code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
|---|---|---|---|---|
'''simple docstring'''
import fire
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoTokenizer
from utils import SeqaSeqDataset, pickle_save
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=1_024 , lowerCAmelCase_=1_024 , lowerCAmelCase_=False , **lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Optional[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase_ )
_snake_case : List[Any] = SeqaSeqDataset(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , type_path='''train''' , **lowerCAmelCase_ )
_snake_case : Dict = tok.pad_token_id
def get_lens(lowerCAmelCase_ ):
_snake_case : int = tqdm(
DataLoader(lowerCAmelCase_ , batch_size=512 , num_workers=8 , shuffle=lowerCAmelCase_ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , )
_snake_case : Union[str, Any] = []
for batch in dl:
_snake_case : str = batch['''input_ids'''].ne(lowerCAmelCase_ ).sum(1 ).tolist()
_snake_case : int = batch['''labels'''].ne(lowerCAmelCase_ ).sum(1 ).tolist()
if consider_target:
for src, tgt in zip(lowerCAmelCase_ , lowerCAmelCase_ ):
max_lens.append(max(lowerCAmelCase_ , lowerCAmelCase_ ) )
else:
max_lens.extend(lowerCAmelCase_ )
return max_lens
_snake_case : Optional[Any] = get_lens(lowerCAmelCase_ )
_snake_case : Optional[int] = SeqaSeqDataset(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , type_path='''val''' , **lowerCAmelCase_ )
_snake_case : Union[str, Any] = get_lens(lowerCAmelCase_ )
pickle_save(lowerCAmelCase_ , train_ds.len_file )
pickle_save(lowerCAmelCase_ , val_ds.len_file )
if __name__ == "__main__":
fire.Fire(save_len_file)
| 47
|
'''simple docstring'''
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
if n == 1 or not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
return 0
elif n == 2:
return 1
else:
_snake_case : Union[str, Any] = [0, 1]
for i in range(2 , n + 1 ):
sequence.append(sequence[i - 1] + sequence[i - 2] )
return sequence[n]
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Optional[int] = 0
_snake_case : int = 2
while digits < n:
index += 1
_snake_case : Tuple = len(str(fibonacci(lowerCAmelCase_ ) ) )
return index
def _a ( lowerCAmelCase_ = 1_000 ):
"""simple docstring"""
return fibonacci_digits_index(lowerCAmelCase_ )
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 47
| 1
|
'''simple docstring'''
import importlib.util
import os
import platform
from argparse import ArgumentParser
import huggingface_hub
from .. import __version__ as version
from ..utils import (
is_accelerate_available,
is_flax_available,
is_safetensors_available,
is_tf_available,
is_torch_available,
)
from . import BaseTransformersCLICommand
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
return EnvironmentCommand()
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
return EnvironmentCommand(args.accelerate_config_file )
class lowerCamelCase (a__ ):
@staticmethod
def UpperCAmelCase_ ( lowercase__ ) -> Tuple:
"""simple docstring"""
_snake_case : Any = parser.add_parser('''env''' )
download_parser.set_defaults(func=lowercase__ )
download_parser.add_argument(
'''--accelerate-config_file''' , default=lowercase__ , help='''The accelerate config file to use for the default values in the launching script.''' , )
download_parser.set_defaults(func=lowercase__ )
def __init__( self , lowercase__ , *lowercase__ ) -> None:
"""simple docstring"""
_snake_case : List[Any] = accelerate_config_file
def UpperCAmelCase_ ( self ) -> List[Any]:
"""simple docstring"""
_snake_case : Any = '''not installed'''
if is_safetensors_available():
import safetensors
_snake_case : Any = safetensors.__version__
elif importlib.util.find_spec('''safetensors''' ) is not None:
import safetensors
_snake_case : str = F'''{safetensors.__version__} but is ignored because of PyTorch version too old.'''
_snake_case : Tuple = '''not installed'''
_snake_case : List[Any] = '''not found'''
if is_accelerate_available():
import accelerate
from accelerate.commands.config import default_config_file, load_config_from_file
_snake_case : Any = accelerate.__version__
# Get the default from the config file.
if self._accelerate_config_file is not None or os.path.isfile(lowercase__ ):
_snake_case : List[Any] = load_config_from_file(self._accelerate_config_file ).to_dict()
_snake_case : Optional[int] = (
'''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] )
if isinstance(lowercase__ , lowercase__ )
else F'''\t{accelerate_config}'''
)
_snake_case : Tuple = '''not installed'''
_snake_case : List[Any] = '''NA'''
if is_torch_available():
import torch
_snake_case : Tuple = torch.__version__
_snake_case : Any = torch.cuda.is_available()
_snake_case : Optional[int] = '''not installed'''
_snake_case : Tuple = '''NA'''
if is_tf_available():
import tensorflow as tf
_snake_case : Optional[Any] = tf.__version__
try:
# deprecated in v2.1
_snake_case : List[Any] = tf.test.is_gpu_available()
except AttributeError:
# returns list of devices, convert to bool
_snake_case : List[str] = bool(tf.config.list_physical_devices('''GPU''' ) )
_snake_case : Union[str, Any] = '''not installed'''
_snake_case : Tuple = '''not installed'''
_snake_case : Union[str, Any] = '''not installed'''
_snake_case : Optional[Any] = '''NA'''
if is_flax_available():
import flax
import jax
import jaxlib
_snake_case : Optional[Any] = flax.__version__
_snake_case : int = jax.__version__
_snake_case : Union[str, Any] = jaxlib.__version__
_snake_case : Tuple = jax.lib.xla_bridge.get_backend().platform
_snake_case : List[str] = {
'''`transformers` version''': version,
'''Platform''': platform.platform(),
'''Python version''': platform.python_version(),
'''Huggingface_hub version''': huggingface_hub.__version__,
'''Safetensors version''': F'''{safetensors_version}''',
'''Accelerate version''': F'''{accelerate_version}''',
'''Accelerate config''': F'''{accelerate_config_str}''',
'''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''',
'''Tensorflow version (GPU?)''': F'''{tf_version} ({tf_cuda_available})''',
'''Flax version (CPU?/GPU?/TPU?)''': F'''{flax_version} ({jax_backend})''',
'''Jax version''': F'''{jax_version}''',
'''JaxLib version''': F'''{jaxlib_version}''',
'''Using GPU in script?''': '''<fill in>''',
'''Using distributed or parallel set-up in script?''': '''<fill in>''',
}
print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' )
print(self.format_dict(lowercase__ ) )
return info
@staticmethod
def UpperCAmelCase_ ( lowercase__ ) -> Optional[int]:
"""simple docstring"""
return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
| 47
|
'''simple docstring'''
from __future__ import annotations
from collections.abc import Callable
from typing import Generic, TypeVar
UpperCAmelCase : Any = TypeVar('T')
UpperCAmelCase : str = TypeVar('U')
class lowerCamelCase (Generic[T, U] ):
def __init__( self , lowercase__ , lowercase__ ) -> List[Any]:
"""simple docstring"""
_snake_case : str = key
_snake_case : Optional[int] = val
_snake_case : DoubleLinkedListNode[T, U] | None = None
_snake_case : DoubleLinkedListNode[T, U] | None = None
def __repr__( self ) -> str:
"""simple docstring"""
return (
F'''Node: key: {self.key}, val: {self.val}, '''
F'''has next: {bool(self.next )}, has prev: {bool(self.prev )}'''
)
class lowerCamelCase (Generic[T, U] ):
def __init__( self ) -> None:
"""simple docstring"""
_snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase__ , lowercase__ )
_snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase__ , lowercase__ )
_snake_case , _snake_case : Union[str, Any] = self.rear, self.head
def __repr__( self ) -> str:
"""simple docstring"""
_snake_case : List[Any] = ['''DoubleLinkedList''']
_snake_case : str = self.head
while node.next is not None:
rep.append(str(lowercase__ ) )
_snake_case : List[str] = node.next
rep.append(str(self.rear ) )
return ",\n ".join(lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ ) -> None:
"""simple docstring"""
_snake_case : Tuple = self.rear.prev
# All nodes other than self.head are guaranteed to have non-None previous
assert previous is not None
_snake_case : Union[str, Any] = node
_snake_case : Optional[Any] = previous
_snake_case : int = node
_snake_case : Union[str, Any] = self.rear
def UpperCAmelCase_ ( self , lowercase__ ) -> DoubleLinkedListNode[T, U] | None:
"""simple docstring"""
if node.prev is None or node.next is None:
return None
_snake_case : Optional[int] = node.next
_snake_case : Any = node.prev
_snake_case : List[str] = None
_snake_case : Optional[int] = None
return node
class lowerCamelCase (Generic[T, U] ):
_lowercase : dict[Callable[[T], U], LRUCache[T, U]] = {}
def __init__( self , lowercase__ ) -> Union[str, Any]:
"""simple docstring"""
_snake_case : DoubleLinkedList[T, U] = DoubleLinkedList()
_snake_case : Union[str, Any] = capacity
_snake_case : int = 0
_snake_case : Dict = 0
_snake_case : Union[str, Any] = 0
_snake_case : dict[T, DoubleLinkedListNode[T, U]] = {}
def __repr__( self ) -> str:
"""simple docstring"""
return (
F'''CacheInfo(hits={self.hits}, misses={self.miss}, '''
F'''capacity={self.capacity}, current size={self.num_keys})'''
)
def __contains__( self , lowercase__ ) -> bool:
"""simple docstring"""
return key in self.cache
def UpperCAmelCase_ ( self , lowercase__ ) -> U | None:
"""simple docstring"""
if key in self.cache:
self.hits += 1
_snake_case : DoubleLinkedListNode[T, U] = self.cache[key]
_snake_case : Tuple = self.list.remove(self.cache[key] )
assert node == value_node
# node is guaranteed not None because it is in self.cache
assert node is not None
self.list.add(lowercase__ )
return node.val
self.miss += 1
return None
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> None:
"""simple docstring"""
if key not in self.cache:
if self.num_keys >= self.capacity:
# delete first node (oldest) when over capacity
_snake_case : Dict = self.list.head.next
# guaranteed to have a non-None first node when num_keys > 0
# explain to type checker via assertions
assert first_node is not None
assert first_node.key is not None
assert (
self.list.remove(lowercase__ ) is not None
) # node guaranteed to be in list assert node.key is not None
del self.cache[first_node.key]
self.num_keys -= 1
_snake_case : Optional[int] = DoubleLinkedListNode(lowercase__ , lowercase__ )
self.list.add(self.cache[key] )
self.num_keys += 1
else:
# bump node to the end of the list, update value
_snake_case : Optional[Any] = self.list.remove(self.cache[key] )
assert node is not None # node guaranteed to be in list
_snake_case : Optional[Any] = value
self.list.add(lowercase__ )
@classmethod
def UpperCAmelCase_ ( cls , lowercase__ = 128 ) -> Callable[[Callable[[T], U]], Callable[..., U]]:
"""simple docstring"""
def cache_decorator_inner(lowercase__ ) -> Callable[..., U]:
def cache_decorator_wrapper(*lowercase__ ) -> U:
if func not in cls.decorator_function_to_instance_map:
_snake_case : Optional[Any] = LRUCache(lowercase__ )
_snake_case : Union[str, Any] = cls.decorator_function_to_instance_map[func].get(args[0] )
if result is None:
_snake_case : Tuple = func(*lowercase__ )
cls.decorator_function_to_instance_map[func].put(args[0] , lowercase__ )
return result
def cache_info() -> LRUCache[T, U]:
return cls.decorator_function_to_instance_map[func]
setattr(lowercase__ , '''cache_info''' , lowercase__ ) # noqa: B010
return cache_decorator_wrapper
return cache_decorator_inner
if __name__ == "__main__":
import doctest
doctest.testmod()
| 47
| 1
|
'''simple docstring'''
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : List[str] = 384
if "tiny" in model_name:
_snake_case : Optional[int] = [3, 3, 9, 3]
_snake_case : Any = [96, 192, 384, 768]
if "small" in model_name:
_snake_case : Tuple = [3, 3, 27, 3]
_snake_case : Optional[int] = [96, 192, 384, 768]
if "base" in model_name:
_snake_case : str = [3, 3, 27, 3]
_snake_case : Any = [128, 256, 512, 1_024]
_snake_case : Optional[Any] = 512
if "large" in model_name:
_snake_case : Optional[int] = [3, 3, 27, 3]
_snake_case : List[str] = [192, 384, 768, 1_536]
_snake_case : Tuple = 768
if "xlarge" in model_name:
_snake_case : Optional[int] = [3, 3, 27, 3]
_snake_case : Union[str, Any] = [256, 512, 1_024, 2_048]
_snake_case : Optional[int] = 1_024
# set label information
_snake_case : Union[str, Any] = 150
_snake_case : Dict = '''huggingface/label-files'''
_snake_case : Optional[int] = '''ade20k-id2label.json'''
_snake_case : int = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type='''dataset''' ) , '''r''' ) )
_snake_case : List[str] = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()}
_snake_case : Union[str, Any] = {v: k for k, v in idalabel.items()}
_snake_case : List[str] = ConvNextConfig(
depths=lowerCAmelCase_ , hidden_sizes=lowerCAmelCase_ , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] )
_snake_case : str = UperNetConfig(
backbone_config=lowerCAmelCase_ , auxiliary_in_channels=lowerCAmelCase_ , num_labels=lowerCAmelCase_ , idalabel=lowerCAmelCase_ , labelaid=lowerCAmelCase_ , )
return config
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Optional[Any] = []
# fmt: off
# stem
rename_keys.append(('''backbone.downsample_layers.0.0.weight''', '''backbone.embeddings.patch_embeddings.weight''') )
rename_keys.append(('''backbone.downsample_layers.0.0.bias''', '''backbone.embeddings.patch_embeddings.bias''') )
rename_keys.append(('''backbone.downsample_layers.0.1.weight''', '''backbone.embeddings.layernorm.weight''') )
rename_keys.append(('''backbone.downsample_layers.0.1.bias''', '''backbone.embeddings.layernorm.bias''') )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f'''backbone.stages.{i}.{j}.gamma''', f'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.norm.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.norm.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') )
if i > 0:
rename_keys.append((f'''backbone.downsample_layers.{i}.0.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') )
rename_keys.append((f'''backbone.downsample_layers.{i}.0.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') )
rename_keys.append((f'''backbone.downsample_layers.{i}.1.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') )
rename_keys.append((f'''backbone.downsample_layers.{i}.1.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') )
rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') )
rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') )
# decode head
rename_keys.extend(
[
('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''),
('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''),
('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''),
('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''),
] )
# fmt: on
return rename_keys
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Any = dct.pop(lowerCAmelCase_ )
_snake_case : int = val
