optional[int] = [self.resize(lowercase__ , size_divisor=lowercase__ , resample=lowercase__ ) for image in images] if do_rescale: _snake_case : Union[str, Any] = [self.rescale(lowercase__ , scale=1 / 255 ) for image in images] _snake_case : Union[str, Any] = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] _snake_case : List[str] = {'''pixel_values''': images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
47
0
'''simple docstring''' def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : int = (boundary[1] - boundary[0]) / steps _snake_case : Optional[Any] = boundary[0] _snake_case : List[Any] = boundary[1] _snake_case : List[str] = make_points(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Optional[int] = 0.0 y += (h / 2.0) * f(lowerCAmelCase_ ) for i in x_i: # print(i) y += h * f(lowerCAmelCase_ ) y += (h / 2.0) * f(lowerCAmelCase_ ) return y def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[int] = a + h while x < (b - h): yield x _snake_case : str = x + h def _a ( lowerCAmelCase_ ): # enter your function here """simple docstring""" _snake_case : Tuple = (x - 0) * (x - 0) return y def _a ( ): """simple docstring""" _snake_case : str = 0.0 # Lower bound of integration _snake_case : Optional[int] = 1.0 # Upper bound of integration _snake_case : str = 10.0 # define number of steps or resolution _snake_case : int = [a, b] # define boundary of integration _snake_case : Any = method_a(lowerCAmelCase_ , lowerCAmelCase_ ) print(f'''y = {y}''' ) if __name__ == "__main__": main()
716
'''simple docstring''' from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class lowerCamelCase : _lowercase : Any = LEDConfig _lowercase : Any = {} _lowercase : Optional[Any] = """gelu""" def __init__( self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=False , lowercase__=99 , lowercase__=32 , lowercase__=2 , lowercase__=4 , lowercase__=37 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=20 , lowercase__=2 , lowercase__=1 , lowercase__=0 , lowercase__=4 , ) -> Any: """simple docstring""" _snake_case : Dict = parent _snake_case : Any = batch_size _snake_case : List[str] = seq_length _snake_case : Union[str, Any] = is_training _snake_case : Tuple = use_labels _snake_case : int = vocab_size _snake_case : str = hidden_size _snake_case : Optional[Any] = num_hidden_layers _snake_case : List[Any] = num_attention_heads _snake_case : Optional[int] = intermediate_size _snake_case : List[Any] = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : Optional[int] = max_position_embeddings _snake_case : Any = eos_token_id _snake_case : List[Any] = pad_token_id _snake_case : Optional[int] = bos_token_id _snake_case : Any = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _snake_case : Any = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _snake_case : Tuple = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" _snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _snake_case : Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _snake_case : Optional[int] = tf.concat([input_ids, eos_tensor] , axis=1 ) _snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case : List[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _snake_case : Dict = prepare_led_inputs_dict(lowercase__ , lowercase__ , lowercase__ ) _snake_case : Dict = tf.concat( [tf.zeros_like(lowercase__ )[:, :-1], tf.ones_like(lowercase__ )[:, -1:]] , axis=-1 , ) _snake_case : Dict = global_attention_mask return config, inputs_dict def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> int: """simple docstring""" _snake_case : int = TFLEDModel(config=lowercase__ ).get_decoder() _snake_case : Union[str, Any] = inputs_dict['''input_ids'''] _snake_case : List[str] = input_ids[:1, :] _snake_case : Tuple = inputs_dict['''attention_mask'''][:1, :] _snake_case : Dict = 1 # first forward pass _snake_case : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__ ) _snake_case , _snake_case : Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _snake_case : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _snake_case : Tuple = tf.concat([input_ids, next_tokens] , axis=-1 ) _snake_case : List[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _snake_case : List[Any] = model(lowercase__ , attention_mask=lowercase__ )[0] _snake_case : Tuple = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _snake_case : Tuple = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _snake_case : int = output_from_no_past[:, -3:, random_slice_idx] _snake_case : Optional[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase__ , lowercase__ , rtol=1E-3 ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , ): """simple docstring""" if attention_mask is None: _snake_case : Union[str, Any] = tf.cast(tf.math.not_equal(lowerCAmelCase_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _snake_case : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _snake_case : int = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class lowerCamelCase (a__ , a__ , unittest.TestCase ): _lowercase : Optional[int] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _lowercase : int = (TFLEDForConditionalGeneration,) if is_tf_available() else () _lowercase : Dict = ( { """conversational""": TFLEDForConditionalGeneration, """feature-extraction""": TFLEDModel, """summarization""": TFLEDForConditionalGeneration, """text2text-generation""": TFLEDForConditionalGeneration, """translation""": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _lowercase : int = True _lowercase : List[Any] = False _lowercase : str = False _lowercase : Union[str, Any] = False def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : str = TFLEDModelTester(self ) _snake_case : Union[str, Any] = ConfigTester(self , config_class=lowercase__ ) def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase__ ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Any = tf.zeros_like(inputs_dict['''attention_mask'''] ) _snake_case : Optional[Any] = 2 _snake_case : Any = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) _snake_case : Dict = True _snake_case : str = self.model_tester.seq_length _snake_case : Dict = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowercase__ ): _snake_case : Optional[int] = outputs.decoder_attentions self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowercase__ ): _snake_case : int = [t.numpy() for t in outputs.encoder_attentions] _snake_case : Tuple = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _snake_case : Union[str, Any] = True _snake_case : Dict = False _snake_case : Union[str, Any] = False _snake_case : List[Any] = model_class(lowercase__ ) _snake_case : Optional[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) _snake_case : List[Any] = len(lowercase__ ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) if self.is_encoder_decoder: _snake_case : Union[str, Any] = model_class(lowercase__ ) _snake_case : List[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_decoder_attentions_output(lowercase__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _snake_case : str = True _snake_case : Tuple = model_class(lowercase__ ) _snake_case : int = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) # Check attention is always last and order is fine _snake_case : int = True _snake_case : List[str] = True _snake_case : Tuple = model_class(lowercase__ ) _snake_case : Optional[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase__ ) ) self.assertEqual(model.config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" pass def UpperCAmelCase_ ( self ) -> str: """simple docstring""" pass def _a ( lowerCAmelCase_ ): """simple docstring""" return tf.constant(lowerCAmelCase_ , dtype=tf.intaa ) UpperCAmelCase : Dict = 1E-4 @slow @require_tf class lowerCamelCase (unittest.TestCase ): def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" _snake_case : List[str] = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here _snake_case : List[str] = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : Tuple = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : Tuple = prepare_led_inputs_dict(model.config , lowercase__ , lowercase__ ) _snake_case : int = model(**lowercase__ )[0] _snake_case : Dict = (1, 1_024, 768) self.assertEqual(output.shape , lowercase__ ) # change to expected output here _snake_case : List[Any] = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1E-3 ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Any = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here _snake_case : Dict = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : Dict = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : List[str] = prepare_led_inputs_dict(model.config , lowercase__ , lowercase__ ) _snake_case : Tuple = model(**lowercase__ )[0] _snake_case : Any = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , lowercase__ ) # change to expected output here _snake_case : Dict = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1E-3 , rtol=1E-3 )
47
0
'''simple docstring''' from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=True ): """simple docstring""" model.train() _snake_case : Optional[int] = model(lowerCAmelCase_ ) _snake_case : Any = F.mse_loss(lowerCAmelCase_ , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_=False ): """simple docstring""" set_seed(42 ) _snake_case : Optional[Any] = RegressionModel() _snake_case : Dict = deepcopy(lowerCAmelCase_ ) _snake_case : Union[str, Any] = RegressionDataset(length=80 ) _snake_case : List[Any] = DataLoader(lowerCAmelCase_ , batch_size=16 ) model.to(accelerator.device ) if sched: _snake_case : List[str] = AdamW(params=model.parameters() , lr=1E-3 ) _snake_case : str = AdamW(params=ddp_model.parameters() , lr=1E-3 ) _snake_case : str = LambdaLR(lowerCAmelCase_ , lr_lambda=lambda lowerCAmelCase_ : epoch**0.65 ) _snake_case : Any = LambdaLR(lowerCAmelCase_ , lr_lambda=lambda lowerCAmelCase_ : epoch**0.65 ) # Make a copy of `model` if sched: _snake_case : str = accelerator.prepare(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: _snake_case : str = accelerator.prepare(lowerCAmelCase_ , lowerCAmelCase_ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Dict = get_training_setup(lowerCAmelCase_ ) # Use a single batch _snake_case : Any = next(iter(lowerCAmelCase_ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model _snake_case : int = accelerator.gather((ddp_input, ddp_target) ) _snake_case : Dict = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowerCAmelCase_ ): step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: # Sync grads step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) _snake_case : Dict = ddp_input[torch.randperm(len(lowerCAmelCase_ ) )] def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : int = get_training_setup(lowerCAmelCase_ ) # Use a single batch _snake_case : int = next(iter(lowerCAmelCase_ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model _snake_case : Optional[int] = accelerator.gather((ddp_input, ddp_target) ) _snake_case : Dict = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowerCAmelCase_ ): step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: # Sync grads step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) _snake_case : List[Any] = ddp_input[torch.randperm(len(lowerCAmelCase_ ) )] def _a ( lowerCAmelCase_=False , lowerCAmelCase_=False ): """simple docstring""" _snake_case : Any = Accelerator( split_batches=lowerCAmelCase_ , dispatch_batches=lowerCAmelCase_ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly _snake_case : Union[str, Any] = get_training_setup(lowerCAmelCase_ ) for iteration, batch in enumerate(lowerCAmelCase_ ): _snake_case : Union[str, Any] = batch.values() # Gather the distributed inputs and targs for the base model _snake_case : List[Any] = accelerator.gather((ddp_input, ddp_target) ) _snake_case : Dict = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(lowerCAmelCase_ ): step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(lowerCAmelCase_ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) _snake_case : str = ddp_input[torch.randperm(len(lowerCAmelCase_ ) )] GradientState._reset_state() def _a ( lowerCAmelCase_=False , lowerCAmelCase_=False ): """simple docstring""" _snake_case : Union[str, Any] = Accelerator( split_batches=lowerCAmelCase_ , dispatch_batches=lowerCAmelCase_ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly _snake_case : int = get_training_setup(lowerCAmelCase_ , lowerCAmelCase_ ) for iteration, batch in enumerate(lowerCAmelCase_ ): _snake_case : Dict = batch.values() # Gather the distributed inputs and targs for the base model _snake_case : Any = accelerator.gather((ddp_input, ddp_target) ) _snake_case : List[Any] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(lowerCAmelCase_ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(lowerCAmelCase_ ): step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n''' _snake_case : Optional[Any] = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(lowerCAmelCase_ )) if accelerator.num_processes > 1: check_model_parameters(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) GradientState._reset_state() def _a ( ): """simple docstring""" _snake_case : int = Accelerator() _snake_case : Optional[int] = RegressionDataset(length=80 ) _snake_case : Tuple = DataLoader(lowerCAmelCase_ , batch_size=16 ) _snake_case : Optional[int] = RegressionDataset(length=96 ) _snake_case : Tuple = DataLoader(lowerCAmelCase_ , batch_size=16 ) _snake_case : Optional[int] = accelerator.prepare(lowerCAmelCase_ , lowerCAmelCase_ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(lowerCAmelCase_ ): assert id(accelerator.gradient_state.active_dataloader ) == id(lowerCAmelCase_ ) if iteration < len(lowerCAmelCase_ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(lowerCAmelCase_ ): assert id(accelerator.gradient_state.active_dataloader ) == id(lowerCAmelCase_ ) if batch_num < len(lowerCAmelCase_ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def _a ( ): """simple docstring""" _snake_case : Dict = Accelerator() _snake_case : Optional[Any] = accelerator.state if state.local_process_index == 0: print('''**Test `accumulate` gradient accumulation with dataloader break**''' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('''**Test NOOP `no_sync` context manager**''' ) test_noop_sync(lowerCAmelCase_ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('''**Test Distributed `no_sync` context manager**''' ) test_distributed_sync(lowerCAmelCase_ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(lowerCAmelCase_ , lowerCAmelCase_ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('''<''' , '''2.0''' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , '''`split_batches=False`, `dispatch_batches=False`**''' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(lowerCAmelCase_ , lowerCAmelCase_ ) def _a ( lowerCAmelCase_ ): """simple docstring""" main() if __name__ == "__main__": main()
717
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase : Optional[int] = logging.get_logger(__name__) UpperCAmelCase : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase : Any = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } UpperCAmelCase : Optional[Any] = { 'gpt-neox-20b': 2_0_4_8, } class lowerCamelCase (a__ ): _lowercase : Optional[int] = VOCAB_FILES_NAMES _lowercase : str = PRETRAINED_VOCAB_FILES_MAP _lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Optional[int] = ["""input_ids""", """attention_mask"""] def __init__( self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="<|endoftext|>" , lowercase__="<|endoftext|>" , lowercase__="<|endoftext|>" , lowercase__=False , **lowercase__ , ) -> List[Any]: """simple docstring""" super().__init__( lowercase__ , lowercase__ , tokenizer_file=lowercase__ , unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , add_prefix_space=lowercase__ , **lowercase__ , ) _snake_case : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowercase__ ) != add_prefix_space: _snake_case : int = getattr(lowercase__ , pre_tok_state.pop('''type''' ) ) _snake_case : int = add_prefix_space _snake_case : Optional[Any] = pre_tok_class(**lowercase__ ) _snake_case : List[str] = add_prefix_space def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> Tuple[str]: """simple docstring""" _snake_case : Optional[int] = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> List[int]: """simple docstring""" _snake_case : List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase__ , add_special_tokens=lowercase__ ) + [self.eos_token_id] ) if len(lowercase__ ) > self.model_max_length: _snake_case : Dict = input_ids[-self.model_max_length :] return input_ids
47
0
'''simple docstring''' from __future__ import annotations def _a ( lowerCAmelCase_ = 4 ): """simple docstring""" _snake_case : List[Any] = abs(lowerCAmelCase_ ) or 4 return [[1 + x + y * row_size for x in range(lowerCAmelCase_ )] for y in range(lowerCAmelCase_ )] def _a ( lowerCAmelCase_ ): """simple docstring""" return reverse_row(transpose(lowerCAmelCase_ ) ) # OR.. transpose(reverse_column(matrix)) def _a ( lowerCAmelCase_ ): """simple docstring""" return reverse_row(reverse_column(lowerCAmelCase_ ) ) # OR.. reverse_column(reverse_row(matrix)) def _a ( lowerCAmelCase_ ): """simple docstring""" return reverse_column(transpose(lowerCAmelCase_ ) ) # OR.. transpose(reverse_row(matrix)) def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Tuple = [list(lowerCAmelCase_ ) for x in zip(*lowerCAmelCase_ )] return matrix def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Dict = matrix[::-1] return matrix def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[int] = [x[::-1] for x in matrix] return matrix def _a ( lowerCAmelCase_ ): """simple docstring""" for i in matrix: print(*lowerCAmelCase_ ) if __name__ == "__main__": UpperCAmelCase : Dict = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 90 counterclockwise:\n') print_matrix(rotate_aa(matrix)) UpperCAmelCase : List[str] = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 180:\n') print_matrix(rotate_aaa(matrix)) UpperCAmelCase : List[str] = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 270 counterclockwise:\n') print_matrix(rotate_aaa(matrix))
718
'''simple docstring''' import math from numpy import inf from scipy.integrate import quad def _a ( lowerCAmelCase_ ): """simple docstring""" if num <= 0: raise ValueError('''math domain error''' ) return quad(lowerCAmelCase_ , 0 , lowerCAmelCase_ , args=(lowerCAmelCase_) )[0] def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return math.pow(lowerCAmelCase_ , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
47
0
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
719
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class lowerCamelCase (unittest.TestCase ): @slow def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Union[str, Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Any = TFAutoModel.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : str = AutoModel.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Optional[Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Dict = TFAutoModelForPreTraining.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Tuple = AutoModelForPreTraining.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Optional[int] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained(lowercase__ , from_pt=lowercase__ ) _snake_case , _snake_case : Tuple = TFAutoModelForCausalLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained(lowercase__ , from_tf=lowercase__ ) _snake_case , _snake_case : Optional[Any] = AutoModelForCausalLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Tuple = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : int = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[str] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(lowercase__ , from_pt=lowercase__ ) _snake_case , _snake_case : List[str] = TFAutoModelForMaskedLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : int = AutoModelForMaskedLM.from_pretrained(lowercase__ , from_tf=lowercase__ ) _snake_case , _snake_case : Optional[int] = AutoModelForMaskedLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[str] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(lowercase__ , from_pt=lowercase__ ) _snake_case , _snake_case : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : List[str] = AutoModelForSeqaSeqLM.from_pretrained(lowercase__ , from_tf=lowercase__ ) _snake_case , _snake_case : Dict = AutoModelForSeqaSeqLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Any = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Any = TFAutoModelForSequenceClassification.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Dict = AutoModelForSequenceClassification.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : str = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : str = TFAutoModelForQuestionAnswering.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Union[str, Any] = AutoModelForQuestionAnswering.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : Union[str, Any] = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 ) _snake_case : Tuple = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : List[str] = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 ) _snake_case : int = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 )
47
0
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase : Optional[Any] = 'platform' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , ): """simple docstring""" if attention_mask is None: _snake_case : Optional[Any] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: _snake_case : Union[str, Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: _snake_case : Dict = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case : List[Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _snake_case : Any = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=False , lowercase__=99 , lowercase__=16 , lowercase__=2 , lowercase__=4 , lowercase__=4 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=32 , lowercase__=2 , lowercase__=1 , lowercase__=0 , lowercase__=0.02 , ) -> Union[str, Any]: """simple docstring""" _snake_case : Tuple = parent _snake_case : int = batch_size _snake_case : List[str] = seq_length _snake_case : List[str] = is_training _snake_case : Any = use_labels _snake_case : Optional[Any] = vocab_size _snake_case : Tuple = hidden_size _snake_case : Optional[int] = num_hidden_layers _snake_case : int = num_attention_heads _snake_case : Any = intermediate_size _snake_case : Any = hidden_act _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : str = attention_probs_dropout_prob _snake_case : int = max_position_embeddings _snake_case : Optional[int] = eos_token_id _snake_case : Optional[Any] = pad_token_id _snake_case : List[Any] = bos_token_id _snake_case : Any = initializer_range def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : str = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) _snake_case : Optional[int] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) _snake_case : Any = shift_tokens_right(lowercase__ , 1 , 2 ) _snake_case : Any = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowercase__ , ) _snake_case : List[Any] = prepare_blenderbot_inputs_dict(lowercase__ , lowercase__ , lowercase__ ) return config, inputs_dict def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : Any = self.prepare_config_and_inputs() return config, inputs_dict def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ ) -> Optional[Any]: """simple docstring""" _snake_case : Union[str, Any] = 20 _snake_case : int = model_class_name(lowercase__ ) _snake_case : Union[str, Any] = model.encode(inputs_dict['''input_ids'''] ) _snake_case : Optional[Any] = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _snake_case : int = model.init_cache(decoder_input_ids.shape[0] , lowercase__ , lowercase__ ) _snake_case : Dict = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) _snake_case : Optional[int] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _snake_case : List[Any] = model.decode( decoder_input_ids[:, :-1] , lowercase__ , decoder_attention_mask=lowercase__ , past_key_values=lowercase__ , decoder_position_ids=lowercase__ , ) _snake_case : Optional[int] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) _snake_case : Optional[int] = model.decode( decoder_input_ids[:, -1:] , lowercase__ , decoder_attention_mask=lowercase__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowercase__ , ) _snake_case : Optional[Any] = model.decode(lowercase__ , lowercase__ ) _snake_case : Optional[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ ) -> Tuple: """simple docstring""" _snake_case : Dict = 20 _snake_case : Any = model_class_name(lowercase__ ) _snake_case : List[Any] = model.encode(inputs_dict['''input_ids'''] ) _snake_case : List[str] = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _snake_case : Tuple = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _snake_case : Tuple = model.init_cache(decoder_input_ids.shape[0] , lowercase__ , lowercase__ ) _snake_case : Optional[int] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _snake_case : List[str] = model.decode( decoder_input_ids[:, :-1] , lowercase__ , decoder_attention_mask=lowercase__ , past_key_values=lowercase__ , decoder_position_ids=lowercase__ , ) _snake_case : Optional[int] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) _snake_case : List[str] = model.decode( decoder_input_ids[:, -1:] , lowercase__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowercase__ , decoder_position_ids=lowercase__ , ) _snake_case : Optional[Any] = model.decode(lowercase__ , lowercase__ , decoder_attention_mask=lowercase__ ) _snake_case : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) @require_flax class lowerCamelCase (unittest.TestCase ): _lowercase : Optional[Any] = 99 def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Dict = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) _snake_case : Union[str, Any] = input_ids.shape[0] _snake_case : Union[str, Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : Tuple = self._get_config_and_data() _snake_case : Dict = FlaxBlenderbotForConditionalGeneration(lowercase__ ) _snake_case : List[Any] = lm_model(input_ids=lowercase__ ) _snake_case : Optional[Any] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , lowercase__ ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Any = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) _snake_case : Optional[Any] = FlaxBlenderbotForConditionalGeneration(lowercase__ ) _snake_case : Dict = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) _snake_case : Union[str, Any] = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) _snake_case : List[str] = lm_model(input_ids=lowercase__ , decoder_input_ids=lowercase__ ) _snake_case : Any = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , lowercase__ ) def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" _snake_case : Any = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) _snake_case : Optional[int] = shift_tokens_right(lowercase__ , 1 , 2 ) _snake_case : Optional[int] = np.equal(lowercase__ , 1 ).astype(np.floataa ).sum() _snake_case : Dict = np.equal(lowercase__ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(lowercase__ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class lowerCamelCase (a__ , unittest.TestCase , a__ ): _lowercase : Optional[Any] = True _lowercase : List[str] = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) _lowercase : Tuple = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" _snake_case : Any = FlaxBlenderbotModelTester(self ) def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowercase__ , lowercase__ , lowercase__ ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowercase__ , lowercase__ , lowercase__ ) def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _snake_case : Dict = self._prepare_for_class(lowercase__ , lowercase__ ) _snake_case : List[str] = model_class(lowercase__ ) @jax.jit def encode_jitted(lowercase__ , lowercase__=None , **lowercase__ ): return model.encode(input_ids=lowercase__ , attention_mask=lowercase__ ) with self.subTest('''JIT Enabled''' ): _snake_case : Tuple = encode_jitted(**lowercase__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _snake_case : Tuple = encode_jitted(**lowercase__ ).to_tuple() self.assertEqual(len(lowercase__ ) , len(lowercase__ ) ) for jitted_output, output in zip(lowercase__ , lowercase__ ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _snake_case : Optional[int] = model_class(lowercase__ ) _snake_case : Tuple = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) _snake_case : List[Any] = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(lowercase__ , lowercase__ , lowercase__ ): return model.decode( decoder_input_ids=lowercase__ , decoder_attention_mask=lowercase__ , encoder_outputs=lowercase__ , ) with self.subTest('''JIT Enabled''' ): _snake_case : List[str] = decode_jitted(**lowercase__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _snake_case : Any = decode_jitted(**lowercase__ ).to_tuple() self.assertEqual(len(lowercase__ ) , len(lowercase__ ) ) for jitted_output, output in zip(lowercase__ , lowercase__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" for model_class_name in self.all_model_classes: _snake_case : Dict = model_class_name.from_pretrained('''facebook/blenderbot-400M-distill''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _snake_case : List[Any] = np.ones((1, 1) ) * model.config.eos_token_id _snake_case : Union[str, Any] = model(lowercase__ ) self.assertIsNotNone(lowercase__ ) @unittest.skipUnless(jax_device != '''cpu''' , '''3B test too slow on CPU.''' ) @slow def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" _snake_case : str = {'''num_beams''': 1, '''early_stopping''': True, '''min_length''': 15, '''max_length''': 25} _snake_case : Tuple = {'''skip_special_tokens''': True, '''clean_up_tokenization_spaces''': True} _snake_case : Optional[Any] = FlaxBlenderbotForConditionalGeneration.from_pretrained('''facebook/blenderbot-3B''' , from_pt=lowercase__ ) _snake_case : int = BlenderbotTokenizer.from_pretrained('''facebook/blenderbot-3B''' ) _snake_case : Any = ['''Sam'''] _snake_case : List[str] = tokenizer(lowercase__ , return_tensors='''jax''' ) _snake_case : Union[str, Any] = model.generate(**lowercase__ , **lowercase__ ) _snake_case : Tuple = '''Sam is a great name. It means "sun" in Gaelic.''' _snake_case : Dict = tokenizer.batch_decode(lowercase__ , **lowercase__ ) assert generated_txt[0].strip() == tgt_text
720
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : Dict = {'configuration_timm_backbone': ['TimmBackboneConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = ['TimmBackbone'] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
47
0
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(lowerCAmelCase_ , lowerCAmelCase_ ) ) ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if dataset.ndim != value_array.ndim: _snake_case : Tuple = ( '''Wrong input data\'s dimensions... ''' f'''dataset : {dataset.ndim}, value_array : {value_array.ndim}''' ) raise ValueError(lowerCAmelCase_ ) try: if dataset.shape[1] != value_array.shape[1]: _snake_case : Union[str, Any] = ( '''Wrong input data\'s shape... ''' f'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}''' ) raise ValueError(lowerCAmelCase_ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('''Wrong shape''' ) if dataset.dtype != value_array.dtype: _snake_case : Optional[Any] = ( '''Input data have different datatype... ''' f'''dataset : {dataset.dtype}, value_array : {value_array.dtype}''' ) raise TypeError(lowerCAmelCase_ ) _snake_case : Union[str, Any] = [] for value in value_array: _snake_case : Tuple = euclidean(lowerCAmelCase_ , dataset[0] ) _snake_case : Optional[Any] = dataset[0].tolist() for dataset_value in dataset[1:]: _snake_case : Optional[Any] = euclidean(lowerCAmelCase_ , lowerCAmelCase_ ) if dist > temp_dist: _snake_case : List[Any] = temp_dist _snake_case : str = dataset_value.tolist() answer.append([vector, dist] ) return answer def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return np.dot(lowerCAmelCase_ , lowerCAmelCase_ ) / (norm(lowerCAmelCase_ ) * norm(lowerCAmelCase_ )) if __name__ == "__main__": import doctest doctest.testmod()
721
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version UpperCAmelCase : Tuple = logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') UpperCAmelCase : str = { 'base': AutoModel, 'sequence-classification': AutoModelForSequenceClassification, 'question-answering': AutoModelForQuestionAnswering, 'pretraining': AutoModelForPreTraining, 'token-classification': AutoModelForTokenClassification, 'language-modeling': AutoModelWithLMHead, 'summarization': AutoModelForSeqaSeqLM, 'translation': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization UpperCAmelCase : Optional[Any] = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } UpperCAmelCase : Tuple = sorted(arg_to_scheduler.keys()) UpperCAmelCase : Optional[Any] = '{' + ', '.join(arg_to_scheduler_choices) + '}' class lowerCamelCase (pl.LightningModule ): def __init__( self , lowercase__ , lowercase__=None , lowercase__="base" , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ , ) -> Optional[int]: """simple docstring""" super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(lowercase__ ) _snake_case : Union[str, Any] = 0 _snake_case : int = Path(self.hparams.output_dir ) _snake_case : int = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: _snake_case : Tuple = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=lowercase__ , **lowercase__ , ) else: _snake_case : PretrainedConfig = config _snake_case : Optional[Any] = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(self.hparams , lowercase__ , lowercase__ ): assert hasattr(self.config , lowercase__ ), F'''model config doesn\'t have a `{p}` attribute''' setattr(self.config , lowercase__ , getattr(self.hparams , lowercase__ ) ) if tokenizer is None: _snake_case : Optional[int] = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=lowercase__ , ) else: _snake_case : PreTrainedTokenizer = tokenizer _snake_case : Any = MODEL_MODES[mode] if model is None: _snake_case : List[Any] = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=lowercase__ , ) else: _snake_case : Optional[Any] = model def UpperCAmelCase_ ( self , *lowercase__ , **lowercase__ ) -> List[str]: """simple docstring""" _snake_case : Dict = self.model_type.from_pretrained(*lowercase__ , **lowercase__ ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Optional[int] = arg_to_scheduler[self.hparams.lr_scheduler] _snake_case : Optional[int] = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) _snake_case : str = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1} return scheduler def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Any = self.model _snake_case : List[Any] = ['''bias''', '''LayerNorm.weight'''] _snake_case : List[str] = [ { '''params''': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters '''weight_decay''': self.hparams.weight_decay, }, { '''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] if self.hparams.adafactor: _snake_case : Any = Adafactor( lowercase__ , lr=self.hparams.learning_rate , scale_parameter=lowercase__ , relative_step=lowercase__ ) else: _snake_case : List[str] = AdamW( lowercase__ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) _snake_case : List[str] = optimizer _snake_case : Any = self.get_lr_scheduler() return [optimizer], [scheduler] def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Any: """simple docstring""" return self.validation_step(lowercase__ , lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> Tuple: """simple docstring""" return self.validation_end(lowercase__ ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Any = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores _snake_case : Optional[int] = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def UpperCAmelCase_ ( self , lowercase__ ) -> Any: """simple docstring""" if stage == "test": _snake_case : Any = len(self.test_dataloader().dataset ) else: _snake_case : Dict = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=lowercase__ ) _snake_case : Optional[int] = len(self.train_dataloader().dataset ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = False ) -> str: """simple docstring""" raise NotImplementedError('''You must implement this for your task''' ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" return self.train_loader def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=lowercase__ ) def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> Optional[int]: """simple docstring""" return os.path.join( self.hparams.data_dir , '''cached_{}_{}_{}'''.format( lowercase__ , list(filter(lowercase__ , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def UpperCAmelCase_ ( self , lowercase__ ) -> None: """simple docstring""" _snake_case : Dict = self.output_dir.joinpath('''best_tfmr''' ) _snake_case : Tuple = self.step_count self.model.save_pretrained(lowercase__ ) self.tokenizer.save_pretrained(lowercase__ ) @staticmethod def UpperCAmelCase_ ( lowercase__ , lowercase__ ) -> Tuple: """simple docstring""" parser.add_argument( '''--model_name_or_path''' , default=lowercase__ , type=lowercase__ , required=lowercase__ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--config_name''' , default='''''' , type=lowercase__ , help='''Pretrained config name or path if not the same as model_name''' ) parser.add_argument( '''--tokenizer_name''' , default=lowercase__ , type=lowercase__ , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument( '''--cache_dir''' , default=str(Path(lowercase__ ).parent / '''test_run''' / '''cache''' ) , type=lowercase__ , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , ) parser.add_argument( '''--encoder_layerdrop''' , type=lowercase__ , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--decoder_layerdrop''' , type=lowercase__ , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--dropout''' , type=lowercase__ , help='''Dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--attention_dropout''' , type=lowercase__ , help='''Attention dropout probability (Optional). Goes into model.config''' , ) parser.add_argument('''--learning_rate''' , default=5E-5 , type=lowercase__ , help='''The initial learning rate for Adam.''' ) parser.add_argument( '''--lr_scheduler''' , default='''linear''' , choices=lowercase__ , metavar=lowercase__ , type=lowercase__ , help='''Learning rate scheduler''' , ) parser.add_argument('''--weight_decay''' , default=0.0 , type=lowercase__ , help='''Weight decay if we apply some.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=lowercase__ , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--warmup_steps''' , default=0 , type=lowercase__ , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--num_workers''' , default=4 , type=lowercase__ , help='''kwarg passed to DataLoader''' ) parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=lowercase__ ) parser.add_argument('''--train_batch_size''' , default=32 , type=lowercase__ ) parser.add_argument('''--eval_batch_size''' , default=32 , type=lowercase__ ) parser.add_argument('''--adafactor''' , action='''store_true''' ) class lowerCamelCase (pl.Callback ): def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> str: """simple docstring""" if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class lowerCamelCase (pl.Callback ): def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> List[str]: """simple docstring""" for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(lowercase__ ) class lowerCamelCase (pl.Callback ): def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Any: """simple docstring""" _snake_case : Any = trainer.lr_schedulers[0]['''scheduler'''] _snake_case : Optional[int] = {F'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> List[str]: """simple docstring""" rank_zero_info('''***** Validation results *****''' ) _snake_case : Dict = trainer.callback_metrics # Log results for key in sorted(lowercase__ ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Dict: """simple docstring""" rank_zero_info('''***** Test results *****''' ) _snake_case : Dict = trainer.callback_metrics # Log and save results to file _snake_case : str = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' ) with open(lowercase__ , '''w''' ) as writer: for key in sorted(lowercase__ ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) ) writer.write('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" parser.add_argument( '''--output_dir''' , default=str(Path(lowerCAmelCase_ ).parent / '''test_run''' / '''model_checkpoints''' ) , type=lowerCAmelCase_ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=lowerCAmelCase_ , default='''O2''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=lowerCAmelCase_ ) parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=lowerCAmelCase_ , help='''Max gradient norm''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' ) parser.add_argument( '''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=lowerCAmelCase_ , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--seed''' , type=lowerCAmelCase_ , default=42 , help='''random seed for initialization''' ) parser.add_argument( '''--data_dir''' , default=str(Path(lowerCAmelCase_ ).parent / '''test_run''' / '''dummy-train-data''' ) , type=lowerCAmelCase_ , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_=[] , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , ): """simple docstring""" pl.seed_everything(args.seed ) # init model _snake_case : Union[str, Any] = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=lowerCAmelCase_ ) # add custom checkpoints if checkpoint_callback is None: _snake_case : Any = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(lowerCAmelCase_ ) if logging_callback is None: _snake_case : str = LoggingCallback() _snake_case : Tuple = {} if args.fpaa: _snake_case : Union[str, Any] = 16 if args.gpus > 1: _snake_case : Optional[Any] = '''auto''' _snake_case : Tuple = '''ddp''' _snake_case : Optional[Any] = args.accumulate_grad_batches _snake_case : Tuple = None _snake_case : str = '''auto''' _snake_case : int = pl.Trainer.from_argparse_args( lowerCAmelCase_ , weights_summary=lowerCAmelCase_ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase_ , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase_ , ) if args.do_train: trainer.fit(lowerCAmelCase_ ) else: print('''RAG modeling tests with new set functions successfuly executed!''' ) return trainer
47
0
'''simple docstring''' import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) UpperCAmelCase : Union[str, Any] = 'hf-internal-testing/tiny-random-bert' UpperCAmelCase : int = os.path.join(TRANSFORMERS_CACHE, 'models--hf-internal-testing--tiny-random-bert') UpperCAmelCase : Any = '9b8c223d42b2188cb49d29af482996f9d0f3e5a6' class lowerCamelCase (unittest.TestCase ): def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" _snake_case : Dict = cached_file(lowercase__ , lowercase__ ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(lowercase__ ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(lowercase__ , lowercase__ ) ) ) with open(os.path.join(lowercase__ , '''refs''' , '''main''' ) ) as f: _snake_case : List[str] = f.read() self.assertEqual(lowercase__ , os.path.join(lowercase__ , '''snapshots''' , lowercase__ , lowercase__ ) ) self.assertTrue(os.path.isfile(lowercase__ ) ) # File is cached at the same place the second time. _snake_case : Optional[int] = cached_file(lowercase__ , lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) # Using a specific revision to test the full commit hash. _snake_case : List[str] = cached_file(lowercase__ , lowercase__ , revision='''9b8c223''' ) self.assertEqual(lowercase__ , os.path.join(lowercase__ , '''snapshots''' , lowercase__ , lowercase__ ) ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" with self.assertRaisesRegex(lowercase__ , '''is not a valid model identifier''' ): _snake_case : Any = cached_file('''tiny-random-bert''' , lowercase__ ) with self.assertRaisesRegex(lowercase__ , '''is not a valid git identifier''' ): _snake_case : Tuple = cached_file(lowercase__ , lowercase__ , revision='''aaaa''' ) with self.assertRaisesRegex(lowercase__ , '''does not appear to have a file named''' ): _snake_case : Tuple = cached_file(lowercase__ , '''conf''' ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" with self.assertRaisesRegex(lowercase__ , '''does not appear to have a file named''' ): _snake_case : List[Any] = cached_file(lowercase__ , '''conf''' ) with open(os.path.join(lowercase__ , '''refs''' , '''main''' ) ) as f: _snake_case : Optional[Any] = f.read() self.assertTrue(os.path.isfile(os.path.join(lowercase__ , '''.no_exist''' , lowercase__ , '''conf''' ) ) ) _snake_case : Any = cached_file(lowercase__ , '''conf''' , _raise_exceptions_for_missing_entries=lowercase__ ) self.assertIsNone(lowercase__ ) _snake_case : Union[str, Any] = cached_file(lowercase__ , '''conf''' , local_files_only=lowercase__ , _raise_exceptions_for_missing_entries=lowercase__ ) self.assertIsNone(lowercase__ ) _snake_case : List[Any] = mock.Mock() _snake_case : Union[str, Any] = 500 _snake_case : Any = {} _snake_case : Dict = HTTPError _snake_case : Tuple = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=lowercase__ ) as mock_head: _snake_case : Dict = cached_file(lowercase__ , '''conf''' , _raise_exceptions_for_connection_errors=lowercase__ ) self.assertIsNone(lowercase__ ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , lowercase__ ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , lowercase__ ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , lowercase__ ) ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(lowercase__ , '''is not a valid model identifier''' ): get_file_from_repo('''bert-base-case''' , lowercase__ ) # The function raises if the revision does not exist. with self.assertRaisesRegex(lowercase__ , '''is not a valid git identifier''' ): get_file_from_repo('''bert-base-cased''' , lowercase__ , revision='''ahaha''' ) _snake_case : Any = get_file_from_repo('''bert-base-cased''' , lowercase__ ) # The name is the cached name which is not very easy to test, so instead we load the content. _snake_case : Optional[Any] = json.loads(open(lowercase__ , '''r''' ).read() ) self.assertEqual(config['''hidden_size'''] , 768 ) def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _snake_case : Dict = Path(lowercase__ ) / '''a.txt''' filename.touch() self.assertEqual(get_file_from_repo(lowercase__ , '''a.txt''' ) , str(lowercase__ ) ) self.assertIsNone(get_file_from_repo(lowercase__ , '''b.txt''' ) )
700
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : Dict = { 'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowerCamelCase (a__ ): _lowercase : List[str] = """sew-d""" def __init__( self , lowercase__=32 , lowercase__=768 , lowercase__=12 , lowercase__=12 , lowercase__=3_072 , lowercase__=2 , lowercase__=512 , lowercase__=256 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.02 , lowercase__=1E-7 , lowercase__=1E-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=128 , lowercase__=16 , lowercase__=True , lowercase__=0.05 , lowercase__=10 , lowercase__=2 , lowercase__=0.0 , lowercase__=10 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=256 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ) -> Dict: """simple docstring""" super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ ) _snake_case : List[str] = hidden_size _snake_case : Optional[Any] = feat_extract_norm _snake_case : Tuple = feat_extract_activation _snake_case : Tuple = list(lowercase__ ) _snake_case : Any = list(lowercase__ ) _snake_case : Any = list(lowercase__ ) _snake_case : Any = conv_bias _snake_case : List[Any] = num_conv_pos_embeddings _snake_case : Any = num_conv_pos_embedding_groups _snake_case : Union[str, Any] = len(self.conv_dim ) _snake_case : Optional[Any] = num_hidden_layers _snake_case : Optional[int] = intermediate_size _snake_case : Any = squeeze_factor _snake_case : Optional[Any] = max_position_embeddings _snake_case : Tuple = position_buckets _snake_case : Tuple = share_att_key _snake_case : Any = relative_attention _snake_case : Optional[int] = norm_rel_ebd _snake_case : Optional[Any] = list(lowercase__ ) _snake_case : List[Any] = hidden_act _snake_case : List[Any] = num_attention_heads _snake_case : Dict = hidden_dropout _snake_case : Tuple = attention_dropout _snake_case : Union[str, Any] = activation_dropout _snake_case : List[Any] = feat_proj_dropout _snake_case : Optional[int] = final_dropout _snake_case : Optional[Any] = layer_norm_eps _snake_case : Dict = feature_layer_norm_eps _snake_case : List[Any] = initializer_range _snake_case : Dict = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _snake_case : Union[str, Any] = apply_spec_augment _snake_case : Any = mask_time_prob _snake_case : List[str] = mask_time_length _snake_case : Dict = mask_time_min_masks _snake_case : Union[str, Any] = mask_feature_prob _snake_case : Tuple = mask_feature_length _snake_case : Union[str, Any] = mask_feature_min_masks # ctc loss _snake_case : Optional[Any] = ctc_loss_reduction _snake_case : Optional[Any] = ctc_zero_infinity # sequence classification _snake_case : List[Any] = use_weighted_layer_sum _snake_case : Any = classifier_proj_size @property def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
47
0
'''simple docstring''' from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter UpperCAmelCase : Any = logging.get_logger(__name__) UpperCAmelCase : Dict[Optional[str], Type[Formatter]] = {} UpperCAmelCase : Dict[Optional[str], str] = {} UpperCAmelCase : Dict[Optional[str], Exception] = {} def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , ): """simple docstring""" _snake_case : Tuple = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f'''Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})''' ) _snake_case : Tuple = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f'''Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})''' ) _snake_case : Optional[Any] = format_type def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None ): """simple docstring""" _snake_case : Tuple = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): _snake_case : Dict = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['python']) _register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow']) _register_formatter(NumpyFormatter, 'numpy', aliases=['np']) _register_formatter(PandasFormatter, 'pandas', aliases=['pd']) _register_formatter(CustomFormatter, 'custom') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch']) else: UpperCAmelCase : Tuple = ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.') _register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, 'tensorflow', aliases=['tf']) else: UpperCAmelCase : Dict = ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.') _register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, 'jax', aliases=[]) else: UpperCAmelCase : Optional[int] = ValueError('JAX needs to be installed to be able to return JAX arrays.') _register_unavailable_formatter(_jax_error, 'jax', aliases=[]) def _a ( lowerCAmelCase_ ): """simple docstring""" if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def _a ( lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" _snake_case : Dict = get_format_type_from_alias(lowerCAmelCase_ ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**lowerCAmelCase_ ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f'''Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'''' )
701
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : List[Any] = 0 if start < end: _snake_case : List[Any] = randint(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Any = a[end] _snake_case : List[str] = a[pivot] _snake_case : Optional[int] = temp _snake_case , _snake_case : List[Any] = _in_place_partition(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) count += _in_place_quick_sort(lowerCAmelCase_ , lowerCAmelCase_ , p - 1 ) count += _in_place_quick_sort(lowerCAmelCase_ , p + 1 , lowerCAmelCase_ ) return count def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = 0 _snake_case : Optional[int] = randint(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Tuple = a[end] _snake_case : Optional[Any] = a[pivot] _snake_case : Union[str, Any] = temp _snake_case : Union[str, Any] = start - 1 for index in range(lowerCAmelCase_ , lowerCAmelCase_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _snake_case : Optional[int] = new_pivot_index + 1 _snake_case : Optional[Any] = a[new_pivot_index] _snake_case : Tuple = a[index] _snake_case : str = temp _snake_case : Any = a[new_pivot_index + 1] _snake_case : str = a[end] _snake_case : Optional[int] = temp return new_pivot_index + 1, count UpperCAmelCase : Dict = TemporaryFile() UpperCAmelCase : Dict = 1_0_0 # 1000 elements are to be sorted UpperCAmelCase, UpperCAmelCase : str = 0, 1 # mean and standard deviation UpperCAmelCase : Optional[Any] = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array UpperCAmelCase : int = np.load(outfile) UpperCAmelCase : Optional[int] = len(M) - 1 UpperCAmelCase : str = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
47
0
'''simple docstring''' import math import tensorflow as tf from packaging import version def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : int = tf.convert_to_tensor(lowerCAmelCase_ ) _snake_case : List[str] = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Tuple = tf.convert_to_tensor(lowerCAmelCase_ ) _snake_case : str = tf.cast(math.pi , x.dtype ) _snake_case : Dict = tf.cast(0.044_715 , x.dtype ) _snake_case : int = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowerCAmelCase_ , 3 )) )) return x * cdf def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : int = tf.convert_to_tensor(lowerCAmelCase_ ) return x * tf.tanh(tf.math.softplus(lowerCAmelCase_ ) ) def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Any = tf.convert_to_tensor(lowerCAmelCase_ ) _snake_case : List[str] = tf.cast(0.044_715 , x.dtype ) _snake_case : Any = tf.cast(0.7_978_845_608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Tuple = tf.convert_to_tensor(lowerCAmelCase_ ) _snake_case : Tuple = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def _a ( lowerCAmelCase_ ): """simple docstring""" return tf.clip_by_value(_gelu(lowerCAmelCase_ ) , -10 , 10 ) def _a ( lowerCAmelCase_ , lowerCAmelCase_=-1 ): """simple docstring""" _snake_case : Tuple = tf.split(lowerCAmelCase_ , 2 , axis=lowerCAmelCase_ ) return a * tf.math.sigmoid(lowerCAmelCase_ ) if version.parse(tf.version.VERSION) >= version.parse('2.4'): def _a ( lowerCAmelCase_ ): """simple docstring""" return tf.keras.activations.gelu(lowerCAmelCase_ , approximate=lowerCAmelCase_ ) UpperCAmelCase : int = tf.keras.activations.gelu UpperCAmelCase : Any = approximate_gelu_wrap else: UpperCAmelCase : List[Any] = _gelu UpperCAmelCase : Any = _gelu_new UpperCAmelCase : int = { 'gelu': gelu, 'gelu_10': gelu_aa, 'gelu_fast': gelu_fast, 'gelu_new': gelu_new, 'glu': glu, 'mish': mish, 'quick_gelu': quick_gelu, 'relu': tf.keras.activations.relu, 'sigmoid': tf.keras.activations.sigmoid, 'silu': tf.keras.activations.swish, 'swish': tf.keras.activations.swish, 'tanh': tf.keras.activations.tanh, } def _a ( lowerCAmelCase_ ): """simple docstring""" if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(f'''function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}''' )
