code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase (_snake_case , unittest.TestCase ): _lowercase : Union[str, Any] = DiTPipeline _lowercase : int = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _lowercase : Any = PipelineTesterMixin.required_optional_params - { """latents""", """num_images_per_prompt""", """callback""", """callback_steps""", } _lowercase : List[str] = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _lowercase : List[str] = False def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" torch.manual_seed(0 ) _snake_case : List[str] = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=lowerCAmelCase__ , activation_fn='''gelu-approximate''' , num_embeds_ada_norm=1_000 , norm_type='''ada_norm_zero''' , norm_elementwise_affine=lowerCAmelCase__ , ) _snake_case : Optional[Any] = AutoencoderKL() _snake_case : Union[str, Any] = DDIMScheduler() _snake_case : Dict = {'''transformer''': transformer.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler} return components def UpperCAmelCase_ ( self , lowercase__ , lowercase__=0 ) -> Tuple: """simple docstring""" if str(lowerCAmelCase__ ).startswith('''mps''' ): _snake_case : List[Any] = torch.manual_seed(lowerCAmelCase__ ) else: _snake_case : Dict = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) _snake_case : Optional[Any] = { '''class_labels''': [1], '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" _snake_case : Optional[int] = '''cpu''' _snake_case : str = self.get_dummy_components() _snake_case : int = self.pipeline_class(**lowerCAmelCase__ ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _snake_case : Dict = self.get_dummy_inputs(lowerCAmelCase__ ) _snake_case : Any = pipe(**lowerCAmelCase__ ).images _snake_case : Tuple = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _snake_case : List[Any] = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] ) _snake_case : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase__ , 1E-3 ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" self._test_inference_batch_single_identical(relax_max_difference=lowerCAmelCase__ , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class lowerCamelCase (unittest.TestCase ): def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : Union[str, Any] = torch.manual_seed(0 ) _snake_case : Optional[int] = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-256''' ) pipe.to('''cuda''' ) _snake_case : int = ['''vase''', '''umbrella''', '''white shark''', '''white wolf'''] _snake_case : int = pipe.get_label_ids(lowerCAmelCase__ ) _snake_case : List[str] = pipe(lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=40 , output_type='''np''' ).images for word, image in zip(lowerCAmelCase__ , lowerCAmelCase__ ): _snake_case : str = load_numpy( F'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-2 def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : List[Any] = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-512''' ) _snake_case : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('''cuda''' ) _snake_case : List[Any] = ['''vase''', '''umbrella'''] _snake_case : List[Any] = pipe.get_label_ids(lowerCAmelCase__ ) _snake_case : List[str] = torch.manual_seed(0 ) _snake_case : Dict = pipe(lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=25 , output_type='''np''' ).images for word, image in zip(lowerCAmelCase__ , lowerCAmelCase__ ): _snake_case : List[str] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' F'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-1
701
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : List[Any] = 0 if start < end: _snake_case : List[Any] = randint(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Any = a[end] _snake_case : List[str] = a[pivot] _snake_case : Optional[int] = temp _snake_case , _snake_case : List[Any] = _in_place_partition(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) count += _in_place_quick_sort(lowerCAmelCase_ , lowerCAmelCase_ , p - 1 ) count += _in_place_quick_sort(lowerCAmelCase_ , p + 1 , lowerCAmelCase_ ) return count def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = 0 _snake_case : Optional[int] = randint(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Tuple = a[end] _snake_case : Optional[Any] = a[pivot] _snake_case : Union[str, Any] = temp _snake_case : Union[str, Any] = start - 1 for index in range(lowerCAmelCase_ , lowerCAmelCase_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _snake_case : Optional[int] = new_pivot_index + 1 _snake_case : Optional[Any] = a[new_pivot_index] _snake_case : Tuple = a[index] _snake_case : str = temp _snake_case : Any = a[new_pivot_index + 1] _snake_case : str = a[end] _snake_case : Optional[int] = temp return new_pivot_index + 1, count UpperCAmelCase : Dict = TemporaryFile() UpperCAmelCase : Dict = 1_0_0 # 1000 elements are to be sorted UpperCAmelCase, UpperCAmelCase : str = 0, 1 # mean and standard deviation UpperCAmelCase : Optional[Any] = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array UpperCAmelCase : int = np.load(outfile) UpperCAmelCase : Optional[int] = len(M) - 1 UpperCAmelCase : str = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
47
0
'''simple docstring''' import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=13 , lowercase__=32 , lowercase__=2 , lowercase__=3 , lowercase__=16 , lowercase__=[1, 2, 1] , lowercase__=[2, 2, 4] , lowercase__=2 , lowercase__=2.0 , lowercase__=True , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.1 , lowercase__="gelu" , lowercase__=False , lowercase__=True , lowercase__=0.02 , lowercase__=1E-5 , lowercase__=True , lowercase__=None , lowercase__=True , lowercase__=10 , lowercase__=8 , lowercase__=["stage1", "stage2", "stage3"] , lowercase__=[1, 2, 3] , ) -> Dict: """simple docstring""" _snake_case : List[str] = parent _snake_case : Dict = batch_size _snake_case : Optional[int] = image_size _snake_case : Dict = patch_size _snake_case : Union[str, Any] = num_channels _snake_case : str = embed_dim _snake_case : Any = depths _snake_case : Optional[int] = num_heads _snake_case : Any = window_size _snake_case : Any = mlp_ratio _snake_case : List[str] = qkv_bias _snake_case : Tuple = hidden_dropout_prob _snake_case : Optional[Any] = attention_probs_dropout_prob _snake_case : Optional[Any] = drop_path_rate _snake_case : Optional[int] = hidden_act _snake_case : str = use_absolute_embeddings _snake_case : List[str] = patch_norm _snake_case : Any = layer_norm_eps _snake_case : Tuple = initializer_range _snake_case : Dict = is_training _snake_case : Dict = scope _snake_case : int = use_labels _snake_case : Union[str, Any] = type_sequence_label_size _snake_case : Optional[Any] = encoder_stride _snake_case : Any = out_features _snake_case : Dict = out_indices def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" _snake_case : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : Union[str, Any] = None if self.use_labels: _snake_case : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case : Dict = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ ) -> Dict: """simple docstring""" _snake_case : Optional[Any] = MaskFormerSwinModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _snake_case : Optional[Any] = model(UpperCAmelCase_ ) _snake_case : str = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _snake_case : int = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ ) -> Tuple: """simple docstring""" _snake_case : int = MaskFormerSwinBackbone(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _snake_case : Tuple = model(UpperCAmelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(UpperCAmelCase_ ): _snake_case : Optional[Any] = ['''stem'''] _snake_case : str = MaskFormerSwinBackbone(config=UpperCAmelCase_ ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : str = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case : Union[str, Any] = config_and_inputs _snake_case : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase (snake_case__ , snake_case__ , unittest.TestCase ): _lowercase : Optional[Any] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) _lowercase : Tuple = {"""feature-extraction""": MaskFormerSwinModel} if is_torch_available() else {} _lowercase : Tuple = False _lowercase : Optional[int] = False _lowercase : Dict = False _lowercase : int = False _lowercase : List[str] = False def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : List[Any] = MaskFormerSwinModelTester(self ) _snake_case : Dict = ConfigTester(self , config_class=UpperCAmelCase_ , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '''`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with''' ''' `nn.DataParallel`''' ) ) def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" pass def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" return def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" _snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCAmelCase_ ) @unittest.skip('''Swin does not use inputs_embeds''' ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" pass @unittest.skip('''Swin does not support feedforward chunking''' ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" pass def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case , _snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Any = model_class(UpperCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _snake_case : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear ) ) def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" _snake_case , _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : List[Any] = model_class(UpperCAmelCase_ ) _snake_case : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : Dict = [*signature.parameters.keys()] _snake_case : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase_ ) @unittest.skip(reason='''MaskFormerSwin is only used as backbone and doesn\'t support output_attentions''' ) def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='''MaskFormerSwin is only used as an internal backbone''' ) def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" pass def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Optional[int]: """simple docstring""" _snake_case : int = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() with torch.no_grad(): _snake_case : List[str] = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) _snake_case : Any = outputs.hidden_states _snake_case : Tuple = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) # Swin has a different seq_length _snake_case : Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _snake_case : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" _snake_case , _snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _snake_case : Tuple = True self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case : List[Any] = True self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" _snake_case , _snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Union[str, Any] = 3 _snake_case : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _snake_case : Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _snake_case : Dict = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _snake_case : int = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _snake_case : Union[str, Any] = True self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case : str = True self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , (padded_height, padded_width) ) @unittest.skip(reason='''MaskFormerSwin doesn\'t have pretrained checkpoints''' ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" pass def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case , _snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(lowercase__ ): _snake_case : Dict = 0 return t def check_equivalence(lowercase__ , lowercase__ , lowercase__ , lowercase__={} ): with torch.no_grad(): _snake_case : str = model(**UpperCAmelCase_ , return_dict=UpperCAmelCase_ , **UpperCAmelCase_ ) _snake_case : List[Any] = model(**UpperCAmelCase_ , return_dict=UpperCAmelCase_ , **UpperCAmelCase_ ).to_tuple() def recursive_check(lowercase__ , lowercase__ ): if isinstance(UpperCAmelCase_ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(UpperCAmelCase_ , UpperCAmelCase_ ): recursive_check(UpperCAmelCase_ , UpperCAmelCase_ ) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(UpperCAmelCase_ , UpperCAmelCase_ ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(UpperCAmelCase_ ) , set_nan_tensor_to_zero(UpperCAmelCase_ ) , atol=1E-5 ) , msg=( '''Tuple and dict output are not equal. Difference:''' F''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:''' F''' {torch.isnan(UpperCAmelCase_ ).any()} and `inf`: {torch.isinf(UpperCAmelCase_ )}. Dict has''' F''' `nan`: {torch.isnan(UpperCAmelCase_ ).any()} and `inf`: {torch.isinf(UpperCAmelCase_ )}.''' ) , ) recursive_check(UpperCAmelCase_ , UpperCAmelCase_ ) for model_class in self.all_model_classes: _snake_case : Optional[int] = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _snake_case : Any = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) _snake_case : Optional[int] = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) check_equivalence(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _snake_case : Optional[Any] = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ ) _snake_case : str = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ ) check_equivalence(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _snake_case : int = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) _snake_case : Optional[Any] = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) check_equivalence(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , {'''output_hidden_states''': True} ) _snake_case : Union[str, Any] = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ ) _snake_case : List[Any] = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ ) check_equivalence(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , {'''output_hidden_states''': True} ) @require_torch class lowerCamelCase (unittest.TestCase , snake_case__ ): _lowercase : Union[str, Any] = (MaskFormerSwinBackbone,) if is_torch_available() else () _lowercase : Tuple = MaskFormerSwinConfig def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" _snake_case : List[Any] = MaskFormerSwinModelTester(self ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case , _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Tuple = inputs_dict['''pixel_values'''].shape[0] for backbone_class in self.all_model_classes: _snake_case : Optional[Any] = backbone_class(UpperCAmelCase_ ) backbone.to(UpperCAmelCase_ ) backbone.eval() _snake_case : Tuple = backbone(**UpperCAmelCase_ ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , UpperCAmelCase_ ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True _snake_case : Any = backbone(**UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) _snake_case , _snake_case , _snake_case : List[Any] = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: _snake_case : Dict = backbone(**UpperCAmelCase_ , output_attentions=UpperCAmelCase_ ) self.assertIsNotNone(outputs.attentions )
702
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
47
0
'''simple docstring''' import operator as op def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Union[str, Any] = [] _snake_case : Dict = lambda lowerCAmelCase_ , lowerCAmelCase_ : int(x / y ) # noqa: E731 integer division operation _snake_case : List[Any] = { '''^''': op.pow, '''*''': op.mul, '''/''': div, '''+''': op.add, '''-''': op.sub, } # operators & their respective operation # print table header print('''Symbol'''.center(8 ) , '''Action'''.center(12 ) , '''Stack''' , sep=''' | ''' ) print('''-''' * (30 + len(lowerCAmelCase_ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(lowerCAmelCase_ ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('''push(''' + x + ''')''').ljust(12 ) , ''','''.join(lowerCAmelCase_ ) , sep=''' | ''' ) else: _snake_case : Optional[int] = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ) , ('''pop(''' + b + ''')''').ljust(12 ) , ''','''.join(lowerCAmelCase_ ) , sep=''' | ''' ) _snake_case : Optional[Any] = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ) , ('''pop(''' + a + ''')''').ljust(12 ) , ''','''.join(lowerCAmelCase_ ) , sep=''' | ''' ) stack.append( str(opr[x](int(lowerCAmelCase_ ) , int(lowerCAmelCase_ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('''push(''' + a + x + b + ''')''').ljust(12 ) , ''','''.join(lowerCAmelCase_ ) , sep=''' | ''' , ) return int(stack[0] ) if __name__ == "__main__": UpperCAmelCase : Optional[int] = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
703
'''simple docstring''' from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def _a ( ): """simple docstring""" _snake_case : List[Any] = ArgumentParser('''Transformers CLI tool''' , usage='''transformers-cli <command> [<args>]''' ) _snake_case : List[str] = parser.add_subparsers(help='''transformers-cli command helpers''' ) # Register commands ConvertCommand.register_subcommand(lowerCAmelCase_ ) DownloadCommand.register_subcommand(lowerCAmelCase_ ) EnvironmentCommand.register_subcommand(lowerCAmelCase_ ) RunCommand.register_subcommand(lowerCAmelCase_ ) ServeCommand.register_subcommand(lowerCAmelCase_ ) UserCommands.register_subcommand(lowerCAmelCase_ ) AddNewModelCommand.register_subcommand(lowerCAmelCase_ ) AddNewModelLikeCommand.register_subcommand(lowerCAmelCase_ ) LfsCommands.register_subcommand(lowerCAmelCase_ ) PTtoTFCommand.register_subcommand(lowerCAmelCase_ ) # Let's go _snake_case : str = parser.parse_args() if not hasattr(lowerCAmelCase_ , '''func''' ): parser.print_help() exit(1 ) # Run _snake_case : Union[str, Any] = args.func(lowerCAmelCase_ ) service.run() if __name__ == "__main__": main()
47
0
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class lowerCamelCase (tf.keras.layers.Layer ): def __init__( self , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = None ) -> Any: """simple docstring""" super().__init__() _snake_case : Tuple = pad_token_id _snake_case : int = max_length _snake_case : List[Any] = vocab _snake_case : Tuple = merges _snake_case : int = BytePairTokenizer(UpperCamelCase_ , UpperCamelCase_ , sequence_length=UpperCamelCase_ ) @classmethod def UpperCAmelCase_ ( cls , lowercase__ , *lowercase__ , **lowercase__ ) -> List[str]: """simple docstring""" _snake_case : Union[str, Any] = [' '.join(UpperCamelCase_ ) for m in tokenizer.bpe_ranks.keys()] _snake_case : int = tokenizer.get_vocab() return cls(UpperCamelCase_ , UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) @classmethod def UpperCAmelCase_ ( cls , lowercase__ , *lowercase__ , **lowercase__ ) -> Dict: """simple docstring""" _snake_case : int = GPTaTokenizer.from_pretrained(UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) return cls.from_tokenizer(UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) @classmethod def UpperCAmelCase_ ( cls , lowercase__ ) -> List[str]: """simple docstring""" return cls(**UpperCamelCase_ ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> List[Any]: """simple docstring""" _snake_case : Any = self.tf_tokenizer(UpperCamelCase_ ) _snake_case : Optional[Any] = tf.ones_like(UpperCamelCase_ ) if self.pad_token_id is not None: # pad the tokens up to max length _snake_case : Optional[int] = max_length if max_length is not None else self.max_length if max_length is not None: _snake_case : List[Any] = pad_model_inputs( UpperCamelCase_ , max_seq_length=UpperCamelCase_ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
704
'''simple docstring''' from collections.abc import Generator def _a ( ): """simple docstring""" _snake_case , _snake_case : Union[str, Any] = 0, 1 while True: _snake_case , _snake_case : List[str] = b, a + b yield b def _a ( lowerCAmelCase_ = 1_000 ): """simple docstring""" _snake_case : List[str] = 1 _snake_case : Dict = fibonacci_generator() while len(str(next(lowerCAmelCase_ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
47
0
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=lowercase__ ) class lowerCamelCase (lowercase__ ): _lowercase : Dict = field(default="""question-answering-extractive""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) _lowercase : List[str] = Features({"""question""": Value("""string""" ), """context""": Value("""string""" )} ) _lowercase : Any = Features( { """answers""": Sequence( { """text""": Value("""string""" ), """answer_start""": Value("""int32""" ), } ) } ) _lowercase : Dict = """question""" _lowercase : List[Any] = """context""" _lowercase : Union[str, Any] = """answers""" @property def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
705
'''simple docstring''' import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor UpperCAmelCase : str = logging.getLogger(__name__) UpperCAmelCase : Dict = 5_0 # max width of layer names UpperCAmelCase : Union[str, Any] = 7_0 # max width of quantizer names def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Dict = parser.add_argument_group('''quant_trainer arguments''' ) group.add_argument('''--wprec''' , type=lowerCAmelCase_ , default=8 , help='''weight precision''' ) group.add_argument('''--aprec''' , type=lowerCAmelCase_ , default=8 , help='''activation precision''' ) group.add_argument('''--quant-per-tensor''' , action='''store_true''' , help='''per tensor weight scaling''' ) group.add_argument('''--quant-disable''' , action='''store_true''' , help='''disable all quantizers''' ) group.add_argument('''--quant-disable-embeddings''' , action='''store_true''' , help='''disable all embeddings quantizers''' ) group.add_argument('''--quant-disable-keyword''' , type=lowerCAmelCase_ , nargs='''+''' , help='''disable quantizers by keyword''' ) group.add_argument('''--quant-disable-layer-module''' , type=lowerCAmelCase_ , help='''disable quantizers by keyword under layer.''' ) group.add_argument('''--quant-enable-layer-module''' , type=lowerCAmelCase_ , help='''enable quantizers by keyword under layer''' ) group.add_argument('''--calibrator''' , default='''max''' , help='''which quantization range calibrator to use''' ) group.add_argument('''--percentile''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help='''percentile for PercentileCalibrator''' ) group.add_argument('''--fuse-qkv''' , action='''store_true''' , help='''use the same scale factor for qkv''' ) group.add_argument('''--clip-gelu''' , metavar='''N''' , type=lowerCAmelCase_ , help='''clip gelu output maximum value to N''' ) group.add_argument( '''--recalibrate-weights''' , action='''store_true''' , help=( '''recalibrate weight amaxes by taking the max of the weights.''' ''' amaxes will be computed with the current quantization granularity (axis).''' ) , ) def _a ( lowerCAmelCase_ ): """simple docstring""" if args.calibrator == "max": _snake_case : Optional[int] = '''max''' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('''Specify --percentile when using percentile calibrator''' ) _snake_case : Tuple = '''histogram''' elif args.calibrator == "mse": _snake_case : int = '''histogram''' else: raise ValueError(f'''Invalid calibrator {args.calibrator}''' ) _snake_case : Tuple = QuantDescriptor(num_bits=args.aprec , calib_method=lowerCAmelCase_ ) _snake_case : str = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(lowerCAmelCase_ ) quant_nn.QuantLinear.set_default_quant_desc_weight(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False , lowerCAmelCase_=False ): """simple docstring""" logger.info('''Configuring Model for Quantization''' ) logger.info(f'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(lowerCAmelCase_ , ['''embeddings'''] , which='''weight''' , _disabled=lowerCAmelCase_ ) if args.quant_disable: set_quantizer_by_name(lowerCAmelCase_ , [''''''] , _disabled=lowerCAmelCase_ ) if args.quant_disable_keyword: set_quantizer_by_name(lowerCAmelCase_ , args.quant_disable_keyword , _disabled=lowerCAmelCase_ ) if args.quant_disable_layer_module: set_quantizer_by_name(lowerCAmelCase_ , [R'''layer.\d+.''' + args.quant_disable_layer_module] , _disabled=lowerCAmelCase_ ) if args.quant_enable_layer_module: set_quantizer_by_name(lowerCAmelCase_ , [R'''layer.\d+.''' + args.quant_enable_layer_module] , _disabled=lowerCAmelCase_ ) if args.recalibrate_weights: recalibrate_weights(lowerCAmelCase_ ) if args.fuse_qkv: fuse_qkv(lowerCAmelCase_ , lowerCAmelCase_ ) if args.clip_gelu: clip_gelu(lowerCAmelCase_ , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ ): """simple docstring""" logger.info('''Enabling Calibration''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(f'''{name:80}: {module}''' ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" logger.info('''Loading calibrated amax''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('''percentile''' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" def fusea(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): for mod in [qq, qk, qv]: if not hasattr(lowerCAmelCase_ , '''_amax''' ): print(''' WARNING: NO AMAX BUFFER''' ) return _snake_case : Tuple = qq._amax.detach().item() _snake_case : Tuple = qk._amax.detach().item() _snake_case : List[Any] = qv._amax.detach().item() _snake_case : List[str] = max(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) qq._amax.fill_(lowerCAmelCase_ ) qk._amax.fill_(lowerCAmelCase_ ) qv._amax.fill_(lowerCAmelCase_ ) logger.info(f''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith('''.attention.self''' ): logger.info(f'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if name.endswith('''.output.dense''' ) and not name.endswith('''attention.output.dense''' ): _snake_case : List[Any] = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=lowerCAmelCase_ ) _snake_case : List[str] = mod._input_quantizer._amax.data.detach().item() logger.info(f'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def _a ( lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ) and mod._weight_quantizer.axis is not None: _snake_case : Dict = mod.weight.shape[0] _snake_case : Optional[int] = mod._weight_quantizer._amax.detach() _snake_case : Optional[int] = torch.ones(lowerCAmelCase_ , dtype=amax.dtype , device=amax.device ) * amax print(f'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def _a ( lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ): if not hasattr(mod.weight_quantizer , '''_amax''' ): print('''RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER''' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) _snake_case : int = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) _snake_case : Dict = set(range(len(mod.weight.size() ) ) ) - axis_set _snake_case : Optional[int] = pytorch_quantization.utils.reduce_amax(mod.weight , axis=lowerCAmelCase_ , keepdims=lowerCAmelCase_ ).detach() logger.info(f'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) _snake_case : Tuple = amax def _a ( lowerCAmelCase_ , lowerCAmelCase_=25 , lowerCAmelCase_=180 , lowerCAmelCase_=None ): """simple docstring""" if ignore is None: _snake_case : Dict = [] elif not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Optional[int] = [ignore] _snake_case : str = 0 for name, mod in model.named_modules(): if not hasattr(lowerCAmelCase_ , '''weight''' ): continue _snake_case : Optional[int] = max(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) for name, mod in model.named_modules(): _snake_case : Optional[Any] = getattr(lowerCAmelCase_ , '''_input_quantizer''' , lowerCAmelCase_ ) _snake_case : Tuple = getattr(lowerCAmelCase_ , '''_weight_quantizer''' , lowerCAmelCase_ ) if not hasattr(lowerCAmelCase_ , '''weight''' ): continue if type(lowerCAmelCase_ ) in ignore: continue if [True for s in ignore if type(lowerCAmelCase_ ) is str and s in name]: continue _snake_case : Optional[int] = f'''Act:{input_q.extra_repr()}''' _snake_case : Any = f'''Wgt:{weight_q.extra_repr()}''' _snake_case : Optional[int] = f'''{name:{name_width}} {act_str} {wgt_str}''' if len(lowerCAmelCase_ ) <= line_width: logger.info(lowerCAmelCase_ ) else: logger.info(f'''{name:{name_width}} {act_str}''' ) logger.info(f'''{" ":{name_width}} {wgt_str}''' ) def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : str = 0 for name, mod in model.named_modules(): if isinstance(lowerCAmelCase_ , pytorch_quantization.nn.TensorQuantizer ): print(f'''{name:80} {mod}''' ) count += 1 print(f'''{count} TensorQuantizers found in model''' ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if quantizer_mod is not None: assert hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: logger.warning(f'''{name} has no {quantizer}''' ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_="both" , **lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = f'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' if which in ["input", "both"]: set_quantizer(lowerCAmelCase_ , lowerCAmelCase_ , '''_input_quantizer''' , lowerCAmelCase_ , lowerCAmelCase_ ) if which in ["weight", "both"]: set_quantizer(lowerCAmelCase_ , lowerCAmelCase_ , '''_weight_quantizer''' , lowerCAmelCase_ , lowerCAmelCase_ ) logger.info(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCAmelCase_ , '''_input_quantizer''' ) or hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ): for n in names: if re.search(lowerCAmelCase_ , lowerCAmelCase_ ): set_quantizers(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) elif name.endswith('''_quantizer''' ): for n in names: if re.search(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Any = f'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) logger.info(lowerCAmelCase_ )
47
0
'''simple docstring''' class lowerCamelCase : def __init__( self ) -> Tuple: """simple docstring""" _snake_case : Union[str, Any] = 0 _snake_case : Any = 0 _snake_case : int = {} def UpperCAmelCase_ ( self , lowercase__ ) -> Tuple: """simple docstring""" if vertex not in self.adjacency: _snake_case : Tuple = {} self.num_vertices += 1 def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ ) -> List[Any]: """simple docstring""" self.add_vertex(UpperCAmelCase_ ) self.add_vertex(UpperCAmelCase_ ) if head == tail: return _snake_case : Tuple = weight _snake_case : Optional[int] = weight def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : List[Any] = self.get_edges() for edge in edges: _snake_case : str = edge edges.remove((tail, head, weight) ) for i in range(len(UpperCAmelCase_ ) ): _snake_case : Any = list(edges[i] ) edges.sort(key=lambda lowercase__ : e[2] ) for i in range(len(UpperCAmelCase_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: _snake_case : Optional[int] = edges[i][2] + 1 for edge in edges: _snake_case : List[Any] = edge _snake_case : Dict = weight _snake_case : List[Any] = weight def __str__( self ) -> List[str]: """simple docstring""" _snake_case : List[Any] = '' for tail in self.adjacency: for head in self.adjacency[tail]: _snake_case : Union[str, Any] = self.adjacency[head][tail] string += F'''{head} -> {tail} == {weight}\n''' return string.rstrip('''\n''' ) def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" _snake_case : Optional[Any] = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def UpperCAmelCase_ ( self ) -> int: """simple docstring""" return self.adjacency.keys() @staticmethod def UpperCAmelCase_ ( lowercase__=None , lowercase__=None ) -> List[str]: """simple docstring""" _snake_case : Tuple = Graph() if vertices is None: _snake_case : Tuple = [] if edges is None: _snake_case : List[str] = [] for vertex in vertices: g.add_vertex(UpperCAmelCase_ ) for edge in edges: g.add_edge(*UpperCAmelCase_ ) return g class lowerCamelCase : def __init__( self ) -> Optional[Any]: """simple docstring""" _snake_case : int = {} _snake_case : List[str] = {} def __len__( self ) -> Union[str, Any]: """simple docstring""" return len(self.parent ) def UpperCAmelCase_ ( self , lowercase__ ) -> Union[str, Any]: """simple docstring""" if item in self.parent: return self.find(UpperCAmelCase_ ) _snake_case : List[Any] = item _snake_case : Dict = 0 return item def UpperCAmelCase_ ( self , lowercase__ ) -> str: """simple docstring""" if item not in self.parent: return self.make_set(UpperCAmelCase_ ) if item != self.parent[item]: _snake_case : List[str] = self.find(self.parent[item] ) return self.parent[item] def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Dict: """simple docstring""" _snake_case : List[str] = self.find(UpperCAmelCase_ ) _snake_case : Tuple = self.find(UpperCAmelCase_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _snake_case : Union[str, Any] = roota return roota if self.rank[roota] < self.rank[roota]: _snake_case : Any = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _snake_case : Dict = roota return roota return None @staticmethod def UpperCAmelCase_ ( lowercase__ ) -> List[Any]: """simple docstring""" _snake_case : Optional[Any] = graph.num_vertices _snake_case : Tuple = Graph.UnionFind() _snake_case : Optional[int] = [] while num_components > 1: _snake_case : Tuple = {} for vertex in graph.get_vertices(): _snake_case : Optional[Any] = -1 _snake_case : int = graph.get_edges() for edge in edges: _snake_case : str = edge edges.remove((tail, head, weight) ) for edge in edges: _snake_case : Optional[Any] = edge _snake_case : Union[str, Any] = union_find.find(UpperCAmelCase_ ) _snake_case : List[Any] = union_find.find(UpperCAmelCase_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _snake_case : Optional[Any] = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _snake_case : Tuple = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _snake_case : Union[str, Any] = cheap_edge[vertex] if union_find.find(UpperCAmelCase_ ) != union_find.find(UpperCAmelCase_ ): union_find.union(UpperCAmelCase_ , UpperCAmelCase_ ) mst_edges.append(cheap_edge[vertex] ) _snake_case : int = num_components - 1 _snake_case : Dict = Graph.build(edges=UpperCAmelCase_ ) return mst
706
'''simple docstring''' from __future__ import annotations def _a ( lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None ): """simple docstring""" if start is None: _snake_case : Optional[Any] = 0 if end is None: _snake_case : Any = len(lowerCAmelCase_ ) - 1 if start >= end: return _snake_case : Optional[Any] = (start + end) // 2 slowsort(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) slowsort(lowerCAmelCase_ , mid + 1 , lowerCAmelCase_ ) if sequence[end] < sequence[mid]: _snake_case , _snake_case : int = sequence[mid], sequence[end] slowsort(lowerCAmelCase_ , lowerCAmelCase_ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
47
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : List[str] = {"configuration_plbart": ["PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "PLBartConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = ["PLBartTokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[str] = [ "PLBART_PRETRAINED_MODEL_ARCHIVE_LIST", "PLBartForCausalLM", "PLBartForConditionalGeneration", "PLBartForSequenceClassification", "PLBartModel", "PLBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys UpperCAmelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure)
707
'''simple docstring''' import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class lowerCamelCase (unittest.TestCase ): @slow def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Tuple = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) _snake_case : Any = AutoTokenizer.from_pretrained('''google/mt5-small''' ) _snake_case : List[str] = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids _snake_case : Dict = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids _snake_case : Any = shift_tokens_right(lowercase__ , model.config.pad_token_id , model.config.decoder_start_token_id ) _snake_case : Any = model(lowercase__ , decoder_input_ids=lowercase__ ).logits _snake_case : Tuple = optax.softmax_cross_entropy(lowercase__ , onehot(lowercase__ , logits.shape[-1] ) ).mean() _snake_case : Tuple = -(labels.shape[-1] * loss.item()) _snake_case : Union[str, Any] = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
47
0
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _enforce_args(__A , __A ) if n == 0: return 0 _snake_case : List[str] = float('''-inf''' ) for i in range(1 , n + 1 ): _snake_case : List[Any] = max( __A , prices[i - 1] + naive_cut_rod_recursive(n - i , __A ) ) return max_revue def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _enforce_args(__A , __A ) _snake_case : Any = [float('''-inf''' ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(__A , __A , __A ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: _snake_case : Optional[int] = float('''-inf''' ) for i in range(1 , n + 1 ): _snake_case : List[str] = max( __A , prices[i - 1] + _top_down_cut_rod_recursive(n - i , __A , __A ) , ) _snake_case : List[str] = max_revenue return max_rev[n] def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _enforce_args(__A , __A ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. _snake_case : List[Any] = [float('''-inf''' ) for _ in range(n + 1 )] _snake_case : Optional[int] = 0 for i in range(1 , n + 1 ): _snake_case : int = max_rev[i] for j in range(1 , i + 1 ): _snake_case : Union[str, Any] = max(__A , prices[j - 1] + max_rev[i - j] ) _snake_case : Union[str, Any] = max_revenue_i return max_rev[n] def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if n < 0: _snake_case : List[str] = f'''n must be greater than or equal to 0. Got n = {n}''' raise ValueError(__A ) if n > len(__A ): _snake_case : List[Any] = ( '''Each integral piece of rod must have a corresponding price. ''' f'''Got n = {n} but length of prices = {len(__A )}''' ) raise ValueError(__A ) def _a ( ): """simple docstring""" _snake_case : str = [6, 10, 12, 15, 20, 23] _snake_case : Optional[Any] = len(__A ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. _snake_case : int = 36 _snake_case : str = top_down_cut_rod(__A , __A ) _snake_case : int = bottom_up_cut_rod(__A , __A ) _snake_case : str = naive_cut_rod_recursive(__A , __A ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
708
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCamelCase (unittest.TestCase ): def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : Any = torch.nn.Linear(10 , 10 ) _snake_case : Optional[int] = torch.optim.SGD(model.parameters() , 0.1 ) _snake_case : List[str] = Accelerator() _snake_case : Optional[Any] = accelerator.prepare(lowercase__ ) try: pickle.loads(pickle.dumps(lowercase__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
47
0
'''simple docstring''' def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : str = 0 while len(__lowerCAmelCase ) > 1: _snake_case : str = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): _snake_case : str = files.index(min(__lowerCAmelCase ) ) temp += files[min_index] files.pop(__lowerCAmelCase ) files.append(__lowerCAmelCase ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
709
'''simple docstring''' UpperCAmelCase : Union[str, Any] = tuple[float, float, float] UpperCAmelCase : int = tuple[float, float, float] def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : str = end_pointa[0] - end_pointa[0] _snake_case : Tuple = end_pointa[1] - end_pointa[1] _snake_case : Any = end_pointa[2] - end_pointa[2] return (x, y, z) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Dict = ab[1] * ac[2] - ab[2] * ac[1] # *i _snake_case : List[str] = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j _snake_case : Optional[int] = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return tuple(round(lowerCAmelCase_ , lowerCAmelCase_ ) for x in vector ) == (0, 0, 0) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 10 ): """simple docstring""" _snake_case : str = create_vector(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Tuple = create_vector(lowerCAmelCase_ , lowerCAmelCase_ ) return is_zero_vector(get_ad_vectors_cross(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ )
47
0
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class lowerCamelCase (unittest.TestCase ): def __init__( self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=99 , lowercase__=32 , lowercase__=5 , lowercase__=4 , lowercase__=37 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=512 , lowercase__=16 , lowercase__=2 , lowercase__=0.02 , lowercase__=4 , ) -> str: """simple docstring""" _snake_case : List[Any] = parent _snake_case : Any = batch_size _snake_case : Optional[int] = seq_length _snake_case : Optional[Any] = is_training _snake_case : Any = use_attention_mask _snake_case : List[str] = use_token_type_ids _snake_case : Optional[Any] = use_labels _snake_case : List[Any] = vocab_size _snake_case : List[Any] = hidden_size _snake_case : Tuple = num_hidden_layers _snake_case : Optional[int] = num_attention_heads _snake_case : Union[str, Any] = intermediate_size _snake_case : Tuple = hidden_act _snake_case : Optional[Any] = hidden_dropout_prob _snake_case : Dict = attention_probs_dropout_prob _snake_case : List[Any] = max_position_embeddings _snake_case : Union[str, Any] = type_vocab_size _snake_case : int = type_sequence_label_size _snake_case : Dict = initializer_range _snake_case : Dict = num_choices def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case : int = None if self.use_attention_mask: _snake_case : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case : str = None if self.use_token_type_ids: _snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _snake_case : int = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : List[Any] = self.prepare_config_and_inputs() _snake_case : Dict = config_and_inputs _snake_case : Dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : Any = self.prepare_config_and_inputs() _snake_case : List[str] = config_and_inputs _snake_case : Union[str, Any] = True _snake_case : Optional[int] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowerCamelCase (a__ , unittest.TestCase ): _lowercase : Union[str, Any] = True _lowercase : List[str] = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : Optional[int] = FlaxRobertaModelTester(self ) @slow def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" for model_class_name in self.all_model_classes: _snake_case : str = model_class_name.from_pretrained('''roberta-base''' , from_pt=UpperCamelCase_ ) _snake_case : Optional[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCamelCase_ )
710
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel UpperCAmelCase : List[str] = logging.getLogger(__name__) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if os.path.exists(lowerCAmelCase_ ): if os.path.exists(os.path.join(lowerCAmelCase_ , '''config.json''' ) ) and os.path.isfile( os.path.join(lowerCAmelCase_ , '''config.json''' ) ): os.remove(os.path.join(lowerCAmelCase_ , '''config.json''' ) ) if os.path.exists(os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) ) and os.path.isfile( os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) ): os.remove(os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) ) else: os.makedirs(lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_=False ): """simple docstring""" _snake_case : Optional[Any] = 2 if unlogit: _snake_case : Any = torch.pow(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Union[str, Any] = p * torch.log(lowerCAmelCase_ ) _snake_case : Optional[Any] = 0 return -plogp.sum(dim=-1 ) def _a ( lowerCAmelCase_ ): """simple docstring""" logger.info('''lv, h >\t''' + '''\t'''.join(f'''{x + 1}''' for x in range(len(lowerCAmelCase_ ) ) ) ) for row in range(len(lowerCAmelCase_ ) ): if tensor.dtype != torch.long: logger.info(f'''layer {row + 1}:\t''' + '''\t'''.join(f'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(f'''layer {row + 1}:\t''' + '''\t'''.join(f'''{x:d}''' for x in tensor[row].cpu().data ) ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=None , lowerCAmelCase_=False ): """simple docstring""" _snake_case , _snake_case : Optional[int] = model.config.num_hidden_layers, model.config.num_attention_heads _snake_case : Tuple = torch.zeros(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device ) _snake_case : Union[str, Any] = torch.zeros(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device ) if head_mask is None: _snake_case : int = torch.ones(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device ) head_mask.requires_grad_(requires_grad=lowerCAmelCase_ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _snake_case : Dict = None _snake_case : Dict = 0.0 _snake_case : Optional[int] = 0.0 for step, inputs in enumerate(tqdm(lowerCAmelCase_ , desc='''Iteration''' , disable=args.local_rank not in [-1, 0] ) ): _snake_case : List[Any] = tuple(t.to(args.device ) for t in inputs ) ((_snake_case) , ) : Optional[Any] = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _snake_case : Any = model(lowerCAmelCase_ , labels=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _snake_case , _snake_case , _snake_case : List[Any] = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(lowerCAmelCase_ ): _snake_case : Union[str, Any] = entropy(attn.detach() , lowerCAmelCase_ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(lowerCAmelCase_ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _snake_case : Any = 2 _snake_case : List[str] = torch.pow(torch.pow(lowerCAmelCase_ , lowerCAmelCase_ ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: _snake_case : Optional[int] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''' ) print_ad_tensor(lowerCAmelCase_ ) if compute_importance: logger.info('''Head importance scores''' ) print_ad_tensor(lowerCAmelCase_ ) logger.info('''Head ranked by importance scores''' ) _snake_case : str = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _snake_case : List[Any] = torch.arange( head_importance.numel() , device=args.device ) _snake_case : List[Any] = head_ranks.view_as(lowerCAmelCase_ ) print_ad_tensor(lowerCAmelCase_ ) return attn_entropy, head_importance, total_loss def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case , _snake_case , _snake_case : str = compute_heads_importance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ ) _snake_case : Optional[Any] = 1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' , lowerCAmelCase_ , original_score * args.masking_threshold ) _snake_case : int = torch.ones_like(lowerCAmelCase_ ) _snake_case : Optional[Any] = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _snake_case : int = original_score while current_score >= original_score * args.masking_threshold: _snake_case : int = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _snake_case : Dict = float('''Inf''' ) _snake_case : Optional[Any] = head_importance.view(-1 ).sort()[1] if len(lowerCAmelCase_ ) <= num_to_mask: print('''BREAK BY num_to_mask''' ) break # mask heads _snake_case : Union[str, Any] = current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist() ) ) _snake_case : Tuple = new_head_mask.view(-1 ) _snake_case : List[str] = 0.0 _snake_case : str = new_head_mask.view_as(lowerCAmelCase_ ) _snake_case : Dict = new_head_mask.clone().detach() print_ad_tensor(lowerCAmelCase_ ) # Compute metric and head importance again _snake_case , _snake_case , _snake_case : Any = compute_heads_importance( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) _snake_case : int = 1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' , lowerCAmelCase_ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info('''Final head mask''' ) print_ad_tensor(lowerCAmelCase_ ) np.save(os.path.join(args.output_dir , '''head_mask.npy''' ) , head_mask.detach().cpu().numpy() ) return head_mask def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = datetime.now() _snake_case , _snake_case , _snake_case : Union[str, Any] = compute_heads_importance( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , compute_importance=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) _snake_case : Tuple = 1 / loss _snake_case : Dict = datetime.now() - before_time _snake_case : List[Any] = sum(p.numel() for p in model.parameters() ) _snake_case : int = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(lowerCAmelCase_ ) ) } for k, v in heads_to_prune.items(): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Union[str, Any] = [ v, ] assert sum(len(lowerCAmelCase_ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(lowerCAmelCase_ ) _snake_case : List[str] = sum(p.numel() for p in model.parameters() ) _snake_case : int = datetime.now() _snake_case , _snake_case , _snake_case : Optional[Any] = compute_heads_importance( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , compute_importance=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , actually_pruned=lowerCAmelCase_ , ) _snake_case : Optional[int] = 1 / loss _snake_case : Dict = datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , lowerCAmelCase_ , lowerCAmelCase_ , pruned_num_params / original_num_params * 100 , ) logger.info('''Pruning: score with masking: %f score with pruning: %f''' , lowerCAmelCase_ , lowerCAmelCase_ ) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 100 ) save_model(lowerCAmelCase_ , args.output_dir ) def _a ( ): """simple docstring""" _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , ) parser.add_argument( '''--model_name_or_path''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--output_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) # Other parameters parser.add_argument( '''--config_name''' , default='''''' , type=lowerCAmelCase_ , help='''Pretrained config name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--tokenizer_name''' , default='''''' , type=lowerCAmelCase_ , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--cache_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help='''Where do you want to store the pre-trained models downloaded from s3''' , ) parser.add_argument( '''--data_subset''' , type=lowerCAmelCase_ , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''' ) parser.add_argument( '''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''' ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) parser.add_argument( '''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''' ) parser.add_argument( '''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , ) parser.add_argument( '''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''' ) parser.add_argument( '''--masking_threshold''' , default=0.9 , type=lowerCAmelCase_ , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , ) parser.add_argument( '''--masking_amount''' , default=0.1 , type=lowerCAmelCase_ , help='''Amount to heads to masking at each masking step.''' ) parser.add_argument('''--metric_name''' , default='''acc''' , type=lowerCAmelCase_ , help='''Metric to use for head masking.''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=lowerCAmelCase_ , help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) , ) parser.add_argument('''--batch_size''' , default=1 , type=lowerCAmelCase_ , help='''Batch size.''' ) parser.add_argument('''--seed''' , type=lowerCAmelCase_ , default=42 ) parser.add_argument('''--local_rank''' , type=lowerCAmelCase_ , default=-1 , help='''local_rank for distributed training on gpus''' ) parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''' ) parser.add_argument('''--server_ip''' , type=lowerCAmelCase_ , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=lowerCAmelCase_ , default='''''' , help='''Can be used for distant debugging.''' ) _snake_case : Optional[Any] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowerCAmelCase_ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _snake_case : str = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''' ) _snake_case : Optional[Any] = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _snake_case : List[str] = torch.device('''cuda''' , args.local_rank ) _snake_case : int = 1 torch.distributed.init_process_group(backend='''nccl''' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _snake_case : Optional[Any] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _snake_case : Optional[int] = nn.parallel.DistributedDataParallel( lowerCAmelCase_ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=lowerCAmelCase_ ) elif args.n_gpu > 1: _snake_case : List[Any] = nn.DataParallel(lowerCAmelCase_ ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=lowerCAmelCase_ ) torch.save(lowerCAmelCase_ , os.path.join(args.output_dir , '''run_args.bin''' ) ) logger.info('''Training/evaluation parameters %s''' , lowerCAmelCase_ ) # Prepare dataset _snake_case : Dict = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _snake_case : int = (torch.from_numpy(lowerCAmelCase_ ),) _snake_case : Tuple = TensorDataset(*lowerCAmelCase_ ) _snake_case : List[str] = RandomSampler(lowerCAmelCase_ ) _snake_case : Dict = DataLoader(lowerCAmelCase_ , sampler=lowerCAmelCase_ , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _snake_case : Optional[int] = mask_heads(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) prune_heads(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
47
0
'''simple docstring''' from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run UpperCAmelCase : Union[str, Any] = True except (ImportError, AttributeError): UpperCAmelCase : Optional[Any] = object def _a ( *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" pass UpperCAmelCase : Optional[int] = False UpperCAmelCase : Tuple = logging.get_logger('transformers-cli/serving') def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Any = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(_lowerCAmelCase , args.host , args.port , args.workers ) class lowerCamelCase (a__ ): _lowercase : Optional[int] = 42 class lowerCamelCase (a__ ): _lowercase : List[str] = 42 _lowercase : Tuple = 42 class lowerCamelCase (a__ ): _lowercase : Tuple = 42 class lowerCamelCase (a__ ): _lowercase : int = 42 class lowerCamelCase (a__ ): @staticmethod def UpperCAmelCase_ ( lowercase__ ) -> Dict: """simple docstring""" _snake_case : int = parser.add_parser( '''serve''' , help='''CLI tool to run inference requests through REST and GraphQL endpoints.''' ) serve_parser.add_argument( '''--task''' , type=__A , choices=get_supported_tasks() , help='''The task to run the pipeline on''' , ) serve_parser.add_argument('''--host''' , type=__A , default='''localhost''' , help='''Interface the server will listen on.''' ) serve_parser.add_argument('''--port''' , type=__A , default=8_888 , help='''Port the serving will listen to.''' ) serve_parser.add_argument('''--workers''' , type=__A , default=1 , help='''Number of http workers''' ) serve_parser.add_argument('''--model''' , type=__A , help='''Model\'s name or path to stored model.''' ) serve_parser.add_argument('''--config''' , type=__A , help='''Model\'s config name or path to stored model.''' ) serve_parser.add_argument('''--tokenizer''' , type=__A , help='''Tokenizer name to use.''' ) serve_parser.add_argument( '''--device''' , type=__A , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) serve_parser.set_defaults(func=__A ) def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Optional[Any]: """simple docstring""" _snake_case : Tuple = pipeline _snake_case : str = host _snake_case : List[str] = port _snake_case : Tuple = workers if not _serve_dependencies_installed: raise RuntimeError( '''Using serve command requires FastAPI and uvicorn. ''' '''Please install transformers with [serving]: pip install \"transformers[serving]\".''' '''Or install FastAPI and uvicorn separately.''' ) else: logger.info(F'''Serving model over {host}:{port}''' ) _snake_case : Optional[int] = FastAPI( routes=[ APIRoute( '''/''' , self.model_info , response_model=__A , response_class=__A , methods=['''GET'''] , ), APIRoute( '''/tokenize''' , self.tokenize , response_model=__A , response_class=__A , methods=['''POST'''] , ), APIRoute( '''/detokenize''' , self.detokenize , response_model=__A , response_class=__A , methods=['''POST'''] , ), APIRoute( '''/forward''' , self.forward , response_model=__A , response_class=__A , methods=['''POST'''] , ), ] , timeout=600 , ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" run(self._app , host=self.host , port=self.port , workers=self.workers ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def UpperCAmelCase_ ( self , lowercase__ = Body(__A , embed=__A ) , lowercase__ = Body(__A , embed=__A ) ) -> int: """simple docstring""" try: _snake_case : Tuple = self._pipeline.tokenizer.tokenize(__A ) if return_ids: _snake_case : Dict = self._pipeline.tokenizer.convert_tokens_to_ids(__A ) return ServeTokenizeResult(tokens=__A , tokens_ids=__A ) else: return ServeTokenizeResult(tokens=__A ) except Exception as e: raise HTTPException(status_code=500 , detail={'''model''': '''''', '''error''': str(__A )} ) def UpperCAmelCase_ ( self , lowercase__ = Body(__A , embed=__A ) , lowercase__ = Body(__A , embed=__A ) , lowercase__ = Body(__A , embed=__A ) , ) -> Tuple: """simple docstring""" try: _snake_case : List[str] = self._pipeline.tokenizer.decode(__A , __A , __A ) return ServeDeTokenizeResult(model='''''' , text=__A ) except Exception as e: raise HTTPException(status_code=500 , detail={'''model''': '''''', '''error''': str(__A )} ) async def UpperCAmelCase_ ( self , lowercase__=Body(__A , embed=__A ) ) -> Any: """simple docstring""" if len(__A ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model _snake_case : Tuple = self._pipeline(__A ) return ServeForwardResult(output=__A ) except Exception as e: raise HTTPException(500 , {'''error''': str(__A )} )
711
'''simple docstring''' def _a ( lowerCAmelCase_ ): """simple docstring""" if n == 1 or not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return 0 elif n == 2: return 1 else: _snake_case : Union[str, Any] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[int] = 0 _snake_case : int = 2 while digits < n: index += 1 _snake_case : Tuple = len(str(fibonacci(lowerCAmelCase_ ) ) ) return index def _a ( lowerCAmelCase_ = 1_000 ): """simple docstring""" return fibonacci_digits_index(lowerCAmelCase_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
47
0
'''simple docstring''' import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class lowerCamelCase (unittest.TestCase ): def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : str = """ylacombe/bark-small""" _snake_case : List[Any] = tempfile.mkdtemp() _snake_case : Dict = """en_speaker_1""" _snake_case : Optional[int] = """This is a test string""" _snake_case : str = """speaker_embeddings_path.json""" _snake_case : List[str] = """speaker_embeddings""" def UpperCAmelCase_ ( self , **lowercase__ ) -> List[str]: """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **_a ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : str = self.get_tokenizer() _snake_case : Optional[int] = BarkProcessor(tokenizer=_a ) processor.save_pretrained(self.tmpdirname ) _snake_case : Optional[Any] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) _snake_case : Tuple = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _snake_case : str = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" _snake_case : Optional[Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) _snake_case : Optional[Any] = 35 _snake_case : Any = 2 _snake_case : Tuple = 8 _snake_case : Optional[int] = { """semantic_prompt""": np.ones(_a ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset _snake_case : Tuple = processor(text=self.input_string , voice_preset=_a ) _snake_case : Any = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_a , np.array([] ) ).tolist() ) # test loading voice preset from npz file _snake_case : str = os.path.join(self.tmpdirname , '''file.npz''' ) np.savez(_a , **_a ) _snake_case : List[Any] = processor(text=self.input_string , voice_preset=_a ) _snake_case : Tuple = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_a , np.array([] ) ).tolist() ) # test loading voice preset from the hub _snake_case : List[Any] = processor(text=self.input_string , voice_preset=self.voice_preset ) def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" _snake_case : List[str] = self.get_tokenizer() _snake_case : List[Any] = BarkProcessor(tokenizer=_a ) _snake_case : Union[str, Any] = processor(text=self.input_string ) _snake_case : Dict = tokenizer( self.input_string , padding='''max_length''' , max_length=256 , add_special_tokens=_a , return_attention_mask=_a , return_token_type_ids=_a , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
712
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar UpperCAmelCase : Any = TypeVar('T') UpperCAmelCase : str = TypeVar('U') class lowerCamelCase (Generic[T, U] ): def __init__( self , lowercase__ , lowercase__ ) -> List[Any]: """simple docstring""" _snake_case : str = key _snake_case : Optional[int] = val _snake_case : DoubleLinkedListNode[T, U] | None = None _snake_case : DoubleLinkedListNode[T, U] | None = None def __repr__( self ) -> str: """simple docstring""" return ( F'''Node: key: {self.key}, val: {self.val}, ''' F'''has next: {bool(self.next )}, has prev: {bool(self.prev )}''' ) class lowerCamelCase (Generic[T, U] ): def __init__( self ) -> None: """simple docstring""" _snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase__ , lowercase__ ) _snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase__ , lowercase__ ) _snake_case , _snake_case : Union[str, Any] = self.rear, self.head def __repr__( self ) -> str: """simple docstring""" _snake_case : List[Any] = ['''DoubleLinkedList'''] _snake_case : str = self.head while node.next is not None: rep.append(str(lowercase__ ) ) _snake_case : List[str] = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> None: """simple docstring""" _snake_case : Tuple = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None _snake_case : Union[str, Any] = node _snake_case : Optional[Any] = previous _snake_case : int = node _snake_case : Union[str, Any] = self.rear def UpperCAmelCase_ ( self , lowercase__ ) -> DoubleLinkedListNode[T, U] | None: """simple docstring""" if node.prev is None or node.next is None: return None _snake_case : Optional[int] = node.next _snake_case : Any = node.prev _snake_case : List[str] = None _snake_case : Optional[int] = None return node class lowerCamelCase (Generic[T, U] ): _lowercase : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self , lowercase__ ) -> Union[str, Any]: """simple docstring""" _snake_case : DoubleLinkedList[T, U] = DoubleLinkedList() _snake_case : Union[str, Any] = capacity _snake_case : int = 0 _snake_case : Dict = 0 _snake_case : Union[str, Any] = 0 _snake_case : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__( self ) -> str: """simple docstring""" return ( F'''CacheInfo(hits={self.hits}, misses={self.miss}, ''' F'''capacity={self.capacity}, current size={self.num_keys})''' ) def __contains__( self , lowercase__ ) -> bool: """simple docstring""" return key in self.cache def UpperCAmelCase_ ( self , lowercase__ ) -> U | None: """simple docstring""" if key in self.cache: self.hits += 1 _snake_case : DoubleLinkedListNode[T, U] = self.cache[key] _snake_case : Tuple = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowercase__ ) return node.val self.miss += 1 return None def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> None: """simple docstring""" if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity _snake_case : Dict = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowercase__ ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 _snake_case : Optional[int] = DoubleLinkedListNode(lowercase__ , lowercase__ ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value _snake_case : Optional[Any] = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list _snake_case : Optional[Any] = value self.list.add(lowercase__ ) @classmethod def UpperCAmelCase_ ( cls , lowercase__ = 128 ) -> Callable[[Callable[[T], U]], Callable[..., U]]: """simple docstring""" def cache_decorator_inner(lowercase__ ) -> Callable[..., U]: def cache_decorator_wrapper(*lowercase__ ) -> U: if func not in cls.decorator_function_to_instance_map: _snake_case : Optional[Any] = LRUCache(lowercase__ ) _snake_case : Union[str, Any] = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: _snake_case : Tuple = func(*lowercase__ ) cls.decorator_function_to_instance_map[func].put(args[0] , lowercase__ ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowercase__ , '''cache_info''' , lowercase__ ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
47
0
'''simple docstring''' UpperCAmelCase : Optional[int] = [ 'DownloadConfig', 'DownloadManager', 'DownloadMode', 'StreamingDownloadManager', ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
713
'''simple docstring''' import os import numpy import onnx def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : List[Any] = a.name _snake_case : List[Any] = b.name _snake_case : Tuple = '''''' _snake_case : Tuple = '''''' _snake_case : Optional[Any] = a == b _snake_case : List[Any] = name_a _snake_case : str = name_b return res def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(lowerCAmelCase_ , lowerCAmelCase_ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , lowerCAmelCase_ , lowerCAmelCase_ ) _graph_replace_input_with(node_proto.attribute[1].g , lowerCAmelCase_ , lowerCAmelCase_ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , lowerCAmelCase_ , lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for n in graph_proto.node: _node_replace_input_with(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = list(model.graph.initializer ) _snake_case : List[str] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i _snake_case : List[Any] = inits[i].name _snake_case : List[str] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , lowerCAmelCase_ , lowerCAmelCase_ ) def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Tuple = os.path.dirname(lowerCAmelCase_ ) _snake_case : str = os.path.basename(lowerCAmelCase_ ) _snake_case : Tuple = onnx.load(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) ) _snake_case : Union[str, Any] = list(model.graph.initializer ) _snake_case : Union[str, Any] = set() _snake_case : Any = {} _snake_case : str = [] _snake_case : Union[str, Any] = 0 for i in range(len(lowerCAmelCase_ ) ): if i in dup_set: continue for j in range(i + 1 , len(lowerCAmelCase_ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(lowerCAmelCase_ ) dup_set.add(lowerCAmelCase_ ) _snake_case : List[Any] = inits[j].data_type _snake_case : Dict = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('''unexpected data type: ''' , lowerCAmelCase_ ) total_reduced_size += mem_size _snake_case : Union[str, Any] = inits[i].name _snake_case : Any = inits[j].name if name_i in dup_map: dup_map[name_i].append(lowerCAmelCase_ ) else: _snake_case : Union[str, Any] = [name_j] ind_to_replace.append((j, i) ) print('''total reduced size: ''' , total_reduced_size / 1_024 / 1_024 / 1_024 , '''GB''' ) _snake_case : List[str] = sorted(lowerCAmelCase_ ) _remove_dup_initializers_from_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : List[str] = '''optimized_''' + model_file_name _snake_case : List[Any] = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) onnx.save(lowerCAmelCase_ , lowerCAmelCase_ ) return new_model
47
0
'''simple docstring''' from scipy.stats import spearmanr import datasets UpperCAmelCase : str = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n' UpperCAmelCase : Optional[Any] = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric(\"spearmanr\")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric(\"spearmanr\")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n' UpperCAmelCase : str = R'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase (datasets.Metric ): def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'''] , ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__=False ) -> List[str]: """simple docstring""" _snake_case : Union[str, Any] = spearmanr(_UpperCAmelCase , _UpperCAmelCase ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
714
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : int = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
47
0
'''simple docstring''' import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=13 , lowercase__=32 , lowercase__=3 , lowercase__=4 , lowercase__=[10, 20, 30, 40] , lowercase__=[2, 2, 3, 2] , lowercase__=True , lowercase__=True , lowercase__=37 , lowercase__="gelu" , lowercase__=10 , lowercase__=0.02 , lowercase__=["stage2", "stage3", "stage4"] , lowercase__=[2, 3, 4] , lowercase__=None , ) -> Optional[int]: """simple docstring""" _snake_case : Optional[int] = parent _snake_case : Union[str, Any] = batch_size _snake_case : Union[str, Any] = image_size _snake_case : Optional[Any] = num_channels _snake_case : Optional[Any] = num_stages _snake_case : int = hidden_sizes _snake_case : Tuple = depths _snake_case : List[str] = is_training _snake_case : Tuple = use_labels _snake_case : Tuple = intermediate_size _snake_case : List[Any] = hidden_act _snake_case : str = num_labels _snake_case : List[str] = initializer_range _snake_case : List[str] = out_features _snake_case : Optional[int] = out_indices _snake_case : List[Any] = scope def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : Dict = None if self.use_labels: _snake_case : List[str] = ids_tensor([self.batch_size] , self.num_labels ) _snake_case : List[str] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ ) -> List[Any]: """simple docstring""" _snake_case : Dict = ConvNextModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _snake_case : str = model(_UpperCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ ) -> int: """simple docstring""" _snake_case : Optional[Any] = ConvNextForImageClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _snake_case : str = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ ) -> Tuple: """simple docstring""" _snake_case : Optional[int] = ConvNextBackbone(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _snake_case : Optional[Any] = model(_UpperCamelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _snake_case : Optional[Any] = None _snake_case : List[Any] = ConvNextBackbone(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _snake_case : str = model(_UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" _snake_case : int = self.prepare_config_and_inputs() _snake_case : Dict = config_and_inputs _snake_case : Union[str, Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase (__lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): _lowercase : Tuple = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) _lowercase : Optional[int] = ( {"""feature-extraction""": ConvNextModel, """image-classification""": ConvNextForImageClassification} if is_torch_available() else {} ) _lowercase : str = True _lowercase : Any = False _lowercase : List[str] = False _lowercase : Union[str, Any] = False _lowercase : List[Any] = False def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" _snake_case : List[Any] = ConvNextModelTester(self ) _snake_case : List[str] = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase , hidden_size=37 ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" return @unittest.skip(reason='''ConvNext does not use inputs_embeds''' ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason='''ConvNext does not support input and output embeddings''' ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" pass @unittest.skip(reason='''ConvNext does not use feedforward chunking''' ) def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" pass def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : str = model_class(_UpperCamelCase ) _snake_case : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : Any = [*signature.parameters.keys()] _snake_case : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" _snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_UpperCamelCase ) def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" def check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ): _snake_case : Union[str, Any] = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): _snake_case : Dict = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) _snake_case : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(_UpperCamelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Union[str, Any] = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case : Any = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" _snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase ) @slow def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : int = ConvNextModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def _a ( ): """simple docstring""" _snake_case : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCamelCase (unittest.TestCase ): @cached_property def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/convnext-tiny-224''' ) if is_vision_available() else None @slow def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" _snake_case : List[str] = ConvNextForImageClassification.from_pretrained('''facebook/convnext-tiny-224''' ).to(_UpperCamelCase ) _snake_case : Optional[Any] = self.default_image_processor _snake_case : str = prepare_img() _snake_case : Optional[Any] = image_processor(images=_UpperCamelCase , return_tensors='''pt''' ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): _snake_case : List[Any] = model(**_UpperCamelCase ) # verify the logits _snake_case : str = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) _snake_case : Any = torch.tensor([-0.0_260, -0.4_739, 0.1_911] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1E-4 ) ) @require_torch class lowerCamelCase (unittest.TestCase , __lowerCAmelCase ): _lowercase : str = (ConvNextBackbone,) if is_torch_available() else () _lowercase : Union[str, Any] = ConvNextConfig _lowercase : Optional[int] = False def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : Tuple = ConvNextModelTester(self )