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Tuple = {
'''upernet-convnext-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth''',
'''upernet-convnext-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth''',
'''upernet-convnext-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth''',
'''upernet-convnext-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth''',
'''upernet-convnext-xlarge''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth''',
}
_snake_case : Optional[Any] = model_name_to_url[model_name]
_snake_case : List[Any] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ , map_location='''cpu''' )['''state_dict''']
_snake_case : Dict = get_upernet_config(lowerCAmelCase_ )
_snake_case : List[str] = UperNetForSemanticSegmentation(lowerCAmelCase_ )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
_snake_case : Optional[int] = state_dict.pop(lowerCAmelCase_ )
if "bn" in key:
_snake_case : List[Any] = key.replace('''bn''' , '''batch_norm''' )
_snake_case : Any = val
# rename keys
_snake_case : Optional[int] = create_rename_keys(lowerCAmelCase_ )
for src, dest in rename_keys:
rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
model.load_state_dict(lowerCAmelCase_ )
# verify on image
_snake_case : Optional[int] = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg'''
_snake_case : Dict = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ).convert('''RGB''' )
_snake_case : Any = SegformerImageProcessor()
_snake_case : int = processor(lowerCAmelCase_ , return_tensors='''pt''' ).pixel_values
with torch.no_grad():
_snake_case : Tuple = model(lowerCAmelCase_ )
if model_name == "upernet-convnext-tiny":
_snake_case : List[Any] = torch.tensor(
[[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] )
elif model_name == "upernet-convnext-small":
_snake_case : Dict = torch.tensor(
[[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] )
elif model_name == "upernet-convnext-base":
_snake_case : str = torch.tensor(
[[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] )
elif model_name == "upernet-convnext-large":
_snake_case : Union[str, Any] = torch.tensor(
[[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] )
elif model_name == "upernet-convnext-xlarge":
_snake_case : List[Any] = torch.tensor(
[[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] )
print('''Logits:''' , outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase_ , atol=1E-4 )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(lowerCAmelCase_ )
print(f'''Saving processor to {pytorch_dump_folder_path}''' )
processor.save_pretrained(lowerCAmelCase_ )
if push_to_hub:
print(f'''Pushing model and processor for {model_name} to hub''' )
model.push_to_hub(f'''openmmlab/{model_name}''' )
processor.push_to_hub(f'''openmmlab/{model_name}''' )
if __name__ == "__main__":
UpperCAmelCase : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='upernet-convnext-tiny',
type=str,
choices=[F"""upernet-convnext-{size}""" for size in ['tiny', 'small', 'base', 'large', 'xlarge']],
help='Name of the ConvNext UperNet model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
UpperCAmelCase : int = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 47
|
'''simple docstring'''
import os
import numpy
import onnx
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : List[Any] = a.name
_snake_case : List[Any] = b.name
_snake_case : Tuple = ''''''
_snake_case : Tuple = ''''''
_snake_case : Optional[Any] = a == b
_snake_case : List[Any] = name_a
_snake_case : str = name_b
return res
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
for i, input_name in enumerate(node_proto.input ):
if input_name == name:
node_proto.input.insert(lowerCAmelCase_ , lowerCAmelCase_ )
node_proto.input.pop(i + 1 )
if node_proto.op_type == "If":
_graph_replace_input_with(node_proto.attribute[0].g , lowerCAmelCase_ , lowerCAmelCase_ )
_graph_replace_input_with(node_proto.attribute[1].g , lowerCAmelCase_ , lowerCAmelCase_ )
if node_proto.op_type == "Loop":
_graph_replace_input_with(node_proto.attribute[0].g , lowerCAmelCase_ , lowerCAmelCase_ )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
for n in graph_proto.node:
_node_replace_input_with(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Optional[Any] = list(model.graph.initializer )
_snake_case : List[str] = list(model_without_ext.graph.initializer )
for i, ref_i in ind_to_replace:
assert inits_with_data[i].name == inits[i].name
assert inits_with_data[ref_i].name == inits[ref_i].name
assert i > ref_i
_snake_case : List[Any] = inits[i].name
_snake_case : List[str] = inits[ref_i].name
model_without_ext.graph.initializer.remove(inits[i] )
# for n in model.graph.node:
_graph_replace_input_with(model_without_ext.graph , lowerCAmelCase_ , lowerCAmelCase_ )
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Tuple = os.path.dirname(lowerCAmelCase_ )
_snake_case : str = os.path.basename(lowerCAmelCase_ )
_snake_case : Tuple = onnx.load(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) )
_snake_case : Union[str, Any] = list(model.graph.initializer )
_snake_case : Union[str, Any] = set()
_snake_case : Any = {}
_snake_case : str = []
_snake_case : Union[str, Any] = 0
for i in range(len(lowerCAmelCase_ ) ):
if i in dup_set:
continue
for j in range(i + 1 , len(lowerCAmelCase_ ) ):
if j in dup_set:
continue
if _is_equal_tensor_proto(inits[i] , inits[j] ):
dup_set.add(lowerCAmelCase_ )
dup_set.add(lowerCAmelCase_ )
_snake_case : List[Any] = inits[j].data_type
_snake_case : Dict = numpy.prod(inits[j].dims )
if dtype == 1:
mem_size *= 4
elif dtype == 6:
mem_size *= 4
elif dtype == 7 or dtype == 11:
mem_size *= 8
else:
print('''unexpected data type: ''' , lowerCAmelCase_ )
total_reduced_size += mem_size
_snake_case : Union[str, Any] = inits[i].name
_snake_case : Any = inits[j].name
if name_i in dup_map:
dup_map[name_i].append(lowerCAmelCase_ )
else:
_snake_case : Union[str, Any] = [name_j]
ind_to_replace.append((j, i) )
print('''total reduced size: ''' , total_reduced_size / 1_024 / 1_024 / 1_024 , '''GB''' )
_snake_case : List[str] = sorted(lowerCAmelCase_ )
_remove_dup_initializers_from_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
_snake_case : List[str] = '''optimized_''' + model_file_name
_snake_case : List[Any] = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ )
onnx.save(lowerCAmelCase_ , lowerCAmelCase_ )
return new_model
| 47
| 1
|
'''simple docstring'''
import argparse
import numpy as np
import torch
from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging
logging.set_verbosity_info()
UpperCAmelCase : List[Any] = logging.get_logger('transformers.models.speecht5')
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
hf_model.apply_weight_norm()
_snake_case : int = checkpoint['''input_conv.weight_g''']
_snake_case : str = checkpoint['''input_conv.weight_v''']
_snake_case : List[Any] = checkpoint['''input_conv.bias''']
for i in range(len(config.upsample_rates ) ):
_snake_case : int = checkpoint[f'''upsamples.{i}.1.weight_g''']
_snake_case : List[Any] = checkpoint[f'''upsamples.{i}.1.weight_v''']
_snake_case : List[Any] = checkpoint[f'''upsamples.{i}.1.bias''']
for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ):
for j in range(len(config.resblock_dilation_sizes ) ):
_snake_case : str = checkpoint[f'''blocks.{i}.convs1.{j}.1.weight_g''']
_snake_case : Optional[Any] = checkpoint[f'''blocks.{i}.convs1.{j}.1.weight_v''']
_snake_case : Tuple = checkpoint[f'''blocks.{i}.convs1.{j}.1.bias''']
_snake_case : Tuple = checkpoint[f'''blocks.{i}.convs2.{j}.1.weight_g''']
_snake_case : Union[str, Any] = checkpoint[f'''blocks.{i}.convs2.{j}.1.weight_v''']
_snake_case : Tuple = checkpoint[f'''blocks.{i}.convs2.{j}.1.bias''']
_snake_case : str = checkpoint['''output_conv.1.weight_g''']
_snake_case : str = checkpoint['''output_conv.1.weight_v''']
_snake_case : Any = checkpoint['''output_conv.1.bias''']
hf_model.remove_weight_norm()
@torch.no_grad()
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , ):
"""simple docstring"""
if config_path is not None:
_snake_case : Any = SpeechTaHifiGanConfig.from_pretrained(lowerCAmelCase_ )
else:
_snake_case : Dict = SpeechTaHifiGanConfig()
_snake_case : str = SpeechTaHifiGan(lowerCAmelCase_ )
_snake_case : Optional[Any] = torch.load(lowerCAmelCase_ )
load_weights(orig_checkpoint['''model''']['''generator'''] , lowerCAmelCase_ , lowerCAmelCase_ )
_snake_case : Tuple = np.load(lowerCAmelCase_ )
_snake_case : List[Any] = stats[0].reshape(-1 )
_snake_case : Tuple = stats[1].reshape(-1 )
_snake_case : Any = torch.from_numpy(lowerCAmelCase_ ).float()
_snake_case : Dict = torch.from_numpy(lowerCAmelCase_ ).float()
model.save_pretrained(lowerCAmelCase_ )
if repo_id:
print('''Pushing to the hub...''' )
model.push_to_hub(lowerCAmelCase_ )
if __name__ == "__main__":
UpperCAmelCase : int = argparse.ArgumentParser()
parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint')
parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.'
)
UpperCAmelCase : Optional[int] = parser.parse_args()
convert_hifigan_checkpoint(
args.checkpoint_path,
args.stats_path,
args.pytorch_dump_folder_path,
args.config_path,
args.push_to_hub,
)
| 47
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase : int = {
'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Union[str, Any] = [
'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST',
'PegasusXForConditionalGeneration',
'PegasusXModel',
'PegasusXPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 47
| 1
|
'''simple docstring'''
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
UpperCAmelCase : Tuple = logging.get_logger(__name__)
UpperCAmelCase : Dict = {
'google/umt5-small': 'https://huggingface.co/google/umt5-small/resolve/main/config.json',
# See all umt5 models at https://huggingface.co/models?filter=umt5
}
class lowerCamelCase (a__ ):
_lowercase : Optional[int] = """umt5"""
_lowercase : Optional[Any] = ["""past_key_values"""]
def __init__( self , lowercase__=250_112 , lowercase__=512 , lowercase__=64 , lowercase__=1_024 , lowercase__=8 , lowercase__=None , lowercase__=6 , lowercase__=32 , lowercase__=128 , lowercase__=0.1 , lowercase__=1E-6 , lowercase__=1.0 , lowercase__="gated-gelu" , lowercase__=True , lowercase__=True , lowercase__="T5Tokenizer" , lowercase__=True , lowercase__=0 , lowercase__=1 , lowercase__=0 , **lowercase__ , ) -> Dict:
"""simple docstring"""
super().__init__(
is_encoder_decoder=lowercase__ , tokenizer_class=lowercase__ , tie_word_embeddings=lowercase__ , pad_token_id=lowercase__ , eos_token_id=lowercase__ , decoder_start_token_id=lowercase__ , **lowercase__ , )
_snake_case : str = vocab_size
_snake_case : Any = d_model
_snake_case : Union[str, Any] = d_kv
_snake_case : List[str] = d_ff
_snake_case : Dict = num_layers
_snake_case : Tuple = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
_snake_case : List[Any] = num_heads
_snake_case : Dict = relative_attention_num_buckets
_snake_case : List[Any] = relative_attention_max_distance
_snake_case : int = dropout_rate
_snake_case : List[Any] = layer_norm_epsilon
_snake_case : Tuple = initializer_factor
_snake_case : List[str] = feed_forward_proj
_snake_case : Optional[Any] = use_cache
_snake_case : Optional[Any] = self.feed_forward_proj.split('''-''' )
_snake_case : str = act_info[-1]
_snake_case : int = act_info[0] == '''gated'''
if len(lowercase__ ) > 1 and act_info[0] != "gated" or len(lowercase__ ) > 2:
raise ValueError(
F'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.'''
'''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '''
'''\'gated-gelu\' or \'relu\'''' )
if feed_forward_proj == "gated-gelu":
_snake_case : Optional[int] = '''gelu_new'''
@property
def UpperCAmelCase_ ( self ) -> Optional[Any]:
"""simple docstring"""
return self.d_model
@property
def UpperCAmelCase_ ( self ) -> Any:
"""simple docstring"""
return self.num_heads
@property
def UpperCAmelCase_ ( self ) -> Dict:
"""simple docstring"""
return self.num_layers
class lowerCamelCase (a__ ):
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs
def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
_snake_case : Any = {
'''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''},
'''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''},
}
if self.use_past:
_snake_case : int = '''past_encoder_sequence + sequence'''
_snake_case : Dict = {0: '''batch'''}
_snake_case : List[str] = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
else:
_snake_case : str = {0: '''batch''', 1: '''decoder_sequence'''}
_snake_case : str = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(lowercase__ , direction='''inputs''' )
return common_inputs
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset
def UpperCAmelCase_ ( self ) -> int:
"""simple docstring"""
return 13
@property
def UpperCAmelCase_ ( self ) -> float:
"""simple docstring"""
return 5E-4
| 47
|
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
import PIL.Image
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
PILImageResampling,
get_image_size,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
UpperCAmelCase : Dict = logging.get_logger(__name__)
class lowerCamelCase (a__ ):
_lowercase : int = ["""pixel_values"""]
def __init__( self , lowercase__ = True , lowercase__ = 32 , lowercase__=PILImageResampling.BILINEAR , lowercase__ = True , **lowercase__ , ) -> None:
"""simple docstring"""
_snake_case : Any = do_resize
_snake_case : List[str] = do_rescale
_snake_case : Any = size_divisor
_snake_case : Optional[Any] = resample
super().__init__(**lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ ) -> np.ndarray:
"""simple docstring"""
_snake_case , _snake_case : Dict = get_image_size(lowercase__ )
# Rounds the height and width down to the closest multiple of size_divisor
_snake_case : Optional[int] = height // size_divisor * size_divisor
_snake_case : Dict = width // size_divisor * size_divisor
_snake_case : str = resize(lowercase__ , (new_h, new_w) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ )
return image
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ ) -> np.ndarray:
"""simple docstring"""
return rescale(image=lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__=None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ) -> BatchFeature:
"""simple docstring"""
_snake_case : Any = do_resize if do_resize is not None else self.do_resize
_snake_case : List[Any] = do_rescale if do_rescale is not None else self.do_rescale
_snake_case : List[str] = size_divisor if size_divisor is not None else self.size_divisor
_snake_case : int = resample if resample is not None else self.resample
if do_resize and size_divisor is None:
raise ValueError('''size_divisor is required for resizing''' )
_snake_case : Tuple = make_list_of_images(lowercase__ )
if not valid_images(lowercase__ ):
raise ValueError('''Invalid image(s)''' )