702
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
47
0
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase : Dict = logging.get_logger(__name__) UpperCAmelCase : Dict = [ ('bert.bert', 'visual_bert'), ('bert.cls', 'cls'), ('bert.classifier', 'cls'), ('token_type_embeddings_visual', 'visual_token_type_embeddings'), ('position_embeddings_visual', 'visual_position_embeddings'), ('projection', 'visual_projection'), ] UpperCAmelCase : Dict = [ 'nlvr2_coco_pre_trained.th', 'nlvr2_fine_tuned.th', 'nlvr2_pre_trained.th', 'vcr_coco_pre_train.th', 'vcr_fine_tune.th', 'vcr_pre_train.th', 'vqa_coco_pre_trained.th', 'vqa_fine_tuned.th', 'vqa_pre_trained.th', ] def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Union[str, Any] = torch.load(lowerCAmelCase_ , map_location='''cpu''' ) return sd def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=rename_keys_prefix ): """simple docstring""" _snake_case : Union[str, Any] = OrderedDict() _snake_case : Tuple = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue _snake_case : Dict = key for name_pair in rename_keys_prefix: _snake_case : Optional[Any] = new_key.replace(name_pair[0] , name_pair[1] ) _snake_case : List[str] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately _snake_case : Dict = new_d['''cls.predictions.bias'''] return new_d @torch.no_grad() def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" assert ( checkpoint_path.split('''/''' )[-1] in ACCEPTABLE_CHECKPOINTS ), f'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: _snake_case : str = '''pretraining''' if "vcr" in checkpoint_path: _snake_case : List[str] = {'''visual_embedding_dim''': 512} elif "vqa_advanced" in checkpoint_path: _snake_case : Optional[int] = {'''visual_embedding_dim''': 2_048} elif "vqa" in checkpoint_path: _snake_case : Tuple = {'''visual_embedding_dim''': 2_048} elif "nlvr" in checkpoint_path: _snake_case : Dict = {'''visual_embedding_dim''': 1_024} else: raise NotImplementedError(f'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: _snake_case : str = {'''visual_embedding_dim''': 512} _snake_case : Optional[int] = '''multichoice''' elif "vqa_advanced" in checkpoint_path: _snake_case : int = {'''visual_embedding_dim''': 2_048} _snake_case : Dict = '''vqa_advanced''' elif "vqa" in checkpoint_path: _snake_case : Optional[int] = {'''visual_embedding_dim''': 2_048, '''num_labels''': 3_129} _snake_case : Dict = '''vqa''' elif "nlvr" in checkpoint_path: _snake_case : int = { '''visual_embedding_dim''': 1_024, '''num_labels''': 2, } _snake_case : Optional[Any] = '''nlvr''' _snake_case : str = VisualBertConfig(**lowerCAmelCase_ ) # Load State Dict _snake_case : Union[str, Any] = load_state_dict(lowerCAmelCase_ ) _snake_case : Tuple = get_new_dict(lowerCAmelCase_ , lowerCAmelCase_ ) if model_type == "pretraining": _snake_case : List[str] = VisualBertForPreTraining(lowerCAmelCase_ ) elif model_type == "vqa": _snake_case : Union[str, Any] = VisualBertForQuestionAnswering(lowerCAmelCase_ ) elif model_type == "nlvr": _snake_case : Optional[Any] = VisualBertForVisualReasoning(lowerCAmelCase_ ) elif model_type == "multichoice": _snake_case : Optional[int] = VisualBertForMultipleChoice(lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) # Save Checkpoints Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('orig_checkpoint_path', type=str, help='A path to .th on local filesystem.') parser.add_argument('pytorch_dump_folder_path', type=str, help='Path to the output PyTorch model.') UpperCAmelCase : int = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
703
'''simple docstring''' from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def _a ( ): """simple docstring""" _snake_case : List[Any] = ArgumentParser('''Transformers CLI tool''' , usage='''transformers-cli <command> [<args>]''' ) _snake_case : List[str] = parser.add_subparsers(help='''transformers-cli command helpers''' ) # Register commands ConvertCommand.register_subcommand(lowerCAmelCase_ ) DownloadCommand.register_subcommand(lowerCAmelCase_ ) EnvironmentCommand.register_subcommand(lowerCAmelCase_ ) RunCommand.register_subcommand(lowerCAmelCase_ ) ServeCommand.register_subcommand(lowerCAmelCase_ ) UserCommands.register_subcommand(lowerCAmelCase_ ) AddNewModelCommand.register_subcommand(lowerCAmelCase_ ) AddNewModelLikeCommand.register_subcommand(lowerCAmelCase_ ) LfsCommands.register_subcommand(lowerCAmelCase_ ) PTtoTFCommand.register_subcommand(lowerCAmelCase_ ) # Let's go _snake_case : str = parser.parse_args() if not hasattr(lowerCAmelCase_ , '''func''' ): parser.print_help() exit(1 ) # Run _snake_case : Union[str, Any] = args.func(lowerCAmelCase_ ) service.run() if __name__ == "__main__": main()
47
0
import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('0.8.3'): raise Exception('requires gluonnlp == 0.8.3') if version.parse(mx.__version__) != version.parse('1.5.0'): raise Exception('requires mxnet == 1.5.0') logging.set_verbosity_info() UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase : Tuple = 'The Nymphenburg Palace is a beautiful palace in Munich!' def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : str = { '''attention_cell''': '''multi_head''', '''num_layers''': 4, '''units''': 1_024, '''hidden_size''': 768, '''max_length''': 512, '''num_heads''': 8, '''scaled''': True, '''dropout''': 0.1, '''use_residual''': True, '''embed_size''': 1_024, '''embed_dropout''': 0.1, '''word_embed''': None, '''layer_norm_eps''': 1E-5, '''token_type_vocab_size''': 2, } _snake_case : str = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py _snake_case : Dict = BERTEncoder( attention_cell=predefined_args['''attention_cell'''] , num_layers=predefined_args['''num_layers'''] , units=predefined_args['''units'''] , hidden_size=predefined_args['''hidden_size'''] , max_length=predefined_args['''max_length'''] , num_heads=predefined_args['''num_heads'''] , scaled=predefined_args['''scaled'''] , dropout=predefined_args['''dropout'''] , output_attention=lowerCAmelCase_ , output_all_encodings=lowerCAmelCase_ , use_residual=predefined_args['''use_residual'''] , activation=predefined_args.get('''activation''' , '''gelu''' ) , layer_norm_eps=predefined_args.get('''layer_norm_eps''' , lowerCAmelCase_ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later _snake_case : int = '''openwebtext_ccnews_stories_books_cased''' # Specify download folder to Gluonnlp's vocab _snake_case : str = os.path.join(get_home_dir() , '''models''' ) _snake_case : Optional[int] = _load_vocab(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , cls=lowerCAmelCase_ ) _snake_case : List[str] = nlp.model.BERTModel( lowerCAmelCase_ , len(lowerCAmelCase_ ) , units=predefined_args['''units'''] , embed_size=predefined_args['''embed_size'''] , embed_dropout=predefined_args['''embed_dropout'''] , word_embed=predefined_args['''word_embed'''] , use_pooler=lowerCAmelCase_ , use_token_type_embed=lowerCAmelCase_ , token_type_vocab_size=predefined_args['''token_type_vocab_size'''] , use_classifier=lowerCAmelCase_ , use_decoder=lowerCAmelCase_ , ) original_bort.load_parameters(lowerCAmelCase_ , cast_dtype=lowerCAmelCase_ , ignore_extra=lowerCAmelCase_ ) _snake_case : List[Any] = original_bort._collect_params_with_prefix() # Build our config 🤗 _snake_case : Union[str, Any] = { '''architectures''': ['''BertForMaskedLM'''], '''attention_probs_dropout_prob''': predefined_args['''dropout'''], '''hidden_act''': '''gelu''', '''hidden_dropout_prob''': predefined_args['''dropout'''], '''hidden_size''': predefined_args['''embed_size'''], '''initializer_range''': 0.02, '''intermediate_size''': predefined_args['''hidden_size'''], '''layer_norm_eps''': predefined_args['''layer_norm_eps'''], '''max_position_embeddings''': predefined_args['''max_length'''], '''model_type''': '''bort''', '''num_attention_heads''': predefined_args['''num_heads'''], '''num_hidden_layers''': predefined_args['''num_layers'''], '''pad_token_id''': 1, # 2 = BERT, 1 = RoBERTa '''type_vocab_size''': 1, # 2 = BERT, 1 = RoBERTa '''vocab_size''': len(lowerCAmelCase_ ), } _snake_case : Union[str, Any] = BertConfig.from_dict(lowerCAmelCase_ ) _snake_case : List[str] = BertForMaskedLM(lowerCAmelCase_ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(lowerCAmelCase_ ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Dict = hf_param.shape _snake_case : Union[str, Any] = to_torch(params[gluon_param] ) _snake_case : str = gluon_param.shape assert ( shape_hf == shape_gluon ), f'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers''' return gluon_param _snake_case : Union[str, Any] = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , '''word_embed.0.weight''' ) _snake_case : Union[str, Any] = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , '''encoder.position_weight''' ) _snake_case : int = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , '''encoder.layer_norm.beta''' ) _snake_case : int = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , '''encoder.layer_norm.gamma''' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) _snake_case : Tuple = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): _snake_case : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention _snake_case : BertSelfAttention = layer.attention.self _snake_case : List[str] = check_and_map_params( self_attn.key.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' ) _snake_case : List[str] = check_and_map_params( self_attn.key.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' ) _snake_case : int = check_and_map_params( self_attn.query.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' ) _snake_case : List[Any] = check_and_map_params( self_attn.query.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' ) _snake_case : List[str] = check_and_map_params( self_attn.value.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' ) _snake_case : Union[str, Any] = check_and_map_params( self_attn.value.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' ) # self attention output _snake_case : BertSelfOutput = layer.attention.output _snake_case : Union[str, Any] = check_and_map_params( self_output.dense.bias , f'''encoder.transformer_cells.{i}.proj.bias''' ) _snake_case : str = check_and_map_params( self_output.dense.weight , f'''encoder.transformer_cells.{i}.proj.weight''' ) _snake_case : Any = check_and_map_params( self_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.layer_norm.beta''' ) _snake_case : Tuple = check_and_map_params( self_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.layer_norm.gamma''' ) # intermediate _snake_case : BertIntermediate = layer.intermediate _snake_case : List[str] = check_and_map_params( intermediate.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' ) _snake_case : Tuple = check_and_map_params( intermediate.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' ) # output _snake_case : BertOutput = layer.output _snake_case : str = check_and_map_params( bert_output.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' ) _snake_case : str = check_and_map_params( bert_output.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' ) _snake_case : Optional[Any] = check_and_map_params( bert_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' ) _snake_case : int = check_and_map_params( bert_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models _snake_case : Optional[Any] = RobertaTokenizer.from_pretrained('''roberta-base''' ) _snake_case : Union[str, Any] = tokenizer.encode_plus(lowerCAmelCase_ )['''input_ids'''] # Get gluon output _snake_case : Tuple = mx.nd.array([input_ids] ) _snake_case : int = original_bort(inputs=lowerCAmelCase_ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(lowerCAmelCase_ ) _snake_case : Tuple = BertModel.from_pretrained(lowerCAmelCase_ ) hf_bort_model.eval() _snake_case : Dict = tokenizer.encode_plus(lowerCAmelCase_ , return_tensors='''pt''' ) _snake_case : List[str] = hf_bort_model(**lowerCAmelCase_ )[0] _snake_case : Union[str, Any] = output_gluon[0].asnumpy() _snake_case : Dict = output_hf[0].detach().numpy() _snake_case : Dict = np.max(np.abs(hf_layer - gluon_layer ) ).item() _snake_case : int = np.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1E-3 ) if success: print('''✔️ Both model do output the same tensors''' ) else: print('''❌ Both model do **NOT** output the same tensors''' ) print('''Absolute difference is:''' , lowerCAmelCase_ ) if __name__ == "__main__": UpperCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--bort_checkpoint_path', default=None, type=str, required=True, help='Path the official Bort params file.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) UpperCAmelCase : Tuple = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
704
'''simple docstring''' from collections.abc import Generator def _a ( ): """simple docstring""" _snake_case , _snake_case : Union[str, Any] = 0, 1 while True: _snake_case , _snake_case : List[str] = b, a + b yield b def _a ( lowerCAmelCase_ = 1_000 ): """simple docstring""" _snake_case : List[str] = 1 _snake_case : Dict = fibonacci_generator() while len(str(next(lowerCAmelCase_ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
47
0
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class lowerCamelCase (unittest.TestCase ): def UpperCAmelCase_ ( self , lowercase__ ) -> Any: """simple docstring""" _snake_case : str = 3 _snake_case : Tuple = 250 _snake_case : int = ids_tensor((batch_size, length) , lowercase__ ) _snake_case : str = torch.ones((batch_size, length) , device=lowercase__ , dtype=torch.float ) / length return input_ids, scores def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" _snake_case : List[Any] = self._get_tensors(5 ) _snake_case : int = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowercase__ , lowercase__ ) ) _snake_case : Union[str, Any] = self._get_tensors(9 ) self.assertFalse(criteria(lowercase__ , lowercase__ ) ) _snake_case : Tuple = self._get_tensors(10 ) self.assertTrue(criteria(lowercase__ , lowercase__ ) ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : Dict = MaxLengthCriteria(max_length=10 ) _snake_case : Optional[int] = self._get_tensors(5 ) self.assertFalse(criteria(lowercase__ , lowercase__ ) ) _snake_case : Tuple = self._get_tensors(9 ) self.assertFalse(criteria(lowercase__ , lowercase__ ) ) _snake_case : str = self._get_tensors(10 ) self.assertTrue(criteria(lowercase__ , lowercase__ ) ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" _snake_case : Tuple = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) _snake_case : List[str] = self._get_tensors(5 ) self.assertFalse(criteria(lowercase__ , lowercase__ ) ) _snake_case : Dict = self._get_tensors(9 ) self.assertFalse(criteria(lowercase__ , lowercase__ ) ) _snake_case : Optional[Any] = self._get_tensors(10 ) self.assertTrue(criteria(lowercase__ , lowercase__ ) ) _snake_case : Dict = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" _snake_case : Optional[Any] = self._get_tensors(5 ) _snake_case : List[Any] = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowercase__ , lowercase__ ) ) _snake_case : List[Any] = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowercase__ , lowercase__ ) ) def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(lowercase__ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) _snake_case : Optional[int] = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(lowercase__ ) , 1 )
705
'''simple docstring''' import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor UpperCAmelCase : str = logging.getLogger(__name__) UpperCAmelCase : Dict = 5_0 # max width of layer names UpperCAmelCase : Union[str, Any] = 7_0 # max width of quantizer names def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Dict = parser.add_argument_group('''quant_trainer arguments''' ) group.add_argument('''--wprec''' , type=lowerCAmelCase_ , default=8 , help='''weight precision''' ) group.add_argument('''--aprec''' , type=lowerCAmelCase_ , default=8 , help='''activation precision''' ) group.add_argument('''--quant-per-tensor''' , action='''store_true''' , help='''per tensor weight scaling''' ) group.add_argument('''--quant-disable''' , action='''store_true''' , help='''disable all quantizers''' ) group.add_argument('''--quant-disable-embeddings''' , action='''store_true''' , help='''disable all embeddings quantizers''' ) group.add_argument('''--quant-disable-keyword''' , type=lowerCAmelCase_ , nargs='''+''' , help='''disable quantizers by keyword''' ) group.add_argument('''--quant-disable-layer-module''' , type=lowerCAmelCase_ , help='''disable quantizers by keyword under layer.''' ) group.add_argument('''--quant-enable-layer-module''' , type=lowerCAmelCase_ , help='''enable quantizers by keyword under layer''' ) group.add_argument('''--calibrator''' , default='''max''' , help='''which quantization range calibrator to use''' ) group.add_argument('''--percentile''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help='''percentile for PercentileCalibrator''' ) group.add_argument('''--fuse-qkv''' , action='''store_true''' , help='''use the same scale factor for qkv''' ) group.add_argument('''--clip-gelu''' , metavar='''N''' , type=lowerCAmelCase_ , help='''clip gelu output maximum value to N''' ) group.add_argument( '''--recalibrate-weights''' , action='''store_true''' , help=( '''recalibrate weight amaxes by taking the max of the weights.''' ''' amaxes will be computed with the current quantization granularity (axis).''' ) , ) def _a ( lowerCAmelCase_ ): """simple docstring""" if args.calibrator == "max": _snake_case : Optional[int] = '''max''' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('''Specify --percentile when using percentile calibrator''' ) _snake_case : Tuple = '''histogram''' elif args.calibrator == "mse": _snake_case : int = '''histogram''' else: raise ValueError(f'''Invalid calibrator {args.calibrator}''' ) _snake_case : Tuple = QuantDescriptor(num_bits=args.aprec , calib_method=lowerCAmelCase_ ) _snake_case : str = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(lowerCAmelCase_ ) quant_nn.QuantLinear.set_default_quant_desc_weight(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False , lowerCAmelCase_=False ): """simple docstring""" logger.info('''Configuring Model for Quantization''' ) logger.info(f'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(lowerCAmelCase_ , ['''embeddings'''] , which='''weight''' , _disabled=lowerCAmelCase_ ) if args.quant_disable: set_quantizer_by_name(lowerCAmelCase_ , [''''''] , _disabled=lowerCAmelCase_ ) if args.quant_disable_keyword: set_quantizer_by_name(lowerCAmelCase_ , args.quant_disable_keyword , _disabled=lowerCAmelCase_ ) if args.quant_disable_layer_module: set_quantizer_by_name(lowerCAmelCase_ , [R'''layer.\d+.''' + args.quant_disable_layer_module] , _disabled=lowerCAmelCase_ ) if args.quant_enable_layer_module: set_quantizer_by_name(lowerCAmelCase_ , [R'''layer.\d+.''' + args.quant_enable_layer_module] , _disabled=lowerCAmelCase_ ) if args.recalibrate_weights: recalibrate_weights(lowerCAmelCase_ ) if args.fuse_qkv: fuse_qkv(lowerCAmelCase_ , lowerCAmelCase_ ) if args.clip_gelu: clip_gelu(lowerCAmelCase_ , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ ): """simple docstring""" logger.info('''Enabling Calibration''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(f'''{name:80}: {module}''' ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" logger.info('''Loading calibrated amax''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('''percentile''' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" def fusea(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): for mod in [qq, qk, qv]: if not hasattr(lowerCAmelCase_ , '''_amax''' ): print(''' WARNING: NO AMAX BUFFER''' ) return _snake_case : Tuple = qq._amax.detach().item() _snake_case : Tuple = qk._amax.detach().item() _snake_case : List[Any] = qv._amax.detach().item() _snake_case : List[str] = max(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) qq._amax.fill_(lowerCAmelCase_ ) qk._amax.fill_(lowerCAmelCase_ ) qv._amax.fill_(lowerCAmelCase_ ) logger.info(f''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith('''.attention.self''' ): logger.info(f'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if name.endswith('''.output.dense''' ) and not name.endswith('''attention.output.dense''' ): _snake_case : List[Any] = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=lowerCAmelCase_ ) _snake_case : List[str] = mod._input_quantizer._amax.data.detach().item() logger.info(f'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def _a ( lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ) and mod._weight_quantizer.axis is not None: _snake_case : Dict = mod.weight.shape[0] _snake_case : Optional[int] = mod._weight_quantizer._amax.detach() _snake_case : Optional[int] = torch.ones(lowerCAmelCase_ , dtype=amax.dtype , device=amax.device ) * amax print(f'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def _a ( lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ): if not hasattr(mod.weight_quantizer , '''_amax''' ): print('''RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER''' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) _snake_case : int = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) _snake_case : Dict = set(range(len(mod.weight.size() ) ) ) - axis_set _snake_case : Optional[int] = pytorch_quantization.utils.reduce_amax(mod.weight , axis=lowerCAmelCase_ , keepdims=lowerCAmelCase_ ).detach() logger.info(f'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) _snake_case : Tuple = amax def _a ( lowerCAmelCase_ , lowerCAmelCase_=25 , lowerCAmelCase_=180 , lowerCAmelCase_=None ): """simple docstring""" if ignore is None: _snake_case : Dict = [] elif not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Optional[int] = [ignore] _snake_case : str = 0 for name, mod in model.named_modules(): if not hasattr(lowerCAmelCase_ , '''weight''' ): continue _snake_case : Optional[int] = max(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) for name, mod in model.named_modules(): _snake_case : Optional[Any] = getattr(lowerCAmelCase_ , '''_input_quantizer''' , lowerCAmelCase_ ) _snake_case : Tuple = getattr(lowerCAmelCase_ , '''_weight_quantizer''' , lowerCAmelCase_ ) if not hasattr(lowerCAmelCase_ , '''weight''' ): continue if type(lowerCAmelCase_ ) in ignore: continue if [True for s in ignore if type(lowerCAmelCase_ ) is str and s in name]: continue _snake_case : Optional[int] = f'''Act:{input_q.extra_repr()}''' _snake_case : Any = f'''Wgt:{weight_q.extra_repr()}''' _snake_case : Optional[int] = f'''{name:{name_width}} {act_str} {wgt_str}''' if len(lowerCAmelCase_ ) <= line_width: logger.info(lowerCAmelCase_ ) else: logger.info(f'''{name:{name_width}} {act_str}''' ) logger.info(f'''{" ":{name_width}} {wgt_str}''' ) def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : str = 0 for name, mod in model.named_modules(): if isinstance(lowerCAmelCase_ , pytorch_quantization.nn.TensorQuantizer ): print(f'''{name:80} {mod}''' ) count += 1 print(f'''{count} TensorQuantizers found in model''' ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if quantizer_mod is not None: assert hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: logger.warning(f'''{name} has no {quantizer}''' ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_="both" , **lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = f'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' if which in ["input", "both"]: set_quantizer(lowerCAmelCase_ , lowerCAmelCase_ , '''_input_quantizer''' , lowerCAmelCase_ , lowerCAmelCase_ ) if which in ["weight", "both"]: set_quantizer(lowerCAmelCase_ , lowerCAmelCase_ , '''_weight_quantizer''' , lowerCAmelCase_ , lowerCAmelCase_ ) logger.info(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCAmelCase_ , '''_input_quantizer''' ) or hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ): for n in names: if re.search(lowerCAmelCase_ , lowerCAmelCase_ ): set_quantizers(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) elif name.endswith('''_quantizer''' ): for n in names: if re.search(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Any = f'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) logger.info(lowerCAmelCase_ )
47
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase (metaclass=a__ ): _lowercase : Any = ["""flax"""] def __init__( self , *lowercase__ , **lowercase__ ) -> Optional[int]: """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Dict: """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> List[str]: """simple docstring""" requires_backends(cls , ['''flax'''] ) class lowerCamelCase (metaclass=a__ ): _lowercase : Union[str, Any] = ["""flax"""] def __init__( self , *lowercase__ , **lowercase__ ) -> List[Any]: """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Dict: """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Dict: """simple docstring""" requires_backends(cls , ['''flax'''] ) class lowerCamelCase (metaclass=a__ ): _lowercase : Optional[Any] = ["""flax"""] def __init__( self , *lowercase__ , **lowercase__ ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Dict: """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Dict: """simple docstring""" requires_backends(cls , ['''flax'''] ) class lowerCamelCase (metaclass=a__ ): _lowercase : List[str] = ["""flax"""] def __init__( self , *lowercase__ , **lowercase__ ) -> Any: """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Tuple: """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Tuple: """simple docstring""" requires_backends(cls , ['''flax'''] ) class lowerCamelCase (metaclass=a__ ): _lowercase : List[str] = ["""flax"""] def __init__( self , *lowercase__ , **lowercase__ ) -> List[Any]: """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> List[Any]: """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ['''flax'''] ) class lowerCamelCase (metaclass=a__ ): _lowercase : str = ["""flax"""] def __init__( self , *lowercase__ , **lowercase__ ) -> List[str]: """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ['''flax'''] ) class lowerCamelCase (metaclass=a__ ): _lowercase : Any = ["""flax"""] def __init__( self , *lowercase__ , **lowercase__ ) -> str: """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Any: """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Tuple: """simple docstring""" requires_backends(cls , ['''flax'''] ) class lowerCamelCase (metaclass=a__ ): _lowercase : Optional[Any] = ["""flax"""] def __init__( self , *lowercase__ , **lowercase__ ) -> str: """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Tuple: """simple docstring""" requires_backends(cls , ['''flax'''] ) class lowerCamelCase (metaclass=a__ ): _lowercase : Dict = ["""flax"""] def __init__( self , *lowercase__ , **lowercase__ ) -> Any: """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Any: """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Tuple: """simple docstring""" requires_backends(cls , ['''flax'''] ) class lowerCamelCase (metaclass=a__ ): _lowercase : List[Any] = ["""flax"""] def __init__( self , *lowercase__ , **lowercase__ ) -> Optional[int]: """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Optional[Any]: """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Any: """simple docstring""" requires_backends(cls , ['''flax'''] ) class lowerCamelCase (metaclass=a__ ): _lowercase : Any = ["""flax"""] def __init__( self , *lowercase__ , **lowercase__ ) -> str: """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Any: """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Optional[int]: """simple docstring""" requires_backends(cls , ['''flax'''] ) class lowerCamelCase (metaclass=a__ ): _lowercase : List[str] = ["""flax"""] def __init__( self , *lowercase__ , **lowercase__ ) -> Any: """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> int: """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> int: """simple docstring""" requires_backends(cls , ['''flax'''] ) class lowerCamelCase (metaclass=a__ ): _lowercase : int = ["""flax"""] def __init__( self , *lowercase__ , **lowercase__ ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Optional[int]: """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> List[str]: """simple docstring""" requires_backends(cls , ['''flax'''] )
706
'''simple docstring''' from __future__ import annotations def _a ( lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None ): """simple docstring""" if start is None: _snake_case : Optional[Any] = 0 if end is None: _snake_case : Any = len(lowerCAmelCase_ ) - 1 if start >= end: return _snake_case : Optional[Any] = (start + end) // 2 slowsort(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) slowsort(lowerCAmelCase_ , mid + 1 , lowerCAmelCase_ ) if sequence[end] < sequence[mid]: _snake_case , _snake_case : int = sequence[mid], sequence[end] slowsort(lowerCAmelCase_ , lowerCAmelCase_ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
47
0
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller UpperCAmelCase : List[str] = 3 def _a ( lowerCAmelCase_ ): """simple docstring""" print('''Generating primitive root of p''' ) while True: _snake_case : Tuple = random.randrange(3 , lowerCAmelCase_ ) if pow(lowerCAmelCase_ , 2 , lowerCAmelCase_ ) == 1: continue if pow(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) == 1: continue return g def _a ( lowerCAmelCase_ ): """simple docstring""" print('''Generating prime p...''' ) _snake_case : str = rabin_miller.generate_large_prime(lowerCAmelCase_ ) # select large prime number. _snake_case : int = primitive_root(lowerCAmelCase_ ) # one primitive root on modulo p. _snake_case : Tuple = random.randrange(3 , lowerCAmelCase_ ) # private_key -> have to be greater than 2 for safety. _snake_case : Any = cryptomath.find_mod_inverse(pow(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ ) _snake_case : Optional[Any] = (key_size, e_a, e_a, p) _snake_case : Optional[int] = (key_size, d) return public_key, private_key def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if os.path.exists(f'''{name}_pubkey.txt''' ) or os.path.exists(f'''{name}_privkey.txt''' ): print('''\nWARNING:''' ) print( f'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n''' '''Use a different name or delete these files and re-run this program.''' ) sys.exit() _snake_case : Tuple = generate_key(lowerCAmelCase_ ) print(f'''\nWriting public key to file {name}_pubkey.txt...''' ) with open(f'''{name}_pubkey.txt''' , '''w''' ) as fo: fo.write(f'''{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}''' ) print(f'''Writing private key to file {name}_privkey.txt...''' ) with open(f'''{name}_privkey.txt''' , '''w''' ) as fo: fo.write(f'''{private_key[0]},{private_key[1]}''' ) def _a ( ): """simple docstring""" print('''Making key files...''' ) make_key_files('''elgamal''' , 2_048 ) print('''Key files generation successful''' ) if __name__ == "__main__": main()
707
'''simple docstring''' import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class lowerCamelCase (unittest.TestCase ): @slow def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Tuple = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) _snake_case : Any = AutoTokenizer.from_pretrained('''google/mt5-small''' ) _snake_case : List[str] = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids _snake_case : Dict = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids _snake_case : Any = shift_tokens_right(lowercase__ , model.config.pad_token_id , model.config.decoder_start_token_id ) _snake_case : Any = model(lowercase__ , decoder_input_ids=lowercase__ ).logits _snake_case : Tuple = optax.softmax_cross_entropy(lowercase__ , onehot(lowercase__ , logits.shape[-1] ) ).mean() _snake_case : Tuple = -(labels.shape[-1] * loss.item()) _snake_case : Union[str, Any] = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
47
0
def _a ( ): """simple docstring""" _snake_case : Any = 0 for i in range(1 , 1_001 ): total += i**i return str(lowerCAmelCase_ )[-10:] if __name__ == "__main__": print(solution())
708
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCamelCase (unittest.TestCase ): def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : Any = torch.nn.Linear(10 , 10 ) _snake_case : Optional[int] = torch.optim.SGD(model.parameters() , 0.1 ) _snake_case : List[str] = Accelerator() _snake_case : Optional[Any] = accelerator.prepare(lowercase__ ) try: pickle.loads(pickle.dumps(lowercase__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
47
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : str = { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/config.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/config.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/config.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/config.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json', 'roberta-large-openai-detector': 'https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json', } class lowerCamelCase (a__ ): _lowercase : Any = """roberta""" def __init__( self , lowercase__=50_265 , lowercase__=768 , lowercase__=12 , lowercase__=12 , lowercase__=3_072 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=512 , lowercase__=2 , lowercase__=0.02 , lowercase__=1E-1_2 , lowercase__=1 , lowercase__=0 , lowercase__=2 , lowercase__="absolute" , lowercase__=True , lowercase__=None , **lowercase__ , ) -> int: """simple docstring""" super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__ ) _snake_case : Optional[int] = vocab_size _snake_case : List[Any] = hidden_size _snake_case : Optional[Any] = num_hidden_layers _snake_case : Dict = num_attention_heads _snake_case : Any = hidden_act _snake_case : Tuple = intermediate_size _snake_case : Optional[Any] = hidden_dropout_prob _snake_case : Union[str, Any] = attention_probs_dropout_prob _snake_case : int = max_position_embeddings _snake_case : List[Any] = type_vocab_size _snake_case : int = initializer_range _snake_case : List[str] = layer_norm_eps _snake_case : Optional[Any] = position_embedding_type _snake_case : List[str] = use_cache _snake_case : int = classifier_dropout class lowerCamelCase (a__ ): @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _snake_case : Union[str, Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _snake_case : str = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
709
'''simple docstring''' UpperCAmelCase : Union[str, Any] = tuple[float, float, float] UpperCAmelCase : int = tuple[float, float, float] def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : str = end_pointa[0] - end_pointa[0] _snake_case : Tuple = end_pointa[1] - end_pointa[1] _snake_case : Any = end_pointa[2] - end_pointa[2] return (x, y, z) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Dict = ab[1] * ac[2] - ab[2] * ac[1] # *i _snake_case : List[str] = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j _snake_case : Optional[int] = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return tuple(round(lowerCAmelCase_ , lowerCAmelCase_ ) for x in vector ) == (0, 0, 0) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 10 ): """simple docstring""" _snake_case : str = create_vector(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Tuple = create_vector(lowerCAmelCase_ , lowerCAmelCase_ ) return is_zero_vector(get_ad_vectors_cross(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ )
47
0
'''simple docstring''' import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('1.0.0a'): raise Exception('requires fairseq >= 1.0.0a') logging.set_verbosity_info() UpperCAmelCase : Tuple = logging.get_logger(__name__) UpperCAmelCase : Dict = 'Hello world! cécé herlolip' def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = FairseqRobertaModel.from_pretrained(lowerCAmelCase_ ) roberta.eval() # disable dropout _snake_case : Optional[int] = roberta.model.encoder.sentence_encoder _snake_case : Optional[Any] = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , ) if classification_head: _snake_case : Dict = roberta.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our RoBERTa config:''' , lowerCAmelCase_ ) _snake_case : List[str] = XLMRobertaXLForSequenceClassification(lowerCAmelCase_ ) if classification_head else XLMRobertaXLForMaskedLM(lowerCAmelCase_ ) model.eval() # Now let's copy all the weights. # Embeddings _snake_case : int = roberta_sent_encoder.embed_tokens.weight _snake_case : Union[str, Any] = roberta_sent_encoder.embed_positions.weight _snake_case : str = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. _snake_case : List[Any] = roberta_sent_encoder.layer_norm.weight _snake_case : List[Any] = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer _snake_case : BertLayer = model.roberta.encoder.layer[i] _snake_case : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] _snake_case : RobertaAttention = layer.attention _snake_case : Optional[Any] = roberta_layer.self_attn_layer_norm.weight _snake_case : List[str] = roberta_layer.self_attn_layer_norm.bias # self attention _snake_case : BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) _snake_case : Optional[Any] = roberta_layer.self_attn.q_proj.weight _snake_case : int = roberta_layer.self_attn.q_proj.bias _snake_case : Optional[int] = roberta_layer.self_attn.k_proj.weight _snake_case : Any = roberta_layer.self_attn.k_proj.bias _snake_case : List[Any] = roberta_layer.self_attn.v_proj.weight _snake_case : Any = roberta_layer.self_attn.v_proj.bias # self-attention output _snake_case : BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape _snake_case : Optional[Any] = roberta_layer.self_attn.out_proj.weight _snake_case : Union[str, Any] = roberta_layer.self_attn.out_proj.bias # this one is final layer norm _snake_case : str = roberta_layer.final_layer_norm.weight _snake_case : Optional[Any] = roberta_layer.final_layer_norm.bias # intermediate _snake_case : BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape _snake_case : str = roberta_layer.fca.weight _snake_case : List[Any] = roberta_layer.fca.bias # output _snake_case : BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape _snake_case : Optional[int] = roberta_layer.fca.weight _snake_case : Any = roberta_layer.fca.bias # end of layer if classification_head: _snake_case : List[Any] = roberta.model.classification_heads['''mnli'''].dense.weight _snake_case : Tuple = roberta.model.classification_heads['''mnli'''].dense.bias _snake_case : int = roberta.model.classification_heads['''mnli'''].out_proj.weight _snake_case : Any = roberta.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head _snake_case : Tuple = roberta.model.encoder.lm_head.dense.weight _snake_case : Union[str, Any] = roberta.model.encoder.lm_head.dense.bias _snake_case : int = roberta.model.encoder.lm_head.layer_norm.weight _snake_case : Dict = roberta.model.encoder.lm_head.layer_norm.bias _snake_case : int = roberta.model.encoder.lm_head.weight _snake_case : Union[str, Any] = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. _snake_case : torch.Tensor = roberta.encode(lowerCAmelCase_ ).unsqueeze(0 ) # batch of size 1 _snake_case : Any = model(lowerCAmelCase_ )[0] if classification_head: _snake_case : Any = roberta.model.classification_heads['''mnli'''](roberta.extract_features(lowerCAmelCase_ ) ) else: _snake_case : Any = roberta.model(lowerCAmelCase_ )[0] print(our_output.shape , their_output.shape ) _snake_case : str = torch.max(torch.abs(our_output - their_output ) ).item() print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 _snake_case : List[Any] = torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1E-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) pathlib.Path(lowerCAmelCase_ ).mkdir(parents=lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": UpperCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--roberta_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) UpperCAmelCase : Dict = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
710
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel UpperCAmelCase : List[str] = logging.getLogger(__name__) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if os.path.exists(lowerCAmelCase_ ): if os.path.exists(os.path.join(lowerCAmelCase_ , '''config.json''' ) ) and os.path.isfile( os.path.join(lowerCAmelCase_ , '''config.json''' ) ): os.remove(os.path.join(lowerCAmelCase_ , '''config.json''' ) ) if os.path.exists(os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) ) and os.path.isfile( os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) ): os.remove(os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) ) else: os.makedirs(lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_=False ): """simple docstring""" _snake_case : Optional[Any] = 2 if unlogit: _snake_case : Any = torch.pow(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Union[str, Any] = p * torch.log(lowerCAmelCase_ ) _snake_case : Optional[Any] = 0 return -plogp.sum(dim=-1 ) def _a ( lowerCAmelCase_ ): """simple docstring""" logger.info('''lv, h >\t''' + '''\t'''.join(f'''{x + 1}''' for x in range(len(lowerCAmelCase_ ) ) ) ) for row in range(len(lowerCAmelCase_ ) ): if tensor.dtype != torch.long: logger.info(f'''layer {row + 1}:\t''' + '''\t'''.join(f'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(f'''layer {row + 1}:\t''' + '''\t'''.join(f'''{x:d}''' for x in tensor[row].cpu().data ) ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=None , lowerCAmelCase_=False ): """simple docstring""" _snake_case , _snake_case : Optional[int] = model.config.num_hidden_layers, model.config.num_attention_heads _snake_case : Tuple = torch.zeros(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device ) _snake_case : Union[str, Any] = torch.zeros(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device ) if head_mask is None: _snake_case : int = torch.ones(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device ) head_mask.requires_grad_(requires_grad=lowerCAmelCase_ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _snake_case : Dict = None _snake_case : Dict = 0.0 _snake_case : Optional[int] = 0.0 for step, inputs in enumerate(tqdm(lowerCAmelCase_ , desc='''Iteration''' , disable=args.local_rank not in [-1, 0] ) ): _snake_case : List[Any] = tuple(t.to(args.device ) for t in inputs ) ((_snake_case) , ) : Optional[Any] = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _snake_case : Any = model(lowerCAmelCase_ , labels=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _snake_case , _snake_case , _snake_case : List[Any] = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(lowerCAmelCase_ ): _snake_case : Union[str, Any] = entropy(attn.detach() , lowerCAmelCase_ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(lowerCAmelCase_ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _snake_case : Any = 2 _snake_case : List[str] = torch.pow(torch.pow(lowerCAmelCase_ , lowerCAmelCase_ ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: _snake_case : Optional[int] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''' ) print_ad_tensor(lowerCAmelCase_ ) if compute_importance: logger.info('''Head importance scores''' ) print_ad_tensor(lowerCAmelCase_ ) logger.info('''Head ranked by importance scores''' ) _snake_case : str = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _snake_case : List[Any] = torch.arange( head_importance.numel() , device=args.device ) _snake_case : List[Any] = head_ranks.view_as(lowerCAmelCase_ ) print_ad_tensor(lowerCAmelCase_ ) return attn_entropy, head_importance, total_loss def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case , _snake_case , _snake_case : str = compute_heads_importance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ ) _snake_case : Optional[Any] = 1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' , lowerCAmelCase_ , original_score * args.masking_threshold ) _snake_case : int = torch.ones_like(lowerCAmelCase_ ) _snake_case : Optional[Any] = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _snake_case : int = original_score while current_score >= original_score * args.masking_threshold: _snake_case : int = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _snake_case : Dict = float('''Inf''' ) _snake_case : Optional[Any] = head_importance.view(-1 ).sort()[1] if len(lowerCAmelCase_ ) <= num_to_mask: print('''BREAK BY num_to_mask''' ) break # mask heads _snake_case : Union[str, Any] = current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist() ) ) _snake_case : Tuple = new_head_mask.view(-1 ) _snake_case : List[str] = 0.0 _snake_case : str = new_head_mask.view_as(lowerCAmelCase_ ) _snake_case : Dict = new_head_mask.clone().detach() print_ad_tensor(lowerCAmelCase_ ) # Compute metric and head importance again _snake_case , _snake_case , _snake_case : Any = compute_heads_importance( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) _snake_case : int = 1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' , lowerCAmelCase_ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info('''Final head mask''' ) print_ad_tensor(lowerCAmelCase_ ) np.save(os.path.join(args.output_dir , '''head_mask.npy''' ) , head_mask.detach().cpu().numpy() ) return head_mask def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = datetime.now() _snake_case , _snake_case , _snake_case : Union[str, Any] = compute_heads_importance( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , compute_importance=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) _snake_case : Tuple = 1 / loss _snake_case : Dict = datetime.now() - before_time _snake_case : List[Any] = sum(p.numel() for p in model.parameters() ) _snake_case : int = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(lowerCAmelCase_ ) ) } for k, v in heads_to_prune.items(): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Union[str, Any] = [ v, ] assert sum(len(lowerCAmelCase_ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(lowerCAmelCase_ ) _snake_case : List[str] = sum(p.numel() for p in model.parameters() ) _snake_case : int = datetime.now() _snake_case , _snake_case , _snake_case : Optional[Any] = compute_heads_importance( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , compute_importance=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , actually_pruned=lowerCAmelCase_ , ) _snake_case : Optional[int] = 1 / loss _snake_case : Dict = datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , lowerCAmelCase_ , lowerCAmelCase_ , pruned_num_params / original_num_params * 100 , ) logger.info('''Pruning: score with masking: %f score with pruning: %f''' , lowerCAmelCase_ , lowerCAmelCase_ ) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 100 ) save_model(lowerCAmelCase_ , args.output_dir ) def _a ( ): """simple docstring""" _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , ) parser.add_argument( '''--model_name_or_path''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--output_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) # Other parameters parser.add_argument( '''--config_name''' , default='''''' , type=lowerCAmelCase_ , help='''Pretrained config name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--tokenizer_name''' , default='''''' , type=lowerCAmelCase_ , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--cache_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help='''Where do you want to store the pre-trained models downloaded from s3''' , ) parser.add_argument( '''--data_subset''' , type=lowerCAmelCase_ , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''' ) parser.add_argument( '''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''' ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) parser.add_argument( '''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''' ) parser.add_argument( '''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , ) parser.add_argument( '''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''' ) parser.add_argument( '''--masking_threshold''' , default=0.9 , type=lowerCAmelCase_ , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , ) parser.add_argument( '''--masking_amount''' , default=0.1 , type=lowerCAmelCase_ , help='''Amount to heads to masking at each masking step.''' ) parser.add_argument('''--metric_name''' , default='''acc''' , type=lowerCAmelCase_ , help='''Metric to use for head masking.''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=lowerCAmelCase_ , help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) , ) parser.add_argument('''--batch_size''' , default=1 , type=lowerCAmelCase_ , help='''Batch size.''' ) parser.add_argument('''--seed''' , type=lowerCAmelCase_ , default=42 ) parser.add_argument('''--local_rank''' , type=lowerCAmelCase_ , default=-1 , help='''local_rank for distributed training on gpus''' ) parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''' ) parser.add_argument('''--server_ip''' , type=lowerCAmelCase_ , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=lowerCAmelCase_ , default='''''' , help='''Can be used for distant debugging.''' ) _snake_case : Optional[Any] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowerCAmelCase_ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _snake_case : str = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''' ) _snake_case : Optional[Any] = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _snake_case : List[str] = torch.device('''cuda''' , args.local_rank ) _snake_case : int = 1 torch.distributed.init_process_group(backend='''nccl''' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _snake_case : Optional[Any] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _snake_case : Optional[int] = nn.parallel.DistributedDataParallel( lowerCAmelCase_ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=lowerCAmelCase_ ) elif args.n_gpu > 1: _snake_case : List[Any] = nn.DataParallel(lowerCAmelCase_ ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=lowerCAmelCase_ ) torch.save(lowerCAmelCase_ , os.path.join(args.output_dir , '''run_args.bin''' ) ) logger.info('''Training/evaluation parameters %s''' , lowerCAmelCase_ ) # Prepare dataset _snake_case : Dict = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _snake_case : int = (torch.from_numpy(lowerCAmelCase_ ),) _snake_case : Tuple = TensorDataset(*lowerCAmelCase_ ) _snake_case : List[str] = RandomSampler(lowerCAmelCase_ ) _snake_case : Dict = DataLoader(lowerCAmelCase_ , sampler=lowerCAmelCase_ , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _snake_case : Optional[int] = mask_heads(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) prune_heads(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
47
0
'''simple docstring''' import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowerCamelCase (a__ ): _lowercase : Dict = """facebook/bart-large-mnli""" _lowercase : Union[str, Any] = ( """This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which """ """should be the text to classify, and `labels`, which should be the list of labels to use for classification. """ """It returns the most likely label in the list of provided `labels` for the input text.""" ) _lowercase : Optional[Any] = """text_classifier""" _lowercase : Dict = AutoTokenizer _lowercase : Dict = AutoModelForSequenceClassification _lowercase : str = ["""text""", ["""text"""]] _lowercase : Optional[int] = ["""text"""] def UpperCAmelCase_ ( self ) -> int: """simple docstring""" super().setup() _snake_case : Dict = self.model.config _snake_case : Union[str, Any] = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): _snake_case : List[Any] = int(lowercase__ ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Any: """simple docstring""" _snake_case : Tuple = labels return self.pre_processor( [text] * len(lowercase__ ) , [F'''This example is {label}''' for label in labels] , return_tensors='''pt''' , padding='''max_length''' , ) def UpperCAmelCase_ ( self , lowercase__ ) -> Tuple: """simple docstring""" _snake_case : int = outputs.logits _snake_case : Optional[int] = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
711
'''simple docstring''' def _a ( lowerCAmelCase_ ): """simple docstring""" if n == 1 or not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return 0 elif n == 2: return 1 else: _snake_case : Union[str, Any] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[int] = 0 _snake_case : int = 2 while digits < n: index += 1 _snake_case : Tuple = len(str(fibonacci(lowerCAmelCase_ ) ) ) return index def _a ( lowerCAmelCase_ = 1_000 ): """simple docstring""" return fibonacci_digits_index(lowerCAmelCase_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
47
0
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : List[Any] = filter(lambda lowerCAmelCase_ : p.requires_grad , model.parameters() ) _snake_case : str = sum([np.prod(p.size() ) for p in model_parameters] ) return params UpperCAmelCase : Dict = logging.getLogger(__name__) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if metric == "rouge2": _snake_case : Optional[Any] = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": _snake_case : Any = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": _snake_case : Optional[int] = '''{val_avg_em:.4f}-{step_count}''' elif metric == "loss": _snake_case : Union[str, Any] = '''{val_avg_loss:.4f}-{step_count}''' else: raise NotImplementedError( f'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' ''' function.''' ) _snake_case : List[str] = ModelCheckpoint( dirpath=lowerCAmelCase_ , filename=lowerCAmelCase_ , monitor=f'''val_{metric}''' , mode='''max''' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return EarlyStopping( monitor=f'''val_{metric}''' , mode='''min''' if '''loss''' in metric else '''max''' , patience=lowerCAmelCase_ , verbose=lowerCAmelCase_ , ) class lowerCamelCase (pl.Callback ): def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> List[str]: """simple docstring""" _snake_case : Tuple = {F'''lr_group_{i}''': param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(lowercase__ ) @rank_zero_only def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__=True ) -> None: """simple docstring""" logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) _snake_case : Dict = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results _snake_case : int = Path(pl_module.hparams.output_dir ) if type_path == "test": _snake_case : str = od / '''test_results.txt''' _snake_case : Union[str, Any] = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _snake_case : Optional[int] = od / F'''{type_path}_results/{trainer.global_step:05d}.txt''' _snake_case : Optional[int] = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=lowercase__ ) generations_file.parent.mkdir(exist_ok=lowercase__ ) with open(lowercase__ , '''a+''' ) as writer: for key in sorted(lowercase__ ): if key in ["log", "progress_bar", "preds"]: continue _snake_case : Optional[Any] = metrics[key] if isinstance(lowercase__ , torch.Tensor ): _snake_case : Optional[int] = val.item() _snake_case : int = F'''{key}: {val:.6f}\n''' writer.write(lowercase__ ) if not save_generations: return if "preds" in metrics: _snake_case : Dict = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(lowercase__ ) @rank_zero_only def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> List[Any]: """simple docstring""" try: _snake_case : Dict = pl_module.model.model.num_parameters() except AttributeError: _snake_case : str = pl_module.model.num_parameters() _snake_case : Any = count_trainable_parameters(lowercase__ ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1E6, '''grad_mp''': n_trainable_pars / 1E6} ) @rank_zero_only def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Optional[int]: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(lowercase__ , lowercase__ , '''test''' ) @rank_zero_only def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> List[str]: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