715
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase : Dict = logging.get_logger(__name__) class lowerCamelCase (a__ ): _lowercase : int = ["""pixel_values"""] def __init__( self , lowercase__ = True , lowercase__ = 32 , lowercase__=PILImageResampling.BILINEAR , lowercase__ = True , **lowercase__ , ) -> None: """simple docstring""" _snake_case : Any = do_resize _snake_case : List[str] = do_rescale _snake_case : Any = size_divisor _snake_case : Optional[Any] = resample super().__init__(**lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ ) -> np.ndarray: """simple docstring""" _snake_case , _snake_case : Dict = get_image_size(lowercase__ ) # Rounds the height and width down to the closest multiple of size_divisor _snake_case : Optional[int] = height // size_divisor * size_divisor _snake_case : Dict = width // size_divisor * size_divisor _snake_case : str = resize(lowercase__ , (new_h, new_w) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) return image def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ ) -> np.ndarray: """simple docstring""" return rescale(image=lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__=None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ) -> BatchFeature: """simple docstring""" _snake_case : Any = do_resize if do_resize is not None else self.do_resize _snake_case : List[Any] = do_rescale if do_rescale is not None else self.do_rescale _snake_case : List[str] = size_divisor if size_divisor is not None else self.size_divisor _snake_case : int = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) _snake_case : Tuple = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. _snake_case : Tuple = [to_numpy_array(lowercase__ ) for img in images] if do_resize: _snake_case : Optional[int] = [self.resize(lowercase__ , size_divisor=lowercase__ , resample=lowercase__ ) for image in images] if do_rescale: _snake_case : Union[str, Any] = [self.rescale(lowercase__ , scale=1 / 255 ) for image in images] _snake_case : Union[str, Any] = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] _snake_case : List[str] = {'''pixel_values''': images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
47
0
'''simple docstring''' import unittest import torch from torch import nn from diffusers.models.activations import get_activation class lowerCamelCase (unittest.TestCase ): def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : Optional[int] = get_activation('''swish''' ) self.assertIsInstance(_A , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : str = get_activation('''silu''' ) self.assertIsInstance(_A , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" _snake_case : Tuple = get_activation('''mish''' ) self.assertIsInstance(_A , nn.Mish ) self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" _snake_case : Optional[int] = get_activation('''gelu''' ) self.assertIsInstance(_A , nn.GELU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
716
'''simple docstring''' from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class lowerCamelCase : _lowercase : Any = LEDConfig _lowercase : Any = {} _lowercase : Optional[Any] = """gelu""" def __init__( self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=False , lowercase__=99 , lowercase__=32 , lowercase__=2 , lowercase__=4 , lowercase__=37 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=20 , lowercase__=2 , lowercase__=1 , lowercase__=0 , lowercase__=4 , ) -> Any: """simple docstring""" _snake_case : Dict = parent _snake_case : Any = batch_size _snake_case : List[str] = seq_length _snake_case : Union[str, Any] = is_training _snake_case : Tuple = use_labels _snake_case : int = vocab_size _snake_case : str = hidden_size _snake_case : Optional[Any] = num_hidden_layers _snake_case : List[Any] = num_attention_heads _snake_case : Optional[int] = intermediate_size _snake_case : List[Any] = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : Optional[int] = max_position_embeddings _snake_case : Any = eos_token_id _snake_case : List[Any] = pad_token_id _snake_case : Optional[int] = bos_token_id _snake_case : Any = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _snake_case : Any = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _snake_case : Tuple = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" _snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _snake_case : Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _snake_case : Optional[int] = tf.concat([input_ids, eos_tensor] , axis=1 ) _snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case : List[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _snake_case : Dict = prepare_led_inputs_dict(lowercase__ , lowercase__ , lowercase__ ) _snake_case : Dict = tf.concat( [tf.zeros_like(lowercase__ )[:, :-1], tf.ones_like(lowercase__ )[:, -1:]] , axis=-1 , ) _snake_case : Dict = global_attention_mask return config, inputs_dict def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> int: """simple docstring""" _snake_case : int = TFLEDModel(config=lowercase__ ).get_decoder() _snake_case : Union[str, Any] = inputs_dict['''input_ids'''] _snake_case : List[str] = input_ids[:1, :] _snake_case : Tuple = inputs_dict['''attention_mask'''][:1, :] _snake_case : Dict = 1 # first forward pass _snake_case : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__ ) _snake_case , _snake_case : Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _snake_case : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _snake_case : Tuple = tf.concat([input_ids, next_tokens] , axis=-1 ) _snake_case : List[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _snake_case : List[Any] = model(lowercase__ , attention_mask=lowercase__ )[0] _snake_case : Tuple = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _snake_case : Tuple = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _snake_case : int = output_from_no_past[:, -3:, random_slice_idx] _snake_case : Optional[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase__ , lowercase__ , rtol=1E-3 ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , ): """simple docstring""" if attention_mask is None: _snake_case : Union[str, Any] = tf.cast(tf.math.not_equal(lowerCAmelCase_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _snake_case : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _snake_case : int = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class lowerCamelCase (a__ , a__ , unittest.TestCase ): _lowercase : Optional[int] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _lowercase : int = (TFLEDForConditionalGeneration,) if is_tf_available() else () _lowercase : Dict = ( { """conversational""": TFLEDForConditionalGeneration, """feature-extraction""": TFLEDModel, """summarization""": TFLEDForConditionalGeneration, """text2text-generation""": TFLEDForConditionalGeneration, """translation""": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _lowercase : int = True _lowercase : List[Any] = False _lowercase : str = False _lowercase : Union[str, Any] = False def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : str = TFLEDModelTester(self ) _snake_case : Union[str, Any] = ConfigTester(self , config_class=lowercase__ ) def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase__ ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Any = tf.zeros_like(inputs_dict['''attention_mask'''] ) _snake_case : Optional[Any] = 2 _snake_case : Any = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) _snake_case : Dict = True _snake_case : str = self.model_tester.seq_length _snake_case : Dict = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowercase__ ): _snake_case : Optional[int] = outputs.decoder_attentions self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowercase__ ): _snake_case : int = [t.numpy() for t in outputs.encoder_attentions] _snake_case : Tuple = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _snake_case : Union[str, Any] = True _snake_case : Dict = False _snake_case : Union[str, Any] = False _snake_case : List[Any] = model_class(lowercase__ ) _snake_case : Optional[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) _snake_case : List[Any] = len(lowercase__ ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) if self.is_encoder_decoder: _snake_case : Union[str, Any] = model_class(lowercase__ ) _snake_case : List[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_decoder_attentions_output(lowercase__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _snake_case : str = True _snake_case : Tuple = model_class(lowercase__ ) _snake_case : int = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) # Check attention is always last and order is fine _snake_case : int = True _snake_case : List[str] = True _snake_case : Tuple = model_class(lowercase__ ) _snake_case : Optional[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase__ ) ) self.assertEqual(model.config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" pass def UpperCAmelCase_ ( self ) -> str: """simple docstring""" pass def _a ( lowerCAmelCase_ ): """simple docstring""" return tf.constant(lowerCAmelCase_ , dtype=tf.intaa ) UpperCAmelCase : Dict = 1E-4 @slow @require_tf class lowerCamelCase (unittest.TestCase ): def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" _snake_case : List[str] = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here _snake_case : List[str] = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : Tuple = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : Tuple = prepare_led_inputs_dict(model.config , lowercase__ , lowercase__ ) _snake_case : int = model(**lowercase__ )[0] _snake_case : Dict = (1, 1_024, 768) self.assertEqual(output.shape , lowercase__ ) # change to expected output here _snake_case : List[Any] = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1E-3 ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Any = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here _snake_case : Dict = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : Dict = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : List[str] = prepare_led_inputs_dict(model.config , lowercase__ , lowercase__ ) _snake_case : Tuple = model(**lowercase__ )[0] _snake_case : Any = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , lowercase__ ) # change to expected output here _snake_case : Dict = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1E-3 , rtol=1E-3 )
47
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCamelCase (unittest.TestCase ): def __init__( self , lowercase__ , lowercase__=7 , lowercase__=3 , lowercase__=18 , lowercase__=30 , lowercase__=400 , lowercase__=True , lowercase__=None , lowercase__=True , ) -> int: """simple docstring""" _snake_case : int = size if size is not None else {"height": 18, "width": 18} _snake_case : List[Any] = parent _snake_case : int = batch_size _snake_case : Tuple = num_channels _snake_case : Optional[Any] = image_size _snake_case : Tuple = min_resolution _snake_case : Tuple = max_resolution _snake_case : Any = do_resize _snake_case : Dict = size _snake_case : str = apply_ocr def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class lowerCamelCase (_A , unittest.TestCase ): _lowercase : List[str] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : Tuple = LayoutLMvaImageProcessingTester(self ) @property def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''size''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''apply_ocr''' ) ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) _snake_case : int = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" pass def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input _snake_case : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) self.assertIsInstance(encoding.words , __lowerCamelCase ) self.assertIsInstance(encoding.boxes , __lowerCamelCase ) # Test batched _snake_case : Tuple = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input _snake_case : int = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _snake_case : List[str] = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input _snake_case : int = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _snake_case : Tuple = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" _snake_case : List[Any] = LayoutLMvaImageProcessor() from datasets import load_dataset _snake_case : Optional[int] = load_dataset('''hf-internal-testing/fixtures_docvqa''' , split='''test''' ) _snake_case : int = Image.open(ds[0]['''file'''] ).convert('''RGB''' ) _snake_case : str = image_processing(__lowerCamelCase , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 _snake_case : Dict = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231 _snake_case : Dict = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __lowerCamelCase ) self.assertListEqual(encoding.boxes , __lowerCamelCase ) # with apply_OCR = False _snake_case : Tuple = LayoutLMvaImageProcessor(apply_ocr=__lowerCamelCase ) _snake_case : Optional[int] = image_processing(__lowerCamelCase , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
717
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase : Optional[int] = logging.get_logger(__name__) UpperCAmelCase : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase : Any = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } UpperCAmelCase : Optional[Any] = { 'gpt-neox-20b': 2_0_4_8, } class lowerCamelCase (a__ ): _lowercase : Optional[int] = VOCAB_FILES_NAMES _lowercase : str = PRETRAINED_VOCAB_FILES_MAP _lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Optional[int] = ["""input_ids""", """attention_mask"""] def __init__( self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="<|endoftext|>" , lowercase__="<|endoftext|>" , lowercase__="<|endoftext|>" , lowercase__=False , **lowercase__ , ) -> List[Any]: """simple docstring""" super().__init__( lowercase__ , lowercase__ , tokenizer_file=lowercase__ , unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , add_prefix_space=lowercase__ , **lowercase__ , ) _snake_case : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowercase__ ) != add_prefix_space: _snake_case : int = getattr(lowercase__ , pre_tok_state.pop('''type''' ) ) _snake_case : int = add_prefix_space _snake_case : Optional[Any] = pre_tok_class(**lowercase__ ) _snake_case : List[str] = add_prefix_space def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> Tuple[str]: """simple docstring""" _snake_case : Optional[int] = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> List[int]: """simple docstring""" _snake_case : List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase__ , add_special_tokens=lowercase__ ) + [self.eos_token_id] ) if len(lowercase__ ) > self.model_max_length: _snake_case : Dict = input_ids[-self.model_max_length :] return input_ids
47
0
'''simple docstring''' import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=99 , lowercase__=64 , lowercase__=32 , lowercase__=5 , lowercase__=4 , lowercase__=37 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=512 , lowercase__=16 , lowercase__=2 , lowercase__=0.02 , lowercase__=3 , lowercase__=4 , lowercase__=None , ) -> Optional[int]: """simple docstring""" _snake_case : Optional[int] = parent _snake_case : int = batch_size _snake_case : Any = seq_length _snake_case : str = is_training _snake_case : Any = use_input_mask _snake_case : List[Any] = use_token_type_ids _snake_case : int = use_labels _snake_case : Optional[int] = vocab_size _snake_case : List[Any] = hidden_size _snake_case : List[str] = embedding_size _snake_case : List[str] = num_hidden_layers _snake_case : str = num_attention_heads _snake_case : Any = intermediate_size _snake_case : List[str] = hidden_act _snake_case : Any = hidden_dropout_prob _snake_case : Any = attention_probs_dropout_prob _snake_case : Union[str, Any] = max_position_embeddings _snake_case : Dict = type_vocab_size _snake_case : List[Any] = type_sequence_label_size _snake_case : Dict = initializer_range _snake_case : Union[str, Any] = num_labels _snake_case : Dict = num_choices _snake_case : Optional[Any] = scope def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" _snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case : int = None if self.use_input_mask: _snake_case : Any = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case : int = None if self.use_token_type_ids: _snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _snake_case : Tuple = None _snake_case : Tuple = None _snake_case : Optional[int] = None if self.use_labels: _snake_case : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case : Tuple = ids_tensor([self.batch_size] , self.num_choices ) _snake_case : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Tuple: """simple docstring""" _snake_case : List[Any] = MegatronBertModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _snake_case : str = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) _snake_case : Optional[int] = model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) _snake_case : Any = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> List[Any]: """simple docstring""" _snake_case : int = MegatronBertForMaskedLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _snake_case : List[Any] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Any: """simple docstring""" _snake_case : Optional[Any] = MegatronBertForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _snake_case : List[Any] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> List[str]: """simple docstring""" _snake_case : Optional[int] = MegatronBertForNextSentencePrediction(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _snake_case : Dict = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Optional[int]: """simple docstring""" _snake_case : Dict = MegatronBertForPreTraining(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _snake_case : Union[str, Any] = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ , next_sentence_label=lowerCamelCase_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> List[Any]: """simple docstring""" _snake_case : Tuple = MegatronBertForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _snake_case : int = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , start_positions=lowerCamelCase_ , end_positions=lowerCamelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Optional[int]: """simple docstring""" _snake_case : Any = self.num_labels _snake_case : Any = MegatronBertForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _snake_case : int = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> List[Any]: """simple docstring""" _snake_case : str = self.num_labels _snake_case : Tuple = MegatronBertForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _snake_case : Dict = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> List[str]: """simple docstring""" _snake_case : Optional[int] = self.num_choices _snake_case : str = MegatronBertForMultipleChoice(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _snake_case : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case : List[str] = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" _snake_case : Optional[int] = self.prepare_config_and_inputs() ( _snake_case ) : Optional[int] = config_and_inputs _snake_case : List[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): _lowercase : Dict = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) _lowercase : Optional[Any] = ( { """feature-extraction""": MegatronBertModel, """fill-mask""": MegatronBertForMaskedLM, """question-answering""": MegatronBertForQuestionAnswering, """text-classification""": MegatronBertForSequenceClassification, """text-generation""": MegatronBertForCausalLM, """token-classification""": MegatronBertForTokenClassification, """zero-shot""": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) _lowercase : Dict = True # test_resize_embeddings = False _lowercase : Any = False def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__=False ) -> Optional[int]: """simple docstring""" _snake_case : Tuple = super()._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ , return_labels=lowerCamelCase_ ) if return_labels: if model_class in get_values(lowerCamelCase_ ): _snake_case : str = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCamelCase_ ) _snake_case : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase_ ) return inputs_dict def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Optional[Any] = MegatronBertModelTester(self ) _snake_case : Tuple = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" _snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*lowerCamelCase_ ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*lowerCamelCase_ ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*lowerCamelCase_ ) def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" _snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*lowerCamelCase_ ) def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*lowerCamelCase_ ) def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" _snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*lowerCamelCase_ ) def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" _snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*lowerCamelCase_ ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*lowerCamelCase_ ) def _a ( lowerCAmelCase_ ): """simple docstring""" return torch.tensor( a_ , dtype=torch.long , device=a_ , ) UpperCAmelCase : str = 1E-4 @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase (unittest.TestCase ): @slow @unittest.skip('''Model is not available.''' ) def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : Tuple = '''nvidia/megatron-bert-uncased-345m''' if "MYDIR" in os.environ: _snake_case : Tuple = os.path.join(os.environ['''MYDIR'''] , lowerCamelCase_ ) _snake_case : Dict = MegatronBertModel.from_pretrained(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.half() _snake_case : List[str] = _long_tensor([[101, 7_110, 1_005, 1_056, 2_023, 11_333, 17_413, 1_029, 102]] ) with torch.no_grad(): _snake_case : List[str] = model(lowerCamelCase_ )[0] _snake_case : Any = torch.Size((1, 9, 1_024) ) self.assertEqual(output.shape , lowerCamelCase_ ) _snake_case : Union[str, Any] = [-0.6_040, -0.2_517, -0.1_025, 0.3_420, -0.6_758, -0.0_017, -0.1_089, -0.1_990, 0.5_728] for ii in range(3 ): for jj in range(3 ): _snake_case : Optional[Any] = output[0, ii, jj] _snake_case : Optional[Any] = expected[3 * ii + jj] _snake_case : int = '''ii={} jj={} a={} b={}'''.format(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) self.assertTrue(math.isclose(lowerCamelCase_ , lowerCamelCase_ , rel_tol=lowerCamelCase_ , abs_tol=lowerCamelCase_ ) , msg=lowerCamelCase_ )
718
'''simple docstring''' import math from numpy import inf from scipy.integrate import quad def _a ( lowerCAmelCase_ ): """simple docstring""" if num <= 0: raise ValueError('''math domain error''' ) return quad(lowerCAmelCase_ , 0 , lowerCAmelCase_ , args=(lowerCAmelCase_) )[0] def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return math.pow(lowerCAmelCase_ , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
47
0
'''simple docstring''' import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py UpperCAmelCase : Optional[int] = '''\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation", author = "Lin, Chin-Yew and Och, Franz Josef", booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics", month = "aug 23{--}aug 27", year = "2004", address = "Geneva, Switzerland", publisher = "COLING", url = "https://www.aclweb.org/anthology/C04-1072", pages = "501--507", } ''' UpperCAmelCase : Tuple = '''\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation, the better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. ''' UpperCAmelCase : Optional[Any] = ''' Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: \'bleu\': bleu score, \'precisions\': geometric mean of n-gram precisions, \'brevity_penalty\': brevity penalty, \'length_ratio\': ratio of lengths, \'translation_length\': translation_length, \'reference_length\': reference_length Examples: >>> predictions = [ ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample ... ] >>> references = [ ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references) ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric("bleu") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results["bleu"]) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase (datasets.Metric ): def UpperCAmelCase_ ( self ) -> str: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__=4 , lowercase__=False ) -> Optional[int]: """simple docstring""" _snake_case : Union[str, Any] = compute_bleu( reference_corpus=__UpperCamelCase , translation_corpus=__UpperCamelCase , max_order=__UpperCamelCase , smooth=__UpperCamelCase ) ((_snake_case) , (_snake_case) , (_snake_case) , (_snake_case) , (_snake_case) , (_snake_case)) : List[str] = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
719
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class lowerCamelCase (unittest.TestCase ): @slow def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Union[str, Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Any = TFAutoModel.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : str = AutoModel.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Optional[Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Dict = TFAutoModelForPreTraining.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Tuple = AutoModelForPreTraining.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Optional[int] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained(lowercase__ , from_pt=lowercase__ ) _snake_case , _snake_case : Tuple = TFAutoModelForCausalLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained(lowercase__ , from_tf=lowercase__ ) _snake_case , _snake_case : Optional[Any] = AutoModelForCausalLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Tuple = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : int = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[str] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(lowercase__ , from_pt=lowercase__ ) _snake_case , _snake_case : List[str] = TFAutoModelForMaskedLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : int = AutoModelForMaskedLM.from_pretrained(lowercase__ , from_tf=lowercase__ ) _snake_case , _snake_case : Optional[int] = AutoModelForMaskedLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[str] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(lowercase__ , from_pt=lowercase__ ) _snake_case , _snake_case : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : List[str] = AutoModelForSeqaSeqLM.from_pretrained(lowercase__ , from_tf=lowercase__ ) _snake_case , _snake_case : Dict = AutoModelForSeqaSeqLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Any = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Any = TFAutoModelForSequenceClassification.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Dict = AutoModelForSequenceClassification.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : str = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : str = TFAutoModelForQuestionAnswering.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Union[str, Any] = AutoModelForQuestionAnswering.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : Union[str, Any] = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 ) _snake_case : Tuple = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : List[str] = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 ) _snake_case : int = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 )
47
0
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCamelCase (_a ): _lowercase : Optional[Any] = ["""image_processor""", """tokenizer"""] _lowercase : Tuple = """LayoutLMv2ImageProcessor""" _lowercase : Union[str, Any] = ("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""") def __init__( self , lowercase__=None , lowercase__=None , **lowercase__ ) -> Union[str, Any]: """simple docstring""" if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , snake_case_ , ) _snake_case : str = kwargs.pop('''feature_extractor''' ) _snake_case : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(snake_case_ , snake_case_ ) def __call__( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = True , lowercase__ = False , lowercase__ = None , lowercase__ = None , lowercase__ = 0 , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = False , lowercase__ = False , lowercase__ = False , lowercase__ = False , lowercase__ = True , lowercase__ = None , **lowercase__ , ) -> BatchEncoding: """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor _snake_case : Tuple = self.image_processor(images=snake_case_ , return_tensors=snake_case_ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(snake_case_ , snake_case_ ): _snake_case : str = [text] # add batch dimension (as the image processor always adds a batch dimension) _snake_case : int = features['''words'''] _snake_case : Dict = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_token_type_ids=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) # add pixel values _snake_case : Tuple = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: _snake_case : Optional[int] = self.get_overflowing_images(snake_case_ , encoded_inputs['''overflow_to_sample_mapping'''] ) _snake_case : Any = images return encoded_inputs def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> int: """simple docstring""" _snake_case : Optional[int] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(snake_case_ ) != len(snake_case_ ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' F''' {len(snake_case_ )} and {len(snake_case_ )}''' ) return images_with_overflow def UpperCAmelCase_ ( self , *lowercase__ , **lowercase__ ) -> int: """simple docstring""" return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def UpperCAmelCase_ ( self , *lowercase__ , **lowercase__ ) -> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @property def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" return ["input_ids", "bbox", "attention_mask", "image"] @property def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , snake_case_ , ) return self.image_processor_class @property def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , snake_case_ , ) return self.image_processor
720
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : Dict = {'configuration_timm_backbone': ['TimmBackboneConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = ['TimmBackbone'] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
47
0
'''simple docstring''' import os from typing import Dict, List, Tuple, TypeVar, Union UpperCAmelCase : int = TypeVar('T') UpperCAmelCase : Optional[int] = Union[List[T], Tuple[T, ...]] UpperCAmelCase : List[Any] = Union[T, List[T], Dict[str, T]] UpperCAmelCase : Dict = Union[str, bytes, os.PathLike]
721
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version UpperCAmelCase : Tuple = logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') UpperCAmelCase : str = { 'base': AutoModel, 'sequence-classification': AutoModelForSequenceClassification, 'question-answering': AutoModelForQuestionAnswering, 'pretraining': AutoModelForPreTraining, 'token-classification': AutoModelForTokenClassification, 'language-modeling': AutoModelWithLMHead, 'summarization': AutoModelForSeqaSeqLM, 'translation': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization UpperCAmelCase : Optional[Any] = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } UpperCAmelCase : Tuple = sorted(arg_to_scheduler.keys()) UpperCAmelCase : Optional[Any] = '{' + ', '.join(arg_to_scheduler_choices) + '}' class lowerCamelCase (pl.LightningModule ): def __init__( self , lowercase__ , lowercase__=None , lowercase__="base" , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ , ) -> Optional[int]: """simple docstring""" super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(lowercase__ ) _snake_case : Union[str, Any] = 0 _snake_case : int = Path(self.hparams.output_dir ) _snake_case : int = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: _snake_case : Tuple = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=lowercase__ , **lowercase__ , ) else: _snake_case : PretrainedConfig = config _snake_case : Optional[Any] = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(self.hparams , lowercase__ , lowercase__ ): assert hasattr(self.config , lowercase__ ), F'''model config doesn\'t have a `{p}` attribute''' setattr(self.config , lowercase__ , getattr(self.hparams , lowercase__ ) ) if tokenizer is None: _snake_case : Optional[int] = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=lowercase__ , ) else: _snake_case : PreTrainedTokenizer = tokenizer _snake_case : Any = MODEL_MODES[mode] if model is None: _snake_case : List[Any] = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=lowercase__ , ) else: _snake_case : Optional[Any] = model def UpperCAmelCase_ ( self , *lowercase__ , **lowercase__ ) -> List[str]: """simple docstring""" _snake_case : Dict = self.model_type.from_pretrained(*lowercase__ , **lowercase__ ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Optional[int] = arg_to_scheduler[self.hparams.lr_scheduler] _snake_case : Optional[int] = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) _snake_case : str = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1} return scheduler def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Any = self.model _snake_case : List[Any] = ['''bias''', '''LayerNorm.weight'''] _snake_case : List[str] = [ { '''params''': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters '''weight_decay''': self.hparams.weight_decay, }, { '''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] if self.hparams.adafactor: _snake_case : Any = Adafactor( lowercase__ , lr=self.hparams.learning_rate , scale_parameter=lowercase__ , relative_step=lowercase__ ) else: _snake_case : List[str] = AdamW( lowercase__ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) _snake_case : List[str] = optimizer _snake_case : Any = self.get_lr_scheduler() return [optimizer], [scheduler] def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Any: """simple docstring""" return self.validation_step(lowercase__ , lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> Tuple: """simple docstring""" return self.validation_end(lowercase__ ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Any = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores _snake_case : Optional[int] = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def UpperCAmelCase_ ( self , lowercase__ ) -> Any: """simple docstring""" if stage == "test": _snake_case : Any = len(self.test_dataloader().dataset ) else: _snake_case : Dict = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=lowercase__ ) _snake_case : Optional[int] = len(self.train_dataloader().dataset ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = False ) -> str: """simple docstring""" raise NotImplementedError('''You must implement this for your task''' ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" return self.train_loader def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=lowercase__ ) def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> Optional[int]: """simple docstring""" return os.path.join( self.hparams.data_dir , '''cached_{}_{}_{}'''.format( lowercase__ , list(filter(lowercase__ , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def UpperCAmelCase_ ( self , lowercase__ ) -> None: """simple docstring""" _snake_case : Dict = self.output_dir.joinpath('''best_tfmr''' ) _snake_case : Tuple = self.step_count self.model.save_pretrained(lowercase__ ) self.tokenizer.save_pretrained(lowercase__ ) @staticmethod def UpperCAmelCase_ ( lowercase__ , lowercase__ ) -> Tuple: """simple docstring""" parser.add_argument( '''--model_name_or_path''' , default=lowercase__ , type=lowercase__ , required=lowercase__ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--config_name''' , default='''''' , type=lowercase__ , help='''Pretrained config name or path if not the same as model_name''' ) parser.add_argument( '''--tokenizer_name''' , default=lowercase__ , type=lowercase__ , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument( '''--cache_dir''' , default=str(Path(lowercase__ ).parent / '''test_run''' / '''cache''' ) , type=lowercase__ , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , ) parser.add_argument( '''--encoder_layerdrop''' , type=lowercase__ , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--decoder_layerdrop''' , type=lowercase__ , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--dropout''' , type=lowercase__ , help='''Dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--attention_dropout''' , type=lowercase__ , help='''Attention dropout probability (Optional). Goes into model.config''' , ) parser.add_argument('''--learning_rate''' , default=5E-5 , type=lowercase__ , help='''The initial learning rate for Adam.''' ) parser.add_argument( '''--lr_scheduler''' , default='''linear''' , choices=lowercase__ , metavar=lowercase__ , type=lowercase__ , help='''Learning rate scheduler''' , ) parser.add_argument('''--weight_decay''' , default=0.0 , type=lowercase__ , help='''Weight decay if we apply some.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=lowercase__ , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--warmup_steps''' , default=0 , type=lowercase__ , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--num_workers''' , default=4 , type=lowercase__ , help='''kwarg passed to DataLoader''' ) parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=lowercase__ ) parser.add_argument('''--train_batch_size''' , default=32 , type=lowercase__ ) parser.add_argument('''--eval_batch_size''' , default=32 , type=lowercase__ ) parser.add_argument('''--adafactor''' , action='''store_true''' ) class lowerCamelCase (pl.Callback ): def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> str: """simple docstring""" if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class lowerCamelCase (pl.Callback ): def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> List[str]: """simple docstring""" for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(lowercase__ ) class lowerCamelCase (pl.Callback ): def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Any: """simple docstring""" _snake_case : Any = trainer.lr_schedulers[0]['''scheduler'''] _snake_case : Optional[int] = {F'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> List[str]: """simple docstring""" rank_zero_info('''***** Validation results *****''' ) _snake_case : Dict = trainer.callback_metrics # Log results for key in sorted(lowercase__ ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Dict: """simple docstring""" rank_zero_info('''***** Test results *****''' ) _snake_case : Dict = trainer.callback_metrics # Log and save results to file _snake_case : str = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' ) with open(lowercase__ , '''w''' ) as writer: for key in sorted(lowercase__ ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) ) writer.write('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" parser.add_argument( '''--output_dir''' , default=str(Path(lowerCAmelCase_ ).parent / '''test_run''' / '''model_checkpoints''' ) , type=lowerCAmelCase_ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=lowerCAmelCase_ , default='''O2''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=lowerCAmelCase_ ) parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=lowerCAmelCase_ , help='''Max gradient norm''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' ) parser.add_argument( '''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=lowerCAmelCase_ , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--seed''' , type=lowerCAmelCase_ , default=42 , help='''random seed for initialization''' ) parser.add_argument( '''--data_dir''' , default=str(Path(lowerCAmelCase_ ).parent / '''test_run''' / '''dummy-train-data''' ) , type=lowerCAmelCase_ , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_=[] , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , ): """simple docstring""" pl.seed_everything(args.seed ) # init model _snake_case : Union[str, Any] = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=lowerCAmelCase_ ) # add custom checkpoints if checkpoint_callback is None: _snake_case : Any = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(lowerCAmelCase_ ) if logging_callback is None: _snake_case : str = LoggingCallback() _snake_case : Tuple = {} if args.fpaa: _snake_case : Union[str, Any] = 16 if args.gpus > 1: _snake_case : Optional[Any] = '''auto''' _snake_case : Tuple = '''ddp''' _snake_case : Optional[Any] = args.accumulate_grad_batches _snake_case : Tuple = None _snake_case : str = '''auto''' _snake_case : int = pl.Trainer.from_argparse_args( lowerCAmelCase_ , weights_summary=lowerCAmelCase_ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase_ , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase_ , ) if args.do_train: trainer.fit(lowerCAmelCase_ ) else: print('''RAG modeling tests with new set functions successfuly executed!''' ) return trainer
47
0
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def _a ( ): """simple docstring""" _snake_case : Tuple = { '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7], } _snake_case : str = Dataset.from_dict(snake_case__ ) return dataset class lowerCamelCase (_lowercase ): def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Union[str, Any] = get_dataset() _snake_case : Optional[Any] = make_duplicate_clusters(A_ , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : List[str] = get_dataset() _snake_case , _snake_case : Optional[Any] = deduplicate_dataset(A_ ) self.assertEqual(len(A_ ) , 2 ) print(A_ ) self.assertEqual(duplicate_clusters[0][0]['''copies'''] , 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''] , A_ )
700
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : Dict = { 'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowerCamelCase (a__ ): _lowercase : List[str] = """sew-d""" def __init__( self , lowercase__=32 , lowercase__=768 , lowercase__=12 , lowercase__=12 , lowercase__=3_072 , lowercase__=2 , lowercase__=512 , lowercase__=256 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.02 , lowercase__=1E-7 , lowercase__=1E-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=128 , lowercase__=16 , lowercase__=True , lowercase__=0.05 , lowercase__=10 , lowercase__=2 , lowercase__=0.0 , lowercase__=10 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=256 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ) -> Dict: """simple docstring""" super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ ) _snake_case : List[str] = hidden_size _snake_case : Optional[Any] = feat_extract_norm _snake_case : Tuple = feat_extract_activation _snake_case : Tuple = list(lowercase__ ) _snake_case : Any = list(lowercase__ ) _snake_case : Any = list(lowercase__ ) _snake_case : Any = conv_bias _snake_case : List[Any] = num_conv_pos_embeddings _snake_case : Any = num_conv_pos_embedding_groups _snake_case : Union[str, Any] = len(self.conv_dim ) _snake_case : Optional[Any] = num_hidden_layers _snake_case : Optional[int] = intermediate_size _snake_case : Any = squeeze_factor _snake_case : Optional[Any] = max_position_embeddings _snake_case : Tuple = position_buckets _snake_case : Tuple = share_att_key _snake_case : Any = relative_attention _snake_case : Optional[int] = norm_rel_ebd _snake_case : Optional[Any] = list(lowercase__ ) _snake_case : List[Any] = hidden_act _snake_case : List[Any] = num_attention_heads _snake_case : Dict = hidden_dropout _snake_case : Tuple = attention_dropout _snake_case : Union[str, Any] = activation_dropout _snake_case : List[Any] = feat_proj_dropout _snake_case : Optional[int] = final_dropout _snake_case : Optional[Any] = layer_norm_eps _snake_case : Dict = feature_layer_norm_eps _snake_case : List[Any] = initializer_range _snake_case : Dict = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _snake_case : Union[str, Any] = apply_spec_augment _snake_case : Any = mask_time_prob _snake_case : List[str] = mask_time_length _snake_case : Dict = mask_time_min_masks _snake_case : Union[str, Any] = mask_feature_prob _snake_case : Tuple = mask_feature_length _snake_case : Union[str, Any] = mask_feature_min_masks # ctc loss _snake_case : Optional[Any] = ctc_loss_reduction _snake_case : Optional[Any] = ctc_zero_infinity # sequence classification _snake_case : List[Any] = use_weighted_layer_sum _snake_case : Any = classifier_proj_size @property def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
47
0
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase : Tuple = logging.get_logger(__name__) UpperCAmelCase : List[str] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase : Tuple = { 'vocab_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/vocab.json', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/vocab.json', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/vocab.json', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/vocab.json', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/vocab.json', }, 'merges_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/merges.txt', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/merges.txt', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/merges.txt', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/merges.txt', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/merges.txt', }, 'tokenizer_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/tokenizer.json', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/tokenizer.json', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/tokenizer.json', }, } UpperCAmelCase : Dict = { 'gpt2': 1_0_2_4, 'gpt2-medium': 1_0_2_4, 'gpt2-large': 1_0_2_4, 'gpt2-xl': 1_0_2_4, 'distilgpt2': 1_0_2_4, } class lowerCamelCase (lowercase__ ): _lowercase : List[str] = VOCAB_FILES_NAMES _lowercase : str = PRETRAINED_VOCAB_FILES_MAP _lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : List[Any] = ['input_ids', 'attention_mask'] _lowercase : List[Any] = GPTaTokenizer def __init__( self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="<|endoftext|>" , lowercase__="<|endoftext|>" , lowercase__="<|endoftext|>" , lowercase__=False , **lowercase__ , ) -> List[Any]: """simple docstring""" super().__init__( lowercase__ , lowercase__ , tokenizer_file=lowercase__ , unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , add_prefix_space=lowercase__ , **lowercase__ , ) _snake_case : str = kwargs.pop('''add_bos_token''' , lowercase__ ) _snake_case : int = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowercase__ ) != add_prefix_space: _snake_case : Tuple = getattr(lowercase__ , pre_tok_state.pop('''type''' ) ) _snake_case : str = add_prefix_space _snake_case : str = pre_tok_class(**lowercase__ ) _snake_case : List[Any] = add_prefix_space def UpperCAmelCase_ ( self , *lowercase__ , **lowercase__ ) -> str: """simple docstring""" _snake_case : List[str] = kwargs.get('''is_split_into_words''' , lowercase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowercase__ , **lowercase__ ) def UpperCAmelCase_ ( self , *lowercase__ , **lowercase__ ) -> List[str]: """simple docstring""" _snake_case : Tuple = kwargs.get('''is_split_into_words''' , lowercase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowercase__ , **lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> Optional[int]: """simple docstring""" _snake_case : List[Any] = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> Any: """simple docstring""" _snake_case : Optional[int] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase__ , add_special_tokens=lowercase__ ) + [self.eos_token_id] ) if len(lowercase__ ) > self.model_max_length: _snake_case : Optional[int] = input_ids[-self.model_max_length :] return input_ids
701
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : List[Any] = 0 if start < end: _snake_case : List[Any] = randint(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Any = a[end] _snake_case : List[str] = a[pivot] _snake_case : Optional[int] = temp _snake_case , _snake_case : List[Any] = _in_place_partition(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) count += _in_place_quick_sort(lowerCAmelCase_ , lowerCAmelCase_ , p - 1 ) count += _in_place_quick_sort(lowerCAmelCase_ , p + 1 , lowerCAmelCase_ ) return count def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = 0 _snake_case : Optional[int] = randint(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Tuple = a[end] _snake_case : Optional[Any] = a[pivot] _snake_case : Union[str, Any] = temp _snake_case : Union[str, Any] = start - 1 for index in range(lowerCAmelCase_ , lowerCAmelCase_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _snake_case : Optional[int] = new_pivot_index + 1 _snake_case : Optional[Any] = a[new_pivot_index] _snake_case : Tuple = a[index] _snake_case : str = temp _snake_case : Any = a[new_pivot_index + 1] _snake_case : str = a[end] _snake_case : Optional[int] = temp return new_pivot_index + 1, count UpperCAmelCase : Dict = TemporaryFile() UpperCAmelCase : Dict = 1_0_0 # 1000 elements are to be sorted UpperCAmelCase, UpperCAmelCase : str = 0, 1 # mean and standard deviation UpperCAmelCase : Optional[Any] = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array UpperCAmelCase : int = np.load(outfile) UpperCAmelCase : Optional[int] = len(M) - 1 UpperCAmelCase : str = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
47
0
'''simple docstring''' import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class lowerCamelCase (unittest.TestCase ): def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : Optional[int] = '''ylacombe/bark-small''' _snake_case : Dict = tempfile.mkdtemp() _snake_case : Any = '''en_speaker_1''' _snake_case : int = '''This is a test string''' _snake_case : Optional[Any] = '''speaker_embeddings_path.json''' _snake_case : List[Any] = '''speaker_embeddings''' def UpperCAmelCase_ ( self , **lowercase__ ) -> Optional[int]: """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **lowercase__ ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" _snake_case : Any = self.get_tokenizer() _snake_case : Any = BarkProcessor(tokenizer=lowercase__ ) processor.save_pretrained(self.tmpdirname ) _snake_case : Any = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) _snake_case : List[str] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _snake_case : Optional[int] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" _snake_case : Dict = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) _snake_case : Optional[Any] = 35 _snake_case : List[str] = 2 _snake_case : Any = 8 _snake_case : Any = { '''semantic_prompt''': np.ones(lowercase__ ), '''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len) ), '''fine_prompt''': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset _snake_case : Dict = processor(text=self.input_string , voice_preset=lowercase__ ) _snake_case : str = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowercase__ , np.array([] ) ).tolist() ) # test loading voice preset from npz file _snake_case : List[Any] = os.path.join(self.tmpdirname , '''file.npz''' ) np.savez(lowercase__ , **lowercase__ ) _snake_case : Any = processor(text=self.input_string , voice_preset=lowercase__ ) _snake_case : List[str] = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowercase__ , np.array([] ) ).tolist() ) # test loading voice preset from the hub _snake_case : str = processor(text=self.input_string , voice_preset=self.voice_preset ) def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" _snake_case : List[str] = self.get_tokenizer() _snake_case : int = BarkProcessor(tokenizer=lowercase__ ) _snake_case : Tuple = processor(text=self.input_string ) _snake_case : str = tokenizer( self.input_string , padding='''max_length''' , max_length=256 , add_special_tokens=lowercase__ , return_attention_mask=lowercase__ , return_token_type_ids=lowercase__ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
702
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
47
0
'''simple docstring''' def _a ( lowerCAmelCase_ = 4_000_000 ): """simple docstring""" _snake_case : Any = [] _snake_case : Optional[int] = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(snake_case_ ) _snake_case : List[str] = b, a + b return sum(snake_case_ ) if __name__ == "__main__": print(F"""{solution() = }""")
703
'''simple docstring''' from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def _a ( ): """simple docstring""" _snake_case : List[Any] = ArgumentParser('''Transformers CLI tool''' , usage='''transformers-cli <command> [<args>]''' ) _snake_case : List[str] = parser.add_subparsers(help='''transformers-cli command helpers''' ) # Register commands ConvertCommand.register_subcommand(lowerCAmelCase_ ) DownloadCommand.register_subcommand(lowerCAmelCase_ ) EnvironmentCommand.register_subcommand(lowerCAmelCase_ ) RunCommand.register_subcommand(lowerCAmelCase_ ) ServeCommand.register_subcommand(lowerCAmelCase_ ) UserCommands.register_subcommand(lowerCAmelCase_ ) AddNewModelCommand.register_subcommand(lowerCAmelCase_ ) AddNewModelLikeCommand.register_subcommand(lowerCAmelCase_ ) LfsCommands.register_subcommand(lowerCAmelCase_ ) PTtoTFCommand.register_subcommand(lowerCAmelCase_ ) # Let's go _snake_case : str = parser.parse_args() if not hasattr(lowerCAmelCase_ , '''func''' ): parser.print_help() exit(1 ) # Run _snake_case : Union[str, Any] = args.func(lowerCAmelCase_ ) service.run() if __name__ == "__main__": main()
47
0
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=99 , lowercase__=32 , lowercase__=5 , lowercase__=4 , lowercase__=37 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=512 , lowercase__=16 , lowercase__=2 , lowercase__=0.02 , lowercase__=3 , lowercase__=4 , lowercase__=None , ) -> Dict: """simple docstring""" _snake_case : List[str] = parent _snake_case : Optional[Any] = batch_size _snake_case : Optional[Any] = seq_length _snake_case : Optional[Any] = is_training _snake_case : Optional[Any] = use_input_mask _snake_case : Optional[int] = use_token_type_ids _snake_case : Union[str, Any] = use_labels _snake_case : Tuple = vocab_size _snake_case : Any = hidden_size _snake_case : Optional[int] = num_hidden_layers _snake_case : Any = num_attention_heads _snake_case : Tuple = intermediate_size _snake_case : Union[str, Any] = hidden_act _snake_case : Tuple = hidden_dropout_prob _snake_case : List[Any] = attention_probs_dropout_prob _snake_case : List[Any] = max_position_embeddings _snake_case : str = type_vocab_size _snake_case : str = type_sequence_label_size _snake_case : str = initializer_range _snake_case : Dict = num_labels _snake_case : Tuple = num_choices _snake_case : List[Any] = scope def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" _snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case : int = None if self.use_input_mask: _snake_case : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case : Optional[Any] = None if self.use_token_type_ids: _snake_case : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _snake_case : Optional[int] = None _snake_case : Tuple = None _snake_case : str = None if self.use_labels: _snake_case : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) _snake_case : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Optional[int]: """simple docstring""" _snake_case : List[Any] = LlamaModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() _snake_case : Dict = model(lowercase__ , attention_mask=lowercase__ ) _snake_case : Union[str, Any] = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ) -> List[str]: """simple docstring""" _snake_case : Any = True _snake_case : Any = LlamaModel(lowercase__ ) model.to(lowercase__ ) model.eval() _snake_case : Tuple = model( lowercase__ , attention_mask=lowercase__ , encoder_hidden_states=lowercase__ , encoder_attention_mask=lowercase__ , ) _snake_case : int = model( lowercase__ , attention_mask=lowercase__ , encoder_hidden_states=lowercase__ , ) _snake_case : int = model(lowercase__ , attention_mask=lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ) -> Optional[Any]: """simple docstring""" _snake_case : int = LlamaForCausalLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() _snake_case : str = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ) -> List[Any]: """simple docstring""" _snake_case : List[Any] = True _snake_case : List[Any] = True _snake_case : List[str] = LlamaForCausalLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() # first forward pass _snake_case : int = model( lowercase__ , attention_mask=lowercase__ , encoder_hidden_states=lowercase__ , encoder_attention_mask=lowercase__ , use_cache=lowercase__ , ) _snake_case : List[str] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _snake_case : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case : Union[str, Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _snake_case : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) _snake_case : Optional[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) _snake_case : Any = model( lowercase__ , attention_mask=lowercase__ , encoder_hidden_states=lowercase__ , encoder_attention_mask=lowercase__ , output_hidden_states=lowercase__ , )["hidden_states"][0] _snake_case : Optional[int] = model( lowercase__ , attention_mask=lowercase__ , encoder_hidden_states=lowercase__ , encoder_attention_mask=lowercase__ , past_key_values=lowercase__ , output_hidden_states=lowercase__ , )["hidden_states"][0] # select random slice _snake_case : List[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() _snake_case : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() _snake_case : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1E-3 ) ) def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" _snake_case : int = self.prepare_config_and_inputs() ( _snake_case ) : Tuple = config_and_inputs _snake_case : Tuple = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCamelCase (lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): _lowercase : int = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _lowercase : Optional[Any] = (LlamaForCausalLM,) if is_torch_available() else () _lowercase : Any = ( { """feature-extraction""": LlamaModel, """text-classification""": LlamaForSequenceClassification, """text-generation""": LlamaForCausalLM, """zero-shot""": LlamaForSequenceClassification, } if is_torch_available() else {} ) _lowercase : int = False _lowercase : Union[str, Any] = False def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" _snake_case : int = LlamaModelTester(self ) _snake_case : str = ConfigTester(self , config_class=lowercase__ , hidden_size=37 ) def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _snake_case : Optional[int] = type self.model_tester.create_and_check_model(*lowercase__ ) def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" _snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Tuple = 3 _snake_case : List[str] = input_dict["input_ids"] _snake_case : int = input_ids.ne(1 ).to(lowercase__ ) _snake_case : Dict = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _snake_case : List[Any] = LlamaForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() _snake_case : Tuple = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Dict = 3 _snake_case : Optional[int] = "single_label_classification" _snake_case : List[Any] = input_dict["input_ids"] _snake_case : Optional[int] = input_ids.ne(1 ).to(lowercase__ ) _snake_case : Dict = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _snake_case : Union[str, Any] = LlamaForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() _snake_case : List[Any] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Union[str, Any] = 3 _snake_case : Dict = "multi_label_classification" _snake_case : List[str] = input_dict["input_ids"] _snake_case : Optional[Any] = input_ids.ne(1 ).to(lowercase__ ) _snake_case : Optional[int] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _snake_case : Tuple = LlamaForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() _snake_case : List[str] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''LLaMA buffers include complex numbers, which breaks this test''' ) def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def UpperCAmelCase_ ( self , lowercase__ ) -> Optional[int]: """simple docstring""" _snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Optional[int] = ids_tensor([1, 10] , config.vocab_size ) _snake_case : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _snake_case : Optional[Any] = LlamaModel(lowercase__ ) original_model.to(lowercase__ ) original_model.eval() _snake_case : Optional[Any] = original_model(lowercase__ ).last_hidden_state _snake_case : Union[str, Any] = original_model(lowercase__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _snake_case : str = {"type": scaling_type, "factor": 10.0} _snake_case : int = LlamaModel(lowercase__ ) scaled_model.to(lowercase__ ) scaled_model.eval() _snake_case : Tuple = scaled_model(lowercase__ ).last_hidden_state _snake_case : Any = scaled_model(lowercase__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(lowercase__ , lowercase__ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowercase__ , lowercase__ , atol=1E-5 ) ) @require_torch class lowerCamelCase (unittest.TestCase ): @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : Optional[Any] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] _snake_case : List[Any] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-7b-hf''' , device_map='''auto''' ) _snake_case : Optional[int] = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 _snake_case : str = torch.tensor([[-6.6_550, -4.1_227, -4.9_859, -3.2_406, 0.8_262, -3.0_033, 1.2_964, -3.3_699]] ) torch.testing.assert_close(out.mean(-1 ) , lowercase__ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off _snake_case : Optional[Any] = torch.tensor([-12.8_281, -7.4_453, -0.4_639, -8.0_625, -7.2_500, -8.0_000, -6.4_883, -7.7_695, -7.8_438, -7.0_312, -6.2_188, -7.1_328, -1.8_496, 1.9_961, -8.6_250, -6.7_227, -12.8_281, -6.9_492, -7.0_742, -7.7_852, -7.5_820, -7.9_062, -6.9_375, -7.9_805, -8.3_438, -8.1_562, -8.0_469, -7.6_250, -7.7_422, -7.3_398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , lowercase__ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" _snake_case : Union[str, Any] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] _snake_case : int = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-hf''' , device_map='''auto''' ) _snake_case : List[Any] = model(torch.tensor(lowercase__ ) ) # Expected mean on dim = -1 _snake_case : Any = torch.tensor([[-2.0_622, -1.2_794, -1.1_638, -0.9_788, -1.4_603, -1.0_238, -1.7_893, -1.4_411]] ) torch.testing.assert_close(out.mean(-1 ) , lowercase__ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off _snake_case : List[Any] = torch.tensor([-8.1_406, -8.0_547, 2.7_461, -1.2_344, -0.1_448, -1.8_262, -1.0_020, -1.8_154, -1.6_895, -1.8_516, -2.3_574, -0.9_277, 3.7_598, 6.5_742, -1.2_998, -0.1_177, -8.1_406, -2.9_688, -2.9_199, -3.1_699, -3.5_254, -2.3_555, -2.7_988, -3.4_141, -2.8_262, -4.5_195, -3.3_379, -3.3_164, -2.7_832, -3.0_273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , lowercase__ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" _snake_case : Union[str, Any] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] _snake_case : List[str] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' , device_map='''auto''' ) _snake_case : List[str] = model(torch.tensor(lowercase__ ) ) # Expected mean on dim = -1 _snake_case : Optional[int] = torch.tensor([[-0.8_562, -1.8_520, -0.7_551, -0.4_162, -1.5_161, -1.2_038, -2.4_823, -2.3_254]] ) torch.testing.assert_close(out.mean(-1 ) , lowercase__ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off _snake_case : Any = torch.tensor([-2.2_227, 4.8_828, 0.9_023, -0.4_578, -0.7_871, -0.1_033, -0.6_221, -0.5_786, -0.7_803, -1.0_674, -1.2_920, -0.1_570, 0.8_008, 2.0_723, -0.9_497, 0.2_771, -2.2_227, -0.7_612, -1.4_346, -1.2_061, -1.6_426, -0.3_000, -0.7_139, -1.1_934, -1.8_691, -1.6_973, -1.5_947, -1.2_705, -0.3_523, -0.5_513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , lowercase__ , atol=1E-2 , rtol=1E-2 ) @unittest.skip( '''Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test''' ) @slow def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" _snake_case : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] _snake_case : str = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-70b-hf''' , device_map='''auto''' ) _snake_case : Tuple = model(torch.tensor(lowercase__ ) ) _snake_case : List[Any] = torch.tensor( [[-4.2_327, -3.3_360, -4.6_665, -4.7_631, -1.8_180, -3.4_170, -1.4_211, -3.1_810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , lowercase__ , atol=1E-2 , rtol=1E-2 ) # fmt: off _snake_case : Dict = torch.tensor([-9.4_922, -3.9_551, 1.7_998, -5.6_758, -5.1_055, -5.8_984, -4.8_320, -6.8_086, -6.5_391, -5.6_172, -5.5_820, -5.5_352, 1.7_881, 3.6_289, -6.5_117, -3.4_785, -9.5_000, -6.0_352, -6.8_125, -6.0_195, -6.6_836, -5.4_727, -6.2_812, -6.0_391, -7.3_398, -7.4_297, -7.4_844, -6.5_820, -5.8_789, -5.5_312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , lowercase__ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Model is curently gated''' ) @slow def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : int = "Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi" _snake_case : Tuple = "Simply put, the theory of relativity states that " _snake_case : Optional[int] = LlamaTokenizer.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' ) _snake_case : List[Any] = tokenizer.encode(lowercase__ , return_tensors='''pt''' ) _snake_case : List[Any] = LlamaForCausalLM.from_pretrained( '''meta-llama/Llama-2-13b-chat-hf''' , device_map='''sequential''' , use_safetensors=lowercase__ ) # greedy generation outputs _snake_case : Optional[Any] = model.generate(lowercase__ , max_new_tokens=64 , top_p=lowercase__ , temperature=1 , do_sample=lowercase__ ) _snake_case : List[Any] = tokenizer.decode(generated_ids[0] , skip_special_tokens=lowercase__ ) self.assertEqual(lowercase__ , lowercase__ )
704
'''simple docstring''' from collections.abc import Generator def _a ( ): """simple docstring""" _snake_case , _snake_case : Union[str, Any] = 0, 1 while True: _snake_case , _snake_case : List[str] = b, a + b yield b def _a ( lowerCAmelCase_ = 1_000 ): """simple docstring""" _snake_case : List[str] = 1 _snake_case : Dict = fibonacci_generator() while len(str(next(lowerCAmelCase_ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
47
0
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) UpperCAmelCase : Union[str, Any] = _symbol_database.Default() UpperCAmelCase : Dict = _descriptor_pool.Default().AddSerializedFile( b'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) UpperCAmelCase : List[Any] = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: UpperCAmelCase : int = None UpperCAmelCase : Optional[Any] = b'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" UpperCAmelCase : Any = 4_5 UpperCAmelCase : Any = 1_5_8_1 UpperCAmelCase : Optional[Any] = 1_5_1_7 UpperCAmelCase : int = 1_5_7_0 UpperCAmelCase : List[Any] = 1_5_8_4 UpperCAmelCase : Tuple = 1_7_9_3 UpperCAmelCase : List[str] = 1_7_9_5 UpperCAmelCase : Any = 1_9_1_6 UpperCAmelCase : List[Any] = 1_8_6_4 UpperCAmelCase : Any = 1_9_0_5 UpperCAmelCase : Optional[Any] = 1_9_1_9 UpperCAmelCase : Optional[int] = 2_4_2_9 UpperCAmelCase : str = 2_2_0_8 UpperCAmelCase : int = 2_4_1_8 UpperCAmelCase : Any = 2_3_2_3 UpperCAmelCase : List[str] = 2_4_0_7 # @@protoc_insertion_point(module_scope)
705