# All transformations expect numpy arrays.
_snake_case : Tuple = [to_numpy_array(lowercase__ ) for img in images]
if do_resize:
_snake_case : Optional[int] = [self.resize(lowercase__ , size_divisor=lowercase__ , resample=lowercase__ ) for image in images]
if do_rescale:
_snake_case : Union[str, Any] = [self.rescale(lowercase__ , scale=1 / 255 ) for image in images]
_snake_case : Union[str, Any] = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images]
_snake_case : List[str] = {'''pixel_values''': images}
return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
| 47
| 1
|
'''simple docstring'''
import os
import re
import unicodedata
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import is_torch_available, logging
if is_torch_available():
import torch
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
UpperCAmelCase : Dict = logging.get_logger(__name__)
UpperCAmelCase : Tuple = {'vocab_file': 'spiece.model'}
UpperCAmelCase : str = {
'vocab_file': {
'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model',
'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model',
'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model',
'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model',
'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model',
}
}
UpperCAmelCase : Any = {
'AI-Sweden/gpt-sw3-126m': 2_0_4_8,
'AI-Sweden/gpt-sw3-350m': 2_0_4_8,
'AI-Sweden/gpt-sw3-1.6b': 2_0_4_8,
'AI-Sweden/gpt-sw3-6.7b': 2_0_4_8,
'AI-Sweden/gpt-sw3-20b': 2_0_4_8,
}
class lowerCamelCase (a__ ):
_lowercase : Any = VOCAB_FILES_NAMES
_lowercase : str = PRETRAINED_VOCAB_FILES_MAP
_lowercase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowercase : List[Any] = ["""input_ids""", """attention_mask"""]
def __init__( self , lowercase__ , lowercase__=False , lowercase__=False , lowercase__=False , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__ = None , **lowercase__ , ) -> None:
"""simple docstring"""
_snake_case : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs
_snake_case : List[str] = kwargs.get('''name_or_path''' )
if name_or_path is None:
logger.warning(
'''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,'''
''' you are testing the model, this can safely be ignored''' )
_snake_case : List[str] = '''None'''
# Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing
_snake_case : Optional[int] = '''<|endoftext|>''' if eos_token is None else eos_token
_snake_case : Tuple = '''<unk>''' if unk_token is None else unk_token
if "gpt-sw3-7b" in name_or_path:
_snake_case : str = unk_token if pad_token is None else pad_token
_snake_case : List[Any] = eos_token if bos_token is None else bos_token
else:
_snake_case : int = '''<pad>''' if pad_token is None else pad_token
_snake_case : List[str] = '''<s>''' if bos_token is None else bos_token
super().__init__(
do_lower_case=lowercase__ , remove_space=lowercase__ , keep_accents=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , unk_token=lowercase__ , pad_token=lowercase__ , sp_model_kwargs=self.sp_model_kwargs , **lowercase__ , )
_snake_case : Union[str, Any] = do_lower_case
_snake_case : Optional[Any] = remove_space
_snake_case : int = keep_accents
_snake_case : Optional[Any] = vocab_file
_snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(lowercase__ )
# Used for whitespace normalization in input texts
# fmt : off
_snake_case : str = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', ''''''}
# fmt : on
# Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing
_snake_case : Optional[Any] = re.compile(
F'''[{"".join(map(lowercase__ , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8_203] ) )}]''' )
def __getstate__( self ) -> int:
"""simple docstring"""
_snake_case : int = self.__dict__.copy()
_snake_case : Tuple = None
return state
def __setstate__( self , lowercase__ ) -> Optional[Any]:
"""simple docstring"""
_snake_case : Optional[int] = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
_snake_case : int = {}
_snake_case : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
@property
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size
def UpperCAmelCase_ ( self ) -> int:
"""simple docstring"""
return len(self.sp_model )
def UpperCAmelCase_ ( self , lowercase__ ) -> str:
"""simple docstring"""
_snake_case : Optional[int] = self.non_printing_characters_re.sub('''''' , lowercase__ )
# Normalize whitespaces
_snake_case : str = ''''''.join([char if char not in self.whitespaces else ''' ''' for char in text] )
# NFC Unicode normalization
_snake_case : str = unicodedata.normalize('''NFC''' , lowercase__ )
return text
def UpperCAmelCase_ ( self , lowercase__ , **lowercase__ ) -> List[str]:
"""simple docstring"""
_snake_case : List[Any] = self.preprocess_text(lowercase__ )
return self.sp_model.encode(lowercase__ , out_type=lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ ) -> int:
"""simple docstring"""
return self.sp_model.PieceToId(lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ ) -> str:
"""simple docstring"""
return self.sp_model.IdToPiece(lowercase__ )
@staticmethod
def UpperCAmelCase_ ( lowercase__ ) -> str:
"""simple docstring"""
return out_string
def UpperCAmelCase_ ( self , lowercase__ ) -> str:
"""simple docstring"""
_snake_case : List[str] = []
_snake_case : Any = ''''''
_snake_case : Union[str, Any] = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
# TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(lowercase__ ) + token
_snake_case : str = True
_snake_case : Union[str, Any] = []
else:
current_sub_tokens.append(lowercase__ )
_snake_case : int = False
out_string += self.sp_model.decode(lowercase__ )
return out_string
def UpperCAmelCase_ ( self ) -> Dict[str, int]:
"""simple docstring"""
_snake_case : Any = {self.convert_ids_to_tokens(lowercase__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(lowercase__ ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
_snake_case : Union[str, Any] = os.path.join(
lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowercase__ )
elif not os.path.isfile(self.vocab_file ):
with open(lowercase__ , '''wb''' ) as fi:
_snake_case : Optional[Any] = self.sp_model.serialized_model_proto()
fi.write(lowercase__ )
return (out_vocab_file,)
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]:
"""simple docstring"""
if isinstance(lowercase__ , lowercase__ ):
_snake_case : Optional[int] = self.preprocess_text(lowercase__ )
_snake_case : Union[str, Any] = self.sp_model.encode(lowercase__ )
else:
_snake_case : Optional[int] = [self.preprocess_text(lowercase__ ) for t in text]
_snake_case : Union[str, Any] = self.sp_model.encode(lowercase__ )
if return_tensors is True or return_tensors == "pt":
_snake_case : Union[str, Any] = torch.tensor(lowercase__ )
return token_ids
def UpperCAmelCase_ ( self , lowercase__ ) -> str:
"""simple docstring"""
return self.sp_model.decode(lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ ) -> List[int]:
"""simple docstring"""
_snake_case : Optional[Any] = [F'''User: {text}''' if is_user else F'''Bot: {text}''' for is_user, text in conversation.iter_texts()]
_snake_case : Union[str, Any] = (
F'''{self.eos_token}{self.bos_token}''' + F'''{self.bos_token}'''.join(lowercase__ ) + F'''{self.bos_token}Bot:'''
)
return self.encode(text=lowercase__ )
| 47
|
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import LEDConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFLEDForConditionalGeneration, TFLEDModel
@require_tf
class lowerCamelCase :
_lowercase : Any = LEDConfig
_lowercase : Any = {}
_lowercase : Optional[Any] = """gelu"""
def __init__( self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=False , lowercase__=99 , lowercase__=32 , lowercase__=2 , lowercase__=4 , lowercase__=37 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=20 , lowercase__=2 , lowercase__=1 , lowercase__=0 , lowercase__=4 , ) -> Any:
"""simple docstring"""
_snake_case : Dict = parent
_snake_case : Any = batch_size
_snake_case : List[str] = seq_length
_snake_case : Union[str, Any] = is_training
_snake_case : Tuple = use_labels
_snake_case : int = vocab_size
_snake_case : str = hidden_size
_snake_case : Optional[Any] = num_hidden_layers
_snake_case : List[Any] = num_attention_heads
_snake_case : Optional[int] = intermediate_size
_snake_case : List[Any] = hidden_dropout_prob
_snake_case : List[str] = attention_probs_dropout_prob
_snake_case : Optional[int] = max_position_embeddings
_snake_case : Any = eos_token_id
_snake_case : List[Any] = pad_token_id
_snake_case : Optional[int] = bos_token_id
_snake_case : Any = attention_window
# `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
# [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention
# returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
# because its local attention only attends to `self.attention_window` and one before and one after
_snake_case : Any = self.attention_window + 2
# because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for
# the `test_attention_outputs` and `test_hidden_states_output` tests
_snake_case : Tuple = (
self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window
)
def UpperCAmelCase_ ( self ) -> Optional[int]:
"""simple docstring"""
_snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
_snake_case : Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
_snake_case : Optional[int] = tf.concat([input_ids, eos_tensor] , axis=1 )
_snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_snake_case : List[Any] = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , )
_snake_case : Dict = prepare_led_inputs_dict(lowercase__ , lowercase__ , lowercase__ )
_snake_case : Dict = tf.concat(
[tf.zeros_like(lowercase__ )[:, :-1], tf.ones_like(lowercase__ )[:, -1:]] , axis=-1 , )
_snake_case : Dict = global_attention_mask
return config, inputs_dict
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> int:
"""simple docstring"""
_snake_case : int = TFLEDModel(config=lowercase__ ).get_decoder()
_snake_case : Union[str, Any] = inputs_dict['''input_ids''']
_snake_case : List[str] = input_ids[:1, :]
_snake_case : Tuple = inputs_dict['''attention_mask'''][:1, :]
_snake_case : Dict = 1
# first forward pass
_snake_case : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__ )
_snake_case , _snake_case : Dict = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_snake_case : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size )
_snake_case : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
_snake_case : Tuple = tf.concat([input_ids, next_tokens] , axis=-1 )
_snake_case : List[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
_snake_case : List[Any] = model(lowercase__ , attention_mask=lowercase__ )[0]
_snake_case : Tuple = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__ )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
_snake_case : Tuple = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
_snake_case : int = output_from_no_past[:, -3:, random_slice_idx]
_snake_case : Optional[Any] = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(lowercase__ , lowercase__ , rtol=1E-3 )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , ):
"""simple docstring"""
if attention_mask is None:
_snake_case : Union[str, Any] = tf.cast(tf.math.not_equal(lowerCAmelCase_ , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
_snake_case : str = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
_snake_case : int = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_snake_case : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
}
@require_tf
class lowerCamelCase (a__ , a__ , unittest.TestCase ):
_lowercase : Optional[int] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else ()
_lowercase : int = (TFLEDForConditionalGeneration,) if is_tf_available() else ()
_lowercase : Dict = (
{
"""conversational""": TFLEDForConditionalGeneration,
"""feature-extraction""": TFLEDModel,
"""summarization""": TFLEDForConditionalGeneration,
"""text2text-generation""": TFLEDForConditionalGeneration,
"""translation""": TFLEDForConditionalGeneration,
}
if is_tf_available()
else {}
)
_lowercase : int = True
_lowercase : List[Any] = False
_lowercase : str = False
_lowercase : Union[str, Any] = False
def UpperCAmelCase_ ( self ) -> Optional[Any]:
"""simple docstring"""
_snake_case : str = TFLEDModelTester(self )
_snake_case : Union[str, Any] = ConfigTester(self , config_class=lowercase__ )
def UpperCAmelCase_ ( self ) -> Tuple:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase_ ( self ) -> List[str]:
"""simple docstring"""
_snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*lowercase__ )
def UpperCAmelCase_ ( self ) -> int:
"""simple docstring"""
_snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
_snake_case : Any = tf.zeros_like(inputs_dict['''attention_mask'''] )
_snake_case : Optional[Any] = 2
_snake_case : Any = tf.where(
tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , )
_snake_case : Dict = True
_snake_case : str = self.model_tester.seq_length
_snake_case : Dict = self.model_tester.encoder_seq_length
def check_decoder_attentions_output(lowercase__ ):
_snake_case : Optional[int] = outputs.decoder_attentions
self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
def check_encoder_attentions_output(lowercase__ ):
_snake_case : int = [t.numpy() for t in outputs.encoder_attentions]
_snake_case : Tuple = [t.numpy() for t in outputs.encoder_global_attentions]
self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers )
self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
self.assertListEqual(
list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , )
for model_class in self.all_model_classes:
_snake_case : Union[str, Any] = True
_snake_case : Dict = False
_snake_case : Union[str, Any] = False
_snake_case : List[Any] = model_class(lowercase__ )
_snake_case : Optional[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) )
_snake_case : List[Any] = len(lowercase__ )
self.assertEqual(config.output_hidden_states , lowercase__ )
check_encoder_attentions_output(lowercase__ )
if self.is_encoder_decoder:
_snake_case : Union[str, Any] = model_class(lowercase__ )
_snake_case : List[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) )
self.assertEqual(config.output_hidden_states , lowercase__ )
check_decoder_attentions_output(lowercase__ )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
_snake_case : str = True
_snake_case : Tuple = model_class(lowercase__ )
_snake_case : int = model(self._prepare_for_class(lowercase__ , lowercase__ ) )
self.assertEqual(config.output_hidden_states , lowercase__ )
check_encoder_attentions_output(lowercase__ )
# Check attention is always last and order is fine
_snake_case : int = True
_snake_case : List[str] = True
_snake_case : Tuple = model_class(lowercase__ )
_snake_case : Optional[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase__ ) )
self.assertEqual(model.config.output_hidden_states , lowercase__ )
check_encoder_attentions_output(lowercase__ )
@unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' )
def UpperCAmelCase_ ( self ) -> int:
"""simple docstring"""
pass
def UpperCAmelCase_ ( self ) -> str:
"""simple docstring"""
pass
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
return tf.constant(lowerCAmelCase_ , dtype=tf.intaa )
UpperCAmelCase : Dict = 1E-4
@slow
@require_tf
class lowerCamelCase (unittest.TestCase ):
def UpperCAmelCase_ ( self ) -> Dict:
"""simple docstring"""
_snake_case : List[str] = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led
# change to intended input here
_snake_case : List[str] = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] )
_snake_case : Tuple = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] )
_snake_case : Tuple = prepare_led_inputs_dict(model.config , lowercase__ , lowercase__ )
_snake_case : int = model(**lowercase__ )[0]
_snake_case : Dict = (1, 1_024, 768)
self.assertEqual(output.shape , lowercase__ )
# change to expected output here
_snake_case : List[Any] = tf.convert_to_tensor(
[[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , )
tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1E-3 )
def UpperCAmelCase_ ( self ) -> List[Any]:
"""simple docstring"""
_snake_case : Any = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' )
# change to intended input here
_snake_case : Dict = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] )
_snake_case : Dict = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] )
_snake_case : List[str] = prepare_led_inputs_dict(model.config , lowercase__ , lowercase__ )
_snake_case : Tuple = model(**lowercase__ )[0]
_snake_case : Any = (1, 1_024, model.config.vocab_size)
self.assertEqual(output.shape , lowercase__ )
# change to expected output here
_snake_case : Dict = tf.convert_to_tensor(
[[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , )
tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1E-3 , rtol=1E-3 )
| 47
| 1
|
'''simple docstring'''
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path:
# hack it in for now:
import sys
from pathlib import Path
UpperCAmelCase : Dict = Path(__file__).resolve().parents[3] / 'src'
sys.path.insert(1, str(git_repo_path))
import dataclasses # noqa
import io # noqa
import itertools # noqa
import json # noqa
import os # noqa
import unittest # noqa
from copy import deepcopy # noqa
from parameterized import parameterized # noqa
from transformers import TrainingArguments, is_torch_available # noqa
from transformers.deepspeed import is_deepspeed_available # noqa
from transformers.file_utils import WEIGHTS_NAME # noqa
from transformers.testing_utils import ( # noqa
CaptureLogger,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
mockenv_context,
require_deepspeed,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
from transformers.trainer_utils import set_seed # noqa
set_seed(4_2)
UpperCAmelCase : Optional[int] = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'}
UpperCAmelCase : Union[str, Any] = 'zero2'
UpperCAmelCase : Union[str, Any] = 'zero3'
UpperCAmelCase : str = [ZEROa, ZEROa]
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Any = parameterized.to_safe_name('''_'''.join(str(lowerCAmelCase_ ) for x in param.args ) )
return f'''{func.__name__}_{param_based_name}'''
# Cartesian-product of zero stages with models to test
UpperCAmelCase : List[str] = list(itertools.product(stages, models.keys()))
@slow
@require_deepspeed
@require_torch_gpu
class lowerCamelCase (a__ ):
@parameterized.expand(lowercase__ , name_func=lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Optional[Any]:
"""simple docstring"""
self.run_and_check(
stage=lowercase__ , model=lowercase__ , distributed=lowercase__ , fpaa=lowercase__ , )
@require_torch_multi_gpu
@parameterized.expand(lowercase__ , name_func=lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> List[str]:
"""simple docstring"""
self.run_and_check(
stage=lowercase__ , model=lowercase__ , distributed=lowercase__ , fpaa=lowercase__ , )
@parameterized.expand(lowercase__ , name_func=lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> List[Any]:
"""simple docstring"""
self.run_and_check(