712
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar UpperCAmelCase : Any = TypeVar('T') UpperCAmelCase : str = TypeVar('U') class lowerCamelCase (Generic[T, U] ): def __init__( self , lowercase__ , lowercase__ ) -> List[Any]: """simple docstring""" _snake_case : str = key _snake_case : Optional[int] = val _snake_case : DoubleLinkedListNode[T, U] | None = None _snake_case : DoubleLinkedListNode[T, U] | None = None def __repr__( self ) -> str: """simple docstring""" return ( F'''Node: key: {self.key}, val: {self.val}, ''' F'''has next: {bool(self.next )}, has prev: {bool(self.prev )}''' ) class lowerCamelCase (Generic[T, U] ): def __init__( self ) -> None: """simple docstring""" _snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase__ , lowercase__ ) _snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase__ , lowercase__ ) _snake_case , _snake_case : Union[str, Any] = self.rear, self.head def __repr__( self ) -> str: """simple docstring""" _snake_case : List[Any] = ['''DoubleLinkedList'''] _snake_case : str = self.head while node.next is not None: rep.append(str(lowercase__ ) ) _snake_case : List[str] = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> None: """simple docstring""" _snake_case : Tuple = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None _snake_case : Union[str, Any] = node _snake_case : Optional[Any] = previous _snake_case : int = node _snake_case : Union[str, Any] = self.rear def UpperCAmelCase_ ( self , lowercase__ ) -> DoubleLinkedListNode[T, U] | None: """simple docstring""" if node.prev is None or node.next is None: return None _snake_case : Optional[int] = node.next _snake_case : Any = node.prev _snake_case : List[str] = None _snake_case : Optional[int] = None return node class lowerCamelCase (Generic[T, U] ): _lowercase : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self , lowercase__ ) -> Union[str, Any]: """simple docstring""" _snake_case : DoubleLinkedList[T, U] = DoubleLinkedList() _snake_case : Union[str, Any] = capacity _snake_case : int = 0 _snake_case : Dict = 0 _snake_case : Union[str, Any] = 0 _snake_case : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__( self ) -> str: """simple docstring""" return ( F'''CacheInfo(hits={self.hits}, misses={self.miss}, ''' F'''capacity={self.capacity}, current size={self.num_keys})''' ) def __contains__( self , lowercase__ ) -> bool: """simple docstring""" return key in self.cache def UpperCAmelCase_ ( self , lowercase__ ) -> U | None: """simple docstring""" if key in self.cache: self.hits += 1 _snake_case : DoubleLinkedListNode[T, U] = self.cache[key] _snake_case : Tuple = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowercase__ ) return node.val self.miss += 1 return None def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> None: """simple docstring""" if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity _snake_case : Dict = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowercase__ ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 _snake_case : Optional[int] = DoubleLinkedListNode(lowercase__ , lowercase__ ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value _snake_case : Optional[Any] = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list _snake_case : Optional[Any] = value self.list.add(lowercase__ ) @classmethod def UpperCAmelCase_ ( cls , lowercase__ = 128 ) -> Callable[[Callable[[T], U]], Callable[..., U]]: """simple docstring""" def cache_decorator_inner(lowercase__ ) -> Callable[..., U]: def cache_decorator_wrapper(*lowercase__ ) -> U: if func not in cls.decorator_function_to_instance_map: _snake_case : Optional[Any] = LRUCache(lowercase__ ) _snake_case : Union[str, Any] = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: _snake_case : Tuple = func(*lowercase__ ) cls.decorator_function_to_instance_map[func].put(args[0] , lowercase__ ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowercase__ , '''cache_info''' , lowercase__ ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
47
0
'''simple docstring''' from string import ascii_lowercase, ascii_uppercase def _a ( lowerCAmelCase_ ): """simple docstring""" if not sentence: return "" _snake_case : List[str] = dict(zip(lowerCAmelCase_ , lowerCAmelCase_ ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
713
'''simple docstring''' import os import numpy import onnx def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : List[Any] = a.name _snake_case : List[Any] = b.name _snake_case : Tuple = '''''' _snake_case : Tuple = '''''' _snake_case : Optional[Any] = a == b _snake_case : List[Any] = name_a _snake_case : str = name_b return res def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(lowerCAmelCase_ , lowerCAmelCase_ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , lowerCAmelCase_ , lowerCAmelCase_ ) _graph_replace_input_with(node_proto.attribute[1].g , lowerCAmelCase_ , lowerCAmelCase_ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , lowerCAmelCase_ , lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for n in graph_proto.node: _node_replace_input_with(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = list(model.graph.initializer ) _snake_case : List[str] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i _snake_case : List[Any] = inits[i].name _snake_case : List[str] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , lowerCAmelCase_ , lowerCAmelCase_ ) def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Tuple = os.path.dirname(lowerCAmelCase_ ) _snake_case : str = os.path.basename(lowerCAmelCase_ ) _snake_case : Tuple = onnx.load(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) ) _snake_case : Union[str, Any] = list(model.graph.initializer ) _snake_case : Union[str, Any] = set() _snake_case : Any = {} _snake_case : str = [] _snake_case : Union[str, Any] = 0 for i in range(len(lowerCAmelCase_ ) ): if i in dup_set: continue for j in range(i + 1 , len(lowerCAmelCase_ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(lowerCAmelCase_ ) dup_set.add(lowerCAmelCase_ ) _snake_case : List[Any] = inits[j].data_type _snake_case : Dict = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('''unexpected data type: ''' , lowerCAmelCase_ ) total_reduced_size += mem_size _snake_case : Union[str, Any] = inits[i].name _snake_case : Any = inits[j].name if name_i in dup_map: dup_map[name_i].append(lowerCAmelCase_ ) else: _snake_case : Union[str, Any] = [name_j] ind_to_replace.append((j, i) ) print('''total reduced size: ''' , total_reduced_size / 1_024 / 1_024 / 1_024 , '''GB''' ) _snake_case : List[str] = sorted(lowerCAmelCase_ ) _remove_dup_initializers_from_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : List[str] = '''optimized_''' + model_file_name _snake_case : List[Any] = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) onnx.save(lowerCAmelCase_ , lowerCAmelCase_ ) return new_model
47
0
'''simple docstring''' def _a ( lowerCAmelCase_ ): """simple docstring""" if len(lowerCAmelCase_ ) <= 1: return lst _snake_case : Union[str, Any] = 1 while i < len(lowerCAmelCase_ ): if lst[i - 1] <= lst[i]: i += 1 else: _snake_case : List[str] = lst[i], lst[i - 1] i -= 1 if i == 0: _snake_case : Optional[int] = 1 return lst if __name__ == "__main__": UpperCAmelCase : str = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase : Union[str, Any] = [int(item) for item in user_input.split(',')] print(gnome_sort(unsorted))
714
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : int = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
47
0
'''simple docstring''' def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if height >= 1: move_tower(height - 1 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) move_disk(lowerCAmelCase_ , lowerCAmelCase_ ) move_tower(height - 1 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" print('''moving disk from''' , lowerCAmelCase_ , '''to''' , lowerCAmelCase_ ) def _a ( ): """simple docstring""" _snake_case : Any = int(input('''Height of hanoi: ''' ).strip() ) move_tower(lowerCAmelCase_ , '''A''' , '''B''' , '''C''' ) if __name__ == "__main__": main()
715
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase : Dict = logging.get_logger(__name__) class lowerCamelCase (a__ ): _lowercase : int = ["""pixel_values"""] def __init__( self , lowercase__ = True , lowercase__ = 32 , lowercase__=PILImageResampling.BILINEAR , lowercase__ = True , **lowercase__ , ) -> None: """simple docstring""" _snake_case : Any = do_resize _snake_case : List[str] = do_rescale _snake_case : Any = size_divisor _snake_case : Optional[Any] = resample super().__init__(**lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ ) -> np.ndarray: """simple docstring""" _snake_case , _snake_case : Dict = get_image_size(lowercase__ ) # Rounds the height and width down to the closest multiple of size_divisor _snake_case : Optional[int] = height // size_divisor * size_divisor _snake_case : Dict = width // size_divisor * size_divisor _snake_case : str = resize(lowercase__ , (new_h, new_w) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) return image def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ ) -> np.ndarray: """simple docstring""" return rescale(image=lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__=None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ) -> BatchFeature: """simple docstring""" _snake_case : Any = do_resize if do_resize is not None else self.do_resize _snake_case : List[Any] = do_rescale if do_rescale is not None else self.do_rescale _snake_case : List[str] = size_divisor if size_divisor is not None else self.size_divisor _snake_case : int = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) _snake_case : Tuple = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. _snake_case : Tuple = [to_numpy_array(lowercase__ ) for img in images] if do_resize: _snake_case : Optional[int] = [self.resize(lowercase__ , size_divisor=lowercase__ , resample=lowercase__ ) for image in images] if do_rescale: _snake_case : Union[str, Any] = [self.rescale(lowercase__ , scale=1 / 255 ) for image in images] _snake_case : Union[str, Any] = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] _snake_case : List[str] = {'''pixel_values''': images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
47
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class lowerCamelCase : _lowercase : Any = LEDConfig _lowercase : Any = {} _lowercase : Optional[Any] = """gelu""" def __init__( self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=False , lowercase__=99 , lowercase__=32 , lowercase__=2 , lowercase__=4 , lowercase__=37 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=20 , lowercase__=2 , lowercase__=1 , lowercase__=0 , lowercase__=4 , ) -> Any: """simple docstring""" _snake_case : Dict = parent _snake_case : Any = batch_size _snake_case : List[str] = seq_length _snake_case : Union[str, Any] = is_training _snake_case : Tuple = use_labels _snake_case : int = vocab_size _snake_case : str = hidden_size _snake_case : Optional[Any] = num_hidden_layers _snake_case : List[Any] = num_attention_heads _snake_case : Optional[int] = intermediate_size _snake_case : List[Any] = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : Optional[int] = max_position_embeddings _snake_case : Any = eos_token_id _snake_case : List[Any] = pad_token_id _snake_case : Optional[int] = bos_token_id _snake_case : Any = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _snake_case : Any = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _snake_case : Tuple = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" _snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _snake_case : Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _snake_case : Optional[int] = tf.concat([input_ids, eos_tensor] , axis=1 ) _snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case : List[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _snake_case : Dict = prepare_led_inputs_dict(lowercase__ , lowercase__ , lowercase__ ) _snake_case : Dict = tf.concat( [tf.zeros_like(lowercase__ )[:, :-1], tf.ones_like(lowercase__ )[:, -1:]] , axis=-1 , ) _snake_case : Dict = global_attention_mask return config, inputs_dict def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> int: """simple docstring""" _snake_case : int = TFLEDModel(config=lowercase__ ).get_decoder() _snake_case : Union[str, Any] = inputs_dict['''input_ids'''] _snake_case : List[str] = input_ids[:1, :] _snake_case : Tuple = inputs_dict['''attention_mask'''][:1, :] _snake_case : Dict = 1 # first forward pass _snake_case : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__ ) _snake_case : Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _snake_case : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _snake_case : Tuple = tf.concat([input_ids, next_tokens] , axis=-1 ) _snake_case : List[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _snake_case : List[Any] = model(lowercase__ , attention_mask=lowercase__ )[0] _snake_case : Tuple = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _snake_case : Tuple = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _snake_case : int = output_from_no_past[:, -3:, random_slice_idx] _snake_case : Optional[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase__ , lowercase__ , rtol=1E-3 ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , ): """simple docstring""" if attention_mask is None: _snake_case : Union[str, Any] = tf.cast(tf.math.not_equal(lowerCAmelCase_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _snake_case : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _snake_case : int = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class lowerCamelCase (a__ , a__ , unittest.TestCase ): _lowercase : Optional[int] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _lowercase : int = (TFLEDForConditionalGeneration,) if is_tf_available() else () _lowercase : Dict = ( { """conversational""": TFLEDForConditionalGeneration, """feature-extraction""": TFLEDModel, """summarization""": TFLEDForConditionalGeneration, """text2text-generation""": TFLEDForConditionalGeneration, """translation""": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _lowercase : int = True _lowercase : List[Any] = False _lowercase : str = False _lowercase : Union[str, Any] = False def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : str = TFLEDModelTester(self ) _snake_case : Union[str, Any] = ConfigTester(self , config_class=lowercase__ ) def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase__ ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Any = tf.zeros_like(inputs_dict['''attention_mask'''] ) _snake_case : Optional[Any] = 2 _snake_case : Any = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) _snake_case : Dict = True _snake_case : str = self.model_tester.seq_length _snake_case : Dict = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowercase__ ): _snake_case : Optional[int] = outputs.decoder_attentions self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowercase__ ): _snake_case : int = [t.numpy() for t in outputs.encoder_attentions] _snake_case : Tuple = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _snake_case : Union[str, Any] = True _snake_case : Dict = False _snake_case : Union[str, Any] = False _snake_case : List[Any] = model_class(lowercase__ ) _snake_case : Optional[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) _snake_case : List[Any] = len(lowercase__ ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) if self.is_encoder_decoder: _snake_case : Union[str, Any] = model_class(lowercase__ ) _snake_case : List[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_decoder_attentions_output(lowercase__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _snake_case : str = True _snake_case : Tuple = model_class(lowercase__ ) _snake_case : int = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) # Check attention is always last and order is fine _snake_case : int = True _snake_case : List[str] = True _snake_case : Tuple = model_class(lowercase__ ) _snake_case : Optional[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase__ ) ) self.assertEqual(model.config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" pass def UpperCAmelCase_ ( self ) -> str: """simple docstring""" pass def _a ( lowerCAmelCase_ ): """simple docstring""" return tf.constant(lowerCAmelCase_ , dtype=tf.intaa ) UpperCAmelCase : Dict = 1E-4 @slow @require_tf class lowerCamelCase (unittest.TestCase ): def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" _snake_case : List[str] = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here _snake_case : List[str] = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : Tuple = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : Tuple = prepare_led_inputs_dict(model.config , lowercase__ , lowercase__ ) _snake_case : int = model(**lowercase__ )[0] _snake_case : Dict = (1, 1_024, 768) self.assertEqual(output.shape , lowercase__ ) # change to expected output here _snake_case : List[Any] = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1E-3 ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Any = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here _snake_case : Dict = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : Dict = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : List[str] = prepare_led_inputs_dict(model.config , lowercase__ , lowercase__ ) _snake_case : Tuple = model(**lowercase__ )[0] _snake_case : Any = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , lowercase__ ) # change to expected output here _snake_case : Dict = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1E-3 , rtol=1E-3 )
716
'''simple docstring''' from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class lowerCamelCase : _lowercase : Any = LEDConfig _lowercase : Any = {} _lowercase : Optional[Any] = """gelu""" def __init__( self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=False , lowercase__=99 , lowercase__=32 , lowercase__=2 , lowercase__=4 , lowercase__=37 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=20 , lowercase__=2 , lowercase__=1 , lowercase__=0 , lowercase__=4 , ) -> Any: """simple docstring""" _snake_case : Dict = parent _snake_case : Any = batch_size _snake_case : List[str] = seq_length _snake_case : Union[str, Any] = is_training _snake_case : Tuple = use_labels _snake_case : int = vocab_size _snake_case : str = hidden_size _snake_case : Optional[Any] = num_hidden_layers _snake_case : List[Any] = num_attention_heads _snake_case : Optional[int] = intermediate_size _snake_case : List[Any] = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : Optional[int] = max_position_embeddings _snake_case : Any = eos_token_id _snake_case : List[Any] = pad_token_id _snake_case : Optional[int] = bos_token_id _snake_case : Any = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _snake_case : Any = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _snake_case : Tuple = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" _snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _snake_case : Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _snake_case : Optional[int] = tf.concat([input_ids, eos_tensor] , axis=1 ) _snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case : List[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _snake_case : Dict = prepare_led_inputs_dict(lowercase__ , lowercase__ , lowercase__ ) _snake_case : Dict = tf.concat( [tf.zeros_like(lowercase__ )[:, :-1], tf.ones_like(lowercase__ )[:, -1:]] , axis=-1 , ) _snake_case : Dict = global_attention_mask return config, inputs_dict def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> int: """simple docstring""" _snake_case : int = TFLEDModel(config=lowercase__ ).get_decoder() _snake_case : Union[str, Any] = inputs_dict['''input_ids'''] _snake_case : List[str] = input_ids[:1, :] _snake_case : Tuple = inputs_dict['''attention_mask'''][:1, :] _snake_case : Dict = 1 # first forward pass _snake_case : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__ ) _snake_case , _snake_case : Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _snake_case : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _snake_case : Tuple = tf.concat([input_ids, next_tokens] , axis=-1 ) _snake_case : List[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _snake_case : List[Any] = model(lowercase__ , attention_mask=lowercase__ )[0] _snake_case : Tuple = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _snake_case : Tuple = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _snake_case : int = output_from_no_past[:, -3:, random_slice_idx] _snake_case : Optional[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase__ , lowercase__ , rtol=1E-3 ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , ): """simple docstring""" if attention_mask is None: _snake_case : Union[str, Any] = tf.cast(tf.math.not_equal(lowerCAmelCase_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _snake_case : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _snake_case : int = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class lowerCamelCase (a__ , a__ , unittest.TestCase ): _lowercase : Optional[int] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _lowercase : int = (TFLEDForConditionalGeneration,) if is_tf_available() else () _lowercase : Dict = ( { """conversational""": TFLEDForConditionalGeneration, """feature-extraction""": TFLEDModel, """summarization""": TFLEDForConditionalGeneration, """text2text-generation""": TFLEDForConditionalGeneration, """translation""": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _lowercase : int = True _lowercase : List[Any] = False _lowercase : str = False _lowercase : Union[str, Any] = False def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : str = TFLEDModelTester(self ) _snake_case : Union[str, Any] = ConfigTester(self , config_class=lowercase__ ) def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase__ ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Any = tf.zeros_like(inputs_dict['''attention_mask'''] ) _snake_case : Optional[Any] = 2 _snake_case : Any = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) _snake_case : Dict = True _snake_case : str = self.model_tester.seq_length _snake_case : Dict = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowercase__ ): _snake_case : Optional[int] = outputs.decoder_attentions self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowercase__ ): _snake_case : int = [t.numpy() for t in outputs.encoder_attentions] _snake_case : Tuple = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _snake_case : Union[str, Any] = True _snake_case : Dict = False _snake_case : Union[str, Any] = False _snake_case : List[Any] = model_class(lowercase__ ) _snake_case : Optional[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) _snake_case : List[Any] = len(lowercase__ ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) if self.is_encoder_decoder: _snake_case : Union[str, Any] = model_class(lowercase__ ) _snake_case : List[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_decoder_attentions_output(lowercase__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _snake_case : str = True _snake_case : Tuple = model_class(lowercase__ ) _snake_case : int = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) # Check attention is always last and order is fine _snake_case : int = True _snake_case : List[str] = True _snake_case : Tuple = model_class(lowercase__ ) _snake_case : Optional[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase__ ) ) self.assertEqual(model.config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" pass def UpperCAmelCase_ ( self ) -> str: """simple docstring""" pass def _a ( lowerCAmelCase_ ): """simple docstring""" return tf.constant(lowerCAmelCase_ , dtype=tf.intaa ) UpperCAmelCase : Dict = 1E-4 @slow @require_tf class lowerCamelCase (unittest.TestCase ): def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" _snake_case : List[str] = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here _snake_case : List[str] = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : Tuple = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : Tuple = prepare_led_inputs_dict(model.config , lowercase__ , lowercase__ ) _snake_case : int = model(**lowercase__ )[0] _snake_case : Dict = (1, 1_024, 768) self.assertEqual(output.shape , lowercase__ ) # change to expected output here _snake_case : List[Any] = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1E-3 ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Any = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here _snake_case : Dict = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : Dict = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : List[str] = prepare_led_inputs_dict(model.config , lowercase__ , lowercase__ ) _snake_case : Tuple = model(**lowercase__ )[0] _snake_case : Any = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , lowercase__ ) # change to expected output here _snake_case : Dict = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1E-3 , rtol=1E-3 )
47
0
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance UpperCAmelCase : str = 6_3_7_8_1_3_7.0 UpperCAmelCase : List[Any] = 6_3_5_6_7_5_2.3_1_4_2_4_5 UpperCAmelCase : Union[str, Any] = 6_3_7_8_1_3_7 def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Dict = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _snake_case : Optional[Any] = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) _snake_case : Tuple = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _snake_case : List[str] = haversine_distance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _snake_case : int = (b_lata + b_lata) / 2 _snake_case : Optional[int] = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _snake_case : Dict = (sin(lowerCAmelCase_ ) ** 2) * (cos(lowerCAmelCase_ ) ** 2) _snake_case : Optional[Any] = cos(sigma / 2 ) ** 2 _snake_case : Optional[Any] = (sigma - sin(lowerCAmelCase_ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _snake_case : Optional[Any] = (cos(lowerCAmelCase_ ) ** 2) * (sin(lowerCAmelCase_ ) ** 2) _snake_case : List[str] = sin(sigma / 2 ) ** 2 _snake_case : Optional[Any] = (sigma + sin(lowerCAmelCase_ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
717
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase : Optional[int] = logging.get_logger(__name__) UpperCAmelCase : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase : Any = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } UpperCAmelCase : Optional[Any] = { 'gpt-neox-20b': 2_0_4_8, } class lowerCamelCase (a__ ): _lowercase : Optional[int] = VOCAB_FILES_NAMES _lowercase : str = PRETRAINED_VOCAB_FILES_MAP _lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Optional[int] = ["""input_ids""", """attention_mask"""] def __init__( self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="<|endoftext|>" , lowercase__="<|endoftext|>" , lowercase__="<|endoftext|>" , lowercase__=False , **lowercase__ , ) -> List[Any]: """simple docstring""" super().__init__( lowercase__ , lowercase__ , tokenizer_file=lowercase__ , unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , add_prefix_space=lowercase__ , **lowercase__ , ) _snake_case : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowercase__ ) != add_prefix_space: _snake_case : int = getattr(lowercase__ , pre_tok_state.pop('''type''' ) ) _snake_case : int = add_prefix_space _snake_case : Optional[Any] = pre_tok_class(**lowercase__ ) _snake_case : List[str] = add_prefix_space def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> Tuple[str]: """simple docstring""" _snake_case : Optional[int] = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> List[int]: """simple docstring""" _snake_case : List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase__ , add_special_tokens=lowercase__ ) + [self.eos_token_id] ) if len(lowercase__ ) > self.model_max_length: _snake_case : Dict = input_ids[-self.model_max_length :] return input_ids
47
0
'''simple docstring''' def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" while a != 0: _snake_case : List[Any] = b % a, a return b def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if gcd(lowerCAmelCase_ , lowerCAmelCase_ ) != 1: _snake_case : List[Any] = f'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(lowerCAmelCase_ ) _snake_case : Any = 1, 0, a _snake_case : str = 0, 1, m while va != 0: _snake_case : List[Any] = ua // va _snake_case : Union[str, Any] = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
718
'''simple docstring''' import math from numpy import inf from scipy.integrate import quad def _a ( lowerCAmelCase_ ): """simple docstring""" if num <= 0: raise ValueError('''math domain error''' ) return quad(lowerCAmelCase_ , 0 , lowerCAmelCase_ , args=(lowerCAmelCase_) )[0] def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return math.pow(lowerCAmelCase_ , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
47
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : Tuple = logging.get_logger(__name__) UpperCAmelCase : List[Any] = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class lowerCamelCase (a__ ): _lowercase : Optional[int] = """falcon""" _lowercase : int = ["""past_key_values"""] def __init__( self , lowercase__=65_024 , lowercase__=4_544 , lowercase__=32 , lowercase__=71 , lowercase__=1E-5 , lowercase__=0.02 , lowercase__=True , lowercase__=0.0 , lowercase__=0.0 , lowercase__=None , lowercase__=False , lowercase__=False , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=11 , lowercase__=11 , **lowercase__ , ) -> int: """simple docstring""" _snake_case : Optional[Any] = vocab_size # Backward compatibility with n_embed kwarg _snake_case : Union[str, Any] = kwargs.pop('''n_embed''' , lowercase__ ) _snake_case : str = hidden_size if n_embed is None else n_embed _snake_case : Union[str, Any] = num_hidden_layers _snake_case : Union[str, Any] = num_attention_heads _snake_case : int = layer_norm_epsilon _snake_case : Optional[int] = initializer_range _snake_case : Optional[Any] = use_cache _snake_case : Optional[int] = hidden_dropout _snake_case : List[Any] = attention_dropout _snake_case : Dict = bos_token_id _snake_case : List[str] = eos_token_id _snake_case : Any = num_attention_heads if num_kv_heads is None else num_kv_heads _snake_case : Dict = alibi _snake_case : List[Any] = new_decoder_architecture _snake_case : Optional[int] = multi_query # Ignored when new_decoder_architecture is True _snake_case : List[Any] = parallel_attn _snake_case : Dict = bias super().__init__(bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__ ) @property def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" return self.hidden_size // self.num_attention_heads @property def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" return not self.alibi
719
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class lowerCamelCase (unittest.TestCase ): @slow def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Union[str, Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Any = TFAutoModel.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : str = AutoModel.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Optional[Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Dict = TFAutoModelForPreTraining.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Tuple = AutoModelForPreTraining.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Optional[int] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained(lowercase__ , from_pt=lowercase__ ) _snake_case , _snake_case : Tuple = TFAutoModelForCausalLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained(lowercase__ , from_tf=lowercase__ ) _snake_case , _snake_case : Optional[Any] = AutoModelForCausalLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Tuple = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : int = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[str] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(lowercase__ , from_pt=lowercase__ ) _snake_case , _snake_case : List[str] = TFAutoModelForMaskedLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : int = AutoModelForMaskedLM.from_pretrained(lowercase__ , from_tf=lowercase__ ) _snake_case , _snake_case : Optional[int] = AutoModelForMaskedLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[str] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(lowercase__ , from_pt=lowercase__ ) _snake_case , _snake_case : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : List[str] = AutoModelForSeqaSeqLM.from_pretrained(lowercase__ , from_tf=lowercase__ ) _snake_case , _snake_case : Dict = AutoModelForSeqaSeqLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Any = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Any = TFAutoModelForSequenceClassification.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Dict = AutoModelForSequenceClassification.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : str = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : str = TFAutoModelForQuestionAnswering.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Union[str, Any] = AutoModelForQuestionAnswering.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : Union[str, Any] = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 ) _snake_case : Tuple = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : List[str] = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 ) _snake_case : int = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 )
47
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase (a__ ): _lowercase : UNetaDModel _lowercase : ScoreSdeVeScheduler def __init__( self , lowercase__ , lowercase__ ) -> Optional[int]: """simple docstring""" super().__init__() self.register_modules(unet=lowercase__ , scheduler=lowercase__ ) @torch.no_grad() def __call__( self , lowercase__ = 1 , lowercase__ = 2_000 , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , **lowercase__ , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" _snake_case : Optional[int] = self.unet.config.sample_size _snake_case : int = (batch_size, 3, img_size, img_size) _snake_case : Dict = self.unet _snake_case : List[str] = randn_tensor(lowercase__ , generator=lowercase__ ) * self.scheduler.init_noise_sigma _snake_case : Tuple = sample.to(self.device ) self.scheduler.set_timesteps(lowercase__ ) self.scheduler.set_sigmas(lowercase__ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): _snake_case : Dict = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): _snake_case : Dict = self.unet(lowercase__ , lowercase__ ).sample _snake_case : Dict = self.scheduler.step_correct(lowercase__ , lowercase__ , generator=lowercase__ ).prev_sample # prediction step _snake_case : int = model(lowercase__ , lowercase__ ).sample _snake_case : List[Any] = self.scheduler.step_pred(lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ ) _snake_case : List[Any] = output.prev_sample, output.prev_sample_mean _snake_case : List[str] = sample_mean.clamp(0 , 1 ) _snake_case : List[Any] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _snake_case : Any = self.numpy_to_pil(lowercase__ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=lowercase__ )
720
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : Dict = {'configuration_timm_backbone': ['TimmBackboneConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = ['TimmBackbone'] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
47
0
'''simple docstring''' def _a ( lowerCAmelCase_ = 10 ): """simple docstring""" if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or n < 0: raise ValueError('''Invalid input''' ) _snake_case : Tuple = 10**n _snake_case : Any = 28_433 * (pow(2 , 7_830_457 , lowerCAmelCase_ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(1_0) = }""")
721
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version UpperCAmelCase : Tuple = logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') UpperCAmelCase : str = { 'base': AutoModel, 'sequence-classification': AutoModelForSequenceClassification, 'question-answering': AutoModelForQuestionAnswering, 'pretraining': AutoModelForPreTraining, 'token-classification': AutoModelForTokenClassification, 'language-modeling': AutoModelWithLMHead, 'summarization': AutoModelForSeqaSeqLM, 'translation': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization UpperCAmelCase : Optional[Any] = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } UpperCAmelCase : Tuple = sorted(arg_to_scheduler.keys()) UpperCAmelCase : Optional[Any] = '{' + ', '.join(arg_to_scheduler_choices) + '}' class lowerCamelCase (pl.LightningModule ): def __init__( self , lowercase__ , lowercase__=None , lowercase__="base" , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ , ) -> Optional[int]: """simple docstring""" super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(lowercase__ ) _snake_case : Union[str, Any] = 0 _snake_case : int = Path(self.hparams.output_dir ) _snake_case : int = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: _snake_case : Tuple = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=lowercase__ , **lowercase__ , ) else: _snake_case : PretrainedConfig = config _snake_case : Optional[Any] = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(self.hparams , lowercase__ , lowercase__ ): assert hasattr(self.config , lowercase__ ), F'''model config doesn\'t have a `{p}` attribute''' setattr(self.config , lowercase__ , getattr(self.hparams , lowercase__ ) ) if tokenizer is None: _snake_case : Optional[int] = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=lowercase__ , ) else: _snake_case : PreTrainedTokenizer = tokenizer _snake_case : Any = MODEL_MODES[mode] if model is None: _snake_case : List[Any] = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=lowercase__ , ) else: _snake_case : Optional[Any] = model def UpperCAmelCase_ ( self , *lowercase__ , **lowercase__ ) -> List[str]: """simple docstring""" _snake_case : Dict = self.model_type.from_pretrained(*lowercase__ , **lowercase__ ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Optional[int] = arg_to_scheduler[self.hparams.lr_scheduler] _snake_case : Optional[int] = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) _snake_case : str = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1} return scheduler def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Any = self.model _snake_case : List[Any] = ['''bias''', '''LayerNorm.weight'''] _snake_case : List[str] = [ { '''params''': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters '''weight_decay''': self.hparams.weight_decay, }, { '''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] if self.hparams.adafactor: _snake_case : Any = Adafactor( lowercase__ , lr=self.hparams.learning_rate , scale_parameter=lowercase__ , relative_step=lowercase__ ) else: _snake_case : List[str] = AdamW( lowercase__ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) _snake_case : List[str] = optimizer _snake_case : Any = self.get_lr_scheduler() return [optimizer], [scheduler] def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Any: """simple docstring""" return self.validation_step(lowercase__ , lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> Tuple: """simple docstring""" return self.validation_end(lowercase__ ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Any = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores _snake_case : Optional[int] = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def UpperCAmelCase_ ( self , lowercase__ ) -> Any: """simple docstring""" if stage == "test": _snake_case : Any = len(self.test_dataloader().dataset ) else: _snake_case : Dict = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=lowercase__ ) _snake_case : Optional[int] = len(self.train_dataloader().dataset ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = False ) -> str: """simple docstring""" raise NotImplementedError('''You must implement this for your task''' ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" return self.train_loader def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=lowercase__ ) def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> Optional[int]: """simple docstring""" return os.path.join( self.hparams.data_dir , '''cached_{}_{}_{}'''.format( lowercase__ , list(filter(lowercase__ , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def UpperCAmelCase_ ( self , lowercase__ ) -> None: """simple docstring""" _snake_case : Dict = self.output_dir.joinpath('''best_tfmr''' ) _snake_case : Tuple = self.step_count self.model.save_pretrained(lowercase__ ) self.tokenizer.save_pretrained(lowercase__ ) @staticmethod def UpperCAmelCase_ ( lowercase__ , lowercase__ ) -> Tuple: """simple docstring""" parser.add_argument( '''--model_name_or_path''' , default=lowercase__ , type=lowercase__ , required=lowercase__ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--config_name''' , default='''''' , type=lowercase__ , help='''Pretrained config name or path if not the same as model_name''' ) parser.add_argument( '''--tokenizer_name''' , default=lowercase__ , type=lowercase__ , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument( '''--cache_dir''' , default=str(Path(lowercase__ ).parent / '''test_run''' / '''cache''' ) , type=lowercase__ , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , ) parser.add_argument( '''--encoder_layerdrop''' , type=lowercase__ , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--decoder_layerdrop''' , type=lowercase__ , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--dropout''' , type=lowercase__ , help='''Dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--attention_dropout''' , type=lowercase__ , help='''Attention dropout probability (Optional). Goes into model.config''' , ) parser.add_argument('''--learning_rate''' , default=5E-5 , type=lowercase__ , help='''The initial learning rate for Adam.''' ) parser.add_argument( '''--lr_scheduler''' , default='''linear''' , choices=lowercase__ , metavar=lowercase__ , type=lowercase__ , help='''Learning rate scheduler''' , ) parser.add_argument('''--weight_decay''' , default=0.0 , type=lowercase__ , help='''Weight decay if we apply some.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=lowercase__ , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--warmup_steps''' , default=0 , type=lowercase__ , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--num_workers''' , default=4 , type=lowercase__ , help='''kwarg passed to DataLoader''' ) parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=lowercase__ ) parser.add_argument('''--train_batch_size''' , default=32 , type=lowercase__ ) parser.add_argument('''--eval_batch_size''' , default=32 , type=lowercase__ ) parser.add_argument('''--adafactor''' , action='''store_true''' ) class lowerCamelCase (pl.Callback ): def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> str: """simple docstring""" if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class lowerCamelCase (pl.Callback ): def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> List[str]: """simple docstring""" for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(lowercase__ ) class lowerCamelCase (pl.Callback ): def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Any: """simple docstring""" _snake_case : Any = trainer.lr_schedulers[0]['''scheduler'''] _snake_case : Optional[int] = {F'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> List[str]: """simple docstring""" rank_zero_info('''***** Validation results *****''' ) _snake_case : Dict = trainer.callback_metrics # Log results for key in sorted(lowercase__ ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Dict: """simple docstring""" rank_zero_info('''***** Test results *****''' ) _snake_case : Dict = trainer.callback_metrics # Log and save results to file _snake_case : str = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' ) with open(lowercase__ , '''w''' ) as writer: for key in sorted(lowercase__ ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) ) writer.write('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" parser.add_argument( '''--output_dir''' , default=str(Path(lowerCAmelCase_ ).parent / '''test_run''' / '''model_checkpoints''' ) , type=lowerCAmelCase_ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=lowerCAmelCase_ , default='''O2''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=lowerCAmelCase_ ) parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=lowerCAmelCase_ , help='''Max gradient norm''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' ) parser.add_argument( '''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=lowerCAmelCase_ , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--seed''' , type=lowerCAmelCase_ , default=42 , help='''random seed for initialization''' ) parser.add_argument( '''--data_dir''' , default=str(Path(lowerCAmelCase_ ).parent / '''test_run''' / '''dummy-train-data''' ) , type=lowerCAmelCase_ , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_=[] , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , ): """simple docstring""" pl.seed_everything(args.seed ) # init model _snake_case : Union[str, Any] = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=lowerCAmelCase_ ) # add custom checkpoints if checkpoint_callback is None: _snake_case : Any = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(lowerCAmelCase_ ) if logging_callback is None: _snake_case : str = LoggingCallback() _snake_case : Tuple = {} if args.fpaa: _snake_case : Union[str, Any] = 16 if args.gpus > 1: _snake_case : Optional[Any] = '''auto''' _snake_case : Tuple = '''ddp''' _snake_case : Optional[Any] = args.accumulate_grad_batches _snake_case : Tuple = None _snake_case : str = '''auto''' _snake_case : int = pl.Trainer.from_argparse_args( lowerCAmelCase_ , weights_summary=lowerCAmelCase_ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase_ , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase_ , ) if args.do_train: trainer.fit(lowerCAmelCase_ ) else: print('''RAG modeling tests with new set functions successfuly executed!''' ) return trainer
47
0
'''simple docstring''' import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) UpperCAmelCase : List[str] = logging.getLogger(__name__) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[int] = np.argmax(lowerCAmelCase_ , axis=1 ) return np.sum(outputs == labels ) def _a ( lowerCAmelCase_ ): """simple docstring""" with open(lowerCAmelCase_ , encoding='''utf_8''' ) as f: _snake_case : Dict = csv.reader(lowerCAmelCase_ ) _snake_case : Tuple = [] next(lowerCAmelCase_ ) # skip the first line for line in tqdm(lowerCAmelCase_ ): output.append((''' '''.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Union[str, Any] = [] for dataset in encoded_datasets: _snake_case : List[Any] = len(lowerCAmelCase_ ) _snake_case : int = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) _snake_case : Optional[Any] = np.zeros((n_batch, 2) , dtype=np.intaa ) _snake_case : Optional[Any] = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) _snake_case : int = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(lowerCAmelCase_ ): _snake_case : Any = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] _snake_case : List[Any] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] _snake_case : List[Any] = with_conta _snake_case : Dict = with_conta _snake_case : str = len(lowerCAmelCase_ ) - 1 _snake_case : List[Any] = len(lowerCAmelCase_ ) - 1 _snake_case : Optional[Any] = with_conta _snake_case : List[Any] = with_conta _snake_case : Optional[Any] = mc_label _snake_case : Optional[Any] = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(lowerCAmelCase_ ) for t in all_inputs ) ) return tensor_datasets def _a ( ): """simple docstring""" _snake_case : List[Any] = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=lowerCAmelCase_ , default='''openai-gpt''' , help='''pretrained model name''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_eval''' , action='''store_true''' , help='''Whether to run eval on the dev set.''' ) parser.add_argument( '''--output_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument('''--train_dataset''' , type=lowerCAmelCase_ , default='''''' ) parser.add_argument('''--eval_dataset''' , type=lowerCAmelCase_ , default='''''' ) parser.add_argument('''--seed''' , type=lowerCAmelCase_ , default=42 ) parser.add_argument('''--num_train_epochs''' , type=lowerCAmelCase_ , default=3 ) parser.add_argument('''--train_batch_size''' , type=lowerCAmelCase_ , default=8 ) parser.add_argument('''--eval_batch_size''' , type=lowerCAmelCase_ , default=16 ) parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=lowerCAmelCase_ , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , type=lowerCAmelCase_ , default=1 ) parser.add_argument( '''--max_steps''' , default=-1 , type=lowerCAmelCase_ , help=( '''If > 0: set total number of training steps to perform. Override num_train_epochs.''' ) , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=lowerCAmelCase_ , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--learning_rate''' , type=lowerCAmelCase_ , default=6.25E-5 ) parser.add_argument('''--warmup_steps''' , default=0 , type=lowerCAmelCase_ , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--lr_schedule''' , type=lowerCAmelCase_ , default='''warmup_linear''' ) parser.add_argument('''--weight_decay''' , type=lowerCAmelCase_ , default=0.01 ) parser.add_argument('''--lm_coef''' , type=lowerCAmelCase_ , default=0.9 ) parser.add_argument('''--n_valid''' , type=lowerCAmelCase_ , default=374 ) parser.add_argument('''--server_ip''' , type=lowerCAmelCase_ , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=lowerCAmelCase_ , default='''''' , help='''Can be used for distant debugging.''' ) _snake_case : Optional[int] = parser.parse_args() print(lowerCAmelCase_ ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowerCAmelCase_ ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) _snake_case : Optional[Any] = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) _snake_case : Dict = torch.cuda.device_count() logger.info('''device: {}, n_gpu {}'''.format(lowerCAmelCase_ , lowerCAmelCase_ ) ) if not args.do_train and not args.do_eval: raise ValueError('''At least one of `do_train` or `do_eval` must be True.''' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset _snake_case : Optional[Any] = ['''_start_''', '''_delimiter_''', '''_classify_'''] _snake_case : Optional[int] = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(lowerCAmelCase_ ) _snake_case : Optional[Any] = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) _snake_case : List[str] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(lowerCAmelCase_ ) ) model.to(lowerCAmelCase_ ) # Load and encode the datasets def tokenize_and_encode(lowerCAmelCase_ ): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(lowerCAmelCase_ ) ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return obj return [tokenize_and_encode(lowerCAmelCase_ ) for o in obj] logger.info('''Encoding dataset...''' ) _snake_case : Optional[Any] = load_rocstories_dataset(args.train_dataset ) _snake_case : List[Any] = load_rocstories_dataset(args.eval_dataset ) _snake_case : Dict = (train_dataset, eval_dataset) _snake_case : Optional[Any] = tokenize_and_encode(lowerCAmelCase_ ) # Compute the max input length for the Transformer _snake_case : Tuple = model.config.n_positions // 2 - 2 _snake_case : Optional[Any] = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) _snake_case : Optional[int] = min(lowerCAmelCase_ , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders _snake_case : int = pre_process_datasets(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , *lowerCAmelCase_ ) _snake_case : Dict = tensor_datasets[0], tensor_datasets[1] _snake_case : str = TensorDataset(*lowerCAmelCase_ ) _snake_case : List[Any] = RandomSampler(lowerCAmelCase_ ) _snake_case : List[Any] = DataLoader(lowerCAmelCase_ , sampler=lowerCAmelCase_ , batch_size=args.train_batch_size ) _snake_case : str = TensorDataset(*lowerCAmelCase_ ) _snake_case : Any = SequentialSampler(lowerCAmelCase_ ) _snake_case : str = DataLoader(lowerCAmelCase_ , sampler=lowerCAmelCase_ , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: _snake_case : Optional[int] = args.max_steps _snake_case : Optional[int] = args.max_steps // (len(lowerCAmelCase_ ) // args.gradient_accumulation_steps) + 1 else: _snake_case : Dict = len(lowerCAmelCase_ ) // args.gradient_accumulation_steps * args.num_train_epochs _snake_case : Union[str, Any] = list(model.named_parameters() ) _snake_case : str = ['''bias''', '''LayerNorm.bias''', '''LayerNorm.weight'''] _snake_case : Union[str, Any] = [ { '''params''': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], '''weight_decay''': args.weight_decay, }, {'''params''': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0}, ] _snake_case : Any = AdamW(lowerCAmelCase_ , lr=args.learning_rate , eps=args.adam_epsilon ) _snake_case : str = get_linear_schedule_with_warmup( lowerCAmelCase_ , num_warmup_steps=args.warmup_steps , num_training_steps=lowerCAmelCase_ ) if args.do_train: _snake_case : Optional[int] = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='''Epoch''' ): _snake_case : str = 0 _snake_case : List[str] = 0 _snake_case : Tuple = tqdm(lowerCAmelCase_ , desc='''Training''' ) for step, batch in enumerate(lowerCAmelCase_ ): _snake_case : Any = tuple(t.to(lowerCAmelCase_ ) for t in batch ) _snake_case : Optional[Any] = batch _snake_case : Union[str, Any] = model(lowerCAmelCase_ , mc_token_ids=lowerCAmelCase_ , lm_labels=lowerCAmelCase_ , mc_labels=lowerCAmelCase_ ) _snake_case : List[Any] = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() _snake_case : Optional[Any] = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 _snake_case : int = '''Training loss: {:.2e} lr: {:.2e}'''.format(lowerCAmelCase_ , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer _snake_case : Optional[int] = model.module if hasattr(lowerCAmelCase_ , '''module''' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` _snake_case : Dict = os.path.join(args.output_dir , lowerCAmelCase_ ) _snake_case : Dict = os.path.join(args.output_dir , lowerCAmelCase_ ) torch.save(model_to_save.state_dict() , lowerCAmelCase_ ) model_to_save.config.to_json_file(lowerCAmelCase_ ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned _snake_case : Dict = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) _snake_case : Optional[int] = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(lowerCAmelCase_ ) if args.do_eval: model.eval() _snake_case : Tuple = 0, 0 _snake_case : str = 0, 0 for batch in tqdm(lowerCAmelCase_ , desc='''Evaluating''' ): _snake_case : Any = tuple(t.to(lowerCAmelCase_ ) for t in batch ) _snake_case : Dict = batch with torch.no_grad(): _snake_case : List[Any] = model( lowerCAmelCase_ , mc_token_ids=lowerCAmelCase_ , lm_labels=lowerCAmelCase_ , mc_labels=lowerCAmelCase_ ) _snake_case : int = mc_logits.detach().cpu().numpy() _snake_case : Any = mc_labels.to('''cpu''' ).numpy() _snake_case : Optional[Any] = accuracy(lowerCAmelCase_ , lowerCAmelCase_ ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 _snake_case : Optional[int] = eval_loss / nb_eval_steps _snake_case : Optional[int] = eval_accuracy / nb_eval_examples _snake_case : List[Any] = tr_loss / nb_tr_steps if args.do_train else None _snake_case : Tuple = {'''eval_loss''': eval_loss, '''eval_accuracy''': eval_accuracy, '''train_loss''': train_loss} _snake_case : str = os.path.join(args.output_dir , '''eval_results.txt''' ) with open(lowerCAmelCase_ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , lowerCAmelCase_ , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) if __name__ == "__main__": main()