'''simple docstring''' import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor UpperCAmelCase : str = logging.getLogger(__name__) UpperCAmelCase : Dict = 5_0 # max width of layer names UpperCAmelCase : Union[str, Any] = 7_0 # max width of quantizer names def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Dict = parser.add_argument_group('''quant_trainer arguments''' ) group.add_argument('''--wprec''' , type=lowerCAmelCase_ , default=8 , help='''weight precision''' ) group.add_argument('''--aprec''' , type=lowerCAmelCase_ , default=8 , help='''activation precision''' ) group.add_argument('''--quant-per-tensor''' , action='''store_true''' , help='''per tensor weight scaling''' ) group.add_argument('''--quant-disable''' , action='''store_true''' , help='''disable all quantizers''' ) group.add_argument('''--quant-disable-embeddings''' , action='''store_true''' , help='''disable all embeddings quantizers''' ) group.add_argument('''--quant-disable-keyword''' , type=lowerCAmelCase_ , nargs='''+''' , help='''disable quantizers by keyword''' ) group.add_argument('''--quant-disable-layer-module''' , type=lowerCAmelCase_ , help='''disable quantizers by keyword under layer.''' ) group.add_argument('''--quant-enable-layer-module''' , type=lowerCAmelCase_ , help='''enable quantizers by keyword under layer''' ) group.add_argument('''--calibrator''' , default='''max''' , help='''which quantization range calibrator to use''' ) group.add_argument('''--percentile''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help='''percentile for PercentileCalibrator''' ) group.add_argument('''--fuse-qkv''' , action='''store_true''' , help='''use the same scale factor for qkv''' ) group.add_argument('''--clip-gelu''' , metavar='''N''' , type=lowerCAmelCase_ , help='''clip gelu output maximum value to N''' ) group.add_argument( '''--recalibrate-weights''' , action='''store_true''' , help=( '''recalibrate weight amaxes by taking the max of the weights.''' ''' amaxes will be computed with the current quantization granularity (axis).''' ) , ) def _a ( lowerCAmelCase_ ): """simple docstring""" if args.calibrator == "max": _snake_case : Optional[int] = '''max''' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('''Specify --percentile when using percentile calibrator''' ) _snake_case : Tuple = '''histogram''' elif args.calibrator == "mse": _snake_case : int = '''histogram''' else: raise ValueError(f'''Invalid calibrator {args.calibrator}''' ) _snake_case : Tuple = QuantDescriptor(num_bits=args.aprec , calib_method=lowerCAmelCase_ ) _snake_case : str = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(lowerCAmelCase_ ) quant_nn.QuantLinear.set_default_quant_desc_weight(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False , lowerCAmelCase_=False ): """simple docstring""" logger.info('''Configuring Model for Quantization''' ) logger.info(f'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(lowerCAmelCase_ , ['''embeddings'''] , which='''weight''' , _disabled=lowerCAmelCase_ ) if args.quant_disable: set_quantizer_by_name(lowerCAmelCase_ , [''''''] , _disabled=lowerCAmelCase_ ) if args.quant_disable_keyword: set_quantizer_by_name(lowerCAmelCase_ , args.quant_disable_keyword , _disabled=lowerCAmelCase_ ) if args.quant_disable_layer_module: set_quantizer_by_name(lowerCAmelCase_ , [R'''layer.\d+.''' + args.quant_disable_layer_module] , _disabled=lowerCAmelCase_ ) if args.quant_enable_layer_module: set_quantizer_by_name(lowerCAmelCase_ , [R'''layer.\d+.''' + args.quant_enable_layer_module] , _disabled=lowerCAmelCase_ ) if args.recalibrate_weights: recalibrate_weights(lowerCAmelCase_ ) if args.fuse_qkv: fuse_qkv(lowerCAmelCase_ , lowerCAmelCase_ ) if args.clip_gelu: clip_gelu(lowerCAmelCase_ , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ ): """simple docstring""" logger.info('''Enabling Calibration''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(f'''{name:80}: {module}''' ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" logger.info('''Loading calibrated amax''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('''percentile''' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" def fusea(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): for mod in [qq, qk, qv]: if not hasattr(lowerCAmelCase_ , '''_amax''' ): print(''' WARNING: NO AMAX BUFFER''' ) return _snake_case : Tuple = qq._amax.detach().item() _snake_case : Tuple = qk._amax.detach().item() _snake_case : List[Any] = qv._amax.detach().item() _snake_case : List[str] = max(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) qq._amax.fill_(lowerCAmelCase_ ) qk._amax.fill_(lowerCAmelCase_ ) qv._amax.fill_(lowerCAmelCase_ ) logger.info(f''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith('''.attention.self''' ): logger.info(f'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if name.endswith('''.output.dense''' ) and not name.endswith('''attention.output.dense''' ): _snake_case : List[Any] = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=lowerCAmelCase_ ) _snake_case : List[str] = mod._input_quantizer._amax.data.detach().item() logger.info(f'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def _a ( lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ) and mod._weight_quantizer.axis is not None: _snake_case : Dict = mod.weight.shape[0] _snake_case : Optional[int] = mod._weight_quantizer._amax.detach() _snake_case : Optional[int] = torch.ones(lowerCAmelCase_ , dtype=amax.dtype , device=amax.device ) * amax print(f'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def _a ( lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ): if not hasattr(mod.weight_quantizer , '''_amax''' ): print('''RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER''' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) _snake_case : int = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) _snake_case : Dict = set(range(len(mod.weight.size() ) ) ) - axis_set _snake_case : Optional[int] = pytorch_quantization.utils.reduce_amax(mod.weight , axis=lowerCAmelCase_ , keepdims=lowerCAmelCase_ ).detach() logger.info(f'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) _snake_case : Tuple = amax def _a ( lowerCAmelCase_ , lowerCAmelCase_=25 , lowerCAmelCase_=180 , lowerCAmelCase_=None ): """simple docstring""" if ignore is None: _snake_case : Dict = [] elif not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Optional[int] = [ignore] _snake_case : str = 0 for name, mod in model.named_modules(): if not hasattr(lowerCAmelCase_ , '''weight''' ): continue _snake_case : Optional[int] = max(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) for name, mod in model.named_modules(): _snake_case : Optional[Any] = getattr(lowerCAmelCase_ , '''_input_quantizer''' , lowerCAmelCase_ ) _snake_case : Tuple = getattr(lowerCAmelCase_ , '''_weight_quantizer''' , lowerCAmelCase_ ) if not hasattr(lowerCAmelCase_ , '''weight''' ): continue if type(lowerCAmelCase_ ) in ignore: continue if [True for s in ignore if type(lowerCAmelCase_ ) is str and s in name]: continue _snake_case : Optional[int] = f'''Act:{input_q.extra_repr()}''' _snake_case : Any = f'''Wgt:{weight_q.extra_repr()}''' _snake_case : Optional[int] = f'''{name:{name_width}} {act_str} {wgt_str}''' if len(lowerCAmelCase_ ) <= line_width: logger.info(lowerCAmelCase_ ) else: logger.info(f'''{name:{name_width}} {act_str}''' ) logger.info(f'''{" ":{name_width}} {wgt_str}''' ) def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : str = 0 for name, mod in model.named_modules(): if isinstance(lowerCAmelCase_ , pytorch_quantization.nn.TensorQuantizer ): print(f'''{name:80} {mod}''' ) count += 1 print(f'''{count} TensorQuantizers found in model''' ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if quantizer_mod is not None: assert hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: logger.warning(f'''{name} has no {quantizer}''' ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_="both" , **lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = f'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' if which in ["input", "both"]: set_quantizer(lowerCAmelCase_ , lowerCAmelCase_ , '''_input_quantizer''' , lowerCAmelCase_ , lowerCAmelCase_ ) if which in ["weight", "both"]: set_quantizer(lowerCAmelCase_ , lowerCAmelCase_ , '''_weight_quantizer''' , lowerCAmelCase_ , lowerCAmelCase_ ) logger.info(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCAmelCase_ , '''_input_quantizer''' ) or hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ): for n in names: if re.search(lowerCAmelCase_ , lowerCAmelCase_ ): set_quantizers(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) elif name.endswith('''_quantizer''' ): for n in names: if re.search(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Any = f'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) logger.info(lowerCAmelCase_ )
47
0
'''simple docstring''' from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker UpperCAmelCase : Dict = 'CompVis/stable-diffusion-v1-1' UpperCAmelCase : int = 'CompVis/stable-diffusion-v1-2' UpperCAmelCase : List[str] = 'CompVis/stable-diffusion-v1-3' UpperCAmelCase : List[Any] = 'CompVis/stable-diffusion-v1-4' class lowerCamelCase (__a ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = True , ) -> Optional[Any]: """simple docstring""" super()._init_() _snake_case : Tuple = StableDiffusionPipeline.from_pretrained(a_ ) _snake_case : int = StableDiffusionPipeline.from_pretrained(a_ ) _snake_case : Any = StableDiffusionPipeline.from_pretrained(a_ ) _snake_case : Any = StableDiffusionPipeline( vae=a_ , text_encoder=a_ , tokenizer=a_ , unet=a_ , scheduler=a_ , safety_checker=a_ , feature_extractor=a_ , requires_safety_checker=a_ , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" return {k: getattr(self , a_ ) for k in self.config.keys() if not k.startswith('''_''' )} def UpperCAmelCase_ ( self , lowercase__ = "auto" ) -> Any: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _snake_case : Optional[int] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(a_ ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" self.enable_attention_slicing(a_ ) @torch.no_grad() def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = 512 , lowercase__ = 512 , lowercase__ = 50 , lowercase__ = 7.5 , lowercase__ = None , lowercase__ = 1 , lowercase__ = 0.0 , lowercase__ = None , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , lowercase__ = None , lowercase__ = 1 , **lowercase__ , ) -> str: """simple docstring""" return self.pipea( prompt=a_ , height=a_ , width=a_ , num_inference_steps=a_ , guidance_scale=a_ , negative_prompt=a_ , num_images_per_prompt=a_ , eta=a_ , generator=a_ , latents=a_ , output_type=a_ , return_dict=a_ , callback=a_ , callback_steps=a_ , **a_ , ) @torch.no_grad() def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = 512 , lowercase__ = 512 , lowercase__ = 50 , lowercase__ = 7.5 , lowercase__ = None , lowercase__ = 1 , lowercase__ = 0.0 , lowercase__ = None , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , lowercase__ = None , lowercase__ = 1 , **lowercase__ , ) -> List[Any]: """simple docstring""" return self.pipea( prompt=a_ , height=a_ , width=a_ , num_inference_steps=a_ , guidance_scale=a_ , negative_prompt=a_ , num_images_per_prompt=a_ , eta=a_ , generator=a_ , latents=a_ , output_type=a_ , return_dict=a_ , callback=a_ , callback_steps=a_ , **a_ , ) @torch.no_grad() def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = 512 , lowercase__ = 512 , lowercase__ = 50 , lowercase__ = 7.5 , lowercase__ = None , lowercase__ = 1 , lowercase__ = 0.0 , lowercase__ = None , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , lowercase__ = None , lowercase__ = 1 , **lowercase__ , ) -> List[Any]: """simple docstring""" return self.pipea( prompt=a_ , height=a_ , width=a_ , num_inference_steps=a_ , guidance_scale=a_ , negative_prompt=a_ , num_images_per_prompt=a_ , eta=a_ , generator=a_ , latents=a_ , output_type=a_ , return_dict=a_ , callback=a_ , callback_steps=a_ , **a_ , ) @torch.no_grad() def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = 512 , lowercase__ = 512 , lowercase__ = 50 , lowercase__ = 7.5 , lowercase__ = None , lowercase__ = 1 , lowercase__ = 0.0 , lowercase__ = None , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , lowercase__ = None , lowercase__ = 1 , **lowercase__ , ) -> Optional[int]: """simple docstring""" return self.pipea( prompt=a_ , height=a_ , width=a_ , num_inference_steps=a_ , guidance_scale=a_ , negative_prompt=a_ , num_images_per_prompt=a_ , eta=a_ , generator=a_ , latents=a_ , output_type=a_ , return_dict=a_ , callback=a_ , callback_steps=a_ , **a_ , ) @torch.no_grad() def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = 512 , lowercase__ = 512 , lowercase__ = 50 , lowercase__ = 7.5 , lowercase__ = None , lowercase__ = 1 , lowercase__ = 0.0 , lowercase__ = None , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , lowercase__ = None , lowercase__ = 1 , **lowercase__ , ) -> List[Any]: """simple docstring""" _snake_case : int = """cuda""" if torch.cuda.is_available() else """cpu""" self.to(a_ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` must be divisible by 8 but are {height} and {width}.''' ) # Get first result from Stable Diffusion Checkpoint v1.1 _snake_case : Dict = self.textaimg_sda_a( prompt=a_ , height=a_ , width=a_ , num_inference_steps=a_ , guidance_scale=a_ , negative_prompt=a_ , num_images_per_prompt=a_ , eta=a_ , generator=a_ , latents=a_ , output_type=a_ , return_dict=a_ , callback=a_ , callback_steps=a_ , **a_ , ) # Get first result from Stable Diffusion Checkpoint v1.2 _snake_case : str = self.textaimg_sda_a( prompt=a_ , height=a_ , width=a_ , num_inference_steps=a_ , guidance_scale=a_ , negative_prompt=a_ , num_images_per_prompt=a_ , eta=a_ , generator=a_ , latents=a_ , output_type=a_ , return_dict=a_ , callback=a_ , callback_steps=a_ , **a_ , ) # Get first result from Stable Diffusion Checkpoint v1.3 _snake_case : Optional[int] = self.textaimg_sda_a( prompt=a_ , height=a_ , width=a_ , num_inference_steps=a_ , guidance_scale=a_ , negative_prompt=a_ , num_images_per_prompt=a_ , eta=a_ , generator=a_ , latents=a_ , output_type=a_ , return_dict=a_ , callback=a_ , callback_steps=a_ , **a_ , ) # Get first result from Stable Diffusion Checkpoint v1.4 _snake_case : Optional[int] = self.textaimg_sda_a( prompt=a_ , height=a_ , width=a_ , num_inference_steps=a_ , guidance_scale=a_ , negative_prompt=a_ , num_images_per_prompt=a_ , eta=a_ , generator=a_ , latents=a_ , output_type=a_ , return_dict=a_ , callback=a_ , callback_steps=a_ , **a_ , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
706
'''simple docstring''' from __future__ import annotations def _a ( lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None ): """simple docstring""" if start is None: _snake_case : Optional[Any] = 0 if end is None: _snake_case : Any = len(lowerCAmelCase_ ) - 1 if start >= end: return _snake_case : Optional[Any] = (start + end) // 2 slowsort(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) slowsort(lowerCAmelCase_ , mid + 1 , lowerCAmelCase_ ) if sequence[end] < sequence[mid]: _snake_case , _snake_case : int = sequence[mid], sequence[end] slowsort(lowerCAmelCase_ , lowerCAmelCase_ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
47
0
'''simple docstring''' import torch from diffusers import StableDiffusionPipeline UpperCAmelCase : int = 'path-to-your-trained-model' UpperCAmelCase : Dict = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to('cuda') UpperCAmelCase : Dict = 'A photo of sks dog in a bucket' UpperCAmelCase : Optional[int] = pipe(prompt, num_inference_steps=5_0, guidance_scale=7.5).images[0] image.save('dog-bucket.png')
707
'''simple docstring''' import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class lowerCamelCase (unittest.TestCase ): @slow def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Tuple = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) _snake_case : Any = AutoTokenizer.from_pretrained('''google/mt5-small''' ) _snake_case : List[str] = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids _snake_case : Dict = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids _snake_case : Any = shift_tokens_right(lowercase__ , model.config.pad_token_id , model.config.decoder_start_token_id ) _snake_case : Any = model(lowercase__ , decoder_input_ids=lowercase__ ).logits _snake_case : Tuple = optax.softmax_cross_entropy(lowercase__ , onehot(lowercase__ , logits.shape[-1] ) ).mean() _snake_case : Tuple = -(labels.shape[-1] * loss.item()) _snake_case : Union[str, Any] = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
47
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase : Union[str, Any] = "▁" UpperCAmelCase : str = {"vocab_file": "sentencepiece.bpe.model", "monolingual_vocab_file": "dict.txt"} UpperCAmelCase : Tuple = { "vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model", }, "monolingual_vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt", }, } UpperCAmelCase : Optional[int] = {"vinai/bartpho-syllable": 1_0_2_4} class lowerCamelCase (_UpperCAmelCase ): _lowercase : Union[str, Any] = VOCAB_FILES_NAMES _lowercase : Any = PRETRAINED_VOCAB_FILES_MAP _lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : List[str] = ["""input_ids""", """attention_mask"""] def __init__( self , lowercase__ , lowercase__ , lowercase__="<s>" , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<mask>" , lowercase__ = None , **lowercase__ , ) -> List[str]: """simple docstring""" _snake_case : int = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token _snake_case : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) _snake_case : Tuple = vocab_file _snake_case : Any = monolingual_vocab_file _snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowercase_ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility _snake_case : Dict = {} _snake_case : Optional[int] = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(lowercase_ ) not in self.fairseq_tokens_to_ids: _snake_case : List[Any] = cnt cnt += 1 with open(lowercase_ , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): _snake_case : int = line.strip().split()[0] _snake_case : Dict = len(self.fairseq_tokens_to_ids ) if str(lowercase_ ) not in self.fairseq_tokens_to_ids: _snake_case : Optional[Any] = len(self.fairseq_tokens_to_ids ) _snake_case : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> str: """simple docstring""" _snake_case : List[str] = self.__dict__.copy() _snake_case : Optional[Any] = None _snake_case : str = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowercase__ ) -> str: """simple docstring""" _snake_case : int = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _snake_case : int = {} _snake_case : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> Any: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _snake_case : Optional[int] = [self.cls_token_id] _snake_case : str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None , lowercase__ = False ) -> Optional[Any]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ ) if token_ids_a is None: return [1] + ([0] * len(lowercase_ )) + [1] return [1] + ([0] * len(lowercase_ )) + [1, 1] + ([0] * len(lowercase_ )) + [1] def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> List[Any]: """simple docstring""" _snake_case : Any = [self.sep_token_id] _snake_case : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" return len(self.fairseq_ids_to_tokens ) def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" _snake_case : Dict = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase_ ( self , lowercase__ ) -> Union[str, Any]: """simple docstring""" return self.sp_model.encode(lowercase_ , out_type=lowercase_ ) def UpperCAmelCase_ ( self , lowercase__ ) -> Optional[int]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def UpperCAmelCase_ ( self , lowercase__ ) -> str: """simple docstring""" return self.fairseq_ids_to_tokens[index] def UpperCAmelCase_ ( self , lowercase__ ) -> Tuple: """simple docstring""" _snake_case : Union[str, Any] = """""".join(lowercase_ ).replace(lowercase_ , ''' ''' ).strip() return out_string def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> Optional[Any]: """simple docstring""" if not os.path.isdir(lowercase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _snake_case : Optional[int] = os.path.join( lowercase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _snake_case : str = os.path.join( lowercase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_ , '''wb''' ) as fi: _snake_case : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( lowercase_ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , lowercase_ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(lowercase_ , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F'''{str(lowercase_ )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
708
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCamelCase (unittest.TestCase ): def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : Any = torch.nn.Linear(10 , 10 ) _snake_case : Optional[int] = torch.optim.SGD(model.parameters() , 0.1 ) _snake_case : List[str] = Accelerator() _snake_case : Optional[Any] = accelerator.prepare(lowercase__ ) try: pickle.loads(pickle.dumps(lowercase__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
47
0
'''simple docstring''' from __future__ import annotations from math import ceil, floor, sqrt def _a ( lowerCAmelCase_ = 2_000_000 ): """simple docstring""" _snake_case : list[int] = [0] _snake_case : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target _snake_case : int = 0 # the area corresponding to the grid that gives the product closest to target _snake_case : int = 0 # an estimate of b, using the quadratic formula _snake_case : float # the largest integer less than b_estimate _snake_case : int # the largest integer less than b_estimate _snake_case : int # the triangle number corresponding to b_floor _snake_case : int # the triangle number corresponding to b_ceil _snake_case : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): _snake_case : List[Any] = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 _snake_case : Any = floor(_lowercase ) _snake_case : Optional[Any] = ceil(_lowercase ) _snake_case : Union[str, Any] = triangle_numbers[b_floor] _snake_case : Optional[int] = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): _snake_case : List[str] = triangle_b_first_guess * triangle_a _snake_case : Any = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): _snake_case : Any = triangle_b_second_guess * triangle_a _snake_case : int = idx_a * b_ceil return area if __name__ == "__main__": print(F"""{solution() = }""")
709
'''simple docstring''' UpperCAmelCase : Union[str, Any] = tuple[float, float, float] UpperCAmelCase : int = tuple[float, float, float] def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : str = end_pointa[0] - end_pointa[0] _snake_case : Tuple = end_pointa[1] - end_pointa[1] _snake_case : Any = end_pointa[2] - end_pointa[2] return (x, y, z) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Dict = ab[1] * ac[2] - ab[2] * ac[1] # *i _snake_case : List[str] = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j _snake_case : Optional[int] = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return tuple(round(lowerCAmelCase_ , lowerCAmelCase_ ) for x in vector ) == (0, 0, 0) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 10 ): """simple docstring""" _snake_case : str = create_vector(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Tuple = create_vector(lowerCAmelCase_ , lowerCAmelCase_ ) return is_zero_vector(get_ad_vectors_cross(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ )
47
0
'''simple docstring''' import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) class lowerCamelCase (UpperCAmelCase__ ): _lowercase : Optional[int] = """AutoTokenizer""" _lowercase : Union[str, Any] = ["""tokenizer"""] _lowercase : int = { """semantic_prompt""": 1, """coarse_prompt""": 2, """fine_prompt""": 2, } def __init__( self , lowercase__ , lowercase__=None ) -> Union[str, Any]: """simple docstring""" super().__init__(__lowerCAmelCase ) _snake_case : Dict = speaker_embeddings @classmethod def UpperCAmelCase_ ( cls , lowercase__ , lowercase__="speaker_embeddings_path.json" , **lowercase__ ) -> str: """simple docstring""" if speaker_embeddings_dict_path is not None: _snake_case : Optional[int] = get_file_from_repo( __lowerCAmelCase , __lowerCAmelCase , subfolder=kwargs.pop('''subfolder''' , __lowerCAmelCase ) , cache_dir=kwargs.pop('''cache_dir''' , __lowerCAmelCase ) , force_download=kwargs.pop('''force_download''' , __lowerCAmelCase ) , proxies=kwargs.pop('''proxies''' , __lowerCAmelCase ) , resume_download=kwargs.pop('''resume_download''' , __lowerCAmelCase ) , local_files_only=kwargs.pop('''local_files_only''' , __lowerCAmelCase ) , use_auth_token=kwargs.pop('''use_auth_token''' , __lowerCAmelCase ) , revision=kwargs.pop('''revision''' , __lowerCAmelCase ) , ) if speaker_embeddings_path is None: logger.warning( F'''`{os.path.join(__lowerCAmelCase , __lowerCAmelCase )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) _snake_case : List[str] = None else: with open(__lowerCAmelCase ) as speaker_embeddings_json: _snake_case : str = json.load(__lowerCAmelCase ) else: _snake_case : Dict = None _snake_case : Dict = AutoTokenizer.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) return cls(tokenizer=__lowerCAmelCase , speaker_embeddings=__lowerCAmelCase ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__="speaker_embeddings_path.json" , lowercase__="speaker_embeddings" , lowercase__ = False , **lowercase__ , ) -> Optional[Any]: """simple docstring""" if self.speaker_embeddings is not None: os.makedirs(os.path.join(__lowerCAmelCase , __lowerCAmelCase , '''v2''' ) , exist_ok=__lowerCAmelCase ) _snake_case : Any = {} _snake_case : Tuple = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _snake_case : Optional[int] = self._load_voice_preset(__lowerCAmelCase ) _snake_case : Optional[int] = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['''repo_or_path'''] , __lowerCAmelCase , F'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=__lowerCAmelCase , ) _snake_case : str = os.path.join(__lowerCAmelCase , F'''{prompt_key}_{key}.npy''' ) _snake_case : Optional[Any] = tmp_dict with open(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , '''w''' ) as fp: json.dump(__lowerCAmelCase , __lowerCAmelCase ) super().save_pretrained(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) def UpperCAmelCase_ ( self , lowercase__ = None , **lowercase__ ) -> Optional[int]: """simple docstring""" _snake_case : Dict = self.speaker_embeddings[voice_preset] _snake_case : Tuple = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) _snake_case : Union[str, Any] = get_file_from_repo( self.speaker_embeddings.get('''repo_or_path''' , '''/''' ) , voice_preset_paths[key] , subfolder=kwargs.pop('''subfolder''' , __lowerCAmelCase ) , cache_dir=kwargs.pop('''cache_dir''' , __lowerCAmelCase ) , force_download=kwargs.pop('''force_download''' , __lowerCAmelCase ) , proxies=kwargs.pop('''proxies''' , __lowerCAmelCase ) , resume_download=kwargs.pop('''resume_download''' , __lowerCAmelCase ) , local_files_only=kwargs.pop('''local_files_only''' , __lowerCAmelCase ) , use_auth_token=kwargs.pop('''use_auth_token''' , __lowerCAmelCase ) , revision=kwargs.pop('''revision''' , __lowerCAmelCase ) , ) if path is None: raise ValueError( F'''`{os.path.join(self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) _snake_case : Optional[int] = np.load(__lowerCAmelCase ) return voice_preset_dict def UpperCAmelCase_ ( self , lowercase__ = None ) -> Dict: """simple docstring""" for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self , lowercase__=None , lowercase__=None , lowercase__="pt" , lowercase__=256 , lowercase__=False , lowercase__=True , lowercase__=False , **lowercase__ , ) -> Tuple: """simple docstring""" if voice_preset is not None and not isinstance(__lowerCAmelCase , __lowerCAmelCase ): if ( isinstance(__lowerCAmelCase , __lowerCAmelCase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _snake_case : Optional[int] = self._load_voice_preset(__lowerCAmelCase ) else: if isinstance(__lowerCAmelCase , __lowerCAmelCase ) and not voice_preset.endswith('''.npz''' ): _snake_case : Dict = voice_preset + '''.npz''' _snake_case : Dict = np.load(__lowerCAmelCase ) if voice_preset is not None: self._validate_voice_preset_dict(__lowerCAmelCase , **__lowerCAmelCase ) _snake_case : Tuple = BatchFeature(data=__lowerCAmelCase , tensor_type=__lowerCAmelCase ) _snake_case : List[Any] = self.tokenizer( __lowerCAmelCase , return_tensors=__lowerCAmelCase , padding='''max_length''' , max_length=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , **__lowerCAmelCase , ) if voice_preset is not None: _snake_case : Union[str, Any] = voice_preset return encoded_text
710
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel UpperCAmelCase : List[str] = logging.getLogger(__name__) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if os.path.exists(lowerCAmelCase_ ): if os.path.exists(os.path.join(lowerCAmelCase_ , '''config.json''' ) ) and os.path.isfile( os.path.join(lowerCAmelCase_ , '''config.json''' ) ): os.remove(os.path.join(lowerCAmelCase_ , '''config.json''' ) ) if os.path.exists(os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) ) and os.path.isfile( os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) ): os.remove(os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) ) else: os.makedirs(lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_=False ): """simple docstring""" _snake_case : Optional[Any] = 2 if unlogit: _snake_case : Any = torch.pow(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Union[str, Any] = p * torch.log(lowerCAmelCase_ ) _snake_case : Optional[Any] = 0 return -plogp.sum(dim=-1 ) def _a ( lowerCAmelCase_ ): """simple docstring""" logger.info('''lv, h >\t''' + '''\t'''.join(f'''{x + 1}''' for x in range(len(lowerCAmelCase_ ) ) ) ) for row in range(len(lowerCAmelCase_ ) ): if tensor.dtype != torch.long: logger.info(f'''layer {row + 1}:\t''' + '''\t'''.join(f'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(f'''layer {row + 1}:\t''' + '''\t'''.join(f'''{x:d}''' for x in tensor[row].cpu().data ) ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=None , lowerCAmelCase_=False ): """simple docstring""" _snake_case , _snake_case : Optional[int] = model.config.num_hidden_layers, model.config.num_attention_heads _snake_case : Tuple = torch.zeros(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device ) _snake_case : Union[str, Any] = torch.zeros(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device ) if head_mask is None: _snake_case : int = torch.ones(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device ) head_mask.requires_grad_(requires_grad=lowerCAmelCase_ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _snake_case : Dict = None _snake_case : Dict = 0.0 _snake_case : Optional[int] = 0.0 for step, inputs in enumerate(tqdm(lowerCAmelCase_ , desc='''Iteration''' , disable=args.local_rank not in [-1, 0] ) ): _snake_case : List[Any] = tuple(t.to(args.device ) for t in inputs ) ((_snake_case) , ) : Optional[Any] = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _snake_case : Any = model(lowerCAmelCase_ , labels=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _snake_case , _snake_case , _snake_case : List[Any] = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(lowerCAmelCase_ ): _snake_case : Union[str, Any] = entropy(attn.detach() , lowerCAmelCase_ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(lowerCAmelCase_ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _snake_case : Any = 2 _snake_case : List[str] = torch.pow(torch.pow(lowerCAmelCase_ , lowerCAmelCase_ ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: _snake_case : Optional[int] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''' ) print_ad_tensor(lowerCAmelCase_ ) if compute_importance: logger.info('''Head importance scores''' ) print_ad_tensor(lowerCAmelCase_ ) logger.info('''Head ranked by importance scores''' ) _snake_case : str = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _snake_case : List[Any] = torch.arange( head_importance.numel() , device=args.device ) _snake_case : List[Any] = head_ranks.view_as(lowerCAmelCase_ ) print_ad_tensor(lowerCAmelCase_ ) return attn_entropy, head_importance, total_loss def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case , _snake_case , _snake_case : str = compute_heads_importance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ ) _snake_case : Optional[Any] = 1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' , lowerCAmelCase_ , original_score * args.masking_threshold ) _snake_case : int = torch.ones_like(lowerCAmelCase_ ) _snake_case : Optional[Any] = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _snake_case : int = original_score while current_score >= original_score * args.masking_threshold: _snake_case : int = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _snake_case : Dict = float('''Inf''' ) _snake_case : Optional[Any] = head_importance.view(-1 ).sort()[1] if len(lowerCAmelCase_ ) <= num_to_mask: print('''BREAK BY num_to_mask''' ) break # mask heads _snake_case : Union[str, Any] = current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist() ) ) _snake_case : Tuple = new_head_mask.view(-1 ) _snake_case : List[str] = 0.0 _snake_case : str = new_head_mask.view_as(lowerCAmelCase_ ) _snake_case : Dict = new_head_mask.clone().detach() print_ad_tensor(lowerCAmelCase_ ) # Compute metric and head importance again _snake_case , _snake_case , _snake_case : Any = compute_heads_importance( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) _snake_case : int = 1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' , lowerCAmelCase_ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info('''Final head mask''' ) print_ad_tensor(lowerCAmelCase_ ) np.save(os.path.join(args.output_dir , '''head_mask.npy''' ) , head_mask.detach().cpu().numpy() ) return head_mask def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = datetime.now() _snake_case , _snake_case , _snake_case : Union[str, Any] = compute_heads_importance( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , compute_importance=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) _snake_case : Tuple = 1 / loss _snake_case : Dict = datetime.now() - before_time _snake_case : List[Any] = sum(p.numel() for p in model.parameters() ) _snake_case : int = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(lowerCAmelCase_ ) ) } for k, v in heads_to_prune.items(): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Union[str, Any] = [ v, ] assert sum(len(lowerCAmelCase_ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(lowerCAmelCase_ ) _snake_case : List[str] = sum(p.numel() for p in model.parameters() ) _snake_case : int = datetime.now() _snake_case , _snake_case , _snake_case : Optional[Any] = compute_heads_importance( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , compute_importance=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , actually_pruned=lowerCAmelCase_ , ) _snake_case : Optional[int] = 1 / loss _snake_case : Dict = datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , lowerCAmelCase_ , lowerCAmelCase_ , pruned_num_params / original_num_params * 100 , ) logger.info('''Pruning: score with masking: %f score with pruning: %f''' , lowerCAmelCase_ , lowerCAmelCase_ ) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 100 ) save_model(lowerCAmelCase_ , args.output_dir ) def _a ( ): """simple docstring""" _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , ) parser.add_argument( '''--model_name_or_path''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--output_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) # Other parameters parser.add_argument( '''--config_name''' , default='''''' , type=lowerCAmelCase_ , help='''Pretrained config name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--tokenizer_name''' , default='''''' , type=lowerCAmelCase_ , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--cache_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help='''Where do you want to store the pre-trained models downloaded from s3''' , ) parser.add_argument( '''--data_subset''' , type=lowerCAmelCase_ , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''' ) parser.add_argument( '''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''' ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) parser.add_argument( '''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''' ) parser.add_argument( '''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , ) parser.add_argument( '''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''' ) parser.add_argument( '''--masking_threshold''' , default=0.9 , type=lowerCAmelCase_ , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , ) parser.add_argument( '''--masking_amount''' , default=0.1 , type=lowerCAmelCase_ , help='''Amount to heads to masking at each masking step.''' ) parser.add_argument('''--metric_name''' , default='''acc''' , type=lowerCAmelCase_ , help='''Metric to use for head masking.''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=lowerCAmelCase_ , help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) , ) parser.add_argument('''--batch_size''' , default=1 , type=lowerCAmelCase_ , help='''Batch size.''' ) parser.add_argument('''--seed''' , type=lowerCAmelCase_ , default=42 ) parser.add_argument('''--local_rank''' , type=lowerCAmelCase_ , default=-1 , help='''local_rank for distributed training on gpus''' ) parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''' ) parser.add_argument('''--server_ip''' , type=lowerCAmelCase_ , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=lowerCAmelCase_ , default='''''' , help='''Can be used for distant debugging.''' ) _snake_case : Optional[Any] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowerCAmelCase_ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _snake_case : str = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''' ) _snake_case : Optional[Any] = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _snake_case : List[str] = torch.device('''cuda''' , args.local_rank ) _snake_case : int = 1 torch.distributed.init_process_group(backend='''nccl''' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _snake_case : Optional[Any] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _snake_case : Optional[int] = nn.parallel.DistributedDataParallel( lowerCAmelCase_ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=lowerCAmelCase_ ) elif args.n_gpu > 1: _snake_case : List[Any] = nn.DataParallel(lowerCAmelCase_ ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=lowerCAmelCase_ ) torch.save(lowerCAmelCase_ , os.path.join(args.output_dir , '''run_args.bin''' ) ) logger.info('''Training/evaluation parameters %s''' , lowerCAmelCase_ ) # Prepare dataset _snake_case : Dict = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _snake_case : int = (torch.from_numpy(lowerCAmelCase_ ),) _snake_case : Tuple = TensorDataset(*lowerCAmelCase_ ) _snake_case : List[str] = RandomSampler(lowerCAmelCase_ ) _snake_case : Dict = DataLoader(lowerCAmelCase_ , sampler=lowerCAmelCase_ , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _snake_case : Optional[int] = mask_heads(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) prune_heads(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
47
0
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging UpperCAmelCase : Optional[int] = logging.get_logger(__name__) UpperCAmelCase : Union[str, Any] = {'vocab_file': 'spiece.model'} UpperCAmelCase : Any = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', } } # TODO(PVP) - this should be removed in Transformers v5 UpperCAmelCase : Union[str, Any] = { 't5-small': 5_1_2, 't5-base': 5_1_2, 't5-large': 5_1_2, 't5-3b': 5_1_2, 't5-11b': 5_1_2, } UpperCAmelCase : Tuple = '▁' class lowerCamelCase (__UpperCAmelCase ): _lowercase : Tuple = VOCAB_FILES_NAMES _lowercase : List[Any] = PRETRAINED_VOCAB_FILES_MAP _lowercase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Any = ["""input_ids""", """attention_mask"""] def __init__( self , lowercase__ , lowercase__="</s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__=100 , lowercase__=None , lowercase__ = None , lowercase__=True , **lowercase__ , ) -> int: """simple docstring""" if extra_ids > 0 and additional_special_tokens is None: _snake_case : int = [F'''<extra_id_{i}>''' for i in range(UpperCAmelCase_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens _snake_case : Any = len(set(filter(lambda lowercase__ : bool('''extra_id''' in str(UpperCAmelCase_ ) ) , UpperCAmelCase_ ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) if legacy: logger.warning_once( F'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' ''' read the related pull request available at https://github.com/huggingface/transformers/pull/24565''' ) _snake_case : List[Any] = legacy _snake_case : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , extra_ids=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , legacy=UpperCAmelCase_ , **UpperCAmelCase_ , ) _snake_case : int = vocab_file _snake_case : List[str] = extra_ids _snake_case : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase_ ) @staticmethod def UpperCAmelCase_ ( lowercase__ , lowercase__ , lowercase__ ) -> List[str]: """simple docstring""" if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: _snake_case : Tuple = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' F''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' F''' {pretrained_model_name_or_path} automatically truncating your input to''' F''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' F''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , UpperCAmelCase_ , ) return max_model_length @property def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" return self.sp_model.get_piece_size() + self._extra_ids def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" _snake_case : Optional[Any] = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None , lowercase__ = False ) -> Optional[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(UpperCAmelCase_ )) + [1] return ([0] * len(UpperCAmelCase_ )) + [1] + ([0] * len(UpperCAmelCase_ )) + [1] def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" return list( set(filter(lambda lowercase__ : bool(re.search(r'''<extra_id_\d+>''' , UpperCAmelCase_ ) ) is not None , self.additional_special_tokens ) ) ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" return [self._convert_token_to_id(UpperCAmelCase_ ) for token in self.get_sentinel_tokens()] def UpperCAmelCase_ ( self , lowercase__ ) -> Tuple: """simple docstring""" if len(UpperCAmelCase_ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ''' eos tokens being added.''' ) return token_ids else: return token_ids + [self.eos_token_id] def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> Dict: """simple docstring""" _snake_case : Optional[Any] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> str: """simple docstring""" _snake_case : Any = self._add_eos_if_not_present(UpperCAmelCase_ ) if token_ids_a is None: return token_ids_a else: _snake_case : List[Any] = self._add_eos_if_not_present(UpperCAmelCase_ ) return token_ids_a + token_ids_a def __getstate__( self ) -> Optional[int]: """simple docstring""" _snake_case : Optional[Any] = self.__dict__.copy() _snake_case : Union[str, Any] = None return state def __setstate__( self , lowercase__ ) -> List[Any]: """simple docstring""" _snake_case : Optional[int] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _snake_case : int = {} _snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase_ ( self , lowercase__ , **lowercase__ ) -> Optional[int]: """simple docstring""" if not self.legacy: _snake_case : Optional[int] = SPIECE_UNDERLINE + text.replace(UpperCAmelCase_ , ''' ''' ) return super().tokenize(UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCAmelCase_ ( self , lowercase__ , **lowercase__ ) -> Any: """simple docstring""" if not self.legacy: _snake_case : Tuple = text.startswith(UpperCAmelCase_ ) if is_first: _snake_case : Any = text[1:] _snake_case : Tuple = self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ ) if not self.legacy and not is_first and not text.startswith(''' ''' ) and tokens[0].startswith(UpperCAmelCase_ ): _snake_case : str = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def UpperCAmelCase_ ( self , lowercase__ ) -> Union[str, Any]: """simple docstring""" if token.startswith('''<extra_id_''' ): _snake_case : List[Any] = re.match(r'''<extra_id_(\d+)>''' , UpperCAmelCase_ ) _snake_case : str = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(UpperCAmelCase_ ) def UpperCAmelCase_ ( self , lowercase__ ) -> Any: """simple docstring""" if index < self.sp_model.get_piece_size(): _snake_case : List[str] = self.sp_model.IdToPiece(UpperCAmelCase_ ) else: _snake_case : int = F'''<extra_id_{self.vocab_size - 1 - index}>''' return token def UpperCAmelCase_ ( self , lowercase__ ) -> List[Any]: """simple docstring""" _snake_case : Any = [] _snake_case : Dict = '''''' _snake_case : Optional[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCAmelCase_ ) + token _snake_case : Tuple = True _snake_case : List[Any] = [] else: current_sub_tokens.append(UpperCAmelCase_ ) _snake_case : str = False out_string += self.sp_model.decode(UpperCAmelCase_ ) return out_string.strip() def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> List[Any]: """simple docstring""" if not os.path.isdir(UpperCAmelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _snake_case : Any = os.path.join( UpperCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase_ , '''wb''' ) as fi: _snake_case : List[str] = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_ ) return (out_vocab_file,)
711
'''simple docstring''' def _a ( lowerCAmelCase_ ): """simple docstring""" if n == 1 or not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return 0 elif n == 2: return 1 else: _snake_case : Union[str, Any] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[int] = 0 _snake_case : int = 2 while digits < n: index += 1 _snake_case : Tuple = len(str(fibonacci(lowerCAmelCase_ ) ) ) return index def _a ( lowerCAmelCase_ = 1_000 ): """simple docstring""" return fibonacci_digits_index(lowerCAmelCase_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
47
0
'''simple docstring''' import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class lowerCamelCase (UpperCamelCase_ , unittest.TestCase ): _lowercase : str = BertJapaneseTokenizer _lowercase : Dict = False _lowercase : Tuple = True def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" super().setUp() _snake_case : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは''', '''世界''', '''##世界''', '''、''', '''##、''', '''。''', '''##。''', ] _snake_case : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def UpperCAmelCase_ ( self , lowercase__ ) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = '''こんにちは、世界。 \nこんばんは、世界。''' _snake_case : List[str] = '''こんにちは 、 世界 。 こんばんは 、 世界 。''' return input_text, output_text def UpperCAmelCase_ ( self , lowercase__ ) -> Optional[int]: """simple docstring""" _snake_case : List[str] = self.get_input_output_texts(UpperCamelCase__ ) _snake_case : Tuple = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) _snake_case : Optional[Any] = tokenizer.decode(UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ ) return text, ids def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" pass # TODO add if relevant def UpperCAmelCase_ ( self ) -> int: """simple docstring""" pass # TODO add if relevant def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" pass # TODO add if relevant def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : Union[str, Any] = self.tokenizer_class(self.vocab_file ) _snake_case : Dict = tokenizer.tokenize('''こんにちは、世界。\nこんばんは、世界。''' ) self.assertListEqual(UpperCamelCase__ , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" _snake_case : Optional[Any] = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''mecab''' ) self.assertIsNotNone(UpperCamelCase__ ) _snake_case : Optional[Any] = '''こんにちは、世界。\nこんばんは、世界。''' _snake_case : Union[str, Any] = tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) _snake_case : List[str] = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(UpperCamelCase__ , '''wb''' ) as handle: pickle.dump(UpperCamelCase__ , UpperCamelCase__ ) with open(UpperCamelCase__ , '''rb''' ) as handle: _snake_case : Union[str, Any] = pickle.load(UpperCamelCase__ ) _snake_case : List[str] = tokenizer_new.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" _snake_case : str = MecabTokenizer(mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" try: _snake_case : List[str] = MecabTokenizer(mecab_dic='''unidic_lite''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" try: _snake_case : Optional[int] = MecabTokenizer(mecab_dic='''unidic''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : List[Any] = MecabTokenizer(do_lower_case=UpperCamelCase__ , mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iphone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" try: _snake_case : Dict = MecabTokenizer( do_lower_case=UpperCamelCase__ , normalize_text=UpperCamelCase__ , mecab_option='''-d /usr/local/lib/mecab/dic/jumandic''' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" _snake_case : Any = MecabTokenizer(normalize_text=UpperCamelCase__ , mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。'''] , ) @require_sudachi def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : Dict = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''sudachi''' ) self.assertIsNotNone(UpperCamelCase__ ) _snake_case : List[str] = '''こんにちは、世界。\nこんばんは、世界。''' _snake_case : int = tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) _snake_case : Optional[Any] = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(UpperCamelCase__ , '''wb''' ) as handle: pickle.dump(UpperCamelCase__ , UpperCamelCase__ ) with open(UpperCamelCase__ , '''rb''' ) as handle: _snake_case : str = pickle.load(UpperCamelCase__ ) _snake_case : Union[str, Any] = tokenizer_new.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) @require_sudachi def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : int = SudachiTokenizer(sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : Optional[Any] = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''A''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国''', '''人''', '''参政''', '''権'''] ) @require_sudachi def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" _snake_case : Dict = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''B''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人''', '''参政権'''] ) @require_sudachi def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" _snake_case : Union[str, Any] = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''C''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人参政権'''] ) @require_sudachi def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" _snake_case : int = SudachiTokenizer(do_lower_case=UpperCamelCase__ , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : List[str] = SudachiTokenizer(normalize_text=UpperCamelCase__ , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', '''\u3000''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" _snake_case : Optional[Any] = SudachiTokenizer(trim_whitespace=UpperCamelCase__ , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) @require_jumanpp def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" _snake_case : Dict = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''jumanpp''' ) self.assertIsNotNone(UpperCamelCase__ ) _snake_case : str = '''こんにちは、世界。\nこんばんは、世界。''' _snake_case : Union[str, Any] = tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) _snake_case : List[str] = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(UpperCamelCase__ , '''wb''' ) as handle: pickle.dump(UpperCamelCase__ , UpperCamelCase__ ) with open(UpperCamelCase__ , '''rb''' ) as handle: _snake_case : List[Any] = pickle.load(UpperCamelCase__ ) _snake_case : int = tokenizer_new.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) @require_jumanpp def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : str = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : str = JumanppTokenizer(do_lower_case=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : int = JumanppTokenizer(normalize_text=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''ア''', '''ッ''', '''フ''', '''゚''', '''ル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" _snake_case : str = JumanppTokenizer(trim_whitespace=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''。'''] , ) @require_jumanpp def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" _snake_case : Tuple = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('''ありがとうございますm(_ _)m見つけるのが大変です。''' ) , ['''ありがとう''', '''ございます''', '''m(_ _)m''', '''見つける''', '''の''', '''が''', '''大変です''', '''。'''] , ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Dict = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは'''] _snake_case : Any = {} for i, token in enumerate(UpperCamelCase__ ): _snake_case : Tuple = i _snake_case : Optional[int] = WordpieceTokenizer(vocab=UpperCamelCase__ , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こんにちは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは''' ) , ['''こん''', '''##ばんは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは こんばんにちは こんにちは''' ) , ['''こん''', '''##ばんは''', '''[UNK]''', '''こんにちは'''] ) def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" _snake_case : Dict = BertJapaneseTokenizer.from_pretrained('''nlp-waseda/roberta-base-japanese-with-auto-jumanpp''' ) _snake_case : str = tokenizer.subword_tokenizer _snake_case : Tuple = subword_tokenizer.tokenize('''国境 の 長い トンネル を 抜ける と 雪国 であった 。''' ) self.assertListEqual(UpperCamelCase__ , ['''▁国境''', '''▁の''', '''▁長い''', '''▁トンネル''', '''▁を''', '''▁抜ける''', '''▁と''', '''▁雪''', '''国''', '''▁であった''', '''▁。'''] ) _snake_case : Tuple = subword_tokenizer.tokenize('''こんばんは こんばん にち は こんにちは''' ) self.assertListEqual(UpperCamelCase__ , ['''▁こん''', '''ばん''', '''は''', '''▁こん''', '''ばん''', '''▁に''', '''ち''', '''▁は''', '''▁こんにちは'''] ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" _snake_case : Optional[int] = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese''' ) _snake_case : List[Any] = tokenizer.encode('''ありがとう。''' , add_special_tokens=UpperCamelCase__ ) _snake_case : Any = tokenizer.encode('''どういたしまして。''' , add_special_tokens=UpperCamelCase__ ) _snake_case : Optional[Any] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ ) _snake_case : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ , UpperCamelCase__ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowerCamelCase (UpperCamelCase_ , unittest.TestCase ): _lowercase : Optional[Any] = BertJapaneseTokenizer _lowercase : Optional[Any] = False def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" super().setUp() _snake_case : str = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] _snake_case : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def UpperCAmelCase_ ( self , **lowercase__ ) -> Any: """simple docstring""" return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='''character''' , **UpperCamelCase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> int: """simple docstring""" _snake_case : Any = '''こんにちは、世界。 \nこんばんは、世界。''' _snake_case : int = '''こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。''' return input_text, output_text def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" pass # TODO add if relevant def UpperCAmelCase_ ( self ) -> str: """simple docstring""" pass # TODO add if relevant def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" pass # TODO add if relevant def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" _snake_case : int = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='''character''' ) _snake_case : Optional[int] = tokenizer.tokenize('''こんにちは、世界。 \nこんばんは、世界。''' ) self.assertListEqual( UpperCamelCase__ , ['''こ''', '''ん''', '''に''', '''ち''', '''は''', '''、''', '''世''', '''界''', '''。''', '''こ''', '''ん''', '''ば''', '''ん''', '''は''', '''、''', '''世''', '''界''', '''。'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] _snake_case : Optional[Any] = {} for i, token in enumerate(UpperCamelCase__ ): _snake_case : Union[str, Any] = i _snake_case : Any = CharacterTokenizer(vocab=UpperCamelCase__ , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''は'''] ) self.assertListEqual(tokenizer.tokenize('''こんにちほ''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''[UNK]'''] ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" _snake_case : str = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese-char''' ) _snake_case : Union[str, Any] = tokenizer.encode('''ありがとう。''' , add_special_tokens=UpperCamelCase__ ) _snake_case : Union[str, Any] = tokenizer.encode('''どういたしまして。''' , add_special_tokens=UpperCamelCase__ ) _snake_case : Any = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ ) _snake_case : Any = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ , UpperCamelCase__ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowerCamelCase (unittest.TestCase ): def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : List[Any] = '''cl-tohoku/bert-base-japanese''' _snake_case : List[Any] = AutoTokenizer.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) class lowerCamelCase (unittest.TestCase ): def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" _snake_case : Union[str, Any] = '''cl-tohoku/bert-base-japanese''' with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm: BertTokenizer.from_pretrained(UpperCamelCase__ ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) ) _snake_case : Dict = '''bert-base-cased''' with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm: BertJapaneseTokenizer.from_pretrained(UpperCamelCase__ ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) )
712
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar UpperCAmelCase : Any = TypeVar('T') UpperCAmelCase : str = TypeVar('U') class lowerCamelCase (Generic[T, U] ): def __init__( self , lowercase__ , lowercase__ ) -> List[Any]: """simple docstring""" _snake_case : str = key _snake_case : Optional[int] = val _snake_case : DoubleLinkedListNode[T, U] | None = None _snake_case : DoubleLinkedListNode[T, U] | None = None def __repr__( self ) -> str: """simple docstring""" return ( F'''Node: key: {self.key}, val: {self.val}, ''' F'''has next: {bool(self.next )}, has prev: {bool(self.prev )}''' ) class lowerCamelCase (Generic[T, U] ): def __init__( self ) -> None: """simple docstring""" _snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase__ , lowercase__ ) _snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase__ , lowercase__ ) _snake_case , _snake_case : Union[str, Any] = self.rear, self.head def __repr__( self ) -> str: """simple docstring""" _snake_case : List[Any] = ['''DoubleLinkedList'''] _snake_case : str = self.head while node.next is not None: rep.append(str(lowercase__ ) ) _snake_case : List[str] = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> None: """simple docstring""" _snake_case : Tuple = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None _snake_case : Union[str, Any] = node _snake_case : Optional[Any] = previous _snake_case : int = node _snake_case : Union[str, Any] = self.rear def UpperCAmelCase_ ( self , lowercase__ ) -> DoubleLinkedListNode[T, U] | None: """simple docstring""" if node.prev is None or node.next is None: return None _snake_case : Optional[int] = node.next _snake_case : Any = node.prev _snake_case : List[str] = None _snake_case : Optional[int] = None return node class lowerCamelCase (Generic[T, U] ): _lowercase : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self , lowercase__ ) -> Union[str, Any]: """simple docstring""" _snake_case : DoubleLinkedList[T, U] = DoubleLinkedList() _snake_case : Union[str, Any] = capacity _snake_case : int = 0 _snake_case : Dict = 0 _snake_case : Union[str, Any] = 0 _snake_case : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__( self ) -> str: """simple docstring""" return ( F'''CacheInfo(hits={self.hits}, misses={self.miss}, ''' F'''capacity={self.capacity}, current size={self.num_keys})''' ) def __contains__( self , lowercase__ ) -> bool: """simple docstring""" return key in self.cache def UpperCAmelCase_ ( self , lowercase__ ) -> U | None: """simple docstring""" if key in self.cache: self.hits += 1 _snake_case : DoubleLinkedListNode[T, U] = self.cache[key] _snake_case : Tuple = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowercase__ ) return node.val self.miss += 1 return None def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> None: """simple docstring""" if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity _snake_case : Dict = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowercase__ ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 _snake_case : Optional[int] = DoubleLinkedListNode(lowercase__ , lowercase__ ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value _snake_case : Optional[Any] = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list _snake_case : Optional[Any] = value self.list.add(lowercase__ ) @classmethod def UpperCAmelCase_ ( cls , lowercase__ = 128 ) -> Callable[[Callable[[T], U]], Callable[..., U]]: """simple docstring""" def cache_decorator_inner(lowercase__ ) -> Callable[..., U]: def cache_decorator_wrapper(*lowercase__ ) -> U: if func not in cls.decorator_function_to_instance_map: _snake_case : Optional[Any] = LRUCache(lowercase__ ) _snake_case : Union[str, Any] = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: _snake_case : Tuple = func(*lowercase__ ) cls.decorator_function_to_instance_map[func].put(args[0] , lowercase__ ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowercase__ , '''cache_info''' , lowercase__ ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
47
0
'''simple docstring''' def _a ( lowerCAmelCase_ ): """simple docstring""" if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(__UpperCamelCase , __UpperCamelCase ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(__UpperCamelCase ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
713
'''simple docstring''' import os import numpy import onnx def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : List[Any] = a.name _snake_case : List[Any] = b.name _snake_case : Tuple = '''''' _snake_case : Tuple = '''''' _snake_case : Optional[Any] = a == b _snake_case : List[Any] = name_a _snake_case : str = name_b return res def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(lowerCAmelCase_ , lowerCAmelCase_ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , lowerCAmelCase_ , lowerCAmelCase_ ) _graph_replace_input_with(node_proto.attribute[1].g , lowerCAmelCase_ , lowerCAmelCase_ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , lowerCAmelCase_ , lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for n in graph_proto.node: _node_replace_input_with(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = list(model.graph.initializer ) _snake_case : List[str] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i _snake_case : List[Any] = inits[i].name _snake_case : List[str] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , lowerCAmelCase_ , lowerCAmelCase_ ) def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Tuple = os.path.dirname(lowerCAmelCase_ ) _snake_case : str = os.path.basename(lowerCAmelCase_ ) _snake_case : Tuple = onnx.load(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) ) _snake_case : Union[str, Any] = list(model.graph.initializer ) _snake_case : Union[str, Any] = set() _snake_case : Any = {} _snake_case : str = [] _snake_case : Union[str, Any] = 0 for i in range(len(lowerCAmelCase_ ) ): if i in dup_set: continue for j in range(i + 1 , len(lowerCAmelCase_ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(lowerCAmelCase_ ) dup_set.add(lowerCAmelCase_ ) _snake_case : List[Any] = inits[j].data_type _snake_case : Dict = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('''unexpected data type: ''' , lowerCAmelCase_ ) total_reduced_size += mem_size _snake_case : Union[str, Any] = inits[i].name _snake_case : Any = inits[j].name if name_i in dup_map: dup_map[name_i].append(lowerCAmelCase_ ) else: _snake_case : Union[str, Any] = [name_j] ind_to_replace.append((j, i) ) print('''total reduced size: ''' , total_reduced_size / 1_024 / 1_024 / 1_024 , '''GB''' ) _snake_case : List[str] = sorted(lowerCAmelCase_ ) _remove_dup_initializers_from_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : List[str] = '''optimized_''' + model_file_name _snake_case : List[Any] = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) onnx.save(lowerCAmelCase_ , lowerCAmelCase_ ) return new_model
47
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase : Optional[int] = logging.get_logger(__name__) UpperCAmelCase : Optional[int] = '▁' UpperCAmelCase : Union[str, Any] = {'vocab_file': 'sentencepiece.bpe.model'} UpperCAmelCase : Tuple = { 'vocab_file': { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model' ), } } UpperCAmelCase : Dict = { 'xlm-roberta-base': 5_1_2, 'xlm-roberta-large': 5_1_2, 'xlm-roberta-large-finetuned-conll02-dutch': 5_1_2, 'xlm-roberta-large-finetuned-conll02-spanish': 5_1_2, 'xlm-roberta-large-finetuned-conll03-english': 5_1_2, 'xlm-roberta-large-finetuned-conll03-german': 5_1_2, } class lowerCamelCase (UpperCAmelCase__ ): _lowercase : Optional[Any] = VOCAB_FILES_NAMES _lowercase : List[str] = PRETRAINED_VOCAB_FILES_MAP _lowercase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : List[str] = ['input_ids', 'attention_mask'] def __init__( self , lowercase__ , lowercase__="<s>" , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<mask>" , lowercase__ = None , **lowercase__ , ) -> None: """simple docstring""" _snake_case : Optional[int] = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token _snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowercase__ , eos_token=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , sp_model_kwargs=self.sp_model_kwargs , **lowercase__ , ) _snake_case : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowercase__ ) ) _snake_case : List[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _snake_case : Optional[int] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _snake_case : Optional[Any] = 1 _snake_case : List[str] = len(self.sp_model ) + self.fairseq_offset _snake_case : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> Tuple: """simple docstring""" _snake_case : Dict = self.__dict__.copy() _snake_case : Optional[int] = None _snake_case : Dict = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowercase__ ) -> List[Any]: """simple docstring""" _snake_case : Optional[int] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _snake_case : List[str] = {} _snake_case : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _snake_case : List[str] = [self.cls_token_id] _snake_case : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None , lowercase__ = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase__ , token_ids_a=lowercase__ , already_has_special_tokens=lowercase__ ) if token_ids_a is None: return [1] + ([0] * len(lowercase__ )) + [1] return [1] + ([0] * len(lowercase__ )) + [1, 1] + ([0] * len(lowercase__ )) + [1] def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> List[int]: """simple docstring""" _snake_case : Dict = [self.sep_token_id] _snake_case : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" _snake_case : Optional[Any] = {self.convert_ids_to_tokens(lowercase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase_ ( self , lowercase__ ) -> List[str]: """simple docstring""" return self.sp_model.encode(lowercase__ , out_type=lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> Optional[Any]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _snake_case : Dict = self.sp_model.PieceToId(lowercase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase_ ( self , lowercase__ ) -> Optional[int]: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase_ ( self , lowercase__ ) -> List[str]: """simple docstring""" _snake_case : Dict = """""".join(lowercase__ ).replace(lowercase__ , ''' ''' ).strip() return out_string def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowercase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _snake_case : Any = os.path.join( lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase__ , '''wb''' ) as fi: _snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(lowercase__ ) return (out_vocab_file,)
714
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : int = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
47
0
'''simple docstring''' import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class lowerCamelCase (unittest.TestCase ): def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights _snake_case : str = FlaxDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__lowercase , cache_dir=__lowercase ) _snake_case : List[Any] = [t[-1] for t in os.walk(os.path.join(__lowercase , os.listdir(__lowercase )[0] , '''snapshots''' ) )] _snake_case : int = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('''.bin''' ) for f in files ) @slow @require_flax class lowerCamelCase (unittest.TestCase ): def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" _snake_case , _snake_case : Tuple = FlaxStableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__lowercase ) _snake_case : Dict = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) _snake_case : Union[str, Any] = jax.random.PRNGKey(0 ) _snake_case : Any = 4 _snake_case : Tuple = jax.device_count() _snake_case : List[str] = num_samples * [prompt] _snake_case : List[str] = pipeline.prepare_inputs(__lowercase ) # shard inputs and rng _snake_case : Optional[int] = replicate(__lowercase ) _snake_case : Tuple = jax.random.split(__lowercase , __lowercase ) _snake_case : Optional[int] = shard(__lowercase ) _snake_case : Optional[int] = pipeline(__lowercase , __lowercase , __lowercase , __lowercase , jit=__lowercase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_514_745 ) < 1E-3 assert np.abs(np.abs(__lowercase , dtype=np.floataa ).sum() - 49_947.875 ) < 5E-1 _snake_case : Dict = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(__lowercase ) == num_samples def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case , _snake_case : Dict = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''flax''' , safety_checker=__lowercase ) _snake_case : List[str] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) _snake_case : Dict = jax.random.PRNGKey(0 ) _snake_case : Optional[int] = 50 _snake_case : str = jax.device_count() _snake_case : str = num_samples * [prompt] _snake_case : List[str] = pipeline.prepare_inputs(__lowercase ) # shard inputs and rng _snake_case : Optional[int] = replicate(__lowercase ) _snake_case : List[Any] = jax.random.split(__lowercase , __lowercase ) _snake_case : Any = shard(__lowercase ) _snake_case : Tuple = pipeline(__lowercase , __lowercase , __lowercase , __lowercase , jit=__lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_652_401) ) < 1E-3 assert np.abs((np.abs(__lowercase , dtype=np.floataa ).sum() - 2_383_808.2) ) < 5E-1 def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" _snake_case , _snake_case : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__lowercase ) _snake_case : List[str] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) _snake_case : Tuple = jax.random.PRNGKey(0 ) _snake_case : Tuple = 50 _snake_case : Union[str, Any] = jax.device_count() _snake_case : Dict = num_samples * [prompt] _snake_case : List[Any] = pipeline.prepare_inputs(__lowercase ) # shard inputs and rng _snake_case : Any = replicate(__lowercase ) _snake_case : Dict = jax.random.split(__lowercase , __lowercase ) _snake_case : Dict = shard(__lowercase ) _snake_case : int = pipeline(__lowercase , __lowercase , __lowercase , __lowercase , jit=__lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_003_906) ) < 1E-3 assert np.abs((np.abs(__lowercase , dtype=np.floataa ).sum() - 2_373_516.75) ) < 5E-1 def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case , _snake_case : Dict = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa ) _snake_case : int = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) _snake_case : Union[str, Any] = jax.random.PRNGKey(0 ) _snake_case : Dict = 50 _snake_case : List[Any] = jax.device_count() _snake_case : Optional[int] = num_samples * [prompt] _snake_case : Dict = pipeline.prepare_inputs(__lowercase ) # shard inputs and rng _snake_case : Optional[Any] = replicate(__lowercase ) _snake_case : Optional[int] = jax.random.split(__lowercase , __lowercase ) _snake_case : List[Any] = shard(__lowercase ) _snake_case : Tuple = pipeline(__lowercase , __lowercase , __lowercase , __lowercase , jit=__lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_003_906) ) < 1E-3 assert np.abs((np.abs(__lowercase , dtype=np.floataa ).sum() - 2_373_516.75) ) < 5E-1 def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" _snake_case : List[Any] = FlaxDDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , set_alpha_to_one=__lowercase , steps_offset=1 , ) _snake_case , _snake_case : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , scheduler=__lowercase , safety_checker=__lowercase , ) _snake_case : List[str] = scheduler.create_state() _snake_case : List[Any] = scheduler_state _snake_case : int = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) _snake_case : Any = jax.random.PRNGKey(0 ) _snake_case : List[str] = 50 _snake_case : Optional[Any] = jax.device_count() _snake_case : Optional[Any] = num_samples * [prompt] _snake_case : List[Any] = pipeline.prepare_inputs(__lowercase ) # shard inputs and rng _snake_case : Union[str, Any] = replicate(__lowercase ) _snake_case : Optional[int] = jax.random.split(__lowercase , __lowercase ) _snake_case : Dict = shard(__lowercase ) _snake_case : List[str] = pipeline(__lowercase , __lowercase , __lowercase , __lowercase , jit=__lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.045_043_945) ) < 1E-3 assert np.abs((np.abs(__lowercase , dtype=np.floataa ).sum() - 2_347_693.5) ) < 5E-1 def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" _snake_case : List[str] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) _snake_case : List[str] = jax.device_count() _snake_case : Optional[Any] = num_samples * [prompt] _snake_case : str = jax.random.split(jax.random.PRNGKey(0 ) , __lowercase ) _snake_case , _snake_case : Any = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__lowercase , ) _snake_case : Dict = replicate(__lowercase ) _snake_case : Optional[Any] = pipeline.prepare_inputs(__lowercase ) _snake_case : List[Any] = shard(__lowercase ) _snake_case : int = pipeline(__lowercase , __lowercase , __lowercase , jit=__lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) _snake_case : Any = images[2, 0, 256, 10:17, 1] # With memory efficient attention _snake_case , _snake_case : Any = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__lowercase , use_memory_efficient_attention=__lowercase , ) _snake_case : Union[str, Any] = replicate(__lowercase ) _snake_case : Optional[int] = pipeline.prepare_inputs(__lowercase ) _snake_case : Union[str, Any] = shard(__lowercase ) _snake_case : int = pipeline(__lowercase , __lowercase , __lowercase , jit=__lowercase ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) _snake_case : Any = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
715