stage=lowercase__ , model=lowercase__ , distributed=lowercase__ , fpaa=lowercase__ , )
@require_torch_multi_gpu
@parameterized.expand(lowercase__ , name_func=lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> str:
"""simple docstring"""
self.run_and_check(
stage=lowercase__ , model=lowercase__ , distributed=lowercase__ , fpaa=lowercase__ , )
def UpperCAmelCase_ ( self , lowercase__ ) -> List[str]:
"""simple docstring"""
pass
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = 10 , lowercase__ = True , lowercase__ = True , lowercase__ = True , ) -> Optional[Any]:
"""simple docstring"""
_snake_case : Dict = models[model]
_snake_case : int = self.run_trainer(
stage=lowercase__ , model_name=lowercase__ , eval_steps=lowercase__ , num_train_epochs=1 , distributed=lowercase__ , fpaa=lowercase__ , )
self.do_checks(lowercase__ )
return output_dir
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = 10 , lowercase__ = 1 , lowercase__ = True , lowercase__ = True , ) -> int:
"""simple docstring"""
_snake_case : Any = self.get_auto_remove_tmp_dir('''./xxx''' , after=lowercase__ )
_snake_case : str = F'''
--model_name_or_path {model_name}
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_name clean
--train_split_name validation
--validation_split_name validation
--output_dir {output_dir}
--num_train_epochs {str(lowercase__ )}
--per_device_train_batch_size 2
--per_device_eval_batch_size 2
--evaluation_strategy steps
--learning_rate 5e-4
--warmup_steps 8
--orthography timit
--preprocessing_num_workers 1
--group_by_length
--freeze_feature_extractor
--report_to none
--save_steps 0
--eval_steps {eval_steps}
--report_to none
'''.split()
if fpaa:
args.extend(['''--fp16'''] )
# currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true,
# hence the separate config files
_snake_case : Dict = F'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split()
_snake_case : Any = [F'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py''']
_snake_case : Tuple = self.get_launcher(lowercase__ )
_snake_case : List[Any] = launcher + script + args + ds_args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(lowercase__ , env=self.get_env() )
return output_dir
def UpperCAmelCase_ ( self , lowercase__=False ) -> Optional[Any]:
"""simple docstring"""
_snake_case : Tuple = min(2 , get_gpu_count() ) if distributed else 1
return F'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
| 47
|
'''simple docstring'''
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
UpperCAmelCase : Optional[int] = logging.get_logger(__name__)
UpperCAmelCase : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'}
UpperCAmelCase : Any = {
'tokenizer_file': {
'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json',
},
}
UpperCAmelCase : Optional[Any] = {
'gpt-neox-20b': 2_0_4_8,
}
class lowerCamelCase (a__ ):
_lowercase : Optional[int] = VOCAB_FILES_NAMES
_lowercase : str = PRETRAINED_VOCAB_FILES_MAP
_lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowercase : Optional[int] = ["""input_ids""", """attention_mask"""]
def __init__( self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="<|endoftext|>" , lowercase__="<|endoftext|>" , lowercase__="<|endoftext|>" , lowercase__=False , **lowercase__ , ) -> List[Any]:
"""simple docstring"""
super().__init__(
lowercase__ , lowercase__ , tokenizer_file=lowercase__ , unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , add_prefix_space=lowercase__ , **lowercase__ , )
_snake_case : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('''add_prefix_space''' , lowercase__ ) != add_prefix_space:
_snake_case : int = getattr(lowercase__ , pre_tok_state.pop('''type''' ) )
_snake_case : int = add_prefix_space
_snake_case : Optional[Any] = pre_tok_class(**lowercase__ )
_snake_case : List[str] = add_prefix_space
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> Tuple[str]:
"""simple docstring"""
_snake_case : Optional[int] = self._tokenizer.model.save(lowercase__ , name=lowercase__ )
return tuple(lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ ) -> List[int]:
"""simple docstring"""
_snake_case : List[str] = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(lowercase__ , add_special_tokens=lowercase__ ) + [self.eos_token_id] )
if len(lowercase__ ) > self.model_max_length:
_snake_case : Dict = input_ids[-self.model_max_length :]
return input_ids
| 47
| 1
|
'''simple docstring'''
import io
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
UpperCAmelCase : List[Any] = logging.get_logger(__name__)
UpperCAmelCase : Union[str, Any] = '▁'
UpperCAmelCase : Dict = {'vocab_file': 'vocab.txt', 'sentencepiece_model_ckpt': 'sentencepiece.bpe.model'}
UpperCAmelCase : Optional[Any] = {
'sentencepiece_model_file': 'sentencepiece.bpe.model',
'vocab_file': 'vocab.txt',
}
UpperCAmelCase : Any = {
'vocab_file': {
'ernie-m-base': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt',
'ernie-m-large': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt',
},
'sentencepiece_model_file': {
'ernie-m-base': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model',
'ernie-m-large': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model',
},
}
UpperCAmelCase : Dict = {
'ernie-m-base': 5_1_4,
'ernie-m-large': 5_1_4,
}
UpperCAmelCase : List[str] = {
'ernie-m-base': {'do_lower_case': False},
'ernie-m-large': {'do_lower_case': False},
}
class lowerCamelCase (a__ ):
_lowercase : List[str] = ["input_ids"]
_lowercase : Any = VOCAB_FILES_NAMES
_lowercase : Optional[int] = PRETRAINED_INIT_CONFIGURATION
_lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowercase : Dict = PRETRAINED_VOCAB_FILES_MAP
_lowercase : Union[str, Any] = RESOURCE_FILES_NAMES
def __init__( self , lowercase__ , lowercase__=None , lowercase__=False , lowercase__="utf8" , lowercase__="[UNK]" , lowercase__="[SEP]" , lowercase__="[PAD]" , lowercase__="[CLS]" , lowercase__="[MASK]" , lowercase__ = None , **lowercase__ , ) -> None:
"""simple docstring"""
_snake_case : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , pad_token=lowercase__ , cls_token=lowercase__ , mask_token=lowercase__ , vocab_file=lowercase__ , encoding=lowercase__ , sp_model_kwargs=self.sp_model_kwargs , **lowercase__ , )
_snake_case : Union[str, Any] = do_lower_case
_snake_case : List[Any] = sentencepiece_model_ckpt
_snake_case : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(lowercase__ )
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
if vocab_file is not None:
_snake_case : Union[str, Any] = self.load_vocab(filepath=lowercase__ )
else:
_snake_case : int = {self.sp_model.id_to_piece(lowercase__ ): id for id in range(self.sp_model.get_piece_size() )}
_snake_case : Any = {v: k for k, v in self.vocab.items()}
def UpperCAmelCase_ ( self , lowercase__ ) -> Optional[Any]:
"""simple docstring"""
if text is None:
return None
_snake_case : List[str] = self.tokenize(lowercase__ )
_snake_case , _snake_case : Union[str, Any] = '''''', []
for i, ch in enumerate(lowercase__ ):
if ch in self.SP_CHAR_MAPPING:
_snake_case : Optional[Any] = self.SP_CHAR_MAPPING.get(lowercase__ )
else:
_snake_case : Tuple = unicodedata.normalize('''NFKC''' , lowercase__ )
if self.is_whitespace(lowercase__ ):
continue
normalized_text += ch
char_mapping.extend([i] * len(lowercase__ ) )
_snake_case , _snake_case , _snake_case : Dict = normalized_text, [], 0
if self.do_lower_case:
_snake_case : Optional[int] = text.lower()
for token in split_tokens:
if token[:1] == "▁":
_snake_case : List[Any] = token[1:]
_snake_case : int = text[offset:].index(lowercase__ ) + offset
_snake_case : Optional[Any] = start + len(lowercase__ )
token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) )
_snake_case : str = end
return token_mapping
@property
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
"""simple docstring"""
return len(self.vocab )
def UpperCAmelCase_ ( self ) -> str:
"""simple docstring"""
return dict(self.vocab , **self.added_tokens_encoder )
def __getstate__( self ) -> Optional[Any]:
"""simple docstring"""
_snake_case : str = self.__dict__.copy()
_snake_case : Optional[Any] = None
return state
def __setstate__( self , lowercase__ ) -> Tuple:
"""simple docstring"""
_snake_case : List[Any] = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
_snake_case : str = {}
_snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.sentencepiece_model_ckpt )
def UpperCAmelCase_ ( self , lowercase__ ) -> Union[str, Any]:
"""simple docstring"""
return "".join((self.SP_CHAR_MAPPING.get(lowercase__ , lowercase__ ) for c in text) )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__=False , lowercase__=64 , lowercase__=0.1 ) -> Any:
"""simple docstring"""
if self.sp_model_kwargs.get('''enable_sampling''' ) is True:
_snake_case : int = True
if self.sp_model_kwargs.get('''alpha''' ) is not None:
_snake_case : Dict = self.sp_model_kwargs.get('''alpha''' )
if self.sp_model_kwargs.get('''nbest_size''' ) is not None:
_snake_case : Union[str, Any] = self.sp_model_kwargs.get('''nbest_size''' )
if not enable_sampling:
_snake_case : str = self.sp_model.EncodeAsPieces(lowercase__ )
else:
_snake_case : Optional[int] = self.sp_model.SampleEncodeAsPieces(lowercase__ , lowercase__ , lowercase__ )
_snake_case : Tuple = []
for pi, piece in enumerate(lowercase__ ):
if piece == SPIECE_UNDERLINE:
if not pieces[pi + 1].startswith(lowercase__ ) and pi != 0:
new_pieces.append(lowercase__ )
continue
else:
continue
_snake_case : List[Any] = 0
for i, chunk in enumerate(lowercase__ ):
if chunk == SPIECE_UNDERLINE:
continue
if self.is_ch_char(lowercase__ ) or self.is_punct(lowercase__ ):
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
new_pieces.append(lowercase__ )
_snake_case : List[str] = i + 1
elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
_snake_case : Optional[int] = i
elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
_snake_case : Any = i
if len(lowercase__ ) > lst_i:
new_pieces.append(piece[lst_i:] )
return new_pieces
def UpperCAmelCase_ ( self , lowercase__ ) -> int:
"""simple docstring"""
_snake_case : Union[str, Any] = ''''''.join(lowercase__ ).replace(lowercase__ , ''' ''' ).strip()
return out_string
def UpperCAmelCase_ ( self , lowercase__ ) -> str:
"""simple docstring"""
_snake_case : List[Any] = self.convert_ids_to_tokens(lowercase__ )
_snake_case : Dict = ''''''.join(lowercase__ ).replace(lowercase__ , ''' ''' ).strip()
return out_string
def UpperCAmelCase_ ( self , lowercase__ ) -> Union[str, Any]:
"""simple docstring"""
return self.vocab.get(lowercase__ , self.vocab.get(self.unk_token ) )
def UpperCAmelCase_ ( self , lowercase__ ) -> Optional[Any]:
"""simple docstring"""
return self.reverse_vocab.get(lowercase__ , self.unk_token )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__=None ) -> str:
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_snake_case : List[str] = [self.cls_token_id]
_snake_case : Tuple = [self.sep_token_id]
return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep
def UpperCAmelCase_ ( self , lowercase__ , lowercase__=None ) -> Union[str, Any]:
"""simple docstring"""
if offset_mapping_a is None:
return [(0, 0)] + offset_mapping_a + [(0, 0)]
return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)]
def UpperCAmelCase_ ( self , lowercase__ , lowercase__=None , lowercase__=False ) -> Optional[int]:
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(lowercase__ )) + [1, 1] + ([0] * len(lowercase__ )) + [1]
return [1] + ([0] * len(lowercase__ )) + [1]
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> List[int]:
"""simple docstring"""
if token_ids_a is None:
# [CLS] X [SEP]
return (len(lowercase__ ) + 2) * [0]
# [CLS] A [SEP] [SEP] B [SEP]
return [0] * (len(lowercase__ ) + 1) + [1] * (len(lowercase__ ) + 3)
def UpperCAmelCase_ ( self , lowercase__ ) -> Dict:
"""simple docstring"""
if "\u4e00" <= char <= "\u9fff":
return True
return False
def UpperCAmelCase_ ( self , lowercase__ ) -> Any:
"""simple docstring"""
if ("a" <= char <= "z") or ("A" <= char <= "Z"):
return True
return False
def UpperCAmelCase_ ( self , lowercase__ ) -> str:
"""simple docstring"""
if char in ",;:.?!~,;:。?!《》【】":
return True
return False
def UpperCAmelCase_ ( self , lowercase__ ) -> Tuple:
"""simple docstring"""
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
if len(lowercase__ ) == 1:
_snake_case : Union[str, Any] = unicodedata.category(lowercase__ )
if cat == "Zs":
return True
return False
def UpperCAmelCase_ ( self , lowercase__ ) -> Any:
"""simple docstring"""
_snake_case : Union[str, Any] = {}
with io.open(lowercase__ , '''r''' , encoding='''utf-8''' ) as f:
for index, line in enumerate(lowercase__ ):
_snake_case : Optional[int] = line.rstrip('''\n''' )
_snake_case : List[Any] = int(lowercase__ )
return token_to_idx
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> Tuple[str]:
"""simple docstring"""
_snake_case : Dict = 0
if os.path.isdir(lowercase__ ):
_snake_case : Tuple = os.path.join(
lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
else:
_snake_case : Union[str, Any] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory
with open(lowercase__ , '''w''' , encoding='''utf-8''' ) as writer:
for token, token_index in sorted(self.vocab.items() , key=lambda lowercase__ : kv[1] ):
if index != token_index:
logger.warning(
F'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'''
''' Please check that the vocabulary is not corrupted!''' )
_snake_case : Optional[int] = token_index
writer.write(token + '''\n''' )
index += 1
_snake_case : Dict = os.path.join(lowercase__ , '''sentencepiece.bpe.model''' )
with open(lowercase__ , '''wb''' ) as fi:
_snake_case : Dict = self.sp_model.serialized_model_proto()
fi.write(lowercase__ )
return (vocab_file,)
| 47
|
'''simple docstring'''
import math
from numpy import inf
from scipy.integrate import quad
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
if num <= 0:
raise ValueError('''math domain error''' )
return quad(lowerCAmelCase_ , 0 , lowerCAmelCase_ , args=(lowerCAmelCase_) )[0]
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
return math.pow(lowerCAmelCase_ , z - 1 ) * math.exp(-x )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 47
| 1
|
'''simple docstring'''
import pickle
import unittest
import torch
from accelerate import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils import require_cpu
@require_cpu
class lowerCamelCase (unittest.TestCase ):
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
"""simple docstring"""
_snake_case : Any = torch.nn.Linear(10 , 10 )
_snake_case : Optional[int] = torch.optim.SGD(model.parameters() , 0.1 )
_snake_case : List[str] = Accelerator()
_snake_case : Optional[Any] = accelerator.prepare(lowercase__ )
try:
pickle.loads(pickle.dumps(lowercase__ ) )
except Exception as e:
self.fail(F'''Accelerated optimizer pickling failed with {e}''' )
AcceleratorState._reset_state()
| 47
|
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import is_tf_available, is_torch_available
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow
if is_tf_available():
from transformers import (
AutoConfig,
BertConfig,
GPTaConfig,
TaConfig,
TFAutoModel,
TFAutoModelForCausalLM,
TFAutoModelForMaskedLM,
TFAutoModelForPreTraining,
TFAutoModelForQuestionAnswering,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSequenceClassification,
TFAutoModelWithLMHead,
TFBertForMaskedLM,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertModel,
TFGPTaLMHeadModel,
TFRobertaForMaskedLM,
TFTaForConditionalGeneration,
)
from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST
if is_torch_available():
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForMaskedLM,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelWithLMHead,
BertForMaskedLM,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
BertModel,
GPTaLMHeadModel,
RobertaForMaskedLM,
TaForConditionalGeneration,
)
@is_pt_tf_cross_test
class lowerCamelCase (unittest.TestCase ):
@slow
def UpperCAmelCase_ ( self ) -> List[Any]:
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
_snake_case : Union[str, Any] = AutoConfig.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Any = TFAutoModel.from_pretrained(lowercase__ , from_pt=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : str = AutoModel.from_pretrained(lowercase__ , from_tf=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
@slow
def UpperCAmelCase_ ( self ) -> List[str]:
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
_snake_case : Optional[Any] = AutoConfig.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Dict = TFAutoModelForPreTraining.from_pretrained(lowercase__ , from_pt=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Tuple = AutoModelForPreTraining.from_pretrained(lowercase__ , from_tf=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
@slow
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
"""simple docstring"""
for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case : Optional[int] = AutoConfig.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained(lowercase__ , from_pt=lowercase__ )
_snake_case , _snake_case : Tuple = TFAutoModelForCausalLM.from_pretrained(
lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained(lowercase__ , from_tf=lowercase__ )
_snake_case , _snake_case : Optional[Any] = AutoModelForCausalLM.from_pretrained(
lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
@slow
def UpperCAmelCase_ ( self ) -> Optional[Any]:
"""simple docstring"""
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case : List[Any] = AutoConfig.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Tuple = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : int = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
@slow
def UpperCAmelCase_ ( self ) -> Any:
"""simple docstring"""
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case : List[str] = AutoConfig.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(lowercase__ , from_pt=lowercase__ )
_snake_case , _snake_case : List[str] = TFAutoModelForMaskedLM.from_pretrained(
lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : int = AutoModelForMaskedLM.from_pretrained(lowercase__ , from_tf=lowercase__ )
_snake_case , _snake_case : Optional[int] = AutoModelForMaskedLM.from_pretrained(
lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
@slow
def UpperCAmelCase_ ( self ) -> List[str]:
"""simple docstring"""
for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case : List[str] = AutoConfig.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(lowercase__ , from_pt=lowercase__ )
_snake_case , _snake_case : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained(
lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : List[str] = AutoModelForSeqaSeqLM.from_pretrained(lowercase__ , from_tf=lowercase__ )
_snake_case , _snake_case : Dict = AutoModelForSeqaSeqLM.from_pretrained(
lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
@slow
def UpperCAmelCase_ ( self ) -> Dict:
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
_snake_case : Any = AutoConfig.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Any = TFAutoModelForSequenceClassification.from_pretrained(lowercase__ , from_pt=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Dict = AutoModelForSequenceClassification.from_pretrained(lowercase__ , from_tf=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