700
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : Dict = { 'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowerCamelCase (a__ ): _lowercase : List[str] = """sew-d""" def __init__( self , lowercase__=32 , lowercase__=768 , lowercase__=12 , lowercase__=12 , lowercase__=3_072 , lowercase__=2 , lowercase__=512 , lowercase__=256 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.02 , lowercase__=1E-7 , lowercase__=1E-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=128 , lowercase__=16 , lowercase__=True , lowercase__=0.05 , lowercase__=10 , lowercase__=2 , lowercase__=0.0 , lowercase__=10 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=256 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ) -> Dict: """simple docstring""" super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ ) _snake_case : List[str] = hidden_size _snake_case : Optional[Any] = feat_extract_norm _snake_case : Tuple = feat_extract_activation _snake_case : Tuple = list(lowercase__ ) _snake_case : Any = list(lowercase__ ) _snake_case : Any = list(lowercase__ ) _snake_case : Any = conv_bias _snake_case : List[Any] = num_conv_pos_embeddings _snake_case : Any = num_conv_pos_embedding_groups _snake_case : Union[str, Any] = len(self.conv_dim ) _snake_case : Optional[Any] = num_hidden_layers _snake_case : Optional[int] = intermediate_size _snake_case : Any = squeeze_factor _snake_case : Optional[Any] = max_position_embeddings _snake_case : Tuple = position_buckets _snake_case : Tuple = share_att_key _snake_case : Any = relative_attention _snake_case : Optional[int] = norm_rel_ebd _snake_case : Optional[Any] = list(lowercase__ ) _snake_case : List[Any] = hidden_act _snake_case : List[Any] = num_attention_heads _snake_case : Dict = hidden_dropout _snake_case : Tuple = attention_dropout _snake_case : Union[str, Any] = activation_dropout _snake_case : List[Any] = feat_proj_dropout _snake_case : Optional[int] = final_dropout _snake_case : Optional[Any] = layer_norm_eps _snake_case : Dict = feature_layer_norm_eps _snake_case : List[Any] = initializer_range _snake_case : Dict = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _snake_case : Union[str, Any] = apply_spec_augment _snake_case : Any = mask_time_prob _snake_case : List[str] = mask_time_length _snake_case : Dict = mask_time_min_masks _snake_case : Union[str, Any] = mask_feature_prob _snake_case : Tuple = mask_feature_length _snake_case : Union[str, Any] = mask_feature_min_masks # ctc loss _snake_case : Optional[Any] = ctc_loss_reduction _snake_case : Optional[Any] = ctc_zero_infinity # sequence classification _snake_case : List[Any] = use_weighted_layer_sum _snake_case : Any = classifier_proj_size @property def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
47
0
'''simple docstring''' import argparse import collections import json import os import re import string import sys import numpy as np UpperCAmelCase : List[str] = re.compile(R'\b(a|an|the)\b', re.UNICODE) UpperCAmelCase : Dict = None def _a ( ): """simple docstring""" _snake_case : int = argparse.ArgumentParser('''Official evaluation script for SQuAD version 2.0.''' ) parser.add_argument('''data_file''' , metavar='''data.json''' , help='''Input data JSON file.''' ) parser.add_argument('''pred_file''' , metavar='''pred.json''' , help='''Model predictions.''' ) parser.add_argument( '''--out-file''' , '''-o''' , metavar='''eval.json''' , help='''Write accuracy metrics to file (default is stdout).''' ) parser.add_argument( '''--na-prob-file''' , '''-n''' , metavar='''na_prob.json''' , help='''Model estimates of probability of no answer.''' ) parser.add_argument( '''--na-prob-thresh''' , '''-t''' , type=lowerCAmelCase_ , default=1.0 , help='''Predict "" if no-answer probability exceeds this (default = 1.0).''' , ) parser.add_argument( '''--out-image-dir''' , '''-p''' , metavar='''out_images''' , default=lowerCAmelCase_ , help='''Save precision-recall curves to directory.''' ) parser.add_argument('''--verbose''' , '''-v''' , action='''store_true''' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : List[str] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: _snake_case : Union[str, Any] = bool(qa['''answers''']['''text'''] ) return qid_to_has_ans def _a ( lowerCAmelCase_ ): """simple docstring""" def remove_articles(lowerCAmelCase_ ): return ARTICLES_REGEX.sub(''' ''' , lowerCAmelCase_ ) def white_space_fix(lowerCAmelCase_ ): return " ".join(text.split() ) def remove_punc(lowerCAmelCase_ ): _snake_case : List[str] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowerCAmelCase_ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCAmelCase_ ) ) ) ) def _a ( lowerCAmelCase_ ): """simple docstring""" if not s: return [] return normalize_answer(lowerCAmelCase_ ).split() def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return int(normalize_answer(lowerCAmelCase_ ) == normalize_answer(lowerCAmelCase_ ) ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Tuple = get_tokens(lowerCAmelCase_ ) _snake_case : int = get_tokens(lowerCAmelCase_ ) _snake_case : str = collections.Counter(lowerCAmelCase_ ) & collections.Counter(lowerCAmelCase_ ) _snake_case : List[Any] = sum(common.values() ) if len(lowerCAmelCase_ ) == 0 or len(lowerCAmelCase_ ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 _snake_case : Union[str, Any] = 1.0 * num_same / len(lowerCAmelCase_ ) _snake_case : Any = 1.0 * num_same / len(lowerCAmelCase_ ) _snake_case : List[Any] = (2 * precision * recall) / (precision + recall) return fa def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : int = {} _snake_case : Optional[int] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: _snake_case : str = qa['''id'''] _snake_case : List[Any] = [t for t in qa['''answers''']['''text'''] if normalize_answer(lowerCAmelCase_ )] if not gold_answers: # For unanswerable questions, only correct answer is empty string _snake_case : Any = [''''''] if qid not in preds: print(f'''Missing prediction for {qid}''' ) continue _snake_case : Any = preds[qid] # Take max over all gold answers _snake_case : Union[str, Any] = max(compute_exact(lowerCAmelCase_ , lowerCAmelCase_ ) for a in gold_answers ) _snake_case : Dict = max(compute_fa(lowerCAmelCase_ , lowerCAmelCase_ ) for a in gold_answers ) return exact_scores, fa_scores def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : int = {} for qid, s in scores.items(): _snake_case : Any = na_probs[qid] > na_prob_thresh if pred_na: _snake_case : Optional[Any] = float(not qid_to_has_ans[qid] ) else: _snake_case : int = s return new_scores def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None ): """simple docstring""" if not qid_list: _snake_case : List[Any] = len(lowerCAmelCase_ ) return collections.OrderedDict( [ ('''exact''', 100.0 * sum(exact_scores.values() ) / total), ('''f1''', 100.0 * sum(fa_scores.values() ) / total), ('''total''', total), ] ) else: _snake_case : Tuple = len(lowerCAmelCase_ ) return collections.OrderedDict( [ ('''exact''', 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ('''f1''', 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ('''total''', total), ] ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for k in new_eval: _snake_case : Dict = new_eval[k] def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" plt.step(lowerCAmelCase_ , lowerCAmelCase_ , color='''b''' , alpha=0.2 , where='''post''' ) plt.fill_between(lowerCAmelCase_ , lowerCAmelCase_ , step='''post''' , alpha=0.2 , color='''b''' ) plt.xlabel('''Recall''' ) plt.ylabel('''Precision''' ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(lowerCAmelCase_ ) plt.savefig(lowerCAmelCase_ ) plt.clf() def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None ): """simple docstring""" _snake_case : Union[str, Any] = sorted(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : na_probs[k] ) _snake_case : Any = 0.0 _snake_case : Optional[Any] = 1.0 _snake_case : str = 0.0 _snake_case : List[str] = [1.0] _snake_case : str = [0.0] _snake_case : Optional[Any] = 0.0 for i, qid in enumerate(lowerCAmelCase_ ): if qid_to_has_ans[qid]: true_pos += scores[qid] _snake_case : str = true_pos / float(i + 1 ) _snake_case : List[str] = true_pos / float(lowerCAmelCase_ ) if i == len(lowerCAmelCase_ ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(lowerCAmelCase_ ) recalls.append(lowerCAmelCase_ ) if out_image: plot_pr_curve(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return {"ap": 100.0 * avg_prec} def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if out_image_dir and not os.path.exists(lowerCAmelCase_ ): os.makedirs(lowerCAmelCase_ ) _snake_case : str = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return _snake_case : List[str] = make_precision_recall_eval( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , out_image=os.path.join(lowerCAmelCase_ , '''pr_exact.png''' ) , title='''Precision-Recall curve for Exact Match score''' , ) _snake_case : Any = make_precision_recall_eval( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , out_image=os.path.join(lowerCAmelCase_ , '''pr_f1.png''' ) , title='''Precision-Recall curve for F1 score''' , ) _snake_case : Any = {k: float(lowerCAmelCase_ ) for k, v in qid_to_has_ans.items()} _snake_case : Optional[int] = make_precision_recall_eval( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , out_image=os.path.join(lowerCAmelCase_ , '''pr_oracle.png''' ) , title='''Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)''' , ) merge_eval(lowerCAmelCase_ , lowerCAmelCase_ , '''pr_exact''' ) merge_eval(lowerCAmelCase_ , lowerCAmelCase_ , '''pr_f1''' ) merge_eval(lowerCAmelCase_ , lowerCAmelCase_ , '''pr_oracle''' ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if not qid_list: return _snake_case : int = [na_probs[k] for k in qid_list] _snake_case : List[Any] = np.ones_like(lowerCAmelCase_ ) / float(len(lowerCAmelCase_ ) ) plt.hist(lowerCAmelCase_ , weights=lowerCAmelCase_ , bins=20 , range=(0.0, 1.0) ) plt.xlabel('''Model probability of no-answer''' ) plt.ylabel('''Proportion of dataset''' ) plt.title(f'''Histogram of no-answer probability: {name}''' ) plt.savefig(os.path.join(lowerCAmelCase_ , f'''na_prob_hist_{name}.png''' ) ) plt.clf() def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Tuple = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) _snake_case : str = num_no_ans _snake_case : int = cur_score _snake_case : Union[str, Any] = 0.0 _snake_case : List[str] = sorted(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : na_probs[k] ) for i, qid in enumerate(lowerCAmelCase_ ): if qid not in scores: continue if qid_to_has_ans[qid]: _snake_case : Optional[Any] = scores[qid] else: if preds[qid]: _snake_case : Optional[Any] = -1 else: _snake_case : str = 0 cur_score += diff if cur_score > best_score: _snake_case : int = cur_score _snake_case : int = na_probs[qid] return 100.0 * best_score / len(lowerCAmelCase_ ), best_thresh def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Dict = find_best_thresh(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : str = find_best_thresh(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : str = best_exact _snake_case : Any = exact_thresh _snake_case : Union[str, Any] = best_fa _snake_case : List[str] = fa_thresh def _a ( ): """simple docstring""" with open(OPTS.data_file ) as f: _snake_case : str = json.load(lowerCAmelCase_ ) _snake_case : List[str] = dataset_json['''data'''] with open(OPTS.pred_file ) as f: _snake_case : List[Any] = json.load(lowerCAmelCase_ ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: _snake_case : List[Any] = json.load(lowerCAmelCase_ ) else: _snake_case : List[Any] = {k: 0.0 for k in preds} _snake_case : int = make_qid_to_has_ans(lowerCAmelCase_ ) # maps qid to True/False _snake_case : Optional[int] = [k for k, v in qid_to_has_ans.items() if v] _snake_case : Any = [k for k, v in qid_to_has_ans.items() if not v] _snake_case : Union[str, Any] = get_raw_scores(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Union[str, Any] = apply_no_ans_threshold(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , OPTS.na_prob_thresh ) _snake_case : Dict = apply_no_ans_threshold(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , OPTS.na_prob_thresh ) _snake_case : Any = make_eval_dict(lowerCAmelCase_ , lowerCAmelCase_ ) if has_ans_qids: _snake_case : Optional[int] = make_eval_dict(lowerCAmelCase_ , lowerCAmelCase_ , qid_list=lowerCAmelCase_ ) merge_eval(lowerCAmelCase_ , lowerCAmelCase_ , '''HasAns''' ) if no_ans_qids: _snake_case : int = make_eval_dict(lowerCAmelCase_ , lowerCAmelCase_ , qid_list=lowerCAmelCase_ ) merge_eval(lowerCAmelCase_ , lowerCAmelCase_ , '''NoAns''' ) if OPTS.na_prob_file: find_all_best_thresh(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , OPTS.out_image_dir ) histogram_na_prob(lowerCAmelCase_ , lowerCAmelCase_ , OPTS.out_image_dir , '''hasAns''' ) histogram_na_prob(lowerCAmelCase_ , lowerCAmelCase_ , OPTS.out_image_dir , '''noAns''' ) if OPTS.out_file: with open(OPTS.out_file , '''w''' ) as f: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) else: print(json.dumps(lowerCAmelCase_ , indent=2 ) ) if __name__ == "__main__": UpperCAmelCase : Any = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt main()
701
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : List[Any] = 0 if start < end: _snake_case : List[Any] = randint(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Any = a[end] _snake_case : List[str] = a[pivot] _snake_case : Optional[int] = temp _snake_case , _snake_case : List[Any] = _in_place_partition(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) count += _in_place_quick_sort(lowerCAmelCase_ , lowerCAmelCase_ , p - 1 ) count += _in_place_quick_sort(lowerCAmelCase_ , p + 1 , lowerCAmelCase_ ) return count def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = 0 _snake_case : Optional[int] = randint(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Tuple = a[end] _snake_case : Optional[Any] = a[pivot] _snake_case : Union[str, Any] = temp _snake_case : Union[str, Any] = start - 1 for index in range(lowerCAmelCase_ , lowerCAmelCase_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _snake_case : Optional[int] = new_pivot_index + 1 _snake_case : Optional[Any] = a[new_pivot_index] _snake_case : Tuple = a[index] _snake_case : str = temp _snake_case : Any = a[new_pivot_index + 1] _snake_case : str = a[end] _snake_case : Optional[int] = temp return new_pivot_index + 1, count UpperCAmelCase : Dict = TemporaryFile() UpperCAmelCase : Dict = 1_0_0 # 1000 elements are to be sorted UpperCAmelCase, UpperCAmelCase : str = 0, 1 # mean and standard deviation UpperCAmelCase : Optional[Any] = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array UpperCAmelCase : int = np.load(outfile) UpperCAmelCase : Optional[int] = len(M) - 1 UpperCAmelCase : str = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
47
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : Dict = { 'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowerCamelCase (a__ ): _lowercase : List[str] = """sew-d""" def __init__( self , lowercase__=32 , lowercase__=768 , lowercase__=12 , lowercase__=12 , lowercase__=3_072 , lowercase__=2 , lowercase__=512 , lowercase__=256 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.02 , lowercase__=1E-7 , lowercase__=1E-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=128 , lowercase__=16 , lowercase__=True , lowercase__=0.05 , lowercase__=10 , lowercase__=2 , lowercase__=0.0 , lowercase__=10 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=256 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ) -> Dict: """simple docstring""" super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ ) _snake_case : List[str] = hidden_size _snake_case : Optional[Any] = feat_extract_norm _snake_case : Tuple = feat_extract_activation _snake_case : Tuple = list(lowercase__ ) _snake_case : Any = list(lowercase__ ) _snake_case : Any = list(lowercase__ ) _snake_case : Any = conv_bias _snake_case : List[Any] = num_conv_pos_embeddings _snake_case : Any = num_conv_pos_embedding_groups _snake_case : Union[str, Any] = len(self.conv_dim ) _snake_case : Optional[Any] = num_hidden_layers _snake_case : Optional[int] = intermediate_size _snake_case : Any = squeeze_factor _snake_case : Optional[Any] = max_position_embeddings _snake_case : Tuple = position_buckets _snake_case : Tuple = share_att_key _snake_case : Any = relative_attention _snake_case : Optional[int] = norm_rel_ebd _snake_case : Optional[Any] = list(lowercase__ ) _snake_case : List[Any] = hidden_act _snake_case : List[Any] = num_attention_heads _snake_case : Dict = hidden_dropout _snake_case : Tuple = attention_dropout _snake_case : Union[str, Any] = activation_dropout _snake_case : List[Any] = feat_proj_dropout _snake_case : Optional[int] = final_dropout _snake_case : Optional[Any] = layer_norm_eps _snake_case : Dict = feature_layer_norm_eps _snake_case : List[Any] = initializer_range _snake_case : Dict = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _snake_case : Union[str, Any] = apply_spec_augment _snake_case : Any = mask_time_prob _snake_case : List[str] = mask_time_length _snake_case : Dict = mask_time_min_masks _snake_case : Union[str, Any] = mask_feature_prob _snake_case : Tuple = mask_feature_length _snake_case : Union[str, Any] = mask_feature_min_masks # ctc loss _snake_case : Optional[Any] = ctc_loss_reduction _snake_case : Optional[Any] = ctc_zero_infinity # sequence classification _snake_case : List[Any] = use_weighted_layer_sum _snake_case : Any = classifier_proj_size @property def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
702
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
47
0
'''simple docstring''' def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[int] = [] _snake_case : Optional[int] = set({'''(''', '''[''', '''{'''} ) _snake_case : List[Any] = set({''')''', ''']''', '''}'''} ) _snake_case : Tuple = {'''{''': '''}''', '''[''': ''']''', '''(''': ''')'''} for i in range(len(lowerCAmelCase_ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(lowerCAmelCase_ ) == 0 or (len(lowerCAmelCase_ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(lowerCAmelCase_ ) == 0 def _a ( ): """simple docstring""" _snake_case : Dict = input('''Enter sequence of brackets: ''' ) if is_balanced(lowerCAmelCase_ ): print(lowerCAmelCase_ , '''is balanced''' ) else: print(lowerCAmelCase_ , '''is not balanced''' ) if __name__ == "__main__": main()
703
'''simple docstring''' from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def _a ( ): """simple docstring""" _snake_case : List[Any] = ArgumentParser('''Transformers CLI tool''' , usage='''transformers-cli <command> [<args>]''' ) _snake_case : List[str] = parser.add_subparsers(help='''transformers-cli command helpers''' ) # Register commands ConvertCommand.register_subcommand(lowerCAmelCase_ ) DownloadCommand.register_subcommand(lowerCAmelCase_ ) EnvironmentCommand.register_subcommand(lowerCAmelCase_ ) RunCommand.register_subcommand(lowerCAmelCase_ ) ServeCommand.register_subcommand(lowerCAmelCase_ ) UserCommands.register_subcommand(lowerCAmelCase_ ) AddNewModelCommand.register_subcommand(lowerCAmelCase_ ) AddNewModelLikeCommand.register_subcommand(lowerCAmelCase_ ) LfsCommands.register_subcommand(lowerCAmelCase_ ) PTtoTFCommand.register_subcommand(lowerCAmelCase_ ) # Let's go _snake_case : str = parser.parse_args() if not hasattr(lowerCAmelCase_ , '''func''' ): parser.print_help() exit(1 ) # Run _snake_case : Union[str, Any] = args.func(lowerCAmelCase_ ) service.run() if __name__ == "__main__": main()
47
0
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if not len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) == 3: raise ValueError('''Please enter a valid equation.''' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('''Both a & b of two equations can\'t be zero.''' ) # Extract the coefficients _snake_case : Optional[Any] = equationa _snake_case : Tuple = equationa # Calculate the determinants of the matrices _snake_case : List[Any] = aa * ba - aa * ba _snake_case : Dict = ca * ba - ca * ba _snake_case : int = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('''Infinite solutions. (Consistent system)''' ) else: raise ValueError('''No solution. (Inconsistent system)''' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: _snake_case : Optional[int] = determinant_x / determinant _snake_case : Optional[Any] = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
704
'''simple docstring''' from collections.abc import Generator def _a ( ): """simple docstring""" _snake_case , _snake_case : Union[str, Any] = 0, 1 while True: _snake_case , _snake_case : List[str] = b, a + b yield b def _a ( lowerCAmelCase_ = 1_000 ): """simple docstring""" _snake_case : List[str] = 1 _snake_case : Dict = fibonacci_generator() while len(str(next(lowerCAmelCase_ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
47
0
'''simple docstring''' import os from distutils.util import strtobool def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for e in env_keys: _snake_case : List[str] = int(os.environ.get(lowerCAmelCase_ , -1 ) ) if val >= 0: return val return default def _a ( lowerCAmelCase_ , lowerCAmelCase_=False ): """simple docstring""" _snake_case : List[Any] = os.environ.get(lowerCAmelCase_ , str(lowerCAmelCase_ ) ) return strtobool(lowerCAmelCase_ ) == 1 # As its name indicates `strtobool` actually returns an int... def _a ( lowerCAmelCase_ , lowerCAmelCase_="no" ): """simple docstring""" _snake_case : List[str] = os.environ.get(lowerCAmelCase_ , str(lowerCAmelCase_ ) ) return value
705
'''simple docstring''' import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor UpperCAmelCase : str = logging.getLogger(__name__) UpperCAmelCase : Dict = 5_0 # max width of layer names UpperCAmelCase : Union[str, Any] = 7_0 # max width of quantizer names def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Dict = parser.add_argument_group('''quant_trainer arguments''' ) group.add_argument('''--wprec''' , type=lowerCAmelCase_ , default=8 , help='''weight precision''' ) group.add_argument('''--aprec''' , type=lowerCAmelCase_ , default=8 , help='''activation precision''' ) group.add_argument('''--quant-per-tensor''' , action='''store_true''' , help='''per tensor weight scaling''' ) group.add_argument('''--quant-disable''' , action='''store_true''' , help='''disable all quantizers''' ) group.add_argument('''--quant-disable-embeddings''' , action='''store_true''' , help='''disable all embeddings quantizers''' ) group.add_argument('''--quant-disable-keyword''' , type=lowerCAmelCase_ , nargs='''+''' , help='''disable quantizers by keyword''' ) group.add_argument('''--quant-disable-layer-module''' , type=lowerCAmelCase_ , help='''disable quantizers by keyword under layer.''' ) group.add_argument('''--quant-enable-layer-module''' , type=lowerCAmelCase_ , help='''enable quantizers by keyword under layer''' ) group.add_argument('''--calibrator''' , default='''max''' , help='''which quantization range calibrator to use''' ) group.add_argument('''--percentile''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help='''percentile for PercentileCalibrator''' ) group.add_argument('''--fuse-qkv''' , action='''store_true''' , help='''use the same scale factor for qkv''' ) group.add_argument('''--clip-gelu''' , metavar='''N''' , type=lowerCAmelCase_ , help='''clip gelu output maximum value to N''' ) group.add_argument( '''--recalibrate-weights''' , action='''store_true''' , help=( '''recalibrate weight amaxes by taking the max of the weights.''' ''' amaxes will be computed with the current quantization granularity (axis).''' ) , ) def _a ( lowerCAmelCase_ ): """simple docstring""" if args.calibrator == "max": _snake_case : Optional[int] = '''max''' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('''Specify --percentile when using percentile calibrator''' ) _snake_case : Tuple = '''histogram''' elif args.calibrator == "mse": _snake_case : int = '''histogram''' else: raise ValueError(f'''Invalid calibrator {args.calibrator}''' ) _snake_case : Tuple = QuantDescriptor(num_bits=args.aprec , calib_method=lowerCAmelCase_ ) _snake_case : str = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(lowerCAmelCase_ ) quant_nn.QuantLinear.set_default_quant_desc_weight(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False , lowerCAmelCase_=False ): """simple docstring""" logger.info('''Configuring Model for Quantization''' ) logger.info(f'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(lowerCAmelCase_ , ['''embeddings'''] , which='''weight''' , _disabled=lowerCAmelCase_ ) if args.quant_disable: set_quantizer_by_name(lowerCAmelCase_ , [''''''] , _disabled=lowerCAmelCase_ ) if args.quant_disable_keyword: set_quantizer_by_name(lowerCAmelCase_ , args.quant_disable_keyword , _disabled=lowerCAmelCase_ ) if args.quant_disable_layer_module: set_quantizer_by_name(lowerCAmelCase_ , [R'''layer.\d+.''' + args.quant_disable_layer_module] , _disabled=lowerCAmelCase_ ) if args.quant_enable_layer_module: set_quantizer_by_name(lowerCAmelCase_ , [R'''layer.\d+.''' + args.quant_enable_layer_module] , _disabled=lowerCAmelCase_ ) if args.recalibrate_weights: recalibrate_weights(lowerCAmelCase_ ) if args.fuse_qkv: fuse_qkv(lowerCAmelCase_ , lowerCAmelCase_ ) if args.clip_gelu: clip_gelu(lowerCAmelCase_ , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ ): """simple docstring""" logger.info('''Enabling Calibration''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(f'''{name:80}: {module}''' ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" logger.info('''Loading calibrated amax''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('''percentile''' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" def fusea(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): for mod in [qq, qk, qv]: if not hasattr(lowerCAmelCase_ , '''_amax''' ): print(''' WARNING: NO AMAX BUFFER''' ) return _snake_case : Tuple = qq._amax.detach().item() _snake_case : Tuple = qk._amax.detach().item() _snake_case : List[Any] = qv._amax.detach().item() _snake_case : List[str] = max(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) qq._amax.fill_(lowerCAmelCase_ ) qk._amax.fill_(lowerCAmelCase_ ) qv._amax.fill_(lowerCAmelCase_ ) logger.info(f''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith('''.attention.self''' ): logger.info(f'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if name.endswith('''.output.dense''' ) and not name.endswith('''attention.output.dense''' ): _snake_case : List[Any] = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=lowerCAmelCase_ ) _snake_case : List[str] = mod._input_quantizer._amax.data.detach().item() logger.info(f'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def _a ( lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ) and mod._weight_quantizer.axis is not None: _snake_case : Dict = mod.weight.shape[0] _snake_case : Optional[int] = mod._weight_quantizer._amax.detach() _snake_case : Optional[int] = torch.ones(lowerCAmelCase_ , dtype=amax.dtype , device=amax.device ) * amax print(f'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def _a ( lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ): if not hasattr(mod.weight_quantizer , '''_amax''' ): print('''RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER''' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) _snake_case : int = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) _snake_case : Dict = set(range(len(mod.weight.size() ) ) ) - axis_set _snake_case : Optional[int] = pytorch_quantization.utils.reduce_amax(mod.weight , axis=lowerCAmelCase_ , keepdims=lowerCAmelCase_ ).detach() logger.info(f'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) _snake_case : Tuple = amax def _a ( lowerCAmelCase_ , lowerCAmelCase_=25 , lowerCAmelCase_=180 , lowerCAmelCase_=None ): """simple docstring""" if ignore is None: _snake_case : Dict = [] elif not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Optional[int] = [ignore] _snake_case : str = 0 for name, mod in model.named_modules(): if not hasattr(lowerCAmelCase_ , '''weight''' ): continue _snake_case : Optional[int] = max(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) for name, mod in model.named_modules(): _snake_case : Optional[Any] = getattr(lowerCAmelCase_ , '''_input_quantizer''' , lowerCAmelCase_ ) _snake_case : Tuple = getattr(lowerCAmelCase_ , '''_weight_quantizer''' , lowerCAmelCase_ ) if not hasattr(lowerCAmelCase_ , '''weight''' ): continue if type(lowerCAmelCase_ ) in ignore: continue if [True for s in ignore if type(lowerCAmelCase_ ) is str and s in name]: continue _snake_case : Optional[int] = f'''Act:{input_q.extra_repr()}''' _snake_case : Any = f'''Wgt:{weight_q.extra_repr()}''' _snake_case : Optional[int] = f'''{name:{name_width}} {act_str} {wgt_str}''' if len(lowerCAmelCase_ ) <= line_width: logger.info(lowerCAmelCase_ ) else: logger.info(f'''{name:{name_width}} {act_str}''' ) logger.info(f'''{" ":{name_width}} {wgt_str}''' ) def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : str = 0 for name, mod in model.named_modules(): if isinstance(lowerCAmelCase_ , pytorch_quantization.nn.TensorQuantizer ): print(f'''{name:80} {mod}''' ) count += 1 print(f'''{count} TensorQuantizers found in model''' ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if quantizer_mod is not None: assert hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: logger.warning(f'''{name} has no {quantizer}''' ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_="both" , **lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = f'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' if which in ["input", "both"]: set_quantizer(lowerCAmelCase_ , lowerCAmelCase_ , '''_input_quantizer''' , lowerCAmelCase_ , lowerCAmelCase_ ) if which in ["weight", "both"]: set_quantizer(lowerCAmelCase_ , lowerCAmelCase_ , '''_weight_quantizer''' , lowerCAmelCase_ , lowerCAmelCase_ ) logger.info(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCAmelCase_ , '''_input_quantizer''' ) or hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ): for n in names: if re.search(lowerCAmelCase_ , lowerCAmelCase_ ): set_quantizers(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) elif name.endswith('''_quantizer''' ): for n in names: if re.search(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Any = f'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) logger.info(lowerCAmelCase_ )
47
0
'''simple docstring''' import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py UpperCAmelCase : Optional[Any] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. UpperCAmelCase : Optional[Any] = direct_transformers_import(PATH_TO_TRANSFORMERS) UpperCAmelCase : List[str] = transformers.models.auto.configuration_auto.CONFIG_MAPPING UpperCAmelCase : Optional[int] = { # used to compute the property `self.chunk_length` 'EncodecConfig': ['overlap'], # used as `self.bert_model = BertModel(config, ...)` 'DPRConfig': True, # not used in modeling files, but it's an important information 'FSMTConfig': ['langs'], # used internally in the configuration class file 'GPTNeoConfig': ['attention_types'], # used internally in the configuration class file 'EsmConfig': ['is_folding_model'], # used during training (despite we don't have training script for these models yet) 'Mask2FormerConfig': ['ignore_value'], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) 'OneFormerConfig': ['ignore_value', 'norm'], # used during preprocessing and collation, see `collating_graphormer.py` 'GraphormerConfig': ['spatial_pos_max'], # used internally in the configuration class file 'T5Config': ['feed_forward_proj'], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally 'MT5Config': ['feed_forward_proj', 'tokenizer_class'], 'UMT5Config': ['feed_forward_proj', 'tokenizer_class'], # used internally in the configuration class file 'LongT5Config': ['feed_forward_proj'], # used internally in the configuration class file 'SwitchTransformersConfig': ['feed_forward_proj'], # having default values other than `1e-5` - we can't fix them without breaking 'BioGptConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'GLPNConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'SegformerConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'CvtConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'PerceiverConfig': ['layer_norm_eps'], # used internally to calculate the feature size 'InformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'TimeSeriesTransformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'AutoformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate `mlp_dim` 'SamVisionConfig': ['mlp_ratio'], # For (head) training, but so far not implemented 'ClapAudioConfig': ['num_classes'], # Not used, but providing useful information to users 'SpeechT5HifiGanConfig': ['sampling_rate'], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { 'CLIPSegConfig': True, 'DeformableDetrConfig': True, 'DetaConfig': True, 'DinatConfig': True, 'DonutSwinConfig': True, 'EfficientFormerConfig': True, 'FSMTConfig': True, 'JukeboxConfig': True, 'LayoutLMv2Config': True, 'MaskFormerSwinConfig': True, 'MT5Config': True, 'NatConfig': True, 'OneFormerConfig': True, 'PerceiverConfig': True, 'RagConfig': True, 'SpeechT5Config': True, 'SwinConfig': True, 'Swin2SRConfig': True, 'Swinv2Config': True, 'SwitchTransformersConfig': True, 'TableTransformerConfig': True, 'TapasConfig': True, 'TransfoXLConfig': True, 'UniSpeechConfig': True, 'UniSpeechSatConfig': True, 'WavLMConfig': True, 'WhisperConfig': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) 'JukeboxPriorConfig': True, # TODO: @Younes (for `is_decoder`) 'Pix2StructTextConfig': True, } ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Dict = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f'''config.{attribute}''' in modeling_source or f'''getattr(config, "{attribute}"''' in modeling_source or f'''getattr(self.config, "{attribute}"''' in modeling_source ): _snake_case : int = True # Deal with multi-line cases elif ( re.search( Rf'''getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"''' , lowerCAmelCase_ , ) is not None ): _snake_case : str = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: _snake_case : List[str] = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files _snake_case : Optional[Any] = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] _snake_case : str = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed _snake_case : List[Any] = True if not attribute_used: _snake_case : List[Any] = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: _snake_case : Dict = True elif attribute in ["tie_word_embeddings"] and default_value is False: _snake_case : Union[str, Any] = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: _snake_case : Tuple = True elif attribute.endswith('''_token_id''' ): _snake_case : Any = True # configuration class specific cases if not case_allowed: _snake_case : Union[str, Any] = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) _snake_case : Union[str, Any] = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Any = dict(inspect.signature(config_class.__init__ ).parameters ) _snake_case : Dict = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] _snake_case : Optional[int] = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass _snake_case : List[str] = {} if len(config_class.attribute_map ) > 0: _snake_case : Optional[Any] = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files _snake_case : Union[str, Any] = inspect.getsourcefile(lowerCAmelCase_ ) _snake_case : Union[str, Any] = os.path.dirname(lowerCAmelCase_ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. _snake_case : str = [os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) for fn in os.listdir(lowerCAmelCase_ ) if fn.startswith('''modeling_''' )] # Get the source code strings _snake_case : Optional[Any] = [] for path in modeling_paths: if os.path.isfile(lowerCAmelCase_ ): with open(lowerCAmelCase_ ) as fp: modeling_sources.append(fp.read() ) _snake_case : Dict = [] for config_param, default_value in zip(lowerCAmelCase_ , lowerCAmelCase_ ): # `attributes` here is all the variant names for `config_param` _snake_case : Any = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): unused_attributes.append(attributes[0] ) return sorted(lowerCAmelCase_ ) def _a ( ): """simple docstring""" _snake_case : Optional[int] = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) _snake_case : Tuple = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda lowerCAmelCase_ : inspect.isclass(lowerCAmelCase_ ) and issubclass(lowerCAmelCase_ , lowerCAmelCase_ ) and inspect.getmodule(lowerCAmelCase_ ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: _snake_case : Dict = check_config_attributes_being_used(lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 0: _snake_case : str = unused_attributes if len(lowerCAmelCase_ ) > 0: _snake_case : Optional[Any] = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += f'''{name}: {attributes}\n''' raise ValueError(lowerCAmelCase_ ) if __name__ == "__main__": check_config_attributes()
706
'''simple docstring''' from __future__ import annotations def _a ( lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None ): """simple docstring""" if start is None: _snake_case : Optional[Any] = 0 if end is None: _snake_case : Any = len(lowerCAmelCase_ ) - 1 if start >= end: return _snake_case : Optional[Any] = (start + end) // 2 slowsort(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) slowsort(lowerCAmelCase_ , mid + 1 , lowerCAmelCase_ ) if sequence[end] < sequence[mid]: _snake_case , _snake_case : int = sequence[mid], sequence[end] slowsort(lowerCAmelCase_ , lowerCAmelCase_ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
47
0
'''simple docstring''' import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase : List[str] = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right UpperCAmelCase : Any = 5_0_0_0_3 UpperCAmelCase : Optional[Any] = 5_0_0_0_2 @require_sentencepiece @require_tokenizers class lowerCamelCase (a__ , unittest.TestCase ): _lowercase : Any = PLBartTokenizer _lowercase : Optional[Any] = None _lowercase : List[str] = False def UpperCAmelCase_ ( self ) -> str: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _snake_case : Dict = PLBartTokenizer(lowercase__ , language_codes='''base''' , keep_accents=lowercase__ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : Optional[int] = PLBartTokenizer(lowercase__ , language_codes='''base''' , keep_accents=lowercase__ ) _snake_case : int = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowercase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _snake_case : Tuple = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowercase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _snake_case : Optional[int] = tokenizer.convert_tokens_to_ids(lowercase__ ) self.assertListEqual( lowercase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _snake_case : Optional[Any] = tokenizer.convert_ids_to_tokens(lowercase__ ) self.assertListEqual( lowercase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) _snake_case : Any = tokenizer.vocab_size _snake_case : int = [tokenizer.convert_ids_to_tokens(lowercase__ ) for x in range(end - 4 , lowercase__ )] self.assertListEqual(lowercase__ , ['''__java__''', '''__python__''', '''__en_XX__''', '''<mask>'''] ) _snake_case : Tuple = '''java.lang.Exception, python.lang.Exception, javascript, php, ruby, go''' _snake_case : Dict = tokenizer(lowercase__ ).input_ids self.assertEqual( tokenizer.decode(lowercase__ , skip_special_tokens=lowercase__ , clean_up_tokenization_spaces=lowercase__ ) , lowercase__ , ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Union[str, Any] = PLBartTokenizer(lowercase__ , language_codes='''multi''' , keep_accents=lowercase__ ) _snake_case : Dict = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowercase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _snake_case : Dict = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowercase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _snake_case : List[Any] = tokenizer.convert_tokens_to_ids(lowercase__ ) self.assertListEqual( lowercase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _snake_case : Any = tokenizer.convert_ids_to_tokens(lowercase__ ) self.assertListEqual( lowercase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) _snake_case : List[Any] = tokenizer.vocab_size _snake_case : Any = [tokenizer.convert_ids_to_tokens(lowercase__ ) for x in range(end - 7 , lowercase__ )] self.assertListEqual( lowercase__ , ['''__java__''', '''__python__''', '''__en_XX__''', '''__javascript__''', '''__php__''', '''__ruby__''', '''__go__'''] ) _snake_case : Optional[int] = '''java.lang.Exception, python.lang.Exception, javascript, php, ruby, go''' _snake_case : str = tokenizer(lowercase__ ).input_ids self.assertEqual( tokenizer.decode(lowercase__ , skip_special_tokens=lowercase__ , clean_up_tokenization_spaces=lowercase__ ) , lowercase__ , ) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase (unittest.TestCase ): _lowercase : Union[str, Any] = """uclanlp/plbart-python-en_XX""" _lowercase : Optional[int] = [ """def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])""", """def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""", ] _lowercase : List[Any] = [ """Returns the maximum value of a b c.""", """Sums the values of a b c.""", ] _lowercase : List[Any] = [ 134, 5_452, 33_460, 33_441, 33_463, 33_465, 33_463, 33_449, 988, 20, 33_456, 19, 33_456, 771, 39, 4_258, 889, 3_318, 33_441, 33_463, 33_465, 33_463, 33_449, 2_471, 2, PYTHON_CODE, ] @classmethod def UpperCAmelCase_ ( cls ) -> List[str]: """simple docstring""" _snake_case : PLBartTokenizer = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes='''base''' , src_lang='''python''' , tgt_lang='''en_XX''' ) _snake_case : Optional[Any] = 1 return cls def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__java__'''] , 50_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__python__'''] , 50_002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__en_XX__'''] , 50_003 ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : List[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowercase__ ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" self.assertIn(lowercase__ , self.tokenizer.all_special_ids ) _snake_case : Optional[Any] = [EN_CODE, 9_037, 33_442, 57, 752, 153, 14, 56, 18, 9, 2] _snake_case : Any = self.tokenizer.decode(lowercase__ , skip_special_tokens=lowercase__ ) _snake_case : Tuple = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) self.assertNotIn(self.tokenizer.eos_token , lowercase__ ) def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" _snake_case : Tuple = ['''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''' * 20] self.assertIsInstance(src_text[0] , lowercase__ ) _snake_case : int = 10 _snake_case : int = self.tokenizer(lowercase__ , max_length=lowercase__ , truncation=lowercase__ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , lowercase__ ) self.assertEqual(len(lowercase__ ) , lowercase__ ) def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''__java__'''] ) , [50_004, 50_001] ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Optional[int] = tempfile.mkdtemp() _snake_case : Optional[Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowercase__ ) _snake_case : List[Any] = PLBartTokenizer.from_pretrained(lowercase__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowercase__ ) @require_torch def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : List[str] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowercase__ , return_tensors='''pt''' ) _snake_case : Any = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , lowercase__ ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" _snake_case : List[str] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowercase__ , truncation=lowercase__ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) _snake_case : List[str] = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) _snake_case : List[str] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowercase__ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : Dict = self.tokenizer(self.src_text , padding=lowercase__ , truncation=lowercase__ , max_length=3 , return_tensors='''pt''' ) _snake_case : Tuple = self.tokenizer( text_target=self.tgt_text , padding=lowercase__ , truncation=lowercase__ , max_length=10 , return_tensors='''pt''' ) _snake_case : Optional[int] = targets['''input_ids'''] _snake_case : Optional[Any] = shift_tokens_right(lowercase__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : int = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''java''' ) self.assertEqual( nested_simplify(lowercase__ ) , { # A, test, EOS, en_XX '''input_ids''': [[150, 242, 2, 50_003]], '''attention_mask''': [[1, 1, 1, 1]], # java '''forced_bos_token_id''': 50_001, } , )
707
'''simple docstring''' import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class lowerCamelCase (unittest.TestCase ): @slow def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Tuple = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) _snake_case : Any = AutoTokenizer.from_pretrained('''google/mt5-small''' ) _snake_case : List[str] = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids _snake_case : Dict = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids _snake_case : Any = shift_tokens_right(lowercase__ , model.config.pad_token_id , model.config.decoder_start_token_id ) _snake_case : Any = model(lowercase__ , decoder_input_ids=lowercase__ ).logits _snake_case : Tuple = optax.softmax_cross_entropy(lowercase__ , onehot(lowercase__ , logits.shape[-1] ) ).mean() _snake_case : Tuple = -(labels.shape[-1] * loss.item()) _snake_case : Union[str, Any] = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
47
0
from random import randint from tempfile import TemporaryFile import numpy as np def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : List[Any] = 0 if start < end: _snake_case : List[Any] = randint(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Any = a[end] _snake_case : List[str] = a[pivot] _snake_case : Optional[int] = temp _snake_case : List[Any] = _in_place_partition(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) count += _in_place_quick_sort(lowerCAmelCase_ , lowerCAmelCase_ , p - 1 ) count += _in_place_quick_sort(lowerCAmelCase_ , p + 1 , lowerCAmelCase_ ) return count def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = 0 _snake_case : Optional[int] = randint(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Tuple = a[end] _snake_case : Optional[Any] = a[pivot] _snake_case : Union[str, Any] = temp _snake_case : Union[str, Any] = start - 1 for index in range(lowerCAmelCase_ , lowerCAmelCase_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _snake_case : Optional[int] = new_pivot_index + 1 _snake_case : Optional[Any] = a[new_pivot_index] _snake_case : Tuple = a[index] _snake_case : str = temp _snake_case : Any = a[new_pivot_index + 1] _snake_case : str = a[end] _snake_case : Optional[int] = temp return new_pivot_index + 1, count UpperCAmelCase : Dict = TemporaryFile() UpperCAmelCase : Dict = 1_0_0 # 1000 elements are to be sorted UpperCAmelCase : str = 0, 1 # mean and standard deviation UpperCAmelCase : Optional[Any] = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array UpperCAmelCase : int = np.load(outfile) UpperCAmelCase : Optional[int] = len(M) - 1 UpperCAmelCase : str = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
708
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCamelCase (unittest.TestCase ): def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : Any = torch.nn.Linear(10 , 10 ) _snake_case : Optional[int] = torch.optim.SGD(model.parameters() , 0.1 ) _snake_case : List[str] = Accelerator() _snake_case : Optional[Any] = accelerator.prepare(lowercase__ ) try: pickle.loads(pickle.dumps(lowercase__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
47
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCAmelCase : Any = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
709
'''simple docstring''' UpperCAmelCase : Union[str, Any] = tuple[float, float, float] UpperCAmelCase : int = tuple[float, float, float] def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : str = end_pointa[0] - end_pointa[0] _snake_case : Tuple = end_pointa[1] - end_pointa[1] _snake_case : Any = end_pointa[2] - end_pointa[2] return (x, y, z) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Dict = ab[1] * ac[2] - ab[2] * ac[1] # *i _snake_case : List[str] = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j _snake_case : Optional[int] = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return tuple(round(lowerCAmelCase_ , lowerCAmelCase_ ) for x in vector ) == (0, 0, 0) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 10 ): """simple docstring""" _snake_case : str = create_vector(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Tuple = create_vector(lowerCAmelCase_ , lowerCAmelCase_ ) return is_zero_vector(get_ad_vectors_cross(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ )
47
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase : Any = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : int = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys UpperCAmelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
710