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase : Dict = logging.get_logger(__name__) class lowerCamelCase (a__ ): _lowercase : int = ["""pixel_values"""] def __init__( self , lowercase__ = True , lowercase__ = 32 , lowercase__=PILImageResampling.BILINEAR , lowercase__ = True , **lowercase__ , ) -> None: """simple docstring""" _snake_case : Any = do_resize _snake_case : List[str] = do_rescale _snake_case : Any = size_divisor _snake_case : Optional[Any] = resample super().__init__(**lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ ) -> np.ndarray: """simple docstring""" _snake_case , _snake_case : Dict = get_image_size(lowercase__ ) # Rounds the height and width down to the closest multiple of size_divisor _snake_case : Optional[int] = height // size_divisor * size_divisor _snake_case : Dict = width // size_divisor * size_divisor _snake_case : str = resize(lowercase__ , (new_h, new_w) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) return image def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ ) -> np.ndarray: """simple docstring""" return rescale(image=lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__=None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ) -> BatchFeature: """simple docstring""" _snake_case : Any = do_resize if do_resize is not None else self.do_resize _snake_case : List[Any] = do_rescale if do_rescale is not None else self.do_rescale _snake_case : List[str] = size_divisor if size_divisor is not None else self.size_divisor _snake_case : int = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) _snake_case : Tuple = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. _snake_case : Tuple = [to_numpy_array(lowercase__ ) for img in images] if do_resize: _snake_case : Optional[int] = [self.resize(lowercase__ , size_divisor=lowercase__ , resample=lowercase__ ) for image in images] if do_rescale: _snake_case : Union[str, Any] = [self.rescale(lowercase__ , scale=1 / 255 ) for image in images] _snake_case : Union[str, Any] = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] _snake_case : List[str] = {'''pixel_values''': images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
47
0
'''simple docstring''' import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase : Optional[Any] = { """vocab_file""": """vocab.txt""", """merges_file""": """bpe.codes""", } UpperCAmelCase : str = { """vocab_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt""", }, """merges_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes""", }, } UpperCAmelCase : Dict = { """vinai/phobert-base""": 2_5_6, """vinai/phobert-large""": 2_5_6, } def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : str = set() _snake_case : List[str] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _snake_case : int = char _snake_case : List[str] = set(_lowerCAmelCase ) return pairs class lowerCamelCase (__snake_case ): _lowercase : Optional[int] = VOCAB_FILES_NAMES _lowercase : str = PRETRAINED_VOCAB_FILES_MAP _lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , lowercase__ , lowercase__ , lowercase__="<s>" , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<mask>" , **lowercase__ , ) -> Dict: """simple docstring""" super().__init__( bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , **A_ , ) _snake_case : Any = vocab_file _snake_case : Tuple = merges_file _snake_case : str = {} _snake_case : Union[str, Any] = 0 _snake_case : Dict = 1 _snake_case : Dict = 2 _snake_case : Optional[Any] = 3 self.add_from_file(A_ ) _snake_case : str = {v: k for k, v in self.encoder.items()} with open(A_ , encoding='''utf-8''' ) as merges_handle: _snake_case : Optional[Any] = merges_handle.read().split('''\n''' )[:-1] _snake_case : Union[str, Any] = [tuple(merge.split()[:-1] ) for merge in merges] _snake_case : List[Any] = dict(zip(A_ , range(len(A_ ) ) ) ) _snake_case : Union[str, Any] = {} def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> List[Any]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _snake_case : Optional[int] = [self.cls_token_id] _snake_case : str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None , lowercase__ = False ) -> str: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> str: """simple docstring""" _snake_case : Tuple = [self.sep_token_id] _snake_case : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" return len(self.encoder ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase_ ( self , lowercase__ ) -> Dict: """simple docstring""" if token in self.cache: return self.cache[token] _snake_case : Tuple = tuple(A_ ) _snake_case : List[Any] = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _snake_case : str = get_pairs(A_ ) if not pairs: return token while True: _snake_case : Any = min(A_ , key=lambda lowercase__ : self.bpe_ranks.get(A_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _snake_case : Any = bigram _snake_case : Optional[Any] = [] _snake_case : List[Any] = 0 while i < len(A_ ): try: _snake_case : Tuple = word.index(A_ , A_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _snake_case : int = j if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _snake_case : int = tuple(A_ ) _snake_case : Optional[int] = new_word if len(A_ ) == 1: break else: _snake_case : Optional[Any] = get_pairs(A_ ) _snake_case : Union[str, Any] = "@@ ".join(A_ ) _snake_case : str = word[:-4] _snake_case : str = word return word def UpperCAmelCase_ ( self , lowercase__ ) -> Optional[int]: """simple docstring""" _snake_case : Dict = [] _snake_case : Optional[Any] = re.findall(r'''\S+\n?''' , A_ ) for token in words: split_tokens.extend(list(self.bpe(A_ ).split(''' ''' ) ) ) return split_tokens def UpperCAmelCase_ ( self , lowercase__ ) -> Dict: """simple docstring""" return self.encoder.get(A_ , self.encoder.get(self.unk_token ) ) def UpperCAmelCase_ ( self , lowercase__ ) -> int: """simple docstring""" return self.decoder.get(A_ , self.unk_token ) def UpperCAmelCase_ ( self , lowercase__ ) -> Dict: """simple docstring""" _snake_case : List[str] = " ".join(A_ ).replace('''@@ ''' , '''''' ).strip() return out_string def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> str: """simple docstring""" if not os.path.isdir(A_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _snake_case : Dict = os.path.join( A_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _snake_case : Union[str, Any] = os.path.join( A_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ): copyfile(self.vocab_file , A_ ) if os.path.abspath(self.merges_file ) != os.path.abspath(A_ ): copyfile(self.merges_file , A_ ) return out_vocab_file, out_merge_file def UpperCAmelCase_ ( self , lowercase__ ) -> Tuple: """simple docstring""" if isinstance(A_ , A_ ): try: with open(A_ , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(A_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(F'''Incorrect encoding detected in {f}, please rebuild the dataset''' ) return _snake_case : Optional[int] = f.readlines() for lineTmp in lines: _snake_case : str = lineTmp.strip() _snake_case : Optional[Any] = line.rfind(''' ''' ) if idx == -1: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt>\'''' ) _snake_case : List[Any] = line[:idx] _snake_case : int = len(self.encoder )
716
'''simple docstring''' from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class lowerCamelCase : _lowercase : Any = LEDConfig _lowercase : Any = {} _lowercase : Optional[Any] = """gelu""" def __init__( self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=False , lowercase__=99 , lowercase__=32 , lowercase__=2 , lowercase__=4 , lowercase__=37 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=20 , lowercase__=2 , lowercase__=1 , lowercase__=0 , lowercase__=4 , ) -> Any: """simple docstring""" _snake_case : Dict = parent _snake_case : Any = batch_size _snake_case : List[str] = seq_length _snake_case : Union[str, Any] = is_training _snake_case : Tuple = use_labels _snake_case : int = vocab_size _snake_case : str = hidden_size _snake_case : Optional[Any] = num_hidden_layers _snake_case : List[Any] = num_attention_heads _snake_case : Optional[int] = intermediate_size _snake_case : List[Any] = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : Optional[int] = max_position_embeddings _snake_case : Any = eos_token_id _snake_case : List[Any] = pad_token_id _snake_case : Optional[int] = bos_token_id _snake_case : Any = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _snake_case : Any = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _snake_case : Tuple = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" _snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _snake_case : Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _snake_case : Optional[int] = tf.concat([input_ids, eos_tensor] , axis=1 ) _snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case : List[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _snake_case : Dict = prepare_led_inputs_dict(lowercase__ , lowercase__ , lowercase__ ) _snake_case : Dict = tf.concat( [tf.zeros_like(lowercase__ )[:, :-1], tf.ones_like(lowercase__ )[:, -1:]] , axis=-1 , ) _snake_case : Dict = global_attention_mask return config, inputs_dict def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> int: """simple docstring""" _snake_case : int = TFLEDModel(config=lowercase__ ).get_decoder() _snake_case : Union[str, Any] = inputs_dict['''input_ids'''] _snake_case : List[str] = input_ids[:1, :] _snake_case : Tuple = inputs_dict['''attention_mask'''][:1, :] _snake_case : Dict = 1 # first forward pass _snake_case : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__ ) _snake_case , _snake_case : Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _snake_case : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _snake_case : Tuple = tf.concat([input_ids, next_tokens] , axis=-1 ) _snake_case : List[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _snake_case : List[Any] = model(lowercase__ , attention_mask=lowercase__ )[0] _snake_case : Tuple = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _snake_case : Tuple = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _snake_case : int = output_from_no_past[:, -3:, random_slice_idx] _snake_case : Optional[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase__ , lowercase__ , rtol=1E-3 ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , ): """simple docstring""" if attention_mask is None: _snake_case : Union[str, Any] = tf.cast(tf.math.not_equal(lowerCAmelCase_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _snake_case : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _snake_case : int = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class lowerCamelCase (a__ , a__ , unittest.TestCase ): _lowercase : Optional[int] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _lowercase : int = (TFLEDForConditionalGeneration,) if is_tf_available() else () _lowercase : Dict = ( { """conversational""": TFLEDForConditionalGeneration, """feature-extraction""": TFLEDModel, """summarization""": TFLEDForConditionalGeneration, """text2text-generation""": TFLEDForConditionalGeneration, """translation""": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _lowercase : int = True _lowercase : List[Any] = False _lowercase : str = False _lowercase : Union[str, Any] = False def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : str = TFLEDModelTester(self ) _snake_case : Union[str, Any] = ConfigTester(self , config_class=lowercase__ ) def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase__ ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Any = tf.zeros_like(inputs_dict['''attention_mask'''] ) _snake_case : Optional[Any] = 2 _snake_case : Any = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) _snake_case : Dict = True _snake_case : str = self.model_tester.seq_length _snake_case : Dict = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowercase__ ): _snake_case : Optional[int] = outputs.decoder_attentions self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowercase__ ): _snake_case : int = [t.numpy() for t in outputs.encoder_attentions] _snake_case : Tuple = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _snake_case : Union[str, Any] = True _snake_case : Dict = False _snake_case : Union[str, Any] = False _snake_case : List[Any] = model_class(lowercase__ ) _snake_case : Optional[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) _snake_case : List[Any] = len(lowercase__ ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) if self.is_encoder_decoder: _snake_case : Union[str, Any] = model_class(lowercase__ ) _snake_case : List[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_decoder_attentions_output(lowercase__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _snake_case : str = True _snake_case : Tuple = model_class(lowercase__ ) _snake_case : int = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) # Check attention is always last and order is fine _snake_case : int = True _snake_case : List[str] = True _snake_case : Tuple = model_class(lowercase__ ) _snake_case : Optional[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase__ ) ) self.assertEqual(model.config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" pass def UpperCAmelCase_ ( self ) -> str: """simple docstring""" pass def _a ( lowerCAmelCase_ ): """simple docstring""" return tf.constant(lowerCAmelCase_ , dtype=tf.intaa ) UpperCAmelCase : Dict = 1E-4 @slow @require_tf class lowerCamelCase (unittest.TestCase ): def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" _snake_case : List[str] = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here _snake_case : List[str] = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : Tuple = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : Tuple = prepare_led_inputs_dict(model.config , lowercase__ , lowercase__ ) _snake_case : int = model(**lowercase__ )[0] _snake_case : Dict = (1, 1_024, 768) self.assertEqual(output.shape , lowercase__ ) # change to expected output here _snake_case : List[Any] = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1E-3 ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Any = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here _snake_case : Dict = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : Dict = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : List[str] = prepare_led_inputs_dict(model.config , lowercase__ , lowercase__ ) _snake_case : Tuple = model(**lowercase__ )[0] _snake_case : Any = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , lowercase__ ) # change to expected output here _snake_case : Dict = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1E-3 , rtol=1E-3 )
47
0
'''simple docstring''' from math import factorial def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(lowerCAmelCase_ ) // (factorial(lowerCAmelCase_ ) * factorial(n - k )) if __name__ == "__main__": print( 'The number of five-card hands possible from a standard', F"""fifty-two card deck is: {combinations(5_2, 5)}\n""", ) print( 'If a class of 40 students must be arranged into groups of', F"""4 for group projects, there are {combinations(4_0, 4)} ways""", 'to arrange them.\n', ) print( 'If 10 teams are competing in a Formula One race, there', F"""are {combinations(1_0, 3)} ways that first, second and""", 'third place can be awarded.', )
717
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase : Optional[int] = logging.get_logger(__name__) UpperCAmelCase : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase : Any = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } UpperCAmelCase : Optional[Any] = { 'gpt-neox-20b': 2_0_4_8, } class lowerCamelCase (a__ ): _lowercase : Optional[int] = VOCAB_FILES_NAMES _lowercase : str = PRETRAINED_VOCAB_FILES_MAP _lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Optional[int] = ["""input_ids""", """attention_mask"""] def __init__( self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="<|endoftext|>" , lowercase__="<|endoftext|>" , lowercase__="<|endoftext|>" , lowercase__=False , **lowercase__ , ) -> List[Any]: """simple docstring""" super().__init__( lowercase__ , lowercase__ , tokenizer_file=lowercase__ , unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , add_prefix_space=lowercase__ , **lowercase__ , ) _snake_case : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowercase__ ) != add_prefix_space: _snake_case : int = getattr(lowercase__ , pre_tok_state.pop('''type''' ) ) _snake_case : int = add_prefix_space _snake_case : Optional[Any] = pre_tok_class(**lowercase__ ) _snake_case : List[str] = add_prefix_space def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> Tuple[str]: """simple docstring""" _snake_case : Optional[int] = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> List[int]: """simple docstring""" _snake_case : List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase__ , add_special_tokens=lowercase__ ) + [self.eos_token_id] ) if len(lowercase__ ) > self.model_max_length: _snake_case : Dict = input_ids[-self.model_max_length :] return input_ids
47
0
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : int = tmp_path / "file.csv" _snake_case : Any = textwrap.dedent( '''\\n header1,header2\n 1,2\n 10,20\n ''' ) with open(__lowerCAmelCase , '''w''' ) as f: f.write(__lowerCAmelCase ) return str(__lowerCAmelCase ) @pytest.fixture def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : str = tmp_path / "malformed_file.csv" _snake_case : Any = textwrap.dedent( '''\\n header1,header2\n 1,2\n 10,20,\n ''' ) with open(__lowerCAmelCase , '''w''' ) as f: f.write(__lowerCAmelCase ) return str(__lowerCAmelCase ) @pytest.fixture def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Any = tmp_path / "csv_with_image.csv" _snake_case : Optional[Any] = textwrap.dedent( f'''\ image {image_file} ''' ) with open(__lowerCAmelCase , '''w''' ) as f: f.write(__lowerCAmelCase ) return str(__lowerCAmelCase ) @pytest.fixture def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[int] = tmp_path / "csv_with_label.csv" _snake_case : Any = textwrap.dedent( '''\\n label\n good\n bad\n good\n ''' ) with open(__lowerCAmelCase , '''w''' ) as f: f.write(__lowerCAmelCase ) return str(__lowerCAmelCase ) @pytest.fixture def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[int] = tmp_path / "csv_with_int_list.csv" _snake_case : Any = textwrap.dedent( '''\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n ''' ) with open(__lowerCAmelCase , '''w''' ) as f: f.write(__lowerCAmelCase ) return str(__lowerCAmelCase ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[int] = Csv() _snake_case : int = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(__lowerCAmelCase , match='''Error tokenizing data''' ): for _ in generator: pass assert any( record.levelname == '''ERROR''' and '''Failed to read file''' in record.message and os.path.basename(__lowerCAmelCase ) in record.message for record in caplog.records ) @require_pil def _a ( lowerCAmelCase_ ): """simple docstring""" with open(__lowerCAmelCase , encoding='''utf-8''' ) as f: _snake_case : List[Any] = f.read().splitlines()[1] _snake_case : Optional[int] = Csv(encoding='''utf-8''' , features=Features({'''image''': Image()} ) ) _snake_case : Dict = csv._generate_tables([[csv_file_with_image]] ) _snake_case : Tuple = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''image''' ).type == Image()() _snake_case : str = pa_table.to_pydict()["image"] assert generated_content == [{"path": image_file, "bytes": None}] def _a ( lowerCAmelCase_ ): """simple docstring""" with open(__lowerCAmelCase , encoding='''utf-8''' ) as f: _snake_case : Union[str, Any] = f.read().splitlines()[1:] _snake_case : str = Csv(encoding='''utf-8''' , features=Features({'''label''': ClassLabel(names=['''good''', '''bad'''] )} ) ) _snake_case : List[str] = csv._generate_tables([[csv_file_with_label]] ) _snake_case : List[str] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''label''' ).type == ClassLabel(names=['''good''', '''bad'''] )() _snake_case : Dict = pa_table.to_pydict()["label"] assert generated_content == [ClassLabel(names=['''good''', '''bad'''] ).straint(__lowerCAmelCase ) for label in labels] def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Dict = Csv(encoding='''utf-8''' , sep=''',''' , converters={'''int_list''': lambda lowerCAmelCase_ : [int(__lowerCAmelCase ) for i in x.split()]} ) _snake_case : Optional[int] = csv._generate_tables([[csv_file_with_int_list]] ) _snake_case : Tuple = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('''int_list''' ).type ) _snake_case : Tuple = pa_table.to_pydict()["int_list"] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
718
'''simple docstring''' import math from numpy import inf from scipy.integrate import quad def _a ( lowerCAmelCase_ ): """simple docstring""" if num <= 0: raise ValueError('''math domain error''' ) return quad(lowerCAmelCase_ , 0 , lowerCAmelCase_ , args=(lowerCAmelCase_) )[0] def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return math.pow(lowerCAmelCase_ , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
47
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) class lowerCamelCase (__a ): def __init__( self , *lowercase__ , **lowercase__ ) -> None: """simple docstring""" warnings.warn( '''The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use YolosImageProcessor instead.''' , lowerCAmelCase_ , ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ )
719
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class lowerCamelCase (unittest.TestCase ): @slow def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Union[str, Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Any = TFAutoModel.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : str = AutoModel.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Optional[Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Dict = TFAutoModelForPreTraining.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Tuple = AutoModelForPreTraining.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Optional[int] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained(lowercase__ , from_pt=lowercase__ ) _snake_case , _snake_case : Tuple = TFAutoModelForCausalLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained(lowercase__ , from_tf=lowercase__ ) _snake_case , _snake_case : Optional[Any] = AutoModelForCausalLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Tuple = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : int = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[str] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(lowercase__ , from_pt=lowercase__ ) _snake_case , _snake_case : List[str] = TFAutoModelForMaskedLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : int = AutoModelForMaskedLM.from_pretrained(lowercase__ , from_tf=lowercase__ ) _snake_case , _snake_case : Optional[int] = AutoModelForMaskedLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[str] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(lowercase__ , from_pt=lowercase__ ) _snake_case , _snake_case : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : List[str] = AutoModelForSeqaSeqLM.from_pretrained(lowercase__ , from_tf=lowercase__ ) _snake_case , _snake_case : Dict = AutoModelForSeqaSeqLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Any = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Any = TFAutoModelForSequenceClassification.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Dict = AutoModelForSequenceClassification.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : str = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : str = TFAutoModelForQuestionAnswering.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Union[str, Any] = AutoModelForQuestionAnswering.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : Union[str, Any] = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 ) _snake_case : Tuple = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : List[str] = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 ) _snake_case : int = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 )
47
0
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class lowerCamelCase (__lowercase ): _lowercase : torch.FloatTensor _lowercase : torch.FloatTensor _lowercase : Optional[torch.FloatTensor] = None class lowerCamelCase (__lowercase , __lowercase ): _lowercase : Any = 2 @register_to_config def __init__( self , lowercase__ = 0.02 , lowercase__ = 100 , lowercase__ = 1.007 , lowercase__ = 80 , lowercase__ = 0.05 , lowercase__ = 50 , ) -> Optional[int]: """simple docstring""" _snake_case : Tuple = sigma_max # setable values _snake_case : int = None _snake_case : np.IntTensor = None _snake_case : torch.FloatTensor = None # sigma(t_i) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> torch.FloatTensor: """simple docstring""" return sample def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> Any: """simple docstring""" _snake_case : Optional[Any] = num_inference_steps _snake_case : Union[str, Any] = np.arange(0 , self.num_inference_steps )[::-1].copy() _snake_case : Dict = torch.from_numpy(__a ).to(__a ) _snake_case : int = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] _snake_case : List[Any] = torch.tensor(__a , dtype=torch.floataa , device=__a ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = None ) -> Tuple[torch.FloatTensor, float]: """simple docstring""" if self.config.s_min <= sigma <= self.config.s_max: _snake_case : str = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: _snake_case : Optional[Any] = 0 # sample eps ~ N(0, S_noise^2 * I) _snake_case : str = self.config.s_noise * randn_tensor(sample.shape , generator=__a ).to(sample.device ) _snake_case : str = sigma + gamma * sigma _snake_case : Dict = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = True , ) -> Union[KarrasVeOutput, Tuple]: """simple docstring""" _snake_case : List[str] = sample_hat + sigma_hat * model_output _snake_case : Tuple = (sample_hat - pred_original_sample) / sigma_hat _snake_case : Optional[Any] = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=__a , derivative=__a , pred_original_sample=__a ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = True , ) -> Union[KarrasVeOutput, Tuple]: """simple docstring""" _snake_case : List[str] = sample_prev + sigma_prev * model_output _snake_case : List[str] = (sample_prev - pred_original_sample) / sigma_prev _snake_case : Any = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=__a , derivative=__a , pred_original_sample=__a ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ ) -> str: """simple docstring""" raise NotImplementedError()
720
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : Dict = {'configuration_timm_backbone': ['TimmBackboneConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = ['TimmBackbone'] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
47
0
'''simple docstring''' import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels UpperCAmelCase : List[Any] = object() # For specifying empty leaf dict `{}` UpperCAmelCase : str = object() def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Union[str, Any] = tuple((re.compile(x + '''$''' ) for x in qs) ) for i in range(len(_UpperCamelCase ) - len(_UpperCamelCase ) + 1 ): _snake_case : str = [x.match(_UpperCamelCase ) for x, y in zip(_UpperCamelCase , ks[i:] )] if matches and all(_UpperCamelCase ): return True return False def _a ( lowerCAmelCase_ ): """simple docstring""" def replace(lowerCAmelCase_ , lowerCAmelCase_ ): for rule, replacement in rules: if _match(_UpperCamelCase , _UpperCamelCase ): return replacement return val return replace def _a ( ): """simple docstring""" return [ # embeddings (("transformer", "wpe", "embedding"), P('''mp''' , _UpperCamelCase )), (("transformer", "wte", "embedding"), P('''mp''' , _UpperCamelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(_UpperCamelCase , '''mp''' )), (("attention", "out_proj", "kernel"), P('''mp''' , _UpperCamelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(_UpperCamelCase , '''mp''' )), (("mlp", "c_fc", "bias"), P('''mp''' )), (("mlp", "c_proj", "kernel"), P('''mp''' , _UpperCamelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : List[str] = _get_partition_rules() _snake_case : Dict = _replacement_rules(_UpperCamelCase ) _snake_case : str = {k: _unmatched for k in flatten_dict(_UpperCamelCase )} _snake_case : Dict = {k: replace(_UpperCamelCase , _UpperCamelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(_UpperCamelCase ) )
721
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version UpperCAmelCase : Tuple = logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') UpperCAmelCase : str = { 'base': AutoModel, 'sequence-classification': AutoModelForSequenceClassification, 'question-answering': AutoModelForQuestionAnswering, 'pretraining': AutoModelForPreTraining, 'token-classification': AutoModelForTokenClassification, 'language-modeling': AutoModelWithLMHead, 'summarization': AutoModelForSeqaSeqLM, 'translation': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization UpperCAmelCase : Optional[Any] = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } UpperCAmelCase : Tuple = sorted(arg_to_scheduler.keys()) UpperCAmelCase : Optional[Any] = '{' + ', '.join(arg_to_scheduler_choices) + '}' class lowerCamelCase (pl.LightningModule ): def __init__( self , lowercase__ , lowercase__=None , lowercase__="base" , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ , ) -> Optional[int]: """simple docstring""" super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(lowercase__ ) _snake_case : Union[str, Any] = 0 _snake_case : int = Path(self.hparams.output_dir ) _snake_case : int = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: _snake_case : Tuple = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=lowercase__ , **lowercase__ , ) else: _snake_case : PretrainedConfig = config _snake_case : Optional[Any] = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(self.hparams , lowercase__ , lowercase__ ): assert hasattr(self.config , lowercase__ ), F'''model config doesn\'t have a `{p}` attribute''' setattr(self.config , lowercase__ , getattr(self.hparams , lowercase__ ) ) if tokenizer is None: _snake_case : Optional[int] = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=lowercase__ , ) else: _snake_case : PreTrainedTokenizer = tokenizer _snake_case : Any = MODEL_MODES[mode] if model is None: _snake_case : List[Any] = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=lowercase__ , ) else: _snake_case : Optional[Any] = model def UpperCAmelCase_ ( self , *lowercase__ , **lowercase__ ) -> List[str]: """simple docstring""" _snake_case : Dict = self.model_type.from_pretrained(*lowercase__ , **lowercase__ ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Optional[int] = arg_to_scheduler[self.hparams.lr_scheduler] _snake_case : Optional[int] = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) _snake_case : str = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1} return scheduler def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Any = self.model _snake_case : List[Any] = ['''bias''', '''LayerNorm.weight'''] _snake_case : List[str] = [ { '''params''': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters '''weight_decay''': self.hparams.weight_decay, }, { '''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] if self.hparams.adafactor: _snake_case : Any = Adafactor( lowercase__ , lr=self.hparams.learning_rate , scale_parameter=lowercase__ , relative_step=lowercase__ ) else: _snake_case : List[str] = AdamW( lowercase__ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) _snake_case : List[str] = optimizer _snake_case : Any = self.get_lr_scheduler() return [optimizer], [scheduler] def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Any: """simple docstring""" return self.validation_step(lowercase__ , lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> Tuple: """simple docstring""" return self.validation_end(lowercase__ ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Any = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores _snake_case : Optional[int] = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def UpperCAmelCase_ ( self , lowercase__ ) -> Any: """simple docstring""" if stage == "test": _snake_case : Any = len(self.test_dataloader().dataset ) else: _snake_case : Dict = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=lowercase__ ) _snake_case : Optional[int] = len(self.train_dataloader().dataset ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = False ) -> str: """simple docstring""" raise NotImplementedError('''You must implement this for your task''' ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" return self.train_loader def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=lowercase__ ) def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> Optional[int]: """simple docstring""" return os.path.join( self.hparams.data_dir , '''cached_{}_{}_{}'''.format( lowercase__ , list(filter(lowercase__ , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def UpperCAmelCase_ ( self , lowercase__ ) -> None: """simple docstring""" _snake_case : Dict = self.output_dir.joinpath('''best_tfmr''' ) _snake_case : Tuple = self.step_count self.model.save_pretrained(lowercase__ ) self.tokenizer.save_pretrained(lowercase__ ) @staticmethod def UpperCAmelCase_ ( lowercase__ , lowercase__ ) -> Tuple: """simple docstring""" parser.add_argument( '''--model_name_or_path''' , default=lowercase__ , type=lowercase__ , required=lowercase__ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--config_name''' , default='''''' , type=lowercase__ , help='''Pretrained config name or path if not the same as model_name''' ) parser.add_argument( '''--tokenizer_name''' , default=lowercase__ , type=lowercase__ , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument( '''--cache_dir''' , default=str(Path(lowercase__ ).parent / '''test_run''' / '''cache''' ) , type=lowercase__ , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , ) parser.add_argument( '''--encoder_layerdrop''' , type=lowercase__ , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--decoder_layerdrop''' , type=lowercase__ , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--dropout''' , type=lowercase__ , help='''Dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--attention_dropout''' , type=lowercase__ , help='''Attention dropout probability (Optional). Goes into model.config''' , ) parser.add_argument('''--learning_rate''' , default=5E-5 , type=lowercase__ , help='''The initial learning rate for Adam.''' ) parser.add_argument( '''--lr_scheduler''' , default='''linear''' , choices=lowercase__ , metavar=lowercase__ , type=lowercase__ , help='''Learning rate scheduler''' , ) parser.add_argument('''--weight_decay''' , default=0.0 , type=lowercase__ , help='''Weight decay if we apply some.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=lowercase__ , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--warmup_steps''' , default=0 , type=lowercase__ , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--num_workers''' , default=4 , type=lowercase__ , help='''kwarg passed to DataLoader''' ) parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=lowercase__ ) parser.add_argument('''--train_batch_size''' , default=32 , type=lowercase__ ) parser.add_argument('''--eval_batch_size''' , default=32 , type=lowercase__ ) parser.add_argument('''--adafactor''' , action='''store_true''' ) class lowerCamelCase (pl.Callback ): def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> str: """simple docstring""" if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class lowerCamelCase (pl.Callback ): def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> List[str]: """simple docstring""" for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(lowercase__ ) class lowerCamelCase (pl.Callback ): def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Any: """simple docstring""" _snake_case : Any = trainer.lr_schedulers[0]['''scheduler'''] _snake_case : Optional[int] = {F'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> List[str]: """simple docstring""" rank_zero_info('''***** Validation results *****''' ) _snake_case : Dict = trainer.callback_metrics # Log results for key in sorted(lowercase__ ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Dict: """simple docstring""" rank_zero_info('''***** Test results *****''' ) _snake_case : Dict = trainer.callback_metrics # Log and save results to file _snake_case : str = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' ) with open(lowercase__ , '''w''' ) as writer: for key in sorted(lowercase__ ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) ) writer.write('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" parser.add_argument( '''--output_dir''' , default=str(Path(lowerCAmelCase_ ).parent / '''test_run''' / '''model_checkpoints''' ) , type=lowerCAmelCase_ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=lowerCAmelCase_ , default='''O2''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=lowerCAmelCase_ ) parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=lowerCAmelCase_ , help='''Max gradient norm''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' ) parser.add_argument( '''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=lowerCAmelCase_ , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--seed''' , type=lowerCAmelCase_ , default=42 , help='''random seed for initialization''' ) parser.add_argument( '''--data_dir''' , default=str(Path(lowerCAmelCase_ ).parent / '''test_run''' / '''dummy-train-data''' ) , type=lowerCAmelCase_ , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_=[] , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , ): """simple docstring""" pl.seed_everything(args.seed ) # init model _snake_case : Union[str, Any] = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=lowerCAmelCase_ ) # add custom checkpoints if checkpoint_callback is None: _snake_case : Any = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(lowerCAmelCase_ ) if logging_callback is None: _snake_case : str = LoggingCallback() _snake_case : Tuple = {} if args.fpaa: _snake_case : Union[str, Any] = 16 if args.gpus > 1: _snake_case : Optional[Any] = '''auto''' _snake_case : Tuple = '''ddp''' _snake_case : Optional[Any] = args.accumulate_grad_batches _snake_case : Tuple = None _snake_case : str = '''auto''' _snake_case : int = pl.Trainer.from_argparse_args( lowerCAmelCase_ , weights_summary=lowerCAmelCase_ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase_ , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase_ , ) if args.do_train: trainer.fit(lowerCAmelCase_ ) else: print('''RAG modeling tests with new set functions successfuly executed!''' ) return trainer
47
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging UpperCAmelCase : Optional[int] = logging.get_logger(__name__) UpperCAmelCase : Optional[int] = { 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class lowerCamelCase (__a ): _lowercase : Optional[int] = """marian""" _lowercase : Any = ["""past_key_values"""] _lowercase : Optional[int] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , lowercase__=58_101 , lowercase__=None , lowercase__=1_024 , lowercase__=12 , lowercase__=4_096 , lowercase__=16 , lowercase__=12 , lowercase__=4_096 , lowercase__=16 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=True , lowercase__=True , lowercase__="gelu" , lowercase__=1_024 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.02 , lowercase__=58_100 , lowercase__=False , lowercase__=58_100 , lowercase__=0 , lowercase__=0 , lowercase__=True , **lowercase__ , ) -> Tuple: """simple docstring""" _snake_case : Optional[Any] = vocab_size _snake_case : Optional[Any] = decoder_vocab_size or vocab_size _snake_case : Dict = max_position_embeddings _snake_case : Dict = d_model _snake_case : Optional[Any] = encoder_ffn_dim _snake_case : Dict = encoder_layers _snake_case : Dict = encoder_attention_heads _snake_case : Any = decoder_ffn_dim _snake_case : str = decoder_layers _snake_case : List[str] = decoder_attention_heads _snake_case : Optional[int] = dropout _snake_case : Any = attention_dropout _snake_case : Optional[Any] = activation_dropout _snake_case : Any = activation_function _snake_case : Any = init_std _snake_case : Any = encoder_layerdrop _snake_case : Any = decoder_layerdrop _snake_case : Tuple = use_cache _snake_case : Optional[int] = encoder_layers _snake_case : str = scale_embedding # scale factor will be sqrt(d_model) if True _snake_case : int = share_encoder_decoder_embeddings super().__init__( pad_token_id=A__ , eos_token_id=A__ , is_encoder_decoder=A__ , decoder_start_token_id=A__ , forced_eos_token_id=A__ , **A__ , ) class lowerCamelCase (__a ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _snake_case : int = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: _snake_case : Dict = {0: '''batch'''} _snake_case : Dict = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: _snake_case : List[str] = {0: '''batch''', 1: '''decoder_sequence'''} _snake_case : Dict = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(A__ , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. _snake_case : Tuple = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: _snake_case , _snake_case : Optional[Any] = self.num_layers for i in range(A__ ): _snake_case : Optional[int] = {0: '''batch''', 2: '''past_sequence + sequence'''} _snake_case : List[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} else: _snake_case : str = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _snake_case : Union[str, Any] = super().outputs else: _snake_case : List[str] = super(A__ , self ).outputs if self.use_past: _snake_case , _snake_case : int = self.num_layers for i in range(A__ ): _snake_case : Dict = {0: '''batch''', 2: '''past_sequence + sequence'''} _snake_case : Union[str, Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , ) -> Mapping[str, Any]: """simple docstring""" _snake_case : Dict = self._generate_dummy_inputs_for_encoder_and_decoder( A__ , A__ , A__ , A__ , A__ ) # Generate decoder inputs _snake_case : Dict = seq_length if not self.use_past else 1 _snake_case : List[str] = self._generate_dummy_inputs_for_encoder_and_decoder( A__ , A__ , A__ , A__ , A__ ) _snake_case : str = {F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} _snake_case : Optional[int] = dict(**A__ , **A__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _snake_case , _snake_case : Dict = common_inputs['''input_ids'''].shape _snake_case : Dict = common_inputs['''decoder_input_ids'''].shape[1] _snake_case , _snake_case : Optional[Any] = self.num_attention_heads _snake_case : str = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _snake_case : List[str] = decoder_seq_length + 3 _snake_case : int = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _snake_case : Any = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(A__ , A__ )] , dim=1 ) _snake_case : Optional[int] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _snake_case , _snake_case : Tuple = self.num_layers _snake_case : int = min(A__ , A__ ) _snake_case : str = max(A__ , A__ ) - min_num_layers _snake_case : str = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(A__ ): common_inputs["past_key_values"].append( ( torch.zeros(A__ ), torch.zeros(A__ ), torch.zeros(A__ ), torch.zeros(A__ ), ) ) # TODO: test this. _snake_case : Tuple = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(A__ , A__ ): common_inputs["past_key_values"].append((torch.zeros(A__ ), torch.zeros(A__ )) ) return common_inputs def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , ) -> Mapping[str, Any]: """simple docstring""" _snake_case : Optional[int] = self._generate_dummy_inputs_for_encoder_and_decoder( A__ , A__ , A__ , A__ , A__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _snake_case , _snake_case : List[Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _snake_case : Union[str, Any] = seqlen + 2 _snake_case , _snake_case : List[str] = self.num_layers _snake_case , _snake_case : List[Any] = self.num_attention_heads _snake_case : Any = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _snake_case : Dict = common_inputs['''attention_mask'''].dtype _snake_case : Union[str, Any] = torch.cat( [common_inputs['''attention_mask'''], torch.ones(A__ , A__ , dtype=A__ )] , dim=1 ) _snake_case : Optional[int] = [ (torch.zeros(A__ ), torch.zeros(A__ )) for _ in range(A__ ) ] return common_inputs def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , ) -> Mapping[str, Any]: """simple docstring""" _snake_case : Optional[Any] = compute_effective_axis_dimension( A__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _snake_case : str = tokenizer.num_special_tokens_to_add(A__ ) _snake_case : Tuple = compute_effective_axis_dimension( A__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=A__ ) # Generate dummy inputs according to compute batch and sequence _snake_case : Union[str, Any] = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size _snake_case : Union[str, Any] = dict(tokenizer(A__ , return_tensors=A__ ) ) return common_inputs def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , ) -> Mapping[str, Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _snake_case : Tuple = self._generate_dummy_inputs_for_default_and_seqaseq_lm( A__ , batch_size=A__ , seq_length=A__ , is_pair=A__ , framework=A__ ) else: _snake_case : Any = self._generate_dummy_inputs_for_causal_lm( A__ , batch_size=A__ , seq_length=A__ , is_pair=A__ , framework=A__ ) return common_inputs def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> List[str]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _snake_case : Tuple = super()._flatten_past_key_values_(A__ , A__ , A__ , A__ ) else: _snake_case : Tuple = super(A__ , self )._flatten_past_key_values_( A__ , A__ , A__ , A__ ) @property def UpperCAmelCase_ ( self ) -> float: """simple docstring""" return 1E-4
700
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : Dict = { 'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowerCamelCase (a__ ): _lowercase : List[str] = """sew-d""" def __init__( self , lowercase__=32 , lowercase__=768 , lowercase__=12 , lowercase__=12 , lowercase__=3_072 , lowercase__=2 , lowercase__=512 , lowercase__=256 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.02 , lowercase__=1E-7 , lowercase__=1E-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=128 , lowercase__=16 , lowercase__=True , lowercase__=0.05 , lowercase__=10 , lowercase__=2 , lowercase__=0.0 , lowercase__=10 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=256 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ) -> Dict: """simple docstring""" super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ ) _snake_case : List[str] = hidden_size _snake_case : Optional[Any] = feat_extract_norm _snake_case : Tuple = feat_extract_activation _snake_case : Tuple = list(lowercase__ ) _snake_case : Any = list(lowercase__ ) _snake_case : Any = list(lowercase__ ) _snake_case : Any = conv_bias _snake_case : List[Any] = num_conv_pos_embeddings _snake_case : Any = num_conv_pos_embedding_groups _snake_case : Union[str, Any] = len(self.conv_dim ) _snake_case : Optional[Any] = num_hidden_layers _snake_case : Optional[int] = intermediate_size _snake_case : Any = squeeze_factor _snake_case : Optional[Any] = max_position_embeddings _snake_case : Tuple = position_buckets _snake_case : Tuple = share_att_key _snake_case : Any = relative_attention _snake_case : Optional[int] = norm_rel_ebd _snake_case : Optional[Any] = list(lowercase__ ) _snake_case : List[Any] = hidden_act _snake_case : List[Any] = num_attention_heads _snake_case : Dict = hidden_dropout _snake_case : Tuple = attention_dropout _snake_case : Union[str, Any] = activation_dropout _snake_case : List[Any] = feat_proj_dropout _snake_case : Optional[int] = final_dropout _snake_case : Optional[Any] = layer_norm_eps _snake_case : Dict = feature_layer_norm_eps _snake_case : List[Any] = initializer_range _snake_case : Dict = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _snake_case : Union[str, Any] = apply_spec_augment _snake_case : Any = mask_time_prob _snake_case : List[str] = mask_time_length _snake_case : Dict = mask_time_min_masks _snake_case : Union[str, Any] = mask_feature_prob _snake_case : Tuple = mask_feature_length _snake_case : Union[str, Any] = mask_feature_min_masks # ctc loss _snake_case : Optional[Any] = ctc_loss_reduction _snake_case : Optional[Any] = ctc_zero_infinity # sequence classification _snake_case : List[Any] = use_weighted_layer_sum _snake_case : Any = classifier_proj_size @property def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
47
0
'''simple docstring''' import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def _a ( lowerCAmelCase_ ): # picklable for multiprocessing """simple docstring""" return x.sum() def _a ( lowerCAmelCase_ ): # picklable for multiprocessing """simple docstring""" return i + 1 @dataclass class lowerCamelCase : _lowercase : int _lowercase : str class lowerCamelCase (a__ ): def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : List[str] = {} _snake_case : Union[str, Any] = [] _snake_case : str = 1 _snake_case : Dict = [1, 2] _snake_case : Tuple = {'''a''': 1, '''b''': 2} _snake_case : str = {'''a''': [1, 2], '''b''': [3, 4]} _snake_case : List[Any] = {'''a''': {'''1''': 1}, '''b''': 2} _snake_case : str = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4} _snake_case : Dict = {} _snake_case : Union[str, Any] = [] _snake_case : Tuple = 2 _snake_case : List[Any] = [2, 3] _snake_case : List[Any] = {'''a''': 2, '''b''': 3} _snake_case : Union[str, Any] = {'''a''': [2, 3], '''b''': [4, 5]} _snake_case : List[Any] = {'''a''': {'''1''': 2}, '''b''': 3} _snake_case : Tuple = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5} self.assertEqual(map_nested(lowercase__ , lowercase__ ) , lowercase__ ) self.assertEqual(map_nested(lowercase__ , lowercase__ ) , lowercase__ ) self.assertEqual(map_nested(lowercase__ , lowercase__ ) , lowercase__ ) self.assertEqual(map_nested(lowercase__ , lowercase__ ) , lowercase__ ) self.assertEqual(map_nested(lowercase__ , lowercase__ ) , lowercase__ ) self.assertEqual(map_nested(lowercase__ , lowercase__ ) , lowercase__ ) self.assertEqual(map_nested(lowercase__ , lowercase__ ) , lowercase__ ) self.assertEqual(map_nested(lowercase__ , lowercase__ ) , lowercase__ ) _snake_case : str = 2 self.assertEqual(map_nested(lowercase__ , lowercase__ , num_proc=lowercase__ ) , lowercase__ ) self.assertEqual(map_nested(lowercase__ , lowercase__ , num_proc=lowercase__ ) , lowercase__ ) self.assertEqual(map_nested(lowercase__ , lowercase__ , num_proc=lowercase__ ) , lowercase__ ) self.assertEqual(map_nested(lowercase__ , lowercase__ , num_proc=lowercase__ ) , lowercase__ ) self.assertEqual(map_nested(lowercase__ , lowercase__ , num_proc=lowercase__ ) , lowercase__ ) self.assertEqual(map_nested(lowercase__ , lowercase__ , num_proc=lowercase__ ) , lowercase__ ) self.assertEqual(map_nested(lowercase__ , lowercase__ , num_proc=lowercase__ ) , lowercase__ ) self.assertEqual(map_nested(lowercase__ , lowercase__ , num_proc=lowercase__ ) , lowercase__ ) _snake_case : List[str] = {'''a''': np.eye(2 ), '''b''': np.zeros(3 ), '''c''': np.ones(2 )} _snake_case : Any = {'''a''': 2, '''b''': 0, '''c''': 2} _snake_case : Any = { '''a''': np.eye(2 ).astype(lowercase__ ), '''b''': np.zeros(3 ).astype(lowercase__ ), '''c''': np.ones(2 ).astype(lowercase__ ), } self.assertEqual(map_nested(lowercase__ , lowercase__ , map_numpy=lowercase__ ) , lowercase__ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(lowercase__ , lowercase__ , map_numpy=lowercase__ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(lowercase__ , lowercase__ , map_numpy=lowercase__ , num_proc=lowercase__ ) , lowercase__ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(lowercase__ , lowercase__ , map_numpy=lowercase__ , num_proc=lowercase__ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(lowercase__ ): # can't pickle a local lambda map_nested(lambda lowercase__ : x + 1 , lowercase__ , num_proc=lowercase__ ) def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" _snake_case : List[str] = {'''a''': 1, '''b''': 2} _snake_case : List[str] = {'''a''': 3, '''b''': 4} _snake_case : str = {'''a''': 5, '''b''': 6} _snake_case : Tuple = sorted([('''a''', (1, 3, 5)), ('''b''', (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(lowercase__ , lowercase__ , lowercase__ ) ) , lowercase__ ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" class lowerCamelCase : _lowercase : Any = 'bar' _snake_case : Dict = Foo() self.assertEqual(foo.my_attr , '''bar''' ) with temporary_assignment(lowercase__ , '''my_attr''' , '''BAR''' ): self.assertEqual(foo.my_attr , '''BAR''' ) self.assertEqual(foo.my_attr , '''bar''' ) @pytest.mark.parametrize( '''iterable_length, num_proc, expected_num_proc''' , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" with patch('''datasets.utils.py_utils._single_map_nested''' ) as mock_single_map_nested, patch( '''datasets.parallel.parallel.Pool''' ) as mock_multiprocessing_pool: _snake_case : Optional[int] = {f'''{i}''': i for i in range(_SCREAMING_SNAKE_CASE )} _snake_case : Optional[Any] = map_nested(lambda lowerCAmelCase_ : x + 10 , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class lowerCamelCase (a__ ): @require_tf def UpperCAmelCase_ ( self ) -> str: """simple docstring""" import tensorflow as tf from tensorflow.keras import layers _snake_case : Optional[int] = layers.Dense(2 ) def gen_random_output(): _snake_case : int = tf.random.uniform((1, 3) ) return model(lowercase__ ).numpy() with temp_seed(42 , set_tensorflow=lowercase__ ): _snake_case : Union[str, Any] = gen_random_output() with temp_seed(42 , set_tensorflow=lowercase__ ): _snake_case : int = gen_random_output() _snake_case : Tuple = gen_random_output() np.testing.assert_equal(lowercase__ , lowercase__ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" import torch def gen_random_output(): _snake_case : Optional[int] = torch.nn.Linear(3 , 2 ) _snake_case : Dict = torch.rand(1 , 3 ) return model(lowercase__ ).detach().numpy() with temp_seed(42 , set_pytorch=lowercase__ ): _snake_case : Union[str, Any] = gen_random_output() with temp_seed(42 , set_pytorch=lowercase__ ): _snake_case : Optional[int] = gen_random_output() _snake_case : str = gen_random_output() np.testing.assert_equal(lowercase__ , lowercase__ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): _snake_case : Optional[int] = gen_random_output() with temp_seed(42 ): _snake_case : Dict = gen_random_output() _snake_case : int = gen_random_output() np.testing.assert_equal(lowercase__ , lowercase__ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize('''input_data''' , [{}] ) def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Union[str, Any] = NestedDataStructure(_SCREAMING_SNAKE_CASE ).data assert output_data == input_data @pytest.mark.parametrize( '''data, expected_output''' , [ ({}, []), ([], []), ('''foo''', ['''foo''']), (['''foo''', '''bar'''], ['''foo''', '''bar''']), ([['''foo''', '''bar''']], ['''foo''', '''bar''']), ([[['''foo'''], ['''bar''']]], ['''foo''', '''bar''']), ([[['''foo'''], '''bar''']], ['''foo''', '''bar''']), ({'''a''': 1, '''b''': 2}, [1, 2]), ({'''a''': [1, 2], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[1, 2]], '''b''': [[3, 4]]}, [1, 2, 3, 4]), ({'''a''': [[1, 2]], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [[[3], [4]]]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [[3, 4]]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [3, [4]]}, [1, 2, 3, 4]), ({'''a''': {'''1''': 1}, '''b''': 2}, [1, 2]), ({'''a''': {'''1''': [1]}, '''b''': 2}, [1, 2]), ({'''a''': {'''1''': [1]}, '''b''': [2]}, [1, 2]), ] , ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Union[str, Any] = NestedDataStructure(_SCREAMING_SNAKE_CASE ).flatten() assert output == expected_output def _a ( ): """simple docstring""" _snake_case : List[str] = A(x=1 , y='''foobar''' ) _snake_case : Optional[int] = {'''x''': 1, '''y''': '''foobar'''} assert asdict(_SCREAMING_SNAKE_CASE ) == expected_output _snake_case : Optional[Any] = {'''a''': {'''b''': A(x=10 , y='''foo''' )}, '''c''': [A(x=20 , y='''bar''' )]} _snake_case : Union[str, Any] = {'''a''': {'''b''': {'''x''': 10, '''y''': '''foo'''}}, '''c''': [{'''x''': 20, '''y''': '''bar'''}]} assert asdict(_SCREAMING_SNAKE_CASE ) == expected_output with pytest.raises(_SCREAMING_SNAKE_CASE ): asdict([1, A(x=10 , y='''foo''' )] ) def _a ( lowerCAmelCase_ ): """simple docstring""" return text.split() def _a ( lowerCAmelCase_ ): """simple docstring""" yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def _a ( ): """simple docstring""" with Pool(2 ) as pool: _snake_case : Dict = list(iflatmap_unordered(_SCREAMING_SNAKE_CASE , _split_text , kwargs_iterable=[{'''text''': '''hello there'''}] * 10 ) ) assert out.count('''hello''' ) == 10 assert out.count('''there''' ) == 10 assert len(_SCREAMING_SNAKE_CASE ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: _snake_case : Any = list(iflatmap_unordered(_SCREAMING_SNAKE_CASE , _split_text , kwargs_iterable=[{'''text''': '''hello there'''}] * 10 ) ) assert out.count('''hello''' ) == 10 assert out.count('''there''' ) == 10 assert len(_SCREAMING_SNAKE_CASE ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: _snake_case : Optional[Any] = [] for yield_time, content in iflatmap_unordered( _SCREAMING_SNAKE_CASE , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{'''content''': '''a'''}, {'''content''': '''b'''}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(_SCREAMING_SNAKE_CASE ) assert out.count('''a''' ) == 2 assert out.count('''b''' ) == 2 assert len(_SCREAMING_SNAKE_CASE ) == 4
701
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : List[Any] = 0 if start < end: _snake_case : List[Any] = randint(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Any = a[end] _snake_case : List[str] = a[pivot] _snake_case : Optional[int] = temp _snake_case , _snake_case : List[Any] = _in_place_partition(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) count += _in_place_quick_sort(lowerCAmelCase_ , lowerCAmelCase_ , p - 1 ) count += _in_place_quick_sort(lowerCAmelCase_ , p + 1 , lowerCAmelCase_ ) return count def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = 0 _snake_case : Optional[int] = randint(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Tuple = a[end] _snake_case : Optional[Any] = a[pivot] _snake_case : Union[str, Any] = temp _snake_case : Union[str, Any] = start - 1 for index in range(lowerCAmelCase_ , lowerCAmelCase_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _snake_case : Optional[int] = new_pivot_index + 1 _snake_case : Optional[Any] = a[new_pivot_index] _snake_case : Tuple = a[index] _snake_case : str = temp _snake_case : Any = a[new_pivot_index + 1] _snake_case : str = a[end] _snake_case : Optional[int] = temp return new_pivot_index + 1, count UpperCAmelCase : Dict = TemporaryFile() UpperCAmelCase : Dict = 1_0_0 # 1000 elements are to be sorted UpperCAmelCase, UpperCAmelCase : str = 0, 1 # mean and standard deviation UpperCAmelCase : Optional[Any] = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array UpperCAmelCase : int = np.load(outfile) UpperCAmelCase : Optional[int] = len(M) - 1 UpperCAmelCase : str = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
47
0
'''simple docstring''' import operator as op def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : int = [] _snake_case : Any = lambda lowerCAmelCase_ , lowerCAmelCase_ : int(x / y ) # noqa: E731 integer division operation _snake_case : List[Any] = { '''^''': op.pow, '''*''': op.mul, '''/''': div, '''+''': op.add, '''-''': op.sub, } # operators & their respective operation # print table header print('''Symbol'''.center(8 ) , '''Action'''.center(12 ) , '''Stack''' , sep=''' | ''' ) print('''-''' * (30 + len(lowercase__ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(lowercase__ ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('''push(''' + x + ''')''').ljust(12 ) , ''','''.join(lowercase__ ) , sep=''' | ''' ) else: _snake_case : Optional[int] = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ) , ('''pop(''' + b + ''')''').ljust(12 ) , ''','''.join(lowercase__ ) , sep=''' | ''' ) _snake_case : str = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ) , ('''pop(''' + a + ''')''').ljust(12 ) , ''','''.join(lowercase__ ) , sep=''' | ''' ) stack.append( str(opr[x](int(lowercase__ ) , int(lowercase__ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('''push(''' + a + x + b + ''')''').ljust(12 ) , ''','''.join(lowercase__ ) , sep=''' | ''' , ) return int(stack[0] ) if __name__ == "__main__": UpperCAmelCase : Any = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
702
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
47
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : int = logging.get_logger(__name__) UpperCAmelCase : Dict = { 'microsoft/trocr-base-handwritten': ( 'https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowerCamelCase (_UpperCAmelCase ): _lowercase : Optional[Any] = """trocr""" _lowercase : Union[str, Any] = ["""past_key_values"""] _lowercase : str = { """num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model""", """num_hidden_layers""": """decoder_layers""", } def __init__( self , lowercase__=50_265 , lowercase__=1_024 , lowercase__=12 , lowercase__=16 , lowercase__=4_096 , lowercase__="gelu" , lowercase__=512 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=2 , lowercase__=0.02 , lowercase__=0.0 , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=True , lowercase__=1 , lowercase__=0 , lowercase__=2 , **lowercase__ , ) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = vocab_size _snake_case : int = d_model _snake_case : Any = decoder_layers _snake_case : str = decoder_attention_heads _snake_case : Optional[Any] = decoder_ffn_dim _snake_case : str = activation_function _snake_case : Dict = max_position_embeddings _snake_case : Dict = dropout _snake_case : Optional[int] = attention_dropout _snake_case : Dict = activation_dropout _snake_case : Tuple = init_std _snake_case : Optional[int] = decoder_layerdrop _snake_case : Optional[int] = use_cache _snake_case : Union[str, Any] = scale_embedding _snake_case : Optional[Any] = use_learned_position_embeddings _snake_case : Dict = layernorm_embedding super().__init__( pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , decoder_start_token_id=lowercase__ , **lowercase__ , )
703
'''simple docstring''' from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def _a ( ): """simple docstring""" _snake_case : List[Any] = ArgumentParser('''Transformers CLI tool''' , usage='''transformers-cli <command> [<args>]''' ) _snake_case : List[str] = parser.add_subparsers(help='''transformers-cli command helpers''' ) # Register commands ConvertCommand.register_subcommand(lowerCAmelCase_ ) DownloadCommand.register_subcommand(lowerCAmelCase_ ) EnvironmentCommand.register_subcommand(lowerCAmelCase_ ) RunCommand.register_subcommand(lowerCAmelCase_ ) ServeCommand.register_subcommand(lowerCAmelCase_ ) UserCommands.register_subcommand(lowerCAmelCase_ ) AddNewModelCommand.register_subcommand(lowerCAmelCase_ ) AddNewModelLikeCommand.register_subcommand(lowerCAmelCase_ ) LfsCommands.register_subcommand(lowerCAmelCase_ ) PTtoTFCommand.register_subcommand(lowerCAmelCase_ ) # Let's go _snake_case : str = parser.parse_args() if not hasattr(lowerCAmelCase_ , '''func''' ): parser.print_help() exit(1 ) # Run _snake_case : Union[str, Any] = args.func(lowerCAmelCase_ ) service.run() if __name__ == "__main__": main()
47
0
# Imports import numpy as np class lowerCamelCase : def __init__( self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None ) -> List[Any]: """simple docstring""" self.set_matricies(red=__snake_case , green=__snake_case , blue=__snake_case , red_edge=__snake_case , nir=__snake_case ) def UpperCAmelCase_ ( self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None ) -> str: """simple docstring""" if red is not None: _snake_case : Union[str, Any] = red if green is not None: _snake_case : Tuple = green if blue is not None: _snake_case : Optional[Any] = blue if red_edge is not None: _snake_case : Any = red_edge if nir is not None: _snake_case : List[Any] = nir return True def UpperCAmelCase_ ( self , lowercase__="" , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None ) -> Any: """simple docstring""" self.set_matricies(red=__snake_case , green=__snake_case , blue=__snake_case , red_edge=__snake_case , nir=__snake_case ) _snake_case : List[Any] = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('''Index not in the list!''' ) return False def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" return self.nir * (self.red / (self.green**2)) def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" return (self.nir - self.red) / (self.nir + self.red) def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" return (self.nir - self.blue) / (self.nir + self.blue) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" return (self.redEdge - self.red) / (self.redEdge + self.red) def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" return (self.nir - self.green) / (self.nir + self.green) def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def UpperCAmelCase_ ( self , lowercase__=0.08 , lowercase__=1.22 , lowercase__=0.03 ) -> str: """simple docstring""" return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" return (self.nir / self.green) - 1 def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" return (self.nir / self.redEdge) - 1 def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" return (self.red - self.blue) / self.red def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : int = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" return self.nir - self.green def UpperCAmelCase_ ( self ) -> int: """simple docstring""" return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" _snake_case : Dict = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def UpperCAmelCase_ ( self , lowercase__=0.16 ) -> Any: """simple docstring""" return (self.nir - self.green) / (self.nir + self.green + y) def UpperCAmelCase_ ( self , lowercase__=0.5 ) -> Optional[int]: """simple docstring""" return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def UpperCAmelCase_ ( self , lowercase__=None , lowercase__=None ) -> List[str]: """simple docstring""" return (self.nir - b) / (a * self.red) def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" return (self.red + self.green + self.blue) / 30.5 def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" return self.nir / self.red def UpperCAmelCase_ ( self ) -> int: """simple docstring""" return (self.rvi() - 1) / (self.rvi() + 1) def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" return self.green / (self.nir + self.red + self.green) def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" return self.nir / (self.nir + self.red + self.green) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" return self.red / (self.nir + self.red + self.green) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" return (self.green - self.red) / (self.green + self.red) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" return (self.red - self.green) / (self.red + self.green) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" _snake_case : Optional[Any] = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) _snake_case : Dict = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def UpperCAmelCase_ ( self ) -> int: """simple docstring""" return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" return self.nir / self.red def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" return (self.ndvi() + 0.5) ** (1 / 2) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" return (self.nir - self.redEdge) / (self.nir + self.redEdge)
704
'''simple docstring''' from collections.abc import Generator def _a ( ): """simple docstring""" _snake_case , _snake_case : Union[str, Any] = 0, 1 while True: _snake_case , _snake_case : List[str] = b, a + b yield b def _a ( lowerCAmelCase_ = 1_000 ): """simple docstring""" _snake_case : List[str] = 1 _snake_case : Dict = fibonacci_generator() while len(str(next(lowerCAmelCase_ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
47
0
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class lowerCamelCase : _lowercase : CommonSchedulerState # setable values _lowercase : jnp.ndarray _lowercase : jnp.ndarray _lowercase : Optional[int] = None @classmethod def UpperCAmelCase_ ( cls , lowercase__ , lowercase__ , lowercase__ ) -> List[str]: """simple docstring""" return cls(common=lowercase__ , init_noise_sigma=lowercase__ , timesteps=lowercase__ ) @dataclass class lowerCamelCase (a__ ): _lowercase : DDPMSchedulerState class lowerCamelCase (a__ , a__ ): _lowercase : List[str] = [e.name for e in FlaxKarrasDiffusionSchedulers] _lowercase : jnp.dtype @property def UpperCAmelCase_ ( self ) -> str: """simple docstring""" return True @register_to_config def __init__( self , lowercase__ = 1_000 , lowercase__ = 0.0_001 , lowercase__ = 0.02 , lowercase__ = "linear" , lowercase__ = None , lowercase__ = "fixed_small" , lowercase__ = True , lowercase__ = "epsilon" , lowercase__ = jnp.floataa , ) -> Tuple: """simple docstring""" _snake_case : int = dtype def UpperCAmelCase_ ( self , lowercase__ = None ) -> DDPMSchedulerState: """simple docstring""" if common is None: _snake_case : Optional[Any] = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution _snake_case : str = jnp.array(1.0 , dtype=self.dtype ) _snake_case : Tuple = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=lowercase__ , init_noise_sigma=lowercase__ , timesteps=lowercase__ , ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = None ) -> jnp.ndarray: """simple docstring""" return sample def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = () ) -> DDPMSchedulerState: """simple docstring""" _snake_case : str = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 _snake_case : Optional[Any] = (jnp.arange(0 , lowercase__ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=lowercase__ , timesteps=lowercase__ , ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__=None , lowercase__=None ) -> Optional[int]: """simple docstring""" _snake_case : List[Any] = state.common.alphas_cumprod[t] _snake_case : Dict = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample _snake_case : str = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: _snake_case : str = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": _snake_case : List[str] = jnp.clip(lowercase__ , a_min=1E-2_0 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": _snake_case : List[str] = jnp.log(jnp.clip(lowercase__ , a_min=1E-2_0 ) ) elif variance_type == "fixed_large": _snake_case : Tuple = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log _snake_case : str = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": _snake_case : int = variance _snake_case : Optional[Any] = state.common.betas[t] _snake_case : Optional[int] = (predicted_variance + 1) / 2 _snake_case : Any = frac * max_log + (1 - frac) * min_log return variance def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: """simple docstring""" _snake_case : Union[str, Any] = timestep if key is None: _snake_case : str = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: _snake_case , _snake_case : Dict = jnp.split(lowercase__ , sample.shape[1] , axis=1 ) else: _snake_case : Tuple = None # 1. compute alphas, betas _snake_case : int = state.common.alphas_cumprod[t] _snake_case : Any = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) _snake_case : Tuple = 1 - alpha_prod_t _snake_case : List[str] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": _snake_case : Any = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": _snake_case : Union[str, Any] = model_output elif self.config.prediction_type == "v_prediction": _snake_case : List[Any] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ''' ''' for the FlaxDDPMScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: _snake_case : List[Any] = jnp.clip(lowercase__ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _snake_case : Optional[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t _snake_case : List[Any] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _snake_case : Union[str, Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): _snake_case : Optional[Any] = jax.random.split(lowercase__ , num=1 ) _snake_case : str = jax.random.normal(lowercase__ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(lowercase__ , lowercase__ , predicted_variance=lowercase__ ) ** 0.5) * noise _snake_case : Dict = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) _snake_case : Union[str, Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=lowercase__ , state=lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ) -> jnp.ndarray: """simple docstring""" return add_noise_common(state.common , lowercase__ , lowercase__ , lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ) -> jnp.ndarray: """simple docstring""" return get_velocity_common(state.common , lowercase__ , lowercase__ , lowercase__ ) def __len__( self ) -> str: """simple docstring""" return self.config.num_train_timesteps