@slow
def UpperCAmelCase_ ( self ) -> Optional[int]:
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
_snake_case : str = AutoConfig.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : str = TFAutoModelForQuestionAnswering.from_pretrained(lowercase__ , from_pt=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Union[str, Any] = AutoModelForQuestionAnswering.from_pretrained(lowercase__ , from_tf=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
def UpperCAmelCase_ ( self ) -> str:
"""simple docstring"""
_snake_case : Union[str, Any] = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
self.assertEqual(model.num_parameters() , 14_410 )
self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 )
_snake_case : Tuple = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
self.assertEqual(model.num_parameters() , 14_410 )
self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 )
def UpperCAmelCase_ ( self ) -> str:
"""simple docstring"""
_snake_case : List[str] = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
self.assertEqual(model.num_parameters() , 14_410 )
self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 )
_snake_case : int = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
self.assertEqual(model.num_parameters() , 14_410 )
self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 )
| 47
| 1
|
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionAttendAndExcitePipeline,
UNetaDConditionModel,
)
from diffusers.utils import load_numpy, skip_mps, slow
from diffusers.utils.testing_utils import require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
UpperCAmelCase : List[str] = False
@skip_mps
class lowerCamelCase (a__ , a__ , a__ , unittest.TestCase ):
_lowercase : Any = StableDiffusionAttendAndExcitePipeline
_lowercase : List[str] = False
_lowercase : Union[str, Any] = TEXT_TO_IMAGE_PARAMS
_lowercase : List[str] = TEXT_TO_IMAGE_BATCH_PARAMS.union({"""token_indices"""} )
_lowercase : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS
_lowercase : str = TEXT_TO_IMAGE_IMAGE_PARAMS
@classmethod
def UpperCAmelCase_ ( cls ) -> Dict:
"""simple docstring"""
super().setUpClass()
torch.use_deterministic_algorithms(lowercase__ )
@classmethod
def UpperCAmelCase_ ( cls ) -> Optional[int]:
"""simple docstring"""
super().tearDownClass()
torch.use_deterministic_algorithms(lowercase__ )
def UpperCAmelCase_ ( self ) -> Dict:
"""simple docstring"""
torch.manual_seed(0 )
_snake_case : Optional[int] = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=lowercase__ , )
_snake_case : List[Any] = DDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=lowercase__ , set_alpha_to_one=lowercase__ , )
torch.manual_seed(0 )
_snake_case : Tuple = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , )
torch.manual_seed(0 )
_snake_case : List[str] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , )
_snake_case : Optional[int] = CLIPTextModel(lowercase__ )
_snake_case : Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
_snake_case : Optional[int] = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def UpperCAmelCase_ ( self , lowercase__ , lowercase__=0 ) -> Any:
"""simple docstring"""
if str(lowercase__ ).startswith('''mps''' ):
_snake_case : int = torch.manual_seed(lowercase__ )
else:
_snake_case : List[str] = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ )
_snake_case : Union[str, Any] = {
'''prompt''': '''a cat and a frog''',
'''token_indices''': [2, 5],
'''generator''': generator,
'''num_inference_steps''': 1,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
'''max_iter_to_alter''': 2,
'''thresholds''': {0: 0.7},
}
return inputs
def UpperCAmelCase_ ( self ) -> Tuple:
"""simple docstring"""
_snake_case : str = '''cpu'''
_snake_case : Dict = self.get_dummy_components()
_snake_case : Any = self.pipeline_class(**lowercase__ )
pipe.to(lowercase__ )
pipe.set_progress_bar_config(disable=lowercase__ )
_snake_case : Dict = self.get_dummy_inputs(lowercase__ )
_snake_case : List[str] = pipe(**lowercase__ ).images
_snake_case : Optional[int] = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 64, 64, 3) )
_snake_case : Dict = np.array(
[0.63_905_364, 0.62_897_307, 0.48_599_017, 0.5_133_624, 0.5_550_048, 0.45_769_516, 0.50_326_973, 0.5_023_139, 0.45_384_496] )
_snake_case : Any = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(lowercase__ , 1E-3 )
def UpperCAmelCase_ ( self ) -> Any:
"""simple docstring"""
super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 )
def UpperCAmelCase_ ( self ) -> Optional[Any]:
"""simple docstring"""
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def UpperCAmelCase_ ( self ) -> Optional[Any]:
"""simple docstring"""
self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7E-4 )
def UpperCAmelCase_ ( self ) -> str:
"""simple docstring"""
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 )
def UpperCAmelCase_ ( self ) -> Dict:
"""simple docstring"""
super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 )
def UpperCAmelCase_ ( self ) -> List[str]:
"""simple docstring"""
super().test_save_load_local(expected_max_difference=5E-4 )
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
"""simple docstring"""
super().test_save_load_optional_components(expected_max_difference=4E-4 )
@require_torch_gpu
@slow
class lowerCamelCase (unittest.TestCase ):
@classmethod
def UpperCAmelCase_ ( cls ) -> Tuple:
"""simple docstring"""
super().setUpClass()
torch.use_deterministic_algorithms(lowercase__ )
@classmethod
def UpperCAmelCase_ ( cls ) -> int:
"""simple docstring"""
super().tearDownClass()
torch.use_deterministic_algorithms(lowercase__ )
def UpperCAmelCase_ ( self ) -> Dict:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase_ ( self ) -> Tuple:
"""simple docstring"""
_snake_case : str = torch.manual_seed(51 )
_snake_case : str = StableDiffusionAttendAndExcitePipeline.from_pretrained(
'''CompVis/stable-diffusion-v1-4''' , safety_checker=lowercase__ , torch_dtype=torch.floataa )
pipe.to('''cuda''' )
_snake_case : List[Any] = '''a painting of an elephant with glasses'''
_snake_case : Any = [5, 7]
_snake_case : Tuple = pipe(
prompt=lowercase__ , token_indices=lowercase__ , guidance_scale=7.5 , generator=lowercase__ , num_inference_steps=5 , max_iter_to_alter=5 , output_type='''numpy''' , ).images[0]
_snake_case : Union[str, Any] = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy''' )
assert np.abs((expected_image - image).max() ) < 5E-1
| 47
|
'''simple docstring'''
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase : Dict = {'configuration_timm_backbone': ['TimmBackboneConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Union[str, Any] = ['TimmBackbone']
if TYPE_CHECKING:
from .configuration_timm_backbone import TimmBackboneConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_timm_backbone import TimmBackbone
else:
import sys
UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 47
| 1
|
'''simple docstring'''
import warnings
from contextlib import contextmanager
from ....processing_utils import ProcessorMixin
class lowerCamelCase (a__ ):
_lowercase : Optional[int] = """MCTCTFeatureExtractor"""
_lowercase : str = """AutoTokenizer"""
def __init__( self , lowercase__ , lowercase__ ) -> int:
"""simple docstring"""
super().__init__(lowercase__ , lowercase__ )
_snake_case : List[str] = self.feature_extractor
_snake_case : Any = False
def __call__( self , *lowercase__ , **lowercase__ ) -> Optional[Any]:
"""simple docstring"""
if self._in_target_context_manager:
return self.current_processor(*lowercase__ , **lowercase__ )
if "raw_speech" in kwargs:
warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' )
_snake_case : List[str] = kwargs.pop('''raw_speech''' )
else:
_snake_case : str = kwargs.pop('''audio''' , lowercase__ )
_snake_case : Dict = kwargs.pop('''sampling_rate''' , lowercase__ )
_snake_case : Optional[int] = kwargs.pop('''text''' , lowercase__ )
if len(lowercase__ ) > 0:
_snake_case : Any = args[0]
_snake_case : List[str] = args[1:]
if audio is None and text is None:
raise ValueError('''You need to specify either an `audio` or `text` input to process.''' )
if audio is not None:
_snake_case : Tuple = self.feature_extractor(lowercase__ , *lowercase__ , sampling_rate=lowercase__ , **lowercase__ )
if text is not None:
_snake_case : str = self.tokenizer(lowercase__ , **lowercase__ )
if text is None:
return inputs
elif audio is None:
return encodings
else:
_snake_case : Dict = encodings['''input_ids''']
return inputs
def UpperCAmelCase_ ( self , *lowercase__ , **lowercase__ ) -> Union[str, Any]:
"""simple docstring"""
return self.tokenizer.batch_decode(*lowercase__ , **lowercase__ )
def UpperCAmelCase_ ( self , *lowercase__ , **lowercase__ ) -> Optional[int]:
"""simple docstring"""
if self._in_target_context_manager:
return self.current_processor.pad(*lowercase__ , **lowercase__ )
_snake_case : int = kwargs.pop('''input_features''' , lowercase__ )
_snake_case : Tuple = kwargs.pop('''labels''' , lowercase__ )
if len(lowercase__ ) > 0:
_snake_case : Union[str, Any] = args[0]
_snake_case : List[Any] = args[1:]
if input_features is not None:
_snake_case : Union[str, Any] = self.feature_extractor.pad(lowercase__ , *lowercase__ , **lowercase__ )
if labels is not None:
_snake_case : Union[str, Any] = self.tokenizer.pad(lowercase__ , **lowercase__ )
if labels is None:
return input_features
elif input_features is None:
return labels
else:
_snake_case : List[Any] = labels['''input_ids''']
return input_features
def UpperCAmelCase_ ( self , *lowercase__ , **lowercase__ ) -> Union[str, Any]:
"""simple docstring"""
return self.tokenizer.decode(*lowercase__ , **lowercase__ )
@contextmanager
def UpperCAmelCase_ ( self ) -> Any:
"""simple docstring"""
warnings.warn(
'''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your '''
'''labels by using the argument `text` of the regular `__call__` method (either in the same call as '''
'''your audio inputs, or in a separate call.''' )
_snake_case : List[str] = True
_snake_case : Union[str, Any] = self.tokenizer
yield
_snake_case : Optional[int] = self.feature_extractor
_snake_case : Union[str, Any] = False
| 47
|
'''simple docstring'''
import argparse
import logging
import os
from pathlib import Path
from typing import Any, Dict
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info
from transformers import (
AdamW,
AutoConfig,
AutoModel,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
AutoModelWithLMHead,
AutoTokenizer,
PretrainedConfig,
PreTrainedTokenizer,
)
from transformers.optimization import (
Adafactor,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.utils.versions import require_version
UpperCAmelCase : Tuple = logging.getLogger(__name__)
require_version('pytorch_lightning>=1.0.4')
UpperCAmelCase : str = {
'base': AutoModel,
'sequence-classification': AutoModelForSequenceClassification,
'question-answering': AutoModelForQuestionAnswering,
'pretraining': AutoModelForPreTraining,
'token-classification': AutoModelForTokenClassification,
'language-modeling': AutoModelWithLMHead,
'summarization': AutoModelForSeqaSeqLM,
'translation': AutoModelForSeqaSeqLM,
}
# update this and the import above to support new schedulers from transformers.optimization
UpperCAmelCase : Optional[Any] = {
'linear': get_linear_schedule_with_warmup,
'cosine': get_cosine_schedule_with_warmup,
'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup,
'polynomial': get_polynomial_decay_schedule_with_warmup,
# '': get_constant_schedule, # not supported for now
# '': get_constant_schedule_with_warmup, # not supported for now
}
UpperCAmelCase : Tuple = sorted(arg_to_scheduler.keys())
UpperCAmelCase : Optional[Any] = '{' + ', '.join(arg_to_scheduler_choices) + '}'
class lowerCamelCase (pl.LightningModule ):
def __init__( self , lowercase__ , lowercase__=None , lowercase__="base" , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ , ) -> Optional[int]:
"""simple docstring"""
super().__init__()
# TODO: move to self.save_hyperparameters()
# self.save_hyperparameters()
# can also expand arguments into trainer signature for easier reading
self.save_hyperparameters(lowercase__ )
_snake_case : Union[str, Any] = 0
_snake_case : int = Path(self.hparams.output_dir )
_snake_case : int = self.hparams.cache_dir if self.hparams.cache_dir else None
if config is None:
_snake_case : Tuple = AutoConfig.from_pretrained(
self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=lowercase__ , **lowercase__ , )
else:
_snake_case : PretrainedConfig = config
_snake_case : Optional[Any] = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''')
for p in extra_model_params:
if getattr(self.hparams , lowercase__ , lowercase__ ):
assert hasattr(self.config , lowercase__ ), F'''model config doesn\'t have a `{p}` attribute'''
setattr(self.config , lowercase__ , getattr(self.hparams , lowercase__ ) )
if tokenizer is None:
_snake_case : Optional[int] = AutoTokenizer.from_pretrained(
self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=lowercase__ , )
else:
_snake_case : PreTrainedTokenizer = tokenizer
_snake_case : Any = MODEL_MODES[mode]
if model is None:
_snake_case : List[Any] = self.model_type.from_pretrained(
self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=lowercase__ , )
else:
_snake_case : Optional[Any] = model
def UpperCAmelCase_ ( self , *lowercase__ , **lowercase__ ) -> List[str]:
"""simple docstring"""
_snake_case : Dict = self.model_type.from_pretrained(*lowercase__ , **lowercase__ )
def UpperCAmelCase_ ( self ) -> List[Any]:
"""simple docstring"""
_snake_case : Optional[int] = arg_to_scheduler[self.hparams.lr_scheduler]
_snake_case : Optional[int] = get_schedule_func(
self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() )
_snake_case : str = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1}
return scheduler
def UpperCAmelCase_ ( self ) -> int:
"""simple docstring"""
_snake_case : Any = self.model
_snake_case : List[Any] = ['''bias''', '''LayerNorm.weight''']
_snake_case : List[str] = [
{
'''params''': [
p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay )
], # check this named paramters
'''weight_decay''': self.hparams.weight_decay,
},
{
'''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )],
'''weight_decay''': 0.0,
},
]
if self.hparams.adafactor:
_snake_case : Any = Adafactor(
lowercase__ , lr=self.hparams.learning_rate , scale_parameter=lowercase__ , relative_step=lowercase__ )
else:
_snake_case : List[str] = AdamW(
lowercase__ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon )
_snake_case : List[str] = optimizer
_snake_case : Any = self.get_lr_scheduler()
return [optimizer], [scheduler]
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Any:
"""simple docstring"""
return self.validation_step(lowercase__ , lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ ) -> Tuple:
"""simple docstring"""
return self.validation_end(lowercase__ )
def UpperCAmelCase_ ( self ) -> int:
"""simple docstring"""
_snake_case : Any = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores
_snake_case : Optional[int] = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices
return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs
def UpperCAmelCase_ ( self , lowercase__ ) -> Any:
"""simple docstring"""
if stage == "test":
_snake_case : Any = len(self.test_dataloader().dataset )
else:
_snake_case : Dict = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=lowercase__ )
_snake_case : Optional[int] = len(self.train_dataloader().dataset )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = False ) -> str:
"""simple docstring"""
raise NotImplementedError('''You must implement this for your task''' )
def UpperCAmelCase_ ( self ) -> Optional[int]:
"""simple docstring"""
return self.train_loader
def UpperCAmelCase_ ( self ) -> Dict:
"""simple docstring"""
return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=lowercase__ )
def UpperCAmelCase_ ( self ) -> Optional[Any]:
"""simple docstring"""
return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ ) -> Optional[int]:
"""simple docstring"""
return os.path.join(
self.hparams.data_dir , '''cached_{}_{}_{}'''.format(
lowercase__ , list(filter(lowercase__ , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , )
@pl.utilities.rank_zero_only
def UpperCAmelCase_ ( self , lowercase__ ) -> None:
"""simple docstring"""
_snake_case : Dict = self.output_dir.joinpath('''best_tfmr''' )
_snake_case : Tuple = self.step_count
self.model.save_pretrained(lowercase__ )
self.tokenizer.save_pretrained(lowercase__ )
@staticmethod
def UpperCAmelCase_ ( lowercase__ , lowercase__ ) -> Tuple:
"""simple docstring"""
parser.add_argument(
'''--model_name_or_path''' , default=lowercase__ , type=lowercase__ , required=lowercase__ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , )
parser.add_argument(
'''--config_name''' , default='''''' , type=lowercase__ , help='''Pretrained config name or path if not the same as model_name''' )
parser.add_argument(
'''--tokenizer_name''' , default=lowercase__ , type=lowercase__ , help='''Pretrained tokenizer name or path if not the same as model_name''' , )
parser.add_argument(
'''--cache_dir''' , default=str(Path(lowercase__ ).parent / '''test_run''' / '''cache''' ) , type=lowercase__ , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , )
parser.add_argument(
'''--encoder_layerdrop''' , type=lowercase__ , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--decoder_layerdrop''' , type=lowercase__ , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--dropout''' , type=lowercase__ , help='''Dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--attention_dropout''' , type=lowercase__ , help='''Attention dropout probability (Optional). Goes into model.config''' , )
parser.add_argument('''--learning_rate''' , default=5E-5 , type=lowercase__ , help='''The initial learning rate for Adam.''' )
parser.add_argument(
'''--lr_scheduler''' , default='''linear''' , choices=lowercase__ , metavar=lowercase__ , type=lowercase__ , help='''Learning rate scheduler''' , )
parser.add_argument('''--weight_decay''' , default=0.0 , type=lowercase__ , help='''Weight decay if we apply some.''' )
parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=lowercase__ , help='''Epsilon for Adam optimizer.''' )
parser.add_argument('''--warmup_steps''' , default=0 , type=lowercase__ , help='''Linear warmup over warmup_steps.''' )
parser.add_argument('''--num_workers''' , default=4 , type=lowercase__ , help='''kwarg passed to DataLoader''' )
parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=lowercase__ )
parser.add_argument('''--train_batch_size''' , default=32 , type=lowercase__ )
parser.add_argument('''--eval_batch_size''' , default=32 , type=lowercase__ )
parser.add_argument('''--adafactor''' , action='''store_true''' )
class lowerCamelCase (pl.Callback ):
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> str:
"""simple docstring"""
if (
trainer.is_global_zero and trainer.global_rank == 0
): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed.