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel UpperCAmelCase : List[str] = logging.getLogger(__name__) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if os.path.exists(lowerCAmelCase_ ): if os.path.exists(os.path.join(lowerCAmelCase_ , '''config.json''' ) ) and os.path.isfile( os.path.join(lowerCAmelCase_ , '''config.json''' ) ): os.remove(os.path.join(lowerCAmelCase_ , '''config.json''' ) ) if os.path.exists(os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) ) and os.path.isfile( os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) ): os.remove(os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) ) else: os.makedirs(lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_=False ): """simple docstring""" _snake_case : Optional[Any] = 2 if unlogit: _snake_case : Any = torch.pow(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Union[str, Any] = p * torch.log(lowerCAmelCase_ ) _snake_case : Optional[Any] = 0 return -plogp.sum(dim=-1 ) def _a ( lowerCAmelCase_ ): """simple docstring""" logger.info('''lv, h >\t''' + '''\t'''.join(f'''{x + 1}''' for x in range(len(lowerCAmelCase_ ) ) ) ) for row in range(len(lowerCAmelCase_ ) ): if tensor.dtype != torch.long: logger.info(f'''layer {row + 1}:\t''' + '''\t'''.join(f'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(f'''layer {row + 1}:\t''' + '''\t'''.join(f'''{x:d}''' for x in tensor[row].cpu().data ) ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=None , lowerCAmelCase_=False ): """simple docstring""" _snake_case , _snake_case : Optional[int] = model.config.num_hidden_layers, model.config.num_attention_heads _snake_case : Tuple = torch.zeros(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device ) _snake_case : Union[str, Any] = torch.zeros(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device ) if head_mask is None: _snake_case : int = torch.ones(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device ) head_mask.requires_grad_(requires_grad=lowerCAmelCase_ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _snake_case : Dict = None _snake_case : Dict = 0.0 _snake_case : Optional[int] = 0.0 for step, inputs in enumerate(tqdm(lowerCAmelCase_ , desc='''Iteration''' , disable=args.local_rank not in [-1, 0] ) ): _snake_case : List[Any] = tuple(t.to(args.device ) for t in inputs ) ((_snake_case) , ) : Optional[Any] = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _snake_case : Any = model(lowerCAmelCase_ , labels=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _snake_case , _snake_case , _snake_case : List[Any] = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(lowerCAmelCase_ ): _snake_case : Union[str, Any] = entropy(attn.detach() , lowerCAmelCase_ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(lowerCAmelCase_ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _snake_case : Any = 2 _snake_case : List[str] = torch.pow(torch.pow(lowerCAmelCase_ , lowerCAmelCase_ ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: _snake_case : Optional[int] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''' ) print_ad_tensor(lowerCAmelCase_ ) if compute_importance: logger.info('''Head importance scores''' ) print_ad_tensor(lowerCAmelCase_ ) logger.info('''Head ranked by importance scores''' ) _snake_case : str = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _snake_case : List[Any] = torch.arange( head_importance.numel() , device=args.device ) _snake_case : List[Any] = head_ranks.view_as(lowerCAmelCase_ ) print_ad_tensor(lowerCAmelCase_ ) return attn_entropy, head_importance, total_loss def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case , _snake_case , _snake_case : str = compute_heads_importance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ ) _snake_case : Optional[Any] = 1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' , lowerCAmelCase_ , original_score * args.masking_threshold ) _snake_case : int = torch.ones_like(lowerCAmelCase_ ) _snake_case : Optional[Any] = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _snake_case : int = original_score while current_score >= original_score * args.masking_threshold: _snake_case : int = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _snake_case : Dict = float('''Inf''' ) _snake_case : Optional[Any] = head_importance.view(-1 ).sort()[1] if len(lowerCAmelCase_ ) <= num_to_mask: print('''BREAK BY num_to_mask''' ) break # mask heads _snake_case : Union[str, Any] = current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist() ) ) _snake_case : Tuple = new_head_mask.view(-1 ) _snake_case : List[str] = 0.0 _snake_case : str = new_head_mask.view_as(lowerCAmelCase_ ) _snake_case : Dict = new_head_mask.clone().detach() print_ad_tensor(lowerCAmelCase_ ) # Compute metric and head importance again _snake_case , _snake_case , _snake_case : Any = compute_heads_importance( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) _snake_case : int = 1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' , lowerCAmelCase_ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info('''Final head mask''' ) print_ad_tensor(lowerCAmelCase_ ) np.save(os.path.join(args.output_dir , '''head_mask.npy''' ) , head_mask.detach().cpu().numpy() ) return head_mask def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = datetime.now() _snake_case , _snake_case , _snake_case : Union[str, Any] = compute_heads_importance( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , compute_importance=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) _snake_case : Tuple = 1 / loss _snake_case : Dict = datetime.now() - before_time _snake_case : List[Any] = sum(p.numel() for p in model.parameters() ) _snake_case : int = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(lowerCAmelCase_ ) ) } for k, v in heads_to_prune.items(): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Union[str, Any] = [ v, ] assert sum(len(lowerCAmelCase_ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(lowerCAmelCase_ ) _snake_case : List[str] = sum(p.numel() for p in model.parameters() ) _snake_case : int = datetime.now() _snake_case , _snake_case , _snake_case : Optional[Any] = compute_heads_importance( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , compute_importance=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , actually_pruned=lowerCAmelCase_ , ) _snake_case : Optional[int] = 1 / loss _snake_case : Dict = datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , lowerCAmelCase_ , lowerCAmelCase_ , pruned_num_params / original_num_params * 100 , ) logger.info('''Pruning: score with masking: %f score with pruning: %f''' , lowerCAmelCase_ , lowerCAmelCase_ ) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 100 ) save_model(lowerCAmelCase_ , args.output_dir ) def _a ( ): """simple docstring""" _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , ) parser.add_argument( '''--model_name_or_path''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--output_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) # Other parameters parser.add_argument( '''--config_name''' , default='''''' , type=lowerCAmelCase_ , help='''Pretrained config name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--tokenizer_name''' , default='''''' , type=lowerCAmelCase_ , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--cache_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help='''Where do you want to store the pre-trained models downloaded from s3''' , ) parser.add_argument( '''--data_subset''' , type=lowerCAmelCase_ , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''' ) parser.add_argument( '''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''' ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) parser.add_argument( '''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''' ) parser.add_argument( '''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , ) parser.add_argument( '''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''' ) parser.add_argument( '''--masking_threshold''' , default=0.9 , type=lowerCAmelCase_ , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , ) parser.add_argument( '''--masking_amount''' , default=0.1 , type=lowerCAmelCase_ , help='''Amount to heads to masking at each masking step.''' ) parser.add_argument('''--metric_name''' , default='''acc''' , type=lowerCAmelCase_ , help='''Metric to use for head masking.''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=lowerCAmelCase_ , help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) , ) parser.add_argument('''--batch_size''' , default=1 , type=lowerCAmelCase_ , help='''Batch size.''' ) parser.add_argument('''--seed''' , type=lowerCAmelCase_ , default=42 ) parser.add_argument('''--local_rank''' , type=lowerCAmelCase_ , default=-1 , help='''local_rank for distributed training on gpus''' ) parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''' ) parser.add_argument('''--server_ip''' , type=lowerCAmelCase_ , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=lowerCAmelCase_ , default='''''' , help='''Can be used for distant debugging.''' ) _snake_case : Optional[Any] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowerCAmelCase_ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _snake_case : str = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''' ) _snake_case : Optional[Any] = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _snake_case : List[str] = torch.device('''cuda''' , args.local_rank ) _snake_case : int = 1 torch.distributed.init_process_group(backend='''nccl''' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _snake_case : Optional[Any] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _snake_case : Optional[int] = nn.parallel.DistributedDataParallel( lowerCAmelCase_ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=lowerCAmelCase_ ) elif args.n_gpu > 1: _snake_case : List[Any] = nn.DataParallel(lowerCAmelCase_ ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=lowerCAmelCase_ ) torch.save(lowerCAmelCase_ , os.path.join(args.output_dir , '''run_args.bin''' ) ) logger.info('''Training/evaluation parameters %s''' , lowerCAmelCase_ ) # Prepare dataset _snake_case : Dict = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _snake_case : int = (torch.from_numpy(lowerCAmelCase_ ),) _snake_case : Tuple = TensorDataset(*lowerCAmelCase_ ) _snake_case : List[str] = RandomSampler(lowerCAmelCase_ ) _snake_case : Dict = DataLoader(lowerCAmelCase_ , sampler=lowerCAmelCase_ , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _snake_case : Optional[int] = mask_heads(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) prune_heads(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
47
0
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase : Tuple = 1_6 UpperCAmelCase : Dict = 3_2 def _a ( lowerCAmelCase_ , lowerCAmelCase_ = 16 ): """simple docstring""" _snake_case : Optional[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) _snake_case : Any = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(lowerCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) _snake_case : Optional[int] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _snake_case : Optional[Any] = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _snake_case : Any = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowerCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. _snake_case : Optional[Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _snake_case : Tuple = 16 elif accelerator.mixed_precision != "no": _snake_case : Any = 8 else: _snake_case : Dict = None return tokenizer.pad( lowerCAmelCase_ , padding='''longest''' , max_length=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_tensors='''pt''' , ) # Instantiate dataloaders. _snake_case : List[Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) _snake_case : str = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCAmelCase : Dict = mocked_dataloaders # noqa: F811 def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , lowerCAmelCase_ ) == "1": _snake_case : Optional[Any] = 2 # New Code # _snake_case : List[str] = int(args.gradient_accumulation_steps ) # Initialize accelerator _snake_case : List[str] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=lowerCAmelCase_ ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( '''Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`''' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _snake_case : Tuple = config['''lr'''] _snake_case : Optional[int] = int(config['''num_epochs'''] ) _snake_case : Dict = int(config['''seed'''] ) _snake_case : Optional[Any] = int(config['''batch_size'''] ) _snake_case : List[str] = evaluate.load('''glue''' , '''mrpc''' ) set_seed(lowerCAmelCase_ ) _snake_case : Any = get_dataloaders(lowerCAmelCase_ , lowerCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _snake_case : Tuple = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _snake_case : Optional[Any] = model.to(accelerator.device ) # Instantiate optimizer _snake_case : Any = AdamW(params=model.parameters() , lr=lowerCAmelCase_ ) # Instantiate scheduler _snake_case : List[Any] = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase_ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _snake_case : Tuple = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(lowerCAmelCase_ ): _snake_case : Union[str, Any] = model(**lowerCAmelCase_ ) _snake_case : Optional[Any] = output.loss accelerator.backward(lowerCAmelCase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _snake_case : Union[str, Any] = model(**lowerCAmelCase_ ) _snake_case : List[Any] = outputs.logits.argmax(dim=-1 ) _snake_case : str = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=lowerCAmelCase_ , references=lowerCAmelCase_ , ) _snake_case : Tuple = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , lowerCAmelCase_ ) def _a ( ): """simple docstring""" _snake_case : int = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=lowerCAmelCase_ , default=lowerCAmelCase_ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''' , type=lowerCAmelCase_ , default=1 , help='''The number of minibatches to be ran before gradients are accumulated.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) _snake_case : List[Any] = parser.parse_args() _snake_case : Union[str, Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
711
'''simple docstring''' def _a ( lowerCAmelCase_ ): """simple docstring""" if n == 1 or not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return 0 elif n == 2: return 1 else: _snake_case : Union[str, Any] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[int] = 0 _snake_case : int = 2 while digits < n: index += 1 _snake_case : Tuple = len(str(fibonacci(lowerCAmelCase_ ) ) ) return index def _a ( lowerCAmelCase_ = 1_000 ): """simple docstring""" return fibonacci_digits_index(lowerCAmelCase_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
47
0
'''simple docstring''' import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase : Optional[int] = 1_6 UpperCAmelCase : Any = 3_2 def _a ( lowerCAmelCase_ , lowerCAmelCase_ = 16 ): """simple docstring""" _snake_case : str = AutoTokenizer.from_pretrained('''bert-base-cased''' ) _snake_case : Tuple = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(lowerCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) _snake_case : Union[str, Any] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _snake_case : Optional[Any] = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _snake_case : int = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowerCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. _snake_case : int = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _snake_case : List[str] = 16 elif accelerator.mixed_precision != "no": _snake_case : List[Any] = 8 else: _snake_case : List[Any] = None return tokenizer.pad( lowerCAmelCase_ , padding='''longest''' , max_length=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_tensors='''pt''' , ) # Instantiate dataloaders. _snake_case : List[Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ , drop_last=lowerCAmelCase_ ) _snake_case : str = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ , drop_last=(accelerator.mixed_precision == '''fp8''') , ) return train_dataloader, eval_dataloader def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _snake_case : Dict = config['''lr'''] _snake_case : Tuple = int(config['''num_epochs'''] ) _snake_case : List[str] = int(config['''seed'''] ) _snake_case : Tuple = int(config['''batch_size'''] ) _snake_case : Optional[Any] = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation _snake_case : int = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _snake_case : Tuple = batch_size // MAX_GPU_BATCH_SIZE _snake_case : Dict = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase_ ) _snake_case : int = get_dataloaders(lowerCAmelCase_ , lowerCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _snake_case : Any = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _snake_case : List[str] = model.to(accelerator.device ) # Instantiate optimizer _snake_case : int = AdamW(params=model.parameters() , lr=lowerCAmelCase_ ) # Instantiate scheduler _snake_case : Optional[Any] = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _snake_case : List[str] = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _snake_case : Union[str, Any] = model(**lowerCAmelCase_ ) _snake_case : Dict = outputs.loss _snake_case : Optional[Any] = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _snake_case : int = model(**lowerCAmelCase_ ) _snake_case : List[Any] = outputs.logits.argmax(dim=-1 ) _snake_case : List[str] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=lowerCAmelCase_ , references=lowerCAmelCase_ , ) _snake_case : Tuple = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , lowerCAmelCase_ ) def _a ( ): """simple docstring""" _snake_case : Optional[int] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=lowerCAmelCase_ , default=lowerCAmelCase_ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) _snake_case : str = parser.parse_args() _snake_case : Dict = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
712
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar UpperCAmelCase : Any = TypeVar('T') UpperCAmelCase : str = TypeVar('U') class lowerCamelCase (Generic[T, U] ): def __init__( self , lowercase__ , lowercase__ ) -> List[Any]: """simple docstring""" _snake_case : str = key _snake_case : Optional[int] = val _snake_case : DoubleLinkedListNode[T, U] | None = None _snake_case : DoubleLinkedListNode[T, U] | None = None def __repr__( self ) -> str: """simple docstring""" return ( F'''Node: key: {self.key}, val: {self.val}, ''' F'''has next: {bool(self.next )}, has prev: {bool(self.prev )}''' ) class lowerCamelCase (Generic[T, U] ): def __init__( self ) -> None: """simple docstring""" _snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase__ , lowercase__ ) _snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase__ , lowercase__ ) _snake_case , _snake_case : Union[str, Any] = self.rear, self.head def __repr__( self ) -> str: """simple docstring""" _snake_case : List[Any] = ['''DoubleLinkedList'''] _snake_case : str = self.head while node.next is not None: rep.append(str(lowercase__ ) ) _snake_case : List[str] = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> None: """simple docstring""" _snake_case : Tuple = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None _snake_case : Union[str, Any] = node _snake_case : Optional[Any] = previous _snake_case : int = node _snake_case : Union[str, Any] = self.rear def UpperCAmelCase_ ( self , lowercase__ ) -> DoubleLinkedListNode[T, U] | None: """simple docstring""" if node.prev is None or node.next is None: return None _snake_case : Optional[int] = node.next _snake_case : Any = node.prev _snake_case : List[str] = None _snake_case : Optional[int] = None return node class lowerCamelCase (Generic[T, U] ): _lowercase : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self , lowercase__ ) -> Union[str, Any]: """simple docstring""" _snake_case : DoubleLinkedList[T, U] = DoubleLinkedList() _snake_case : Union[str, Any] = capacity _snake_case : int = 0 _snake_case : Dict = 0 _snake_case : Union[str, Any] = 0 _snake_case : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__( self ) -> str: """simple docstring""" return ( F'''CacheInfo(hits={self.hits}, misses={self.miss}, ''' F'''capacity={self.capacity}, current size={self.num_keys})''' ) def __contains__( self , lowercase__ ) -> bool: """simple docstring""" return key in self.cache def UpperCAmelCase_ ( self , lowercase__ ) -> U | None: """simple docstring""" if key in self.cache: self.hits += 1 _snake_case : DoubleLinkedListNode[T, U] = self.cache[key] _snake_case : Tuple = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowercase__ ) return node.val self.miss += 1 return None def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> None: """simple docstring""" if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity _snake_case : Dict = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowercase__ ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 _snake_case : Optional[int] = DoubleLinkedListNode(lowercase__ , lowercase__ ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value _snake_case : Optional[Any] = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list _snake_case : Optional[Any] = value self.list.add(lowercase__ ) @classmethod def UpperCAmelCase_ ( cls , lowercase__ = 128 ) -> Callable[[Callable[[T], U]], Callable[..., U]]: """simple docstring""" def cache_decorator_inner(lowercase__ ) -> Callable[..., U]: def cache_decorator_wrapper(*lowercase__ ) -> U: if func not in cls.decorator_function_to_instance_map: _snake_case : Optional[Any] = LRUCache(lowercase__ ) _snake_case : Union[str, Any] = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: _snake_case : Tuple = func(*lowercase__ ) cls.decorator_function_to_instance_map[func].put(args[0] , lowercase__ ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowercase__ , '''cache_info''' , lowercase__ ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
47
0
'''simple docstring''' def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[int] = len(lowerCAmelCase_ ) _snake_case : List[Any] = len(lowerCAmelCase_ ) _snake_case : Any = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] _snake_case : List[Any] = True for i in range(lowerCAmelCase_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: _snake_case : List[str] = True if a[i].islower(): _snake_case : List[Any] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
713
'''simple docstring''' import os import numpy import onnx def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : List[Any] = a.name _snake_case : List[Any] = b.name _snake_case : Tuple = '''''' _snake_case : Tuple = '''''' _snake_case : Optional[Any] = a == b _snake_case : List[Any] = name_a _snake_case : str = name_b return res def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(lowerCAmelCase_ , lowerCAmelCase_ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , lowerCAmelCase_ , lowerCAmelCase_ ) _graph_replace_input_with(node_proto.attribute[1].g , lowerCAmelCase_ , lowerCAmelCase_ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , lowerCAmelCase_ , lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for n in graph_proto.node: _node_replace_input_with(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = list(model.graph.initializer ) _snake_case : List[str] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i _snake_case : List[Any] = inits[i].name _snake_case : List[str] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , lowerCAmelCase_ , lowerCAmelCase_ ) def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Tuple = os.path.dirname(lowerCAmelCase_ ) _snake_case : str = os.path.basename(lowerCAmelCase_ ) _snake_case : Tuple = onnx.load(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) ) _snake_case : Union[str, Any] = list(model.graph.initializer ) _snake_case : Union[str, Any] = set() _snake_case : Any = {} _snake_case : str = [] _snake_case : Union[str, Any] = 0 for i in range(len(lowerCAmelCase_ ) ): if i in dup_set: continue for j in range(i + 1 , len(lowerCAmelCase_ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(lowerCAmelCase_ ) dup_set.add(lowerCAmelCase_ ) _snake_case : List[Any] = inits[j].data_type _snake_case : Dict = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('''unexpected data type: ''' , lowerCAmelCase_ ) total_reduced_size += mem_size _snake_case : Union[str, Any] = inits[i].name _snake_case : Any = inits[j].name if name_i in dup_map: dup_map[name_i].append(lowerCAmelCase_ ) else: _snake_case : Union[str, Any] = [name_j] ind_to_replace.append((j, i) ) print('''total reduced size: ''' , total_reduced_size / 1_024 / 1_024 / 1_024 , '''GB''' ) _snake_case : List[str] = sorted(lowerCAmelCase_ ) _remove_dup_initializers_from_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : List[str] = '''optimized_''' + model_file_name _snake_case : List[Any] = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) onnx.save(lowerCAmelCase_ , lowerCAmelCase_ ) return new_model
47
0
'''simple docstring''' print((lambda quine: quine % quine)('print((lambda quine: quine %% quine)(%r))'))
714
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : int = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
47
0
'''simple docstring''' import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Union[str, Any] = AutoConfig.from_pretrained(lowerCAmelCase_ ) _snake_case : Optional[int] = FlaxAutoModelForSeqaSeqLM.from_config(config=lowerCAmelCase_ ) _snake_case : Optional[Any] = checkpoints.load_tax_checkpoint(lowerCAmelCase_ ) _snake_case : str = '''wi_0''' in tax_model['''target''']['''encoder''']['''layers_0''']['''mlp'''] if config.model_type == "t5": _snake_case : Union[str, Any] = '''SelfAttention''' if config.model_type == "longt5" and config.encoder_attention_type == "local": _snake_case : Tuple = '''LocalSelfAttention''' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _snake_case : int = '''TransientGlobalSelfAttention''' else: raise ValueError( '''Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`''' ''' attribute with a value from [\'local\', \'transient-global].''' ) # Encoder for layer_index in range(config.num_layers ): _snake_case : Optional[Any] = f'''layers_{str(lowerCAmelCase_ )}''' # Self-Attention _snake_case : Optional[int] = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''key''']['''kernel'''] _snake_case : List[str] = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''out''']['''kernel'''] _snake_case : List[Any] = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''query''']['''kernel'''] _snake_case : Optional[int] = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''value''']['''kernel'''] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _snake_case : Union[str, Any] = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''T5LayerNorm_0''']['''scale'''] # Layer Normalization _snake_case : Dict = tax_model['''target''']['''encoder'''][layer_name]['''pre_attention_layer_norm''']['''scale'''] if split_mlp_wi: _snake_case : List[str] = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] _snake_case : Dict = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: _snake_case : Any = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] _snake_case : Any = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization _snake_case : str = tax_model['''target''']['''encoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning _snake_case : int = flax_model.params['''encoder''']['''block'''][str(lowerCAmelCase_ )]['''layer'''] _snake_case : str = tax_attention_key _snake_case : Dict = tax_attention_out _snake_case : Optional[Any] = tax_attention_query _snake_case : int = tax_attention_value _snake_case : List[str] = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _snake_case : Tuple = tax_global_layer_norm if split_mlp_wi: _snake_case : List[Any] = tax_mlp_wi_a _snake_case : Any = tax_mlp_wi_a else: _snake_case : int = tax_mlp_wi _snake_case : Any = tax_mlp_wo _snake_case : Optional[Any] = tax_mlp_layer_norm _snake_case : Optional[Any] = flax_model_encoder_layer_block # Only for layer 0: _snake_case : Optional[Any] = tax_model['''target''']['''encoder''']['''relpos_bias''']['''rel_embedding'''].T _snake_case : List[Any] = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _snake_case : List[str] = tax_model['''target''']['''encoder''']['''side_relpos_bias''']['''rel_embedding'''].T _snake_case : str = tax_encoder_global_rel_embedding # Assigning _snake_case : Tuple = tax_model['''target''']['''encoder''']['''encoder_norm''']['''scale'''] _snake_case : str = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): _snake_case : Union[str, Any] = f'''layers_{str(lowerCAmelCase_ )}''' # Self-Attention _snake_case : Union[str, Any] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''key''']['''kernel'''] _snake_case : Tuple = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''out''']['''kernel'''] _snake_case : List[str] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''query''']['''kernel'''] _snake_case : Union[str, Any] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''value''']['''kernel'''] # Layer Normalization _snake_case : Any = tax_model['''target''']['''decoder'''][layer_name]['''pre_self_attention_layer_norm'''][ '''scale''' ] # Encoder-Decoder-Attention _snake_case : Optional[int] = tax_model['''target''']['''decoder'''][layer_name]['''encoder_decoder_attention'''] _snake_case : Union[str, Any] = tax_enc_dec_attention_module['''key''']['''kernel'''] _snake_case : Optional[int] = tax_enc_dec_attention_module['''out''']['''kernel'''] _snake_case : Union[str, Any] = tax_enc_dec_attention_module['''query''']['''kernel'''] _snake_case : List[str] = tax_enc_dec_attention_module['''value''']['''kernel'''] # Layer Normalization _snake_case : int = tax_model['''target''']['''decoder'''][layer_name]['''pre_cross_attention_layer_norm''']['''scale'''] # MLP if split_mlp_wi: _snake_case : Optional[Any] = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] _snake_case : List[Any] = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: _snake_case : Optional[int] = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] _snake_case : Optional[Any] = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization _snake_case : Union[str, Any] = tax_model['''target''']['''decoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning _snake_case : Optional[int] = flax_model.params['''decoder''']['''block'''][str(lowerCAmelCase_ )]['''layer'''] _snake_case : Tuple = tax_attention_key _snake_case : Union[str, Any] = tax_attention_out _snake_case : Union[str, Any] = tax_attention_query _snake_case : Tuple = tax_attention_value _snake_case : List[str] = tax_pre_attention_layer_norm _snake_case : List[Any] = tax_enc_dec_attention_key _snake_case : Optional[int] = tax_enc_dec_attention_out _snake_case : List[str] = tax_enc_dec_attention_query _snake_case : List[str] = tax_enc_dec_attention_value _snake_case : List[str] = tax_cross_layer_norm if split_mlp_wi: _snake_case : List[Any] = tax_mlp_wi_a _snake_case : List[Any] = tax_mlp_wi_a else: _snake_case : Any = tax_mlp_wi _snake_case : Dict = tax_mlp_wo _snake_case : int = txa_mlp_layer_norm _snake_case : Any = flax_model_decoder_layer_block # Decoder Normalization _snake_case : Optional[Any] = tax_model['''target''']['''decoder''']['''decoder_norm''']['''scale'''] _snake_case : List[Any] = txa_decoder_norm # Only for layer 0: _snake_case : Dict = tax_model['''target''']['''decoder''']['''relpos_bias''']['''rel_embedding'''].T _snake_case : int = tax_decoder_rel_embedding # Token Embeddings _snake_case : Any = tax_model['''target''']['''token_embedder''']['''embedding'''] _snake_case : Any = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: _snake_case : Union[str, Any] = tax_model['''target''']['''decoder''']['''logits_dense''']['''kernel'''] flax_model.save_pretrained(lowerCAmelCase_ ) print('''T5X Model was sucessfully converted!''' ) if __name__ == "__main__": UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.' ) parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.') parser.add_argument( '--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.' ) UpperCAmelCase : List[Any] = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
715
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase : Dict = logging.get_logger(__name__) class lowerCamelCase (a__ ): _lowercase : int = ["""pixel_values"""] def __init__( self , lowercase__ = True , lowercase__ = 32 , lowercase__=PILImageResampling.BILINEAR , lowercase__ = True , **lowercase__ , ) -> None: """simple docstring""" _snake_case : Any = do_resize _snake_case : List[str] = do_rescale _snake_case : Any = size_divisor _snake_case : Optional[Any] = resample super().__init__(**lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ ) -> np.ndarray: """simple docstring""" _snake_case , _snake_case : Dict = get_image_size(lowercase__ ) # Rounds the height and width down to the closest multiple of size_divisor _snake_case : Optional[int] = height // size_divisor * size_divisor _snake_case : Dict = width // size_divisor * size_divisor _snake_case : str = resize(lowercase__ , (new_h, new_w) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) return image def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ ) -> np.ndarray: """simple docstring""" return rescale(image=lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__=None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ) -> BatchFeature: """simple docstring""" _snake_case : Any = do_resize if do_resize is not None else self.do_resize _snake_case : List[Any] = do_rescale if do_rescale is not None else self.do_rescale _snake_case : List[str] = size_divisor if size_divisor is not None else self.size_divisor _snake_case : int = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) _snake_case : Tuple = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. _snake_case : Tuple = [to_numpy_array(lowercase__ ) for img in images] if do_resize: _snake_case : Optional[int] = [self.resize(lowercase__ , size_divisor=lowercase__ , resample=lowercase__ ) for image in images] if do_rescale: _snake_case : Union[str, Any] = [self.rescale(lowercase__ , scale=1 / 255 ) for image in images] _snake_case : Union[str, Any] = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] _snake_case : List[str] = {'''pixel_values''': images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
47
0
'''simple docstring''' import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=99 , lowercase__=64 , lowercase__=5 , lowercase__=4 , lowercase__=37 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=512 , lowercase__=16 , lowercase__=2 , lowercase__=0.02 , lowercase__=3 , lowercase__=4 , lowercase__=None , ) -> int: """simple docstring""" _snake_case : Any = parent _snake_case : Any = batch_size _snake_case : List[Any] = seq_length _snake_case : Optional[int] = is_training _snake_case : str = use_input_mask _snake_case : Union[str, Any] = use_token_type_ids _snake_case : Union[str, Any] = use_labels _snake_case : List[str] = vocab_size _snake_case : Union[str, Any] = hidden_size _snake_case : Tuple = num_hidden_layers _snake_case : List[str] = num_attention_heads _snake_case : Any = intermediate_size _snake_case : List[Any] = hidden_act _snake_case : Optional[Any] = hidden_dropout_prob _snake_case : Union[str, Any] = attention_probs_dropout_prob _snake_case : List[Any] = max_position_embeddings _snake_case : int = type_vocab_size _snake_case : Union[str, Any] = type_sequence_label_size _snake_case : Dict = initializer_range _snake_case : Any = num_labels _snake_case : List[str] = num_choices _snake_case : List[Any] = scope _snake_case : Dict = vocab_size - 1 def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" _snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case : Dict = None if self.use_input_mask: _snake_case : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case : Any = None if self.use_labels: _snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case : Dict = self.get_config() return config, input_ids, input_mask, token_labels def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Optional[int] = self.prepare_config_and_inputs() _snake_case : List[str] = True return config, input_ids, input_mask, token_labels def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ ) -> int: """simple docstring""" _snake_case : List[Any] = GPTNeoXModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() _snake_case : List[str] = model(lowercase__ , attention_mask=lowercase__ ) _snake_case : List[str] = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ ) -> int: """simple docstring""" _snake_case : Union[str, Any] = True _snake_case : int = GPTNeoXModel(lowercase__ ) model.to(lowercase__ ) model.eval() _snake_case : str = model(lowercase__ , attention_mask=lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> List[Any]: """simple docstring""" _snake_case : Optional[int] = GPTNeoXForCausalLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() _snake_case : List[str] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Dict: """simple docstring""" _snake_case : Optional[Any] = self.num_labels _snake_case : Dict = GPTNeoXForQuestionAnswering(lowercase__ ) model.to(lowercase__ ) model.eval() _snake_case : int = model(lowercase__ , attention_mask=lowercase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> int: """simple docstring""" _snake_case : Union[str, Any] = self.num_labels _snake_case : Any = GPTNeoXForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() _snake_case : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case : Union[str, Any] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> List[Any]: """simple docstring""" _snake_case : List[Any] = self.num_labels _snake_case : List[Any] = GPTNeoXForTokenClassification(lowercase__ ) model.to(lowercase__ ) model.eval() _snake_case : Any = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ ) -> int: """simple docstring""" _snake_case : Dict = True _snake_case : Dict = GPTNeoXForCausalLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() # first forward pass _snake_case : Tuple = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__ ) _snake_case : Optional[int] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _snake_case : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _snake_case : int = torch.cat([input_ids, next_tokens] , dim=-1 ) _snake_case : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) _snake_case : Any = model(lowercase__ , attention_mask=lowercase__ , output_hidden_states=lowercase__ ) _snake_case : Dict = output_from_no_past['''hidden_states'''][0] _snake_case : int = model( lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__ , output_hidden_states=lowercase__ , )['''hidden_states'''][0] # select random slice _snake_case : Union[str, Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() _snake_case : str = output_from_no_past[:, -3:, random_slice_idx].detach() _snake_case : Optional[int] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1E-3 ) ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : List[Any] = self.prepare_config_and_inputs() _snake_case : int = config_and_inputs _snake_case : int = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase (a__ , a__ , a__ , unittest.TestCase ): _lowercase : List[Any] = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) _lowercase : Optional[int] = (GPTNeoXForCausalLM,) if is_torch_available() else () _lowercase : Union[str, Any] = ( { """feature-extraction""": GPTNeoXModel, """question-answering""": GPTNeoXForQuestionAnswering, """text-classification""": GPTNeoXForSequenceClassification, """text-generation""": GPTNeoXForCausalLM, """token-classification""": GPTNeoXForTokenClassification, """zero-shot""": GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) _lowercase : List[Any] = False _lowercase : Optional[Any] = False _lowercase : Optional[int] = False _lowercase : Union[str, Any] = False def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : Optional[int] = GPTNeoXModelTester(self ) _snake_case : Any = ConfigTester(self , config_class=lowercase__ , hidden_size=64 , num_attention_heads=8 ) def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" _snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowercase__ , lowercase__ , lowercase__ ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowercase__ , lowercase__ , lowercase__ ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : int = self.model_tester.prepare_config_and_inputs_for_decoder() _snake_case : Dict = None self.model_tester.create_and_check_model_as_decoder(lowercase__ , lowercase__ , lowercase__ ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowercase__ , lowercase__ , lowercase__ ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowercase__ ) def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" _snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase__ ) def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" _snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase__ ) def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" _snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase__ ) @unittest.skip(reason='''Feed forward chunking is not implemented''' ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def UpperCAmelCase_ ( self , lowercase__ ) -> List[str]: """simple docstring""" _snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : List[str] = ids_tensor([1, 10] , config.vocab_size ) _snake_case : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _snake_case : Tuple = GPTNeoXModel(lowercase__ ) original_model.to(lowercase__ ) original_model.eval() _snake_case : Tuple = original_model(lowercase__ ).last_hidden_state _snake_case : Any = original_model(lowercase__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _snake_case : str = {'''type''': scaling_type, '''factor''': 10.0} _snake_case : int = GPTNeoXModel(lowercase__ ) scaled_model.to(lowercase__ ) scaled_model.eval() _snake_case : List[str] = scaled_model(lowercase__ ).last_hidden_state _snake_case : Dict = scaled_model(lowercase__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(lowercase__ , lowercase__ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowercase__ , lowercase__ , atol=1E-5 ) ) @require_torch class lowerCamelCase (unittest.TestCase ): @slow def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" _snake_case : List[Any] = AutoTokenizer.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) for checkpointing in [True, False]: _snake_case : Tuple = GPTNeoXForCausalLM.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(lowercase__ ) _snake_case : List[Any] = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(lowercase__ ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 _snake_case : Union[str, Any] = '''My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure''' _snake_case : Optional[Any] = model.generate(**lowercase__ , do_sample=lowercase__ , max_new_tokens=20 ) _snake_case : List[Any] = tokenizer.batch_decode(lowercase__ )[0] self.assertEqual(lowercase__ , lowercase__ )
716
'''simple docstring''' from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class lowerCamelCase : _lowercase : Any = LEDConfig _lowercase : Any = {} _lowercase : Optional[Any] = """gelu""" def __init__( self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=False , lowercase__=99 , lowercase__=32 , lowercase__=2 , lowercase__=4 , lowercase__=37 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=20 , lowercase__=2 , lowercase__=1 , lowercase__=0 , lowercase__=4 , ) -> Any: """simple docstring""" _snake_case : Dict = parent _snake_case : Any = batch_size _snake_case : List[str] = seq_length _snake_case : Union[str, Any] = is_training _snake_case : Tuple = use_labels _snake_case : int = vocab_size _snake_case : str = hidden_size _snake_case : Optional[Any] = num_hidden_layers _snake_case : List[Any] = num_attention_heads _snake_case : Optional[int] = intermediate_size _snake_case : List[Any] = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : Optional[int] = max_position_embeddings _snake_case : Any = eos_token_id _snake_case : List[Any] = pad_token_id _snake_case : Optional[int] = bos_token_id _snake_case : Any = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _snake_case : Any = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _snake_case : Tuple = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" _snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _snake_case : Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _snake_case : Optional[int] = tf.concat([input_ids, eos_tensor] , axis=1 ) _snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case : List[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _snake_case : Dict = prepare_led_inputs_dict(lowercase__ , lowercase__ , lowercase__ ) _snake_case : Dict = tf.concat( [tf.zeros_like(lowercase__ )[:, :-1], tf.ones_like(lowercase__ )[:, -1:]] , axis=-1 , ) _snake_case : Dict = global_attention_mask return config, inputs_dict def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> int: """simple docstring""" _snake_case : int = TFLEDModel(config=lowercase__ ).get_decoder() _snake_case : Union[str, Any] = inputs_dict['''input_ids'''] _snake_case : List[str] = input_ids[:1, :] _snake_case : Tuple = inputs_dict['''attention_mask'''][:1, :] _snake_case : Dict = 1 # first forward pass _snake_case : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__ ) _snake_case , _snake_case : Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _snake_case : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _snake_case : Tuple = tf.concat([input_ids, next_tokens] , axis=-1 ) _snake_case : List[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _snake_case : List[Any] = model(lowercase__ , attention_mask=lowercase__ )[0] _snake_case : Tuple = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _snake_case : Tuple = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _snake_case : int = output_from_no_past[:, -3:, random_slice_idx] _snake_case : Optional[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase__ , lowercase__ , rtol=1E-3 ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , ): """simple docstring""" if attention_mask is None: _snake_case : Union[str, Any] = tf.cast(tf.math.not_equal(lowerCAmelCase_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _snake_case : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _snake_case : int = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class lowerCamelCase (a__ , a__ , unittest.TestCase ): _lowercase : Optional[int] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _lowercase : int = (TFLEDForConditionalGeneration,) if is_tf_available() else () _lowercase : Dict = ( { """conversational""": TFLEDForConditionalGeneration, """feature-extraction""": TFLEDModel, """summarization""": TFLEDForConditionalGeneration, """text2text-generation""": TFLEDForConditionalGeneration, """translation""": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _lowercase : int = True _lowercase : List[Any] = False _lowercase : str = False _lowercase : Union[str, Any] = False def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : str = TFLEDModelTester(self ) _snake_case : Union[str, Any] = ConfigTester(self , config_class=lowercase__ ) def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase__ ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Any = tf.zeros_like(inputs_dict['''attention_mask'''] ) _snake_case : Optional[Any] = 2 _snake_case : Any = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) _snake_case : Dict = True _snake_case : str = self.model_tester.seq_length _snake_case : Dict = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowercase__ ): _snake_case : Optional[int] = outputs.decoder_attentions self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowercase__ ): _snake_case : int = [t.numpy() for t in outputs.encoder_attentions] _snake_case : Tuple = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _snake_case : Union[str, Any] = True _snake_case : Dict = False _snake_case : Union[str, Any] = False _snake_case : List[Any] = model_class(lowercase__ ) _snake_case : Optional[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) _snake_case : List[Any] = len(lowercase__ ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) if self.is_encoder_decoder: _snake_case : Union[str, Any] = model_class(lowercase__ ) _snake_case : List[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_decoder_attentions_output(lowercase__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _snake_case : str = True _snake_case : Tuple = model_class(lowercase__ ) _snake_case : int = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) # Check attention is always last and order is fine _snake_case : int = True _snake_case : List[str] = True _snake_case : Tuple = model_class(lowercase__ ) _snake_case : Optional[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase__ ) ) self.assertEqual(model.config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" pass def UpperCAmelCase_ ( self ) -> str: """simple docstring""" pass def _a ( lowerCAmelCase_ ): """simple docstring""" return tf.constant(lowerCAmelCase_ , dtype=tf.intaa ) UpperCAmelCase : Dict = 1E-4 @slow @require_tf class lowerCamelCase (unittest.TestCase ): def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" _snake_case : List[str] = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here _snake_case : List[str] = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : Tuple = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : Tuple = prepare_led_inputs_dict(model.config , lowercase__ , lowercase__ ) _snake_case : int = model(**lowercase__ )[0] _snake_case : Dict = (1, 1_024, 768) self.assertEqual(output.shape , lowercase__ ) # change to expected output here _snake_case : List[Any] = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1E-3 ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Any = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here _snake_case : Dict = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : Dict = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : List[str] = prepare_led_inputs_dict(model.config , lowercase__ , lowercase__ ) _snake_case : Tuple = model(**lowercase__ )[0] _snake_case : Any = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , lowercase__ ) # change to expected output here _snake_case : Dict = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1E-3 , rtol=1E-3 )
47
0
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm UpperCAmelCase : Tuple = logging.get_logger(__name__) @dataclass class lowerCamelCase (a__ ): _lowercase : Any = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self , **lowercase__ ) -> List[Any]: """simple docstring""" for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: _snake_case : Optional[int] = deprecated_arg[3:] setattr(self , lowercase__ , not kwargs.pop(lowercase__ ) ) logger.warning( F'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or''' F''' {positive_arg}={kwargs[positive_arg]}''' ) _snake_case : Optional[Any] = kwargs.pop('''torchscript''' , self.torchscript ) _snake_case : Dict = kwargs.pop('''torch_xla_tpu_print_metrics''' , self.torch_xla_tpu_print_metrics ) _snake_case : Tuple = kwargs.pop('''fp16_opt_level''' , self.fpaa_opt_level ) super().__init__(**lowercase__ ) _lowercase : bool = field(default=a__ , metadata={"""help""": """Trace the models using torchscript"""} ) _lowercase : bool = field(default=a__ , metadata={"""help""": """Print Xla/PyTorch tpu metrics"""} ) _lowercase : str = field( default="""O1""" , metadata={ """help""": ( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. """ """See details at https://nvidia.github.io/apex/amp.html""" ) } , ) @cached_property def UpperCAmelCase_ ( self ) -> Tuple["torch.device", int]: """simple docstring""" requires_backends(self , ['''torch'''] ) logger.info('''PyTorch: setting up devices''' ) if not self.cuda: _snake_case : List[str] = torch.device('''cpu''' ) _snake_case : int = 0 elif is_torch_tpu_available(): _snake_case : Tuple = xm.xla_device() _snake_case : int = 0 else: _snake_case : Union[str, Any] = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) _snake_case : Optional[Any] = torch.cuda.device_count() return device, n_gpu @property def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" return is_torch_tpu_available() and self.tpu @property def UpperCAmelCase_ ( self ) -> int: """simple docstring""" requires_backends(self , ['''torch'''] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def UpperCAmelCase_ ( self ) -> "torch.device": """simple docstring""" requires_backends(self , ['''torch'''] ) return self._setup_devices[0] @property def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" requires_backends(self , ['''torch'''] ) return self._setup_devices[1] @property def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" return self.n_gpu > 0
717
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase : Optional[int] = logging.get_logger(__name__) UpperCAmelCase : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase : Any = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } UpperCAmelCase : Optional[Any] = { 'gpt-neox-20b': 2_0_4_8, } class lowerCamelCase (a__ ): _lowercase : Optional[int] = VOCAB_FILES_NAMES _lowercase : str = PRETRAINED_VOCAB_FILES_MAP _lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Optional[int] = ["""input_ids""", """attention_mask"""] def __init__( self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="<|endoftext|>" , lowercase__="<|endoftext|>" , lowercase__="<|endoftext|>" , lowercase__=False , **lowercase__ , ) -> List[Any]: """simple docstring""" super().__init__( lowercase__ , lowercase__ , tokenizer_file=lowercase__ , unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , add_prefix_space=lowercase__ , **lowercase__ , ) _snake_case : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowercase__ ) != add_prefix_space: _snake_case : int = getattr(lowercase__ , pre_tok_state.pop('''type''' ) ) _snake_case : int = add_prefix_space _snake_case : Optional[Any] = pre_tok_class(**lowercase__ ) _snake_case : List[str] = add_prefix_space def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> Tuple[str]: """simple docstring""" _snake_case : Optional[int] = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> List[int]: """simple docstring""" _snake_case : List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase__ , add_special_tokens=lowercase__ ) + [self.eos_token_id] ) if len(lowercase__ ) > self.model_max_length: _snake_case : Dict = input_ids[-self.model_max_length :] return input_ids
47
0
'''simple docstring''' from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class lowerCamelCase (yaml.SafeLoader ): def UpperCAmelCase_ ( self , lowercase__ ) -> Any: """simple docstring""" _snake_case : int = [self.constructed_objects[key_node] for key_node, _ in node.value] _snake_case : str = [tuple(lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else key for key in keys] _snake_case : str = Counter(lowercase__ ) _snake_case : List[str] = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F'''Got duplicate yaml keys: {duplicate_keys}''' ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__=False ) -> Tuple: """simple docstring""" _snake_case : Tuple = super().construct_mapping(lowercase__ , deep=lowercase__ ) self._check_no_duplicates_on_constructed_node(lowercase__ ) return mapping def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : int = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: _snake_case : int = full_content[1:].index('''---''' ) + 1 _snake_case : Optional[Any] = '''\n'''.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(lowerCAmelCase_ ) class lowerCamelCase (a__ ): # class attributes _lowercase : Tuple = {"""train_eval_index"""} # train-eval-index in the YAML metadata @classmethod def UpperCAmelCase_ ( cls , lowercase__ ) -> "DatasetMetadata": """simple docstring""" with open(lowercase__ , encoding='''utf-8''' ) as readme_file: _snake_case : Tuple = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(lowercase__ ) else: return cls() def UpperCAmelCase_ ( self , lowercase__ ) -> Dict: """simple docstring""" if path.exists(): with open(lowercase__ , encoding='''utf-8''' ) as readme_file: _snake_case : Any = readme_file.read() else: _snake_case : int = None _snake_case : Optional[int] = self._to_readme(lowercase__ ) with open(lowercase__ , '''w''' , encoding='''utf-8''' ) as readme_file: readme_file.write(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ = None ) -> str: """simple docstring""" if readme_content is not None: _snake_case : Any = _split_yaml_from_readme(lowercase__ ) _snake_case : Tuple = '''---\n''' + self.to_yaml_string() + '''---\n''' + content else: _snake_case : int = '''---\n''' + self.to_yaml_string() + '''---\n''' return full_content @classmethod def UpperCAmelCase_ ( cls , lowercase__ ) -> "DatasetMetadata": """simple docstring""" _snake_case : Optional[int] = yaml.load(lowercase__ , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields _snake_case : Optional[Any] = { (key.replace('''-''' , '''_''' ) if key.replace('''-''' , '''_''' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**lowercase__ ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" return yaml.safe_dump( { (key.replace('''_''' , '''-''' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=lowercase__ , allow_unicode=lowercase__ , encoding='''utf-8''' , ).decode('''utf-8''' ) UpperCAmelCase : Optional[Any] = { 'image-classification': [], 'translation': [], 'image-segmentation': [], 'fill-mask': [], 'automatic-speech-recognition': [], 'token-classification': [], 'sentence-similarity': [], 'audio-classification': [], 'question-answering': [], 'summarization': [], 'zero-shot-classification': [], 'table-to-text': [], 'feature-extraction': [], 'other': [], 'multiple-choice': [], 'text-classification': [], 'text-to-image': [], 'text2text-generation': [], 'zero-shot-image-classification': [], 'tabular-classification': [], 'tabular-regression': [], 'image-to-image': [], 'tabular-to-text': [], 'unconditional-image-generation': [], 'text-retrieval': [], 'text-to-speech': [], 'object-detection': [], 'audio-to-audio': [], 'text-generation': [], 'conversational': [], 'table-question-answering': [], 'visual-question-answering': [], 'image-to-text': [], 'reinforcement-learning': [], 'voice-activity-detection': [], 'time-series-forecasting': [], 'document-question-answering': [], } if __name__ == "__main__": from argparse import ArgumentParser UpperCAmelCase : Optional[Any] = ArgumentParser(usage='Validate the yaml metadata block of a README.md file.') ap.add_argument('readme_filepath') UpperCAmelCase : Optional[int] = ap.parse_args() UpperCAmelCase : int = Path(args.readme_filepath) UpperCAmelCase : Optional[int] = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
718
'''simple docstring''' import math from numpy import inf from scipy.integrate import quad def _a ( lowerCAmelCase_ ): """simple docstring""" if num <= 0: raise ValueError('''math domain error''' ) return quad(lowerCAmelCase_ , 0 , lowerCAmelCase_ , args=(lowerCAmelCase_) )[0] def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return math.pow(lowerCAmelCase_ , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
47
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : Dict = {'configuration_timm_backbone': ['TimmBackboneConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = ['TimmBackbone'] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
719