705
'''simple docstring''' import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor UpperCAmelCase : str = logging.getLogger(__name__) UpperCAmelCase : Dict = 5_0 # max width of layer names UpperCAmelCase : Union[str, Any] = 7_0 # max width of quantizer names def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Dict = parser.add_argument_group('''quant_trainer arguments''' ) group.add_argument('''--wprec''' , type=lowerCAmelCase_ , default=8 , help='''weight precision''' ) group.add_argument('''--aprec''' , type=lowerCAmelCase_ , default=8 , help='''activation precision''' ) group.add_argument('''--quant-per-tensor''' , action='''store_true''' , help='''per tensor weight scaling''' ) group.add_argument('''--quant-disable''' , action='''store_true''' , help='''disable all quantizers''' ) group.add_argument('''--quant-disable-embeddings''' , action='''store_true''' , help='''disable all embeddings quantizers''' ) group.add_argument('''--quant-disable-keyword''' , type=lowerCAmelCase_ , nargs='''+''' , help='''disable quantizers by keyword''' ) group.add_argument('''--quant-disable-layer-module''' , type=lowerCAmelCase_ , help='''disable quantizers by keyword under layer.''' ) group.add_argument('''--quant-enable-layer-module''' , type=lowerCAmelCase_ , help='''enable quantizers by keyword under layer''' ) group.add_argument('''--calibrator''' , default='''max''' , help='''which quantization range calibrator to use''' ) group.add_argument('''--percentile''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help='''percentile for PercentileCalibrator''' ) group.add_argument('''--fuse-qkv''' , action='''store_true''' , help='''use the same scale factor for qkv''' ) group.add_argument('''--clip-gelu''' , metavar='''N''' , type=lowerCAmelCase_ , help='''clip gelu output maximum value to N''' ) group.add_argument( '''--recalibrate-weights''' , action='''store_true''' , help=( '''recalibrate weight amaxes by taking the max of the weights.''' ''' amaxes will be computed with the current quantization granularity (axis).''' ) , ) def _a ( lowerCAmelCase_ ): """simple docstring""" if args.calibrator == "max": _snake_case : Optional[int] = '''max''' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('''Specify --percentile when using percentile calibrator''' ) _snake_case : Tuple = '''histogram''' elif args.calibrator == "mse": _snake_case : int = '''histogram''' else: raise ValueError(f'''Invalid calibrator {args.calibrator}''' ) _snake_case : Tuple = QuantDescriptor(num_bits=args.aprec , calib_method=lowerCAmelCase_ ) _snake_case : str = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(lowerCAmelCase_ ) quant_nn.QuantLinear.set_default_quant_desc_weight(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False , lowerCAmelCase_=False ): """simple docstring""" logger.info('''Configuring Model for Quantization''' ) logger.info(f'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(lowerCAmelCase_ , ['''embeddings'''] , which='''weight''' , _disabled=lowerCAmelCase_ ) if args.quant_disable: set_quantizer_by_name(lowerCAmelCase_ , [''''''] , _disabled=lowerCAmelCase_ ) if args.quant_disable_keyword: set_quantizer_by_name(lowerCAmelCase_ , args.quant_disable_keyword , _disabled=lowerCAmelCase_ ) if args.quant_disable_layer_module: set_quantizer_by_name(lowerCAmelCase_ , [R'''layer.\d+.''' + args.quant_disable_layer_module] , _disabled=lowerCAmelCase_ ) if args.quant_enable_layer_module: set_quantizer_by_name(lowerCAmelCase_ , [R'''layer.\d+.''' + args.quant_enable_layer_module] , _disabled=lowerCAmelCase_ ) if args.recalibrate_weights: recalibrate_weights(lowerCAmelCase_ ) if args.fuse_qkv: fuse_qkv(lowerCAmelCase_ , lowerCAmelCase_ ) if args.clip_gelu: clip_gelu(lowerCAmelCase_ , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ ): """simple docstring""" logger.info('''Enabling Calibration''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(f'''{name:80}: {module}''' ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" logger.info('''Loading calibrated amax''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('''percentile''' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" def fusea(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): for mod in [qq, qk, qv]: if not hasattr(lowerCAmelCase_ , '''_amax''' ): print(''' WARNING: NO AMAX BUFFER''' ) return _snake_case : Tuple = qq._amax.detach().item() _snake_case : Tuple = qk._amax.detach().item() _snake_case : List[Any] = qv._amax.detach().item() _snake_case : List[str] = max(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) qq._amax.fill_(lowerCAmelCase_ ) qk._amax.fill_(lowerCAmelCase_ ) qv._amax.fill_(lowerCAmelCase_ ) logger.info(f''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith('''.attention.self''' ): logger.info(f'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if name.endswith('''.output.dense''' ) and not name.endswith('''attention.output.dense''' ): _snake_case : List[Any] = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=lowerCAmelCase_ ) _snake_case : List[str] = mod._input_quantizer._amax.data.detach().item() logger.info(f'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def _a ( lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ) and mod._weight_quantizer.axis is not None: _snake_case : Dict = mod.weight.shape[0] _snake_case : Optional[int] = mod._weight_quantizer._amax.detach() _snake_case : Optional[int] = torch.ones(lowerCAmelCase_ , dtype=amax.dtype , device=amax.device ) * amax print(f'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def _a ( lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ): if not hasattr(mod.weight_quantizer , '''_amax''' ): print('''RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER''' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) _snake_case : int = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) _snake_case : Dict = set(range(len(mod.weight.size() ) ) ) - axis_set _snake_case : Optional[int] = pytorch_quantization.utils.reduce_amax(mod.weight , axis=lowerCAmelCase_ , keepdims=lowerCAmelCase_ ).detach() logger.info(f'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) _snake_case : Tuple = amax def _a ( lowerCAmelCase_ , lowerCAmelCase_=25 , lowerCAmelCase_=180 , lowerCAmelCase_=None ): """simple docstring""" if ignore is None: _snake_case : Dict = [] elif not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Optional[int] = [ignore] _snake_case : str = 0 for name, mod in model.named_modules(): if not hasattr(lowerCAmelCase_ , '''weight''' ): continue _snake_case : Optional[int] = max(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) for name, mod in model.named_modules(): _snake_case : Optional[Any] = getattr(lowerCAmelCase_ , '''_input_quantizer''' , lowerCAmelCase_ ) _snake_case : Tuple = getattr(lowerCAmelCase_ , '''_weight_quantizer''' , lowerCAmelCase_ ) if not hasattr(lowerCAmelCase_ , '''weight''' ): continue if type(lowerCAmelCase_ ) in ignore: continue if [True for s in ignore if type(lowerCAmelCase_ ) is str and s in name]: continue _snake_case : Optional[int] = f'''Act:{input_q.extra_repr()}''' _snake_case : Any = f'''Wgt:{weight_q.extra_repr()}''' _snake_case : Optional[int] = f'''{name:{name_width}} {act_str} {wgt_str}''' if len(lowerCAmelCase_ ) <= line_width: logger.info(lowerCAmelCase_ ) else: logger.info(f'''{name:{name_width}} {act_str}''' ) logger.info(f'''{" ":{name_width}} {wgt_str}''' ) def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : str = 0 for name, mod in model.named_modules(): if isinstance(lowerCAmelCase_ , pytorch_quantization.nn.TensorQuantizer ): print(f'''{name:80} {mod}''' ) count += 1 print(f'''{count} TensorQuantizers found in model''' ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if quantizer_mod is not None: assert hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: logger.warning(f'''{name} has no {quantizer}''' ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_="both" , **lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = f'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' if which in ["input", "both"]: set_quantizer(lowerCAmelCase_ , lowerCAmelCase_ , '''_input_quantizer''' , lowerCAmelCase_ , lowerCAmelCase_ ) if which in ["weight", "both"]: set_quantizer(lowerCAmelCase_ , lowerCAmelCase_ , '''_weight_quantizer''' , lowerCAmelCase_ , lowerCAmelCase_ ) logger.info(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCAmelCase_ , '''_input_quantizer''' ) or hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ): for n in names: if re.search(lowerCAmelCase_ , lowerCAmelCase_ ): set_quantizers(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) elif name.endswith('''_quantizer''' ): for n in names: if re.search(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Any = f'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) logger.info(lowerCAmelCase_ )
47
0
'''simple docstring''' from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class lowerCamelCase (_UpperCamelCase ): _lowercase : List[Any] = "EncodecFeatureExtractor" _lowercase : Union[str, Any] = ("T5Tokenizer", "T5TokenizerFast") def __init__( self , lowercase__ , lowercase__ ) -> Union[str, Any]: """simple docstring""" super().__init__(__a , __a ) _snake_case : str = self.feature_extractor _snake_case : int = False def UpperCAmelCase_ ( self , lowercase__=None , lowercase__=None , lowercase__=True ) -> Dict: """simple docstring""" return self.tokenizer.get_decoder_prompt_ids(task=__a , language=__a , no_timestamps=__a ) def __call__( self , *lowercase__ , **lowercase__ ) -> Any: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*__a , **__a ) _snake_case : Optional[int] = kwargs.pop('''audio''' , __a ) _snake_case : str = kwargs.pop('''sampling_rate''' , __a ) _snake_case : str = kwargs.pop('''text''' , __a ) if len(__a ) > 0: _snake_case : Dict = args[0] _snake_case : Union[str, Any] = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if text is not None: _snake_case : List[str] = self.tokenizer(__a , **__a ) if audio is not None: _snake_case : Optional[Any] = self.feature_extractor(__a , *__a , sampling_rate=__a , **__a ) if audio is None: return inputs elif text is None: return audio_inputs else: _snake_case : Dict = audio_inputs["input_values"] if "padding_mask" in audio_inputs: _snake_case : Optional[Any] = audio_inputs["padding_mask"] return inputs def UpperCAmelCase_ ( self , *lowercase__ , **lowercase__ ) -> Optional[Any]: """simple docstring""" _snake_case : Dict = kwargs.pop('''audio''' , __a ) _snake_case : List[Any] = kwargs.pop('''padding_mask''' , __a ) if len(__a ) > 0: _snake_case : List[str] = args[0] _snake_case : Optional[int] = args[1:] if audio_values is not None: return self._decode_audio(__a , padding_mask=__a ) else: return self.tokenizer.batch_decode(*__a , **__a ) def UpperCAmelCase_ ( self , *lowercase__ , **lowercase__ ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*__a , **__a ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> List[np.ndarray]: """simple docstring""" _snake_case : str = to_numpy(__a ) _snake_case : Optional[Any] = audio_values.shape if padding_mask is None: return list(__a ) _snake_case : Optional[int] = to_numpy(__a ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) _snake_case : List[str] = seq_len - padding_mask.shape[-1] _snake_case : List[str] = 1 - self.feature_extractor.padding_value _snake_case : Optional[Any] = np.pad(__a , ((0, 0), (0, difference)) , '''constant''' , constant_values=__a ) _snake_case : Union[str, Any] = audio_values.tolist() for i in range(__a ): _snake_case : Optional[int] = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] _snake_case : Any = sliced_audio.reshape(__a , -1 ) return audio_values
706
'''simple docstring''' from __future__ import annotations def _a ( lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None ): """simple docstring""" if start is None: _snake_case : Optional[Any] = 0 if end is None: _snake_case : Any = len(lowerCAmelCase_ ) - 1 if start >= end: return _snake_case : Optional[Any] = (start + end) // 2 slowsort(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) slowsort(lowerCAmelCase_ , mid + 1 , lowerCAmelCase_ ) if sequence[end] < sequence[mid]: _snake_case , _snake_case : int = sequence[mid], sequence[end] slowsort(lowerCAmelCase_ , lowerCAmelCase_ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
47
0
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=3 , lowercase__=32 , lowercase__=3 , lowercase__=10 , lowercase__=[10, 20, 30, 40] , lowercase__=[1, 1, 2, 1] , lowercase__=True , lowercase__=True , lowercase__="relu" , lowercase__=3 , lowercase__=None , ) -> List[Any]: """simple docstring""" _snake_case : Union[str, Any] = parent _snake_case : Optional[Any] = batch_size _snake_case : Optional[Any] = image_size _snake_case : Dict = num_channels _snake_case : Optional[Any] = embeddings_size _snake_case : List[Any] = hidden_sizes _snake_case : List[str] = depths _snake_case : str = is_training _snake_case : int = use_labels _snake_case : str = hidden_act _snake_case : Optional[int] = num_labels _snake_case : Any = scope _snake_case : str = len(_snake_case ) def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" _snake_case : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : List[Any] = None if self.use_labels: _snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) _snake_case : Any = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self ) -> int: """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ ) -> List[Any]: """simple docstring""" _snake_case : List[Any] = TFResNetModel(config=_snake_case ) _snake_case : List[Any] = model(_snake_case ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ ) -> List[Any]: """simple docstring""" _snake_case : Optional[int] = self.num_labels _snake_case : List[str] = TFResNetForImageClassification(_snake_case ) _snake_case : Optional[int] = model(_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : Dict = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case : str = config_and_inputs _snake_case : Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class lowerCamelCase (UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): _lowercase : Dict = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () _lowercase : List[str] = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) _lowercase : Any = False _lowercase : Dict = False _lowercase : Optional[Any] = False _lowercase : str = False _lowercase : str = False def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" _snake_case : str = TFResNetModelTester(self ) _snake_case : Optional[int] = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case ) def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" return @unittest.skip(reason='''ResNet does not use inputs_embeds''' ) def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" pass @unittest.skip(reason='''ResNet does not support input and output embeddings''' ) def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" pass def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case , _snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : str = model_class(_snake_case ) _snake_case : Optional[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : Optional[int] = [*signature.parameters.keys()] _snake_case : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _snake_case ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" def check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ): _snake_case : Tuple = model_class(_snake_case ) _snake_case : Dict = model(**self._prepare_for_class(_snake_case , _snake_case ) ) _snake_case : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case : Union[str, Any] = self.model_tester.num_stages self.assertEqual(len(_snake_case ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : int = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: _snake_case : str = layer_type _snake_case : Dict = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case : str = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def UpperCAmelCase_ ( self ) -> str: """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[str] = TFResNetModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def _a ( ): """simple docstring""" _snake_case : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class lowerCamelCase (unittest.TestCase ): @cached_property def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Any = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _snake_case : Optional[int] = self.default_image_processor _snake_case : int = prepare_img() _snake_case : Optional[Any] = image_processor(images=_snake_case , return_tensors='''tf''' ) # forward pass _snake_case : Dict = model(**_snake_case ) # verify the logits _snake_case : List[str] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , _snake_case ) _snake_case : Any = tf.constant([-11.1_069, -9.7_877, -8.3_777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _snake_case , atol=1E-4 ) )
707
'''simple docstring''' import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class lowerCamelCase (unittest.TestCase ): @slow def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Tuple = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) _snake_case : Any = AutoTokenizer.from_pretrained('''google/mt5-small''' ) _snake_case : List[str] = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids _snake_case : Dict = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids _snake_case : Any = shift_tokens_right(lowercase__ , model.config.pad_token_id , model.config.decoder_start_token_id ) _snake_case : Any = model(lowercase__ , decoder_input_ids=lowercase__ ).logits _snake_case : Tuple = optax.softmax_cross_entropy(lowercase__ , onehot(lowercase__ , logits.shape[-1] ) ).mean() _snake_case : Tuple = -(labels.shape[-1] * loss.item()) _snake_case : Union[str, Any] = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
47
0
import logging from transformers import PretrainedConfig UpperCAmelCase : Union[str, Any] = logging.getLogger(__name__) UpperCAmelCase : Tuple = { """bertabs-finetuned-cnndm""": """https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json""", } class lowerCamelCase (_lowerCAmelCase ): _lowercase : Tuple = 'bertabs' def __init__( self , lowercase__=30_522 , lowercase__=512 , lowercase__=6 , lowercase__=512 , lowercase__=8 , lowercase__=512 , lowercase__=0.2 , lowercase__=6 , lowercase__=768 , lowercase__=8 , lowercase__=2_048 , lowercase__=0.2 , **lowercase__ , ) -> Tuple: """simple docstring""" super().__init__(**_lowerCAmelCase ) _snake_case : Optional[Any] = vocab_size _snake_case : Any = max_pos _snake_case : Optional[int] = enc_layers _snake_case : Union[str, Any] = enc_hidden_size _snake_case : Tuple = enc_heads _snake_case : Optional[Any] = enc_ff_size _snake_case : List[str] = enc_dropout _snake_case : int = dec_layers _snake_case : Dict = dec_hidden_size _snake_case : Any = dec_heads _snake_case : Dict = dec_ff_size _snake_case : List[Any] = dec_dropout
708
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCamelCase (unittest.TestCase ): def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : Any = torch.nn.Linear(10 , 10 ) _snake_case : Optional[int] = torch.optim.SGD(model.parameters() , 0.1 ) _snake_case : List[str] = Accelerator() _snake_case : Optional[Any] = accelerator.prepare(lowercase__ ) try: pickle.loads(pickle.dumps(lowercase__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
47
0
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand UpperCAmelCase : List[str] = ( '4S 3H 2C 7S 5H', '9D 8H 2C 6S 7H', '2D 6D 9D TH 7D', 'TC 8C 2S JH 6C', 'JH 8S TH AH QH', 'TS KS 5S 9S AC', 'KD 6S 9D TH AD', 'KS 8D 4D 9S 4S', # pair '8C 4S KH JS 4D', # pair 'QH 8H KD JH 8S', # pair 'KC 4H KS 2H 8D', # pair 'KD 4S KC 3H 8S', # pair 'AH 8S AS KC JH', # pair '3H 4C 4H 3S 2H', # 2 pairs '5S 5D 2C KH KH', # 2 pairs '3C KH 5D 5S KH', # 2 pairs 'AS 3C KH AD KH', # 2 pairs '7C 7S 3S 7H 5S', # 3 of a kind '7C 7S KH 2H 7H', # 3 of a kind 'AC KH QH AH AS', # 3 of a kind '2H 4D 3C AS 5S', # straight (low ace) '3C 5C 4C 2C 6H', # straight '6S 8S 7S 5H 9H', # straight 'JS QS 9H TS KH', # straight 'QC KH TS JS AH', # straight (high ace) '8C 9C 5C 3C TC', # flush '3S 8S 9S 5S KS', # flush '4C 5C 9C 8C KC', # flush 'JH 8H AH KH QH', # flush '3D 2H 3H 2C 2D', # full house '2H 2C 3S 3H 3D', # full house 'KH KC 3S 3H 3D', # full house 'JC 6H JS JD JH', # 4 of a kind 'JC 7H JS JD JH', # 4 of a kind 'JC KH JS JD JH', # 4 of a kind '2S AS 4S 5S 3S', # straight flush (low ace) '2D 6D 3D 4D 5D', # straight flush '5C 6C 3C 7C 4C', # straight flush 'JH 9H TH KH QH', # straight flush 'JH AH TH KH QH', # royal flush (high ace straight flush) ) UpperCAmelCase : Optional[Any] = ( ('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'), ('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'), ('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'), ('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'), ('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'), ('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'), ('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'), ('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'), ('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'), ('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'), ('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'), ('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'), ('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'), ('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'), ('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'), ('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'), ('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'), ('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'), ('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'), ('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'), ('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'), ('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'), ('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'), ('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'), ('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'), ('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'), ('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'), ('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'), ('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'), ('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'), ('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'), ) UpperCAmelCase : Any = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', True), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', False), ('AS 3S 4S 8S 2S', True), ) UpperCAmelCase : int = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', False), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', True), ) UpperCAmelCase : Union[str, Any] = ( ('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 1_4]), ('2H 5D 3C AS 5S', False, [1_4, 5, 5, 3, 2]), ('JH QD KC AS TS', False, [1_4, 1_3, 1_2, 1_1, 1_0]), ('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]), ) UpperCAmelCase : Any = ( ('JH AH TH KH QH', 0), ('JH 9H TH KH QH', 0), ('JC KH JS JD JH', 7), ('KH KC 3S 3H 3D', 6), ('8C 9C 5C 3C TC', 0), ('JS QS 9H TS KH', 0), ('7C 7S KH 2H 7H', 3), ('3C KH 5D 5S KH', 2), ('QH 8H KD JH 8S', 1), ('2D 6D 9D TH 7D', 0), ) UpperCAmelCase : Tuple = ( ('JH AH TH KH QH', 2_3), ('JH 9H TH KH QH', 2_2), ('JC KH JS JD JH', 2_1), ('KH KC 3S 3H 3D', 2_0), ('8C 9C 5C 3C TC', 1_9), ('JS QS 9H TS KH', 1_8), ('7C 7S KH 2H 7H', 1_7), ('3C KH 5D 5S KH', 1_6), ('QH 8H KD JH 8S', 1_5), ('2D 6D 9D TH 7D', 1_4), ) def _a ( ): """simple docstring""" _snake_case : int = randrange(len(snake_case_ ) ), randrange(len(snake_case_ ) ) _snake_case : Dict = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)] _snake_case : List[Any] = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def _a ( lowerCAmelCase_ = 100 ): """simple docstring""" return (generate_random_hand() for _ in range(snake_case_ )) @pytest.mark.parametrize('''hand, expected''' , snake_case_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" assert PokerHand(snake_case_ )._is_flush() == expected @pytest.mark.parametrize('''hand, expected''' , snake_case_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" assert PokerHand(snake_case_ )._is_straight() == expected @pytest.mark.parametrize('''hand, expected, card_values''' , snake_case_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : List[str] = PokerHand(snake_case_ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('''hand, expected''' , snake_case_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" assert PokerHand(snake_case_ )._is_same_kind() == expected @pytest.mark.parametrize('''hand, expected''' , snake_case_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" assert PokerHand(snake_case_ )._hand_type == expected @pytest.mark.parametrize('''hand, other, expected''' , snake_case_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" assert PokerHand(snake_case_ ).compare_with(PokerHand(snake_case_ ) ) == expected @pytest.mark.parametrize('''hand, other, expected''' , generate_random_hands() ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" assert PokerHand(snake_case_ ).compare_with(PokerHand(snake_case_ ) ) == expected def _a ( ): """simple docstring""" _snake_case : Any = [PokerHand(snake_case_ ) for hand in SORTED_HANDS] _snake_case : Any = poker_hands.copy() shuffle(snake_case_ ) _snake_case : Union[str, Any] = chain(sorted(snake_case_ ) ) for index, hand in enumerate(snake_case_ ): assert hand == poker_hands[index] def _a ( ): """simple docstring""" _snake_case : List[Any] = [PokerHand('''2D AC 3H 4H 5S''' ), PokerHand('''2S 3H 4H 5S 6C''' )] pokerhands.sort(reverse=snake_case_ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def _a ( ): """simple docstring""" _snake_case : str = PokerHand('''2C 4S AS 3D 5C''' ) _snake_case : Union[str, Any] = True _snake_case : Optional[int] = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def _a ( ): """simple docstring""" _snake_case : List[str] = 0 _snake_case : int = os.path.abspath(os.path.dirname(snake_case_ ) ) _snake_case : Dict = os.path.join(snake_case_ , '''poker_hands.txt''' ) with open(snake_case_ ) as file_hand: for line in file_hand: _snake_case : Optional[Any] = line[:14].strip() _snake_case : List[str] = line[15:].strip() _snake_case : Union[str, Any] = PokerHand(snake_case_ ), PokerHand(snake_case_ ) _snake_case : Tuple = player.compare_with(snake_case_ ) if output == "Win": answer += 1 assert answer == 376
709
'''simple docstring''' UpperCAmelCase : Union[str, Any] = tuple[float, float, float] UpperCAmelCase : int = tuple[float, float, float] def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : str = end_pointa[0] - end_pointa[0] _snake_case : Tuple = end_pointa[1] - end_pointa[1] _snake_case : Any = end_pointa[2] - end_pointa[2] return (x, y, z) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Dict = ab[1] * ac[2] - ab[2] * ac[1] # *i _snake_case : List[str] = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j _snake_case : Optional[int] = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return tuple(round(lowerCAmelCase_ , lowerCAmelCase_ ) for x in vector ) == (0, 0, 0) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 10 ): """simple docstring""" _snake_case : str = create_vector(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Tuple = create_vector(lowerCAmelCase_ , lowerCAmelCase_ ) return is_zero_vector(get_ad_vectors_cross(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ )
47
0
'''simple docstring''' def _a ( lowerCAmelCase_ ): """simple docstring""" if not isinstance(__UpperCamelCase , __UpperCamelCase ): _snake_case : Dict = f'''Input value of [number={number}] must be an integer''' raise TypeError(__UpperCamelCase ) if number < 0: return False _snake_case : List[str] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
710
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel UpperCAmelCase : List[str] = logging.getLogger(__name__) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if os.path.exists(lowerCAmelCase_ ): if os.path.exists(os.path.join(lowerCAmelCase_ , '''config.json''' ) ) and os.path.isfile( os.path.join(lowerCAmelCase_ , '''config.json''' ) ): os.remove(os.path.join(lowerCAmelCase_ , '''config.json''' ) ) if os.path.exists(os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) ) and os.path.isfile( os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) ): os.remove(os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) ) else: os.makedirs(lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_=False ): """simple docstring""" _snake_case : Optional[Any] = 2 if unlogit: _snake_case : Any = torch.pow(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Union[str, Any] = p * torch.log(lowerCAmelCase_ ) _snake_case : Optional[Any] = 0 return -plogp.sum(dim=-1 ) def _a ( lowerCAmelCase_ ): """simple docstring""" logger.info('''lv, h >\t''' + '''\t'''.join(f'''{x + 1}''' for x in range(len(lowerCAmelCase_ ) ) ) ) for row in range(len(lowerCAmelCase_ ) ): if tensor.dtype != torch.long: logger.info(f'''layer {row + 1}:\t''' + '''\t'''.join(f'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(f'''layer {row + 1}:\t''' + '''\t'''.join(f'''{x:d}''' for x in tensor[row].cpu().data ) ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=None , lowerCAmelCase_=False ): """simple docstring""" _snake_case , _snake_case : Optional[int] = model.config.num_hidden_layers, model.config.num_attention_heads _snake_case : Tuple = torch.zeros(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device ) _snake_case : Union[str, Any] = torch.zeros(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device ) if head_mask is None: _snake_case : int = torch.ones(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device ) head_mask.requires_grad_(requires_grad=lowerCAmelCase_ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _snake_case : Dict = None _snake_case : Dict = 0.0 _snake_case : Optional[int] = 0.0 for step, inputs in enumerate(tqdm(lowerCAmelCase_ , desc='''Iteration''' , disable=args.local_rank not in [-1, 0] ) ): _snake_case : List[Any] = tuple(t.to(args.device ) for t in inputs ) ((_snake_case) , ) : Optional[Any] = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _snake_case : Any = model(lowerCAmelCase_ , labels=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _snake_case , _snake_case , _snake_case : List[Any] = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(lowerCAmelCase_ ): _snake_case : Union[str, Any] = entropy(attn.detach() , lowerCAmelCase_ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(lowerCAmelCase_ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _snake_case : Any = 2 _snake_case : List[str] = torch.pow(torch.pow(lowerCAmelCase_ , lowerCAmelCase_ ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: _snake_case : Optional[int] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''' ) print_ad_tensor(lowerCAmelCase_ ) if compute_importance: logger.info('''Head importance scores''' ) print_ad_tensor(lowerCAmelCase_ ) logger.info('''Head ranked by importance scores''' ) _snake_case : str = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _snake_case : List[Any] = torch.arange( head_importance.numel() , device=args.device ) _snake_case : List[Any] = head_ranks.view_as(lowerCAmelCase_ ) print_ad_tensor(lowerCAmelCase_ ) return attn_entropy, head_importance, total_loss def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case , _snake_case , _snake_case : str = compute_heads_importance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ ) _snake_case : Optional[Any] = 1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' , lowerCAmelCase_ , original_score * args.masking_threshold ) _snake_case : int = torch.ones_like(lowerCAmelCase_ ) _snake_case : Optional[Any] = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _snake_case : int = original_score while current_score >= original_score * args.masking_threshold: _snake_case : int = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _snake_case : Dict = float('''Inf''' ) _snake_case : Optional[Any] = head_importance.view(-1 ).sort()[1] if len(lowerCAmelCase_ ) <= num_to_mask: print('''BREAK BY num_to_mask''' ) break # mask heads _snake_case : Union[str, Any] = current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist() ) ) _snake_case : Tuple = new_head_mask.view(-1 ) _snake_case : List[str] = 0.0 _snake_case : str = new_head_mask.view_as(lowerCAmelCase_ ) _snake_case : Dict = new_head_mask.clone().detach() print_ad_tensor(lowerCAmelCase_ ) # Compute metric and head importance again _snake_case , _snake_case , _snake_case : Any = compute_heads_importance( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) _snake_case : int = 1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' , lowerCAmelCase_ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info('''Final head mask''' ) print_ad_tensor(lowerCAmelCase_ ) np.save(os.path.join(args.output_dir , '''head_mask.npy''' ) , head_mask.detach().cpu().numpy() ) return head_mask def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = datetime.now() _snake_case , _snake_case , _snake_case : Union[str, Any] = compute_heads_importance( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , compute_importance=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) _snake_case : Tuple = 1 / loss _snake_case : Dict = datetime.now() - before_time _snake_case : List[Any] = sum(p.numel() for p in model.parameters() ) _snake_case : int = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(lowerCAmelCase_ ) ) } for k, v in heads_to_prune.items(): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Union[str, Any] = [ v, ] assert sum(len(lowerCAmelCase_ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(lowerCAmelCase_ ) _snake_case : List[str] = sum(p.numel() for p in model.parameters() ) _snake_case : int = datetime.now() _snake_case , _snake_case , _snake_case : Optional[Any] = compute_heads_importance( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , compute_importance=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , actually_pruned=lowerCAmelCase_ , ) _snake_case : Optional[int] = 1 / loss _snake_case : Dict = datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , lowerCAmelCase_ , lowerCAmelCase_ , pruned_num_params / original_num_params * 100 , ) logger.info('''Pruning: score with masking: %f score with pruning: %f''' , lowerCAmelCase_ , lowerCAmelCase_ ) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 100 ) save_model(lowerCAmelCase_ , args.output_dir ) def _a ( ): """simple docstring""" _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , ) parser.add_argument( '''--model_name_or_path''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--output_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) # Other parameters parser.add_argument( '''--config_name''' , default='''''' , type=lowerCAmelCase_ , help='''Pretrained config name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--tokenizer_name''' , default='''''' , type=lowerCAmelCase_ , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--cache_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help='''Where do you want to store the pre-trained models downloaded from s3''' , ) parser.add_argument( '''--data_subset''' , type=lowerCAmelCase_ , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''' ) parser.add_argument( '''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''' ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) parser.add_argument( '''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''' ) parser.add_argument( '''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , ) parser.add_argument( '''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''' ) parser.add_argument( '''--masking_threshold''' , default=0.9 , type=lowerCAmelCase_ , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , ) parser.add_argument( '''--masking_amount''' , default=0.1 , type=lowerCAmelCase_ , help='''Amount to heads to masking at each masking step.''' ) parser.add_argument('''--metric_name''' , default='''acc''' , type=lowerCAmelCase_ , help='''Metric to use for head masking.''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=lowerCAmelCase_ , help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) , ) parser.add_argument('''--batch_size''' , default=1 , type=lowerCAmelCase_ , help='''Batch size.''' ) parser.add_argument('''--seed''' , type=lowerCAmelCase_ , default=42 ) parser.add_argument('''--local_rank''' , type=lowerCAmelCase_ , default=-1 , help='''local_rank for distributed training on gpus''' ) parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''' ) parser.add_argument('''--server_ip''' , type=lowerCAmelCase_ , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=lowerCAmelCase_ , default='''''' , help='''Can be used for distant debugging.''' ) _snake_case : Optional[Any] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowerCAmelCase_ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _snake_case : str = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''' ) _snake_case : Optional[Any] = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _snake_case : List[str] = torch.device('''cuda''' , args.local_rank ) _snake_case : int = 1 torch.distributed.init_process_group(backend='''nccl''' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _snake_case : Optional[Any] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _snake_case : Optional[int] = nn.parallel.DistributedDataParallel( lowerCAmelCase_ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=lowerCAmelCase_ ) elif args.n_gpu > 1: _snake_case : List[Any] = nn.DataParallel(lowerCAmelCase_ ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=lowerCAmelCase_ ) torch.save(lowerCAmelCase_ , os.path.join(args.output_dir , '''run_args.bin''' ) ) logger.info('''Training/evaluation parameters %s''' , lowerCAmelCase_ ) # Prepare dataset _snake_case : Dict = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _snake_case : int = (torch.from_numpy(lowerCAmelCase_ ),) _snake_case : Tuple = TensorDataset(*lowerCAmelCase_ ) _snake_case : List[str] = RandomSampler(lowerCAmelCase_ ) _snake_case : Dict = DataLoader(lowerCAmelCase_ , sampler=lowerCAmelCase_ , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _snake_case : Optional[int] = mask_heads(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) prune_heads(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
47
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer UpperCAmelCase : Optional[int] = logging.get_logger(__name__) UpperCAmelCase : Union[str, Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase : List[str] = [ 'small', 'small-base', 'medium', 'medium-base', 'intermediate', 'intermediate-base', 'large', 'large-base', 'xlarge', 'xlarge-base', ] UpperCAmelCase : Optional[Any] = { 'vocab_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json', 'funnel-transformer/small-base': ( 'https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json' ), 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json', 'funnel-transformer/large-base': ( 'https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json' ), 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json' ), }, } UpperCAmelCase : Tuple = {f"""funnel-transformer/{name}""": 5_1_2 for name in _model_names} UpperCAmelCase : int = {f"""funnel-transformer/{name}""": {'do_lower_case': True} for name in _model_names} class lowerCamelCase (lowerCAmelCase__ ): _lowercase : Any = VOCAB_FILES_NAMES _lowercase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _lowercase : str = PRETRAINED_INIT_CONFIGURATION _lowercase : List[Any] = FunnelTokenizer _lowercase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : int = 2 def __init__( self , lowercase__=None , lowercase__=None , lowercase__=True , lowercase__="<unk>" , lowercase__="<sep>" , lowercase__="<pad>" , lowercase__="<cls>" , lowercase__="<mask>" , lowercase__="<s>" , lowercase__="</s>" , lowercase__=True , lowercase__=True , lowercase__=None , lowercase__="##" , **lowercase__ , ) -> Optional[int]: """simple docstring""" super().__init__( _lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , clean_text=_lowerCamelCase , tokenize_chinese_chars=_lowerCamelCase , strip_accents=_lowerCamelCase , wordpieces_prefix=_lowerCamelCase , **_lowerCamelCase , ) _snake_case : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _lowerCamelCase ) != tokenize_chinese_chars ): _snake_case : str = getattr(_lowerCamelCase , normalizer_state.pop('''type''' ) ) _snake_case : List[str] = do_lower_case _snake_case : Any = strip_accents _snake_case : Dict = tokenize_chinese_chars _snake_case : str = normalizer_class(**_lowerCamelCase ) _snake_case : Dict = do_lower_case def UpperCAmelCase_ ( self , lowercase__ , lowercase__=None ) -> int: """simple docstring""" _snake_case : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> List[int]: """simple docstring""" _snake_case : Dict = [self.sep_token_id] _snake_case : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> Tuple[str]: """simple docstring""" _snake_case : Optional[int] = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase )
711
'''simple docstring''' def _a ( lowerCAmelCase_ ): """simple docstring""" if n == 1 or not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return 0 elif n == 2: return 1 else: _snake_case : Union[str, Any] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[int] = 0 _snake_case : int = 2 while digits < n: index += 1 _snake_case : Tuple = len(str(fibonacci(lowerCAmelCase_ ) ) ) return index def _a ( lowerCAmelCase_ = 1_000 ): """simple docstring""" return fibonacci_digits_index(lowerCAmelCase_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
47
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool UpperCAmelCase : str = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class lowerCamelCase (_A ): _lowercase : Union[str, Any] = """facebook/nllb-200-distilled-600M""" _lowercase : List[str] = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.""" ) _lowercase : Dict = """translator""" _lowercase : Any = AutoTokenizer _lowercase : List[Any] = AutoModelForSeqaSeqLM _lowercase : int = LANGUAGE_CODES _lowercase : Any = ["""text""", """text""", """text"""] _lowercase : Union[str, Any] = ["""text"""] def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ ) -> Optional[int]: """simple docstring""" if src_lang not in self.lang_to_code: raise ValueError(F'''{src_lang} is not a supported language.''' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'''{tgt_lang} is not a supported language.''' ) _snake_case : Optional[Any] = self.lang_to_code[src_lang] _snake_case : Union[str, Any] = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowercase__ , return_tensors='''pt''' , src_lang=lowercase__ , tgt_lang=lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> Tuple: """simple docstring""" return self.model.generate(**lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> List[Any]: """simple docstring""" return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowercase__ )
712
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar UpperCAmelCase : Any = TypeVar('T') UpperCAmelCase : str = TypeVar('U') class lowerCamelCase (Generic[T, U] ): def __init__( self , lowercase__ , lowercase__ ) -> List[Any]: """simple docstring""" _snake_case : str = key _snake_case : Optional[int] = val _snake_case : DoubleLinkedListNode[T, U] | None = None _snake_case : DoubleLinkedListNode[T, U] | None = None def __repr__( self ) -> str: """simple docstring""" return ( F'''Node: key: {self.key}, val: {self.val}, ''' F'''has next: {bool(self.next )}, has prev: {bool(self.prev )}''' ) class lowerCamelCase (Generic[T, U] ): def __init__( self ) -> None: """simple docstring""" _snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase__ , lowercase__ ) _snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase__ , lowercase__ ) _snake_case , _snake_case : Union[str, Any] = self.rear, self.head def __repr__( self ) -> str: """simple docstring""" _snake_case : List[Any] = ['''DoubleLinkedList'''] _snake_case : str = self.head while node.next is not None: rep.append(str(lowercase__ ) ) _snake_case : List[str] = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> None: """simple docstring""" _snake_case : Tuple = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None _snake_case : Union[str, Any] = node _snake_case : Optional[Any] = previous _snake_case : int = node _snake_case : Union[str, Any] = self.rear def UpperCAmelCase_ ( self , lowercase__ ) -> DoubleLinkedListNode[T, U] | None: """simple docstring""" if node.prev is None or node.next is None: return None _snake_case : Optional[int] = node.next _snake_case : Any = node.prev _snake_case : List[str] = None _snake_case : Optional[int] = None return node class lowerCamelCase (Generic[T, U] ): _lowercase : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self , lowercase__ ) -> Union[str, Any]: """simple docstring""" _snake_case : DoubleLinkedList[T, U] = DoubleLinkedList() _snake_case : Union[str, Any] = capacity _snake_case : int = 0 _snake_case : Dict = 0 _snake_case : Union[str, Any] = 0 _snake_case : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__( self ) -> str: """simple docstring""" return ( F'''CacheInfo(hits={self.hits}, misses={self.miss}, ''' F'''capacity={self.capacity}, current size={self.num_keys})''' ) def __contains__( self , lowercase__ ) -> bool: """simple docstring""" return key in self.cache def UpperCAmelCase_ ( self , lowercase__ ) -> U | None: """simple docstring""" if key in self.cache: self.hits += 1 _snake_case : DoubleLinkedListNode[T, U] = self.cache[key] _snake_case : Tuple = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowercase__ ) return node.val self.miss += 1 return None def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> None: """simple docstring""" if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity _snake_case : Dict = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowercase__ ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 _snake_case : Optional[int] = DoubleLinkedListNode(lowercase__ , lowercase__ ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value _snake_case : Optional[Any] = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list _snake_case : Optional[Any] = value self.list.add(lowercase__ ) @classmethod def UpperCAmelCase_ ( cls , lowercase__ = 128 ) -> Callable[[Callable[[T], U]], Callable[..., U]]: """simple docstring""" def cache_decorator_inner(lowercase__ ) -> Callable[..., U]: def cache_decorator_wrapper(*lowercase__ ) -> U: if func not in cls.decorator_function_to_instance_map: _snake_case : Optional[Any] = LRUCache(lowercase__ ) _snake_case : Union[str, Any] = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: _snake_case : Tuple = func(*lowercase__ ) cls.decorator_function_to_instance_map[func].put(args[0] , lowercase__ ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowercase__ , '''cache_info''' , lowercase__ ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
47
0
'''simple docstring''' import math from collections.abc import Iterator from itertools import takewhile def _a ( lowerCAmelCase_ ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _a ( ): """simple docstring""" _snake_case : Tuple = 2 while True: if is_prime(a__ ): yield num num += 1 def _a ( lowerCAmelCase_ = 2_000_000 ): """simple docstring""" return sum(takewhile(lambda lowerCAmelCase_ : x < n , prime_generator() ) ) if __name__ == "__main__": print(F"""{solution() = }""")
713
'''simple docstring''' import os import numpy import onnx def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : List[Any] = a.name _snake_case : List[Any] = b.name _snake_case : Tuple = '''''' _snake_case : Tuple = '''''' _snake_case : Optional[Any] = a == b _snake_case : List[Any] = name_a _snake_case : str = name_b return res def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(lowerCAmelCase_ , lowerCAmelCase_ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , lowerCAmelCase_ , lowerCAmelCase_ ) _graph_replace_input_with(node_proto.attribute[1].g , lowerCAmelCase_ , lowerCAmelCase_ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , lowerCAmelCase_ , lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for n in graph_proto.node: _node_replace_input_with(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = list(model.graph.initializer ) _snake_case : List[str] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i _snake_case : List[Any] = inits[i].name _snake_case : List[str] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , lowerCAmelCase_ , lowerCAmelCase_ ) def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Tuple = os.path.dirname(lowerCAmelCase_ ) _snake_case : str = os.path.basename(lowerCAmelCase_ ) _snake_case : Tuple = onnx.load(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) ) _snake_case : Union[str, Any] = list(model.graph.initializer ) _snake_case : Union[str, Any] = set() _snake_case : Any = {} _snake_case : str = [] _snake_case : Union[str, Any] = 0 for i in range(len(lowerCAmelCase_ ) ): if i in dup_set: continue for j in range(i + 1 , len(lowerCAmelCase_ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(lowerCAmelCase_ ) dup_set.add(lowerCAmelCase_ ) _snake_case : List[Any] = inits[j].data_type _snake_case : Dict = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('''unexpected data type: ''' , lowerCAmelCase_ ) total_reduced_size += mem_size _snake_case : Union[str, Any] = inits[i].name _snake_case : Any = inits[j].name if name_i in dup_map: dup_map[name_i].append(lowerCAmelCase_ ) else: _snake_case : Union[str, Any] = [name_j] ind_to_replace.append((j, i) ) print('''total reduced size: ''' , total_reduced_size / 1_024 / 1_024 / 1_024 , '''GB''' ) _snake_case : List[str] = sorted(lowerCAmelCase_ ) _remove_dup_initializers_from_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : List[str] = '''optimized_''' + model_file_name _snake_case : List[Any] = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) onnx.save(lowerCAmelCase_ , lowerCAmelCase_ ) return new_model
47
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available UpperCAmelCase : List[str] = { 'configuration_gpt_neo': ['GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoConfig', 'GPTNeoOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : int = [ 'GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoForCausalLM', 'GPTNeoForQuestionAnswering', 'GPTNeoForSequenceClassification', 'GPTNeoForTokenClassification', 'GPTNeoModel', 'GPTNeoPreTrainedModel', 'load_tf_weights_in_gpt_neo', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = [ 'FlaxGPTNeoForCausalLM', 'FlaxGPTNeoModel', 'FlaxGPTNeoPreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
714
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : int = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
47
0
'''simple docstring''' from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class lowerCamelCase (__UpperCAmelCase ): def __lt__( self , lowercase__ ) -> str: """simple docstring""" return self[-1] < other[-1] def __eq__( self , lowercase__ ) -> List[Any]: """simple docstring""" return self[-1] == other[-1] def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : List[str] = [] # sort into stacks for element in collection: _snake_case : Dict = Stack([element] ) _snake_case : Optional[int] = bisect_left(_UpperCAmelCase , _UpperCAmelCase ) if i != len(_UpperCAmelCase ): stacks[i].append(_UpperCAmelCase ) else: stacks.append(_UpperCAmelCase ) # use a heap-based merge to merge stack efficiently _snake_case : Optional[Any] = merge(*(reversed(_UpperCAmelCase ) for stack in stacks) ) return collection if __name__ == "__main__": UpperCAmelCase : str = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase : Union[str, Any] = [int(item) for item in user_input.split(',')] print(patience_sort(unsorted))
715
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase : Dict = logging.get_logger(__name__) class lowerCamelCase (a__ ): _lowercase : int = ["""pixel_values"""] def __init__( self , lowercase__ = True , lowercase__ = 32 , lowercase__=PILImageResampling.BILINEAR , lowercase__ = True , **lowercase__ , ) -> None: """simple docstring""" _snake_case : Any = do_resize _snake_case : List[str] = do_rescale _snake_case : Any = size_divisor _snake_case : Optional[Any] = resample super().__init__(**lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ ) -> np.ndarray: """simple docstring""" _snake_case , _snake_case : Dict = get_image_size(lowercase__ ) # Rounds the height and width down to the closest multiple of size_divisor _snake_case : Optional[int] = height // size_divisor * size_divisor _snake_case : Dict = width // size_divisor * size_divisor _snake_case : str = resize(lowercase__ , (new_h, new_w) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) return image def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ ) -> np.ndarray: """simple docstring""" return rescale(image=lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__=None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ) -> BatchFeature: """simple docstring""" _snake_case : Any = do_resize if do_resize is not None else self.do_resize _snake_case : List[Any] = do_rescale if do_rescale is not None else self.do_rescale _snake_case : List[str] = size_divisor if size_divisor is not None else self.size_divisor _snake_case : int = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) _snake_case : Tuple = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. _snake_case : Tuple = [to_numpy_array(lowercase__ ) for img in images] if do_resize: _snake_case : Optional[int] = [self.resize(lowercase__ , size_divisor=lowercase__ , resample=lowercase__ ) for image in images] if do_rescale: _snake_case : Union[str, Any] = [self.rescale(lowercase__ , scale=1 / 255 ) for image in images] _snake_case : Union[str, Any] = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] _snake_case : List[str] = {'''pixel_values''': images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
47
0
'''simple docstring''' import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class lowerCamelCase (unittest.TestCase ): def __init__( self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=99 , lowercase__=32 , lowercase__=5 , lowercase__=4 , lowercase__=37 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=512 , lowercase__=16 , lowercase__=2 , lowercase__=0.02 , lowercase__=4 , ) -> Dict: """simple docstring""" _snake_case : List[Any] = parent _snake_case : Union[str, Any] = batch_size _snake_case : int = seq_length _snake_case : Optional[int] = is_training _snake_case : Dict = use_attention_mask _snake_case : List[str] = use_token_type_ids _snake_case : Tuple = use_labels _snake_case : List[str] = vocab_size _snake_case : List[Any] = hidden_size _snake_case : Union[str, Any] = num_hidden_layers _snake_case : Union[str, Any] = num_attention_heads _snake_case : str = intermediate_size _snake_case : List[Any] = hidden_act _snake_case : Optional[Any] = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : Tuple = max_position_embeddings _snake_case : Union[str, Any] = type_vocab_size _snake_case : Any = type_sequence_label_size _snake_case : int = initializer_range _snake_case : Tuple = num_choices def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case : List[Any] = None if self.use_attention_mask: _snake_case : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case : Optional[Any] = None if self.use_token_type_ids: _snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _snake_case : List[str] = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" _snake_case : List[str] = self.prepare_config_and_inputs() _snake_case : Tuple = config_and_inputs _snake_case : Union[str, Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" _snake_case : Optional[Any] = self.prepare_config_and_inputs() _snake_case : int = config_and_inputs _snake_case : int = True _snake_case : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class lowerCamelCase (UpperCamelCase_ , unittest.TestCase ): _lowercase : Any = True _lowercase : Optional[Any] = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : str = FlaxRobertaPreLayerNormModelTester(self ) @slow def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" for model_class_name in self.all_model_classes: _snake_case : str = model_class_name.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=__a ) _snake_case : List[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__a ) @require_flax class lowerCamelCase (unittest.TestCase ): @slow def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" _snake_case : List[Any] = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=__a ) _snake_case : Optional[int] = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) _snake_case : List[str] = model(__a )[0] _snake_case : Dict = [1, 11, 50_265] self.assertEqual(list(output.shape ) , __a ) # compare the actual values for a slice. _snake_case : Optional[Any] = np.array( [[[40.4_880, 18.0_199, -5.2_367], [-1.8_877, -4.0_885, 10.7_085], [-2.2_613, -5.6_110, 7.2_665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , __a , atol=1E-4 ) ) @slow def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" _snake_case : Optional[int] = FlaxRobertaPreLayerNormModel.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=__a ) _snake_case : Dict = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) _snake_case : List[str] = model(__a )[0] # compare the actual values for a slice. _snake_case : Tuple = np.array( [[[0.0_208, -0.0_356, 0.0_237], [-0.1_569, -0.0_411, -0.2_626], [0.1_879, 0.0_125, -0.0_089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , __a , atol=1E-4 ) )
716
'''simple docstring''' from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class lowerCamelCase : _lowercase : Any = LEDConfig _lowercase : Any = {} _lowercase : Optional[Any] = """gelu""" def __init__( self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=False , lowercase__=99 , lowercase__=32 , lowercase__=2 , lowercase__=4 , lowercase__=37 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=20 , lowercase__=2 , lowercase__=1 , lowercase__=0 , lowercase__=4 , ) -> Any: """simple docstring""" _snake_case : Dict = parent _snake_case : Any = batch_size _snake_case : List[str] = seq_length _snake_case : Union[str, Any] = is_training _snake_case : Tuple = use_labels _snake_case : int = vocab_size _snake_case : str = hidden_size _snake_case : Optional[Any] = num_hidden_layers _snake_case : List[Any] = num_attention_heads _snake_case : Optional[int] = intermediate_size _snake_case : List[Any] = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : Optional[int] = max_position_embeddings _snake_case : Any = eos_token_id _snake_case : List[Any] = pad_token_id _snake_case : Optional[int] = bos_token_id _snake_case : Any = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _snake_case : Any = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _snake_case : Tuple = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" _snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _snake_case : Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _snake_case : Optional[int] = tf.concat([input_ids, eos_tensor] , axis=1 ) _snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case : List[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _snake_case : Dict = prepare_led_inputs_dict(lowercase__ , lowercase__ , lowercase__ ) _snake_case : Dict = tf.concat( [tf.zeros_like(lowercase__ )[:, :-1], tf.ones_like(lowercase__ )[:, -1:]] , axis=-1 , ) _snake_case : Dict = global_attention_mask return config, inputs_dict def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> int: """simple docstring""" _snake_case : int = TFLEDModel(config=lowercase__ ).get_decoder() _snake_case : Union[str, Any] = inputs_dict['''input_ids'''] _snake_case : List[str] = input_ids[:1, :] _snake_case : Tuple = inputs_dict['''attention_mask'''][:1, :] _snake_case : Dict = 1 # first forward pass _snake_case : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__ ) _snake_case , _snake_case : Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _snake_case : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _snake_case : Tuple = tf.concat([input_ids, next_tokens] , axis=-1 ) _snake_case : List[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _snake_case : List[Any] = model(lowercase__ , attention_mask=lowercase__ )[0] _snake_case : Tuple = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _snake_case : Tuple = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _snake_case : int = output_from_no_past[:, -3:, random_slice_idx] _snake_case : Optional[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase__ , lowercase__ , rtol=1E-3 ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , ): """simple docstring""" if attention_mask is None: _snake_case : Union[str, Any] = tf.cast(tf.math.not_equal(lowerCAmelCase_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _snake_case : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _snake_case : int = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class lowerCamelCase (a__ , a__ , unittest.TestCase ): _lowercase : Optional[int] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _lowercase : int = (TFLEDForConditionalGeneration,) if is_tf_available() else () _lowercase : Dict = ( { """conversational""": TFLEDForConditionalGeneration, """feature-extraction""": TFLEDModel, """summarization""": TFLEDForConditionalGeneration, """text2text-generation""": TFLEDForConditionalGeneration, """translation""": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _lowercase : int = True _lowercase : List[Any] = False _lowercase : str = False _lowercase : Union[str, Any] = False def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : str = TFLEDModelTester(self ) _snake_case : Union[str, Any] = ConfigTester(self , config_class=lowercase__ ) def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase__ ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Any = tf.zeros_like(inputs_dict['''attention_mask'''] ) _snake_case : Optional[Any] = 2 _snake_case : Any = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) _snake_case : Dict = True _snake_case : str = self.model_tester.seq_length _snake_case : Dict = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowercase__ ): _snake_case : Optional[int] = outputs.decoder_attentions self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowercase__ ): _snake_case : int = [t.numpy() for t in outputs.encoder_attentions] _snake_case : Tuple = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _snake_case : Union[str, Any] = True _snake_case : Dict = False _snake_case : Union[str, Any] = False _snake_case : List[Any] = model_class(lowercase__ ) _snake_case : Optional[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) _snake_case : List[Any] = len(lowercase__ ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) if self.is_encoder_decoder: _snake_case : Union[str, Any] = model_class(lowercase__ ) _snake_case : List[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_decoder_attentions_output(lowercase__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _snake_case : str = True _snake_case : Tuple = model_class(lowercase__ ) _snake_case : int = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) # Check attention is always last and order is fine _snake_case : int = True _snake_case : List[str] = True _snake_case : Tuple = model_class(lowercase__ ) _snake_case : Optional[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase__ ) ) self.assertEqual(model.config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" pass def UpperCAmelCase_ ( self ) -> str: """simple docstring""" pass def _a ( lowerCAmelCase_ ): """simple docstring""" return tf.constant(lowerCAmelCase_ , dtype=tf.intaa ) UpperCAmelCase : Dict = 1E-4 @slow @require_tf class lowerCamelCase (unittest.TestCase ): def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" _snake_case : List[str] = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here _snake_case : List[str] = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : Tuple = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : Tuple = prepare_led_inputs_dict(model.config , lowercase__ , lowercase__ ) _snake_case : int = model(**lowercase__ )[0] _snake_case : Dict = (1, 1_024, 768) self.assertEqual(output.shape , lowercase__ ) # change to expected output here _snake_case : List[Any] = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1E-3 ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Any = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here _snake_case : Dict = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : Dict = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : List[str] = prepare_led_inputs_dict(model.config , lowercase__ , lowercase__ ) _snake_case : Tuple = model(**lowercase__ )[0] _snake_case : Any = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , lowercase__ ) # change to expected output here _snake_case : Dict = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1E-3 , rtol=1E-3 )
47
0
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCamelCase (a__ ): _lowercase : Tuple = ["""image_processor""", """tokenizer"""] _lowercase : List[Any] = """BlipImageProcessor""" _lowercase : str = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self , lowercase__ , lowercase__ ) -> Optional[int]: """simple docstring""" _snake_case : Tuple = False super().__init__(__A , __A ) _snake_case : Tuple = self.image_processor def __call__( self , lowercase__ = None , lowercase__ = None , lowercase__ = True , lowercase__ = False , lowercase__ = None , lowercase__ = None , lowercase__ = 0 , lowercase__ = None , lowercase__ = None , lowercase__ = False , lowercase__ = False , lowercase__ = False , lowercase__ = False , lowercase__ = False , lowercase__ = True , lowercase__ = None , **lowercase__ , ) -> BatchEncoding: """simple docstring""" if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: _snake_case : int = self.tokenizer _snake_case : Dict = self.tokenizer( text=__A , add_special_tokens=__A , padding=__A , truncation=__A , max_length=__A , stride=__A , pad_to_multiple_of=__A , return_attention_mask=__A , return_overflowing_tokens=__A , return_special_tokens_mask=__A , return_offsets_mapping=__A , return_token_type_ids=__A , return_length=__A , verbose=__A , return_tensors=__A , **__A , ) return text_encoding # add pixel_values _snake_case : Optional[Any] = self.image_processor(__A , return_tensors=__A ) if text is not None: _snake_case : List[Any] = self.tokenizer( text=__A , add_special_tokens=__A , padding=__A , truncation=__A , max_length=__A , stride=__A , pad_to_multiple_of=__A , return_attention_mask=__A , return_overflowing_tokens=__A , return_special_tokens_mask=__A , return_offsets_mapping=__A , return_token_type_ids=__A , return_length=__A , verbose=__A , return_tensors=__A , **__A , ) else: _snake_case : Dict = None if text_encoding is not None: encoding_image_processor.update(__A ) return encoding_image_processor def UpperCAmelCase_ ( self , *lowercase__ , **lowercase__ ) -> int: """simple docstring""" return self.tokenizer.batch_decode(*__A , **__A ) def UpperCAmelCase_ ( self , *lowercase__ , **lowercase__ ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*__A , **__A ) @property def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" _snake_case : Any = self.tokenizer.model_input_names _snake_case : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
717
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase : Optional[int] = logging.get_logger(__name__) UpperCAmelCase : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase : Any = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } UpperCAmelCase : Optional[Any] = { 'gpt-neox-20b': 2_0_4_8, } class lowerCamelCase (a__ ): _lowercase : Optional[int] = VOCAB_FILES_NAMES _lowercase : str = PRETRAINED_VOCAB_FILES_MAP _lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Optional[int] = ["""input_ids""", """attention_mask"""] def __init__( self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="<|endoftext|>" , lowercase__="<|endoftext|>" , lowercase__="<|endoftext|>" , lowercase__=False , **lowercase__ , ) -> List[Any]: """simple docstring""" super().__init__( lowercase__ , lowercase__ , tokenizer_file=lowercase__ , unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , add_prefix_space=lowercase__ , **lowercase__ , ) _snake_case : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowercase__ ) != add_prefix_space: _snake_case : int = getattr(lowercase__ , pre_tok_state.pop('''type''' ) ) _snake_case : int = add_prefix_space _snake_case : Optional[Any] = pre_tok_class(**lowercase__ ) _snake_case : List[str] = add_prefix_space def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> Tuple[str]: """simple docstring""" _snake_case : Optional[int] = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> List[int]: """simple docstring""" _snake_case : List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase__ , add_special_tokens=lowercase__ ) + [self.eos_token_id] ) if len(lowercase__ ) > self.model_max_length: _snake_case : Dict = input_ids[-self.model_max_length :] return input_ids
47
0