pl_module.model.rag.retriever.init_retrieval() # better to use hook functions.
class lowerCamelCase (pl.Callback ):
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> List[str]:
"""simple docstring"""
for name, param in pl_module.model.rag.named_parameters():
if param.grad is None:
print(lowercase__ )
class lowerCamelCase (pl.Callback ):
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Any:
"""simple docstring"""
_snake_case : Any = trainer.lr_schedulers[0]['''scheduler''']
_snake_case : Optional[int] = {F'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr() )}
pl_module.logger.log_metrics(lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> List[str]:
"""simple docstring"""
rank_zero_info('''***** Validation results *****''' )
_snake_case : Dict = trainer.callback_metrics
# Log results
for key in sorted(lowercase__ ):
if key not in ["log", "progress_bar"]:
rank_zero_info('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Dict:
"""simple docstring"""
rank_zero_info('''***** Test results *****''' )
_snake_case : Dict = trainer.callback_metrics
# Log and save results to file
_snake_case : str = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' )
with open(lowercase__ , '''w''' ) as writer:
for key in sorted(lowercase__ ):
if key not in ["log", "progress_bar"]:
rank_zero_info('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) )
writer.write('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
parser.add_argument(
'''--output_dir''' , default=str(Path(lowerCAmelCase_ ).parent / '''test_run''' / '''model_checkpoints''' ) , type=lowerCAmelCase_ , help='''The output directory where the model predictions and checkpoints will be written.''' , )
parser.add_argument(
'''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , )
parser.add_argument(
'''--fp16_opt_level''' , type=lowerCAmelCase_ , default='''O2''' , help=(
'''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'''
'''See details at https://nvidia.github.io/apex/amp.html'''
) , )
parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=lowerCAmelCase_ )
parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=lowerCAmelCase_ , help='''Max gradient norm''' )
parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' )
parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' )
parser.add_argument(
'''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=lowerCAmelCase_ , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , )
parser.add_argument('''--seed''' , type=lowerCAmelCase_ , default=42 , help='''random seed for initialization''' )
parser.add_argument(
'''--data_dir''' , default=str(Path(lowerCAmelCase_ ).parent / '''test_run''' / '''dummy-train-data''' ) , type=lowerCAmelCase_ , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_=[] , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , ):
"""simple docstring"""
pl.seed_everything(args.seed )
# init model
_snake_case : Union[str, Any] = Path(model.hparams.output_dir )
odir.mkdir(exist_ok=lowerCAmelCase_ )
# add custom checkpoints
if checkpoint_callback is None:
_snake_case : Any = pl.callbacks.ModelCheckpoint(
filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 )
if early_stopping_callback:
extra_callbacks.append(lowerCAmelCase_ )
if logging_callback is None:
_snake_case : str = LoggingCallback()
_snake_case : Tuple = {}
if args.fpaa:
_snake_case : Union[str, Any] = 16
if args.gpus > 1:
_snake_case : Optional[Any] = '''auto'''
_snake_case : Tuple = '''ddp'''
_snake_case : Optional[Any] = args.accumulate_grad_batches
_snake_case : Tuple = None
_snake_case : str = '''auto'''
_snake_case : int = pl.Trainer.from_argparse_args(
lowerCAmelCase_ , weights_summary=lowerCAmelCase_ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase_ , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase_ , )
if args.do_train:
trainer.fit(lowerCAmelCase_ )
else:
print('''RAG modeling tests with new set functions successfuly executed!''' )
return trainer
| 47
| 1
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available
UpperCAmelCase : List[Any] = {'tokenization_herbert': ['HerbertTokenizer']}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Optional[Any] = ['HerbertTokenizerFast']
if TYPE_CHECKING:
from .tokenization_herbert import HerbertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_herbert_fast import HerbertTokenizerFast
else:
import sys
UpperCAmelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 47
|
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase : List[str] = logging.get_logger(__name__)
UpperCAmelCase : Dict = {
'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json',
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class lowerCamelCase (a__ ):
_lowercase : List[str] = """sew-d"""
def __init__( self , lowercase__=32 , lowercase__=768 , lowercase__=12 , lowercase__=12 , lowercase__=3_072 , lowercase__=2 , lowercase__=512 , lowercase__=256 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.02 , lowercase__=1E-7 , lowercase__=1E-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=128 , lowercase__=16 , lowercase__=True , lowercase__=0.05 , lowercase__=10 , lowercase__=2 , lowercase__=0.0 , lowercase__=10 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=256 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ) -> Dict:
"""simple docstring"""
super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ )
_snake_case : List[str] = hidden_size
_snake_case : Optional[Any] = feat_extract_norm
_snake_case : Tuple = feat_extract_activation
_snake_case : Tuple = list(lowercase__ )
_snake_case : Any = list(lowercase__ )
_snake_case : Any = list(lowercase__ )
_snake_case : Any = conv_bias
_snake_case : List[Any] = num_conv_pos_embeddings
_snake_case : Any = num_conv_pos_embedding_groups
_snake_case : Union[str, Any] = len(self.conv_dim )
_snake_case : Optional[Any] = num_hidden_layers
_snake_case : Optional[int] = intermediate_size
_snake_case : Any = squeeze_factor
_snake_case : Optional[Any] = max_position_embeddings
_snake_case : Tuple = position_buckets
_snake_case : Tuple = share_att_key
_snake_case : Any = relative_attention
_snake_case : Optional[int] = norm_rel_ebd
_snake_case : Optional[Any] = list(lowercase__ )
_snake_case : List[Any] = hidden_act
_snake_case : List[Any] = num_attention_heads
_snake_case : Dict = hidden_dropout
_snake_case : Tuple = attention_dropout
_snake_case : Union[str, Any] = activation_dropout
_snake_case : List[Any] = feat_proj_dropout
_snake_case : Optional[int] = final_dropout
_snake_case : Optional[Any] = layer_norm_eps
_snake_case : Dict = feature_layer_norm_eps
_snake_case : List[Any] = initializer_range
_snake_case : Dict = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect.'''
'''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'''
F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)'''
F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_snake_case : Union[str, Any] = apply_spec_augment
_snake_case : Any = mask_time_prob
_snake_case : List[str] = mask_time_length
_snake_case : Dict = mask_time_min_masks
_snake_case : Union[str, Any] = mask_feature_prob
_snake_case : Tuple = mask_feature_length
_snake_case : Union[str, Any] = mask_feature_min_masks
# ctc loss
_snake_case : Optional[Any] = ctc_loss_reduction
_snake_case : Optional[Any] = ctc_zero_infinity
# sequence classification
_snake_case : List[Any] = use_weighted_layer_sum
_snake_case : Any = classifier_proj_size
@property
def UpperCAmelCase_ ( self ) -> Any:
"""simple docstring"""
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 47
| 1
|
'''simple docstring'''
import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
UpperCAmelCase : List[str] = logging.get_logger(__name__)
UpperCAmelCase : List[str] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'}
# See all LED models at https://huggingface.co/models?filter=LED
UpperCAmelCase : Tuple = {
'vocab_file': {
'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json',
},
'merges_file': {
'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt',
},
'tokenizer_file': {
'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json',
},
}
UpperCAmelCase : Any = {
'allenai/led-base-16384': 1_6_3_8_4,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def _a ( ):
"""simple docstring"""
_snake_case : Dict = (
list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) )
)
_snake_case : int = bs[:]
_snake_case : Optional[Any] = 0
for b in range(2**8 ):
if b not in bs:
bs.append(lowerCAmelCase_ )
cs.append(2**8 + n )
n += 1
_snake_case : int = [chr(lowerCAmelCase_ ) for n in cs]
return dict(zip(lowerCAmelCase_ , lowerCAmelCase_ ) )
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Dict = set()
_snake_case : Tuple = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
_snake_case : Tuple = char
return pairs
class lowerCamelCase (a__ ):
_lowercase : Optional[Any] = VOCAB_FILES_NAMES
_lowercase : int = PRETRAINED_VOCAB_FILES_MAP
_lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowercase : Optional[int] = ["""input_ids""", """attention_mask"""]
def __init__( self , lowercase__ , lowercase__ , lowercase__="replace" , lowercase__="<s>" , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<mask>" , lowercase__=False , **lowercase__ , ) -> List[str]:
"""simple docstring"""
_snake_case : Tuple = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else bos_token
_snake_case : Dict = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else eos_token
_snake_case : Union[str, Any] = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else sep_token
_snake_case : Optional[int] = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else cls_token
_snake_case : Tuple = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else unk_token
_snake_case : Any = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
_snake_case : str = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token
super().__init__(
errors=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , add_prefix_space=lowercase__ , **lowercase__ , )
with open(lowercase__ , encoding='''utf-8''' ) as vocab_handle:
_snake_case : List[str] = json.load(lowercase__ )
_snake_case : Any = {v: k for k, v in self.encoder.items()}
_snake_case : Dict = errors # how to handle errors in decoding
_snake_case : Optional[int] = bytes_to_unicode()
_snake_case : Tuple = {v: k for k, v in self.byte_encoder.items()}
with open(lowercase__ , encoding='''utf-8''' ) as merges_handle:
_snake_case : Tuple = merges_handle.read().split('''\n''' )[1:-1]
_snake_case : Tuple = [tuple(merge.split() ) for merge in bpe_merges]
_snake_case : int = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) )
_snake_case : List[Any] = {}
_snake_case : Tuple = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
_snake_case : Optional[int] = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def UpperCAmelCase_ ( self ) -> Optional[int]:
"""simple docstring"""
return len(self.encoder )
def UpperCAmelCase_ ( self ) -> Any:
"""simple docstring"""
return dict(self.encoder , **self.added_tokens_encoder )
def UpperCAmelCase_ ( self , lowercase__ ) -> List[Any]:
"""simple docstring"""
if token in self.cache:
return self.cache[token]
_snake_case : Optional[int] = tuple(lowercase__ )
_snake_case : List[str] = get_pairs(lowercase__ )
if not pairs:
return token
while True:
_snake_case : Dict = min(lowercase__ , key=lambda lowercase__ : self.bpe_ranks.get(lowercase__ , float('''inf''' ) ) )
if bigram not in self.bpe_ranks:
break
_snake_case , _snake_case : Any = bigram
_snake_case : Union[str, Any] = []
_snake_case : Tuple = 0
while i < len(lowercase__ ):
try:
_snake_case : Union[str, Any] = word.index(lowercase__ , lowercase__ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
_snake_case : Union[str, Any] = j
if word[i] == first and i < len(lowercase__ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
_snake_case : str = tuple(lowercase__ )
_snake_case : Any = new_word
if len(lowercase__ ) == 1:
break
else:
_snake_case : str = get_pairs(lowercase__ )
_snake_case : Union[str, Any] = ''' '''.join(lowercase__ )
_snake_case : Optional[int] = word
return word
def UpperCAmelCase_ ( self , lowercase__ ) -> Tuple:
"""simple docstring"""
_snake_case : List[str] = []
for token in re.findall(self.pat , lowercase__ ):
_snake_case : Optional[int] = ''''''.join(
self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowercase__ ).split(''' ''' ) )
return bpe_tokens
def UpperCAmelCase_ ( self , lowercase__ ) -> List[str]:
"""simple docstring"""
return self.encoder.get(lowercase__ , self.encoder.get(self.unk_token ) )
def UpperCAmelCase_ ( self , lowercase__ ) -> Tuple:
"""simple docstring"""
return self.decoder.get(lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ ) -> Optional[Any]:
"""simple docstring"""
_snake_case : Any = ''''''.join(lowercase__ )
_snake_case : List[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors )
return text
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(lowercase__ ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
_snake_case : Tuple = os.path.join(
lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
_snake_case : List[str] = os.path.join(
lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] )
with open(lowercase__ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowercase__ , ensure_ascii=lowercase__ ) + '''\n''' )
_snake_case : Dict = 0
with open(lowercase__ , '''w''' , encoding='''utf-8''' ) as writer:
writer.write('''#version: 0.2\n''' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowercase__ : kv[1] ):
if index != token_index:
logger.warning(
F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
''' Please check that the tokenizer is not corrupted!''' )
_snake_case : Optional[Any] = token_index
writer.write(''' '''.join(lowercase__ ) + '''\n''' )
index += 1
return vocab_file, merge_file
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> List[int]:
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_snake_case : str = [self.cls_token_id]
_snake_case : Tuple = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None , lowercase__ = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowercase__ , token_ids_a=lowercase__ , already_has_special_tokens=lowercase__ )
if token_ids_a is None:
return [1] + ([0] * len(lowercase__ )) + [1]
return [1] + ([0] * len(lowercase__ )) + [1, 1] + ([0] * len(lowercase__ )) + [1]
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> List[int]:
"""simple docstring"""
_snake_case : Optional[Any] = [self.sep_token_id]
_snake_case : int = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def UpperCAmelCase_ ( self , lowercase__ , lowercase__=False , **lowercase__ ) -> List[Any]:
"""simple docstring"""
_snake_case : Union[str, Any] = kwargs.pop('''add_prefix_space''' , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(lowercase__ ) > 0 and not text[0].isspace()):
_snake_case : Dict = ''' ''' + text
return (text, kwargs)
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None , lowercase__ = PaddingStrategy.DO_NOT_PAD , lowercase__ = None , lowercase__ = None , ) -> dict:
"""simple docstring"""
_snake_case : int = super()._pad(