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class lowerCamelCase (unittest.TestCase ): @slow def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Union[str, Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Any = TFAutoModel.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : str = AutoModel.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Optional[Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Dict = TFAutoModelForPreTraining.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Tuple = AutoModelForPreTraining.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Optional[int] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained(lowercase__ , from_pt=lowercase__ ) _snake_case , _snake_case : Tuple = TFAutoModelForCausalLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained(lowercase__ , from_tf=lowercase__ ) _snake_case , _snake_case : Optional[Any] = AutoModelForCausalLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Tuple = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : int = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[str] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(lowercase__ , from_pt=lowercase__ ) _snake_case , _snake_case : List[str] = TFAutoModelForMaskedLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : int = AutoModelForMaskedLM.from_pretrained(lowercase__ , from_tf=lowercase__ ) _snake_case , _snake_case : Optional[int] = AutoModelForMaskedLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[str] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(lowercase__ , from_pt=lowercase__ ) _snake_case , _snake_case : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : List[str] = AutoModelForSeqaSeqLM.from_pretrained(lowercase__ , from_tf=lowercase__ ) _snake_case , _snake_case : Dict = AutoModelForSeqaSeqLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Any = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Any = TFAutoModelForSequenceClassification.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Dict = AutoModelForSequenceClassification.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : str = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : str = TFAutoModelForQuestionAnswering.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Union[str, Any] = AutoModelForQuestionAnswering.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : Union[str, Any] = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 ) _snake_case : Tuple = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : List[str] = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 ) _snake_case : int = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 )
47
0
'''simple docstring''' def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : int = current_set.copy() for row_index, row in enumerate(lowerCAmelCase_ ): _snake_case : List[Any] = row[0] for column_index, column in enumerate(lowerCAmelCase_ ): if magnitude == 0: _snake_case : Dict = column continue _snake_case : Tuple = column / magnitude # Subtract to cancel term _snake_case : Any = current_set[0] _snake_case : Optional[Any] = [first_row] _snake_case : List[Any] = current_set[1::] for row in current_set: _snake_case : Optional[Any] = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowerCAmelCase_ ) continue for column_index in range(len(lowerCAmelCase_ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowerCAmelCase_ ) # Create next recursion iteration set if len(final_set[0] ) != 3: _snake_case : int = final_set[0] _snake_case : List[Any] = [] _snake_case : str = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) _snake_case : int = simplify(lowerCAmelCase_ ) for i in range(len(lowerCAmelCase_ ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , lowerCAmelCase_ ) _snake_case : Union[str, Any] = resultant return final_set def _a ( lowerCAmelCase_ ): """simple docstring""" if len(lowerCAmelCase_ ) == 0: raise IndexError('''solve_simultaneous() requires n lists of length n+1''' ) _snake_case : int = len(lowerCAmelCase_ ) + 1 if any(len(lowerCAmelCase_ ) != _length for item in equations ): raise IndexError('''solve_simultaneous() requires n lists of length n+1''' ) for row in equations: if any(not isinstance(lowerCAmelCase_ , (int, float) ) for column in row ): raise ValueError('''solve_simultaneous() requires lists of integers''' ) if len(lowerCAmelCase_ ) == 1: return [equations[0][-1] / equations[0][0]] _snake_case : Tuple = equations.copy() if any(0 in row for row in data_set ): _snake_case : List[str] = data_set.copy() _snake_case : str = [] for row_index, row in enumerate(lowerCAmelCase_ ): if 0 not in row: _snake_case : Optional[int] = data_set.pop(lowerCAmelCase_ ) break if not full_row: raise ValueError('''solve_simultaneous() requires at least 1 full equation''' ) data_set.insert(0 , lowerCAmelCase_ ) _snake_case : List[str] = data_set.copy() _snake_case : Any = simplify(lowerCAmelCase_ ) _snake_case : str = simplified[::-1] _snake_case : list = [] for row in simplified: _snake_case : List[Any] = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue _snake_case : int = row.copy()[: len(lowerCAmelCase_ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowerCAmelCase_ ) == 0: solutions.append(0 ) continue _snake_case : str = temp_row[1::] _snake_case : Any = temp_row[::-1] for column_index, column in enumerate(lowerCAmelCase_ ): current_solution -= column * solutions[column_index] solutions.append(lowerCAmelCase_ ) _snake_case : Dict = [] for item in solutions: final.append(float(round(lowerCAmelCase_ , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase : str = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
720
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : Dict = {'configuration_timm_backbone': ['TimmBackboneConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = ['TimmBackbone'] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
47
0
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : List[str] = 384 if "tiny" in model_name: _snake_case : Optional[int] = [3, 3, 9, 3] _snake_case : Any = [96, 192, 384, 768] if "small" in model_name: _snake_case : Tuple = [3, 3, 27, 3] _snake_case : Optional[int] = [96, 192, 384, 768] if "base" in model_name: _snake_case : str = [3, 3, 27, 3] _snake_case : Any = [128, 256, 512, 1_024] _snake_case : Optional[Any] = 512 if "large" in model_name: _snake_case : Optional[int] = [3, 3, 27, 3] _snake_case : List[str] = [192, 384, 768, 1_536] _snake_case : Tuple = 768 if "xlarge" in model_name: _snake_case : Optional[int] = [3, 3, 27, 3] _snake_case : Union[str, Any] = [256, 512, 1_024, 2_048] _snake_case : Optional[int] = 1_024 # set label information _snake_case : Union[str, Any] = 150 _snake_case : Dict = '''huggingface/label-files''' _snake_case : Optional[int] = '''ade20k-id2label.json''' _snake_case : int = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type='''dataset''' ) , '''r''' ) ) _snake_case : List[str] = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} _snake_case : Union[str, Any] = {v: k for k, v in idalabel.items()} _snake_case : List[str] = ConvNextConfig( depths=lowerCAmelCase_ , hidden_sizes=lowerCAmelCase_ , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) _snake_case : str = UperNetConfig( backbone_config=lowerCAmelCase_ , auxiliary_in_channels=lowerCAmelCase_ , num_labels=lowerCAmelCase_ , idalabel=lowerCAmelCase_ , labelaid=lowerCAmelCase_ , ) return config def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = [] # fmt: off # stem rename_keys.append(('''backbone.downsample_layers.0.0.weight''', '''backbone.embeddings.patch_embeddings.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.0.bias''', '''backbone.embeddings.patch_embeddings.bias''') ) rename_keys.append(('''backbone.downsample_layers.0.1.weight''', '''backbone.embeddings.layernorm.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.1.bias''', '''backbone.embeddings.layernorm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.{j}.gamma''', f'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((f'''backbone.downsample_layers.{i}.0.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.0.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Any = dct.pop(lowerCAmelCase_ ) _snake_case : int = val def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Tuple = { '''upernet-convnext-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth''', '''upernet-convnext-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth''', '''upernet-convnext-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth''', '''upernet-convnext-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth''', '''upernet-convnext-xlarge''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth''', } _snake_case : Optional[Any] = model_name_to_url[model_name] _snake_case : List[Any] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ , map_location='''cpu''' )['''state_dict'''] _snake_case : Dict = get_upernet_config(lowerCAmelCase_ ) _snake_case : List[str] = UperNetForSemanticSegmentation(lowerCAmelCase_ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _snake_case : Optional[int] = state_dict.pop(lowerCAmelCase_ ) if "bn" in key: _snake_case : List[Any] = key.replace('''bn''' , '''batch_norm''' ) _snake_case : Any = val # rename keys _snake_case : Optional[int] = create_rename_keys(lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) # verify on image _snake_case : Optional[int] = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' _snake_case : Dict = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ).convert('''RGB''' ) _snake_case : Any = SegformerImageProcessor() _snake_case : int = processor(lowerCAmelCase_ , return_tensors='''pt''' ).pixel_values with torch.no_grad(): _snake_case : Tuple = model(lowerCAmelCase_ ) if model_name == "upernet-convnext-tiny": _snake_case : List[Any] = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ) elif model_name == "upernet-convnext-small": _snake_case : Dict = torch.tensor( [[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] ) elif model_name == "upernet-convnext-base": _snake_case : str = torch.tensor( [[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] ) elif model_name == "upernet-convnext-large": _snake_case : Union[str, Any] = torch.tensor( [[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] ) elif model_name == "upernet-convnext-xlarge": _snake_case : List[Any] = torch.tensor( [[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] ) print('''Logits:''' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase_ , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCAmelCase_ ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": UpperCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-convnext-tiny', type=str, choices=[F"""upernet-convnext-{size}""" for size in ['tiny', 'small', 'base', 'large', 'xlarge']], help='Name of the ConvNext UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) UpperCAmelCase : int = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
721
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version UpperCAmelCase : Tuple = logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') UpperCAmelCase : str = { 'base': AutoModel, 'sequence-classification': AutoModelForSequenceClassification, 'question-answering': AutoModelForQuestionAnswering, 'pretraining': AutoModelForPreTraining, 'token-classification': AutoModelForTokenClassification, 'language-modeling': AutoModelWithLMHead, 'summarization': AutoModelForSeqaSeqLM, 'translation': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization UpperCAmelCase : Optional[Any] = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } UpperCAmelCase : Tuple = sorted(arg_to_scheduler.keys()) UpperCAmelCase : Optional[Any] = '{' + ', '.join(arg_to_scheduler_choices) + '}' class lowerCamelCase (pl.LightningModule ): def __init__( self , lowercase__ , lowercase__=None , lowercase__="base" , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ , ) -> Optional[int]: """simple docstring""" super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(lowercase__ ) _snake_case : Union[str, Any] = 0 _snake_case : int = Path(self.hparams.output_dir ) _snake_case : int = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: _snake_case : Tuple = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=lowercase__ , **lowercase__ , ) else: _snake_case : PretrainedConfig = config _snake_case : Optional[Any] = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(self.hparams , lowercase__ , lowercase__ ): assert hasattr(self.config , lowercase__ ), F'''model config doesn\'t have a `{p}` attribute''' setattr(self.config , lowercase__ , getattr(self.hparams , lowercase__ ) ) if tokenizer is None: _snake_case : Optional[int] = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=lowercase__ , ) else: _snake_case : PreTrainedTokenizer = tokenizer _snake_case : Any = MODEL_MODES[mode] if model is None: _snake_case : List[Any] = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=lowercase__ , ) else: _snake_case : Optional[Any] = model def UpperCAmelCase_ ( self , *lowercase__ , **lowercase__ ) -> List[str]: """simple docstring""" _snake_case : Dict = self.model_type.from_pretrained(*lowercase__ , **lowercase__ ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Optional[int] = arg_to_scheduler[self.hparams.lr_scheduler] _snake_case : Optional[int] = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) _snake_case : str = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1} return scheduler def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Any = self.model _snake_case : List[Any] = ['''bias''', '''LayerNorm.weight'''] _snake_case : List[str] = [ { '''params''': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters '''weight_decay''': self.hparams.weight_decay, }, { '''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] if self.hparams.adafactor: _snake_case : Any = Adafactor( lowercase__ , lr=self.hparams.learning_rate , scale_parameter=lowercase__ , relative_step=lowercase__ ) else: _snake_case : List[str] = AdamW( lowercase__ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) _snake_case : List[str] = optimizer _snake_case : Any = self.get_lr_scheduler() return [optimizer], [scheduler] def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Any: """simple docstring""" return self.validation_step(lowercase__ , lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> Tuple: """simple docstring""" return self.validation_end(lowercase__ ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Any = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores _snake_case : Optional[int] = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def UpperCAmelCase_ ( self , lowercase__ ) -> Any: """simple docstring""" if stage == "test": _snake_case : Any = len(self.test_dataloader().dataset ) else: _snake_case : Dict = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=lowercase__ ) _snake_case : Optional[int] = len(self.train_dataloader().dataset ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = False ) -> str: """simple docstring""" raise NotImplementedError('''You must implement this for your task''' ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" return self.train_loader def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=lowercase__ ) def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> Optional[int]: """simple docstring""" return os.path.join( self.hparams.data_dir , '''cached_{}_{}_{}'''.format( lowercase__ , list(filter(lowercase__ , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def UpperCAmelCase_ ( self , lowercase__ ) -> None: """simple docstring""" _snake_case : Dict = self.output_dir.joinpath('''best_tfmr''' ) _snake_case : Tuple = self.step_count self.model.save_pretrained(lowercase__ ) self.tokenizer.save_pretrained(lowercase__ ) @staticmethod def UpperCAmelCase_ ( lowercase__ , lowercase__ ) -> Tuple: """simple docstring""" parser.add_argument( '''--model_name_or_path''' , default=lowercase__ , type=lowercase__ , required=lowercase__ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--config_name''' , default='''''' , type=lowercase__ , help='''Pretrained config name or path if not the same as model_name''' ) parser.add_argument( '''--tokenizer_name''' , default=lowercase__ , type=lowercase__ , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument( '''--cache_dir''' , default=str(Path(lowercase__ ).parent / '''test_run''' / '''cache''' ) , type=lowercase__ , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , ) parser.add_argument( '''--encoder_layerdrop''' , type=lowercase__ , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--decoder_layerdrop''' , type=lowercase__ , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--dropout''' , type=lowercase__ , help='''Dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--attention_dropout''' , type=lowercase__ , help='''Attention dropout probability (Optional). Goes into model.config''' , ) parser.add_argument('''--learning_rate''' , default=5E-5 , type=lowercase__ , help='''The initial learning rate for Adam.''' ) parser.add_argument( '''--lr_scheduler''' , default='''linear''' , choices=lowercase__ , metavar=lowercase__ , type=lowercase__ , help='''Learning rate scheduler''' , ) parser.add_argument('''--weight_decay''' , default=0.0 , type=lowercase__ , help='''Weight decay if we apply some.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=lowercase__ , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--warmup_steps''' , default=0 , type=lowercase__ , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--num_workers''' , default=4 , type=lowercase__ , help='''kwarg passed to DataLoader''' ) parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=lowercase__ ) parser.add_argument('''--train_batch_size''' , default=32 , type=lowercase__ ) parser.add_argument('''--eval_batch_size''' , default=32 , type=lowercase__ ) parser.add_argument('''--adafactor''' , action='''store_true''' ) class lowerCamelCase (pl.Callback ): def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> str: """simple docstring""" if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class lowerCamelCase (pl.Callback ): def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> List[str]: """simple docstring""" for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(lowercase__ ) class lowerCamelCase (pl.Callback ): def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Any: """simple docstring""" _snake_case : Any = trainer.lr_schedulers[0]['''scheduler'''] _snake_case : Optional[int] = {F'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> List[str]: """simple docstring""" rank_zero_info('''***** Validation results *****''' ) _snake_case : Dict = trainer.callback_metrics # Log results for key in sorted(lowercase__ ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Dict: """simple docstring""" rank_zero_info('''***** Test results *****''' ) _snake_case : Dict = trainer.callback_metrics # Log and save results to file _snake_case : str = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' ) with open(lowercase__ , '''w''' ) as writer: for key in sorted(lowercase__ ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) ) writer.write('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" parser.add_argument( '''--output_dir''' , default=str(Path(lowerCAmelCase_ ).parent / '''test_run''' / '''model_checkpoints''' ) , type=lowerCAmelCase_ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=lowerCAmelCase_ , default='''O2''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=lowerCAmelCase_ ) parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=lowerCAmelCase_ , help='''Max gradient norm''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' ) parser.add_argument( '''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=lowerCAmelCase_ , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--seed''' , type=lowerCAmelCase_ , default=42 , help='''random seed for initialization''' ) parser.add_argument( '''--data_dir''' , default=str(Path(lowerCAmelCase_ ).parent / '''test_run''' / '''dummy-train-data''' ) , type=lowerCAmelCase_ , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_=[] , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , ): """simple docstring""" pl.seed_everything(args.seed ) # init model _snake_case : Union[str, Any] = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=lowerCAmelCase_ ) # add custom checkpoints if checkpoint_callback is None: _snake_case : Any = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(lowerCAmelCase_ ) if logging_callback is None: _snake_case : str = LoggingCallback() _snake_case : Tuple = {} if args.fpaa: _snake_case : Union[str, Any] = 16 if args.gpus > 1: _snake_case : Optional[Any] = '''auto''' _snake_case : Tuple = '''ddp''' _snake_case : Optional[Any] = args.accumulate_grad_batches _snake_case : Tuple = None _snake_case : str = '''auto''' _snake_case : int = pl.Trainer.from_argparse_args( lowerCAmelCase_ , weights_summary=lowerCAmelCase_ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase_ , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase_ , ) if args.do_train: trainer.fit(lowerCAmelCase_ ) else: print('''RAG modeling tests with new set functions successfuly executed!''' ) return trainer
47
0
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed UpperCAmelCase : Dict = 'true' def _a ( lowerCAmelCase_ , lowerCAmelCase_=82 , lowerCAmelCase_=16 ): """simple docstring""" set_seed(42 ) _snake_case : List[Any] = RegressionModel() _snake_case : int = deepcopy(lowerCAmelCase_ ) _snake_case : Optional[int] = RegressionDataset(length=lowerCAmelCase_ ) _snake_case : Optional[Any] = DataLoader(lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) model.to(accelerator.device ) _snake_case : str = accelerator.prepare(lowerCAmelCase_ , lowerCAmelCase_ ) return model, ddp_model, dataloader def _a ( lowerCAmelCase_ , lowerCAmelCase_=False ): """simple docstring""" _snake_case : Any = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) _snake_case : str = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(lowerCAmelCase_ ): _snake_case : str = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) return outputs with accelerator.main_process_first(): _snake_case : int = dataset.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) _snake_case : Any = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowerCAmelCase_ ): if use_longest: return tokenizer.pad(lowerCAmelCase_ , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(lowerCAmelCase_ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return DataLoader(lowerCAmelCase_ , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=16 ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : List[Any] = Accelerator(dispatch_batches=lowerCAmelCase_ , split_batches=lowerCAmelCase_ ) _snake_case : Dict = get_dataloader(lowerCAmelCase_ , not dispatch_batches ) _snake_case : List[Any] = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=lowerCAmelCase_ ) _snake_case : Tuple = accelerator.prepare(lowerCAmelCase_ , lowerCAmelCase_ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : str = [] for batch in dataloader: _snake_case : int = batch.values() with torch.no_grad(): _snake_case : List[str] = model(lowerCAmelCase_ ) _snake_case : Optional[int] = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) _snake_case : Union[str, Any] = [], [] for logit, targ in logits_and_targets: logits.append(lowerCAmelCase_ ) targs.append(lowerCAmelCase_ ) _snake_case : Optional[int] = torch.cat(lowerCAmelCase_ ), torch.cat(lowerCAmelCase_ ) return logits, targs def _a ( lowerCAmelCase_ , lowerCAmelCase_=82 , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=16 ): """simple docstring""" _snake_case : Optional[Any] = get_basic_setup(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Optional[int] = generate_predictions(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) assert ( len(lowerCAmelCase_ ) == num_samples ), f'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowerCAmelCase_ )}''' def _a ( lowerCAmelCase_ = False , lowerCAmelCase_ = False ): """simple docstring""" _snake_case : Any = evaluate.load('''glue''' , '''mrpc''' ) _snake_case : List[str] = get_mrpc_setup(lowerCAmelCase_ , lowerCAmelCase_ ) # First do baseline _snake_case : List[Any] = setup['''no'''] model.to(lowerCAmelCase_ ) model.eval() for batch in dataloader: batch.to(lowerCAmelCase_ ) with torch.inference_mode(): _snake_case : Optional[Any] = model(**lowerCAmelCase_ ) _snake_case : Tuple = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=lowerCAmelCase_ , references=batch['''labels'''] ) _snake_case : Optional[int] = metric.compute() # Then do distributed _snake_case : Any = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): _snake_case : Dict = model(**lowerCAmelCase_ ) _snake_case : Tuple = outputs.logits.argmax(dim=-1 ) _snake_case : Union[str, Any] = batch['''labels'''] _snake_case : Optional[Any] = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=lowerCAmelCase_ , references=lowerCAmelCase_ ) _snake_case : Optional[int] = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def _a ( ): """simple docstring""" _snake_case : List[str] = Accelerator(split_batches=lowerCAmelCase_ , dispatch_batches=lowerCAmelCase_ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(lowerCAmelCase_ , lowerCAmelCase_ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: _snake_case : List[Any] = Accelerator(split_batches=lowerCAmelCase_ , dispatch_batches=lowerCAmelCase_ ) if accelerator.is_local_main_process: print(f'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(lowerCAmelCase_ , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) _snake_case : Optional[int] = Accelerator() test_torch_metrics(lowerCAmelCase_ , 512 ) accelerator.state._reset_state() def _a ( lowerCAmelCase_ ): """simple docstring""" main() if __name__ == "__main__": main()
700
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : Dict = { 'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowerCamelCase (a__ ): _lowercase : List[str] = """sew-d""" def __init__( self , lowercase__=32 , lowercase__=768 , lowercase__=12 , lowercase__=12 , lowercase__=3_072 , lowercase__=2 , lowercase__=512 , lowercase__=256 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.02 , lowercase__=1E-7 , lowercase__=1E-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=128 , lowercase__=16 , lowercase__=True , lowercase__=0.05 , lowercase__=10 , lowercase__=2 , lowercase__=0.0 , lowercase__=10 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=256 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ) -> Dict: """simple docstring""" super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ ) _snake_case : List[str] = hidden_size _snake_case : Optional[Any] = feat_extract_norm _snake_case : Tuple = feat_extract_activation _snake_case : Tuple = list(lowercase__ ) _snake_case : Any = list(lowercase__ ) _snake_case : Any = list(lowercase__ ) _snake_case : Any = conv_bias _snake_case : List[Any] = num_conv_pos_embeddings _snake_case : Any = num_conv_pos_embedding_groups _snake_case : Union[str, Any] = len(self.conv_dim ) _snake_case : Optional[Any] = num_hidden_layers _snake_case : Optional[int] = intermediate_size _snake_case : Any = squeeze_factor _snake_case : Optional[Any] = max_position_embeddings _snake_case : Tuple = position_buckets _snake_case : Tuple = share_att_key _snake_case : Any = relative_attention _snake_case : Optional[int] = norm_rel_ebd _snake_case : Optional[Any] = list(lowercase__ ) _snake_case : List[Any] = hidden_act _snake_case : List[Any] = num_attention_heads _snake_case : Dict = hidden_dropout _snake_case : Tuple = attention_dropout _snake_case : Union[str, Any] = activation_dropout _snake_case : List[Any] = feat_proj_dropout _snake_case : Optional[int] = final_dropout _snake_case : Optional[Any] = layer_norm_eps _snake_case : Dict = feature_layer_norm_eps _snake_case : List[Any] = initializer_range _snake_case : Dict = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _snake_case : Union[str, Any] = apply_spec_augment _snake_case : Any = mask_time_prob _snake_case : List[str] = mask_time_length _snake_case : Dict = mask_time_min_masks _snake_case : Union[str, Any] = mask_feature_prob _snake_case : Tuple = mask_feature_length _snake_case : Union[str, Any] = mask_feature_min_masks # ctc loss _snake_case : Optional[Any] = ctc_loss_reduction _snake_case : Optional[Any] = ctc_zero_infinity # sequence classification _snake_case : List[Any] = use_weighted_layer_sum _snake_case : Any = classifier_proj_size @property def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
47
0
'''simple docstring''' def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : List[Any] = '''''' for i in table: res += inp[i - 1] return res def _a ( lowerCAmelCase_ ): """simple docstring""" return data[1:] + data[0] def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Union[str, Any] = '''''' for i in range(len(lowerCAmelCase_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Dict = int('''0b''' + data[0] + data[-1] , 2 ) _snake_case : Union[str, Any] = int('''0b''' + data[1:3] , 2 ) return bin(s[row][col] )[2:] def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : int = message[:4] _snake_case : List[Any] = message[4:] _snake_case : List[Any] = apply_table(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : List[str] = xor(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Optional[Any] = apply_sbox(lowerCAmelCase_ , temp[:4] ) # noqa: E741 _snake_case : List[str] = apply_sbox(lowerCAmelCase_ , temp[4:] ) _snake_case : int = '''0''' * (2 - len(lowerCAmelCase_ )) + l # noqa: E741 _snake_case : Dict = '''0''' * (2 - len(lowerCAmelCase_ )) + r _snake_case : List[Any] = apply_table(l + r , lowerCAmelCase_ ) _snake_case : Dict = xor(lowerCAmelCase_ , lowerCAmelCase_ ) return temp + right if __name__ == "__main__": UpperCAmelCase : Union[str, Any] = input('Enter 10 bit key: ') UpperCAmelCase : Union[str, Any] = input('Enter 8 bit message: ') UpperCAmelCase : str = [6, 3, 7, 4, 8, 5, 1_0, 9] UpperCAmelCase : str = [3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6] UpperCAmelCase : Dict = [2, 4, 3, 1] UpperCAmelCase : str = [2, 6, 3, 1, 4, 8, 5, 7] UpperCAmelCase : Union[str, Any] = [4, 1, 3, 5, 7, 2, 8, 6] UpperCAmelCase : List[str] = [4, 1, 2, 3, 2, 3, 4, 1] UpperCAmelCase : Dict = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] UpperCAmelCase : Optional[int] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation UpperCAmelCase : Dict = apply_table(key, paa_table) UpperCAmelCase : Optional[int] = temp[:5] UpperCAmelCase : Dict = temp[5:] UpperCAmelCase : int = left_shift(left) UpperCAmelCase : str = left_shift(right) UpperCAmelCase : Dict = apply_table(left + right, pa_table) UpperCAmelCase : str = left_shift(left) UpperCAmelCase : str = left_shift(right) UpperCAmelCase : List[str] = left_shift(left) UpperCAmelCase : Union[str, Any] = left_shift(right) UpperCAmelCase : Optional[Any] = apply_table(left + right, pa_table) # encryption UpperCAmelCase : Tuple = apply_table(message, IP) UpperCAmelCase : Dict = function(expansion, sa, sa, keya, temp) UpperCAmelCase : List[Any] = temp[4:] + temp[:4] UpperCAmelCase : Union[str, Any] = function(expansion, sa, sa, keya, temp) UpperCAmelCase : Union[str, Any] = apply_table(temp, IP_inv) print('Cipher text is:', CT) # decryption UpperCAmelCase : List[Any] = apply_table(CT, IP) UpperCAmelCase : Union[str, Any] = function(expansion, sa, sa, keya, temp) UpperCAmelCase : Optional[int] = temp[4:] + temp[:4] UpperCAmelCase : Union[str, Any] = function(expansion, sa, sa, keya, temp) UpperCAmelCase : Optional[Any] = apply_table(temp, IP_inv) print('Plain text after decypting is:', PT)
701
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : List[Any] = 0 if start < end: _snake_case : List[Any] = randint(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Any = a[end] _snake_case : List[str] = a[pivot] _snake_case : Optional[int] = temp _snake_case , _snake_case : List[Any] = _in_place_partition(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) count += _in_place_quick_sort(lowerCAmelCase_ , lowerCAmelCase_ , p - 1 ) count += _in_place_quick_sort(lowerCAmelCase_ , p + 1 , lowerCAmelCase_ ) return count def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = 0 _snake_case : Optional[int] = randint(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Tuple = a[end] _snake_case : Optional[Any] = a[pivot] _snake_case : Union[str, Any] = temp _snake_case : Union[str, Any] = start - 1 for index in range(lowerCAmelCase_ , lowerCAmelCase_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _snake_case : Optional[int] = new_pivot_index + 1 _snake_case : Optional[Any] = a[new_pivot_index] _snake_case : Tuple = a[index] _snake_case : str = temp _snake_case : Any = a[new_pivot_index + 1] _snake_case : str = a[end] _snake_case : Optional[int] = temp return new_pivot_index + 1, count UpperCAmelCase : Dict = TemporaryFile() UpperCAmelCase : Dict = 1_0_0 # 1000 elements are to be sorted UpperCAmelCase, UpperCAmelCase : str = 0, 1 # mean and standard deviation UpperCAmelCase : Optional[Any] = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array UpperCAmelCase : int = np.load(outfile) UpperCAmelCase : Optional[int] = len(M) - 1 UpperCAmelCase : str = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
47
0
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 UpperCAmelCase : Union[str, Any] = { # 1536-bit 5: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, # 2048-bit 1_4: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AACAA68FFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, # 3072-bit 1_5: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, # 4096-bit 1_6: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199' + 'FFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, # 6144-bit 1_7: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08' + '8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B' + '302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9' + 'A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6' + '49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8' + 'FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C' + '180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718' + '3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D' + '04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D' + 'B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226' + '1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC' + 'E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26' + '99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB' + '04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2' + '233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127' + 'D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406' + 'AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918' + 'DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151' + '2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03' + 'F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F' + 'BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B' + 'B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632' + '387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E' + '6DCC4024FFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, # 8192-bit 1_8: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD' + 'F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831' + '179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B' + 'DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF' + '5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6' + 'D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3' + '23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328' + '06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C' + 'DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE' + '12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4' + '38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300' + '741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568' + '3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9' + '22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B' + '4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A' + '062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36' + '4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1' + 'B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92' + '4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47' + '9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71' + '60C980DD98EDD3DFFFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, } class lowerCamelCase : def __init__( self , lowercase__ = 14 ) -> None: """simple docstring""" if group not in primes: raise ValueError('''Unsupported Group''' ) _snake_case : Any = primes[group]['''prime'''] _snake_case : Union[str, Any] = primes[group]['''generator'''] _snake_case : Union[str, Any] = int(hexlify(urandom(32 ) ) , base=16 ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" return hex(self.__private_key )[2:] def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : Tuple = pow(self.generator , self.__private_key , self.prime ) return hex(lowercase__ )[2:] def UpperCAmelCase_ ( self , lowercase__ ) -> bool: """simple docstring""" return ( 2 <= key <= self.prime - 2 and pow(lowercase__ , (self.prime - 1) // 2 , self.prime ) == 1 ) def UpperCAmelCase_ ( self , lowercase__ ) -> str: """simple docstring""" _snake_case : str = int(lowercase__ , base=16 ) if not self.is_valid_public_key(lowercase__ ): raise ValueError('''Invalid public key''' ) _snake_case : int = pow(lowercase__ , self.__private_key , self.prime ) return shaaaa(str(lowercase__ ).encode() ).hexdigest() @staticmethod def UpperCAmelCase_ ( lowercase__ , lowercase__ ) -> bool: """simple docstring""" return ( 2 <= remote_public_key_str <= prime - 2 and pow(lowercase__ , (prime - 1) // 2 , lowercase__ ) == 1 ) @staticmethod def UpperCAmelCase_ ( lowercase__ , lowercase__ , lowercase__ = 14 ) -> str: """simple docstring""" _snake_case : List[Any] = int(lowercase__ , base=16 ) _snake_case : str = int(lowercase__ , base=16 ) _snake_case : Union[str, Any] = primes[group]['''prime'''] if not DiffieHellman.is_valid_public_key_static(lowercase__ , lowercase__ ): raise ValueError('''Invalid public key''' ) _snake_case : List[str] = pow(lowercase__ , lowercase__ , lowercase__ ) return shaaaa(str(lowercase__ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
702
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
47
0
'''simple docstring''' import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : str = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: _snake_case : Optional[Any] = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: _snake_case : Optional[Any] = 4 _snake_case : Tuple = 48 _snake_case : Optional[Any] = '''pixelshuffle_aux''' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: _snake_case : Any = [6, 6, 6, 6] _snake_case : Optional[Any] = 60 _snake_case : Optional[Any] = [6, 6, 6, 6] _snake_case : str = '''pixelshuffledirect''' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: _snake_case : Optional[int] = 4 _snake_case : Any = '''nearest+conv''' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: _snake_case : str = 1 _snake_case : List[Any] = 1 _snake_case : Optional[int] = 126 _snake_case : List[str] = 7 _snake_case : List[str] = 255.0 _snake_case : Optional[int] = '''''' return config def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if "patch_embed.proj" in name and "layers" not in name: _snake_case : List[str] = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: _snake_case : Optional[Any] = name.replace('''patch_embed.norm''' , '''embeddings.patch_embeddings.layernorm''' ) if "layers" in name: _snake_case : List[str] = name.replace('''layers''' , '''encoder.stages''' ) if "residual_group.blocks" in name: _snake_case : Union[str, Any] = name.replace('''residual_group.blocks''' , '''layers''' ) if "attn.proj" in name: _snake_case : Optional[Any] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: _snake_case : int = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: _snake_case : Union[str, Any] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: _snake_case : List[str] = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: _snake_case : Dict = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _snake_case : List[str] = name.replace('''mlp.fc2''' , '''output.dense''' ) if "q_bias" in name: _snake_case : Optional[Any] = name.replace('''q_bias''' , '''query.bias''' ) if "k_bias" in name: _snake_case : Any = name.replace('''k_bias''' , '''key.bias''' ) if "v_bias" in name: _snake_case : Tuple = name.replace('''v_bias''' , '''value.bias''' ) if "cpb_mlp" in name: _snake_case : Optional[Any] = name.replace('''cpb_mlp''' , '''continuous_position_bias_mlp''' ) if "patch_embed.proj" in name: _snake_case : Dict = name.replace('''patch_embed.proj''' , '''patch_embed.projection''' ) if name == "norm.weight": _snake_case : List[Any] = '''layernorm.weight''' if name == "norm.bias": _snake_case : Optional[Any] = '''layernorm.bias''' if "conv_first" in name: _snake_case : Optional[int] = name.replace('''conv_first''' , '''first_convolution''' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: _snake_case : int = name.replace('''conv_last''' , '''final_convolution''' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: _snake_case : List[Any] = name.replace('''conv_before_upsample.0''' , '''conv_before_upsample''' ) if "upsample.0" in name: _snake_case : int = name.replace('''upsample.0''' , '''upsample.convolution_0''' ) if "upsample.2" in name: _snake_case : List[str] = name.replace('''upsample.2''' , '''upsample.convolution_1''' ) _snake_case : List[Any] = '''upsample.''' + name elif config.upsampler == "pixelshuffledirect": _snake_case : Union[str, Any] = name.replace('''upsample.0.weight''' , '''upsample.conv.weight''' ) _snake_case : List[Any] = name.replace('''upsample.0.bias''' , '''upsample.conv.bias''' ) else: pass else: _snake_case : int = '''swin2sr.''' + name return name def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for key in orig_state_dict.copy().keys(): _snake_case : Optional[int] = orig_state_dict.pop(lowerCAmelCase_ ) if "qkv" in key: _snake_case : List[Any] = key.split('''.''' ) _snake_case : str = int(key_split[1] ) _snake_case : List[str] = int(key_split[4] ) _snake_case : List[Any] = config.embed_dim if "weight" in key: _snake_case : Any = val[:dim, :] _snake_case : Any = val[dim : dim * 2, :] _snake_case : Any = val[-dim:, :] else: _snake_case : Any = val[:dim] _snake_case : Optional[Any] = val[dim : dim * 2] _snake_case : Optional[int] = val[-dim:] pass else: _snake_case : Dict = val return orig_state_dict def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Tuple = get_config(lowerCAmelCase_ ) _snake_case : Optional[Any] = SwinaSRForImageSuperResolution(lowerCAmelCase_ ) model.eval() _snake_case : Optional[int] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ , map_location='''cpu''' ) _snake_case : int = convert_state_dict(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Tuple = model.load_state_dict(lowerCAmelCase_ , strict=lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 0: raise ValueError('''Missing keys when converting: {}'''.format(lowerCAmelCase_ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f'''Unexpected key {key} in state_dict''' ) # verify values _snake_case : List[str] = '''https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true''' _snake_case : Union[str, Any] = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ).convert('''RGB''' ) _snake_case : List[Any] = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values _snake_case : Optional[Any] = 126 if '''Jpeg''' in checkpoint_url else 256 _snake_case : Tuple = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) _snake_case : Union[str, Any] = transforms(lowerCAmelCase_ ).unsqueeze(0 ) if config.num_channels == 1: _snake_case : Optional[int] = pixel_values[:, 0, :, :].unsqueeze(1 ) _snake_case : Optional[int] = model(lowerCAmelCase_ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: _snake_case : Tuple = torch.Size([1, 3, 512, 512] ) _snake_case : Union[str, Any] = torch.tensor( [[-0.7_087, -0.7_138, -0.6_721], [-0.8_340, -0.8_095, -0.7_298], [-0.9_149, -0.8_414, -0.7_940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: _snake_case : Dict = torch.Size([1, 3, 1_024, 1_024] ) _snake_case : Dict = torch.tensor( [[-0.7_775, -0.8_105, -0.8_933], [-0.7_764, -0.8_356, -0.9_225], [-0.7_976, -0.8_686, -0.9_579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here _snake_case : Tuple = torch.Size([1, 3, 1_024, 1_024] ) _snake_case : Any = torch.tensor( [[-0.8_035, -0.7_504, -0.7_491], [-0.8_538, -0.8_124, -0.7_782], [-0.8_804, -0.8_651, -0.8_493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: _snake_case : List[str] = torch.Size([1, 3, 512, 512] ) _snake_case : Optional[Any] = torch.tensor( [[-0.7_669, -0.8_662, -0.8_767], [-0.8_810, -0.9_962, -0.9_820], [-0.9_340, -1.0_322, -1.1_149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: _snake_case : Dict = torch.Size([1, 3, 1_024, 1_024] ) _snake_case : str = torch.tensor( [[-0.5_238, -0.5_557, -0.6_321], [-0.6_016, -0.5_903, -0.6_391], [-0.6_244, -0.6_334, -0.6_889]] ) assert ( outputs.reconstruction.shape == expected_shape ), f'''Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}''' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , lowerCAmelCase_ , atol=1E-3 ) print('''Looks ok!''' ) _snake_case : Dict = { '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''': ( '''swin2SR-classical-sr-x2-64''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth''': ( '''swin2SR-classical-sr-x4-64''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth''': ( '''swin2SR-compressed-sr-x4-48''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth''': ( '''swin2SR-lightweight-x2-64''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth''': ( '''swin2SR-realworld-sr-x4-64-bsrgan-psnr''' ), } _snake_case : Optional[Any] = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCAmelCase_ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: model.push_to_hub(f'''caidas/{model_name}''' ) processor.push_to_hub(f'''caidas/{model_name}''' ) if __name__ == "__main__": UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth', type=str, help='URL of the original Swin2SR checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the converted model to the hub.') UpperCAmelCase : Dict = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
703
'''simple docstring''' from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def _a ( ): """simple docstring""" _snake_case : List[Any] = ArgumentParser('''Transformers CLI tool''' , usage='''transformers-cli <command> [<args>]''' ) _snake_case : List[str] = parser.add_subparsers(help='''transformers-cli command helpers''' ) # Register commands ConvertCommand.register_subcommand(lowerCAmelCase_ ) DownloadCommand.register_subcommand(lowerCAmelCase_ ) EnvironmentCommand.register_subcommand(lowerCAmelCase_ ) RunCommand.register_subcommand(lowerCAmelCase_ ) ServeCommand.register_subcommand(lowerCAmelCase_ ) UserCommands.register_subcommand(lowerCAmelCase_ ) AddNewModelCommand.register_subcommand(lowerCAmelCase_ ) AddNewModelLikeCommand.register_subcommand(lowerCAmelCase_ ) LfsCommands.register_subcommand(lowerCAmelCase_ ) PTtoTFCommand.register_subcommand(lowerCAmelCase_ ) # Let's go _snake_case : str = parser.parse_args() if not hasattr(lowerCAmelCase_ , '''func''' ): parser.print_help() exit(1 ) # Run _snake_case : Union[str, Any] = args.func(lowerCAmelCase_ ) service.run() if __name__ == "__main__": main()
47
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase : str = { 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict = [ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys UpperCAmelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
704
'''simple docstring''' from collections.abc import Generator def _a ( ): """simple docstring""" _snake_case , _snake_case : Union[str, Any] = 0, 1 while True: _snake_case , _snake_case : List[str] = b, a + b yield b def _a ( lowerCAmelCase_ = 1_000 ): """simple docstring""" _snake_case : List[str] = 1 _snake_case : Dict = fibonacci_generator() while len(str(next(lowerCAmelCase_ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
47
0
'''simple docstring''' import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup UpperCAmelCase : Optional[int] = logging.get_logger(__name__) class lowerCamelCase (a__ ): def __init__( self , **lowercase__ ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ['''bs4'''] ) super().__init__(**lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> Dict: """simple docstring""" _snake_case : Optional[int] = [] _snake_case : List[str] = [] _snake_case : List[Any] = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag _snake_case : List[Any] = parent.find_all(child.name , recursive=lowercase__ ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(lowercase__ ) else next(i for i, s in enumerate(lowercase__ , 1 ) if s is child ) ) _snake_case : Any = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def UpperCAmelCase_ ( self , lowercase__ ) -> Optional[int]: """simple docstring""" _snake_case : Optional[int] = BeautifulSoup(lowercase__ , '''html.parser''' ) _snake_case : List[str] = [] _snake_case : Tuple = [] _snake_case : Any = [] for element in html_code.descendants: if type(lowercase__ ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue _snake_case : str = html.unescape(lowercase__ ).strip() if not text_in_this_tag: continue all_doc_strings.append(lowercase__ ) _snake_case : List[str] = self.xpath_soup(lowercase__ ) stringaxtag_seq.append(lowercase__ ) stringaxsubs_seq.append(lowercase__ ) if len(lowercase__ ) != len(lowercase__ ): raise ValueError('''Number of doc strings and xtags does not correspond''' ) if len(lowercase__ ) != len(lowercase__ ): raise ValueError('''Number of doc strings and xsubs does not correspond''' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Union[str, Any]: """simple docstring""" _snake_case : Tuple = '''''' for tagname, subs in zip(lowercase__ , lowercase__ ): xpath += F'''/{tagname}''' if subs != 0: xpath += F'''[{subs}]''' return xpath def __call__( self , lowercase__ ) -> BatchFeature: """simple docstring""" _snake_case : Dict = False # Check that strings has a valid type if isinstance(lowercase__ , lowercase__ ): _snake_case : str = True elif isinstance(lowercase__ , (list, tuple) ): if len(lowercase__ ) == 0 or isinstance(html_strings[0] , lowercase__ ): _snake_case : Optional[Any] = True if not valid_strings: raise ValueError( '''HTML strings must of type `str`, `List[str]` (batch of examples), ''' F'''but is of type {type(lowercase__ )}.''' ) _snake_case : Any = bool(isinstance(lowercase__ , (list, tuple) ) and (isinstance(html_strings[0] , lowercase__ )) ) if not is_batched: _snake_case : Optional[Any] = [html_strings] # Get nodes + xpaths _snake_case : Any = [] _snake_case : str = [] for html_string in html_strings: _snake_case : Union[str, Any] = self.get_three_from_single(lowercase__ ) nodes.append(lowercase__ ) _snake_case : Union[str, Any] = [] for node, tag_list, sub_list in zip(lowercase__ , lowercase__ , lowercase__ ): _snake_case : Union[str, Any] = self.construct_xpath(lowercase__ , lowercase__ ) xpath_strings.append(lowercase__ ) xpaths.append(lowercase__ ) # return as Dict _snake_case : Optional[int] = {'''nodes''': nodes, '''xpaths''': xpaths} _snake_case : Tuple = BatchFeature(data=lowercase__ , tensor_type=lowercase__ ) return encoded_inputs
705
'''simple docstring''' import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor UpperCAmelCase : str = logging.getLogger(__name__) UpperCAmelCase : Dict = 5_0 # max width of layer names UpperCAmelCase : Union[str, Any] = 7_0 # max width of quantizer names def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Dict = parser.add_argument_group('''quant_trainer arguments''' ) group.add_argument('''--wprec''' , type=lowerCAmelCase_ , default=8 , help='''weight precision''' ) group.add_argument('''--aprec''' , type=lowerCAmelCase_ , default=8 , help='''activation precision''' ) group.add_argument('''--quant-per-tensor''' , action='''store_true''' , help='''per tensor weight scaling''' ) group.add_argument('''--quant-disable''' , action='''store_true''' , help='''disable all quantizers''' ) group.add_argument('''--quant-disable-embeddings''' , action='''store_true''' , help='''disable all embeddings quantizers''' ) group.add_argument('''--quant-disable-keyword''' , type=lowerCAmelCase_ , nargs='''+''' , help='''disable quantizers by keyword''' ) group.add_argument('''--quant-disable-layer-module''' , type=lowerCAmelCase_ , help='''disable quantizers by keyword under layer.''' ) group.add_argument('''--quant-enable-layer-module''' , type=lowerCAmelCase_ , help='''enable quantizers by keyword under layer''' ) group.add_argument('''--calibrator''' , default='''max''' , help='''which quantization range calibrator to use''' ) group.add_argument('''--percentile''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help='''percentile for PercentileCalibrator''' ) group.add_argument('''--fuse-qkv''' , action='''store_true''' , help='''use the same scale factor for qkv''' ) group.add_argument('''--clip-gelu''' , metavar='''N''' , type=lowerCAmelCase_ , help='''clip gelu output maximum value to N''' ) group.add_argument( '''--recalibrate-weights''' , action='''store_true''' , help=( '''recalibrate weight amaxes by taking the max of the weights.''' ''' amaxes will be computed with the current quantization granularity (axis).''' ) , ) def _a ( lowerCAmelCase_ ): """simple docstring""" if args.calibrator == "max": _snake_case : Optional[int] = '''max''' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('''Specify --percentile when using percentile calibrator''' ) _snake_case : Tuple = '''histogram''' elif args.calibrator == "mse": _snake_case : int = '''histogram''' else: raise ValueError(f'''Invalid calibrator {args.calibrator}''' ) _snake_case : Tuple = QuantDescriptor(num_bits=args.aprec , calib_method=lowerCAmelCase_ ) _snake_case : str = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(lowerCAmelCase_ ) quant_nn.QuantLinear.set_default_quant_desc_weight(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False , lowerCAmelCase_=False ): """simple docstring""" logger.info('''Configuring Model for Quantization''' ) logger.info(f'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(lowerCAmelCase_ , ['''embeddings'''] , which='''weight''' , _disabled=lowerCAmelCase_ ) if args.quant_disable: set_quantizer_by_name(lowerCAmelCase_ , [''''''] , _disabled=lowerCAmelCase_ ) if args.quant_disable_keyword: set_quantizer_by_name(lowerCAmelCase_ , args.quant_disable_keyword , _disabled=lowerCAmelCase_ ) if args.quant_disable_layer_module: set_quantizer_by_name(lowerCAmelCase_ , [R'''layer.\d+.''' + args.quant_disable_layer_module] , _disabled=lowerCAmelCase_ ) if args.quant_enable_layer_module: set_quantizer_by_name(lowerCAmelCase_ , [R'''layer.\d+.''' + args.quant_enable_layer_module] , _disabled=lowerCAmelCase_ ) if args.recalibrate_weights: recalibrate_weights(lowerCAmelCase_ ) if args.fuse_qkv: fuse_qkv(lowerCAmelCase_ , lowerCAmelCase_ ) if args.clip_gelu: clip_gelu(lowerCAmelCase_ , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ ): """simple docstring""" logger.info('''Enabling Calibration''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(f'''{name:80}: {module}''' ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" logger.info('''Loading calibrated amax''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('''percentile''' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" def fusea(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): for mod in [qq, qk, qv]: if not hasattr(lowerCAmelCase_ , '''_amax''' ): print(''' WARNING: NO AMAX BUFFER''' ) return _snake_case : Tuple = qq._amax.detach().item() _snake_case : Tuple = qk._amax.detach().item() _snake_case : List[Any] = qv._amax.detach().item() _snake_case : List[str] = max(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) qq._amax.fill_(lowerCAmelCase_ ) qk._amax.fill_(lowerCAmelCase_ ) qv._amax.fill_(lowerCAmelCase_ ) logger.info(f''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith('''.attention.self''' ): logger.info(f'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if name.endswith('''.output.dense''' ) and not name.endswith('''attention.output.dense''' ): _snake_case : List[Any] = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=lowerCAmelCase_ ) _snake_case : List[str] = mod._input_quantizer._amax.data.detach().item() logger.info(f'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def _a ( lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ) and mod._weight_quantizer.axis is not None: _snake_case : Dict = mod.weight.shape[0] _snake_case : Optional[int] = mod._weight_quantizer._amax.detach() _snake_case : Optional[int] = torch.ones(lowerCAmelCase_ , dtype=amax.dtype , device=amax.device ) * amax print(f'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def _a ( lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ): if not hasattr(mod.weight_quantizer , '''_amax''' ): print('''RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER''' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) _snake_case : int = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) _snake_case : Dict = set(range(len(mod.weight.size() ) ) ) - axis_set _snake_case : Optional[int] = pytorch_quantization.utils.reduce_amax(mod.weight , axis=lowerCAmelCase_ , keepdims=lowerCAmelCase_ ).detach() logger.info(f'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) _snake_case : Tuple = amax def _a ( lowerCAmelCase_ , lowerCAmelCase_=25 , lowerCAmelCase_=180 , lowerCAmelCase_=None ): """simple docstring""" if ignore is None: _snake_case : Dict = [] elif not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Optional[int] = [ignore] _snake_case : str = 0 for name, mod in model.named_modules(): if not hasattr(lowerCAmelCase_ , '''weight''' ): continue _snake_case : Optional[int] = max(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) for name, mod in model.named_modules(): _snake_case : Optional[Any] = getattr(lowerCAmelCase_ , '''_input_quantizer''' , lowerCAmelCase_ ) _snake_case : Tuple = getattr(lowerCAmelCase_ , '''_weight_quantizer''' , lowerCAmelCase_ ) if not hasattr(lowerCAmelCase_ , '''weight''' ): continue if type(lowerCAmelCase_ ) in ignore: continue if [True for s in ignore if type(lowerCAmelCase_ ) is str and s in name]: continue _snake_case : Optional[int] = f'''Act:{input_q.extra_repr()}''' _snake_case : Any = f'''Wgt:{weight_q.extra_repr()}''' _snake_case : Optional[int] = f'''{name:{name_width}} {act_str} {wgt_str}''' if len(lowerCAmelCase_ ) <= line_width: logger.info(lowerCAmelCase_ ) else: logger.info(f'''{name:{name_width}} {act_str}''' ) logger.info(f'''{" ":{name_width}} {wgt_str}''' ) def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : str = 0 for name, mod in model.named_modules(): if isinstance(lowerCAmelCase_ , pytorch_quantization.nn.TensorQuantizer ): print(f'''{name:80} {mod}''' ) count += 1 print(f'''{count} TensorQuantizers found in model''' ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if quantizer_mod is not None: assert hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: logger.warning(f'''{name} has no {quantizer}''' ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_="both" , **lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = f'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' if which in ["input", "both"]: set_quantizer(lowerCAmelCase_ , lowerCAmelCase_ , '''_input_quantizer''' , lowerCAmelCase_ , lowerCAmelCase_ ) if which in ["weight", "both"]: set_quantizer(lowerCAmelCase_ , lowerCAmelCase_ , '''_weight_quantizer''' , lowerCAmelCase_ , lowerCAmelCase_ ) logger.info(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCAmelCase_ , '''_input_quantizer''' ) or hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ): for n in names: if re.search(lowerCAmelCase_ , lowerCAmelCase_ ): set_quantizers(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) elif name.endswith('''_quantizer''' ): for n in names: if re.search(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Any = f'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) logger.info(lowerCAmelCase_ )