'''simple docstring''' import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=99 , lowercase__=32 , lowercase__=5 , lowercase__=4 , lowercase__=37 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=128 , lowercase__=32 , lowercase__=16 , lowercase__=2 , lowercase__=0.02 , lowercase__=3 , lowercase__=4 , lowercase__=None , ) -> List[str]: """simple docstring""" _snake_case : List[str] = parent _snake_case : int = batch_size _snake_case : List[str] = seq_length _snake_case : List[Any] = is_training _snake_case : Optional[int] = use_input_mask _snake_case : int = use_token_type_ids _snake_case : List[Any] = use_labels _snake_case : List[str] = vocab_size _snake_case : Optional[Any] = hidden_size _snake_case : Optional[int] = num_hidden_layers _snake_case : Tuple = num_attention_heads _snake_case : Union[str, Any] = intermediate_size _snake_case : List[str] = hidden_act _snake_case : Any = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : Dict = max_position_embeddings _snake_case : int = type_vocab_size _snake_case : Tuple = type_sequence_label_size _snake_case : Any = initializer_range _snake_case : List[str] = num_labels _snake_case : Optional[int] = num_choices _snake_case : List[str] = scope def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case : int = None if self.use_input_mask: _snake_case : str = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case : Union[str, Any] = None if self.use_token_type_ids: _snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _snake_case : List[Any] = None _snake_case : Optional[Any] = None _snake_case : Tuple = None if self.use_labels: _snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) _snake_case : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self ) -> str: """simple docstring""" return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" ( _snake_case ) : Dict = self.prepare_config_and_inputs() _snake_case : Any = True _snake_case : Dict = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _snake_case : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Any: """simple docstring""" _snake_case : List[Any] = NezhaModel(config=_lowercase ) model.to(_lowercase ) model.eval() _snake_case : Any = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase ) _snake_case : str = model(_lowercase , token_type_ids=_lowercase ) _snake_case : int = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ) -> Tuple: """simple docstring""" _snake_case : Dict = True _snake_case : Tuple = NezhaModel(_lowercase ) model.to(_lowercase ) model.eval() _snake_case : List[Any] = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , encoder_hidden_states=_lowercase , encoder_attention_mask=_lowercase , ) _snake_case : Optional[Any] = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , encoder_hidden_states=_lowercase , ) _snake_case : List[str] = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Any: """simple docstring""" _snake_case : int = NezhaForMaskedLM(config=_lowercase ) model.to(_lowercase ) model.eval() _snake_case : Any = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Union[str, Any]: """simple docstring""" _snake_case : Any = NezhaForNextSentencePrediction(config=_lowercase ) model.to(_lowercase ) model.eval() _snake_case : Optional[Any] = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Optional[int]: """simple docstring""" _snake_case : Any = NezhaForPreTraining(config=_lowercase ) model.to(_lowercase ) model.eval() _snake_case : Any = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , next_sentence_label=_lowercase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Any: """simple docstring""" _snake_case : Any = NezhaForQuestionAnswering(config=_lowercase ) model.to(_lowercase ) model.eval() _snake_case : List[Any] = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , start_positions=_lowercase , end_positions=_lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Optional[Any]: """simple docstring""" _snake_case : Any = self.num_labels _snake_case : str = NezhaForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() _snake_case : int = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Tuple: """simple docstring""" _snake_case : int = self.num_labels _snake_case : Tuple = NezhaForTokenClassification(config=_lowercase ) model.to(_lowercase ) model.eval() _snake_case : int = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> List[Any]: """simple docstring""" _snake_case : Union[str, Any] = self.num_choices _snake_case : str = NezhaForMultipleChoice(config=_lowercase ) model.to(_lowercase ) model.eval() _snake_case : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case : List[str] = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Dict = self.prepare_config_and_inputs() ( _snake_case ) : Optional[int] = config_and_inputs _snake_case : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCamelCase (__snake_case , __snake_case , __snake_case , unittest.TestCase ): _lowercase : List[str] = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) _lowercase : Tuple = ( { """feature-extraction""": NezhaModel, """fill-mask""": NezhaForMaskedLM, """question-answering""": NezhaForQuestionAnswering, """text-classification""": NezhaForSequenceClassification, """token-classification""": NezhaForTokenClassification, """zero-shot""": NezhaForSequenceClassification, } if is_torch_available() else {} ) _lowercase : Any = True def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__=False ) -> int: """simple docstring""" _snake_case : Dict = super()._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) if return_labels: if model_class in get_values(_lowercase ): _snake_case : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_lowercase ) _snake_case : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowercase ) return inputs_dict def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Any = NezhaModelTester(self ) _snake_case : str = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_lowercase ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" ( _snake_case ) : List[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() _snake_case : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ) def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowercase ) def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowercase ) def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*_lowercase ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowercase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowercase ) def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowercase ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowercase ) @slow def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Union[str, Any] = NezhaModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) @slow @require_torch_gpu def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return _snake_case : int = True _snake_case : Dict = model_class(config=_lowercase ) _snake_case : Any = self._prepare_for_class(_lowercase , _lowercase ) _snake_case : Dict = torch.jit.trace( _lowercase , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_lowercase , os.path.join(_lowercase , '''bert.pt''' ) ) _snake_case : List[Any] = torch.jit.load(os.path.join(_lowercase , '''bert.pt''' ) , map_location=_lowercase ) loaded(inputs_dict['''input_ids'''].to(_lowercase ) , inputs_dict['''attention_mask'''].to(_lowercase ) ) @require_torch class lowerCamelCase (unittest.TestCase ): @slow def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" _snake_case : List[Any] = NezhaModel.from_pretrained('''sijunhe/nezha-cn-base''' ) _snake_case : Any = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _snake_case : str = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _snake_case : List[str] = model(_lowercase , attention_mask=_lowercase )[0] _snake_case : str = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , _lowercase ) _snake_case : Union[str, Any] = torch.tensor([[[0.0_685, 0.2_441, 0.1_102], [0.0_600, 0.1_906, 0.1_349], [0.0_221, 0.0_819, 0.0_586]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowercase , atol=1E-4 ) ) @slow def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : Optional[int] = NezhaForMaskedLM.from_pretrained('''sijunhe/nezha-cn-base''' ) _snake_case : Tuple = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _snake_case : Union[str, Any] = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _snake_case : Tuple = model(_lowercase , attention_mask=_lowercase )[0] _snake_case : Dict = torch.Size((1, 6, 21_128) ) self.assertEqual(output.shape , _lowercase ) _snake_case : Optional[int] = torch.tensor( [[-2.7_939, -1.7_902, -2.2_189], [-2.8_585, -1.8_908, -2.3_723], [-2.6_499, -1.7_750, -2.2_558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowercase , atol=1E-4 ) )
718
'''simple docstring''' import math from numpy import inf from scipy.integrate import quad def _a ( lowerCAmelCase_ ): """simple docstring""" if num <= 0: raise ValueError('''math domain error''' ) return quad(lowerCAmelCase_ , 0 , lowerCAmelCase_ , args=(lowerCAmelCase_) )[0] def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return math.pow(lowerCAmelCase_ , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
47
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) class lowerCamelCase (a__ ): _lowercase : Union[str, Any] = ['''pixel_values'''] def __init__( self , lowercase__ = True , lowercase__ = 32 , lowercase__=PILImageResampling.BILINEAR , lowercase__ = True , **lowercase__ , ) -> List[Any]: """simple docstring""" _snake_case : int = do_resize _snake_case : Tuple = do_rescale _snake_case : Tuple = size_divisor _snake_case : List[Any] = resample super().__init__(**A__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ ) -> Optional[Any]: """simple docstring""" _snake_case : str = get_image_size(A__ ) # Rounds the height and width down to the closest multiple of size_divisor _snake_case : List[str] = height // size_divisor * size_divisor _snake_case : List[Any] = width // size_divisor * size_divisor _snake_case : List[Any] = resize(A__ , (new_h, new_w) , resample=A__ , data_format=A__ , **A__ ) return image def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ ) -> Dict: """simple docstring""" return rescale(image=A__ , scale=A__ , data_format=A__ , **A__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__=None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ) -> Tuple: """simple docstring""" _snake_case : Any = do_resize if do_resize is not None else self.do_resize _snake_case : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale _snake_case : int = size_divisor if size_divisor is not None else self.size_divisor _snake_case : Optional[Any] = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) _snake_case : str = make_list_of_images(A__ ) if not valid_images(A__ ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. _snake_case : int = [to_numpy_array(A__ ) for img in images] if do_resize: _snake_case : Optional[Any] = [self.resize(A__ , size_divisor=A__ , resample=A__ ) for image in images] if do_rescale: _snake_case : List[Any] = [self.rescale(A__ , scale=1 / 255 ) for image in images] _snake_case : Union[str, Any] = [to_channel_dimension_format(A__ , A__ ) for image in images] _snake_case : int = {"""pixel_values""": images} return BatchFeature(data=A__ , tensor_type=A__ )
719
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class lowerCamelCase (unittest.TestCase ): @slow def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Union[str, Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Any = TFAutoModel.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : str = AutoModel.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Optional[Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Dict = TFAutoModelForPreTraining.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Tuple = AutoModelForPreTraining.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Optional[int] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained(lowercase__ , from_pt=lowercase__ ) _snake_case , _snake_case : Tuple = TFAutoModelForCausalLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained(lowercase__ , from_tf=lowercase__ ) _snake_case , _snake_case : Optional[Any] = AutoModelForCausalLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Tuple = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : int = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[str] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(lowercase__ , from_pt=lowercase__ ) _snake_case , _snake_case : List[str] = TFAutoModelForMaskedLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : int = AutoModelForMaskedLM.from_pretrained(lowercase__ , from_tf=lowercase__ ) _snake_case , _snake_case : Optional[int] = AutoModelForMaskedLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[str] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(lowercase__ , from_pt=lowercase__ ) _snake_case , _snake_case : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : List[str] = AutoModelForSeqaSeqLM.from_pretrained(lowercase__ , from_tf=lowercase__ ) _snake_case , _snake_case : Dict = AutoModelForSeqaSeqLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Any = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Any = TFAutoModelForSequenceClassification.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Dict = AutoModelForSequenceClassification.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : str = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : str = TFAutoModelForQuestionAnswering.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Union[str, Any] = AutoModelForQuestionAnswering.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : Union[str, Any] = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 ) _snake_case : Tuple = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : List[str] = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 ) _snake_case : int = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 )
47
0
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def _a ( lowerCAmelCase_ , lowerCAmelCase_=False ): """simple docstring""" _snake_case : List[str] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''module.blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''module.blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''module.blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''module.blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''module.blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''module.blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''module.blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''module.blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''module.blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''module.blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ('''module.cls_token''', '''vit.embeddings.cls_token'''), ('''module.patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''module.patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''module.pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''module.norm.weight''', '''layernorm.weight'''), ('''module.norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _snake_case : str = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _snake_case : Optional[int] = '''''' else: _snake_case : Tuple = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _snake_case : List[Any] = state_dict.pop(f'''module.blocks.{i}.attn.qkv.weight''' ) _snake_case : Optional[Any] = state_dict.pop(f'''module.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _snake_case : List[str] = in_proj_weight[ : config.hidden_size, : ] _snake_case : List[str] = in_proj_bias[: config.hidden_size] _snake_case : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _snake_case : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _snake_case : Optional[int] = in_proj_weight[ -config.hidden_size :, : ] _snake_case : Optional[int] = in_proj_bias[-config.hidden_size :] def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Tuple = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : List[str] = [ '''module.fc.fc1.weight''', '''module.fc.fc1.bias''', '''module.fc.bn1.weight''', '''module.fc.bn1.bias''', '''module.fc.bn1.running_mean''', '''module.fc.bn1.running_var''', '''module.fc.bn1.num_batches_tracked''', '''module.fc.fc2.weight''', '''module.fc.fc2.bias''', '''module.fc.bn2.weight''', '''module.fc.bn2.bias''', '''module.fc.bn2.running_mean''', '''module.fc.bn2.running_var''', '''module.fc.bn2.num_batches_tracked''', '''module.fc.fc3.weight''', '''module.fc.fc3.bias''', ] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Dict = dct.pop(lowerCAmelCase__ ) _snake_case : Any = val def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Any = ViTMSNConfig() _snake_case : Optional[int] = 1_000 _snake_case : str = '''datasets/huggingface/label-files''' _snake_case : Optional[int] = '''imagenet-1k-id2label.json''' _snake_case : str = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ ) , '''r''' ) ) _snake_case : int = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} _snake_case : int = idalabel _snake_case : Dict = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: _snake_case : List[str] = 384 _snake_case : List[str] = 1_536 _snake_case : Optional[Any] = 6 elif "l16" in checkpoint_url: _snake_case : List[str] = 1_024 _snake_case : Any = 4_096 _snake_case : Union[str, Any] = 24 _snake_case : List[str] = 16 _snake_case : List[str] = 0.1 elif "b4" in checkpoint_url: _snake_case : List[Any] = 4 elif "l7" in checkpoint_url: _snake_case : List[Any] = 7 _snake_case : Union[str, Any] = 1_024 _snake_case : List[Any] = 4_096 _snake_case : Optional[Any] = 24 _snake_case : Union[str, Any] = 16 _snake_case : List[Any] = 0.1 _snake_case : Union[str, Any] = ViTMSNModel(lowerCAmelCase__ ) _snake_case : List[Any] = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location='''cpu''' )['''target_encoder'''] _snake_case : List[Any] = ViTImageProcessor(size=config.image_size ) remove_projection_head(lowerCAmelCase__ ) _snake_case : Any = create_rename_keys(lowerCAmelCase__ , base_model=lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ , base_model=lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) model.eval() _snake_case : List[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _snake_case : Optional[int] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) _snake_case : Tuple = ViTImageProcessor( size=config.image_size , image_mean=lowerCAmelCase__ , image_std=lowerCAmelCase__ ) _snake_case : Tuple = image_processor(images=lowerCAmelCase__ , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) _snake_case : Tuple = model(**lowerCAmelCase__ ) _snake_case : Optional[Any] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: _snake_case : Dict = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: _snake_case : str = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: _snake_case : Optional[Any] = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: _snake_case : Union[str, Any] = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: _snake_case : Optional[int] = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , lowerCAmelCase__ , atol=1E-4 ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCAmelCase__ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) UpperCAmelCase : Any = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
720
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : Dict = {'configuration_timm_backbone': ['TimmBackboneConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = ['TimmBackbone'] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
47
0
'''simple docstring''' import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class lowerCamelCase (unittest.TestCase ): def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights _snake_case : Union[str, Any] = FlaxDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=UpperCamelCase__ , cache_dir=UpperCamelCase__ ) _snake_case : Optional[Any] = [t[-1] for t in os.walk(os.path.join(UpperCamelCase__ , os.listdir(UpperCamelCase__ )[0] , '''snapshots''' ) )] _snake_case : int = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('''.bin''' ) for f in files ) @slow @require_flax class lowerCamelCase (unittest.TestCase ): def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" _snake_case , _snake_case : int = FlaxStableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=UpperCamelCase__ ) _snake_case : Tuple = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) _snake_case : Dict = jax.random.PRNGKey(0 ) _snake_case : Optional[Any] = 4 _snake_case : int = jax.device_count() _snake_case : List[Any] = num_samples * [prompt] _snake_case : Optional[int] = pipeline.prepare_inputs(UpperCamelCase__ ) # shard inputs and rng _snake_case : int = replicate(UpperCamelCase__ ) _snake_case : Optional[Any] = jax.random.split(UpperCamelCase__ , UpperCamelCase__ ) _snake_case : Optional[Any] = shard(UpperCamelCase__ ) _snake_case : Dict = pipeline(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , jit=UpperCamelCase__ ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_514_745 ) < 1E-3 assert np.abs(np.abs(UpperCamelCase__ , dtype=np.floataa ).sum() - 49_947.875 ) < 5E-1 _snake_case : Optional[int] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(UpperCamelCase__ ) == num_samples def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case , _snake_case : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''flax''' , safety_checker=UpperCamelCase__ ) _snake_case : int = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) _snake_case : Tuple = jax.random.PRNGKey(0 ) _snake_case : Any = 50 _snake_case : Dict = jax.device_count() _snake_case : int = num_samples * [prompt] _snake_case : Optional[int] = pipeline.prepare_inputs(UpperCamelCase__ ) # shard inputs and rng _snake_case : List[str] = replicate(UpperCamelCase__ ) _snake_case : Union[str, Any] = jax.random.split(UpperCamelCase__ , UpperCamelCase__ ) _snake_case : List[Any] = shard(UpperCamelCase__ ) _snake_case : List[Any] = pipeline(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , jit=UpperCamelCase__ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_652_401) ) < 1E-3 assert np.abs((np.abs(UpperCamelCase__ , dtype=np.floataa ).sum() - 2_383_808.2) ) < 5E-1 def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" _snake_case , _snake_case : Dict = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=UpperCamelCase__ ) _snake_case : Dict = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) _snake_case : Any = jax.random.PRNGKey(0 ) _snake_case : Optional[Any] = 50 _snake_case : List[Any] = jax.device_count() _snake_case : Tuple = num_samples * [prompt] _snake_case : List[str] = pipeline.prepare_inputs(UpperCamelCase__ ) # shard inputs and rng _snake_case : List[Any] = replicate(UpperCamelCase__ ) _snake_case : List[Any] = jax.random.split(UpperCamelCase__ , UpperCamelCase__ ) _snake_case : Dict = shard(UpperCamelCase__ ) _snake_case : int = pipeline(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , jit=UpperCamelCase__ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_003_906) ) < 1E-3 assert np.abs((np.abs(UpperCamelCase__ , dtype=np.floataa ).sum() - 2_373_516.75) ) < 5E-1 def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" _snake_case , _snake_case : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa ) _snake_case : Any = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) _snake_case : Union[str, Any] = jax.random.PRNGKey(0 ) _snake_case : Optional[Any] = 50 _snake_case : Tuple = jax.device_count() _snake_case : Tuple = num_samples * [prompt] _snake_case : Optional[Any] = pipeline.prepare_inputs(UpperCamelCase__ ) # shard inputs and rng _snake_case : Optional[Any] = replicate(UpperCamelCase__ ) _snake_case : Tuple = jax.random.split(UpperCamelCase__ , UpperCamelCase__ ) _snake_case : str = shard(UpperCamelCase__ ) _snake_case : Tuple = pipeline(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , jit=UpperCamelCase__ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_003_906) ) < 1E-3 assert np.abs((np.abs(UpperCamelCase__ , dtype=np.floataa ).sum() - 2_373_516.75) ) < 5E-1 def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" _snake_case : int = FlaxDDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , set_alpha_to_one=UpperCamelCase__ , steps_offset=1 , ) _snake_case , _snake_case : str = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , scheduler=UpperCamelCase__ , safety_checker=UpperCamelCase__ , ) _snake_case : Any = scheduler.create_state() _snake_case : Union[str, Any] = scheduler_state _snake_case : Union[str, Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) _snake_case : Optional[Any] = jax.random.PRNGKey(0 ) _snake_case : int = 50 _snake_case : Union[str, Any] = jax.device_count() _snake_case : Dict = num_samples * [prompt] _snake_case : Union[str, Any] = pipeline.prepare_inputs(UpperCamelCase__ ) # shard inputs and rng _snake_case : str = replicate(UpperCamelCase__ ) _snake_case : int = jax.random.split(UpperCamelCase__ , UpperCamelCase__ ) _snake_case : List[Any] = shard(UpperCamelCase__ ) _snake_case : List[str] = pipeline(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , jit=UpperCamelCase__ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.045_043_945) ) < 1E-3 assert np.abs((np.abs(UpperCamelCase__ , dtype=np.floataa ).sum() - 2_347_693.5) ) < 5E-1 def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" _snake_case : Optional[int] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) _snake_case : Optional[Any] = jax.device_count() _snake_case : Tuple = num_samples * [prompt] _snake_case : List[Any] = jax.random.split(jax.random.PRNGKey(0 ) , UpperCamelCase__ ) _snake_case , _snake_case : Dict = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=UpperCamelCase__ , ) _snake_case : Dict = replicate(UpperCamelCase__ ) _snake_case : Union[str, Any] = pipeline.prepare_inputs(UpperCamelCase__ ) _snake_case : List[Any] = shard(UpperCamelCase__ ) _snake_case : Optional[int] = pipeline(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , jit=UpperCamelCase__ ).images assert images.shape == (num_samples, 1, 512, 512, 3) _snake_case : Optional[Any] = images[2, 0, 256, 10:17, 1] # With memory efficient attention _snake_case , _snake_case : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=UpperCamelCase__ , use_memory_efficient_attention=UpperCamelCase__ , ) _snake_case : Dict = replicate(UpperCamelCase__ ) _snake_case : Any = pipeline.prepare_inputs(UpperCamelCase__ ) _snake_case : List[Any] = shard(UpperCamelCase__ ) _snake_case : Optional[Any] = pipeline(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , jit=UpperCamelCase__ ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) _snake_case : str = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
721
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version UpperCAmelCase : Tuple = logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') UpperCAmelCase : str = { 'base': AutoModel, 'sequence-classification': AutoModelForSequenceClassification, 'question-answering': AutoModelForQuestionAnswering, 'pretraining': AutoModelForPreTraining, 'token-classification': AutoModelForTokenClassification, 'language-modeling': AutoModelWithLMHead, 'summarization': AutoModelForSeqaSeqLM, 'translation': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization UpperCAmelCase : Optional[Any] = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } UpperCAmelCase : Tuple = sorted(arg_to_scheduler.keys()) UpperCAmelCase : Optional[Any] = '{' + ', '.join(arg_to_scheduler_choices) + '}' class lowerCamelCase (pl.LightningModule ): def __init__( self , lowercase__ , lowercase__=None , lowercase__="base" , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ , ) -> Optional[int]: """simple docstring""" super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(lowercase__ ) _snake_case : Union[str, Any] = 0 _snake_case : int = Path(self.hparams.output_dir ) _snake_case : int = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: _snake_case : Tuple = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=lowercase__ , **lowercase__ , ) else: _snake_case : PretrainedConfig = config _snake_case : Optional[Any] = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(self.hparams , lowercase__ , lowercase__ ): assert hasattr(self.config , lowercase__ ), F'''model config doesn\'t have a `{p}` attribute''' setattr(self.config , lowercase__ , getattr(self.hparams , lowercase__ ) ) if tokenizer is None: _snake_case : Optional[int] = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=lowercase__ , ) else: _snake_case : PreTrainedTokenizer = tokenizer _snake_case : Any = MODEL_MODES[mode] if model is None: _snake_case : List[Any] = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=lowercase__ , ) else: _snake_case : Optional[Any] = model def UpperCAmelCase_ ( self , *lowercase__ , **lowercase__ ) -> List[str]: """simple docstring""" _snake_case : Dict = self.model_type.from_pretrained(*lowercase__ , **lowercase__ ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Optional[int] = arg_to_scheduler[self.hparams.lr_scheduler] _snake_case : Optional[int] = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) _snake_case : str = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1} return scheduler def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Any = self.model _snake_case : List[Any] = ['''bias''', '''LayerNorm.weight'''] _snake_case : List[str] = [ { '''params''': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters '''weight_decay''': self.hparams.weight_decay, }, { '''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] if self.hparams.adafactor: _snake_case : Any = Adafactor( lowercase__ , lr=self.hparams.learning_rate , scale_parameter=lowercase__ , relative_step=lowercase__ ) else: _snake_case : List[str] = AdamW( lowercase__ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) _snake_case : List[str] = optimizer _snake_case : Any = self.get_lr_scheduler() return [optimizer], [scheduler] def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Any: """simple docstring""" return self.validation_step(lowercase__ , lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> Tuple: """simple docstring""" return self.validation_end(lowercase__ ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Any = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores _snake_case : Optional[int] = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def UpperCAmelCase_ ( self , lowercase__ ) -> Any: """simple docstring""" if stage == "test": _snake_case : Any = len(self.test_dataloader().dataset ) else: _snake_case : Dict = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=lowercase__ ) _snake_case : Optional[int] = len(self.train_dataloader().dataset ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = False ) -> str: """simple docstring""" raise NotImplementedError('''You must implement this for your task''' ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" return self.train_loader def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=lowercase__ ) def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> Optional[int]: """simple docstring""" return os.path.join( self.hparams.data_dir , '''cached_{}_{}_{}'''.format( lowercase__ , list(filter(lowercase__ , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def UpperCAmelCase_ ( self , lowercase__ ) -> None: """simple docstring""" _snake_case : Dict = self.output_dir.joinpath('''best_tfmr''' ) _snake_case : Tuple = self.step_count self.model.save_pretrained(lowercase__ ) self.tokenizer.save_pretrained(lowercase__ ) @staticmethod def UpperCAmelCase_ ( lowercase__ , lowercase__ ) -> Tuple: """simple docstring""" parser.add_argument( '''--model_name_or_path''' , default=lowercase__ , type=lowercase__ , required=lowercase__ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--config_name''' , default='''''' , type=lowercase__ , help='''Pretrained config name or path if not the same as model_name''' ) parser.add_argument( '''--tokenizer_name''' , default=lowercase__ , type=lowercase__ , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument( '''--cache_dir''' , default=str(Path(lowercase__ ).parent / '''test_run''' / '''cache''' ) , type=lowercase__ , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , ) parser.add_argument( '''--encoder_layerdrop''' , type=lowercase__ , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--decoder_layerdrop''' , type=lowercase__ , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--dropout''' , type=lowercase__ , help='''Dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--attention_dropout''' , type=lowercase__ , help='''Attention dropout probability (Optional). Goes into model.config''' , ) parser.add_argument('''--learning_rate''' , default=5E-5 , type=lowercase__ , help='''The initial learning rate for Adam.''' ) parser.add_argument( '''--lr_scheduler''' , default='''linear''' , choices=lowercase__ , metavar=lowercase__ , type=lowercase__ , help='''Learning rate scheduler''' , ) parser.add_argument('''--weight_decay''' , default=0.0 , type=lowercase__ , help='''Weight decay if we apply some.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=lowercase__ , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--warmup_steps''' , default=0 , type=lowercase__ , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--num_workers''' , default=4 , type=lowercase__ , help='''kwarg passed to DataLoader''' ) parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=lowercase__ ) parser.add_argument('''--train_batch_size''' , default=32 , type=lowercase__ ) parser.add_argument('''--eval_batch_size''' , default=32 , type=lowercase__ ) parser.add_argument('''--adafactor''' , action='''store_true''' ) class lowerCamelCase (pl.Callback ): def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> str: """simple docstring""" if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class lowerCamelCase (pl.Callback ): def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> List[str]: """simple docstring""" for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(lowercase__ ) class lowerCamelCase (pl.Callback ): def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Any: """simple docstring""" _snake_case : Any = trainer.lr_schedulers[0]['''scheduler'''] _snake_case : Optional[int] = {F'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> List[str]: """simple docstring""" rank_zero_info('''***** Validation results *****''' ) _snake_case : Dict = trainer.callback_metrics # Log results for key in sorted(lowercase__ ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Dict: """simple docstring""" rank_zero_info('''***** Test results *****''' ) _snake_case : Dict = trainer.callback_metrics # Log and save results to file _snake_case : str = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' ) with open(lowercase__ , '''w''' ) as writer: for key in sorted(lowercase__ ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) ) writer.write('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" parser.add_argument( '''--output_dir''' , default=str(Path(lowerCAmelCase_ ).parent / '''test_run''' / '''model_checkpoints''' ) , type=lowerCAmelCase_ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=lowerCAmelCase_ , default='''O2''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=lowerCAmelCase_ ) parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=lowerCAmelCase_ , help='''Max gradient norm''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' ) parser.add_argument( '''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=lowerCAmelCase_ , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--seed''' , type=lowerCAmelCase_ , default=42 , help='''random seed for initialization''' ) parser.add_argument( '''--data_dir''' , default=str(Path(lowerCAmelCase_ ).parent / '''test_run''' / '''dummy-train-data''' ) , type=lowerCAmelCase_ , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_=[] , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , ): """simple docstring""" pl.seed_everything(args.seed ) # init model _snake_case : Union[str, Any] = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=lowerCAmelCase_ ) # add custom checkpoints if checkpoint_callback is None: _snake_case : Any = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(lowerCAmelCase_ ) if logging_callback is None: _snake_case : str = LoggingCallback() _snake_case : Tuple = {} if args.fpaa: _snake_case : Union[str, Any] = 16 if args.gpus > 1: _snake_case : Optional[Any] = '''auto''' _snake_case : Tuple = '''ddp''' _snake_case : Optional[Any] = args.accumulate_grad_batches _snake_case : Tuple = None _snake_case : str = '''auto''' _snake_case : int = pl.Trainer.from_argparse_args( lowerCAmelCase_ , weights_summary=lowerCAmelCase_ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase_ , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase_ , ) if args.do_train: trainer.fit(lowerCAmelCase_ ) else: print('''RAG modeling tests with new set functions successfuly executed!''' ) return trainer
47
0
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase (snake_case_ , unittest.TestCase ): _lowercase : Union[str, Any] = DanceDiffusionPipeline _lowercase : Optional[Any] = UNCONDITIONAL_AUDIO_GENERATION_PARAMS _lowercase : List[Any] = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } _lowercase : List[str] = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS _lowercase : Any = False _lowercase : List[Any] = False def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) _snake_case : Optional[Any] = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16_000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=lowercase__ , use_timestep_embedding=lowercase__ , time_embedding_type='''fourier''' , mid_block_type='''UNetMidBlock1D''' , down_block_types=('''DownBlock1DNoSkip''', '''DownBlock1D''', '''AttnDownBlock1D''') , up_block_types=('''AttnUpBlock1D''', '''UpBlock1D''', '''UpBlock1DNoSkip''') , ) _snake_case : List[str] = IPNDMScheduler() _snake_case : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, } return components def UpperCAmelCase_ ( self , lowercase__ , lowercase__=0 ) -> List[str]: """simple docstring""" if str(lowercase__ ).startswith('''mps''' ): _snake_case : Any = torch.manual_seed(lowercase__ ) else: _snake_case : List[Any] = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) _snake_case : Dict = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 4, } return inputs def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator _snake_case : int = self.get_dummy_components() _snake_case : Dict = DanceDiffusionPipeline(**lowercase__ ) _snake_case : Union[str, Any] = pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) _snake_case : Tuple = self.get_dummy_inputs(lowercase__ ) _snake_case : Any = pipe(**lowercase__ ) _snake_case : Tuple = output.audios _snake_case : int = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _snake_case : Any = np.array([-0.7_265, 1.0_000, -0.8_388, 0.1_175, 0.9_498, -1.0_000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def UpperCAmelCase_ ( self ) -> str: """simple docstring""" return super().test_save_load_local() @skip_mps def UpperCAmelCase_ ( self ) -> str: """simple docstring""" return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" return super().test_save_load_optional_components() @skip_mps def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" return super().test_attention_slicing_forward_pass() def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowerCamelCase (unittest.TestCase ): def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" _snake_case : List[str] = torch_device _snake_case : Union[str, Any] = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' ) _snake_case : Tuple = pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) _snake_case : List[Any] = torch.manual_seed(0 ) _snake_case : Dict = pipe(generator=lowercase__ , num_inference_steps=100 , audio_length_in_s=4.096 ) _snake_case : Optional[Any] = output.audios _snake_case : Union[str, Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _snake_case : Any = np.array([-0.0_192, -0.0_231, -0.0_318, -0.0_059, 0.0_002, -0.0_020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" _snake_case : List[str] = torch_device _snake_case : List[str] = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' , torch_dtype=torch.floataa ) _snake_case : Tuple = pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) _snake_case : int = torch.manual_seed(0 ) _snake_case : int = pipe(generator=lowercase__ , num_inference_steps=100 , audio_length_in_s=4.096 ) _snake_case : List[Any] = output.audios _snake_case : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _snake_case : Dict = np.array([-0.0_367, -0.0_488, -0.0_771, -0.0_525, -0.0_444, -0.0_341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
700
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : Dict = { 'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowerCamelCase (a__ ): _lowercase : List[str] = """sew-d""" def __init__( self , lowercase__=32 , lowercase__=768 , lowercase__=12 , lowercase__=12 , lowercase__=3_072 , lowercase__=2 , lowercase__=512 , lowercase__=256 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.02 , lowercase__=1E-7 , lowercase__=1E-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=128 , lowercase__=16 , lowercase__=True , lowercase__=0.05 , lowercase__=10 , lowercase__=2 , lowercase__=0.0 , lowercase__=10 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=256 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ) -> Dict: """simple docstring""" super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ ) _snake_case : List[str] = hidden_size _snake_case : Optional[Any] = feat_extract_norm _snake_case : Tuple = feat_extract_activation _snake_case : Tuple = list(lowercase__ ) _snake_case : Any = list(lowercase__ ) _snake_case : Any = list(lowercase__ ) _snake_case : Any = conv_bias _snake_case : List[Any] = num_conv_pos_embeddings _snake_case : Any = num_conv_pos_embedding_groups _snake_case : Union[str, Any] = len(self.conv_dim ) _snake_case : Optional[Any] = num_hidden_layers _snake_case : Optional[int] = intermediate_size _snake_case : Any = squeeze_factor _snake_case : Optional[Any] = max_position_embeddings _snake_case : Tuple = position_buckets _snake_case : Tuple = share_att_key _snake_case : Any = relative_attention _snake_case : Optional[int] = norm_rel_ebd _snake_case : Optional[Any] = list(lowercase__ ) _snake_case : List[Any] = hidden_act _snake_case : List[Any] = num_attention_heads _snake_case : Dict = hidden_dropout _snake_case : Tuple = attention_dropout _snake_case : Union[str, Any] = activation_dropout _snake_case : List[Any] = feat_proj_dropout _snake_case : Optional[int] = final_dropout _snake_case : Optional[Any] = layer_norm_eps _snake_case : Dict = feature_layer_norm_eps _snake_case : List[Any] = initializer_range _snake_case : Dict = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _snake_case : Union[str, Any] = apply_spec_augment _snake_case : Any = mask_time_prob _snake_case : List[str] = mask_time_length _snake_case : Dict = mask_time_min_masks _snake_case : Union[str, Any] = mask_feature_prob _snake_case : Tuple = mask_feature_length _snake_case : Union[str, Any] = mask_feature_min_masks # ctc loss _snake_case : Optional[Any] = ctc_loss_reduction _snake_case : Optional[Any] = ctc_zero_infinity # sequence classification _snake_case : List[Any] = use_weighted_layer_sum _snake_case : Any = classifier_proj_size @property def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
47
0
'''simple docstring''' def _a ( lowerCAmelCase_ = 3 , lowerCAmelCase_ = 7 , lowerCAmelCase_ = 1_000_000 ): """simple docstring""" _snake_case : Dict = 0 _snake_case : List[str] = 1 for current_denominator in range(1 , limit + 1 ): _snake_case : Any = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: _snake_case : Optional[Any] = current_numerator _snake_case : Optional[Any] = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_0_0_0_0_0_0))
701
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : List[Any] = 0 if start < end: _snake_case : List[Any] = randint(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Any = a[end] _snake_case : List[str] = a[pivot] _snake_case : Optional[int] = temp _snake_case , _snake_case : List[Any] = _in_place_partition(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) count += _in_place_quick_sort(lowerCAmelCase_ , lowerCAmelCase_ , p - 1 ) count += _in_place_quick_sort(lowerCAmelCase_ , p + 1 , lowerCAmelCase_ ) return count def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = 0 _snake_case : Optional[int] = randint(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Tuple = a[end] _snake_case : Optional[Any] = a[pivot] _snake_case : Union[str, Any] = temp _snake_case : Union[str, Any] = start - 1 for index in range(lowerCAmelCase_ , lowerCAmelCase_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _snake_case : Optional[int] = new_pivot_index + 1 _snake_case : Optional[Any] = a[new_pivot_index] _snake_case : Tuple = a[index] _snake_case : str = temp _snake_case : Any = a[new_pivot_index + 1] _snake_case : str = a[end] _snake_case : Optional[int] = temp return new_pivot_index + 1, count UpperCAmelCase : Dict = TemporaryFile() UpperCAmelCase : Dict = 1_0_0 # 1000 elements are to be sorted UpperCAmelCase, UpperCAmelCase : str = 0, 1 # mean and standard deviation UpperCAmelCase : Optional[Any] = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array UpperCAmelCase : int = np.load(outfile) UpperCAmelCase : Optional[int] = len(M) - 1 UpperCAmelCase : str = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
47
0
'''simple docstring''' import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Union[str, Any] = OmegaConf.load(SCREAMING_SNAKE_CASE_ ) _snake_case : List[str] = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' )['model'] _snake_case : str = list(state_dict.keys() ) # extract state_dict for VQVAE _snake_case : Dict = {} _snake_case : Any = 'first_stage_model.' for key in keys: if key.startswith(SCREAMING_SNAKE_CASE_ ): _snake_case : Dict = state_dict[key] # extract state_dict for UNetLDM _snake_case : str = {} _snake_case : Optional[int] = 'model.diffusion_model.' for key in keys: if key.startswith(SCREAMING_SNAKE_CASE_ ): _snake_case : Union[str, Any] = state_dict[key] _snake_case : Tuple = config.model.params.first_stage_config.params _snake_case : str = config.model.params.unet_config.params _snake_case : int = VQModel(**SCREAMING_SNAKE_CASE_ ).eval() vqvae.load_state_dict(SCREAMING_SNAKE_CASE_ ) _snake_case : str = UNetLDMModel(**SCREAMING_SNAKE_CASE_ ).eval() unet.load_state_dict(SCREAMING_SNAKE_CASE_ ) _snake_case : Optional[Any] = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='''scaled_linear''' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=SCREAMING_SNAKE_CASE_ , ) _snake_case : Tuple = LDMPipeline(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) pipeline.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": UpperCAmelCase : str = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', type=str, required=True) parser.add_argument('--config_path', type=str, required=True) parser.add_argument('--output_path', type=str, required=True) UpperCAmelCase : List[Any] = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
702
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
47
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _a ( ): """simple docstring""" _snake_case : List[Any] = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=__lowercase ) _snake_case : Any = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=__lowercase ) env_command_parser(subparsers=__lowercase ) launch_command_parser(subparsers=__lowercase ) tpu_command_parser(subparsers=__lowercase ) test_command_parser(subparsers=__lowercase ) # Let's go _snake_case : Optional[Any] = parser.parse_args() if not hasattr(__lowercase , '''func''' ): parser.print_help() exit(1 ) # Run args.func(__lowercase ) if __name__ == "__main__": main()
703
'''simple docstring''' from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def _a ( ): """simple docstring""" _snake_case : List[Any] = ArgumentParser('''Transformers CLI tool''' , usage='''transformers-cli <command> [<args>]''' ) _snake_case : List[str] = parser.add_subparsers(help='''transformers-cli command helpers''' ) # Register commands ConvertCommand.register_subcommand(lowerCAmelCase_ ) DownloadCommand.register_subcommand(lowerCAmelCase_ ) EnvironmentCommand.register_subcommand(lowerCAmelCase_ ) RunCommand.register_subcommand(lowerCAmelCase_ ) ServeCommand.register_subcommand(lowerCAmelCase_ ) UserCommands.register_subcommand(lowerCAmelCase_ ) AddNewModelCommand.register_subcommand(lowerCAmelCase_ ) AddNewModelLikeCommand.register_subcommand(lowerCAmelCase_ ) LfsCommands.register_subcommand(lowerCAmelCase_ ) PTtoTFCommand.register_subcommand(lowerCAmelCase_ ) # Let's go _snake_case : str = parser.parse_args() if not hasattr(lowerCAmelCase_ , '''func''' ): parser.print_help() exit(1 ) # Run _snake_case : Union[str, Any] = args.func(lowerCAmelCase_ ) service.run() if __name__ == "__main__": main()
47
0
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : List[str] = ['model.decoder.embed_positions.weights'] def _a ( lowerCAmelCase_ ): """simple docstring""" if "emb" in name: _snake_case : List[Any] = name.replace('''emb''' , '''model.decoder.embed_tokens''' ) if "transformer" in name: _snake_case : Optional[Any] = name.replace('''transformer''' , '''model.decoder''' ) if "cross_attention" in name: _snake_case : Optional[int] = name.replace('''cross_attention''' , '''encoder_attn''' ) if "linear1" in name: _snake_case : Optional[int] = name.replace('''linear1''' , '''fc1''' ) if "linear2" in name: _snake_case : str = name.replace('''linear2''' , '''fc2''' ) if "norm1" in name: _snake_case : List[str] = name.replace('''norm1''' , '''self_attn_layer_norm''' ) if "norm_cross" in name: _snake_case : Optional[int] = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''' ) if "norm2" in name: _snake_case : Tuple = name.replace('''norm2''' , '''final_layer_norm''' ) if "out_norm" in name: _snake_case : Tuple = name.replace('''out_norm''' , '''model.decoder.layer_norm''' ) if "linears" in name: _snake_case : Tuple = name.replace('''linears''' , '''lm_heads''' ) if "condition_provider.conditioners.description.output_proj" in name: _snake_case : Dict = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''' ) return name def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Tuple = list(state_dict.keys() ) _snake_case : Optional[Any] = {} for key in keys: _snake_case : Union[str, Any] = state_dict.pop(__snake_case ) _snake_case : List[Any] = rename_keys(__snake_case ) if "in_proj_weight" in key: # split fused qkv proj _snake_case : Union[str, Any] = val[:hidden_size, :] _snake_case : Tuple = val[hidden_size : 2 * hidden_size, :] _snake_case : str = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: _snake_case : List[str] = val else: _snake_case : Optional[Any] = val return state_dict, enc_dec_proj_state_dict def _a ( lowerCAmelCase_ ): """simple docstring""" if checkpoint == "small": # default config values _snake_case : str = 1_024 _snake_case : int = 24 _snake_case : List[str] = 16 elif checkpoint == "medium": _snake_case : List[str] = 1_536 _snake_case : Union[str, Any] = 48 _snake_case : Dict = 24 elif checkpoint == "large": _snake_case : Any = 2_048 _snake_case : Any = 48 _snake_case : int = 32 else: raise ValueError(f'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' ) _snake_case : Dict = MusicgenDecoderConfig( hidden_size=__snake_case , ffn_dim=hidden_size * 4 , num_hidden_layers=__snake_case , num_attention_heads=__snake_case , ) return config @torch.no_grad() def _a ( lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_="cpu" ): """simple docstring""" _snake_case : Optional[Any] = MusicGen.get_pretrained(__snake_case , device=__snake_case ) _snake_case : List[Any] = decoder_config_from_checkpoint(__snake_case ) _snake_case : List[str] = fairseq_model.lm.state_dict() _snake_case , _snake_case : Dict = rename_state_dict( __snake_case , hidden_size=decoder_config.hidden_size ) _snake_case : List[str] = TaEncoderModel.from_pretrained('''t5-base''' ) _snake_case : List[Any] = EncodecModel.from_pretrained('''facebook/encodec_32khz''' ) _snake_case : List[Any] = MusicgenForCausalLM(__snake_case ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection _snake_case , _snake_case : int = decoder.load_state_dict(__snake_case , strict=__snake_case ) for key in missing_keys.copy(): if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(__snake_case ) if len(__snake_case ) > 0: raise ValueError(f'''Missing key(s) in state_dict: {missing_keys}''' ) if len(__snake_case ) > 0: raise ValueError(f'''Unexpected key(s) in state_dict: {unexpected_keys}''' ) # init the composite model _snake_case : Union[str, Any] = MusicgenForConditionalGeneration(text_encoder=__snake_case , audio_encoder=__snake_case , decoder=__snake_case ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(__snake_case ) # check we can do a forward pass _snake_case : List[Any] = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) _snake_case : int = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): _snake_case : Union[str, Any] = model(input_ids=__snake_case , decoder_input_ids=__snake_case ).logits if logits.shape != (8, 1, 2_048): raise ValueError('''Incorrect shape for logits''' ) # now construct the processor _snake_case : str = AutoTokenizer.from_pretrained('''t5-base''' ) _snake_case : Dict = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''' ) _snake_case : Optional[int] = MusicgenProcessor(feature_extractor=__snake_case , tokenizer=__snake_case ) # set the appropriate bos/pad token ids _snake_case : str = 2_048 _snake_case : Optional[Any] = 2_048 # set other default generation config params _snake_case : int = int(30 * audio_encoder.config.frame_rate ) _snake_case : Union[str, Any] = True _snake_case : int = 3.0 if pytorch_dump_folder is not None: Path(__snake_case ).mkdir(exist_ok=__snake_case ) logger.info(f'''Saving model {checkpoint} to {pytorch_dump_folder}''' ) model.save_pretrained(__snake_case ) processor.save_pretrained(__snake_case ) if repo_id: logger.info(f'''Pushing model {checkpoint} to {repo_id}''' ) model.push_to_hub(__snake_case ) processor.push_to_hub(__snake_case ) if __name__ == "__main__": UpperCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint', default='small', type=str, help='Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.', ) parser.add_argument( '--pytorch_dump_folder', required=True, default=None, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) parser.add_argument( '--device', default='cpu', type=str, help='Torch device to run the conversion, either cpu or cuda.' ) UpperCAmelCase : Dict = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
704
'''simple docstring''' from collections.abc import Generator def _a ( ): """simple docstring""" _snake_case , _snake_case : Union[str, Any] = 0, 1 while True: _snake_case , _snake_case : List[str] = b, a + b yield b def _a ( lowerCAmelCase_ = 1_000 ): """simple docstring""" _snake_case : List[str] = 1 _snake_case : Dict = fibonacci_generator() while len(str(next(lowerCAmelCase_ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
47
0
'''simple docstring''' import argparse import os import re UpperCAmelCase : Optional[Any] = '''src/transformers/models/auto''' # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict UpperCAmelCase : int = re.compile(R'[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict') # re pattern that matches identifiers in mappings UpperCAmelCase : Union[str, Any] = re.compile(R'\s*\(\s*"(\S[^"]+)"') def _a ( lowerCAmelCase_ , lowerCAmelCase_ = False ): """simple docstring""" with open(lowerCAmelCase__ , '''r''' , encoding='''utf-8''' ) as f: _snake_case : Tuple = f.read() _snake_case : Dict = content.split('''\n''' ) _snake_case : Any = [] _snake_case : Optional[int] = 0 while line_idx < len(lowerCAmelCase__ ): if _re_intro_mapping.search(lines[line_idx] ) is not None: _snake_case : Optional[int] = len(re.search(R'''^(\s*)\S''' , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(''' ''' * indent + '''(''' ): new_lines.append(lines[line_idx] ) line_idx += 1 _snake_case : Any = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": _snake_case : Any = line_idx while not lines[line_idx].startswith(''' ''' * indent + ''')''' ): line_idx += 1 blocks.append('''\n'''.join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers _snake_case : List[str] = sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase_ : _re_identifier.search(lowerCAmelCase__ ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(lowerCAmelCase__ ) ) elif "\n".join(lowerCAmelCase__ ) != content: return True def _a ( lowerCAmelCase_ = False ): """simple docstring""" _snake_case : Tuple = [os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) for f in os.listdir(lowerCAmelCase__ ) if f.endswith('''.py''' )] _snake_case : str = [sort_auto_mapping(lowerCAmelCase__ , overwrite=lowerCAmelCase__ ) for fname in fnames] if not overwrite and any(lowerCAmelCase__ ): _snake_case : List[str] = [f for f, d in zip(lowerCAmelCase__ , lowerCAmelCase__ ) if d] raise ValueError( f'''The following files have auto mappings that need sorting: {", ".join(lowerCAmelCase__ )}. Run `make style` to fix''' ''' this.''' ) if __name__ == "__main__": UpperCAmelCase : int = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') UpperCAmelCase : Dict = parser.parse_args() sort_all_auto_mappings(not args.check_only)
705
'''simple docstring''' import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor UpperCAmelCase : str = logging.getLogger(__name__) UpperCAmelCase : Dict = 5_0 # max width of layer names UpperCAmelCase : Union[str, Any] = 7_0 # max width of quantizer names def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Dict = parser.add_argument_group('''quant_trainer arguments''' ) group.add_argument('''--wprec''' , type=lowerCAmelCase_ , default=8 , help='''weight precision''' ) group.add_argument('''--aprec''' , type=lowerCAmelCase_ , default=8 , help='''activation precision''' ) group.add_argument('''--quant-per-tensor''' , action='''store_true''' , help='''per tensor weight scaling''' ) group.add_argument('''--quant-disable''' , action='''store_true''' , help='''disable all quantizers''' ) group.add_argument('''--quant-disable-embeddings''' , action='''store_true''' , help='''disable all embeddings quantizers''' ) group.add_argument('''--quant-disable-keyword''' , type=lowerCAmelCase_ , nargs='''+''' , help='''disable quantizers by keyword''' ) group.add_argument('''--quant-disable-layer-module''' , type=lowerCAmelCase_ , help='''disable quantizers by keyword under layer.''' ) group.add_argument('''--quant-enable-layer-module''' , type=lowerCAmelCase_ , help='''enable quantizers by keyword under layer''' ) group.add_argument('''--calibrator''' , default='''max''' , help='''which quantization range calibrator to use''' ) group.add_argument('''--percentile''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help='''percentile for PercentileCalibrator''' ) group.add_argument('''--fuse-qkv''' , action='''store_true''' , help='''use the same scale factor for qkv''' ) group.add_argument('''--clip-gelu''' , metavar='''N''' , type=lowerCAmelCase_ , help='''clip gelu output maximum value to N''' ) group.add_argument( '''--recalibrate-weights''' , action='''store_true''' , help=( '''recalibrate weight amaxes by taking the max of the weights.''' ''' amaxes will be computed with the current quantization granularity (axis).''' ) , ) def _a ( lowerCAmelCase_ ): """simple docstring""" if args.calibrator == "max": _snake_case : Optional[int] = '''max''' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('''Specify --percentile when using percentile calibrator''' ) _snake_case : Tuple = '''histogram''' elif args.calibrator == "mse": _snake_case : int = '''histogram''' else: raise ValueError(f'''Invalid calibrator {args.calibrator}''' ) _snake_case : Tuple = QuantDescriptor(num_bits=args.aprec , calib_method=lowerCAmelCase_ ) _snake_case : str = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(lowerCAmelCase_ ) quant_nn.QuantLinear.set_default_quant_desc_weight(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False , lowerCAmelCase_=False ): """simple docstring""" logger.info('''Configuring Model for Quantization''' ) logger.info(f'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(lowerCAmelCase_ , ['''embeddings'''] , which='''weight''' , _disabled=lowerCAmelCase_ ) if args.quant_disable: set_quantizer_by_name(lowerCAmelCase_ , [''''''] , _disabled=lowerCAmelCase_ ) if args.quant_disable_keyword: set_quantizer_by_name(lowerCAmelCase_ , args.quant_disable_keyword , _disabled=lowerCAmelCase_ ) if args.quant_disable_layer_module: set_quantizer_by_name(lowerCAmelCase_ , [R'''layer.\d+.''' + args.quant_disable_layer_module] , _disabled=lowerCAmelCase_ ) if args.quant_enable_layer_module: set_quantizer_by_name(lowerCAmelCase_ , [R'''layer.\d+.''' + args.quant_enable_layer_module] , _disabled=lowerCAmelCase_ ) if args.recalibrate_weights: recalibrate_weights(lowerCAmelCase_ ) if args.fuse_qkv: fuse_qkv(lowerCAmelCase_ , lowerCAmelCase_ ) if args.clip_gelu: clip_gelu(lowerCAmelCase_ , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ ): """simple docstring""" logger.info('''Enabling Calibration''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(f'''{name:80}: {module}''' ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" logger.info('''Loading calibrated amax''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('''percentile''' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" def fusea(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): for mod in [qq, qk, qv]: if not hasattr(lowerCAmelCase_ , '''_amax''' ): print(''' WARNING: NO AMAX BUFFER''' ) return _snake_case : Tuple = qq._amax.detach().item() _snake_case : Tuple = qk._amax.detach().item() _snake_case : List[Any] = qv._amax.detach().item() _snake_case : List[str] = max(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) qq._amax.fill_(lowerCAmelCase_ ) qk._amax.fill_(lowerCAmelCase_ ) qv._amax.fill_(lowerCAmelCase_ ) logger.info(f''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith('''.attention.self''' ): logger.info(f'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if name.endswith('''.output.dense''' ) and not name.endswith('''attention.output.dense''' ): _snake_case : List[Any] = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=lowerCAmelCase_ ) _snake_case : List[str] = mod._input_quantizer._amax.data.detach().item() logger.info(f'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def _a ( lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ) and mod._weight_quantizer.axis is not None: _snake_case : Dict = mod.weight.shape[0] _snake_case : Optional[int] = mod._weight_quantizer._amax.detach() _snake_case : Optional[int] = torch.ones(lowerCAmelCase_ , dtype=amax.dtype , device=amax.device ) * amax print(f'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def _a ( lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ): if not hasattr(mod.weight_quantizer , '''_amax''' ): print('''RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER''' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) _snake_case : int = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) _snake_case : Dict = set(range(len(mod.weight.size() ) ) ) - axis_set _snake_case : Optional[int] = pytorch_quantization.utils.reduce_amax(mod.weight , axis=lowerCAmelCase_ , keepdims=lowerCAmelCase_ ).detach() logger.info(f'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) _snake_case : Tuple = amax def _a ( lowerCAmelCase_ , lowerCAmelCase_=25 , lowerCAmelCase_=180 , lowerCAmelCase_=None ): """simple docstring""" if ignore is None: _snake_case : Dict = [] elif not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Optional[int] = [ignore] _snake_case : str = 0 for name, mod in model.named_modules(): if not hasattr(lowerCAmelCase_ , '''weight''' ): continue _snake_case : Optional[int] = max(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) for name, mod in model.named_modules(): _snake_case : Optional[Any] = getattr(lowerCAmelCase_ , '''_input_quantizer''' , lowerCAmelCase_ ) _snake_case : Tuple = getattr(lowerCAmelCase_ , '''_weight_quantizer''' , lowerCAmelCase_ ) if not hasattr(lowerCAmelCase_ , '''weight''' ): continue if type(lowerCAmelCase_ ) in ignore: continue if [True for s in ignore if type(lowerCAmelCase_ ) is str and s in name]: continue _snake_case : Optional[int] = f'''Act:{input_q.extra_repr()}''' _snake_case : Any = f'''Wgt:{weight_q.extra_repr()}''' _snake_case : Optional[int] = f'''{name:{name_width}} {act_str} {wgt_str}''' if len(lowerCAmelCase_ ) <= line_width: logger.info(lowerCAmelCase_ ) else: logger.info(f'''{name:{name_width}} {act_str}''' ) logger.info(f'''{" ":{name_width}} {wgt_str}''' ) def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : str = 0 for name, mod in model.named_modules(): if isinstance(lowerCAmelCase_ , pytorch_quantization.nn.TensorQuantizer ): print(f'''{name:80} {mod}''' ) count += 1 print(f'''{count} TensorQuantizers found in model''' ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if quantizer_mod is not None: assert hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: logger.warning(f'''{name} has no {quantizer}''' ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_="both" , **lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = f'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' if which in ["input", "both"]: set_quantizer(lowerCAmelCase_ , lowerCAmelCase_ , '''_input_quantizer''' , lowerCAmelCase_ , lowerCAmelCase_ ) if which in ["weight", "both"]: set_quantizer(lowerCAmelCase_ , lowerCAmelCase_ , '''_weight_quantizer''' , lowerCAmelCase_ , lowerCAmelCase_ ) logger.info(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCAmelCase_ , '''_input_quantizer''' ) or hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ): for n in names: if re.search(lowerCAmelCase_ , lowerCAmelCase_ ): set_quantizers(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) elif name.endswith('''_quantizer''' ): for n in names: if re.search(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Any = f'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) logger.info(lowerCAmelCase_ )
47
0
'''simple docstring''' import itertools import math def _a ( lowerCAmelCase_ ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _a ( ): """simple docstring""" _snake_case : str = 2 while True: if is_prime(lowerCAmelCase_ ): yield num num += 1 def _a ( lowerCAmelCase_ = 10_001 ): """simple docstring""" return next(itertools.islice(prime_generator() , nth - 1 , lowerCAmelCase_ ) ) if __name__ == "__main__": print(F"""{solution() = }""")
706
'''simple docstring''' from __future__ import annotations def _a ( lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None ): """simple docstring""" if start is None: _snake_case : Optional[Any] = 0 if end is None: _snake_case : Any = len(lowerCAmelCase_ ) - 1 if start >= end: return _snake_case : Optional[Any] = (start + end) // 2 slowsort(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) slowsort(lowerCAmelCase_ , mid + 1 , lowerCAmelCase_ ) if sequence[end] < sequence[mid]: _snake_case , _snake_case : int = sequence[mid], sequence[end] slowsort(lowerCAmelCase_ , lowerCAmelCase_ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
47
0
'''simple docstring''' class lowerCamelCase : def __init__( self , lowercase__ ) -> Optional[int]: """simple docstring""" _snake_case : Union[str, Any] = arr.split(''',''' ) def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" _snake_case : int = [int(self.array[0] )] * len(self.array ) _snake_case : Optional[int] = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): _snake_case : List[Any] = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) _snake_case : List[Any] = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": UpperCAmelCase : List[str] = input('please input some numbers:') UpperCAmelCase : str = SubArray(whole_array) UpperCAmelCase : List[Any] = array.solve_sub_array() print(('the results is:', re))
707
'''simple docstring''' import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class lowerCamelCase (unittest.TestCase ): @slow def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Tuple = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) _snake_case : Any = AutoTokenizer.from_pretrained('''google/mt5-small''' ) _snake_case : List[str] = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids _snake_case : Dict = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids _snake_case : Any = shift_tokens_right(lowercase__ , model.config.pad_token_id , model.config.decoder_start_token_id ) _snake_case : Any = model(lowercase__ , decoder_input_ids=lowercase__ ).logits _snake_case : Tuple = optax.softmax_cross_entropy(lowercase__ , onehot(lowercase__ , logits.shape[-1] ) ).mean() _snake_case : Tuple = -(labels.shape[-1] * loss.item()) _snake_case : Union[str, Any] = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
47
0
from __future__ import annotations def _a ( lowerCAmelCase_ ): """simple docstring""" return [ord(_A ) - 96 for elem in plain] def _a ( lowerCAmelCase_ ): """simple docstring""" return "".join(chr(elem + 96 ) for elem in encoded ) def _a ( ): """simple docstring""" _snake_case : Optional[Any] = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , _A ) print('''Decoded:''' , decode(_A ) ) if __name__ == "__main__": main()
708
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCamelCase (unittest.TestCase ): def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : Any = torch.nn.Linear(10 , 10 ) _snake_case : Optional[int] = torch.optim.SGD(model.parameters() , 0.1 ) _snake_case : List[str] = Accelerator() _snake_case : Optional[Any] = accelerator.prepare(lowercase__ ) try: pickle.loads(pickle.dumps(lowercase__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
47
0
'''simple docstring''' import copy import random from transformers import CLIPTokenizer class lowerCamelCase (_A ): def __init__( self , *lowercase__ , **lowercase__ ) -> Any: """simple docstring""" super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) _snake_case : Optional[Any] = {} def UpperCAmelCase_ ( self , lowercase__ , *lowercase__ , **lowercase__ ) -> int: """simple docstring""" _snake_case : Tuple = super().add_tokens(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) if num_added_tokens == 0: raise ValueError( F'''The tokenizer already contains the token {placeholder_token}. Please pass a different''' ''' `placeholder_token` that is not already in the tokenizer.''' ) def UpperCAmelCase_ ( self , lowercase__ , *lowercase__ , lowercase__=1 , **lowercase__ ) -> str: """simple docstring""" _snake_case : int = [] if num_vec_per_token == 1: self.try_adding_tokens(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) output.append(UpperCamelCase__ ) else: _snake_case : Tuple = [] for i in range(UpperCamelCase__ ): _snake_case : str = placeholder_token + F'''_{i}''' self.try_adding_tokens(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) output.append(UpperCamelCase__ ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F'''The tokenizer already has placeholder token {token} that can get confused with''' F''' {placeholder_token}keep placeholder tokens independent''' ) _snake_case : Any = output def UpperCAmelCase_ ( self , lowercase__ , lowercase__=False , lowercase__=1.0 ) -> Optional[int]: """simple docstring""" if isinstance(UpperCamelCase__ , UpperCamelCase__ ): _snake_case : int = [] for i in range(len(UpperCamelCase__ ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=UpperCamelCase__ ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: _snake_case : Optional[int] = self.token_map[placeholder_token] _snake_case : Union[str, Any] = tokens[: 1 + int(len(UpperCamelCase__ ) * prop_tokens_to_load )] if vector_shuffle: _snake_case : Optional[Any] = copy.copy(UpperCamelCase__ ) random.shuffle(UpperCamelCase__ ) _snake_case : Dict = text.replace(UpperCamelCase__ , ''' '''.join(UpperCamelCase__ ) ) return text def __call__( self , lowercase__ , *lowercase__ , lowercase__=False , lowercase__=1.0 , **lowercase__ ) -> List[str]: """simple docstring""" return super().__call__( self.replace_placeholder_tokens_in_text( UpperCamelCase__ , vector_shuffle=UpperCamelCase__ , prop_tokens_to_load=UpperCamelCase__ ) , *UpperCamelCase__ , **UpperCamelCase__ , ) def UpperCAmelCase_ ( self , lowercase__ , *lowercase__ , lowercase__=False , lowercase__=1.0 , **lowercase__ ) -> Optional[Any]: """simple docstring""" return super().encode( self.replace_placeholder_tokens_in_text( UpperCamelCase__ , vector_shuffle=UpperCamelCase__ , prop_tokens_to_load=UpperCamelCase__ ) , *UpperCamelCase__ , **UpperCamelCase__ , )
709
'''simple docstring''' UpperCAmelCase : Union[str, Any] = tuple[float, float, float] UpperCAmelCase : int = tuple[float, float, float] def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : str = end_pointa[0] - end_pointa[0] _snake_case : Tuple = end_pointa[1] - end_pointa[1] _snake_case : Any = end_pointa[2] - end_pointa[2] return (x, y, z) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Dict = ab[1] * ac[2] - ab[2] * ac[1] # *i _snake_case : List[str] = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j _snake_case : Optional[int] = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return tuple(round(lowerCAmelCase_ , lowerCAmelCase_ ) for x in vector ) == (0, 0, 0) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 10 ): """simple docstring""" _snake_case : str = create_vector(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Tuple = create_vector(lowerCAmelCase_ , lowerCAmelCase_ ) return is_zero_vector(get_ad_vectors_cross(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ )
47
0
'''simple docstring''' def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : list[list[int]] = [[0 for _ in range(lowerCAmelCase_ )] for _ in range(m + 1 )] for i in range(m + 1 ): _snake_case : Optional[int] = 1 for n in range(m + 1 ): for k in range(1 , lowerCAmelCase_ ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: UpperCAmelCase : str = int(input('Enter a number: ').strip()) print(partition(n)) except ValueError: print('Please enter a number.') else: try: UpperCAmelCase : str = int(sys.argv[1]) print(partition(n)) except ValueError: print('Please pass a number.')