encoded_inputs=lowercase__ , max_length=lowercase__ , padding_strategy=lowercase__ , pad_to_multiple_of=lowercase__ , return_attention_mask=lowercase__ , )
# Load from model defaults
if return_attention_mask is None:
_snake_case : Optional[Any] = '''attention_mask''' in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
_snake_case : Optional[Any] = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
_snake_case : Dict = len(encoded_inputs['''global_attention_mask'''] ) != len(lowercase__ )
if needs_to_be_padded:
_snake_case : Any = len(lowercase__ ) - len(encoded_inputs['''global_attention_mask'''] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
_snake_case : Any = (
encoded_inputs['''global_attention_mask'''] + [-1] * difference
)
elif self.padding_side == "left":
_snake_case : Optional[Any] = [-1] * difference + encoded_inputs[
'''global_attention_mask'''
]
else:
raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) )
return encoded_inputs
| 47
|
'''simple docstring'''
from random import randint
from tempfile import TemporaryFile
import numpy as np
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : List[Any] = 0
if start < end:
_snake_case : List[Any] = randint(lowerCAmelCase_ , lowerCAmelCase_ )
_snake_case : Any = a[end]
_snake_case : List[str] = a[pivot]
_snake_case : Optional[int] = temp
_snake_case , _snake_case : List[Any] = _in_place_partition(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
count += _in_place_quick_sort(lowerCAmelCase_ , lowerCAmelCase_ , p - 1 )
count += _in_place_quick_sort(lowerCAmelCase_ , p + 1 , lowerCAmelCase_ )
return count
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Optional[Any] = 0
_snake_case : Optional[int] = randint(lowerCAmelCase_ , lowerCAmelCase_ )
_snake_case : Tuple = a[end]
_snake_case : Optional[Any] = a[pivot]
_snake_case : Union[str, Any] = temp
_snake_case : Union[str, Any] = start - 1
for index in range(lowerCAmelCase_ , lowerCAmelCase_ ):
count += 1
if a[index] < a[end]: # check if current val is less than pivot value
_snake_case : Optional[int] = new_pivot_index + 1
_snake_case : Optional[Any] = a[new_pivot_index]
_snake_case : Tuple = a[index]
_snake_case : str = temp
_snake_case : Any = a[new_pivot_index + 1]
_snake_case : str = a[end]
_snake_case : Optional[int] = temp
return new_pivot_index + 1, count
UpperCAmelCase : Dict = TemporaryFile()
UpperCAmelCase : Dict = 1_0_0 # 1000 elements are to be sorted
UpperCAmelCase, UpperCAmelCase : str = 0, 1 # mean and standard deviation
UpperCAmelCase : Optional[Any] = np.random.normal(mu, sigma, p)
np.save(outfile, X)
print('The array is')
print(X)
outfile.seek(0) # using the same array
UpperCAmelCase : int = np.load(outfile)
UpperCAmelCase : Optional[int] = len(M) - 1
UpperCAmelCase : str = _in_place_quick_sort(M, 0, r)
print(
'No of Comparisons for 100 elements selected from a standard normal distribution'
'is :'
)
print(z)
| 47
| 1
|
'''simple docstring'''
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
UpperCAmelCase : str = logging.get_logger(__name__)
UpperCAmelCase : List[Any] = [
['attention', 'attn'],
['encoder_attention', 'encoder_attn'],
['q_lin', 'q_proj'],
['k_lin', 'k_proj'],
['v_lin', 'v_proj'],
['out_lin', 'out_proj'],
['norm_embeddings', 'layernorm_embedding'],
['position_embeddings', 'embed_positions'],
['embeddings', 'embed_tokens'],
['ffn.lin', 'fc'],
]
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
_snake_case : int = k.replace(lowerCAmelCase_ , lowerCAmelCase_ )
if k.startswith('''encoder''' ):
_snake_case : Optional[int] = k.replace('''.attn''' , '''.self_attn''' )
_snake_case : str = k.replace('''norm1''' , '''self_attn_layer_norm''' )
_snake_case : Any = k.replace('''norm2''' , '''final_layer_norm''' )
elif k.startswith('''decoder''' ):
_snake_case : Optional[int] = k.replace('''norm1''' , '''self_attn_layer_norm''' )
_snake_case : Any = k.replace('''norm2''' , '''encoder_attn_layer_norm''' )
_snake_case : Union[str, Any] = k.replace('''norm3''' , '''final_layer_norm''' )
return k
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : str = [
'''model.encoder.layernorm_embedding.weight''',
'''model.encoder.layernorm_embedding.bias''',
'''model.decoder.layernorm_embedding.weight''',
'''model.decoder.layernorm_embedding.bias''',
]
for k in keys:
_snake_case : Optional[int] = sd.pop(lowerCAmelCase_ )
_snake_case : Tuple = k.replace('''layernorm_embedding''' , '''layer_norm''' )
assert new_k not in sd
_snake_case : Any = v
UpperCAmelCase : Any = ['START']
@torch.no_grad()
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : int = torch.load(lowerCAmelCase_ , map_location='''cpu''' )
_snake_case : Tuple = model['''model''']
_snake_case : Dict = BlenderbotConfig.from_json_file(lowerCAmelCase_ )
_snake_case : Union[str, Any] = BlenderbotForConditionalGeneration(lowerCAmelCase_ )
_snake_case : Optional[int] = m.model.state_dict().keys()
_snake_case : Optional[Any] = []
_snake_case : Dict = {}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
_snake_case : Optional[int] = rename_state_dict_key(lowerCAmelCase_ )
if new_k not in valid_keys:
failures.append([k, new_k] )
else:
_snake_case : str = v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(lowerCAmelCase_ )
m.model.load_state_dict(lowerCAmelCase_ , strict=lowerCAmelCase_ )
m.half()
m.save_pretrained(lowerCAmelCase_ )
if __name__ == "__main__":
UpperCAmelCase : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin')
parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.')
parser.add_argument(
'--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use'
)
UpperCAmelCase : str = parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
| 47
|
'''simple docstring'''
from ...utils import is_torch_available, is_transformers_available
if is_transformers_available() and is_torch_available():
from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
| 47
| 1
|
'''simple docstring'''
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : int = current_set.copy()
for row_index, row in enumerate(lowerCAmelCase_ ):
_snake_case : List[Any] = row[0]
for column_index, column in enumerate(lowerCAmelCase_ ):
if magnitude == 0:
_snake_case : Dict = column
continue
_snake_case : Tuple = column / magnitude
# Subtract to cancel term
_snake_case : Any = current_set[0]
_snake_case : Optional[Any] = [first_row]
_snake_case : List[Any] = current_set[1::]
for row in current_set:
_snake_case : Optional[Any] = []
# If first term is 0, it is already in form we want, so we preserve it
if row[0] == 0:
final_set.append(lowerCAmelCase_ )
continue
for column_index in range(len(lowerCAmelCase_ ) ):
temp_row.append(first_row[column_index] - row[column_index] )
final_set.append(lowerCAmelCase_ )
# Create next recursion iteration set
if len(final_set[0] ) != 3:
_snake_case : int = final_set[0]
_snake_case : List[Any] = []
_snake_case : str = []
for row in final_set[1::]:
current_first_column.append(row[0] )
next_iteration.append(row[1::] )
_snake_case : int = simplify(lowerCAmelCase_ )
for i in range(len(lowerCAmelCase_ ) ):
resultant[i].insert(0 , current_first_column[i] )
resultant.insert(0 , lowerCAmelCase_ )
_snake_case : Union[str, Any] = resultant
return final_set
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
if len(lowerCAmelCase_ ) == 0:
raise IndexError('''solve_simultaneous() requires n lists of length n+1''' )
_snake_case : int = len(lowerCAmelCase_ ) + 1
if any(len(lowerCAmelCase_ ) != _length for item in equations ):
raise IndexError('''solve_simultaneous() requires n lists of length n+1''' )
for row in equations:
if any(not isinstance(lowerCAmelCase_ , (int, float) ) for column in row ):
raise ValueError('''solve_simultaneous() requires lists of integers''' )
if len(lowerCAmelCase_ ) == 1:
return [equations[0][-1] / equations[0][0]]
_snake_case : Tuple = equations.copy()
if any(0 in row for row in data_set ):
_snake_case : List[str] = data_set.copy()
_snake_case : str = []
for row_index, row in enumerate(lowerCAmelCase_ ):
if 0 not in row:
_snake_case : Optional[int] = data_set.pop(lowerCAmelCase_ )
break
if not full_row:
raise ValueError('''solve_simultaneous() requires at least 1 full equation''' )
data_set.insert(0 , lowerCAmelCase_ )
_snake_case : List[str] = data_set.copy()
_snake_case : Any = simplify(lowerCAmelCase_ )
_snake_case : str = simplified[::-1]
_snake_case : list = []
for row in simplified:
_snake_case : List[Any] = row[-1]
if not solutions:
if row[-2] == 0:
solutions.append(0 )
continue
solutions.append(current_solution / row[-2] )
continue
_snake_case : int = row.copy()[: len(lowerCAmelCase_ ) - 1 :]
while temp_row[0] == 0:
temp_row.pop(0 )
if len(lowerCAmelCase_ ) == 0:
solutions.append(0 )
continue
_snake_case : str = temp_row[1::]
_snake_case : Any = temp_row[::-1]
for column_index, column in enumerate(lowerCAmelCase_ ):
current_solution -= column * solutions[column_index]
solutions.append(lowerCAmelCase_ )
_snake_case : Dict = []
for item in solutions:
final.append(float(round(lowerCAmelCase_ , 5 ) ) )
return final[::-1]
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase : str = [
[2, 1, 1, 1, 1, 4],
[1, 2, 1, 1, 1, 5],
[1, 1, 2, 1, 1, 6],
[1, 1, 1, 2, 1, 7],
[1, 1, 1, 1, 2, 8],
]
print(solve_simultaneous(eq))
print(solve_simultaneous([[4, 2]]))
| 47
|
'''simple docstring'''
from argparse import ArgumentParser
from .add_new_model import AddNewModelCommand
from .add_new_model_like import AddNewModelLikeCommand
from .convert import ConvertCommand
from .download import DownloadCommand
from .env import EnvironmentCommand
from .lfs import LfsCommands
from .pt_to_tf import PTtoTFCommand
from .run import RunCommand
from .serving import ServeCommand
from .user import UserCommands
def _a ( ):
"""simple docstring"""
_snake_case : List[Any] = ArgumentParser('''Transformers CLI tool''' , usage='''transformers-cli <command> [<args>]''' )
_snake_case : List[str] = parser.add_subparsers(help='''transformers-cli command helpers''' )
# Register commands
ConvertCommand.register_subcommand(lowerCAmelCase_ )
DownloadCommand.register_subcommand(lowerCAmelCase_ )
EnvironmentCommand.register_subcommand(lowerCAmelCase_ )
RunCommand.register_subcommand(lowerCAmelCase_ )
ServeCommand.register_subcommand(lowerCAmelCase_ )
UserCommands.register_subcommand(lowerCAmelCase_ )
AddNewModelCommand.register_subcommand(lowerCAmelCase_ )
AddNewModelLikeCommand.register_subcommand(lowerCAmelCase_ )
LfsCommands.register_subcommand(lowerCAmelCase_ )
PTtoTFCommand.register_subcommand(lowerCAmelCase_ )
# Let's go
_snake_case : str = parser.parse_args()
if not hasattr(lowerCAmelCase_ , '''func''' ):
parser.print_help()
exit(1 )
# Run
_snake_case : Union[str, Any] = args.func(lowerCAmelCase_ )
service.run()
if __name__ == "__main__":
main()
| 47
| 1
|
'''simple docstring'''
from __future__ import annotations
def _a ( lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None ):
"""simple docstring"""
if start is None:
_snake_case : Optional[Any] = 0
if end is None:
_snake_case : Any = len(lowerCAmelCase_ ) - 1
if start >= end:
return
_snake_case : Optional[Any] = (start + end) // 2
slowsort(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
slowsort(lowerCAmelCase_ , mid + 1 , lowerCAmelCase_ )
if sequence[end] < sequence[mid]:
_snake_case , _snake_case : int = sequence[mid], sequence[end]
slowsort(lowerCAmelCase_ , lowerCAmelCase_ , end - 1 )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 47
|
'''simple docstring'''
from collections.abc import Generator
def _a ( ):
"""simple docstring"""
_snake_case , _snake_case : Union[str, Any] = 0, 1
while True:
_snake_case , _snake_case : List[str] = b, a + b
yield b
def _a ( lowerCAmelCase_ = 1_000 ):
"""simple docstring"""
_snake_case : List[str] = 1
_snake_case : Dict = fibonacci_generator()
while len(str(next(lowerCAmelCase_ ) ) ) < n:
answer += 1
return answer + 1
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 47
| 1
|
'''simple docstring'''
from __future__ import annotations
import math
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
if depth < 0:
raise ValueError('''Depth cannot be less than 0''' )
if len(lowerCAmelCase_ ) == 0:
raise ValueError('''Scores cannot be empty''' )
if depth == height:
return scores[node_index]
if is_max:
return max(
minimax(depth + 1 , node_index * 2 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) , minimax(depth + 1 , node_index * 2 + 1 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) , )
return min(
minimax(depth + 1 , node_index * 2 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) , minimax(depth + 1 , node_index * 2 + 1 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) , )
def _a ( ):
"""simple docstring"""
_snake_case : Optional[int] = [90, 23, 6, 33, 21, 65, 123, 34_423]
_snake_case : int = math.log(len(lowerCAmelCase_ ) , 2 )
print('''Optimal value : ''' , end='''''' )
print(minimax(0 , 0 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 47
|
'''simple docstring'''
import logging
import re
import pytorch_quantization
import pytorch_quantization.nn as quant_nn
import torch
from pytorch_quantization import calib
from pytorch_quantization.tensor_quant import QuantDescriptor
UpperCAmelCase : str = logging.getLogger(__name__)
UpperCAmelCase : Dict = 5_0 # max width of layer names
UpperCAmelCase : Union[str, Any] = 7_0 # max width of quantizer names
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Dict = parser.add_argument_group('''quant_trainer arguments''' )
group.add_argument('''--wprec''' , type=lowerCAmelCase_ , default=8 , help='''weight precision''' )
group.add_argument('''--aprec''' , type=lowerCAmelCase_ , default=8 , help='''activation precision''' )
group.add_argument('''--quant-per-tensor''' , action='''store_true''' , help='''per tensor weight scaling''' )
group.add_argument('''--quant-disable''' , action='''store_true''' , help='''disable all quantizers''' )
group.add_argument('''--quant-disable-embeddings''' , action='''store_true''' , help='''disable all embeddings quantizers''' )
group.add_argument('''--quant-disable-keyword''' , type=lowerCAmelCase_ , nargs='''+''' , help='''disable quantizers by keyword''' )
group.add_argument('''--quant-disable-layer-module''' , type=lowerCAmelCase_ , help='''disable quantizers by keyword under layer.''' )
group.add_argument('''--quant-enable-layer-module''' , type=lowerCAmelCase_ , help='''enable quantizers by keyword under layer''' )
group.add_argument('''--calibrator''' , default='''max''' , help='''which quantization range calibrator to use''' )
group.add_argument('''--percentile''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help='''percentile for PercentileCalibrator''' )
group.add_argument('''--fuse-qkv''' , action='''store_true''' , help='''use the same scale factor for qkv''' )
group.add_argument('''--clip-gelu''' , metavar='''N''' , type=lowerCAmelCase_ , help='''clip gelu output maximum value to N''' )
group.add_argument(
'''--recalibrate-weights''' , action='''store_true''' , help=(
'''recalibrate weight amaxes by taking the max of the weights.'''
''' amaxes will be computed with the current quantization granularity (axis).'''