47
0
'''simple docstring''' class lowerCamelCase : def __init__( self , lowercase__ ) -> None: """simple docstring""" _snake_case : List[str] = size _snake_case : Optional[int] = [0] * size _snake_case : Optional[int] = [0] * size @staticmethod def UpperCAmelCase_ ( lowercase__ ) -> int: """simple docstring""" return index | (index + 1) @staticmethod def UpperCAmelCase_ ( lowercase__ ) -> int: """simple docstring""" return (index & (index + 1)) - 1 def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> None: """simple docstring""" _snake_case : Optional[Any] = value while index < self.size: _snake_case : Optional[int] = self.get_prev(lowercase__ ) + 1 if current_left_border == index: _snake_case : Optional[int] = value else: _snake_case : Dict = max(lowercase__ , lowercase__ , lowercase__ ) _snake_case : Tuple = self.get_next(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> int: """simple docstring""" right -= 1 # Because of right is exclusive _snake_case : Dict = 0 while left <= right: _snake_case : Tuple = self.get_prev(lowercase__ ) if left <= current_left: _snake_case : Union[str, Any] = max(lowercase__ , self.tree[right] ) _snake_case : Optional[int] = current_left else: _snake_case : str = max(lowercase__ , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
706
'''simple docstring''' from __future__ import annotations def _a ( lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None ): """simple docstring""" if start is None: _snake_case : Optional[Any] = 0 if end is None: _snake_case : Any = len(lowerCAmelCase_ ) - 1 if start >= end: return _snake_case : Optional[Any] = (start + end) // 2 slowsort(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) slowsort(lowerCAmelCase_ , mid + 1 , lowerCAmelCase_ ) if sequence[end] < sequence[mid]: _snake_case , _snake_case : int = sequence[mid], sequence[end] slowsort(lowerCAmelCase_ , lowerCAmelCase_ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
47
0
'''simple docstring''' def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(lowerCAmelCase_ , int(b / 2 ) ) * actual_power(lowerCAmelCase_ , int(b / 2 ) ) else: return a * actual_power(lowerCAmelCase_ , int(b / 2 ) ) * actual_power(lowerCAmelCase_ , int(b / 2 ) ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if b < 0: return 1 / actual_power(lowerCAmelCase_ , lowerCAmelCase_ ) return actual_power(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": print(power(-2, -3))
707
'''simple docstring''' import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class lowerCamelCase (unittest.TestCase ): @slow def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Tuple = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) _snake_case : Any = AutoTokenizer.from_pretrained('''google/mt5-small''' ) _snake_case : List[str] = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids _snake_case : Dict = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids _snake_case : Any = shift_tokens_right(lowercase__ , model.config.pad_token_id , model.config.decoder_start_token_id ) _snake_case : Any = model(lowercase__ , decoder_input_ids=lowercase__ ).logits _snake_case : Tuple = optax.softmax_cross_entropy(lowercase__ , onehot(lowercase__ , logits.shape[-1] ) ).mean() _snake_case : Tuple = -(labels.shape[-1] * loss.item()) _snake_case : Union[str, Any] = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
47
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : List[Any] = { 'configuration_nllb_moe': [ 'NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NllbMoeConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : int = [ 'NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST', 'NllbMoeForConditionalGeneration', 'NllbMoeModel', 'NllbMoePreTrainedModel', 'NllbMoeTop2Router', 'NllbMoeSparseMLP', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys UpperCAmelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
708
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCamelCase (unittest.TestCase ): def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : Any = torch.nn.Linear(10 , 10 ) _snake_case : Optional[int] = torch.optim.SGD(model.parameters() , 0.1 ) _snake_case : List[str] = Accelerator() _snake_case : Optional[Any] = accelerator.prepare(lowercase__ ) try: pickle.loads(pickle.dumps(lowercase__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
47
0
'''simple docstring''' import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor UpperCAmelCase : str = logging.getLogger(__name__) UpperCAmelCase : Dict = 5_0 # max width of layer names UpperCAmelCase : Union[str, Any] = 7_0 # max width of quantizer names def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Dict = parser.add_argument_group('''quant_trainer arguments''' ) group.add_argument('''--wprec''' , type=lowerCAmelCase_ , default=8 , help='''weight precision''' ) group.add_argument('''--aprec''' , type=lowerCAmelCase_ , default=8 , help='''activation precision''' ) group.add_argument('''--quant-per-tensor''' , action='''store_true''' , help='''per tensor weight scaling''' ) group.add_argument('''--quant-disable''' , action='''store_true''' , help='''disable all quantizers''' ) group.add_argument('''--quant-disable-embeddings''' , action='''store_true''' , help='''disable all embeddings quantizers''' ) group.add_argument('''--quant-disable-keyword''' , type=lowerCAmelCase_ , nargs='''+''' , help='''disable quantizers by keyword''' ) group.add_argument('''--quant-disable-layer-module''' , type=lowerCAmelCase_ , help='''disable quantizers by keyword under layer.''' ) group.add_argument('''--quant-enable-layer-module''' , type=lowerCAmelCase_ , help='''enable quantizers by keyword under layer''' ) group.add_argument('''--calibrator''' , default='''max''' , help='''which quantization range calibrator to use''' ) group.add_argument('''--percentile''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help='''percentile for PercentileCalibrator''' ) group.add_argument('''--fuse-qkv''' , action='''store_true''' , help='''use the same scale factor for qkv''' ) group.add_argument('''--clip-gelu''' , metavar='''N''' , type=lowerCAmelCase_ , help='''clip gelu output maximum value to N''' ) group.add_argument( '''--recalibrate-weights''' , action='''store_true''' , help=( '''recalibrate weight amaxes by taking the max of the weights.''' ''' amaxes will be computed with the current quantization granularity (axis).''' ) , ) def _a ( lowerCAmelCase_ ): """simple docstring""" if args.calibrator == "max": _snake_case : Optional[int] = '''max''' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('''Specify --percentile when using percentile calibrator''' ) _snake_case : Tuple = '''histogram''' elif args.calibrator == "mse": _snake_case : int = '''histogram''' else: raise ValueError(f'''Invalid calibrator {args.calibrator}''' ) _snake_case : Tuple = QuantDescriptor(num_bits=args.aprec , calib_method=lowerCAmelCase_ ) _snake_case : str = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(lowerCAmelCase_ ) quant_nn.QuantLinear.set_default_quant_desc_weight(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False , lowerCAmelCase_=False ): """simple docstring""" logger.info('''Configuring Model for Quantization''' ) logger.info(f'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(lowerCAmelCase_ , ['''embeddings'''] , which='''weight''' , _disabled=lowerCAmelCase_ ) if args.quant_disable: set_quantizer_by_name(lowerCAmelCase_ , [''''''] , _disabled=lowerCAmelCase_ ) if args.quant_disable_keyword: set_quantizer_by_name(lowerCAmelCase_ , args.quant_disable_keyword , _disabled=lowerCAmelCase_ ) if args.quant_disable_layer_module: set_quantizer_by_name(lowerCAmelCase_ , [R'''layer.\d+.''' + args.quant_disable_layer_module] , _disabled=lowerCAmelCase_ ) if args.quant_enable_layer_module: set_quantizer_by_name(lowerCAmelCase_ , [R'''layer.\d+.''' + args.quant_enable_layer_module] , _disabled=lowerCAmelCase_ ) if args.recalibrate_weights: recalibrate_weights(lowerCAmelCase_ ) if args.fuse_qkv: fuse_qkv(lowerCAmelCase_ , lowerCAmelCase_ ) if args.clip_gelu: clip_gelu(lowerCAmelCase_ , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ ): """simple docstring""" logger.info('''Enabling Calibration''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(f'''{name:80}: {module}''' ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" logger.info('''Loading calibrated amax''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('''percentile''' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" def fusea(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): for mod in [qq, qk, qv]: if not hasattr(lowerCAmelCase_ , '''_amax''' ): print(''' WARNING: NO AMAX BUFFER''' ) return _snake_case : Tuple = qq._amax.detach().item() _snake_case : Tuple = qk._amax.detach().item() _snake_case : List[Any] = qv._amax.detach().item() _snake_case : List[str] = max(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) qq._amax.fill_(lowerCAmelCase_ ) qk._amax.fill_(lowerCAmelCase_ ) qv._amax.fill_(lowerCAmelCase_ ) logger.info(f''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith('''.attention.self''' ): logger.info(f'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if name.endswith('''.output.dense''' ) and not name.endswith('''attention.output.dense''' ): _snake_case : List[Any] = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=lowerCAmelCase_ ) _snake_case : List[str] = mod._input_quantizer._amax.data.detach().item() logger.info(f'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def _a ( lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ) and mod._weight_quantizer.axis is not None: _snake_case : Dict = mod.weight.shape[0] _snake_case : Optional[int] = mod._weight_quantizer._amax.detach() _snake_case : Optional[int] = torch.ones(lowerCAmelCase_ , dtype=amax.dtype , device=amax.device ) * amax print(f'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def _a ( lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ): if not hasattr(mod.weight_quantizer , '''_amax''' ): print('''RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER''' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) _snake_case : int = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) _snake_case : Dict = set(range(len(mod.weight.size() ) ) ) - axis_set _snake_case : Optional[int] = pytorch_quantization.utils.reduce_amax(mod.weight , axis=lowerCAmelCase_ , keepdims=lowerCAmelCase_ ).detach() logger.info(f'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) _snake_case : Tuple = amax def _a ( lowerCAmelCase_ , lowerCAmelCase_=25 , lowerCAmelCase_=180 , lowerCAmelCase_=None ): """simple docstring""" if ignore is None: _snake_case : Dict = [] elif not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Optional[int] = [ignore] _snake_case : str = 0 for name, mod in model.named_modules(): if not hasattr(lowerCAmelCase_ , '''weight''' ): continue _snake_case : Optional[int] = max(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) for name, mod in model.named_modules(): _snake_case : Optional[Any] = getattr(lowerCAmelCase_ , '''_input_quantizer''' , lowerCAmelCase_ ) _snake_case : Tuple = getattr(lowerCAmelCase_ , '''_weight_quantizer''' , lowerCAmelCase_ ) if not hasattr(lowerCAmelCase_ , '''weight''' ): continue if type(lowerCAmelCase_ ) in ignore: continue if [True for s in ignore if type(lowerCAmelCase_ ) is str and s in name]: continue _snake_case : Optional[int] = f'''Act:{input_q.extra_repr()}''' _snake_case : Any = f'''Wgt:{weight_q.extra_repr()}''' _snake_case : Optional[int] = f'''{name:{name_width}} {act_str} {wgt_str}''' if len(lowerCAmelCase_ ) <= line_width: logger.info(lowerCAmelCase_ ) else: logger.info(f'''{name:{name_width}} {act_str}''' ) logger.info(f'''{" ":{name_width}} {wgt_str}''' ) def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : str = 0 for name, mod in model.named_modules(): if isinstance(lowerCAmelCase_ , pytorch_quantization.nn.TensorQuantizer ): print(f'''{name:80} {mod}''' ) count += 1 print(f'''{count} TensorQuantizers found in model''' ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if quantizer_mod is not None: assert hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: logger.warning(f'''{name} has no {quantizer}''' ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_="both" , **lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = f'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' if which in ["input", "both"]: set_quantizer(lowerCAmelCase_ , lowerCAmelCase_ , '''_input_quantizer''' , lowerCAmelCase_ , lowerCAmelCase_ ) if which in ["weight", "both"]: set_quantizer(lowerCAmelCase_ , lowerCAmelCase_ , '''_weight_quantizer''' , lowerCAmelCase_ , lowerCAmelCase_ ) logger.info(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCAmelCase_ , '''_input_quantizer''' ) or hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ): for n in names: if re.search(lowerCAmelCase_ , lowerCAmelCase_ ): set_quantizers(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) elif name.endswith('''_quantizer''' ): for n in names: if re.search(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Any = f'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) logger.info(lowerCAmelCase_ )
709
'''simple docstring''' UpperCAmelCase : Union[str, Any] = tuple[float, float, float] UpperCAmelCase : int = tuple[float, float, float] def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : str = end_pointa[0] - end_pointa[0] _snake_case : Tuple = end_pointa[1] - end_pointa[1] _snake_case : Any = end_pointa[2] - end_pointa[2] return (x, y, z) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Dict = ab[1] * ac[2] - ab[2] * ac[1] # *i _snake_case : List[str] = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j _snake_case : Optional[int] = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return tuple(round(lowerCAmelCase_ , lowerCAmelCase_ ) for x in vector ) == (0, 0, 0) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 10 ): """simple docstring""" _snake_case : str = create_vector(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Tuple = create_vector(lowerCAmelCase_ , lowerCAmelCase_ ) return is_zero_vector(get_ad_vectors_cross(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ )
47
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase (metaclass=a__ ): _lowercase : str = ["""note_seq"""] def __init__( self , *lowercase__ , **lowercase__ ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ['''note_seq'''] ) @classmethod def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> List[str]: """simple docstring""" requires_backends(cls , ['''note_seq'''] ) @classmethod def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> List[str]: """simple docstring""" requires_backends(cls , ['''note_seq'''] )
710
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel UpperCAmelCase : List[str] = logging.getLogger(__name__) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if os.path.exists(lowerCAmelCase_ ): if os.path.exists(os.path.join(lowerCAmelCase_ , '''config.json''' ) ) and os.path.isfile( os.path.join(lowerCAmelCase_ , '''config.json''' ) ): os.remove(os.path.join(lowerCAmelCase_ , '''config.json''' ) ) if os.path.exists(os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) ) and os.path.isfile( os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) ): os.remove(os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) ) else: os.makedirs(lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_=False ): """simple docstring""" _snake_case : Optional[Any] = 2 if unlogit: _snake_case : Any = torch.pow(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Union[str, Any] = p * torch.log(lowerCAmelCase_ ) _snake_case : Optional[Any] = 0 return -plogp.sum(dim=-1 ) def _a ( lowerCAmelCase_ ): """simple docstring""" logger.info('''lv, h >\t''' + '''\t'''.join(f'''{x + 1}''' for x in range(len(lowerCAmelCase_ ) ) ) ) for row in range(len(lowerCAmelCase_ ) ): if tensor.dtype != torch.long: logger.info(f'''layer {row + 1}:\t''' + '''\t'''.join(f'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(f'''layer {row + 1}:\t''' + '''\t'''.join(f'''{x:d}''' for x in tensor[row].cpu().data ) ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=None , lowerCAmelCase_=False ): """simple docstring""" _snake_case , _snake_case : Optional[int] = model.config.num_hidden_layers, model.config.num_attention_heads _snake_case : Tuple = torch.zeros(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device ) _snake_case : Union[str, Any] = torch.zeros(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device ) if head_mask is None: _snake_case : int = torch.ones(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device ) head_mask.requires_grad_(requires_grad=lowerCAmelCase_ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _snake_case : Dict = None _snake_case : Dict = 0.0 _snake_case : Optional[int] = 0.0 for step, inputs in enumerate(tqdm(lowerCAmelCase_ , desc='''Iteration''' , disable=args.local_rank not in [-1, 0] ) ): _snake_case : List[Any] = tuple(t.to(args.device ) for t in inputs ) ((_snake_case) , ) : Optional[Any] = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _snake_case : Any = model(lowerCAmelCase_ , labels=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _snake_case , _snake_case , _snake_case : List[Any] = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(lowerCAmelCase_ ): _snake_case : Union[str, Any] = entropy(attn.detach() , lowerCAmelCase_ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(lowerCAmelCase_ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _snake_case : Any = 2 _snake_case : List[str] = torch.pow(torch.pow(lowerCAmelCase_ , lowerCAmelCase_ ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: _snake_case : Optional[int] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''' ) print_ad_tensor(lowerCAmelCase_ ) if compute_importance: logger.info('''Head importance scores''' ) print_ad_tensor(lowerCAmelCase_ ) logger.info('''Head ranked by importance scores''' ) _snake_case : str = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _snake_case : List[Any] = torch.arange( head_importance.numel() , device=args.device ) _snake_case : List[Any] = head_ranks.view_as(lowerCAmelCase_ ) print_ad_tensor(lowerCAmelCase_ ) return attn_entropy, head_importance, total_loss def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case , _snake_case , _snake_case : str = compute_heads_importance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ ) _snake_case : Optional[Any] = 1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' , lowerCAmelCase_ , original_score * args.masking_threshold ) _snake_case : int = torch.ones_like(lowerCAmelCase_ ) _snake_case : Optional[Any] = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _snake_case : int = original_score while current_score >= original_score * args.masking_threshold: _snake_case : int = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _snake_case : Dict = float('''Inf''' ) _snake_case : Optional[Any] = head_importance.view(-1 ).sort()[1] if len(lowerCAmelCase_ ) <= num_to_mask: print('''BREAK BY num_to_mask''' ) break # mask heads _snake_case : Union[str, Any] = current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist() ) ) _snake_case : Tuple = new_head_mask.view(-1 ) _snake_case : List[str] = 0.0 _snake_case : str = new_head_mask.view_as(lowerCAmelCase_ ) _snake_case : Dict = new_head_mask.clone().detach() print_ad_tensor(lowerCAmelCase_ ) # Compute metric and head importance again _snake_case , _snake_case , _snake_case : Any = compute_heads_importance( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) _snake_case : int = 1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' , lowerCAmelCase_ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info('''Final head mask''' ) print_ad_tensor(lowerCAmelCase_ ) np.save(os.path.join(args.output_dir , '''head_mask.npy''' ) , head_mask.detach().cpu().numpy() ) return head_mask def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = datetime.now() _snake_case , _snake_case , _snake_case : Union[str, Any] = compute_heads_importance( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , compute_importance=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) _snake_case : Tuple = 1 / loss _snake_case : Dict = datetime.now() - before_time _snake_case : List[Any] = sum(p.numel() for p in model.parameters() ) _snake_case : int = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(lowerCAmelCase_ ) ) } for k, v in heads_to_prune.items(): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Union[str, Any] = [ v, ] assert sum(len(lowerCAmelCase_ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(lowerCAmelCase_ ) _snake_case : List[str] = sum(p.numel() for p in model.parameters() ) _snake_case : int = datetime.now() _snake_case , _snake_case , _snake_case : Optional[Any] = compute_heads_importance( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , compute_importance=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , actually_pruned=lowerCAmelCase_ , ) _snake_case : Optional[int] = 1 / loss _snake_case : Dict = datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , lowerCAmelCase_ , lowerCAmelCase_ , pruned_num_params / original_num_params * 100 , ) logger.info('''Pruning: score with masking: %f score with pruning: %f''' , lowerCAmelCase_ , lowerCAmelCase_ ) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 100 ) save_model(lowerCAmelCase_ , args.output_dir ) def _a ( ): """simple docstring""" _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , ) parser.add_argument( '''--model_name_or_path''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--output_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) # Other parameters parser.add_argument( '''--config_name''' , default='''''' , type=lowerCAmelCase_ , help='''Pretrained config name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--tokenizer_name''' , default='''''' , type=lowerCAmelCase_ , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--cache_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help='''Where do you want to store the pre-trained models downloaded from s3''' , ) parser.add_argument( '''--data_subset''' , type=lowerCAmelCase_ , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''' ) parser.add_argument( '''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''' ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) parser.add_argument( '''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''' ) parser.add_argument( '''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , ) parser.add_argument( '''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''' ) parser.add_argument( '''--masking_threshold''' , default=0.9 , type=lowerCAmelCase_ , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , ) parser.add_argument( '''--masking_amount''' , default=0.1 , type=lowerCAmelCase_ , help='''Amount to heads to masking at each masking step.''' ) parser.add_argument('''--metric_name''' , default='''acc''' , type=lowerCAmelCase_ , help='''Metric to use for head masking.''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=lowerCAmelCase_ , help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) , ) parser.add_argument('''--batch_size''' , default=1 , type=lowerCAmelCase_ , help='''Batch size.''' ) parser.add_argument('''--seed''' , type=lowerCAmelCase_ , default=42 ) parser.add_argument('''--local_rank''' , type=lowerCAmelCase_ , default=-1 , help='''local_rank for distributed training on gpus''' ) parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''' ) parser.add_argument('''--server_ip''' , type=lowerCAmelCase_ , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=lowerCAmelCase_ , default='''''' , help='''Can be used for distant debugging.''' ) _snake_case : Optional[Any] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowerCAmelCase_ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _snake_case : str = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''' ) _snake_case : Optional[Any] = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _snake_case : List[str] = torch.device('''cuda''' , args.local_rank ) _snake_case : int = 1 torch.distributed.init_process_group(backend='''nccl''' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _snake_case : Optional[Any] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _snake_case : Optional[int] = nn.parallel.DistributedDataParallel( lowerCAmelCase_ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=lowerCAmelCase_ ) elif args.n_gpu > 1: _snake_case : List[Any] = nn.DataParallel(lowerCAmelCase_ ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=lowerCAmelCase_ ) torch.save(lowerCAmelCase_ , os.path.join(args.output_dir , '''run_args.bin''' ) ) logger.info('''Training/evaluation parameters %s''' , lowerCAmelCase_ ) # Prepare dataset _snake_case : Dict = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _snake_case : int = (torch.from_numpy(lowerCAmelCase_ ),) _snake_case : Tuple = TensorDataset(*lowerCAmelCase_ ) _snake_case : List[str] = RandomSampler(lowerCAmelCase_ ) _snake_case : Dict = DataLoader(lowerCAmelCase_ , sampler=lowerCAmelCase_ , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _snake_case : Optional[int] = mask_heads(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) prune_heads(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
47
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : List[Any] = { 'configuration_mgp_str': ['MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MgpstrConfig'], 'processing_mgp_str': ['MgpstrProcessor'], 'tokenization_mgp_str': ['MgpstrTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : str = [ 'MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST', 'MgpstrModel', 'MgpstrPreTrainedModel', 'MgpstrForSceneTextRecognition', ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
711
'''simple docstring''' def _a ( lowerCAmelCase_ ): """simple docstring""" if n == 1 or not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return 0 elif n == 2: return 1 else: _snake_case : Union[str, Any] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[int] = 0 _snake_case : int = 2 while digits < n: index += 1 _snake_case : Tuple = len(str(fibonacci(lowerCAmelCase_ ) ) ) return index def _a ( lowerCAmelCase_ = 1_000 ): """simple docstring""" return fibonacci_digits_index(lowerCAmelCase_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
47
0
'''simple docstring''' def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : int = [False] * len(lowerCAmelCase_ ) _snake_case : Tuple = [] queue.append(lowerCAmelCase_ ) _snake_case : Any = True while queue: _snake_case : Union[str, Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowerCAmelCase_ ) _snake_case : Optional[Any] = True _snake_case : List[str] = u return visited[t] def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = [-1] * (len(lowerCAmelCase_ )) _snake_case : List[str] = 0 while bfs(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Optional[Any] = float('''Inf''' ) _snake_case : List[str] = sink while s != source: # Find the minimum value in select path _snake_case : Optional[int] = min(lowerCAmelCase_ , graph[parent[s]][s] ) _snake_case : Union[str, Any] = parent[s] max_flow += path_flow _snake_case : Optional[int] = sink while v != source: _snake_case : Optional[Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _snake_case : List[Any] = parent[v] return max_flow UpperCAmelCase : str = [ [0, 1_6, 1_3, 0, 0, 0], [0, 0, 1_0, 1_2, 0, 0], [0, 4, 0, 0, 1_4, 0], [0, 0, 9, 0, 0, 2_0], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] UpperCAmelCase : Union[str, Any] = 0, 5 print(ford_fulkerson(graph, source, sink))
712
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar UpperCAmelCase : Any = TypeVar('T') UpperCAmelCase : str = TypeVar('U') class lowerCamelCase (Generic[T, U] ): def __init__( self , lowercase__ , lowercase__ ) -> List[Any]: """simple docstring""" _snake_case : str = key _snake_case : Optional[int] = val _snake_case : DoubleLinkedListNode[T, U] | None = None _snake_case : DoubleLinkedListNode[T, U] | None = None def __repr__( self ) -> str: """simple docstring""" return ( F'''Node: key: {self.key}, val: {self.val}, ''' F'''has next: {bool(self.next )}, has prev: {bool(self.prev )}''' ) class lowerCamelCase (Generic[T, U] ): def __init__( self ) -> None: """simple docstring""" _snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase__ , lowercase__ ) _snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase__ , lowercase__ ) _snake_case , _snake_case : Union[str, Any] = self.rear, self.head def __repr__( self ) -> str: """simple docstring""" _snake_case : List[Any] = ['''DoubleLinkedList'''] _snake_case : str = self.head while node.next is not None: rep.append(str(lowercase__ ) ) _snake_case : List[str] = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> None: """simple docstring""" _snake_case : Tuple = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None _snake_case : Union[str, Any] = node _snake_case : Optional[Any] = previous _snake_case : int = node _snake_case : Union[str, Any] = self.rear def UpperCAmelCase_ ( self , lowercase__ ) -> DoubleLinkedListNode[T, U] | None: """simple docstring""" if node.prev is None or node.next is None: return None _snake_case : Optional[int] = node.next _snake_case : Any = node.prev _snake_case : List[str] = None _snake_case : Optional[int] = None return node class lowerCamelCase (Generic[T, U] ): _lowercase : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self , lowercase__ ) -> Union[str, Any]: """simple docstring""" _snake_case : DoubleLinkedList[T, U] = DoubleLinkedList() _snake_case : Union[str, Any] = capacity _snake_case : int = 0 _snake_case : Dict = 0 _snake_case : Union[str, Any] = 0 _snake_case : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__( self ) -> str: """simple docstring""" return ( F'''CacheInfo(hits={self.hits}, misses={self.miss}, ''' F'''capacity={self.capacity}, current size={self.num_keys})''' ) def __contains__( self , lowercase__ ) -> bool: """simple docstring""" return key in self.cache def UpperCAmelCase_ ( self , lowercase__ ) -> U | None: """simple docstring""" if key in self.cache: self.hits += 1 _snake_case : DoubleLinkedListNode[T, U] = self.cache[key] _snake_case : Tuple = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowercase__ ) return node.val self.miss += 1 return None def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> None: """simple docstring""" if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity _snake_case : Dict = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowercase__ ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 _snake_case : Optional[int] = DoubleLinkedListNode(lowercase__ , lowercase__ ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value _snake_case : Optional[Any] = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list _snake_case : Optional[Any] = value self.list.add(lowercase__ ) @classmethod def UpperCAmelCase_ ( cls , lowercase__ = 128 ) -> Callable[[Callable[[T], U]], Callable[..., U]]: """simple docstring""" def cache_decorator_inner(lowercase__ ) -> Callable[..., U]: def cache_decorator_wrapper(*lowercase__ ) -> U: if func not in cls.decorator_function_to_instance_map: _snake_case : Optional[Any] = LRUCache(lowercase__ ) _snake_case : Union[str, Any] = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: _snake_case : Tuple = func(*lowercase__ ) cls.decorator_function_to_instance_map[func].put(args[0] , lowercase__ ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowercase__ , '''cache_info''' , lowercase__ ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
47
0
'''simple docstring''' from math import pow, sqrt def _a ( *lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[int] = len(lowerCAmelCase_ ) > 0 and all(value > 0.0 for value in values ) return result def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(lowerCAmelCase_ , lowerCAmelCase_ ) else ValueError('''Input Error: Molar mass values must greater than 0.''' ) ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) )
713
'''simple docstring''' import os import numpy import onnx def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : List[Any] = a.name _snake_case : List[Any] = b.name _snake_case : Tuple = '''''' _snake_case : Tuple = '''''' _snake_case : Optional[Any] = a == b _snake_case : List[Any] = name_a _snake_case : str = name_b return res def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(lowerCAmelCase_ , lowerCAmelCase_ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , lowerCAmelCase_ , lowerCAmelCase_ ) _graph_replace_input_with(node_proto.attribute[1].g , lowerCAmelCase_ , lowerCAmelCase_ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , lowerCAmelCase_ , lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for n in graph_proto.node: _node_replace_input_with(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = list(model.graph.initializer ) _snake_case : List[str] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i _snake_case : List[Any] = inits[i].name _snake_case : List[str] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , lowerCAmelCase_ , lowerCAmelCase_ ) def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Tuple = os.path.dirname(lowerCAmelCase_ ) _snake_case : str = os.path.basename(lowerCAmelCase_ ) _snake_case : Tuple = onnx.load(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) ) _snake_case : Union[str, Any] = list(model.graph.initializer ) _snake_case : Union[str, Any] = set() _snake_case : Any = {} _snake_case : str = [] _snake_case : Union[str, Any] = 0 for i in range(len(lowerCAmelCase_ ) ): if i in dup_set: continue for j in range(i + 1 , len(lowerCAmelCase_ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(lowerCAmelCase_ ) dup_set.add(lowerCAmelCase_ ) _snake_case : List[Any] = inits[j].data_type _snake_case : Dict = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('''unexpected data type: ''' , lowerCAmelCase_ ) total_reduced_size += mem_size _snake_case : Union[str, Any] = inits[i].name _snake_case : Any = inits[j].name if name_i in dup_map: dup_map[name_i].append(lowerCAmelCase_ ) else: _snake_case : Union[str, Any] = [name_j] ind_to_replace.append((j, i) ) print('''total reduced size: ''' , total_reduced_size / 1_024 / 1_024 / 1_024 , '''GB''' ) _snake_case : List[str] = sorted(lowerCAmelCase_ ) _remove_dup_initializers_from_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : List[str] = '''optimized_''' + model_file_name _snake_case : List[Any] = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) onnx.save(lowerCAmelCase_ , lowerCAmelCase_ ) return new_model
47
0
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase : Tuple = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase : Tuple = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } UpperCAmelCase : Dict = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } UpperCAmelCase : int = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } UpperCAmelCase : int = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_1_2, 'facebook/dpr-ctx_encoder-multiset-base': 5_1_2, } UpperCAmelCase : List[Any] = { 'facebook/dpr-question_encoder-single-nq-base': 5_1_2, 'facebook/dpr-question_encoder-multiset-base': 5_1_2, } UpperCAmelCase : Any = { 'facebook/dpr-reader-single-nq-base': 5_1_2, 'facebook/dpr-reader-multiset-base': 5_1_2, } UpperCAmelCase : Optional[int] = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } UpperCAmelCase : Any = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } UpperCAmelCase : Any = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class lowerCamelCase (a__ ): _lowercase : Union[str, Any] = VOCAB_FILES_NAMES _lowercase : List[str] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _lowercase : Optional[Any] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Any = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class lowerCamelCase (a__ ): _lowercase : Any = VOCAB_FILES_NAMES _lowercase : Dict = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _lowercase : Tuple = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : List[Any] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase : Any = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) UpperCAmelCase : Union[str, Any] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) UpperCAmelCase : str = R'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(a__ ) class lowerCamelCase : def __call__( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = False , lowercase__ = False , lowercase__ = None , lowercase__ = None , lowercase__ = None , **lowercase__ , ) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( lowercase__ , padding=lowercase__ , truncation=lowercase__ , max_length=lowercase__ , return_tensors=lowercase__ , return_attention_mask=lowercase__ , **lowercase__ , ) elif titles is None or texts is None: _snake_case : Optional[Any] = titles if texts is None else texts return super().__call__( lowercase__ , lowercase__ , padding=lowercase__ , truncation=lowercase__ , max_length=lowercase__ , return_tensors=lowercase__ , return_attention_mask=lowercase__ , **lowercase__ , ) _snake_case : Optional[Any] = titles if not isinstance(lowercase__ , lowercase__ ) else [titles] _snake_case : int = texts if not isinstance(lowercase__ , lowercase__ ) else [texts] _snake_case : Optional[int] = len(lowercase__ ) _snake_case : Tuple = questions if not isinstance(lowercase__ , lowercase__ ) else [questions] * n_passages if len(lowercase__ ) != len(lowercase__ ): raise ValueError( F'''There should be as many titles than texts but got {len(lowercase__ )} titles and {len(lowercase__ )} texts.''' ) _snake_case : int = super().__call__(lowercase__ , lowercase__ , padding=lowercase__ , truncation=lowercase__ )['''input_ids'''] _snake_case : List[str] = super().__call__(lowercase__ , add_special_tokens=lowercase__ , padding=lowercase__ , truncation=lowercase__ )['''input_ids'''] _snake_case : str = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowercase__ , lowercase__ ) ] } if return_attention_mask is not False: _snake_case : Tuple = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _snake_case : int = attention_mask return self.pad(lowercase__ , padding=lowercase__ , max_length=lowercase__ , return_tensors=lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = 16 , lowercase__ = 64 , lowercase__ = 4 , ) -> List[DPRSpanPrediction]: """simple docstring""" _snake_case : Optional[int] = reader_input['''input_ids'''] _snake_case : Union[str, Any] = reader_output[:3] _snake_case : List[Any] = len(lowercase__ ) _snake_case : Union[str, Any] = sorted(range(lowercase__ ) , reverse=lowercase__ , key=relevance_logits.__getitem__ ) _snake_case : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _snake_case : Optional[int] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _snake_case : Union[str, Any] = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _snake_case : Optional[Any] = sequence_ids.index(self.pad_token_id ) else: _snake_case : int = len(lowercase__ ) _snake_case : Union[str, Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowercase__ , top_spans=lowercase__ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowercase__ , start_index=lowercase__ , end_index=lowercase__ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(lowercase__ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ) -> List[DPRSpanPrediction]: """simple docstring""" _snake_case : Union[str, Any] = [] for start_index, start_score in enumerate(lowercase__ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _snake_case : str = sorted(lowercase__ , key=lambda lowercase__ : x[1] , reverse=lowercase__ ) _snake_case : List[str] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'''Wrong span indices: [{start_index}:{end_index}]''' ) _snake_case : Union[str, Any] = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'''Span is too long: {length} > {max_answer_length}''' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowercase__ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(a__ ) class lowerCamelCase (a__ , a__ ): _lowercase : Dict = VOCAB_FILES_NAMES _lowercase : Optional[int] = READER_PRETRAINED_VOCAB_FILES_MAP _lowercase : List[Any] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : List[Any] = READER_PRETRAINED_INIT_CONFIGURATION _lowercase : Union[str, Any] = ["""input_ids""", """attention_mask"""]
714
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : int = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
47
0
'''simple docstring''' from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class lowerCamelCase (a__ ): def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Tuple = SMALL_MODEL_IDENTIFIER _snake_case : Optional[int] = '''pt''' _snake_case : Optional[Any] = '''tf''' def UpperCAmelCase_ ( self , lowercase__ ) -> Optional[Any]: """simple docstring""" _snake_case : List[str] = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> Optional[int]: """simple docstring""" _snake_case : Dict = TFAutoModel.from_pretrained(self.test_model , from_pt=lowercase__ ) model_tf.save_pretrained(lowercase__ ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : List[str] = '''mock_framework''' # Framework provided - return whatever the user provides _snake_case : Tuple = FeaturesManager.determine_framework(self.test_model , lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(lowercase__ ) _snake_case : Optional[Any] = FeaturesManager.determine_framework(lowercase__ , lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(lowercase__ ) _snake_case : Tuple = FeaturesManager.determine_framework(lowercase__ , lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(lowercase__ ) _snake_case : Dict = FeaturesManager.determine_framework(lowercase__ ) self.assertEqual(lowercase__ , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(lowercase__ ) _snake_case : Optional[int] = FeaturesManager.determine_framework(lowercase__ ) self.assertEqual(lowercase__ , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(lowercase__ ): _snake_case : Union[str, Any] = FeaturesManager.determine_framework(lowercase__ ) def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" _snake_case : Optional[int] = MagicMock(return_value=lowercase__ ) with patch('''transformers.onnx.features.is_tf_available''' , lowercase__ ): _snake_case : Optional[Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowercase__ , self.framework_pt ) # PyTorch not in environment -> use TensorFlow _snake_case : Optional[Any] = MagicMock(return_value=lowercase__ ) with patch('''transformers.onnx.features.is_torch_available''' , lowercase__ ): _snake_case : Optional[Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowercase__ , self.framework_tf ) # Both in environment -> use PyTorch _snake_case : Optional[int] = MagicMock(return_value=lowercase__ ) _snake_case : str = MagicMock(return_value=lowercase__ ) with patch('''transformers.onnx.features.is_tf_available''' , lowercase__ ), patch( '''transformers.onnx.features.is_torch_available''' , lowercase__ ): _snake_case : Tuple = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowercase__ , self.framework_pt ) # Both not in environment -> raise error _snake_case : Dict = MagicMock(return_value=lowercase__ ) _snake_case : Optional[int] = MagicMock(return_value=lowercase__ ) with patch('''transformers.onnx.features.is_tf_available''' , lowercase__ ), patch( '''transformers.onnx.features.is_torch_available''' , lowercase__ ): with self.assertRaises(lowercase__ ): _snake_case : Optional[Any] = FeaturesManager.determine_framework(self.test_model )
715
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase : Dict = logging.get_logger(__name__) class lowerCamelCase (a__ ): _lowercase : int = ["""pixel_values"""] def __init__( self , lowercase__ = True , lowercase__ = 32 , lowercase__=PILImageResampling.BILINEAR , lowercase__ = True , **lowercase__ , ) -> None: """simple docstring""" _snake_case : Any = do_resize _snake_case : List[str] = do_rescale _snake_case : Any = size_divisor _snake_case : Optional[Any] = resample super().__init__(**lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ ) -> np.ndarray: """simple docstring""" _snake_case , _snake_case : Dict = get_image_size(lowercase__ ) # Rounds the height and width down to the closest multiple of size_divisor _snake_case : Optional[int] = height // size_divisor * size_divisor _snake_case : Dict = width // size_divisor * size_divisor _snake_case : str = resize(lowercase__ , (new_h, new_w) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) return image def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ ) -> np.ndarray: """simple docstring""" return rescale(image=lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__=None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ) -> BatchFeature: """simple docstring""" _snake_case : Any = do_resize if do_resize is not None else self.do_resize _snake_case : List[Any] = do_rescale if do_rescale is not None else self.do_rescale _snake_case : List[str] = size_divisor if size_divisor is not None else self.size_divisor _snake_case : int = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) _snake_case : Tuple = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. _snake_case : Tuple = [to_numpy_array(lowercase__ ) for img in images] if do_resize: _snake_case : Optional[int] = [self.resize(lowercase__ , size_divisor=lowercase__ , resample=lowercase__ ) for image in images] if do_rescale: _snake_case : Union[str, Any] = [self.rescale(lowercase__ , scale=1 / 255 ) for image in images] _snake_case : Union[str, Any] = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] _snake_case : List[str] = {'''pixel_values''': images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
47
0
'''simple docstring''' import math from numpy import inf from scipy.integrate import quad def _a ( lowerCAmelCase_ ): """simple docstring""" if num <= 0: raise ValueError('''math domain error''' ) return quad(lowerCAmelCase_ , 0 , lowerCAmelCase_ , args=(lowerCAmelCase_) )[0] def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return math.pow(lowerCAmelCase_ , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
716
'''simple docstring''' from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class lowerCamelCase : _lowercase : Any = LEDConfig _lowercase : Any = {} _lowercase : Optional[Any] = """gelu""" def __init__( self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=False , lowercase__=99 , lowercase__=32 , lowercase__=2 , lowercase__=4 , lowercase__=37 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=20 , lowercase__=2 , lowercase__=1 , lowercase__=0 , lowercase__=4 , ) -> Any: """simple docstring""" _snake_case : Dict = parent _snake_case : Any = batch_size _snake_case : List[str] = seq_length _snake_case : Union[str, Any] = is_training _snake_case : Tuple = use_labels _snake_case : int = vocab_size _snake_case : str = hidden_size _snake_case : Optional[Any] = num_hidden_layers _snake_case : List[Any] = num_attention_heads _snake_case : Optional[int] = intermediate_size _snake_case : List[Any] = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : Optional[int] = max_position_embeddings _snake_case : Any = eos_token_id _snake_case : List[Any] = pad_token_id _snake_case : Optional[int] = bos_token_id _snake_case : Any = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _snake_case : Any = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _snake_case : Tuple = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" _snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _snake_case : Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _snake_case : Optional[int] = tf.concat([input_ids, eos_tensor] , axis=1 ) _snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case : List[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _snake_case : Dict = prepare_led_inputs_dict(lowercase__ , lowercase__ , lowercase__ ) _snake_case : Dict = tf.concat( [tf.zeros_like(lowercase__ )[:, :-1], tf.ones_like(lowercase__ )[:, -1:]] , axis=-1 , ) _snake_case : Dict = global_attention_mask return config, inputs_dict def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> int: """simple docstring""" _snake_case : int = TFLEDModel(config=lowercase__ ).get_decoder() _snake_case : Union[str, Any] = inputs_dict['''input_ids'''] _snake_case : List[str] = input_ids[:1, :] _snake_case : Tuple = inputs_dict['''attention_mask'''][:1, :] _snake_case : Dict = 1 # first forward pass _snake_case : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__ ) _snake_case , _snake_case : Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _snake_case : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _snake_case : Tuple = tf.concat([input_ids, next_tokens] , axis=-1 ) _snake_case : List[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _snake_case : List[Any] = model(lowercase__ , attention_mask=lowercase__ )[0] _snake_case : Tuple = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _snake_case : Tuple = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _snake_case : int = output_from_no_past[:, -3:, random_slice_idx] _snake_case : Optional[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase__ , lowercase__ , rtol=1E-3 ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , ): """simple docstring""" if attention_mask is None: _snake_case : Union[str, Any] = tf.cast(tf.math.not_equal(lowerCAmelCase_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _snake_case : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _snake_case : int = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class lowerCamelCase (a__ , a__ , unittest.TestCase ): _lowercase : Optional[int] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _lowercase : int = (TFLEDForConditionalGeneration,) if is_tf_available() else () _lowercase : Dict = ( { """conversational""": TFLEDForConditionalGeneration, """feature-extraction""": TFLEDModel, """summarization""": TFLEDForConditionalGeneration, """text2text-generation""": TFLEDForConditionalGeneration, """translation""": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _lowercase : int = True _lowercase : List[Any] = False _lowercase : str = False _lowercase : Union[str, Any] = False def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : str = TFLEDModelTester(self ) _snake_case : Union[str, Any] = ConfigTester(self , config_class=lowercase__ ) def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase__ ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Any = tf.zeros_like(inputs_dict['''attention_mask'''] ) _snake_case : Optional[Any] = 2 _snake_case : Any = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) _snake_case : Dict = True _snake_case : str = self.model_tester.seq_length _snake_case : Dict = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowercase__ ): _snake_case : Optional[int] = outputs.decoder_attentions self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowercase__ ): _snake_case : int = [t.numpy() for t in outputs.encoder_attentions] _snake_case : Tuple = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _snake_case : Union[str, Any] = True _snake_case : Dict = False _snake_case : Union[str, Any] = False _snake_case : List[Any] = model_class(lowercase__ ) _snake_case : Optional[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) _snake_case : List[Any] = len(lowercase__ ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) if self.is_encoder_decoder: _snake_case : Union[str, Any] = model_class(lowercase__ ) _snake_case : List[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_decoder_attentions_output(lowercase__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _snake_case : str = True _snake_case : Tuple = model_class(lowercase__ ) _snake_case : int = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) # Check attention is always last and order is fine _snake_case : int = True _snake_case : List[str] = True _snake_case : Tuple = model_class(lowercase__ ) _snake_case : Optional[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase__ ) ) self.assertEqual(model.config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" pass def UpperCAmelCase_ ( self ) -> str: """simple docstring""" pass def _a ( lowerCAmelCase_ ): """simple docstring""" return tf.constant(lowerCAmelCase_ , dtype=tf.intaa ) UpperCAmelCase : Dict = 1E-4 @slow @require_tf class lowerCamelCase (unittest.TestCase ): def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" _snake_case : List[str] = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here _snake_case : List[str] = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : Tuple = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : Tuple = prepare_led_inputs_dict(model.config , lowercase__ , lowercase__ ) _snake_case : int = model(**lowercase__ )[0] _snake_case : Dict = (1, 1_024, 768) self.assertEqual(output.shape , lowercase__ ) # change to expected output here _snake_case : List[Any] = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1E-3 ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Any = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here _snake_case : Dict = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : Dict = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : List[str] = prepare_led_inputs_dict(model.config , lowercase__ , lowercase__ ) _snake_case : Tuple = model(**lowercase__ )[0] _snake_case : Any = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , lowercase__ ) # change to expected output here _snake_case : Dict = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1E-3 , rtol=1E-3 )