710
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel UpperCAmelCase : List[str] = logging.getLogger(__name__) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if os.path.exists(lowerCAmelCase_ ): if os.path.exists(os.path.join(lowerCAmelCase_ , '''config.json''' ) ) and os.path.isfile( os.path.join(lowerCAmelCase_ , '''config.json''' ) ): os.remove(os.path.join(lowerCAmelCase_ , '''config.json''' ) ) if os.path.exists(os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) ) and os.path.isfile( os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) ): os.remove(os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) ) else: os.makedirs(lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_=False ): """simple docstring""" _snake_case : Optional[Any] = 2 if unlogit: _snake_case : Any = torch.pow(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Union[str, Any] = p * torch.log(lowerCAmelCase_ ) _snake_case : Optional[Any] = 0 return -plogp.sum(dim=-1 ) def _a ( lowerCAmelCase_ ): """simple docstring""" logger.info('''lv, h >\t''' + '''\t'''.join(f'''{x + 1}''' for x in range(len(lowerCAmelCase_ ) ) ) ) for row in range(len(lowerCAmelCase_ ) ): if tensor.dtype != torch.long: logger.info(f'''layer {row + 1}:\t''' + '''\t'''.join(f'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(f'''layer {row + 1}:\t''' + '''\t'''.join(f'''{x:d}''' for x in tensor[row].cpu().data ) ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=None , lowerCAmelCase_=False ): """simple docstring""" _snake_case , _snake_case : Optional[int] = model.config.num_hidden_layers, model.config.num_attention_heads _snake_case : Tuple = torch.zeros(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device ) _snake_case : Union[str, Any] = torch.zeros(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device ) if head_mask is None: _snake_case : int = torch.ones(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device ) head_mask.requires_grad_(requires_grad=lowerCAmelCase_ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _snake_case : Dict = None _snake_case : Dict = 0.0 _snake_case : Optional[int] = 0.0 for step, inputs in enumerate(tqdm(lowerCAmelCase_ , desc='''Iteration''' , disable=args.local_rank not in [-1, 0] ) ): _snake_case : List[Any] = tuple(t.to(args.device ) for t in inputs ) ((_snake_case) , ) : Optional[Any] = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _snake_case : Any = model(lowerCAmelCase_ , labels=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _snake_case , _snake_case , _snake_case : List[Any] = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(lowerCAmelCase_ ): _snake_case : Union[str, Any] = entropy(attn.detach() , lowerCAmelCase_ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(lowerCAmelCase_ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _snake_case : Any = 2 _snake_case : List[str] = torch.pow(torch.pow(lowerCAmelCase_ , lowerCAmelCase_ ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: _snake_case : Optional[int] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''' ) print_ad_tensor(lowerCAmelCase_ ) if compute_importance: logger.info('''Head importance scores''' ) print_ad_tensor(lowerCAmelCase_ ) logger.info('''Head ranked by importance scores''' ) _snake_case : str = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _snake_case : List[Any] = torch.arange( head_importance.numel() , device=args.device ) _snake_case : List[Any] = head_ranks.view_as(lowerCAmelCase_ ) print_ad_tensor(lowerCAmelCase_ ) return attn_entropy, head_importance, total_loss def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case , _snake_case , _snake_case : str = compute_heads_importance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ ) _snake_case : Optional[Any] = 1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' , lowerCAmelCase_ , original_score * args.masking_threshold ) _snake_case : int = torch.ones_like(lowerCAmelCase_ ) _snake_case : Optional[Any] = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _snake_case : int = original_score while current_score >= original_score * args.masking_threshold: _snake_case : int = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _snake_case : Dict = float('''Inf''' ) _snake_case : Optional[Any] = head_importance.view(-1 ).sort()[1] if len(lowerCAmelCase_ ) <= num_to_mask: print('''BREAK BY num_to_mask''' ) break # mask heads _snake_case : Union[str, Any] = current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist() ) ) _snake_case : Tuple = new_head_mask.view(-1 ) _snake_case : List[str] = 0.0 _snake_case : str = new_head_mask.view_as(lowerCAmelCase_ ) _snake_case : Dict = new_head_mask.clone().detach() print_ad_tensor(lowerCAmelCase_ ) # Compute metric and head importance again _snake_case , _snake_case , _snake_case : Any = compute_heads_importance( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) _snake_case : int = 1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' , lowerCAmelCase_ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info('''Final head mask''' ) print_ad_tensor(lowerCAmelCase_ ) np.save(os.path.join(args.output_dir , '''head_mask.npy''' ) , head_mask.detach().cpu().numpy() ) return head_mask def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = datetime.now() _snake_case , _snake_case , _snake_case : Union[str, Any] = compute_heads_importance( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , compute_importance=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) _snake_case : Tuple = 1 / loss _snake_case : Dict = datetime.now() - before_time _snake_case : List[Any] = sum(p.numel() for p in model.parameters() ) _snake_case : int = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(lowerCAmelCase_ ) ) } for k, v in heads_to_prune.items(): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Union[str, Any] = [ v, ] assert sum(len(lowerCAmelCase_ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(lowerCAmelCase_ ) _snake_case : List[str] = sum(p.numel() for p in model.parameters() ) _snake_case : int = datetime.now() _snake_case , _snake_case , _snake_case : Optional[Any] = compute_heads_importance( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , compute_importance=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , actually_pruned=lowerCAmelCase_ , ) _snake_case : Optional[int] = 1 / loss _snake_case : Dict = datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , lowerCAmelCase_ , lowerCAmelCase_ , pruned_num_params / original_num_params * 100 , ) logger.info('''Pruning: score with masking: %f score with pruning: %f''' , lowerCAmelCase_ , lowerCAmelCase_ ) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 100 ) save_model(lowerCAmelCase_ , args.output_dir ) def _a ( ): """simple docstring""" _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , ) parser.add_argument( '''--model_name_or_path''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--output_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) # Other parameters parser.add_argument( '''--config_name''' , default='''''' , type=lowerCAmelCase_ , help='''Pretrained config name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--tokenizer_name''' , default='''''' , type=lowerCAmelCase_ , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--cache_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help='''Where do you want to store the pre-trained models downloaded from s3''' , ) parser.add_argument( '''--data_subset''' , type=lowerCAmelCase_ , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''' ) parser.add_argument( '''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''' ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) parser.add_argument( '''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''' ) parser.add_argument( '''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , ) parser.add_argument( '''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''' ) parser.add_argument( '''--masking_threshold''' , default=0.9 , type=lowerCAmelCase_ , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , ) parser.add_argument( '''--masking_amount''' , default=0.1 , type=lowerCAmelCase_ , help='''Amount to heads to masking at each masking step.''' ) parser.add_argument('''--metric_name''' , default='''acc''' , type=lowerCAmelCase_ , help='''Metric to use for head masking.''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=lowerCAmelCase_ , help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) , ) parser.add_argument('''--batch_size''' , default=1 , type=lowerCAmelCase_ , help='''Batch size.''' ) parser.add_argument('''--seed''' , type=lowerCAmelCase_ , default=42 ) parser.add_argument('''--local_rank''' , type=lowerCAmelCase_ , default=-1 , help='''local_rank for distributed training on gpus''' ) parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''' ) parser.add_argument('''--server_ip''' , type=lowerCAmelCase_ , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=lowerCAmelCase_ , default='''''' , help='''Can be used for distant debugging.''' ) _snake_case : Optional[Any] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowerCAmelCase_ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _snake_case : str = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''' ) _snake_case : Optional[Any] = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _snake_case : List[str] = torch.device('''cuda''' , args.local_rank ) _snake_case : int = 1 torch.distributed.init_process_group(backend='''nccl''' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _snake_case : Optional[Any] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _snake_case : Optional[int] = nn.parallel.DistributedDataParallel( lowerCAmelCase_ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=lowerCAmelCase_ ) elif args.n_gpu > 1: _snake_case : List[Any] = nn.DataParallel(lowerCAmelCase_ ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=lowerCAmelCase_ ) torch.save(lowerCAmelCase_ , os.path.join(args.output_dir , '''run_args.bin''' ) ) logger.info('''Training/evaluation parameters %s''' , lowerCAmelCase_ ) # Prepare dataset _snake_case : Dict = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _snake_case : int = (torch.from_numpy(lowerCAmelCase_ ),) _snake_case : Tuple = TensorDataset(*lowerCAmelCase_ ) _snake_case : List[str] = RandomSampler(lowerCAmelCase_ ) _snake_case : Dict = DataLoader(lowerCAmelCase_ , sampler=lowerCAmelCase_ , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _snake_case : Optional[int] = mask_heads(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) prune_heads(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
47
0
'''simple docstring''' import qiskit def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Tuple = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register _snake_case : Tuple = qiskit.QuantumCircuit(__snake_case , __snake_case ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator _snake_case : int = qiskit.execute(__snake_case , __snake_case , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__snake_case ) if __name__ == "__main__": print(f"""Total count for various states are: {single_qubit_measure(1, 1)}""")
711
'''simple docstring''' def _a ( lowerCAmelCase_ ): """simple docstring""" if n == 1 or not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return 0 elif n == 2: return 1 else: _snake_case : Union[str, Any] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[int] = 0 _snake_case : int = 2 while digits < n: index += 1 _snake_case : Tuple = len(str(fibonacci(lowerCAmelCase_ ) ) ) return index def _a ( lowerCAmelCase_ = 1_000 ): """simple docstring""" return fibonacci_digits_index(lowerCAmelCase_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
47
0
'''simple docstring''' from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class lowerCamelCase : def UpperCAmelCase_ ( self , lowercase__ ) -> Dict: """simple docstring""" raise NotImplementedError() def UpperCAmelCase_ ( self ) -> int: """simple docstring""" raise NotImplementedError() class lowerCamelCase (lowercase_ ): def __init__( self , lowercase__ , lowercase__ = False , **lowercase__ ) -> List[Any]: """simple docstring""" _snake_case : Optional[Any] = tokenizer _snake_case : List[Any] = skip_prompt _snake_case : List[Any] = decode_kwargs # variables used in the streaming process _snake_case : Optional[int] = [] _snake_case : Any = 0 _snake_case : Optional[Any] = True def UpperCAmelCase_ ( self , lowercase__ ) -> List[str]: """simple docstring""" if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError('''TextStreamer only supports batch size 1''' ) elif len(value.shape ) > 1: _snake_case : Optional[Any] = value[0] if self.skip_prompt and self.next_tokens_are_prompt: _snake_case : str = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) _snake_case : Optional[Any] = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith('''\n''' ): _snake_case : Any = text[self.print_len :] _snake_case : str = [] _snake_case : Union[str, Any] = 0 # If the last token is a CJK character, we print the characters. elif len(lowerCamelCase_ ) > 0 and self._is_chinese_char(ord(text[-1] ) ): _snake_case : Any = text[self.print_len :] self.print_len += len(lowerCamelCase_ ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: _snake_case : Any = text[self.print_len : text.rfind(''' ''' ) + 1] self.print_len += len(lowerCamelCase_ ) self.on_finalized_text(lowerCamelCase_ ) def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" if len(self.token_cache ) > 0: _snake_case : List[str] = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) _snake_case : str = text[self.print_len :] _snake_case : Any = [] _snake_case : Optional[int] = 0 else: _snake_case : int = """""" _snake_case : int = True self.on_finalized_text(lowerCamelCase_ , stream_end=lowerCamelCase_ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = False ) -> Optional[int]: """simple docstring""" print(lowerCamelCase_ , flush=lowerCamelCase_ , end='''''' if not stream_end else None ) def UpperCAmelCase_ ( self , lowercase__ ) -> Dict: """simple docstring""" if ( (cp >= 0x4_e00 and cp <= 0x9_fff) or (cp >= 0x3_400 and cp <= 0x4_dbf) # or (cp >= 0x20_000 and cp <= 0x2a_6df) # or (cp >= 0x2a_700 and cp <= 0x2b_73f) # or (cp >= 0x2b_740 and cp <= 0x2b_81f) # or (cp >= 0x2b_820 and cp <= 0x2c_eaf) # or (cp >= 0xf_900 and cp <= 0xf_aff) or (cp >= 0x2f_800 and cp <= 0x2f_a1f) # ): # return True return False class lowerCamelCase (lowercase_ ): def __init__( self , lowercase__ , lowercase__ = False , lowercase__ = None , **lowercase__ ) -> Optional[int]: """simple docstring""" super().__init__(lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) _snake_case : str = Queue() _snake_case : Dict = None _snake_case : List[Any] = timeout def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = False ) -> Union[str, Any]: """simple docstring""" self.text_queue.put(lowerCamelCase_ , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self ) -> Dict: """simple docstring""" return self def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : List[str] = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
712
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar UpperCAmelCase : Any = TypeVar('T') UpperCAmelCase : str = TypeVar('U') class lowerCamelCase (Generic[T, U] ): def __init__( self , lowercase__ , lowercase__ ) -> List[Any]: """simple docstring""" _snake_case : str = key _snake_case : Optional[int] = val _snake_case : DoubleLinkedListNode[T, U] | None = None _snake_case : DoubleLinkedListNode[T, U] | None = None def __repr__( self ) -> str: """simple docstring""" return ( F'''Node: key: {self.key}, val: {self.val}, ''' F'''has next: {bool(self.next )}, has prev: {bool(self.prev )}''' ) class lowerCamelCase (Generic[T, U] ): def __init__( self ) -> None: """simple docstring""" _snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase__ , lowercase__ ) _snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase__ , lowercase__ ) _snake_case , _snake_case : Union[str, Any] = self.rear, self.head def __repr__( self ) -> str: """simple docstring""" _snake_case : List[Any] = ['''DoubleLinkedList'''] _snake_case : str = self.head while node.next is not None: rep.append(str(lowercase__ ) ) _snake_case : List[str] = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> None: """simple docstring""" _snake_case : Tuple = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None _snake_case : Union[str, Any] = node _snake_case : Optional[Any] = previous _snake_case : int = node _snake_case : Union[str, Any] = self.rear def UpperCAmelCase_ ( self , lowercase__ ) -> DoubleLinkedListNode[T, U] | None: """simple docstring""" if node.prev is None or node.next is None: return None _snake_case : Optional[int] = node.next _snake_case : Any = node.prev _snake_case : List[str] = None _snake_case : Optional[int] = None return node class lowerCamelCase (Generic[T, U] ): _lowercase : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self , lowercase__ ) -> Union[str, Any]: """simple docstring""" _snake_case : DoubleLinkedList[T, U] = DoubleLinkedList() _snake_case : Union[str, Any] = capacity _snake_case : int = 0 _snake_case : Dict = 0 _snake_case : Union[str, Any] = 0 _snake_case : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__( self ) -> str: """simple docstring""" return ( F'''CacheInfo(hits={self.hits}, misses={self.miss}, ''' F'''capacity={self.capacity}, current size={self.num_keys})''' ) def __contains__( self , lowercase__ ) -> bool: """simple docstring""" return key in self.cache def UpperCAmelCase_ ( self , lowercase__ ) -> U | None: """simple docstring""" if key in self.cache: self.hits += 1 _snake_case : DoubleLinkedListNode[T, U] = self.cache[key] _snake_case : Tuple = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowercase__ ) return node.val self.miss += 1 return None def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> None: """simple docstring""" if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity _snake_case : Dict = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowercase__ ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 _snake_case : Optional[int] = DoubleLinkedListNode(lowercase__ , lowercase__ ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value _snake_case : Optional[Any] = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list _snake_case : Optional[Any] = value self.list.add(lowercase__ ) @classmethod def UpperCAmelCase_ ( cls , lowercase__ = 128 ) -> Callable[[Callable[[T], U]], Callable[..., U]]: """simple docstring""" def cache_decorator_inner(lowercase__ ) -> Callable[..., U]: def cache_decorator_wrapper(*lowercase__ ) -> U: if func not in cls.decorator_function_to_instance_map: _snake_case : Optional[Any] = LRUCache(lowercase__ ) _snake_case : Union[str, Any] = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: _snake_case : Tuple = func(*lowercase__ ) cls.decorator_function_to_instance_map[func].put(args[0] , lowercase__ ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowercase__ , '''cache_info''' , lowercase__ ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
47
0
'''simple docstring''' import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : List[Any] = 10 def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" _snake_case : Union[str, Any] = [1, 2, 3, 4] _snake_case : Any = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(UpperCamelCase_ , self.block_size , 0 ) , UpperCamelCase_ ) def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" _snake_case : Tuple = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] _snake_case : Optional[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCamelCase_ , self.block_size , 0 ) , UpperCamelCase_ ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] _snake_case : List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCamelCase_ , self.block_size , 0 ) , UpperCamelCase_ ) def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" _snake_case : Optional[int] = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' _snake_case , _snake_case : Union[str, Any] = process_story(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , [] ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : int = '''''' _snake_case , _snake_case : Any = process_story(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , [] ) self.assertEqual(UpperCamelCase_ , [] ) def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" _snake_case : List[str] = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) _snake_case , _snake_case : Union[str, Any] = process_story(UpperCamelCase_ ) _snake_case : Any = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) _snake_case : Dict = ['''It was the best of times.'''] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : List[str] = torch.tensor([1, 2, 3, 4] ) _snake_case : str = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(UpperCamelCase_ , 0 ).numpy() , expected.numpy() ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Dict = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) _snake_case : Tuple = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCamelCase_ , 23 ).numpy() , expected.numpy() ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Union[str, Any] = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) _snake_case : Optional[int] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCamelCase_ , 1 ).numpy() , expected.numpy() ) def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" _snake_case : Union[str, Any] = 101 _snake_case : Optional[Any] = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) _snake_case : Optional[int] = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) _snake_case : Union[str, Any] = compute_token_type_ids(UpperCamelCase_ , UpperCamelCase_ ) np.testing.assert_array_equal(UpperCamelCase_ , UpperCamelCase_ )
713
'''simple docstring''' import os import numpy import onnx def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : List[Any] = a.name _snake_case : List[Any] = b.name _snake_case : Tuple = '''''' _snake_case : Tuple = '''''' _snake_case : Optional[Any] = a == b _snake_case : List[Any] = name_a _snake_case : str = name_b return res def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(lowerCAmelCase_ , lowerCAmelCase_ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , lowerCAmelCase_ , lowerCAmelCase_ ) _graph_replace_input_with(node_proto.attribute[1].g , lowerCAmelCase_ , lowerCAmelCase_ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , lowerCAmelCase_ , lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for n in graph_proto.node: _node_replace_input_with(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = list(model.graph.initializer ) _snake_case : List[str] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i _snake_case : List[Any] = inits[i].name _snake_case : List[str] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , lowerCAmelCase_ , lowerCAmelCase_ ) def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Tuple = os.path.dirname(lowerCAmelCase_ ) _snake_case : str = os.path.basename(lowerCAmelCase_ ) _snake_case : Tuple = onnx.load(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) ) _snake_case : Union[str, Any] = list(model.graph.initializer ) _snake_case : Union[str, Any] = set() _snake_case : Any = {} _snake_case : str = [] _snake_case : Union[str, Any] = 0 for i in range(len(lowerCAmelCase_ ) ): if i in dup_set: continue for j in range(i + 1 , len(lowerCAmelCase_ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(lowerCAmelCase_ ) dup_set.add(lowerCAmelCase_ ) _snake_case : List[Any] = inits[j].data_type _snake_case : Dict = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('''unexpected data type: ''' , lowerCAmelCase_ ) total_reduced_size += mem_size _snake_case : Union[str, Any] = inits[i].name _snake_case : Any = inits[j].name if name_i in dup_map: dup_map[name_i].append(lowerCAmelCase_ ) else: _snake_case : Union[str, Any] = [name_j] ind_to_replace.append((j, i) ) print('''total reduced size: ''' , total_reduced_size / 1_024 / 1_024 / 1_024 , '''GB''' ) _snake_case : List[str] = sorted(lowerCAmelCase_ ) _remove_dup_initializers_from_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : List[str] = '''optimized_''' + model_file_name _snake_case : List[Any] = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) onnx.save(lowerCAmelCase_ , lowerCAmelCase_ ) return new_model
47
0
'''simple docstring''' import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class lowerCamelCase (unittest.TestCase ): def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Optional[int] = "laion/clap-htsat-unfused" _snake_case : List[str] = tempfile.mkdtemp() def UpperCAmelCase_ ( self , **lowercase__ ) -> int: """simple docstring""" return RobertaTokenizer.from_pretrained(self.checkpoint , **lowercase__ ) def UpperCAmelCase_ ( self , **lowercase__ ) -> Optional[Any]: """simple docstring""" return ClapFeatureExtractor.from_pretrained(self.checkpoint , **lowercase__ ) def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Optional[int] = self.get_tokenizer() _snake_case : Tuple = self.get_feature_extractor() _snake_case : Optional[Any] = ClapProcessor(tokenizer=lowercase__ , feature_extractor=lowercase__ ) processor.save_pretrained(self.tmpdirname ) _snake_case : Any = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase__ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , lowercase__ ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" _snake_case : List[str] = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) _snake_case : Union[str, Any] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _snake_case : int = self.get_feature_extractor(do_normalize=lowercase__ , padding_value=1.0 ) _snake_case : Optional[Any] = ClapProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=lowercase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase__ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , lowercase__ ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : int = self.get_feature_extractor() _snake_case : str = self.get_tokenizer() _snake_case : Any = ClapProcessor(tokenizer=lowercase__ , feature_extractor=lowercase__ ) _snake_case : List[Any] = floats_list((3, 1_000) ) _snake_case : Dict = feature_extractor(lowercase__ , return_tensors='''np''' ) _snake_case : int = processor(audios=lowercase__ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : int = self.get_feature_extractor() _snake_case : Optional[Any] = self.get_tokenizer() _snake_case : Union[str, Any] = ClapProcessor(tokenizer=lowercase__ , feature_extractor=lowercase__ ) _snake_case : Any = "This is a test string" _snake_case : Dict = processor(text=lowercase__ ) _snake_case : str = tokenizer(lowercase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : Optional[int] = self.get_feature_extractor() _snake_case : int = self.get_tokenizer() _snake_case : List[Any] = ClapProcessor(tokenizer=lowercase__ , feature_extractor=lowercase__ ) _snake_case : List[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _snake_case : Union[str, Any] = processor.batch_decode(lowercase__ ) _snake_case : Optional[int] = tokenizer.batch_decode(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Dict = self.get_feature_extractor() _snake_case : List[Any] = self.get_tokenizer() _snake_case : Optional[Any] = ClapProcessor(tokenizer=lowercase__ , feature_extractor=lowercase__ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , )
714
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : int = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
47
0
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCamelCase (a__ ): _lowercase : List[str] = ["""image_processor""", """tokenizer"""] _lowercase : Optional[Any] = """CLIPImageProcessor""" _lowercase : str = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self , lowercase__=None , lowercase__=None , **lowercase__ ) -> str: """simple docstring""" _snake_case : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowercase_ , ) _snake_case : Union[str, Any] = kwargs.pop('''feature_extractor''' ) _snake_case : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowercase_ , lowercase_ ) def __call__( self , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ ) -> int: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: _snake_case : List[str] = self.tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if images is not None: _snake_case : int = self.image_processor(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if text is not None and images is not None: _snake_case : Any = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase_ ) , tensor_type=lowercase_ ) def UpperCAmelCase_ ( self , *lowercase__ , **lowercase__ ) -> Any: """simple docstring""" return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self , *lowercase__ , **lowercase__ ) -> Dict: """simple docstring""" return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @property def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : Dict = self.tokenizer.model_input_names _snake_case : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase_ ( self ) -> int: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowercase_ , ) return self.image_processor_class @property def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowercase_ , ) return self.image_processor
715
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase : Dict = logging.get_logger(__name__) class lowerCamelCase (a__ ): _lowercase : int = ["""pixel_values"""] def __init__( self , lowercase__ = True , lowercase__ = 32 , lowercase__=PILImageResampling.BILINEAR , lowercase__ = True , **lowercase__ , ) -> None: """simple docstring""" _snake_case : Any = do_resize _snake_case : List[str] = do_rescale _snake_case : Any = size_divisor _snake_case : Optional[Any] = resample super().__init__(**lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ ) -> np.ndarray: """simple docstring""" _snake_case , _snake_case : Dict = get_image_size(lowercase__ ) # Rounds the height and width down to the closest multiple of size_divisor _snake_case : Optional[int] = height // size_divisor * size_divisor _snake_case : Dict = width // size_divisor * size_divisor _snake_case : str = resize(lowercase__ , (new_h, new_w) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) return image def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ ) -> np.ndarray: """simple docstring""" return rescale(image=lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__=None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ) -> BatchFeature: """simple docstring""" _snake_case : Any = do_resize if do_resize is not None else self.do_resize _snake_case : List[Any] = do_rescale if do_rescale is not None else self.do_rescale _snake_case : List[str] = size_divisor if size_divisor is not None else self.size_divisor _snake_case : int = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) _snake_case : Tuple = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. _snake_case : Tuple = [to_numpy_array(lowercase__ ) for img in images] if do_resize: _snake_case : Optional[int] = [self.resize(lowercase__ , size_divisor=lowercase__ , resample=lowercase__ ) for image in images] if do_rescale: _snake_case : Union[str, Any] = [self.rescale(lowercase__ , scale=1 / 255 ) for image in images] _snake_case : Union[str, Any] = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] _snake_case : List[str] = {'''pixel_values''': images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
47
0
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch UpperCAmelCase : Dict = random.Random() def _a ( lowerCAmelCase_ , lowerCAmelCase_=1.0 , lowerCAmelCase_=None , lowerCAmelCase_=None ): """simple docstring""" if rng is None: _snake_case : Dict = global_rng _snake_case : Dict = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class lowerCamelCase (unittest.TestCase ): def __init__( self , lowercase__ , lowercase__=7 , lowercase__=400 , lowercase__=2_000 , lowercase__=1 , lowercase__=0.0 , lowercase__=16_000 , lowercase__=True , lowercase__=80 , lowercase__=16 , lowercase__=64 , lowercase__="hann_window" , lowercase__=80 , lowercase__=7_600 , lowercase__=1E-1_0 , lowercase__=True , ) -> int: """simple docstring""" _snake_case : str = parent _snake_case : Optional[int] = batch_size _snake_case : Dict = min_seq_length _snake_case : Tuple = max_seq_length _snake_case : int = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _snake_case : Any = feature_size _snake_case : Optional[int] = padding_value _snake_case : str = sampling_rate _snake_case : Optional[int] = do_normalize _snake_case : Optional[int] = num_mel_bins _snake_case : List[Any] = hop_length _snake_case : Optional[Any] = win_length _snake_case : int = win_function _snake_case : Tuple = fmin _snake_case : Dict = fmax _snake_case : Union[str, Any] = mel_floor _snake_case : Optional[Any] = return_attention_mask def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def UpperCAmelCase_ ( self , lowercase__=False , lowercase__=False ) -> Optional[Any]: """simple docstring""" def _flatten(lowercase__ ): return list(itertools.chain(*lowerCAmelCase_ ) ) if equal_length: _snake_case : List[str] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size _snake_case : Union[str, Any] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _snake_case : Tuple = [np.asarray(lowerCAmelCase_ ) for x in speech_inputs] return speech_inputs def UpperCAmelCase_ ( self , lowercase__=False , lowercase__=False ) -> Union[str, Any]: """simple docstring""" if equal_length: _snake_case : Dict = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _snake_case : Dict = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _snake_case : Optional[Any] = [np.asarray(lowerCAmelCase_ ) for x in speech_inputs] return speech_inputs @require_torch class lowerCamelCase (__lowerCAmelCase , unittest.TestCase ): _lowercase : int = SpeechTaFeatureExtractor def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : Optional[Any] = SpeechTaFeatureExtractionTester(self ) def UpperCAmelCase_ ( self , lowercase__ ) -> int: """simple docstring""" self.assertTrue(np.all(np.mean(lowerCAmelCase_ , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCAmelCase_ , axis=0 ) - 1 ) < 1E-3 ) ) def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" _snake_case : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _snake_case : Dict = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] _snake_case : Optional[Any] = [np.asarray(lowerCAmelCase_ ) for speech_input in speech_inputs] # Test not batched input _snake_case : Dict = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values _snake_case : List[Any] = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1E-3 ) ) # Test batched _snake_case : Union[str, Any] = feat_extract(lowerCAmelCase_ , return_tensors='''np''' ).input_values _snake_case : Optional[Any] = feat_extract(lowerCAmelCase_ , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertTrue(np.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1E-3 ) ) def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" _snake_case : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _snake_case : List[str] = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] _snake_case : Any = ['''longest''', '''max_length''', '''do_not_pad'''] _snake_case : Optional[Any] = [None, 1_600, None] for max_length, padding in zip(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Optional[Any] = feat_extract(lowerCAmelCase_ , padding=lowerCAmelCase_ , max_length=lowerCAmelCase_ , return_tensors='''np''' ) _snake_case : List[str] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self.assertTrue(input_values[0][1_000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" _snake_case : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _snake_case : str = range(800 , 1_400 , 200 ) _snake_case : Union[str, Any] = [floats_list((1, x) )[0] for x in lengths] _snake_case : Optional[Any] = ['''longest''', '''max_length''', '''do_not_pad'''] _snake_case : Optional[int] = [None, 1_600, None] for max_length, padding in zip(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Any = feat_extract(lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding=lowerCAmelCase_ ) _snake_case : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" _snake_case : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _snake_case : List[str] = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] _snake_case : Dict = feat_extract( lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=1_000 , padding='''max_length''' , return_tensors='''np''' ) _snake_case : Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _snake_case : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] _snake_case : List[str] = feat_extract( lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=1_000 , padding='''longest''' , return_tensors='''np''' ) _snake_case : List[str] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_000) ) _snake_case : Tuple = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] _snake_case : List[str] = feat_extract( lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=2_000 , padding='''longest''' , return_tensors='''np''' ) _snake_case : str = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_200) ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _snake_case : Dict = np.random.rand(100 ).astype(np.floataa ) _snake_case : Optional[Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _snake_case : str = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) _snake_case : Tuple = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _snake_case : Dict = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] _snake_case : str = [np.asarray(lowerCAmelCase_ ) for speech_input in speech_inputs] # Test feature size _snake_case : Tuple = feature_extractor(audio_target=lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors='''np''' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input _snake_case : List[str] = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_values _snake_case : Tuple = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1E-3 ) ) # Test batched _snake_case : Tuple = feature_extractor(lowerCAmelCase_ , return_tensors='''np''' ).input_values _snake_case : str = feature_extractor(lowerCAmelCase_ , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertTrue(np.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. _snake_case : List[Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)] _snake_case : Union[str, Any] = np.asarray(lowerCAmelCase_ ) _snake_case : Dict = feature_extractor(lowerCAmelCase_ , return_tensors='''np''' ).input_values _snake_case : List[Any] = feature_extractor(lowerCAmelCase_ , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertTrue(np.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1E-3 ) ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Any = self.feat_extract_tester.prepare_inputs_for_target() _snake_case : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) _snake_case : Any = feat_extract.model_input_names[0] _snake_case : str = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) for x, y in zip(lowerCAmelCase_ , processed_features[input_name] ) ) ) _snake_case : Tuple = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowerCAmelCase_ ) _snake_case : Tuple = BatchFeature({input_name: speech_inputs} , tensor_type='''np''' ) _snake_case : Tuple = processed_features[input_name] if len(batch_features_input.shape ) < 3: _snake_case : str = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowerCAmelCase_ ) _snake_case : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) _snake_case : Dict = feat_extract.model_input_names[0] _snake_case : int = BatchFeature({input_name: speech_inputs} , tensor_type='''pt''' ) _snake_case : Dict = processed_features[input_name] if len(batch_features_input.shape ) < 3: _snake_case : List[str] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" _snake_case : Any = self.feature_extraction_class(**self.feat_extract_dict ) _snake_case : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_target() _snake_case : Tuple = feat_extract.model_input_names[0] _snake_case : Union[str, Any] = BatchFeature({input_name: speech_inputs} ) _snake_case : List[str] = feat_extract.num_mel_bins # hack! _snake_case : str = feat_extract.pad(lowerCAmelCase_ , padding='''longest''' , return_tensors='''np''' )[input_name] _snake_case : str = feat_extract.pad(lowerCAmelCase_ , padding='''longest''' , return_tensors='''pt''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : str = self.feat_extract_dict _snake_case : int = True _snake_case : List[str] = self.feature_extraction_class(**lowerCAmelCase_ ) _snake_case : str = self.feat_extract_tester.prepare_inputs_for_target() _snake_case : List[Any] = [len(lowerCAmelCase_ ) for x in speech_inputs] _snake_case : Dict = feat_extract.model_input_names[0] _snake_case : Optional[int] = BatchFeature({input_name: speech_inputs} ) _snake_case : str = feat_extract.num_mel_bins # hack! _snake_case : str = feat_extract.pad(lowerCAmelCase_ , padding='''longest''' , return_tensors='''np''' ) self.assertIn('''attention_mask''' , lowerCAmelCase_ ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , lowerCAmelCase_ ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : int = self.feat_extract_dict _snake_case : List[str] = True _snake_case : Optional[Any] = self.feature_extraction_class(**lowerCAmelCase_ ) _snake_case : str = self.feat_extract_tester.prepare_inputs_for_target() _snake_case : Tuple = [len(lowerCAmelCase_ ) for x in speech_inputs] _snake_case : Tuple = feat_extract.model_input_names[0] _snake_case : Tuple = BatchFeature({input_name: speech_inputs} ) _snake_case : List[Any] = min(lowerCAmelCase_ ) _snake_case : Dict = feat_extract.num_mel_bins # hack! _snake_case : Any = feat_extract.pad( lowerCAmelCase_ , padding='''max_length''' , max_length=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='''np''' ) self.assertIn('''attention_mask''' , lowerCAmelCase_ ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def UpperCAmelCase_ ( self , lowercase__ ) -> List[Any]: """simple docstring""" from datasets import load_dataset _snake_case : Optional[int] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech _snake_case : Tuple = ds.sort('''id''' ).select(range(lowerCAmelCase_ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" _snake_case : Optional[int] = torch.tensor( [2.3_8_0_4E-0_3, 2.0_7_5_2E-0_3, 1.9_8_3_6E-0_3, 2.1_0_5_7E-0_3, 1.6_1_7_4E-0_3, 3.0_5_1_8E-0_4, 9.1_5_5_3E-0_5, 3.3_5_6_9E-0_4, 9.7_6_5_6E-0_4, 1.8_3_1_1E-0_3, 2.0_1_4_2E-0_3, 2.1_0_5_7E-0_3, 1.7_3_9_5E-0_3, 4.5_7_7_6E-0_4, -3.9_6_7_3E-0_4, 4.5_7_7_6E-0_4, 1.0_0_7_1E-0_3, 9.1_5_5_3E-0_5, 4.8_8_2_8E-0_4, 1.1_5_9_7E-0_3, 7.3_2_4_2E-0_4, 9.4_6_0_4E-0_4, 1.8_0_0_5E-0_3, 1.8_3_1_1E-0_3, 8.8_5_0_1E-0_4, 4.2_7_2_5E-0_4, 4.8_8_2_8E-0_4, 7.3_2_4_2E-0_4, 1.0_9_8_6E-0_3, 2.1_0_5_7E-0_3] ) # fmt: on _snake_case : Tuple = self._load_datasamples(1 ) _snake_case : List[str] = SpeechTaFeatureExtractor() _snake_case : Tuple = feature_extractor(lowerCAmelCase_ , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 93_680) ) self.assertTrue(torch.allclose(input_values[0, :30] , lowerCAmelCase_ , atol=1E-6 ) ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : List[str] = torch.tensor( [-2.6_870, -3.0_104, -3.1_356, -3.5_352, -3.0_044, -3.0_353, -3.4_719, -3.6_777, -3.1_520, -2.9_435, -2.6_553, -2.8_795, -2.9_944, -2.5_921, -3.0_279, -3.0_386, -3.0_864, -3.1_291, -3.2_353, -2.7_444, -2.6_831, -2.7_287, -3.1_761, -3.1_571, -3.2_726, -3.0_582, -3.1_007, -3.4_533, -3.4_695, -3.0_998] ) # fmt: on _snake_case : int = self._load_datasamples(1 ) _snake_case : Any = SpeechTaFeatureExtractor() _snake_case : Dict = feature_extractor(audio_target=lowerCAmelCase_ , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , lowerCAmelCase_ , atol=1E-4 ) )
716
'''simple docstring''' from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class lowerCamelCase : _lowercase : Any = LEDConfig _lowercase : Any = {} _lowercase : Optional[Any] = """gelu""" def __init__( self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=False , lowercase__=99 , lowercase__=32 , lowercase__=2 , lowercase__=4 , lowercase__=37 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=20 , lowercase__=2 , lowercase__=1 , lowercase__=0 , lowercase__=4 , ) -> Any: """simple docstring""" _snake_case : Dict = parent _snake_case : Any = batch_size _snake_case : List[str] = seq_length _snake_case : Union[str, Any] = is_training _snake_case : Tuple = use_labels _snake_case : int = vocab_size _snake_case : str = hidden_size _snake_case : Optional[Any] = num_hidden_layers _snake_case : List[Any] = num_attention_heads _snake_case : Optional[int] = intermediate_size _snake_case : List[Any] = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : Optional[int] = max_position_embeddings _snake_case : Any = eos_token_id _snake_case : List[Any] = pad_token_id _snake_case : Optional[int] = bos_token_id _snake_case : Any = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _snake_case : Any = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _snake_case : Tuple = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" _snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _snake_case : Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _snake_case : Optional[int] = tf.concat([input_ids, eos_tensor] , axis=1 ) _snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case : List[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _snake_case : Dict = prepare_led_inputs_dict(lowercase__ , lowercase__ , lowercase__ ) _snake_case : Dict = tf.concat( [tf.zeros_like(lowercase__ )[:, :-1], tf.ones_like(lowercase__ )[:, -1:]] , axis=-1 , ) _snake_case : Dict = global_attention_mask return config, inputs_dict def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> int: """simple docstring""" _snake_case : int = TFLEDModel(config=lowercase__ ).get_decoder() _snake_case : Union[str, Any] = inputs_dict['''input_ids'''] _snake_case : List[str] = input_ids[:1, :] _snake_case : Tuple = inputs_dict['''attention_mask'''][:1, :] _snake_case : Dict = 1 # first forward pass _snake_case : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__ ) _snake_case , _snake_case : Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _snake_case : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _snake_case : Tuple = tf.concat([input_ids, next_tokens] , axis=-1 ) _snake_case : List[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _snake_case : List[Any] = model(lowercase__ , attention_mask=lowercase__ )[0] _snake_case : Tuple = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _snake_case : Tuple = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _snake_case : int = output_from_no_past[:, -3:, random_slice_idx] _snake_case : Optional[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase__ , lowercase__ , rtol=1E-3 ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , ): """simple docstring""" if attention_mask is None: _snake_case : Union[str, Any] = tf.cast(tf.math.not_equal(lowerCAmelCase_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _snake_case : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _snake_case : int = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class lowerCamelCase (a__ , a__ , unittest.TestCase ): _lowercase : Optional[int] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _lowercase : int = (TFLEDForConditionalGeneration,) if is_tf_available() else () _lowercase : Dict = ( { """conversational""": TFLEDForConditionalGeneration, """feature-extraction""": TFLEDModel, """summarization""": TFLEDForConditionalGeneration, """text2text-generation""": TFLEDForConditionalGeneration, """translation""": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _lowercase : int = True _lowercase : List[Any] = False _lowercase : str = False _lowercase : Union[str, Any] = False def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : str = TFLEDModelTester(self ) _snake_case : Union[str, Any] = ConfigTester(self , config_class=lowercase__ ) def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase__ ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Any = tf.zeros_like(inputs_dict['''attention_mask'''] ) _snake_case : Optional[Any] = 2 _snake_case : Any = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) _snake_case : Dict = True _snake_case : str = self.model_tester.seq_length _snake_case : Dict = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowercase__ ): _snake_case : Optional[int] = outputs.decoder_attentions self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowercase__ ): _snake_case : int = [t.numpy() for t in outputs.encoder_attentions] _snake_case : Tuple = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _snake_case : Union[str, Any] = True _snake_case : Dict = False _snake_case : Union[str, Any] = False _snake_case : List[Any] = model_class(lowercase__ ) _snake_case : Optional[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) _snake_case : List[Any] = len(lowercase__ ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) if self.is_encoder_decoder: _snake_case : Union[str, Any] = model_class(lowercase__ ) _snake_case : List[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_decoder_attentions_output(lowercase__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _snake_case : str = True _snake_case : Tuple = model_class(lowercase__ ) _snake_case : int = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) # Check attention is always last and order is fine _snake_case : int = True _snake_case : List[str] = True _snake_case : Tuple = model_class(lowercase__ ) _snake_case : Optional[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase__ ) ) self.assertEqual(model.config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" pass def UpperCAmelCase_ ( self ) -> str: """simple docstring""" pass def _a ( lowerCAmelCase_ ): """simple docstring""" return tf.constant(lowerCAmelCase_ , dtype=tf.intaa ) UpperCAmelCase : Dict = 1E-4 @slow @require_tf class lowerCamelCase (unittest.TestCase ): def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" _snake_case : List[str] = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here _snake_case : List[str] = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : Tuple = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : Tuple = prepare_led_inputs_dict(model.config , lowercase__ , lowercase__ ) _snake_case : int = model(**lowercase__ )[0] _snake_case : Dict = (1, 1_024, 768) self.assertEqual(output.shape , lowercase__ ) # change to expected output here _snake_case : List[Any] = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1E-3 ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Any = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here _snake_case : Dict = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : Dict = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : List[str] = prepare_led_inputs_dict(model.config , lowercase__ , lowercase__ ) _snake_case : Tuple = model(**lowercase__ )[0] _snake_case : Any = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , lowercase__ ) # change to expected output here _snake_case : Dict = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1E-3 , rtol=1E-3 )
47
0
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Any = image.size _snake_case : List[str] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 _snake_case : List[str] = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) _snake_case : Dict = np.array(lowerCAmelCase_ ).astype(np.floataa ) / 255.0 _snake_case : Optional[Any] = image[None].transpose(0 , 3 , 1 , 2 ) _snake_case : Tuple = torch.from_numpy(lowerCAmelCase_ ) return 2.0 * image - 1.0 class lowerCamelCase (a__ ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , ) -> int: """simple docstring""" super().__init__() self.register_modules(vqvae=UpperCAmelCase__ , unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) @torch.no_grad() def __call__( self , lowercase__ = None , lowercase__ = 1 , lowercase__ = 100 , lowercase__ = 0.0 , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , ) -> List[str]: """simple docstring""" if isinstance(UpperCAmelCase__ , PIL.Image.Image ): _snake_case : Optional[int] = 1 elif isinstance(UpperCAmelCase__ , torch.Tensor ): _snake_case : Any = image.shape[0] else: raise ValueError(F'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(UpperCAmelCase__ )}''' ) if isinstance(UpperCAmelCase__ , PIL.Image.Image ): _snake_case : Optional[Any] = preprocess(UpperCAmelCase__ ) _snake_case : Union[str, Any] = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image _snake_case : List[Any] = (batch_size, self.unet.config.in_channels // 2, height, width) _snake_case : str = next(self.unet.parameters() ).dtype _snake_case : Dict = randn_tensor(UpperCAmelCase__ , generator=UpperCAmelCase__ , device=self.device , dtype=UpperCAmelCase__ ) _snake_case : Any = image.to(device=self.device , dtype=UpperCAmelCase__ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(UpperCAmelCase__ , device=self.device ) _snake_case : Optional[Any] = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler _snake_case : Union[str, Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _snake_case : Any = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _snake_case : Optional[Any] = {} if accepts_eta: _snake_case : Dict = eta for t in self.progress_bar(UpperCAmelCase__ ): # concat latents and low resolution image in the channel dimension. _snake_case : Optional[int] = torch.cat([latents, image] , dim=1 ) _snake_case : str = self.scheduler.scale_model_input(UpperCAmelCase__ , UpperCAmelCase__ ) # predict the noise residual _snake_case : int = self.unet(UpperCAmelCase__ , UpperCAmelCase__ ).sample # compute the previous noisy sample x_t -> x_t-1 _snake_case : Any = self.scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample # decode the image latents with the VQVAE _snake_case : Optional[int] = self.vqvae.decode(UpperCAmelCase__ ).sample _snake_case : int = torch.clamp(UpperCAmelCase__ , -1.0 , 1.0 ) _snake_case : Dict = image / 2 + 0.5 _snake_case : int = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _snake_case : Any = self.numpy_to_pil(UpperCAmelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase__ )
717
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase : Optional[int] = logging.get_logger(__name__) UpperCAmelCase : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase : Any = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } UpperCAmelCase : Optional[Any] = { 'gpt-neox-20b': 2_0_4_8, } class lowerCamelCase (a__ ): _lowercase : Optional[int] = VOCAB_FILES_NAMES _lowercase : str = PRETRAINED_VOCAB_FILES_MAP _lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Optional[int] = ["""input_ids""", """attention_mask"""] def __init__( self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="<|endoftext|>" , lowercase__="<|endoftext|>" , lowercase__="<|endoftext|>" , lowercase__=False , **lowercase__ , ) -> List[Any]: """simple docstring""" super().__init__( lowercase__ , lowercase__ , tokenizer_file=lowercase__ , unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , add_prefix_space=lowercase__ , **lowercase__ , ) _snake_case : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowercase__ ) != add_prefix_space: _snake_case : int = getattr(lowercase__ , pre_tok_state.pop('''type''' ) ) _snake_case : int = add_prefix_space _snake_case : Optional[Any] = pre_tok_class(**lowercase__ ) _snake_case : List[str] = add_prefix_space def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> Tuple[str]: """simple docstring""" _snake_case : Optional[int] = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> List[int]: """simple docstring""" _snake_case : List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase__ , add_special_tokens=lowercase__ ) + [self.eos_token_id] ) if len(lowercase__ ) > self.model_max_length: _snake_case : Dict = input_ids[-self.model_max_length :] return input_ids
47
0
'''simple docstring''' def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return round(float(moles / volume ) * nfactor ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return round(float((moles * 0.0_821 * temperature) / (volume) ) ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return round(float((moles * 0.0_821 * temperature) / (pressure) ) ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return round(float((pressure * volume) / (0.0_821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
718
'''simple docstring''' import math from numpy import inf from scipy.integrate import quad def _a ( lowerCAmelCase_ ): """simple docstring""" if num <= 0: raise ValueError('''math domain error''' ) return quad(lowerCAmelCase_ , 0 , lowerCAmelCase_ , args=(lowerCAmelCase_) )[0] def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return math.pow(lowerCAmelCase_ , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
47
0
'''simple docstring''' import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class lowerCamelCase (__lowerCamelCase ): def __init__( self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=99 , lowercase__=32 , lowercase__=5 , lowercase__=4 , lowercase__=37 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=512 , lowercase__=16 , lowercase__=2 , lowercase__=0.02 , lowercase__=3 , lowercase__=4 , lowercase__=None , ) -> Optional[Any]: """simple docstring""" _snake_case : Tuple = parent _snake_case : List[Any] = batch_size _snake_case : Optional[Any] = seq_length _snake_case : Any = is_training _snake_case : Any = use_input_mask _snake_case : Union[str, Any] = use_token_type_ids _snake_case : Any = use_labels _snake_case : Tuple = vocab_size _snake_case : Any = hidden_size _snake_case : str = num_hidden_layers _snake_case : Dict = num_attention_heads _snake_case : List[Any] = intermediate_size _snake_case : str = hidden_act _snake_case : str = hidden_dropout_prob _snake_case : Optional[int] = attention_probs_dropout_prob _snake_case : Optional[int] = max_position_embeddings _snake_case : List[str] = type_vocab_size _snake_case : Union[str, Any] = type_sequence_label_size _snake_case : Dict = initializer_range _snake_case : List[Any] = num_labels _snake_case : Optional[Any] = num_choices _snake_case : int = scope def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case : Union[str, Any] = None if self.use_input_mask: _snake_case : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case : Optional[int] = None _snake_case : Union[str, Any] = None _snake_case : Tuple = None if self.use_labels: _snake_case : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case : str = ids_tensor([self.batch_size] , self.num_choices ) _snake_case : Tuple = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Optional[int]: """simple docstring""" _snake_case : Optional[Any] = DistilBertModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() _snake_case : str = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _snake_case : int = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Any: """simple docstring""" _snake_case : List[Any] = DistilBertForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() _snake_case : Tuple = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> List[str]: """simple docstring""" _snake_case : int = DistilBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() _snake_case : Dict = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Tuple: """simple docstring""" _snake_case : Union[str, Any] = self.num_labels _snake_case : Optional[int] = DistilBertForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() _snake_case : List[str] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Dict: """simple docstring""" _snake_case : Union[str, Any] = self.num_labels _snake_case : Any = DistilBertForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() _snake_case : Dict = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> List[str]: """simple docstring""" _snake_case : List[str] = self.num_choices _snake_case : Optional[Any] = DistilBertForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() _snake_case : List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case : Optional[int] = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" _snake_case : int = self.prepare_config_and_inputs() ((_snake_case) , (_snake_case) , (_snake_case) , (_snake_case) , (_snake_case) , (_snake_case)) : str = config_and_inputs _snake_case : Dict = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ): _lowercase : Any = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) _lowercase : Tuple = ( { """feature-extraction""": DistilBertModel, """fill-mask""": DistilBertForMaskedLM, """question-answering""": DistilBertForQuestionAnswering, """text-classification""": DistilBertForSequenceClassification, """token-classification""": DistilBertForTokenClassification, """zero-shot""": DistilBertForSequenceClassification, } if is_torch_available() else {} ) _lowercase : Any = True _lowercase : List[Any] = True _lowercase : str = True _lowercase : List[str] = True def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : Union[str, Any] = DistilBertModelTester(self ) _snake_case : Tuple = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , dim=37 ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" _snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*SCREAMING_SNAKE_CASE_ ) @slow def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[str] = DistilBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @slow @require_torch_gpu def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return _snake_case : Union[str, Any] = True _snake_case : Tuple = model_class(config=SCREAMING_SNAKE_CASE_ ) _snake_case : int = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _snake_case : str = torch.jit.trace( SCREAMING_SNAKE_CASE_ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , '''traced_model.pt''' ) ) _snake_case : int = torch.jit.load(os.path.join(SCREAMING_SNAKE_CASE_ , '''traced_model.pt''' ) , map_location=SCREAMING_SNAKE_CASE_ ) loaded(inputs_dict['''input_ids'''].to(SCREAMING_SNAKE_CASE_ ) , inputs_dict['''attention_mask'''].to(SCREAMING_SNAKE_CASE_ ) ) @require_torch class lowerCamelCase (unittest.TestCase ): @slow def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" _snake_case : Optional[Any] = DistilBertModel.from_pretrained('''distilbert-base-uncased''' ) _snake_case : List[str] = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _snake_case : int = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _snake_case : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )[0] _snake_case : str = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) _snake_case : Union[str, Any] = torch.tensor( [[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
719
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class lowerCamelCase (unittest.TestCase ): @slow def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Union[str, Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Any = TFAutoModel.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : str = AutoModel.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Optional[Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Dict = TFAutoModelForPreTraining.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Tuple = AutoModelForPreTraining.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Optional[int] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained(lowercase__ , from_pt=lowercase__ ) _snake_case , _snake_case : Tuple = TFAutoModelForCausalLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained(lowercase__ , from_tf=lowercase__ ) _snake_case , _snake_case : Optional[Any] = AutoModelForCausalLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Tuple = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : int = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[str] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(lowercase__ , from_pt=lowercase__ ) _snake_case , _snake_case : List[str] = TFAutoModelForMaskedLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : int = AutoModelForMaskedLM.from_pretrained(lowercase__ , from_tf=lowercase__ ) _snake_case , _snake_case : Optional[int] = AutoModelForMaskedLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[str] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(lowercase__ , from_pt=lowercase__ ) _snake_case , _snake_case : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : List[str] = AutoModelForSeqaSeqLM.from_pretrained(lowercase__ , from_tf=lowercase__ ) _snake_case , _snake_case : Dict = AutoModelForSeqaSeqLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Any = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Any = TFAutoModelForSequenceClassification.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Dict = AutoModelForSequenceClassification.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : str = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : str = TFAutoModelForQuestionAnswering.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Union[str, Any] = AutoModelForQuestionAnswering.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : Union[str, Any] = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 ) _snake_case : Tuple = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : List[str] = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 ) _snake_case : int = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 )
47
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
720
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : Dict = {'configuration_timm_backbone': ['TimmBackboneConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = ['TimmBackbone'] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
47
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : int = logging.get_logger(__name__) UpperCAmelCase : List[str] = { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/config.json', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/config.json', 'funnel-transformer/medium-base': 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json', 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/config.json', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json', 'funnel-transformer/xlarge-base': 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json', } class lowerCamelCase (lowercase__ ): _lowercase : Any = """funnel""" _lowercase : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", } def __init__( self , lowercase__=30_522 , lowercase__=[4, 4, 4] , lowercase__=None , lowercase__=2 , lowercase__=768 , lowercase__=12 , lowercase__=64 , lowercase__=3_072 , lowercase__="gelu_new" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=None , lowercase__=1E-9 , lowercase__="mean" , lowercase__="relative_shift" , lowercase__=True , lowercase__=True , lowercase__=True , **lowercase__ , ) -> Dict: """simple docstring""" _snake_case : List[str] = vocab_size _snake_case : Dict = block_sizes _snake_case : List[str] = [1] * len(UpperCAmelCase__ ) if block_repeats is None else block_repeats assert len(UpperCAmelCase__ ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." _snake_case : List[str] = num_decoder_layers _snake_case : Union[str, Any] = d_model _snake_case : List[str] = n_head _snake_case : List[str] = d_head _snake_case : Dict = d_inner _snake_case : Any = hidden_act _snake_case : str = hidden_dropout _snake_case : Optional[int] = attention_dropout _snake_case : List[Any] = activation_dropout _snake_case : List[str] = initializer_range _snake_case : Union[str, Any] = initializer_std _snake_case : Dict = layer_norm_eps assert pooling_type in [ "mean", "max", ], F'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.''' _snake_case : Optional[Any] = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.''' _snake_case : str = attention_type _snake_case : List[str] = separate_cls _snake_case : Tuple = truncate_seq _snake_case : List[Any] = pool_q_only super().__init__(**UpperCAmelCase__ ) @property def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" return sum(self.block_sizes ) @num_hidden_layers.setter def UpperCAmelCase_ ( self , lowercase__ ) -> Dict: """simple docstring""" raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''' ) @property def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" return len(self.block_sizes ) @num_blocks.setter def UpperCAmelCase_ ( self , lowercase__ ) -> List[Any]: """simple docstring""" raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''' )
721