47
0
'''simple docstring''' import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class lowerCamelCase (a__ ): _lowercase : Optional[int] = """MCTCTFeatureExtractor""" _lowercase : str = """AutoTokenizer""" def __init__( self , lowercase__ , lowercase__ ) -> int: """simple docstring""" super().__init__(lowercase__ , lowercase__ ) _snake_case : List[str] = self.feature_extractor _snake_case : Any = False def __call__( self , *lowercase__ , **lowercase__ ) -> Optional[Any]: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*lowercase__ , **lowercase__ ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) _snake_case : List[str] = kwargs.pop('''raw_speech''' ) else: _snake_case : str = kwargs.pop('''audio''' , lowercase__ ) _snake_case : Dict = kwargs.pop('''sampling_rate''' , lowercase__ ) _snake_case : Optional[int] = kwargs.pop('''text''' , lowercase__ ) if len(lowercase__ ) > 0: _snake_case : Any = args[0] _snake_case : List[str] = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: _snake_case : Tuple = self.feature_extractor(lowercase__ , *lowercase__ , sampling_rate=lowercase__ , **lowercase__ ) if text is not None: _snake_case : str = self.tokenizer(lowercase__ , **lowercase__ ) if text is None: return inputs elif audio is None: return encodings else: _snake_case : Dict = encodings['''input_ids'''] return inputs def UpperCAmelCase_ ( self , *lowercase__ , **lowercase__ ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*lowercase__ , **lowercase__ ) def UpperCAmelCase_ ( self , *lowercase__ , **lowercase__ ) -> Optional[int]: """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*lowercase__ , **lowercase__ ) _snake_case : int = kwargs.pop('''input_features''' , lowercase__ ) _snake_case : Tuple = kwargs.pop('''labels''' , lowercase__ ) if len(lowercase__ ) > 0: _snake_case : Union[str, Any] = args[0] _snake_case : List[Any] = args[1:] if input_features is not None: _snake_case : Union[str, Any] = self.feature_extractor.pad(lowercase__ , *lowercase__ , **lowercase__ ) if labels is not None: _snake_case : Union[str, Any] = self.tokenizer.pad(lowercase__ , **lowercase__ ) if labels is None: return input_features elif input_features is None: return labels else: _snake_case : List[Any] = labels['''input_ids'''] return input_features def UpperCAmelCase_ ( self , *lowercase__ , **lowercase__ ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*lowercase__ , **lowercase__ ) @contextmanager def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) _snake_case : List[str] = True _snake_case : Union[str, Any] = self.tokenizer yield _snake_case : Optional[int] = self.feature_extractor _snake_case : Union[str, Any] = False
717
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase : Optional[int] = logging.get_logger(__name__) UpperCAmelCase : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase : Any = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } UpperCAmelCase : Optional[Any] = { 'gpt-neox-20b': 2_0_4_8, } class lowerCamelCase (a__ ): _lowercase : Optional[int] = VOCAB_FILES_NAMES _lowercase : str = PRETRAINED_VOCAB_FILES_MAP _lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Optional[int] = ["""input_ids""", """attention_mask"""] def __init__( self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="<|endoftext|>" , lowercase__="<|endoftext|>" , lowercase__="<|endoftext|>" , lowercase__=False , **lowercase__ , ) -> List[Any]: """simple docstring""" super().__init__( lowercase__ , lowercase__ , tokenizer_file=lowercase__ , unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , add_prefix_space=lowercase__ , **lowercase__ , ) _snake_case : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowercase__ ) != add_prefix_space: _snake_case : int = getattr(lowercase__ , pre_tok_state.pop('''type''' ) ) _snake_case : int = add_prefix_space _snake_case : Optional[Any] = pre_tok_class(**lowercase__ ) _snake_case : List[str] = add_prefix_space def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> Tuple[str]: """simple docstring""" _snake_case : Optional[int] = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> List[int]: """simple docstring""" _snake_case : List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase__ , add_special_tokens=lowercase__ ) + [self.eos_token_id] ) if len(lowercase__ ) > self.model_max_length: _snake_case : Dict = input_ids[-self.model_max_length :] return input_ids
47
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() UpperCAmelCase : Dict = logging.get_logger(__name__) UpperCAmelCase : Any = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } UpperCAmelCase : Optional[int] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Tuple = {} with open(lowerCAmelCase_ , '''r''' ) as file: for line_number, line in enumerate(lowerCAmelCase_ ): _snake_case : Any = line.strip() if line: _snake_case : List[Any] = line.split() _snake_case : List[Any] = line_number _snake_case : Optional[int] = words[0] _snake_case : int = value return result def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for attribute in key.split('''.''' ): _snake_case : Optional[int] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Union[str, Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowerCAmelCase_ ): _snake_case : Optional[int] = PARAM_MAPPING[full_name.split('''.''' )[-1]] _snake_case : Dict = '''param''' if weight_type is not None and weight_type != "param": _snake_case : List[str] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ).shape elif weight_type is not None and weight_type == "param": _snake_case : int = hf_pointer for attribute in hf_param_name.split('''.''' ): _snake_case : str = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Optional[int] = shape_pointer.shape # let's reduce dimension _snake_case : Optional[int] = value[0] else: _snake_case : Optional[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": _snake_case : Any = value elif weight_type == "weight_g": _snake_case : Dict = value elif weight_type == "weight_v": _snake_case : Dict = value elif weight_type == "bias": _snake_case : Optional[Any] = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): _snake_case : List[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Optional[Any] = value else: _snake_case : Tuple = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : str = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowerCAmelCase_ ): _snake_case : int = PARAM_MAPPING[full_name.split('''.''' )[-1]] _snake_case : Dict = '''param''' if weight_type is not None and weight_type != "param": _snake_case : str = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": _snake_case : int = '''.'''.join([key, hf_param_name] ) else: _snake_case : List[str] = key _snake_case : Optional[int] = value if '''lm_head''' in full_key else value[0] UpperCAmelCase : Optional[int] = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None ): """simple docstring""" _snake_case : Optional[Any] = False for key, mapped_key in MAPPING.items(): _snake_case : List[Any] = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _snake_case : Dict = True if "*" in mapped_key: _snake_case : Any = name.split(lowerCAmelCase_ )[0].split('''.''' )[-2] _snake_case : str = mapped_key.replace('''*''' , lowerCAmelCase_ ) if "weight_g" in name: _snake_case : str = '''weight_g''' elif "weight_v" in name: _snake_case : List[Any] = '''weight_v''' elif "bias" in name: _snake_case : List[Any] = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj _snake_case : int = '''weight''' else: _snake_case : Optional[int] = None if hf_dict is not None: rename_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: set_recursively(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return is_used return is_used def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : str = [] _snake_case : Optional[int] = fairseq_model.state_dict() _snake_case : Optional[int] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): _snake_case : Dict = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , hf_model.config.feat_extract_norm == '''group''' , ) _snake_case : Optional[int] = True else: _snake_case : Optional[Any] = load_wavaveca_layer(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if not is_used: unused_weights.append(lowerCAmelCase_ ) logger.warning(f'''Unused weights: {unused_weights}''' ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : List[str] = full_name.split('''conv_layers.''' )[-1] _snake_case : Tuple = name.split('''.''' ) _snake_case : int = int(items[0] ) _snake_case : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _snake_case : Dict = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _snake_case : Dict = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) _snake_case : int = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) _snake_case : List[str] = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCAmelCase_ ) @torch.no_grad() def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_=False ): """simple docstring""" if config_path is not None: _snake_case : Dict = WavaVecaConfig.from_pretrained(lowerCAmelCase_ ) else: _snake_case : Tuple = WavaVecaConfig() if is_seq_class: _snake_case : List[str] = read_txt_into_dict(lowerCAmelCase_ ) _snake_case : Optional[Any] = idalabel _snake_case : Dict = WavaVecaForSequenceClassification(lowerCAmelCase_ ) _snake_case : List[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) feature_extractor.save_pretrained(lowerCAmelCase_ ) elif is_finetuned: if dict_path: _snake_case : int = Dictionary.load(lowerCAmelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _snake_case : Optional[int] = target_dict.pad_index _snake_case : Tuple = target_dict.bos_index _snake_case : Dict = target_dict.eos_index _snake_case : Dict = len(target_dict.symbols ) _snake_case : List[Any] = os.path.join(lowerCAmelCase_ , '''vocab.json''' ) if not os.path.isdir(lowerCAmelCase_ ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(lowerCAmelCase_ ) ) return os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) _snake_case : Optional[Any] = target_dict.indices # fairseq has the <pad> and <s> switched _snake_case : Any = 0 _snake_case : List[str] = 1 with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : str = WavaVecaCTCTokenizer( lowerCAmelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=lowerCAmelCase_ , ) _snake_case : Any = True if config.feat_extract_norm == '''layer''' else False _snake_case : Any = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) _snake_case : Any = WavaVecaProcessor(feature_extractor=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ ) processor.save_pretrained(lowerCAmelCase_ ) _snake_case : List[Any] = WavaVecaForCTC(lowerCAmelCase_ ) else: _snake_case : str = WavaVecaForPreTraining(lowerCAmelCase_ ) if is_finetuned or is_seq_class: _snake_case : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: _snake_case : Tuple = argparse.Namespace(task='''audio_pretraining''' ) _snake_case : str = fairseq.tasks.setup_task(lowerCAmelCase_ ) _snake_case : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase_ ) _snake_case : Any = model[0].eval() recursively_load_weights(lowerCAmelCase_ , lowerCAmelCase_ , not is_finetuned ) hf_wavavec.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": UpperCAmelCase : str = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) UpperCAmelCase : Optional[int] = parser.parse_args() UpperCAmelCase : Optional[Any] = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
718
'''simple docstring''' import math from numpy import inf from scipy.integrate import quad def _a ( lowerCAmelCase_ ): """simple docstring""" if num <= 0: raise ValueError('''math domain error''' ) return quad(lowerCAmelCase_ , 0 , lowerCAmelCase_ , args=(lowerCAmelCase_) )[0] def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return math.pow(lowerCAmelCase_ , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
47
0
'''simple docstring''' import math def _a ( lowerCAmelCase_ = 100 ): """simple docstring""" _snake_case : List[str] = sum(i * i for i in range(1 , n + 1 ) ) _snake_case : int = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
719
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class lowerCamelCase (unittest.TestCase ): @slow def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Union[str, Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Any = TFAutoModel.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : str = AutoModel.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Optional[Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Dict = TFAutoModelForPreTraining.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Tuple = AutoModelForPreTraining.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Optional[int] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained(lowercase__ , from_pt=lowercase__ ) _snake_case , _snake_case : Tuple = TFAutoModelForCausalLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained(lowercase__ , from_tf=lowercase__ ) _snake_case , _snake_case : Optional[Any] = AutoModelForCausalLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Tuple = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : int = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[str] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(lowercase__ , from_pt=lowercase__ ) _snake_case , _snake_case : List[str] = TFAutoModelForMaskedLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : int = AutoModelForMaskedLM.from_pretrained(lowercase__ , from_tf=lowercase__ ) _snake_case , _snake_case : Optional[int] = AutoModelForMaskedLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[str] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(lowercase__ , from_pt=lowercase__ ) _snake_case , _snake_case : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : List[str] = AutoModelForSeqaSeqLM.from_pretrained(lowercase__ , from_tf=lowercase__ ) _snake_case , _snake_case : Dict = AutoModelForSeqaSeqLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Any = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Any = TFAutoModelForSequenceClassification.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Dict = AutoModelForSequenceClassification.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : str = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : str = TFAutoModelForQuestionAnswering.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Union[str, Any] = AutoModelForQuestionAnswering.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : Union[str, Any] = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 ) _snake_case : Tuple = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : List[str] = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 ) _snake_case : int = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 )
47
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class lowerCamelCase (unittest.TestCase ): @slow def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Union[str, Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Any = TFAutoModel.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : str = AutoModel.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Optional[Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Dict = TFAutoModelForPreTraining.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Tuple = AutoModelForPreTraining.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Optional[int] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained(lowercase__ , from_pt=lowercase__ ) _snake_case : Tuple = TFAutoModelForCausalLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained(lowercase__ , from_tf=lowercase__ ) _snake_case : Optional[Any] = AutoModelForCausalLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Tuple = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : int = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[str] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(lowercase__ , from_pt=lowercase__ ) _snake_case : List[str] = TFAutoModelForMaskedLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : int = AutoModelForMaskedLM.from_pretrained(lowercase__ , from_tf=lowercase__ ) _snake_case : Optional[int] = AutoModelForMaskedLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[str] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(lowercase__ , from_pt=lowercase__ ) _snake_case : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : List[str] = AutoModelForSeqaSeqLM.from_pretrained(lowercase__ , from_tf=lowercase__ ) _snake_case : Dict = AutoModelForSeqaSeqLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Any = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Any = TFAutoModelForSequenceClassification.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Dict = AutoModelForSequenceClassification.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : str = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : str = TFAutoModelForQuestionAnswering.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Union[str, Any] = AutoModelForQuestionAnswering.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : Union[str, Any] = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 ) _snake_case : Tuple = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : List[str] = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 ) _snake_case : int = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 )
720
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : Dict = {'configuration_timm_backbone': ['TimmBackboneConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = ['TimmBackbone'] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
47
0
'''simple docstring''' import re import string import numpy as np import datasets UpperCAmelCase : Optional[Any] = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' UpperCAmelCase : int = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' UpperCAmelCase : List[Any] = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase (datasets.Metric ): def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , reference_urls=[] , ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__=None , lowercase__=False , lowercase__=False , lowercase__=False , ) -> str: """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: _snake_case : Dict = np.array([re.sub(lowercase__ , '''''' , lowercase__ ) for x in predictions] ) _snake_case : Optional[int] = np.array([re.sub(lowercase__ , '''''' , lowercase__ ) for x in references] ) else: _snake_case : Tuple = np.asarray(lowercase__ ) _snake_case : Dict = np.asarray(lowercase__ ) if ignore_case: _snake_case : Dict = np.char.lower(lowercase__ ) _snake_case : Dict = np.char.lower(lowercase__ ) if ignore_punctuation: _snake_case : Optional[Any] = string.punctuation.maketrans('''''' , '''''' , string.punctuation ) _snake_case : int = np.char.translate(lowercase__ , table=lowercase__ ) _snake_case : Tuple = np.char.translate(lowercase__ , table=lowercase__ ) if ignore_numbers: _snake_case : Any = string.digits.maketrans('''''' , '''''' , string.digits ) _snake_case : Optional[Any] = np.char.translate(lowercase__ , table=lowercase__ ) _snake_case : str = np.char.translate(lowercase__ , table=lowercase__ ) _snake_case : str = predictions == references return {"exact_match": np.mean(lowercase__ ) * 100}
721
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version UpperCAmelCase : Tuple = logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') UpperCAmelCase : str = { 'base': AutoModel, 'sequence-classification': AutoModelForSequenceClassification, 'question-answering': AutoModelForQuestionAnswering, 'pretraining': AutoModelForPreTraining, 'token-classification': AutoModelForTokenClassification, 'language-modeling': AutoModelWithLMHead, 'summarization': AutoModelForSeqaSeqLM, 'translation': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization UpperCAmelCase : Optional[Any] = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } UpperCAmelCase : Tuple = sorted(arg_to_scheduler.keys()) UpperCAmelCase : Optional[Any] = '{' + ', '.join(arg_to_scheduler_choices) + '}' class lowerCamelCase (pl.LightningModule ): def __init__( self , lowercase__ , lowercase__=None , lowercase__="base" , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ , ) -> Optional[int]: """simple docstring""" super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(lowercase__ ) _snake_case : Union[str, Any] = 0 _snake_case : int = Path(self.hparams.output_dir ) _snake_case : int = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: _snake_case : Tuple = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=lowercase__ , **lowercase__ , ) else: _snake_case : PretrainedConfig = config _snake_case : Optional[Any] = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(self.hparams , lowercase__ , lowercase__ ): assert hasattr(self.config , lowercase__ ), F'''model config doesn\'t have a `{p}` attribute''' setattr(self.config , lowercase__ , getattr(self.hparams , lowercase__ ) ) if tokenizer is None: _snake_case : Optional[int] = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=lowercase__ , ) else: _snake_case : PreTrainedTokenizer = tokenizer _snake_case : Any = MODEL_MODES[mode] if model is None: _snake_case : List[Any] = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=lowercase__ , ) else: _snake_case : Optional[Any] = model def UpperCAmelCase_ ( self , *lowercase__ , **lowercase__ ) -> List[str]: """simple docstring""" _snake_case : Dict = self.model_type.from_pretrained(*lowercase__ , **lowercase__ ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Optional[int] = arg_to_scheduler[self.hparams.lr_scheduler] _snake_case : Optional[int] = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) _snake_case : str = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1} return scheduler def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Any = self.model _snake_case : List[Any] = ['''bias''', '''LayerNorm.weight'''] _snake_case : List[str] = [ { '''params''': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters '''weight_decay''': self.hparams.weight_decay, }, { '''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] if self.hparams.adafactor: _snake_case : Any = Adafactor( lowercase__ , lr=self.hparams.learning_rate , scale_parameter=lowercase__ , relative_step=lowercase__ ) else: _snake_case : List[str] = AdamW( lowercase__ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) _snake_case : List[str] = optimizer _snake_case : Any = self.get_lr_scheduler() return [optimizer], [scheduler] def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Any: """simple docstring""" return self.validation_step(lowercase__ , lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> Tuple: """simple docstring""" return self.validation_end(lowercase__ ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Any = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores _snake_case : Optional[int] = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def UpperCAmelCase_ ( self , lowercase__ ) -> Any: """simple docstring""" if stage == "test": _snake_case : Any = len(self.test_dataloader().dataset ) else: _snake_case : Dict = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=lowercase__ ) _snake_case : Optional[int] = len(self.train_dataloader().dataset ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = False ) -> str: """simple docstring""" raise NotImplementedError('''You must implement this for your task''' ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" return self.train_loader def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=lowercase__ ) def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> Optional[int]: """simple docstring""" return os.path.join( self.hparams.data_dir , '''cached_{}_{}_{}'''.format( lowercase__ , list(filter(lowercase__ , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def UpperCAmelCase_ ( self , lowercase__ ) -> None: """simple docstring""" _snake_case : Dict = self.output_dir.joinpath('''best_tfmr''' ) _snake_case : Tuple = self.step_count self.model.save_pretrained(lowercase__ ) self.tokenizer.save_pretrained(lowercase__ ) @staticmethod def UpperCAmelCase_ ( lowercase__ , lowercase__ ) -> Tuple: """simple docstring""" parser.add_argument( '''--model_name_or_path''' , default=lowercase__ , type=lowercase__ , required=lowercase__ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--config_name''' , default='''''' , type=lowercase__ , help='''Pretrained config name or path if not the same as model_name''' ) parser.add_argument( '''--tokenizer_name''' , default=lowercase__ , type=lowercase__ , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument( '''--cache_dir''' , default=str(Path(lowercase__ ).parent / '''test_run''' / '''cache''' ) , type=lowercase__ , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , ) parser.add_argument( '''--encoder_layerdrop''' , type=lowercase__ , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--decoder_layerdrop''' , type=lowercase__ , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--dropout''' , type=lowercase__ , help='''Dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--attention_dropout''' , type=lowercase__ , help='''Attention dropout probability (Optional). Goes into model.config''' , ) parser.add_argument('''--learning_rate''' , default=5E-5 , type=lowercase__ , help='''The initial learning rate for Adam.''' ) parser.add_argument( '''--lr_scheduler''' , default='''linear''' , choices=lowercase__ , metavar=lowercase__ , type=lowercase__ , help='''Learning rate scheduler''' , ) parser.add_argument('''--weight_decay''' , default=0.0 , type=lowercase__ , help='''Weight decay if we apply some.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=lowercase__ , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--warmup_steps''' , default=0 , type=lowercase__ , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--num_workers''' , default=4 , type=lowercase__ , help='''kwarg passed to DataLoader''' ) parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=lowercase__ ) parser.add_argument('''--train_batch_size''' , default=32 , type=lowercase__ ) parser.add_argument('''--eval_batch_size''' , default=32 , type=lowercase__ ) parser.add_argument('''--adafactor''' , action='''store_true''' ) class lowerCamelCase (pl.Callback ): def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> str: """simple docstring""" if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class lowerCamelCase (pl.Callback ): def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> List[str]: """simple docstring""" for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(lowercase__ ) class lowerCamelCase (pl.Callback ): def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Any: """simple docstring""" _snake_case : Any = trainer.lr_schedulers[0]['''scheduler'''] _snake_case : Optional[int] = {F'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> List[str]: """simple docstring""" rank_zero_info('''***** Validation results *****''' ) _snake_case : Dict = trainer.callback_metrics # Log results for key in sorted(lowercase__ ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Dict: """simple docstring""" rank_zero_info('''***** Test results *****''' ) _snake_case : Dict = trainer.callback_metrics # Log and save results to file _snake_case : str = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' ) with open(lowercase__ , '''w''' ) as writer: for key in sorted(lowercase__ ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) ) writer.write('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" parser.add_argument( '''--output_dir''' , default=str(Path(lowerCAmelCase_ ).parent / '''test_run''' / '''model_checkpoints''' ) , type=lowerCAmelCase_ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=lowerCAmelCase_ , default='''O2''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=lowerCAmelCase_ ) parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=lowerCAmelCase_ , help='''Max gradient norm''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' ) parser.add_argument( '''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=lowerCAmelCase_ , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--seed''' , type=lowerCAmelCase_ , default=42 , help='''random seed for initialization''' ) parser.add_argument( '''--data_dir''' , default=str(Path(lowerCAmelCase_ ).parent / '''test_run''' / '''dummy-train-data''' ) , type=lowerCAmelCase_ , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_=[] , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , ): """simple docstring""" pl.seed_everything(args.seed ) # init model _snake_case : Union[str, Any] = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=lowerCAmelCase_ ) # add custom checkpoints if checkpoint_callback is None: _snake_case : Any = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(lowerCAmelCase_ ) if logging_callback is None: _snake_case : str = LoggingCallback() _snake_case : Tuple = {} if args.fpaa: _snake_case : Union[str, Any] = 16 if args.gpus > 1: _snake_case : Optional[Any] = '''auto''' _snake_case : Tuple = '''ddp''' _snake_case : Optional[Any] = args.accumulate_grad_batches _snake_case : Tuple = None _snake_case : str = '''auto''' _snake_case : int = pl.Trainer.from_argparse_args( lowerCAmelCase_ , weights_summary=lowerCAmelCase_ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase_ , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase_ , ) if args.do_train: trainer.fit(lowerCAmelCase_ ) else: print('''RAG modeling tests with new set functions successfuly executed!''' ) return trainer
47
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : Dict = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = ['XLNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : int = ['XLNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = [ 'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLNetForMultipleChoice', 'XLNetForQuestionAnswering', 'XLNetForQuestionAnsweringSimple', 'XLNetForSequenceClassification', 'XLNetForTokenClassification', 'XLNetLMHeadModel', 'XLNetModel', 'XLNetPreTrainedModel', 'load_tf_weights_in_xlnet', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict = [ 'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLNetForMultipleChoice', 'TFXLNetForQuestionAnsweringSimple', 'TFXLNetForSequenceClassification', 'TFXLNetForTokenClassification', 'TFXLNetLMHeadModel', 'TFXLNetMainLayer', 'TFXLNetModel', 'TFXLNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys UpperCAmelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
700
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : Dict = { 'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowerCamelCase (a__ ): _lowercase : List[str] = """sew-d""" def __init__( self , lowercase__=32 , lowercase__=768 , lowercase__=12 , lowercase__=12 , lowercase__=3_072 , lowercase__=2 , lowercase__=512 , lowercase__=256 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.02 , lowercase__=1E-7 , lowercase__=1E-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=128 , lowercase__=16 , lowercase__=True , lowercase__=0.05 , lowercase__=10 , lowercase__=2 , lowercase__=0.0 , lowercase__=10 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=256 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ) -> Dict: """simple docstring""" super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ ) _snake_case : List[str] = hidden_size _snake_case : Optional[Any] = feat_extract_norm _snake_case : Tuple = feat_extract_activation _snake_case : Tuple = list(lowercase__ ) _snake_case : Any = list(lowercase__ ) _snake_case : Any = list(lowercase__ ) _snake_case : Any = conv_bias _snake_case : List[Any] = num_conv_pos_embeddings _snake_case : Any = num_conv_pos_embedding_groups _snake_case : Union[str, Any] = len(self.conv_dim ) _snake_case : Optional[Any] = num_hidden_layers _snake_case : Optional[int] = intermediate_size _snake_case : Any = squeeze_factor _snake_case : Optional[Any] = max_position_embeddings _snake_case : Tuple = position_buckets _snake_case : Tuple = share_att_key _snake_case : Any = relative_attention _snake_case : Optional[int] = norm_rel_ebd _snake_case : Optional[Any] = list(lowercase__ ) _snake_case : List[Any] = hidden_act _snake_case : List[Any] = num_attention_heads _snake_case : Dict = hidden_dropout _snake_case : Tuple = attention_dropout _snake_case : Union[str, Any] = activation_dropout _snake_case : List[Any] = feat_proj_dropout _snake_case : Optional[int] = final_dropout _snake_case : Optional[Any] = layer_norm_eps _snake_case : Dict = feature_layer_norm_eps _snake_case : List[Any] = initializer_range _snake_case : Dict = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _snake_case : Union[str, Any] = apply_spec_augment _snake_case : Any = mask_time_prob _snake_case : List[str] = mask_time_length _snake_case : Dict = mask_time_min_masks _snake_case : Union[str, Any] = mask_feature_prob _snake_case : Tuple = mask_feature_length _snake_case : Union[str, Any] = mask_feature_min_masks # ctc loss _snake_case : Optional[Any] = ctc_loss_reduction _snake_case : Optional[Any] = ctc_zero_infinity # sequence classification _snake_case : List[Any] = use_weighted_layer_sum _snake_case : Any = classifier_proj_size @property def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
47
0
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel UpperCAmelCase : List[str] = logging.getLogger(__name__) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if os.path.exists(lowerCAmelCase_ ): if os.path.exists(os.path.join(lowerCAmelCase_ , '''config.json''' ) ) and os.path.isfile( os.path.join(lowerCAmelCase_ , '''config.json''' ) ): os.remove(os.path.join(lowerCAmelCase_ , '''config.json''' ) ) if os.path.exists(os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) ) and os.path.isfile( os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) ): os.remove(os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) ) else: os.makedirs(lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_=False ): """simple docstring""" _snake_case : Optional[Any] = 2 if unlogit: _snake_case : Any = torch.pow(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Union[str, Any] = p * torch.log(lowerCAmelCase_ ) _snake_case : Optional[Any] = 0 return -plogp.sum(dim=-1 ) def _a ( lowerCAmelCase_ ): """simple docstring""" logger.info('''lv, h >\t''' + '''\t'''.join(f'''{x + 1}''' for x in range(len(lowerCAmelCase_ ) ) ) ) for row in range(len(lowerCAmelCase_ ) ): if tensor.dtype != torch.long: logger.info(f'''layer {row + 1}:\t''' + '''\t'''.join(f'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(f'''layer {row + 1}:\t''' + '''\t'''.join(f'''{x:d}''' for x in tensor[row].cpu().data ) ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=None , lowerCAmelCase_=False ): """simple docstring""" _snake_case : Optional[int] = model.config.num_hidden_layers, model.config.num_attention_heads _snake_case : Tuple = torch.zeros(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device ) _snake_case : Union[str, Any] = torch.zeros(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device ) if head_mask is None: _snake_case : int = torch.ones(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device ) head_mask.requires_grad_(requires_grad=lowerCAmelCase_ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _snake_case : Dict = None _snake_case : Dict = 0.0 _snake_case : Optional[int] = 0.0 for step, inputs in enumerate(tqdm(lowerCAmelCase_ , desc='''Iteration''' , disable=args.local_rank not in [-1, 0] ) ): _snake_case : List[Any] = tuple(t.to(args.device ) for t in inputs ) (_snake_case ) : Optional[Any] = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _snake_case : Any = model(lowerCAmelCase_ , labels=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _snake_case : List[Any] = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(lowerCAmelCase_ ): _snake_case : Union[str, Any] = entropy(attn.detach() , lowerCAmelCase_ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(lowerCAmelCase_ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _snake_case : Any = 2 _snake_case : List[str] = torch.pow(torch.pow(lowerCAmelCase_ , lowerCAmelCase_ ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: _snake_case : Optional[int] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''' ) print_ad_tensor(lowerCAmelCase_ ) if compute_importance: logger.info('''Head importance scores''' ) print_ad_tensor(lowerCAmelCase_ ) logger.info('''Head ranked by importance scores''' ) _snake_case : str = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _snake_case : List[Any] = torch.arange( head_importance.numel() , device=args.device ) _snake_case : List[Any] = head_ranks.view_as(lowerCAmelCase_ ) print_ad_tensor(lowerCAmelCase_ ) return attn_entropy, head_importance, total_loss def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : str = compute_heads_importance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ ) _snake_case : Optional[Any] = 1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' , lowerCAmelCase_ , original_score * args.masking_threshold ) _snake_case : int = torch.ones_like(lowerCAmelCase_ ) _snake_case : Optional[Any] = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _snake_case : int = original_score while current_score >= original_score * args.masking_threshold: _snake_case : int = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _snake_case : Dict = float('''Inf''' ) _snake_case : Optional[Any] = head_importance.view(-1 ).sort()[1] if len(lowerCAmelCase_ ) <= num_to_mask: print('''BREAK BY num_to_mask''' ) break # mask heads _snake_case : Union[str, Any] = current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist() ) ) _snake_case : Tuple = new_head_mask.view(-1 ) _snake_case : List[str] = 0.0 _snake_case : str = new_head_mask.view_as(lowerCAmelCase_ ) _snake_case : Dict = new_head_mask.clone().detach() print_ad_tensor(lowerCAmelCase_ ) # Compute metric and head importance again _snake_case : Any = compute_heads_importance( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) _snake_case : int = 1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' , lowerCAmelCase_ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info('''Final head mask''' ) print_ad_tensor(lowerCAmelCase_ ) np.save(os.path.join(args.output_dir , '''head_mask.npy''' ) , head_mask.detach().cpu().numpy() ) return head_mask def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = datetime.now() _snake_case : Union[str, Any] = compute_heads_importance( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , compute_importance=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) _snake_case : Tuple = 1 / loss _snake_case : Dict = datetime.now() - before_time _snake_case : List[Any] = sum(p.numel() for p in model.parameters() ) _snake_case : int = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(lowerCAmelCase_ ) ) } for k, v in heads_to_prune.items(): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Union[str, Any] = [ v, ] assert sum(len(lowerCAmelCase_ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(lowerCAmelCase_ ) _snake_case : List[str] = sum(p.numel() for p in model.parameters() ) _snake_case : int = datetime.now() _snake_case : Optional[Any] = compute_heads_importance( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , compute_importance=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , actually_pruned=lowerCAmelCase_ , ) _snake_case : Optional[int] = 1 / loss _snake_case : Dict = datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , lowerCAmelCase_ , lowerCAmelCase_ , pruned_num_params / original_num_params * 100 , ) logger.info('''Pruning: score with masking: %f score with pruning: %f''' , lowerCAmelCase_ , lowerCAmelCase_ ) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 100 ) save_model(lowerCAmelCase_ , args.output_dir ) def _a ( ): """simple docstring""" _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , ) parser.add_argument( '''--model_name_or_path''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--output_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) # Other parameters parser.add_argument( '''--config_name''' , default='''''' , type=lowerCAmelCase_ , help='''Pretrained config name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--tokenizer_name''' , default='''''' , type=lowerCAmelCase_ , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--cache_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help='''Where do you want to store the pre-trained models downloaded from s3''' , ) parser.add_argument( '''--data_subset''' , type=lowerCAmelCase_ , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''' ) parser.add_argument( '''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''' ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) parser.add_argument( '''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''' ) parser.add_argument( '''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , ) parser.add_argument( '''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''' ) parser.add_argument( '''--masking_threshold''' , default=0.9 , type=lowerCAmelCase_ , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , ) parser.add_argument( '''--masking_amount''' , default=0.1 , type=lowerCAmelCase_ , help='''Amount to heads to masking at each masking step.''' ) parser.add_argument('''--metric_name''' , default='''acc''' , type=lowerCAmelCase_ , help='''Metric to use for head masking.''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=lowerCAmelCase_ , help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) , ) parser.add_argument('''--batch_size''' , default=1 , type=lowerCAmelCase_ , help='''Batch size.''' ) parser.add_argument('''--seed''' , type=lowerCAmelCase_ , default=42 ) parser.add_argument('''--local_rank''' , type=lowerCAmelCase_ , default=-1 , help='''local_rank for distributed training on gpus''' ) parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''' ) parser.add_argument('''--server_ip''' , type=lowerCAmelCase_ , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=lowerCAmelCase_ , default='''''' , help='''Can be used for distant debugging.''' ) _snake_case : Optional[Any] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowerCAmelCase_ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _snake_case : str = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''' ) _snake_case : Optional[Any] = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _snake_case : List[str] = torch.device('''cuda''' , args.local_rank ) _snake_case : int = 1 torch.distributed.init_process_group(backend='''nccl''' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _snake_case : Optional[Any] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _snake_case : Optional[int] = nn.parallel.DistributedDataParallel( lowerCAmelCase_ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=lowerCAmelCase_ ) elif args.n_gpu > 1: _snake_case : List[Any] = nn.DataParallel(lowerCAmelCase_ ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=lowerCAmelCase_ ) torch.save(lowerCAmelCase_ , os.path.join(args.output_dir , '''run_args.bin''' ) ) logger.info('''Training/evaluation parameters %s''' , lowerCAmelCase_ ) # Prepare dataset _snake_case : Dict = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _snake_case : int = (torch.from_numpy(lowerCAmelCase_ ),) _snake_case : Tuple = TensorDataset(*lowerCAmelCase_ ) _snake_case : List[str] = RandomSampler(lowerCAmelCase_ ) _snake_case : Dict = DataLoader(lowerCAmelCase_ , sampler=lowerCAmelCase_ , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _snake_case : Optional[int] = mask_heads(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) prune_heads(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
701
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : List[Any] = 0 if start < end: _snake_case : List[Any] = randint(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Any = a[end] _snake_case : List[str] = a[pivot] _snake_case : Optional[int] = temp _snake_case , _snake_case : List[Any] = _in_place_partition(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) count += _in_place_quick_sort(lowerCAmelCase_ , lowerCAmelCase_ , p - 1 ) count += _in_place_quick_sort(lowerCAmelCase_ , p + 1 , lowerCAmelCase_ ) return count def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = 0 _snake_case : Optional[int] = randint(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Tuple = a[end] _snake_case : Optional[Any] = a[pivot] _snake_case : Union[str, Any] = temp _snake_case : Union[str, Any] = start - 1 for index in range(lowerCAmelCase_ , lowerCAmelCase_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _snake_case : Optional[int] = new_pivot_index + 1 _snake_case : Optional[Any] = a[new_pivot_index] _snake_case : Tuple = a[index] _snake_case : str = temp _snake_case : Any = a[new_pivot_index + 1] _snake_case : str = a[end] _snake_case : Optional[int] = temp return new_pivot_index + 1, count UpperCAmelCase : Dict = TemporaryFile() UpperCAmelCase : Dict = 1_0_0 # 1000 elements are to be sorted UpperCAmelCase, UpperCAmelCase : str = 0, 1 # mean and standard deviation UpperCAmelCase : Optional[Any] = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array UpperCAmelCase : int = np.load(outfile) UpperCAmelCase : Optional[int] = len(M) - 1 UpperCAmelCase : str = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
47
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCamelCase (unittest.TestCase ): def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : Optional[Any] = 1 _snake_case : Union[str, Any] = 3 _snake_case : List[Any] = (32, 32) _snake_case : Dict = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowercase__ ) return image @property def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) _snake_case : List[str] = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=lowercase__ , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) _snake_case : Any = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) _snake_case : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , ) return CLIPTextModel(lowercase__ ) def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" _snake_case : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator _snake_case : Union[str, Any] = self.dummy_cond_unet_upscale _snake_case : List[Any] = DDPMScheduler() _snake_case : Dict = DDIMScheduler(prediction_type='''v_prediction''' ) _snake_case : Union[str, Any] = self.dummy_vae _snake_case : Optional[Any] = self.dummy_text_encoder _snake_case : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _snake_case : int = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _snake_case : List[str] = Image.fromarray(np.uinta(lowercase__ ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _snake_case : int = StableDiffusionUpscalePipeline( unet=lowercase__ , low_res_scheduler=lowercase__ , scheduler=lowercase__ , vae=lowercase__ , text_encoder=lowercase__ , tokenizer=lowercase__ , max_noise_level=350 , ) _snake_case : Tuple = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) _snake_case : Union[str, Any] = '''A painting of a squirrel eating a burger''' _snake_case : Any = torch.Generator(device=lowercase__ ).manual_seed(0 ) _snake_case : int = sd_pipe( [prompt] , image=lowercase__ , generator=lowercase__ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) _snake_case : Dict = output.images _snake_case : Optional[int] = torch.Generator(device=lowercase__ ).manual_seed(0 ) _snake_case : List[str] = sd_pipe( [prompt] , image=lowercase__ , generator=lowercase__ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , return_dict=lowercase__ , )[0] _snake_case : Optional[Any] = image[0, -3:, -3:, -1] _snake_case : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] _snake_case : Dict = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) _snake_case : int = np.array([0.3_113, 0.3_910, 0.4_272, 0.4_859, 0.5_061, 0.4_652, 0.5_362, 0.5_715, 0.5_661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator _snake_case : Dict = self.dummy_cond_unet_upscale _snake_case : Any = DDPMScheduler() _snake_case : List[str] = DDIMScheduler(prediction_type='''v_prediction''' ) _snake_case : Optional[Any] = self.dummy_vae _snake_case : List[str] = self.dummy_text_encoder _snake_case : Optional[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _snake_case : str = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _snake_case : Optional[Any] = Image.fromarray(np.uinta(lowercase__ ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _snake_case : str = StableDiffusionUpscalePipeline( unet=lowercase__ , low_res_scheduler=lowercase__ , scheduler=lowercase__ , vae=lowercase__ , text_encoder=lowercase__ , tokenizer=lowercase__ , max_noise_level=350 , ) _snake_case : List[Any] = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) _snake_case : str = '''A painting of a squirrel eating a burger''' _snake_case : Optional[Any] = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) _snake_case : Any = output.images assert image.shape[0] == 2 _snake_case : str = torch.Generator(device=lowercase__ ).manual_seed(0 ) _snake_case : Optional[Any] = sd_pipe( [prompt] , image=lowercase__ , generator=lowercase__ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) _snake_case : str = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" _snake_case : str = self.dummy_cond_unet_upscale _snake_case : Dict = DDPMScheduler() _snake_case : int = DDIMScheduler(prediction_type='''v_prediction''' ) _snake_case : Dict = self.dummy_vae _snake_case : Optional[int] = self.dummy_text_encoder _snake_case : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _snake_case : Dict = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _snake_case : Dict = Image.fromarray(np.uinta(lowercase__ ) ).convert('''RGB''' ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 _snake_case : Tuple = unet.half() _snake_case : int = text_encoder.half() # make sure here that pndm scheduler skips prk _snake_case : Optional[Any] = StableDiffusionUpscalePipeline( unet=lowercase__ , low_res_scheduler=lowercase__ , scheduler=lowercase__ , vae=lowercase__ , text_encoder=lowercase__ , tokenizer=lowercase__ , max_noise_level=350 , ) _snake_case : List[Any] = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) _snake_case : List[Any] = '''A painting of a squirrel eating a burger''' _snake_case : int = torch.manual_seed(0 ) _snake_case : Tuple = sd_pipe( [prompt] , image=lowercase__ , generator=lowercase__ , num_inference_steps=2 , output_type='''np''' , ).images _snake_case : List[Any] = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class lowerCamelCase (unittest.TestCase ): def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" _snake_case : Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) _snake_case : Optional[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat.npy''' ) _snake_case : Union[str, Any] = '''stabilityai/stable-diffusion-x4-upscaler''' _snake_case : Tuple = StableDiffusionUpscalePipeline.from_pretrained(lowercase__ ) pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) pipe.enable_attention_slicing() _snake_case : Union[str, Any] = '''a cat sitting on a park bench''' _snake_case : Any = torch.manual_seed(0 ) _snake_case : Tuple = pipe( prompt=lowercase__ , image=lowercase__ , generator=lowercase__ , output_type='''np''' , ) _snake_case : Optional[Any] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-3 def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) _snake_case : Optional[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat_fp16.npy''' ) _snake_case : int = '''stabilityai/stable-diffusion-x4-upscaler''' _snake_case : Union[str, Any] = StableDiffusionUpscalePipeline.from_pretrained( lowercase__ , torch_dtype=torch.floataa , ) pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) pipe.enable_attention_slicing() _snake_case : List[str] = '''a cat sitting on a park bench''' _snake_case : List[str] = torch.manual_seed(0 ) _snake_case : str = pipe( prompt=lowercase__ , image=lowercase__ , generator=lowercase__ , output_type='''np''' , ) _snake_case : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _snake_case : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) _snake_case : Optional[int] = '''stabilityai/stable-diffusion-x4-upscaler''' _snake_case : Union[str, Any] = StableDiffusionUpscalePipeline.from_pretrained( lowercase__ , torch_dtype=torch.floataa , ) pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _snake_case : str = '''a cat sitting on a park bench''' _snake_case : Tuple = torch.manual_seed(0 ) _snake_case : List[str] = pipe( prompt=lowercase__ , image=lowercase__ , generator=lowercase__ , num_inference_steps=5 , output_type='''np''' , ) _snake_case : Any = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
702
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
47
0