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version UpperCAmelCase : Tuple = logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') UpperCAmelCase : str = { 'base': AutoModel, 'sequence-classification': AutoModelForSequenceClassification, 'question-answering': AutoModelForQuestionAnswering, 'pretraining': AutoModelForPreTraining, 'token-classification': AutoModelForTokenClassification, 'language-modeling': AutoModelWithLMHead, 'summarization': AutoModelForSeqaSeqLM, 'translation': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization UpperCAmelCase : Optional[Any] = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } UpperCAmelCase : Tuple = sorted(arg_to_scheduler.keys()) UpperCAmelCase : Optional[Any] = '{' + ', '.join(arg_to_scheduler_choices) + '}' class lowerCamelCase (pl.LightningModule ): def __init__( self , lowercase__ , lowercase__=None , lowercase__="base" , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ , ) -> Optional[int]: """simple docstring""" super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(lowercase__ ) _snake_case : Union[str, Any] = 0 _snake_case : int = Path(self.hparams.output_dir ) _snake_case : int = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: _snake_case : Tuple = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=lowercase__ , **lowercase__ , ) else: _snake_case : PretrainedConfig = config _snake_case : Optional[Any] = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(self.hparams , lowercase__ , lowercase__ ): assert hasattr(self.config , lowercase__ ), F'''model config doesn\'t have a `{p}` attribute''' setattr(self.config , lowercase__ , getattr(self.hparams , lowercase__ ) ) if tokenizer is None: _snake_case : Optional[int] = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=lowercase__ , ) else: _snake_case : PreTrainedTokenizer = tokenizer _snake_case : Any = MODEL_MODES[mode] if model is None: _snake_case : List[Any] = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=lowercase__ , ) else: _snake_case : Optional[Any] = model def UpperCAmelCase_ ( self , *lowercase__ , **lowercase__ ) -> List[str]: """simple docstring""" _snake_case : Dict = self.model_type.from_pretrained(*lowercase__ , **lowercase__ ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Optional[int] = arg_to_scheduler[self.hparams.lr_scheduler] _snake_case : Optional[int] = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) _snake_case : str = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1} return scheduler def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Any = self.model _snake_case : List[Any] = ['''bias''', '''LayerNorm.weight'''] _snake_case : List[str] = [ { '''params''': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters '''weight_decay''': self.hparams.weight_decay, }, { '''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] if self.hparams.adafactor: _snake_case : Any = Adafactor( lowercase__ , lr=self.hparams.learning_rate , scale_parameter=lowercase__ , relative_step=lowercase__ ) else: _snake_case : List[str] = AdamW( lowercase__ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) _snake_case : List[str] = optimizer _snake_case : Any = self.get_lr_scheduler() return [optimizer], [scheduler] def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Any: """simple docstring""" return self.validation_step(lowercase__ , lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> Tuple: """simple docstring""" return self.validation_end(lowercase__ ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Any = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores _snake_case : Optional[int] = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def UpperCAmelCase_ ( self , lowercase__ ) -> Any: """simple docstring""" if stage == "test": _snake_case : Any = len(self.test_dataloader().dataset ) else: _snake_case : Dict = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=lowercase__ ) _snake_case : Optional[int] = len(self.train_dataloader().dataset ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = False ) -> str: """simple docstring""" raise NotImplementedError('''You must implement this for your task''' ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" return self.train_loader def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=lowercase__ ) def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> Optional[int]: """simple docstring""" return os.path.join( self.hparams.data_dir , '''cached_{}_{}_{}'''.format( lowercase__ , list(filter(lowercase__ , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def UpperCAmelCase_ ( self , lowercase__ ) -> None: """simple docstring""" _snake_case : Dict = self.output_dir.joinpath('''best_tfmr''' ) _snake_case : Tuple = self.step_count self.model.save_pretrained(lowercase__ ) self.tokenizer.save_pretrained(lowercase__ ) @staticmethod def UpperCAmelCase_ ( lowercase__ , lowercase__ ) -> Tuple: """simple docstring""" parser.add_argument( '''--model_name_or_path''' , default=lowercase__ , type=lowercase__ , required=lowercase__ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--config_name''' , default='''''' , type=lowercase__ , help='''Pretrained config name or path if not the same as model_name''' ) parser.add_argument( '''--tokenizer_name''' , default=lowercase__ , type=lowercase__ , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument( '''--cache_dir''' , default=str(Path(lowercase__ ).parent / '''test_run''' / '''cache''' ) , type=lowercase__ , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , ) parser.add_argument( '''--encoder_layerdrop''' , type=lowercase__ , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--decoder_layerdrop''' , type=lowercase__ , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--dropout''' , type=lowercase__ , help='''Dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--attention_dropout''' , type=lowercase__ , help='''Attention dropout probability (Optional). Goes into model.config''' , ) parser.add_argument('''--learning_rate''' , default=5E-5 , type=lowercase__ , help='''The initial learning rate for Adam.''' ) parser.add_argument( '''--lr_scheduler''' , default='''linear''' , choices=lowercase__ , metavar=lowercase__ , type=lowercase__ , help='''Learning rate scheduler''' , ) parser.add_argument('''--weight_decay''' , default=0.0 , type=lowercase__ , help='''Weight decay if we apply some.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=lowercase__ , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--warmup_steps''' , default=0 , type=lowercase__ , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--num_workers''' , default=4 , type=lowercase__ , help='''kwarg passed to DataLoader''' ) parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=lowercase__ ) parser.add_argument('''--train_batch_size''' , default=32 , type=lowercase__ ) parser.add_argument('''--eval_batch_size''' , default=32 , type=lowercase__ ) parser.add_argument('''--adafactor''' , action='''store_true''' ) class lowerCamelCase (pl.Callback ): def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> str: """simple docstring""" if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class lowerCamelCase (pl.Callback ): def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> List[str]: """simple docstring""" for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(lowercase__ ) class lowerCamelCase (pl.Callback ): def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Any: """simple docstring""" _snake_case : Any = trainer.lr_schedulers[0]['''scheduler'''] _snake_case : Optional[int] = {F'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> List[str]: """simple docstring""" rank_zero_info('''***** Validation results *****''' ) _snake_case : Dict = trainer.callback_metrics # Log results for key in sorted(lowercase__ ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Dict: """simple docstring""" rank_zero_info('''***** Test results *****''' ) _snake_case : Dict = trainer.callback_metrics # Log and save results to file _snake_case : str = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' ) with open(lowercase__ , '''w''' ) as writer: for key in sorted(lowercase__ ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) ) writer.write('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" parser.add_argument( '''--output_dir''' , default=str(Path(lowerCAmelCase_ ).parent / '''test_run''' / '''model_checkpoints''' ) , type=lowerCAmelCase_ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=lowerCAmelCase_ , default='''O2''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=lowerCAmelCase_ ) parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=lowerCAmelCase_ , help='''Max gradient norm''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' ) parser.add_argument( '''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=lowerCAmelCase_ , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--seed''' , type=lowerCAmelCase_ , default=42 , help='''random seed for initialization''' ) parser.add_argument( '''--data_dir''' , default=str(Path(lowerCAmelCase_ ).parent / '''test_run''' / '''dummy-train-data''' ) , type=lowerCAmelCase_ , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_=[] , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , ): """simple docstring""" pl.seed_everything(args.seed ) # init model _snake_case : Union[str, Any] = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=lowerCAmelCase_ ) # add custom checkpoints if checkpoint_callback is None: _snake_case : Any = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(lowerCAmelCase_ ) if logging_callback is None: _snake_case : str = LoggingCallback() _snake_case : Tuple = {} if args.fpaa: _snake_case : Union[str, Any] = 16 if args.gpus > 1: _snake_case : Optional[Any] = '''auto''' _snake_case : Tuple = '''ddp''' _snake_case : Optional[Any] = args.accumulate_grad_batches _snake_case : Tuple = None _snake_case : str = '''auto''' _snake_case : int = pl.Trainer.from_argparse_args( lowerCAmelCase_ , weights_summary=lowerCAmelCase_ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase_ , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase_ , ) if args.do_train: trainer.fit(lowerCAmelCase_ ) else: print('''RAG modeling tests with new set functions successfuly executed!''' ) return trainer
47
0
'''simple docstring''' import requests UpperCAmelCase : List[str] = '' # <-- Put your OpenWeatherMap appid here! UpperCAmelCase : Optional[Any] = 'https://api.openweathermap.org/data/2.5/' def _a ( lowerCAmelCase_ = "Chicago" , lowerCAmelCase_ = APPID ): """simple docstring""" return requests.get(URL_BASE + '''weather''' , params=locals() ).json() def _a ( lowerCAmelCase_ = "Kolkata, India" , lowerCAmelCase_ = APPID ): """simple docstring""" return requests.get(URL_BASE + '''forecast''' , params=locals() ).json() def _a ( lowerCAmelCase_ = 55.68 , lowerCAmelCase_ = 12.57 , lowerCAmelCase_ = APPID ): """simple docstring""" return requests.get(URL_BASE + '''onecall''' , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: UpperCAmelCase : Union[str, Any] = input('Enter a location:').strip() if location: pprint(current_weather(location)) else: break
700
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : Dict = { 'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowerCamelCase (a__ ): _lowercase : List[str] = """sew-d""" def __init__( self , lowercase__=32 , lowercase__=768 , lowercase__=12 , lowercase__=12 , lowercase__=3_072 , lowercase__=2 , lowercase__=512 , lowercase__=256 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.02 , lowercase__=1E-7 , lowercase__=1E-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=128 , lowercase__=16 , lowercase__=True , lowercase__=0.05 , lowercase__=10 , lowercase__=2 , lowercase__=0.0 , lowercase__=10 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=256 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ) -> Dict: """simple docstring""" super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ ) _snake_case : List[str] = hidden_size _snake_case : Optional[Any] = feat_extract_norm _snake_case : Tuple = feat_extract_activation _snake_case : Tuple = list(lowercase__ ) _snake_case : Any = list(lowercase__ ) _snake_case : Any = list(lowercase__ ) _snake_case : Any = conv_bias _snake_case : List[Any] = num_conv_pos_embeddings _snake_case : Any = num_conv_pos_embedding_groups _snake_case : Union[str, Any] = len(self.conv_dim ) _snake_case : Optional[Any] = num_hidden_layers _snake_case : Optional[int] = intermediate_size _snake_case : Any = squeeze_factor _snake_case : Optional[Any] = max_position_embeddings _snake_case : Tuple = position_buckets _snake_case : Tuple = share_att_key _snake_case : Any = relative_attention _snake_case : Optional[int] = norm_rel_ebd _snake_case : Optional[Any] = list(lowercase__ ) _snake_case : List[Any] = hidden_act _snake_case : List[Any] = num_attention_heads _snake_case : Dict = hidden_dropout _snake_case : Tuple = attention_dropout _snake_case : Union[str, Any] = activation_dropout _snake_case : List[Any] = feat_proj_dropout _snake_case : Optional[int] = final_dropout _snake_case : Optional[Any] = layer_norm_eps _snake_case : Dict = feature_layer_norm_eps _snake_case : List[Any] = initializer_range _snake_case : Dict = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _snake_case : Union[str, Any] = apply_spec_augment _snake_case : Any = mask_time_prob _snake_case : List[str] = mask_time_length _snake_case : Dict = mask_time_min_masks _snake_case : Union[str, Any] = mask_feature_prob _snake_case : Tuple = mask_feature_length _snake_case : Union[str, Any] = mask_feature_min_masks # ctc loss _snake_case : Optional[Any] = ctc_loss_reduction _snake_case : Optional[Any] = ctc_zero_infinity # sequence classification _snake_case : List[Any] = use_weighted_layer_sum _snake_case : Any = classifier_proj_size @property def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
47
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : Union[str, Any] = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Tuple = ['XLNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = ['XLNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict = [ 'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLNetForMultipleChoice', 'XLNetForQuestionAnswering', 'XLNetForQuestionAnsweringSimple', 'XLNetForSequenceClassification', 'XLNetForTokenClassification', 'XLNetLMHeadModel', 'XLNetModel', 'XLNetPreTrainedModel', 'load_tf_weights_in_xlnet', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict = [ 'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLNetForMultipleChoice', 'TFXLNetForQuestionAnsweringSimple', 'TFXLNetForSequenceClassification', 'TFXLNetForTokenClassification', 'TFXLNetLMHeadModel', 'TFXLNetMainLayer', 'TFXLNetModel', 'TFXLNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys UpperCAmelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
701
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : List[Any] = 0 if start < end: _snake_case : List[Any] = randint(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Any = a[end] _snake_case : List[str] = a[pivot] _snake_case : Optional[int] = temp _snake_case , _snake_case : List[Any] = _in_place_partition(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) count += _in_place_quick_sort(lowerCAmelCase_ , lowerCAmelCase_ , p - 1 ) count += _in_place_quick_sort(lowerCAmelCase_ , p + 1 , lowerCAmelCase_ ) return count def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = 0 _snake_case : Optional[int] = randint(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Tuple = a[end] _snake_case : Optional[Any] = a[pivot] _snake_case : Union[str, Any] = temp _snake_case : Union[str, Any] = start - 1 for index in range(lowerCAmelCase_ , lowerCAmelCase_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _snake_case : Optional[int] = new_pivot_index + 1 _snake_case : Optional[Any] = a[new_pivot_index] _snake_case : Tuple = a[index] _snake_case : str = temp _snake_case : Any = a[new_pivot_index + 1] _snake_case : str = a[end] _snake_case : Optional[int] = temp return new_pivot_index + 1, count UpperCAmelCase : Dict = TemporaryFile() UpperCAmelCase : Dict = 1_0_0 # 1000 elements are to be sorted UpperCAmelCase, UpperCAmelCase : str = 0, 1 # mean and standard deviation UpperCAmelCase : Optional[Any] = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array UpperCAmelCase : int = np.load(outfile) UpperCAmelCase : Optional[int] = len(M) - 1 UpperCAmelCase : str = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
47
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase : Dict = { "configuration_groupvit": [ "GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GroupViTConfig", "GroupViTOnnxConfig", "GroupViTTextConfig", "GroupViTVisionConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[int] = [ "GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GroupViTModel", "GroupViTPreTrainedModel", "GroupViTTextModel", "GroupViTVisionModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : int = [ "TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFGroupViTModel", "TFGroupViTPreTrainedModel", "TFGroupViTTextModel", "TFGroupViTVisionModel", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys UpperCAmelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
702
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
47
0
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : int = logging.get_logger(__name__) # TODO Update this UpperCAmelCase : Optional[int] = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class lowerCamelCase (snake_case__ ): _lowercase : str = """esm""" def __init__( self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=768 , lowercase__=12 , lowercase__=12 , lowercase__=3_072 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=1_026 , lowercase__=0.02 , lowercase__=1E-1_2 , lowercase__="absolute" , lowercase__=True , lowercase__=None , lowercase__=False , lowercase__=False , lowercase__=None , lowercase__=None , **lowercase__ , ) -> Tuple: """simple docstring""" super().__init__(pad_token_id=lowercase_ , mask_token_id=lowercase_ , **lowercase_ ) _snake_case : Optional[Any] = vocab_size _snake_case : Optional[int] = hidden_size _snake_case : List[Any] = num_hidden_layers _snake_case : str = num_attention_heads _snake_case : Optional[int] = intermediate_size _snake_case : Optional[Any] = hidden_dropout_prob _snake_case : Union[str, Any] = attention_probs_dropout_prob _snake_case : Tuple = max_position_embeddings _snake_case : Tuple = initializer_range _snake_case : List[Any] = layer_norm_eps _snake_case : List[str] = position_embedding_type _snake_case : List[Any] = use_cache _snake_case : Dict = emb_layer_norm_before _snake_case : str = token_dropout _snake_case : Any = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) _snake_case : Optional[int] = EsmFoldConfig() elif isinstance(lowercase_ , lowercase_ ): _snake_case : List[Any] = EsmFoldConfig(**lowercase_ ) _snake_case : Dict = esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) _snake_case : List[str] = get_default_vocab_list() else: _snake_case : Dict = vocab_list else: _snake_case : Dict = None _snake_case : int = None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , lowercase_ ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" _snake_case : List[Any] = super().to_dict() if isinstance(self.esmfold_config , lowercase_ ): _snake_case : Tuple = self.esmfold_config.to_dict() return output @dataclass class lowerCamelCase : _lowercase : str = None _lowercase : Dict = True _lowercase : List[Any] = False _lowercase : Dict = False _lowercase : List[Any] = False _lowercase : List[Any] = 0 _lowercase : str = True _lowercase : Optional[int] = False _lowercase : Tuple = 128 _lowercase : int = None def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" if self.trunk is None: _snake_case : List[str] = TrunkConfig() elif isinstance(self.trunk , lowercase_ ): _snake_case : str = TrunkConfig(**self.trunk ) def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" _snake_case : str = asdict(self ) _snake_case : Optional[Any] = self.trunk.to_dict() return output @dataclass class lowerCamelCase : _lowercase : Optional[int] = 48 _lowercase : Optional[int] = 1_024 _lowercase : Optional[Any] = 128 _lowercase : Tuple = 32 _lowercase : str = 32 _lowercase : Tuple = 32 _lowercase : str = 0 _lowercase : Optional[int] = 0 _lowercase : List[Any] = False _lowercase : Dict = 4 _lowercase : List[str] = 128 _lowercase : str = None def UpperCAmelCase_ ( self ) -> int: """simple docstring""" if self.structure_module is None: _snake_case : str = StructureModuleConfig() elif isinstance(self.structure_module , lowercase_ ): _snake_case : List[Any] = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' F''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' F''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) _snake_case : str = self.sequence_state_dim // self.sequence_head_width _snake_case : Tuple = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' F''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' F''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(F'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : str = asdict(self ) _snake_case : int = self.structure_module.to_dict() return output @dataclass class lowerCamelCase : _lowercase : str = 384 _lowercase : Tuple = 128 _lowercase : str = 16 _lowercase : Optional[Any] = 128 _lowercase : int = 12 _lowercase : Optional[Any] = 4 _lowercase : Tuple = 8 _lowercase : Dict = 0.1 _lowercase : Tuple = 8 _lowercase : Union[str, Any] = 1 _lowercase : List[str] = 2 _lowercase : Optional[Any] = 7 _lowercase : int = 10 _lowercase : str = 1E-8 _lowercase : Optional[int] = 1E5 def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" return asdict(self ) def _a ( ): """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
703
'''simple docstring''' from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def _a ( ): """simple docstring""" _snake_case : List[Any] = ArgumentParser('''Transformers CLI tool''' , usage='''transformers-cli <command> [<args>]''' ) _snake_case : List[str] = parser.add_subparsers(help='''transformers-cli command helpers''' ) # Register commands ConvertCommand.register_subcommand(lowerCAmelCase_ ) DownloadCommand.register_subcommand(lowerCAmelCase_ ) EnvironmentCommand.register_subcommand(lowerCAmelCase_ ) RunCommand.register_subcommand(lowerCAmelCase_ ) ServeCommand.register_subcommand(lowerCAmelCase_ ) UserCommands.register_subcommand(lowerCAmelCase_ ) AddNewModelCommand.register_subcommand(lowerCAmelCase_ ) AddNewModelLikeCommand.register_subcommand(lowerCAmelCase_ ) LfsCommands.register_subcommand(lowerCAmelCase_ ) PTtoTFCommand.register_subcommand(lowerCAmelCase_ ) # Let's go _snake_case : str = parser.parse_args() if not hasattr(lowerCAmelCase_ , '''func''' ): parser.print_help() exit(1 ) # Run _snake_case : Union[str, Any] = args.func(lowerCAmelCase_ ) service.run() if __name__ == "__main__": main()
47
0
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCAmelCase : Tuple = logging.get_logger(__name__) UpperCAmelCase : List[str] = Dict[str, Any] UpperCAmelCase : int = List[Prediction] @add_end_docstrings(_UpperCAmelCase ) class lowerCamelCase (_UpperCAmelCase ): def __init__( self , *lowercase__ , **lowercase__ ) -> List[str]: """simple docstring""" super().__init__(*A_ , **A_ ) if self.framework == "tf": raise ValueError(F'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , '''vision''' ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def UpperCAmelCase_ ( self , **lowercase__ ) -> Tuple: """simple docstring""" _snake_case : Optional[int] = {} if "threshold" in kwargs: _snake_case : List[Any] = kwargs['''threshold'''] return {}, {}, postprocess_kwargs def __call__( self , *lowercase__ , **lowercase__ ) -> Union[Predictions, List[Prediction]]: """simple docstring""" return super().__call__(*A_ , **A_ ) def UpperCAmelCase_ ( self , lowercase__ ) -> List[str]: """simple docstring""" _snake_case : Optional[Any] = load_image(A_ ) _snake_case : str = torch.IntTensor([[image.height, image.width]] ) _snake_case : str = self.image_processor(images=[image] , return_tensors='''pt''' ) if self.tokenizer is not None: _snake_case : Optional[int] = self.tokenizer(text=inputs['''words'''] , boxes=inputs['''boxes'''] , return_tensors='''pt''' ) _snake_case : str = target_size return inputs def UpperCAmelCase_ ( self , lowercase__ ) -> Tuple: """simple docstring""" _snake_case : Tuple = model_inputs.pop('''target_size''' ) _snake_case : Union[str, Any] = self.model(**A_ ) _snake_case : Optional[int] = outputs.__class__({'''target_size''': target_size, **outputs} ) if self.tokenizer is not None: _snake_case : Tuple = model_inputs['''bbox'''] return model_outputs def UpperCAmelCase_ ( self , lowercase__ , lowercase__=0.9 ) -> List[str]: """simple docstring""" _snake_case : List[str] = model_outputs['''target_size'''] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. _snake_case , _snake_case : Optional[int] = target_size[0].tolist() def unnormalize(lowercase__ ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1_000), (height * bbox[1] / 1_000), (width * bbox[2] / 1_000), (height * bbox[3] / 1_000), ] ) ) _snake_case , _snake_case : Union[str, Any] = model_outputs['''logits'''].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) _snake_case : Any = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] _snake_case : Optional[Any] = [unnormalize(A_ ) for bbox in model_outputs['''bbox'''].squeeze(0 )] _snake_case : Dict = ['''score''', '''label''', '''box'''] _snake_case : Union[str, Any] = [dict(zip(A_ , A_ ) ) for vals in zip(scores.tolist() , A_ , A_ ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel _snake_case : Union[str, Any] = self.image_processor.post_process_object_detection(A_ , A_ , A_ ) _snake_case : List[str] = raw_annotations[0] _snake_case : List[str] = raw_annotation['''scores'''] _snake_case : Optional[int] = raw_annotation['''labels'''] _snake_case : int = raw_annotation['''boxes'''] _snake_case : Tuple = scores.tolist() _snake_case : List[str] = [self.model.config.idalabel[label.item()] for label in labels] _snake_case : Union[str, Any] = [self._get_bounding_box(A_ ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] _snake_case : List[Any] = ['''score''', '''label''', '''box'''] _snake_case : Dict = [ dict(zip(A_ , A_ ) ) for vals in zip(raw_annotation['''scores'''] , raw_annotation['''labels'''] , raw_annotation['''boxes'''] ) ] return annotation def UpperCAmelCase_ ( self , lowercase__ ) -> Dict[str, int]: """simple docstring""" if self.framework != "pt": raise ValueError('''The ObjectDetectionPipeline is only available in PyTorch.''' ) _snake_case , _snake_case , _snake_case , _snake_case : int = box.int().tolist() _snake_case : int = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
704
'''simple docstring''' from collections.abc import Generator def _a ( ): """simple docstring""" _snake_case , _snake_case : Union[str, Any] = 0, 1 while True: _snake_case , _snake_case : List[str] = b, a + b yield b def _a ( lowerCAmelCase_ = 1_000 ): """simple docstring""" _snake_case : List[str] = 1 _snake_case : Dict = fibonacci_generator() while len(str(next(lowerCAmelCase_ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
47
0
'''simple docstring''' from __future__ import annotations def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Tuple = position _snake_case : List[Any] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] _snake_case : Optional[Any] = [] for position in positions: _snake_case : Union[str, Any] = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(_lowerCamelCase ) return permissible_positions def _a ( lowerCAmelCase_ ): """simple docstring""" return not any(elem == 0 for row in board for elem in row ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if is_complete(_lowerCamelCase ): return True for position in get_valid_pos(_lowerCamelCase , len(_lowerCamelCase ) ): _snake_case : List[str] = position if board[y][x] == 0: _snake_case : Optional[Any] = curr + 1 if open_knight_tour_helper(_lowerCamelCase , _lowerCamelCase , curr + 1 ): return True _snake_case : int = 0 return False def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Any = [[0 for i in range(_lowerCamelCase )] for j in range(_lowerCamelCase )] for i in range(_lowerCamelCase ): for j in range(_lowerCamelCase ): _snake_case : Optional[int] = 1 if open_knight_tour_helper(_lowerCamelCase , (i, j) , 1 ): return board _snake_case : Any = 0 _snake_case : Optional[int] = f'''Open Kight Tour cannot be performed on a board of size {n}''' raise ValueError(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
705
'''simple docstring''' import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor UpperCAmelCase : str = logging.getLogger(__name__) UpperCAmelCase : Dict = 5_0 # max width of layer names UpperCAmelCase : Union[str, Any] = 7_0 # max width of quantizer names def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Dict = parser.add_argument_group('''quant_trainer arguments''' ) group.add_argument('''--wprec''' , type=lowerCAmelCase_ , default=8 , help='''weight precision''' ) group.add_argument('''--aprec''' , type=lowerCAmelCase_ , default=8 , help='''activation precision''' ) group.add_argument('''--quant-per-tensor''' , action='''store_true''' , help='''per tensor weight scaling''' ) group.add_argument('''--quant-disable''' , action='''store_true''' , help='''disable all quantizers''' ) group.add_argument('''--quant-disable-embeddings''' , action='''store_true''' , help='''disable all embeddings quantizers''' ) group.add_argument('''--quant-disable-keyword''' , type=lowerCAmelCase_ , nargs='''+''' , help='''disable quantizers by keyword''' ) group.add_argument('''--quant-disable-layer-module''' , type=lowerCAmelCase_ , help='''disable quantizers by keyword under layer.''' ) group.add_argument('''--quant-enable-layer-module''' , type=lowerCAmelCase_ , help='''enable quantizers by keyword under layer''' ) group.add_argument('''--calibrator''' , default='''max''' , help='''which quantization range calibrator to use''' ) group.add_argument('''--percentile''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help='''percentile for PercentileCalibrator''' ) group.add_argument('''--fuse-qkv''' , action='''store_true''' , help='''use the same scale factor for qkv''' ) group.add_argument('''--clip-gelu''' , metavar='''N''' , type=lowerCAmelCase_ , help='''clip gelu output maximum value to N''' ) group.add_argument( '''--recalibrate-weights''' , action='''store_true''' , help=( '''recalibrate weight amaxes by taking the max of the weights.''' ''' amaxes will be computed with the current quantization granularity (axis).''' ) , ) def _a ( lowerCAmelCase_ ): """simple docstring""" if args.calibrator == "max": _snake_case : Optional[int] = '''max''' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('''Specify --percentile when using percentile calibrator''' ) _snake_case : Tuple = '''histogram''' elif args.calibrator == "mse": _snake_case : int = '''histogram''' else: raise ValueError(f'''Invalid calibrator {args.calibrator}''' ) _snake_case : Tuple = QuantDescriptor(num_bits=args.aprec , calib_method=lowerCAmelCase_ ) _snake_case : str = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(lowerCAmelCase_ ) quant_nn.QuantLinear.set_default_quant_desc_weight(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False , lowerCAmelCase_=False ): """simple docstring""" logger.info('''Configuring Model for Quantization''' ) logger.info(f'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(lowerCAmelCase_ , ['''embeddings'''] , which='''weight''' , _disabled=lowerCAmelCase_ ) if args.quant_disable: set_quantizer_by_name(lowerCAmelCase_ , [''''''] , _disabled=lowerCAmelCase_ ) if args.quant_disable_keyword: set_quantizer_by_name(lowerCAmelCase_ , args.quant_disable_keyword , _disabled=lowerCAmelCase_ ) if args.quant_disable_layer_module: set_quantizer_by_name(lowerCAmelCase_ , [R'''layer.\d+.''' + args.quant_disable_layer_module] , _disabled=lowerCAmelCase_ ) if args.quant_enable_layer_module: set_quantizer_by_name(lowerCAmelCase_ , [R'''layer.\d+.''' + args.quant_enable_layer_module] , _disabled=lowerCAmelCase_ ) if args.recalibrate_weights: recalibrate_weights(lowerCAmelCase_ ) if args.fuse_qkv: fuse_qkv(lowerCAmelCase_ , lowerCAmelCase_ ) if args.clip_gelu: clip_gelu(lowerCAmelCase_ , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ ): """simple docstring""" logger.info('''Enabling Calibration''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(f'''{name:80}: {module}''' ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" logger.info('''Loading calibrated amax''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('''percentile''' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" def fusea(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): for mod in [qq, qk, qv]: if not hasattr(lowerCAmelCase_ , '''_amax''' ): print(''' WARNING: NO AMAX BUFFER''' ) return _snake_case : Tuple = qq._amax.detach().item() _snake_case : Tuple = qk._amax.detach().item() _snake_case : List[Any] = qv._amax.detach().item() _snake_case : List[str] = max(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) qq._amax.fill_(lowerCAmelCase_ ) qk._amax.fill_(lowerCAmelCase_ ) qv._amax.fill_(lowerCAmelCase_ ) logger.info(f''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith('''.attention.self''' ): logger.info(f'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if name.endswith('''.output.dense''' ) and not name.endswith('''attention.output.dense''' ): _snake_case : List[Any] = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=lowerCAmelCase_ ) _snake_case : List[str] = mod._input_quantizer._amax.data.detach().item() logger.info(f'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def _a ( lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ) and mod._weight_quantizer.axis is not None: _snake_case : Dict = mod.weight.shape[0] _snake_case : Optional[int] = mod._weight_quantizer._amax.detach() _snake_case : Optional[int] = torch.ones(lowerCAmelCase_ , dtype=amax.dtype , device=amax.device ) * amax print(f'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def _a ( lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ): if not hasattr(mod.weight_quantizer , '''_amax''' ): print('''RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER''' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) _snake_case : int = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) _snake_case : Dict = set(range(len(mod.weight.size() ) ) ) - axis_set _snake_case : Optional[int] = pytorch_quantization.utils.reduce_amax(mod.weight , axis=lowerCAmelCase_ , keepdims=lowerCAmelCase_ ).detach() logger.info(f'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) _snake_case : Tuple = amax def _a ( lowerCAmelCase_ , lowerCAmelCase_=25 , lowerCAmelCase_=180 , lowerCAmelCase_=None ): """simple docstring""" if ignore is None: _snake_case : Dict = [] elif not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Optional[int] = [ignore] _snake_case : str = 0 for name, mod in model.named_modules(): if not hasattr(lowerCAmelCase_ , '''weight''' ): continue _snake_case : Optional[int] = max(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) for name, mod in model.named_modules(): _snake_case : Optional[Any] = getattr(lowerCAmelCase_ , '''_input_quantizer''' , lowerCAmelCase_ ) _snake_case : Tuple = getattr(lowerCAmelCase_ , '''_weight_quantizer''' , lowerCAmelCase_ ) if not hasattr(lowerCAmelCase_ , '''weight''' ): continue if type(lowerCAmelCase_ ) in ignore: continue if [True for s in ignore if type(lowerCAmelCase_ ) is str and s in name]: continue _snake_case : Optional[int] = f'''Act:{input_q.extra_repr()}''' _snake_case : Any = f'''Wgt:{weight_q.extra_repr()}''' _snake_case : Optional[int] = f'''{name:{name_width}} {act_str} {wgt_str}''' if len(lowerCAmelCase_ ) <= line_width: logger.info(lowerCAmelCase_ ) else: logger.info(f'''{name:{name_width}} {act_str}''' ) logger.info(f'''{" ":{name_width}} {wgt_str}''' ) def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : str = 0 for name, mod in model.named_modules(): if isinstance(lowerCAmelCase_ , pytorch_quantization.nn.TensorQuantizer ): print(f'''{name:80} {mod}''' ) count += 1 print(f'''{count} TensorQuantizers found in model''' ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if quantizer_mod is not None: assert hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: logger.warning(f'''{name} has no {quantizer}''' ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_="both" , **lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = f'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' if which in ["input", "both"]: set_quantizer(lowerCAmelCase_ , lowerCAmelCase_ , '''_input_quantizer''' , lowerCAmelCase_ , lowerCAmelCase_ ) if which in ["weight", "both"]: set_quantizer(lowerCAmelCase_ , lowerCAmelCase_ , '''_weight_quantizer''' , lowerCAmelCase_ , lowerCAmelCase_ ) logger.info(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCAmelCase_ , '''_input_quantizer''' ) or hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ): for n in names: if re.search(lowerCAmelCase_ , lowerCAmelCase_ ): set_quantizers(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) elif name.endswith('''_quantizer''' ): for n in names: if re.search(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Any = f'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) logger.info(lowerCAmelCase_ )
47
0
'''simple docstring''' from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class lowerCamelCase (a__ ): _lowercase : int = """Salesforce/blip-image-captioning-base""" _lowercase : Union[str, Any] = ( """This is a tool that generates a description of an image. It takes an input named `image` which should be the """ """image to caption, and returns a text that contains the description in English.""" ) _lowercase : List[Any] = """image_captioner""" _lowercase : List[Any] = AutoModelForVisionaSeq _lowercase : Tuple = ["""image"""] _lowercase : str = ["""text"""] def __init__( self , *lowercase__ , **lowercase__ ) -> Tuple: """simple docstring""" requires_backends(self , ['''vision'''] ) super().__init__(*__UpperCamelCase , **__UpperCamelCase ) def UpperCAmelCase_ ( self , lowercase__ ) -> Optional[Any]: """simple docstring""" return self.pre_processor(images=__UpperCamelCase , return_tensors='''pt''' ) def UpperCAmelCase_ ( self , lowercase__ ) -> Optional[Any]: """simple docstring""" return self.model.generate(**__UpperCamelCase ) def UpperCAmelCase_ ( self , lowercase__ ) -> int: """simple docstring""" return self.pre_processor.batch_decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase )[0].strip()
706
'''simple docstring''' from __future__ import annotations def _a ( lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None ): """simple docstring""" if start is None: _snake_case : Optional[Any] = 0 if end is None: _snake_case : Any = len(lowerCAmelCase_ ) - 1 if start >= end: return _snake_case : Optional[Any] = (start + end) // 2 slowsort(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) slowsort(lowerCAmelCase_ , mid + 1 , lowerCAmelCase_ ) if sequence[end] < sequence[mid]: _snake_case , _snake_case : int = sequence[mid], sequence[end] slowsort(lowerCAmelCase_ , lowerCAmelCase_ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
47
0
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCAmelCase : str = logging.get_logger(__name__) UpperCAmelCase : Optional[Any] = OrderedDict( [ ('align', 'EfficientNetImageProcessor'), ('beit', 'BeitImageProcessor'), ('bit', 'BitImageProcessor'), ('blip', 'BlipImageProcessor'), ('blip-2', 'BlipImageProcessor'), ('bridgetower', 'BridgeTowerImageProcessor'), ('chinese_clip', 'ChineseCLIPImageProcessor'), ('clip', 'CLIPImageProcessor'), ('clipseg', 'ViTImageProcessor'), ('conditional_detr', 'ConditionalDetrImageProcessor'), ('convnext', 'ConvNextImageProcessor'), ('convnextv2', 'ConvNextImageProcessor'), ('cvt', 'ConvNextImageProcessor'), ('data2vec-vision', 'BeitImageProcessor'), ('deformable_detr', 'DeformableDetrImageProcessor'), ('deit', 'DeiTImageProcessor'), ('deta', 'DetaImageProcessor'), ('detr', 'DetrImageProcessor'), ('dinat', 'ViTImageProcessor'), ('donut-swin', 'DonutImageProcessor'), ('dpt', 'DPTImageProcessor'), ('efficientformer', 'EfficientFormerImageProcessor'), ('efficientnet', 'EfficientNetImageProcessor'), ('flava', 'FlavaImageProcessor'), ('focalnet', 'BitImageProcessor'), ('git', 'CLIPImageProcessor'), ('glpn', 'GLPNImageProcessor'), ('groupvit', 'CLIPImageProcessor'), ('imagegpt', 'ImageGPTImageProcessor'), ('instructblip', 'BlipImageProcessor'), ('layoutlmv2', 'LayoutLMv2ImageProcessor'), ('layoutlmv3', 'LayoutLMv3ImageProcessor'), ('levit', 'LevitImageProcessor'), ('mask2former', 'Mask2FormerImageProcessor'), ('maskformer', 'MaskFormerImageProcessor'), ('mgp-str', 'ViTImageProcessor'), ('mobilenet_v1', 'MobileNetV1ImageProcessor'), ('mobilenet_v2', 'MobileNetV2ImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevitv2', 'MobileViTImageProcessor'), ('nat', 'ViTImageProcessor'), ('oneformer', 'OneFormerImageProcessor'), ('owlvit', 'OwlViTImageProcessor'), ('perceiver', 'PerceiverImageProcessor'), ('pix2struct', 'Pix2StructImageProcessor'), ('poolformer', 'PoolFormerImageProcessor'), ('regnet', 'ConvNextImageProcessor'), ('resnet', 'ConvNextImageProcessor'), ('sam', 'SamImageProcessor'), ('segformer', 'SegformerImageProcessor'), ('swiftformer', 'ViTImageProcessor'), ('swin', 'ViTImageProcessor'), ('swin2sr', 'Swin2SRImageProcessor'), ('swinv2', 'ViTImageProcessor'), ('table-transformer', 'DetrImageProcessor'), ('timesformer', 'VideoMAEImageProcessor'), ('tvlt', 'TvltImageProcessor'), ('upernet', 'SegformerImageProcessor'), ('van', 'ConvNextImageProcessor'), ('videomae', 'VideoMAEImageProcessor'), ('vilt', 'ViltImageProcessor'), ('vit', 'ViTImageProcessor'), ('vit_hybrid', 'ViTHybridImageProcessor'), ('vit_mae', 'ViTImageProcessor'), ('vit_msn', 'ViTImageProcessor'), ('xclip', 'CLIPImageProcessor'), ('yolos', 'YolosImageProcessor'), ] ) UpperCAmelCase : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def _a ( lowerCAmelCase_ ): """simple docstring""" for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: _snake_case : Any = model_type_to_module_name(lowerCAmelCase_ ) _snake_case : Tuple = importlib.import_module(f'''.{module_name}''' , '''transformers.models''' ) try: return getattr(lowerCAmelCase_ , lowerCAmelCase_ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(lowerCAmelCase_ , '''__name__''' , lowerCAmelCase_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _snake_case : List[str] = importlib.import_module('''transformers''' ) if hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): return getattr(lowerCAmelCase_ , lowerCAmelCase_ ) return None def _a ( lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = False , lowerCAmelCase_ = False , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = False , **lowerCAmelCase_ , ): """simple docstring""" _snake_case : Optional[Any] = get_file_from_repo( lowerCAmelCase_ , lowerCAmelCase_ , cache_dir=lowerCAmelCase_ , force_download=lowerCAmelCase_ , resume_download=lowerCAmelCase_ , proxies=lowerCAmelCase_ , use_auth_token=lowerCAmelCase_ , revision=lowerCAmelCase_ , local_files_only=lowerCAmelCase_ , ) if resolved_config_file is None: logger.info( '''Could not locate the image processor configuration file, will try to use the model config instead.''' ) return {} with open(lowerCAmelCase_ , encoding='''utf-8''' ) as reader: return json.load(lowerCAmelCase_ ) class lowerCamelCase : def __init__( self ) -> Dict: """simple docstring""" raise EnvironmentError( '''AutoImageProcessor is designed to be instantiated ''' '''using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(lowercase__ ) def UpperCAmelCase_ ( cls , lowercase__ , **lowercase__ ) -> List[Any]: """simple docstring""" _snake_case : str = kwargs.pop('''config''' , lowercase__ ) _snake_case : int = kwargs.pop('''trust_remote_code''' , lowercase__ ) _snake_case : List[str] = True _snake_case : Union[str, Any] = ImageProcessingMixin.get_image_processor_dict(lowercase__ , **lowercase__ ) _snake_case : int = config_dict.get('''image_processor_type''' , lowercase__ ) _snake_case : Optional[Any] = None if "AutoImageProcessor" in config_dict.get('''auto_map''' , {} ): _snake_case : str = config_dict["""auto_map"""]["""AutoImageProcessor"""] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: _snake_case : Union[str, Any] = config_dict.pop('''feature_extractor_type''' , lowercase__ ) if feature_extractor_class is not None: logger.warning( '''Could not find image processor class in the image processor config or the model config. Loading''' ''' based on pattern matching with the model\'s feature extractor configuration.''' ) _snake_case : int = feature_extractor_class.replace('''FeatureExtractor''' , '''ImageProcessor''' ) if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): _snake_case : int = config_dict["""auto_map"""]["""AutoFeatureExtractor"""] _snake_case : int = feature_extractor_auto_map.replace('''FeatureExtractor''' , '''ImageProcessor''' ) logger.warning( '''Could not find image processor auto map in the image processor config or the model config.''' ''' Loading based on pattern matching with the model\'s feature extractor configuration.''' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(lowercase__ , lowercase__ ): _snake_case : Any = AutoConfig.from_pretrained(lowercase__ , **lowercase__ ) # It could be in `config.image_processor_type`` _snake_case : int = getattr(lowercase__ , '''image_processor_type''' , lowercase__ ) if hasattr(lowercase__ , '''auto_map''' ) and "AutoImageProcessor" in config.auto_map: _snake_case : Optional[Any] = config.auto_map["""AutoImageProcessor"""] if image_processor_class is not None: _snake_case : Optional[Any] = image_processor_class_from_name(lowercase__ ) _snake_case : Optional[Any] = image_processor_auto_map is not None _snake_case : Dict = image_processor_class is not None or type(lowercase__ ) in IMAGE_PROCESSOR_MAPPING _snake_case : Dict = resolve_trust_remote_code( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) if has_remote_code and trust_remote_code: _snake_case : Union[str, Any] = get_class_from_dynamic_module( lowercase__ , lowercase__ , **lowercase__ ) _snake_case : Optional[int] = kwargs.pop('''code_revision''' , lowercase__ ) if os.path.isdir(lowercase__ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(lowercase__ , **lowercase__ ) elif image_processor_class is not None: return image_processor_class.from_dict(lowercase__ , **lowercase__ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(lowercase__ ) in IMAGE_PROCESSOR_MAPPING: _snake_case : List[Any] = IMAGE_PROCESSOR_MAPPING[type(lowercase__ )] return image_processor_class.from_dict(lowercase__ , **lowercase__ ) raise ValueError( F'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ''' F'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ''' F'''`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def UpperCAmelCase_ ( lowercase__ , lowercase__ ) -> Optional[int]: """simple docstring""" IMAGE_PROCESSOR_MAPPING.register(lowercase__ , lowercase__ )
707
'''simple docstring''' import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class lowerCamelCase (unittest.TestCase ): @slow def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Tuple = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) _snake_case : Any = AutoTokenizer.from_pretrained('''google/mt5-small''' ) _snake_case : List[str] = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids _snake_case : Dict = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids _snake_case : Any = shift_tokens_right(lowercase__ , model.config.pad_token_id , model.config.decoder_start_token_id ) _snake_case : Any = model(lowercase__ , decoder_input_ids=lowercase__ ).logits _snake_case : Tuple = optax.softmax_cross_entropy(lowercase__ , onehot(lowercase__ , logits.shape[-1] ) ).mean() _snake_case : Tuple = -(labels.shape[-1] * loss.item()) _snake_case : Union[str, Any] = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
47
0
from __future__ import annotations from collections import Counter from random import random class lowerCamelCase : def __init__( self ) -> str: """simple docstring""" _snake_case : List[str] = {} def UpperCAmelCase_ ( self , lowercase__ ) -> List[Any]: """simple docstring""" _snake_case : int = {} def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ ) -> Union[str, Any]: """simple docstring""" if nodea not in self.connections: self.add_node(UpperCamelCase__ ) if nodea not in self.connections: self.add_node(UpperCamelCase__ ) _snake_case : Tuple = probability def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" return list(self.connections ) def UpperCAmelCase_ ( self , lowercase__ ) -> Union[str, Any]: """simple docstring""" _snake_case : Dict = 0 _snake_case : List[Any] = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Union[str, Any] = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) _snake_case : List[str] = Counter(graph.get_nodes() ) _snake_case : Optional[Any] = start for _ in range(lowerCAmelCase__ ): _snake_case : Dict = graph.transition(lowerCAmelCase__ ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
708
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCamelCase (unittest.TestCase ): def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : Any = torch.nn.Linear(10 , 10 ) _snake_case : Optional[int] = torch.optim.SGD(model.parameters() , 0.1 ) _snake_case : List[str] = Accelerator() _snake_case : Optional[Any] = accelerator.prepare(lowercase__ ) try: pickle.loads(pickle.dumps(lowercase__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
47
0
'''simple docstring''' from PIL import Image def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case , _snake_case : Optional[int] = image.size _snake_case : Optional[Any] = 0 _snake_case : Any = image.load() for i in range(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ ): _snake_case : Dict = pixels[j, i] mean += pixel mean //= width * height for j in range(lowerCAmelCase_ ): for i in range(lowerCAmelCase_ ): _snake_case : Optional[int] = 255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": UpperCAmelCase : List[Any] = mean_threshold(Image.open('path_to_image').convert('L')) image.save('output_image_path')
709
'''simple docstring''' UpperCAmelCase : Union[str, Any] = tuple[float, float, float] UpperCAmelCase : int = tuple[float, float, float] def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : str = end_pointa[0] - end_pointa[0] _snake_case : Tuple = end_pointa[1] - end_pointa[1] _snake_case : Any = end_pointa[2] - end_pointa[2] return (x, y, z) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Dict = ab[1] * ac[2] - ab[2] * ac[1] # *i _snake_case : List[str] = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j _snake_case : Optional[int] = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return tuple(round(lowerCAmelCase_ , lowerCAmelCase_ ) for x in vector ) == (0, 0, 0) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 10 ): """simple docstring""" _snake_case : str = create_vector(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Tuple = create_vector(lowerCAmelCase_ , lowerCAmelCase_ ) return is_zero_vector(get_ad_vectors_cross(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ )
47
0
'''simple docstring''' import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class lowerCamelCase (unittest.TestCase ): _lowercase : Tuple = inspect.getfile(accelerate.test_utils ) _lowercase : Optional[int] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_cli.py"""] ) _lowercase : List[str] = ['''accelerate''', '''launch'''] _lowercase : Dict = Path.home() / '''.cache/huggingface/accelerate''' _lowercase : Optional[Any] = '''default_config.yaml''' _lowercase : int = config_folder / config_file _lowercase : Any = config_folder / '''_default_config.yaml''' _lowercase : Optional[int] = Path("""tests/test_configs""" ) @classmethod def UpperCAmelCase_ ( cls ) -> List[str]: """simple docstring""" if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def UpperCAmelCase_ ( cls ) -> Optional[int]: """simple docstring""" if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : str = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" for config in sorted(self.test_config_path.glob('''**/*.yaml''' ) ): with self.subTest(config_file=UpperCamelCase__ ): execute_subprocess_async( self.base_cmd + ['''--config_file''', str(UpperCamelCase__ ), self.test_file_path] , env=os.environ.copy() ) def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" execute_subprocess_async(['''accelerate''', '''test'''] , env=os.environ.copy() ) class lowerCamelCase (unittest.TestCase ): _lowercase : Dict = '''test-tpu''' _lowercase : Tuple = '''us-central1-a''' _lowercase : Optional[Any] = '''ls''' _lowercase : List[str] = ['''accelerate''', '''tpu-config'''] _lowercase : Dict = '''cd /usr/share''' _lowercase : int = '''tests/test_samples/test_command_file.sh''' _lowercase : List[Any] = '''Running gcloud compute tpus tpu-vm ssh''' def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : List[Any] = run_command( self.cmd + ['''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug'''] , return_stdout=UpperCamelCase__ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , UpperCamelCase__ , ) def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" _snake_case : Any = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=UpperCamelCase__ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , UpperCamelCase__ , ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Any = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--debug'''] , return_stdout=UpperCamelCase__ ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , UpperCamelCase__ , ) def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : Any = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--debug'''] , return_stdout=UpperCamelCase__ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , UpperCamelCase__ , ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Optional[int] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--command''', '''echo \"Hello World\"''', '''--debug''', ] , return_stdout=UpperCamelCase__ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all''' , UpperCamelCase__ , ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : Optional[Any] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command_file''', self.command_file, '''--debug'''] , return_stdout=UpperCamelCase__ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , UpperCamelCase__ , ) def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : List[Any] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command_file''', self.command_file, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=UpperCamelCase__ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , UpperCamelCase__ , ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : List[Any] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--debug'''] , return_stdout=UpperCamelCase__ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all''' , UpperCamelCase__ , ) def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" _snake_case : List[str] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--accelerate_version''', '''12.0.0''', '''--debug''', ] , return_stdout=UpperCamelCase__ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all''' , UpperCamelCase__ , )
710
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel UpperCAmelCase : List[str] = logging.getLogger(__name__) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if os.path.exists(lowerCAmelCase_ ): if os.path.exists(os.path.join(lowerCAmelCase_ , '''config.json''' ) ) and os.path.isfile( os.path.join(lowerCAmelCase_ , '''config.json''' ) ): os.remove(os.path.join(lowerCAmelCase_ , '''config.json''' ) ) if os.path.exists(os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) ) and os.path.isfile( os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) ): os.remove(os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) ) else: os.makedirs(lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_=False ): """simple docstring""" _snake_case : Optional[Any] = 2 if unlogit: _snake_case : Any = torch.pow(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Union[str, Any] = p * torch.log(lowerCAmelCase_ ) _snake_case : Optional[Any] = 0 return -plogp.sum(dim=-1 ) def _a ( lowerCAmelCase_ ): """simple docstring""" logger.info('''lv, h >\t''' + '''\t'''.join(f'''{x + 1}''' for x in range(len(lowerCAmelCase_ ) ) ) ) for row in range(len(lowerCAmelCase_ ) ): if tensor.dtype != torch.long: logger.info(f'''layer {row + 1}:\t''' + '''\t'''.join(f'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(f'''layer {row + 1}:\t''' + '''\t'''.join(f'''{x:d}''' for x in tensor[row].cpu().data ) ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=None , lowerCAmelCase_=False ): """simple docstring""" _snake_case , _snake_case : Optional[int] = model.config.num_hidden_layers, model.config.num_attention_heads _snake_case : Tuple = torch.zeros(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device ) _snake_case : Union[str, Any] = torch.zeros(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device ) if head_mask is None: _snake_case : int = torch.ones(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device ) head_mask.requires_grad_(requires_grad=lowerCAmelCase_ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _snake_case : Dict = None _snake_case : Dict = 0.0 _snake_case : Optional[int] = 0.0 for step, inputs in enumerate(tqdm(lowerCAmelCase_ , desc='''Iteration''' , disable=args.local_rank not in [-1, 0] ) ): _snake_case : List[Any] = tuple(t.to(args.device ) for t in inputs ) ((_snake_case) , ) : Optional[Any] = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _snake_case : Any = model(lowerCAmelCase_ , labels=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _snake_case , _snake_case , _snake_case : List[Any] = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(lowerCAmelCase_ ): _snake_case : Union[str, Any] = entropy(attn.detach() , lowerCAmelCase_ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(lowerCAmelCase_ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _snake_case : Any = 2 _snake_case : List[str] = torch.pow(torch.pow(lowerCAmelCase_ , lowerCAmelCase_ ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: _snake_case : Optional[int] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''' ) print_ad_tensor(lowerCAmelCase_ ) if compute_importance: logger.info('''Head importance scores''' ) print_ad_tensor(lowerCAmelCase_ ) logger.info('''Head ranked by importance scores''' ) _snake_case : str = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _snake_case : List[Any] = torch.arange( head_importance.numel() , device=args.device ) _snake_case : List[Any] = head_ranks.view_as(lowerCAmelCase_ ) print_ad_tensor(lowerCAmelCase_ ) return attn_entropy, head_importance, total_loss def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case , _snake_case , _snake_case : str = compute_heads_importance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ ) _snake_case : Optional[Any] = 1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' , lowerCAmelCase_ , original_score * args.masking_threshold ) _snake_case : int = torch.ones_like(lowerCAmelCase_ ) _snake_case : Optional[Any] = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _snake_case : int = original_score while current_score >= original_score * args.masking_threshold: _snake_case : int = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _snake_case : Dict = float('''Inf''' ) _snake_case : Optional[Any] = head_importance.view(-1 ).sort()[1] if len(lowerCAmelCase_ ) <= num_to_mask: print('''BREAK BY num_to_mask''' ) break # mask heads _snake_case : Union[str, Any] = current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist() ) ) _snake_case : Tuple = new_head_mask.view(-1 ) _snake_case : List[str] = 0.0 _snake_case : str = new_head_mask.view_as(lowerCAmelCase_ ) _snake_case : Dict = new_head_mask.clone().detach() print_ad_tensor(lowerCAmelCase_ ) # Compute metric and head importance again _snake_case , _snake_case , _snake_case : Any = compute_heads_importance( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) _snake_case : int = 1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' , lowerCAmelCase_ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info('''Final head mask''' ) print_ad_tensor(lowerCAmelCase_ ) np.save(os.path.join(args.output_dir , '''head_mask.npy''' ) , head_mask.detach().cpu().numpy() ) return head_mask def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = datetime.now() _snake_case , _snake_case , _snake_case : Union[str, Any] = compute_heads_importance( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , compute_importance=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) _snake_case : Tuple = 1 / loss _snake_case : Dict = datetime.now() - before_time _snake_case : List[Any] = sum(p.numel() for p in model.parameters() ) _snake_case : int = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(lowerCAmelCase_ ) ) } for k, v in heads_to_prune.items(): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Union[str, Any] = [ v, ] assert sum(len(lowerCAmelCase_ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(lowerCAmelCase_ ) _snake_case : List[str] = sum(p.numel() for p in model.parameters() ) _snake_case : int = datetime.now() _snake_case , _snake_case , _snake_case : Optional[Any] = compute_heads_importance( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , compute_importance=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , actually_pruned=lowerCAmelCase_ , ) _snake_case : Optional[int] = 1 / loss _snake_case : Dict = datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , lowerCAmelCase_ , lowerCAmelCase_ , pruned_num_params / original_num_params * 100 , ) logger.info('''Pruning: score with masking: %f score with pruning: %f''' , lowerCAmelCase_ , lowerCAmelCase_ ) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 100 ) save_model(lowerCAmelCase_ , args.output_dir ) def _a ( ): """simple docstring""" _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , ) parser.add_argument( '''--model_name_or_path''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--output_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) # Other parameters parser.add_argument( '''--config_name''' , default='''''' , type=lowerCAmelCase_ , help='''Pretrained config name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--tokenizer_name''' , default='''''' , type=lowerCAmelCase_ , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--cache_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help='''Where do you want to store the pre-trained models downloaded from s3''' , ) parser.add_argument( '''--data_subset''' , type=lowerCAmelCase_ , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''' ) parser.add_argument( '''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''' ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) parser.add_argument( '''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''' ) parser.add_argument( '''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , ) parser.add_argument( '''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''' ) parser.add_argument( '''--masking_threshold''' , default=0.9 , type=lowerCAmelCase_ , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , ) parser.add_argument( '''--masking_amount''' , default=0.1 , type=lowerCAmelCase_ , help='''Amount to heads to masking at each masking step.''' ) parser.add_argument('''--metric_name''' , default='''acc''' , type=lowerCAmelCase_ , help='''Metric to use for head masking.''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=lowerCAmelCase_ , help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) , ) parser.add_argument('''--batch_size''' , default=1 , type=lowerCAmelCase_ , help='''Batch size.''' ) parser.add_argument('''--seed''' , type=lowerCAmelCase_ , default=42 ) parser.add_argument('''--local_rank''' , type=lowerCAmelCase_ , default=-1 , help='''local_rank for distributed training on gpus''' ) parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''' ) parser.add_argument('''--server_ip''' , type=lowerCAmelCase_ , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=lowerCAmelCase_ , default='''''' , help='''Can be used for distant debugging.''' ) _snake_case : Optional[Any] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowerCAmelCase_ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _snake_case : str = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''' ) _snake_case : Optional[Any] = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _snake_case : List[str] = torch.device('''cuda''' , args.local_rank ) _snake_case : int = 1 torch.distributed.init_process_group(backend='''nccl''' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _snake_case : Optional[Any] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _snake_case : Optional[int] = nn.parallel.DistributedDataParallel( lowerCAmelCase_ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=lowerCAmelCase_ ) elif args.n_gpu > 1: _snake_case : List[Any] = nn.DataParallel(lowerCAmelCase_ ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=lowerCAmelCase_ ) torch.save(lowerCAmelCase_ , os.path.join(args.output_dir , '''run_args.bin''' ) ) logger.info('''Training/evaluation parameters %s''' , lowerCAmelCase_ ) # Prepare dataset _snake_case : Dict = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _snake_case : int = (torch.from_numpy(lowerCAmelCase_ ),) _snake_case : Tuple = TensorDataset(*lowerCAmelCase_ ) _snake_case : List[str] = RandomSampler(lowerCAmelCase_ ) _snake_case : Dict = DataLoader(lowerCAmelCase_ , sampler=lowerCAmelCase_ , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _snake_case : Optional[int] = mask_heads(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) prune_heads(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
47
0
'''simple docstring''' import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class lowerCamelCase (__UpperCAmelCase ): def __init__( self , lowercase__ ) -> Dict: """simple docstring""" _snake_case : Union[str, Any] = data def __iter__( self ) -> Union[str, Any]: """simple docstring""" for element in self.data: yield element def _a ( lowerCAmelCase_=True ): """simple docstring""" _snake_case : List[str] = Accelerator(even_batches=__lowerCAmelCase ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = False ): """simple docstring""" if iterable: _snake_case : Any = DummyIterableDataset(torch.as_tensor(range(__lowerCAmelCase ) ) ) else: _snake_case : Optional[int] = TensorDataset(torch.as_tensor(range(__lowerCAmelCase ) ) ) _snake_case : Optional[int] = DataLoader(__lowerCAmelCase , batch_size=__lowerCAmelCase ) _snake_case : Dict = accelerator.prepare(__lowerCAmelCase ) return dl def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ): """simple docstring""" _snake_case : Optional[int] = create_dataloader(accelerator=__lowerCAmelCase , dataset_size=__lowerCAmelCase , batch_size=__lowerCAmelCase ) _snake_case : Union[str, Any] = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def _a ( ): """simple docstring""" _snake_case : Tuple = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( __lowerCAmelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( __lowerCAmelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def _a ( ): """simple docstring""" _snake_case : Union[str, Any] = create_accelerator(even_batches=__lowerCAmelCase ) verify_dataloader_batch_sizes( __lowerCAmelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( __lowerCAmelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def _a ( ): """simple docstring""" _snake_case : Optional[Any] = create_accelerator(even_batches=__lowerCAmelCase ) _snake_case : Union[str, Any] = torch.nn.Linear(1 , 1 ) _snake_case : Optional[int] = accelerator.prepare(__lowerCAmelCase ) _snake_case : List[str] = create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 ) _snake_case : Tuple = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(__lowerCAmelCase ): _snake_case : List[Any] = ddp_model(batch[0].float() ) _snake_case : Any = output.sum() loss.backward() batch_idxs.append(__lowerCAmelCase ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def _a ( lowerCAmelCase_ ): """simple docstring""" with warnings.catch_warnings(record=__lowerCAmelCase ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , __lowerCAmelCase ) assert "only supported for multi-GPU" in str(w[-1].message ) def _a ( ): """simple docstring""" _snake_case : List[Any] = True _snake_case : Tuple = False _snake_case : List[Any] = create_accelerator(even_batches=__lowerCAmelCase ) _snake_case : List[str] = torch.nn.Linear(1 , 1 ) _snake_case : Any = accelerator.prepare(__lowerCAmelCase ) _snake_case : Tuple = create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 ) _snake_case : Any = create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCAmelCase ): _snake_case : List[Any] = train_dl.batch_sampler.even_batches _snake_case : str = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def _a ( ): """simple docstring""" _snake_case : Optional[Any] = True _snake_case : Optional[int] = False _snake_case : Dict = create_accelerator(even_batches=__lowerCAmelCase ) _snake_case : List[Any] = torch.nn.Linear(1 , 1 ) _snake_case : str = accelerator.prepare(__lowerCAmelCase ) create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 , iterable=__lowerCAmelCase ) _snake_case : Dict = create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings('''ignore''' ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCAmelCase ): _snake_case : List[str] = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def _a ( ): """simple docstring""" _snake_case : Union[str, Any] = create_accelerator() _snake_case : str = torch.nn.Linear(1 , 1 ) _snake_case : Tuple = accelerator.prepare(__lowerCAmelCase ) create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 , iterable=__lowerCAmelCase ) with warnings.catch_warnings(record=__lowerCAmelCase ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCAmelCase ): pass assert issubclass(w[-1].category , __lowerCAmelCase ) assert "only supported for map-style datasets" in str(w[-1].message ) def _a ( ): """simple docstring""" _snake_case : Union[str, Any] = create_accelerator() accelerator.print('''Test that even_batches variable ensures uniform batches across processes''' ) test_default_ensures_even_batch_sizes() accelerator.print('''Run tests with even_batches disabled''' ) test_can_disable_even_batches() accelerator.print('''Test joining uneven inputs''' ) test_can_join_uneven_inputs() accelerator.print('''Test overriding even_batches when joining uneven inputs''' ) test_join_can_override_even_batches() accelerator.print('''Test overriding even_batches for mixed dataloader types''' ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print('''Test overriding even_batches raises a warning for iterable dataloaders''' ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print('''Test join with non DDP distributed raises warning''' ) _snake_case : Union[str, Any] = accelerator.state.distributed_type _snake_case : int = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(__lowerCAmelCase ) _snake_case : Optional[Any] = original_state if __name__ == "__main__": main()
711
'''simple docstring''' def _a ( lowerCAmelCase_ ): """simple docstring""" if n == 1 or not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return 0 elif n == 2: return 1 else: _snake_case : Union[str, Any] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[int] = 0 _snake_case : int = 2 while digits < n: index += 1 _snake_case : Tuple = len(str(fibonacci(lowerCAmelCase_ ) ) ) return index def _a ( lowerCAmelCase_ = 1_000 ): """simple docstring""" return fibonacci_digits_index(lowerCAmelCase_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
47
0
'''simple docstring''' def _a ( lowerCAmelCase_ ): """simple docstring""" if not isinstance(a_ , a_ ): raise ValueError('''multiplicative_persistence() only accepts integral values''' ) if num < 0: raise ValueError('''multiplicative_persistence() does not accept negative values''' ) _snake_case : Dict = 0 _snake_case : Optional[Any] = str(a_ ) while len(a_ ) != 1: _snake_case : int = [int(a_ ) for i in num_string] _snake_case : Optional[Any] = 1 for i in range(0 , len(a_ ) ): total *= numbers[i] _snake_case : Optional[Any] = str(a_ ) steps += 1 return steps def _a ( lowerCAmelCase_ ): """simple docstring""" if not isinstance(a_ , a_ ): raise ValueError('''additive_persistence() only accepts integral values''' ) if num < 0: raise ValueError('''additive_persistence() does not accept negative values''' ) _snake_case : Tuple = 0 _snake_case : Union[str, Any] = str(a_ ) while len(a_ ) != 1: _snake_case : Tuple = [int(a_ ) for i in num_string] _snake_case : Tuple = 0 for i in range(0 , len(a_ ) ): total += numbers[i] _snake_case : Optional[Any] = str(a_ ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
712
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar UpperCAmelCase : Any = TypeVar('T') UpperCAmelCase : str = TypeVar('U') class lowerCamelCase (Generic[T, U] ): def __init__( self , lowercase__ , lowercase__ ) -> List[Any]: """simple docstring""" _snake_case : str = key _snake_case : Optional[int] = val _snake_case : DoubleLinkedListNode[T, U] | None = None _snake_case : DoubleLinkedListNode[T, U] | None = None def __repr__( self ) -> str: """simple docstring""" return ( F'''Node: key: {self.key}, val: {self.val}, ''' F'''has next: {bool(self.next )}, has prev: {bool(self.prev )}''' ) class lowerCamelCase (Generic[T, U] ): def __init__( self ) -> None: """simple docstring""" _snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase__ , lowercase__ ) _snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase__ , lowercase__ ) _snake_case , _snake_case : Union[str, Any] = self.rear, self.head def __repr__( self ) -> str: """simple docstring""" _snake_case : List[Any] = ['''DoubleLinkedList'''] _snake_case : str = self.head while node.next is not None: rep.append(str(lowercase__ ) ) _snake_case : List[str] = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> None: """simple docstring""" _snake_case : Tuple = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None _snake_case : Union[str, Any] = node _snake_case : Optional[Any] = previous _snake_case : int = node _snake_case : Union[str, Any] = self.rear def UpperCAmelCase_ ( self , lowercase__ ) -> DoubleLinkedListNode[T, U] | None: """simple docstring""" if node.prev is None or node.next is None: return None _snake_case : Optional[int] = node.next _snake_case : Any = node.prev _snake_case : List[str] = None _snake_case : Optional[int] = None return node class lowerCamelCase (Generic[T, U] ): _lowercase : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self , lowercase__ ) -> Union[str, Any]: """simple docstring""" _snake_case : DoubleLinkedList[T, U] = DoubleLinkedList() _snake_case : Union[str, Any] = capacity _snake_case : int = 0 _snake_case : Dict = 0 _snake_case : Union[str, Any] = 0 _snake_case : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__( self ) -> str: """simple docstring""" return ( F'''CacheInfo(hits={self.hits}, misses={self.miss}, ''' F'''capacity={self.capacity}, current size={self.num_keys})''' ) def __contains__( self , lowercase__ ) -> bool: """simple docstring""" return key in self.cache def UpperCAmelCase_ ( self , lowercase__ ) -> U | None: """simple docstring""" if key in self.cache: self.hits += 1 _snake_case : DoubleLinkedListNode[T, U] = self.cache[key] _snake_case : Tuple = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowercase__ ) return node.val self.miss += 1 return None def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> None: """simple docstring""" if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity _snake_case : Dict = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowercase__ ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 _snake_case : Optional[int] = DoubleLinkedListNode(lowercase__ , lowercase__ ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value _snake_case : Optional[Any] = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list _snake_case : Optional[Any] = value self.list.add(lowercase__ ) @classmethod def UpperCAmelCase_ ( cls , lowercase__ = 128 ) -> Callable[[Callable[[T], U]], Callable[..., U]]: """simple docstring""" def cache_decorator_inner(lowercase__ ) -> Callable[..., U]: def cache_decorator_wrapper(*lowercase__ ) -> U: if func not in cls.decorator_function_to_instance_map: _snake_case : Optional[Any] = LRUCache(lowercase__ ) _snake_case : Union[str, Any] = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: _snake_case : Tuple = func(*lowercase__ ) cls.decorator_function_to_instance_map[func].put(args[0] , lowercase__ ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowercase__ , '''cache_info''' , lowercase__ ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
47
0