) , )
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
if args.calibrator == "max":
_snake_case : Optional[int] = '''max'''
elif args.calibrator == "percentile":
if args.percentile is None:
raise ValueError('''Specify --percentile when using percentile calibrator''' )
_snake_case : Tuple = '''histogram'''
elif args.calibrator == "mse":
_snake_case : int = '''histogram'''
else:
raise ValueError(f'''Invalid calibrator {args.calibrator}''' )
_snake_case : Tuple = QuantDescriptor(num_bits=args.aprec , calib_method=lowerCAmelCase_ )
_snake_case : str = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) )
quant_nn.QuantLinear.set_default_quant_desc_input(lowerCAmelCase_ )
quant_nn.QuantLinear.set_default_quant_desc_weight(lowerCAmelCase_ )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False , lowerCAmelCase_=False ):
"""simple docstring"""
logger.info('''Configuring Model for Quantization''' )
logger.info(f'''using quantization package {pytorch_quantization.__file__}''' )
if not calib:
if args.quant_disable_embeddings:
set_quantizer_by_name(lowerCAmelCase_ , ['''embeddings'''] , which='''weight''' , _disabled=lowerCAmelCase_ )
if args.quant_disable:
set_quantizer_by_name(lowerCAmelCase_ , [''''''] , _disabled=lowerCAmelCase_ )
if args.quant_disable_keyword:
set_quantizer_by_name(lowerCAmelCase_ , args.quant_disable_keyword , _disabled=lowerCAmelCase_ )
if args.quant_disable_layer_module:
set_quantizer_by_name(lowerCAmelCase_ , [R'''layer.\d+.''' + args.quant_disable_layer_module] , _disabled=lowerCAmelCase_ )
if args.quant_enable_layer_module:
set_quantizer_by_name(lowerCAmelCase_ , [R'''layer.\d+.''' + args.quant_enable_layer_module] , _disabled=lowerCAmelCase_ )
if args.recalibrate_weights:
recalibrate_weights(lowerCAmelCase_ )
if args.fuse_qkv:
fuse_qkv(lowerCAmelCase_ , lowerCAmelCase_ )
if args.clip_gelu:
clip_gelu(lowerCAmelCase_ , args.clip_gelu )
# if args.local_rank in [-1, 0] and not calib:
print_quant_summary(lowerCAmelCase_ )
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
logger.info('''Enabling Calibration''' )
for name, module in model.named_modules():
if name.endswith('''_quantizer''' ):
if module._calibrator is not None:
module.disable_quant()
module.enable_calib()
else:
module.disable()
logger.info(f'''{name:80}: {module}''' )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
logger.info('''Loading calibrated amax''' )
for name, module in model.named_modules():
if name.endswith('''_quantizer''' ):
if module._calibrator is not None:
if isinstance(module._calibrator , calib.MaxCalibrator ):
module.load_calib_amax()
else:
module.load_calib_amax('''percentile''' , percentile=args.percentile )
module.enable_quant()
module.disable_calib()
else:
module.enable()
model.cuda()
print_quant_summary(lowerCAmelCase_ )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
def fusea(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
for mod in [qq, qk, qv]:
if not hasattr(lowerCAmelCase_ , '''_amax''' ):
print(''' WARNING: NO AMAX BUFFER''' )
return
_snake_case : Tuple = qq._amax.detach().item()
_snake_case : Tuple = qk._amax.detach().item()
_snake_case : List[Any] = qv._amax.detach().item()
_snake_case : List[str] = max(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
qq._amax.fill_(lowerCAmelCase_ )
qk._amax.fill_(lowerCAmelCase_ )
qv._amax.fill_(lowerCAmelCase_ )
logger.info(f''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' )
for name, mod in model.named_modules():
if name.endswith('''.attention.self''' ):
logger.info(f'''FUSE_QKV: {name:{name_width}}''' )
fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer )
if args.quant_per_tensor:
fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
for name, mod in model.named_modules():
if name.endswith('''.output.dense''' ) and not name.endswith('''attention.output.dense''' ):
_snake_case : List[Any] = mod._input_quantizer._amax.data.detach().item()
mod._input_quantizer._amax.data.detach().clamp_(max=lowerCAmelCase_ )
_snake_case : List[str] = mod._input_quantizer._amax.data.detach().item()
logger.info(f'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' )
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
for name, mod in model.named_modules():
if hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ) and mod._weight_quantizer.axis is not None:
_snake_case : Dict = mod.weight.shape[0]
_snake_case : Optional[int] = mod._weight_quantizer._amax.detach()
_snake_case : Optional[int] = torch.ones(lowerCAmelCase_ , dtype=amax.dtype , device=amax.device ) * amax
print(f'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' )
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
for name, mod in model.named_modules():
if hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ):
if not hasattr(mod.weight_quantizer , '''_amax''' ):
print('''RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER''' )
continue
# determine which axes to reduce across
# e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3)
_snake_case : int = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis )
_snake_case : Dict = set(range(len(mod.weight.size() ) ) ) - axis_set
_snake_case : Optional[int] = pytorch_quantization.utils.reduce_amax(mod.weight , axis=lowerCAmelCase_ , keepdims=lowerCAmelCase_ ).detach()
logger.info(f'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' )
_snake_case : Tuple = amax
def _a ( lowerCAmelCase_ , lowerCAmelCase_=25 , lowerCAmelCase_=180 , lowerCAmelCase_=None ):
"""simple docstring"""
if ignore is None:
_snake_case : Dict = []
elif not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
_snake_case : Optional[int] = [ignore]
_snake_case : str = 0
for name, mod in model.named_modules():
if not hasattr(lowerCAmelCase_ , '''weight''' ):
continue
_snake_case : Optional[int] = max(lowerCAmelCase_ , len(lowerCAmelCase_ ) )
for name, mod in model.named_modules():
_snake_case : Optional[Any] = getattr(lowerCAmelCase_ , '''_input_quantizer''' , lowerCAmelCase_ )
_snake_case : Tuple = getattr(lowerCAmelCase_ , '''_weight_quantizer''' , lowerCAmelCase_ )
if not hasattr(lowerCAmelCase_ , '''weight''' ):
continue
if type(lowerCAmelCase_ ) in ignore:
continue
if [True for s in ignore if type(lowerCAmelCase_ ) is str and s in name]:
continue
_snake_case : Optional[int] = f'''Act:{input_q.extra_repr()}'''
_snake_case : Any = f'''Wgt:{weight_q.extra_repr()}'''
_snake_case : Optional[int] = f'''{name:{name_width}} {act_str} {wgt_str}'''
if len(lowerCAmelCase_ ) <= line_width:
logger.info(lowerCAmelCase_ )
else:
logger.info(f'''{name:{name_width}} {act_str}''' )
logger.info(f'''{" ":{name_width}} {wgt_str}''' )
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : str = 0
for name, mod in model.named_modules():
if isinstance(lowerCAmelCase_ , pytorch_quantization.nn.TensorQuantizer ):
print(f'''{name:80} {mod}''' )
count += 1
print(f'''{count} TensorQuantizers found in model''' )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Optional[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
if quantizer_mod is not None:
assert hasattr(lowerCAmelCase_ , lowerCAmelCase_ )
setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
else:
logger.warning(f'''{name} has no {quantizer}''' )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_="both" , **lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Optional[Any] = f'''Warning: changing {which} quantizers of {name:{qname_width}}'''
for k, v in kwargs.items():
s += f''' {k}={v}'''
if which in ["input", "both"]:
set_quantizer(lowerCAmelCase_ , lowerCAmelCase_ , '''_input_quantizer''' , lowerCAmelCase_ , lowerCAmelCase_ )
if which in ["weight", "both"]:
set_quantizer(lowerCAmelCase_ , lowerCAmelCase_ , '''_weight_quantizer''' , lowerCAmelCase_ , lowerCAmelCase_ )
logger.info(lowerCAmelCase_ )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ):
"""simple docstring"""
for name, mod in model.named_modules():
if hasattr(lowerCAmelCase_ , '''_input_quantizer''' ) or hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ):
for n in names:
if re.search(lowerCAmelCase_ , lowerCAmelCase_ ):
set_quantizers(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ )
elif name.endswith('''_quantizer''' ):
for n in names:
if re.search(lowerCAmelCase_ , lowerCAmelCase_ ):
_snake_case : Any = f'''Warning: changing {name:{name_width}}'''
for k, v in kwargs.items():
s += f''' {k}={v}'''
setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
logger.info(lowerCAmelCase_ )
| 47
| 1
|
'''simple docstring'''
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase : List[Any] = {
'configuration_mgp_str': ['MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MgpstrConfig'],
'processing_mgp_str': ['MgpstrProcessor'],
'tokenization_mgp_str': ['MgpstrTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : str = [
'MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST',
'MgpstrModel',
'MgpstrPreTrainedModel',
'MgpstrForSceneTextRecognition',
]
if TYPE_CHECKING:
from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig
from .processing_mgp_str import MgpstrProcessor
from .tokenization_mgp_str import MgpstrTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mgp_str import (
MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST,
MgpstrForSceneTextRecognition,
MgpstrModel,
MgpstrPreTrainedModel,
)
else:
import sys
UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 47
|
'''simple docstring'''
from __future__ import annotations
def _a ( lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None ):
"""simple docstring"""
if start is None:
_snake_case : Optional[Any] = 0
if end is None:
_snake_case : Any = len(lowerCAmelCase_ ) - 1
if start >= end:
return
_snake_case : Optional[Any] = (start + end) // 2
slowsort(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
slowsort(lowerCAmelCase_ , mid + 1 , lowerCAmelCase_ )
if sequence[end] < sequence[mid]:
_snake_case , _snake_case : int = sequence[mid], sequence[end]
slowsort(lowerCAmelCase_ , lowerCAmelCase_ , end - 1 )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 47
| 1
|
'''simple docstring'''
import os
from pathlib import Path
from unittest.mock import patch
import pytest
import zstandard as zstd
from datasets.download.download_config import DownloadConfig
from datasets.utils.file_utils import (
OfflineModeIsEnabled,
cached_path,
fsspec_get,
fsspec_head,
ftp_get,
ftp_head,
get_from_cache,
http_get,
http_head,
)
UpperCAmelCase : List[str] = '\\n Text data.\n Second line of data.'
UpperCAmelCase : Dict = 'file'
@pytest.fixture(scope='''session''' )
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Dict = tmp_path_factory.mktemp('''data''' ) / (FILE_PATH + '''.zstd''')
_snake_case : Dict = bytes(lowerCAmelCase_ , '''utf-8''' )
with zstd.open(lowerCAmelCase_ , '''wb''' ) as f:
f.write(lowerCAmelCase_ )
return path
@pytest.fixture
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
with open(os.path.join(tmpfs.local_root_dir , lowerCAmelCase_ ) , '''w''' ) as f:
f.write(lowerCAmelCase_ )
return FILE_PATH
@pytest.mark.parametrize('''compression_format''' , ['''gzip''', '''xz''', '''zstd'''] )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : List[Any] = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_path}
_snake_case : Optional[Any] = input_paths[compression_format]
_snake_case : str = tmp_path / '''cache'''
_snake_case : int = DownloadConfig(cache_dir=lowerCAmelCase_ , extract_compressed_file=lowerCAmelCase_ )
_snake_case : Optional[Any] = cached_path(lowerCAmelCase_ , download_config=lowerCAmelCase_ )
with open(lowerCAmelCase_ ) as f:
_snake_case : List[str] = f.read()
with open(lowerCAmelCase_ ) as f:
_snake_case : str = f.read()
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize('''default_extracted''' , [True, False] )
@pytest.mark.parametrize('''default_cache_dir''' , [True, False] )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Union[str, Any] = '''custom_cache'''
_snake_case : int = '''custom_extracted_dir'''
_snake_case : Dict = tmp_path / '''custom_extracted_path'''
if default_extracted:
_snake_case : Dict = ('''downloads''' if default_cache_dir else custom_cache_dir, '''extracted''')
else:
monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_DIR''' , lowerCAmelCase_ )
monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(lowerCAmelCase_ ) )
_snake_case : List[Any] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir)
_snake_case : Optional[int] = xz_file
_snake_case : Union[str, Any] = (
DownloadConfig(extract_compressed_file=lowerCAmelCase_ )
if default_cache_dir
else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=lowerCAmelCase_ )
)
_snake_case : str = cached_path(lowerCAmelCase_ , download_config=lowerCAmelCase_ )
assert Path(lowerCAmelCase_ ).parent.parts[-2:] == expected
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Dict = str(Path(lowerCAmelCase_ ).resolve() )
assert cached_path(lowerCAmelCase_ ) == text_file
# relative path
_snake_case : Optional[int] = str(Path(lowerCAmelCase_ ).resolve().relative_to(Path(os.getcwd() ) ) )
assert cached_path(lowerCAmelCase_ ) == text_file
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : str = str(tmp_path.resolve() / '''__missing_file__.txt''' )
with pytest.raises(lowerCAmelCase_ ):
cached_path(lowerCAmelCase_ )
# relative path
_snake_case : Optional[Any] = '''./__missing_file__.txt'''
with pytest.raises(lowerCAmelCase_ ):
cached_path(lowerCAmelCase_ )
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : str = get_from_cache(f'''tmp://{tmpfs_file}''' )
with open(lowerCAmelCase_ ) as f:
_snake_case : Dict = f.read()
assert output_file_content == FILE_CONTENT
@patch('''datasets.config.HF_DATASETS_OFFLINE''' , lowerCAmelCase_ )
def _a ( ):
"""simple docstring"""
with pytest.raises(lowerCAmelCase_ ):
cached_path('''https://huggingface.co''' )
@patch('''datasets.config.HF_DATASETS_OFFLINE''' , lowerCAmelCase_ )
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Union[str, Any] = tmp_path_factory.mktemp('''data''' ) / '''file.html'''
with pytest.raises(lowerCAmelCase_ ):
http_get('''https://huggingface.co''' , temp_file=lowerCAmelCase_ )
with pytest.raises(lowerCAmelCase_ ):
http_head('''https://huggingface.co''' )
@patch('''datasets.config.HF_DATASETS_OFFLINE''' , lowerCAmelCase_ )
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Optional[Any] = tmp_path_factory.mktemp('''data''' ) / '''file.html'''
with pytest.raises(lowerCAmelCase_ ):
ftp_get('''ftp://huggingface.co''' , temp_file=lowerCAmelCase_ )
with pytest.raises(lowerCAmelCase_ ):
ftp_head('''ftp://huggingface.co''' )
@patch('''datasets.config.HF_DATASETS_OFFLINE''' , lowerCAmelCase_ )
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Optional[Any] = tmp_path_factory.mktemp('''data''' ) / '''file.html'''
with pytest.raises(lowerCAmelCase_ ):
fsspec_get('''s3://huggingface.co''' , temp_file=lowerCAmelCase_ )
with pytest.raises(lowerCAmelCase_ ):
fsspec_head('''s3://huggingface.co''' )
| 47
|
'''simple docstring'''
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class lowerCamelCase (unittest.TestCase ):
@slow
def UpperCAmelCase_ ( self ) -> int:
"""simple docstring"""
_snake_case : Tuple = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' )
_snake_case : Any = AutoTokenizer.from_pretrained('''google/mt5-small''' )
_snake_case : List[str] = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids
_snake_case : Dict = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids
_snake_case : Any = shift_tokens_right(lowercase__ , model.config.pad_token_id , model.config.decoder_start_token_id )
_snake_case : Any = model(lowercase__ , decoder_input_ids=lowercase__ ).logits
_snake_case : Tuple = optax.softmax_cross_entropy(lowercase__ , onehot(lowercase__ , logits.shape[-1] ) ).mean()
_snake_case : Tuple = -(labels.shape[-1] * loss.item())
_snake_case : Union[str, Any] = -84.9_127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
| 47
| 1
|
'''simple docstring'''
import math
from datetime import datetime, timedelta
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Optional[int] = year % 19
_snake_case : str = year % 4
_snake_case : Any = year % 7
_snake_case : Union[str, Any] = math.floor(year / 100 )
_snake_case : Tuple = math.floor((13 + 8 * leap_day_inhibits) / 25 )
_snake_case : Optional[int] = leap_day_inhibits / 4
_snake_case : Optional[int] = (
15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number
) % 30
_snake_case : Optional[int] = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7
# days to be added to March 21
_snake_case : Optional[Any] = (19 * metonic_cycle + secular_moon_shift) % 30
# PHM -> Paschal Full Moon
_snake_case : Union[str, Any] = (
2 * julian_leap_year
+ 4 * non_leap_year
+ 6 * days_to_add
+ century_starting_point
) % 7
if days_to_add == 29 and days_from_phm_to_sunday == 6:
return datetime(lowerCAmelCase_ , 4 , 19 )
elif days_to_add == 28 and days_from_phm_to_sunday == 6:
return datetime(lowerCAmelCase_ , 4 , 18 )
else:
return datetime(lowerCAmelCase_ , 3 , 22 ) + timedelta(
days=int(days_to_add + days_from_phm_to_sunday ) )
if __name__ == "__main__":
for year in (1_9_9_4, 2_0_0_0, 2_0_1_0, 2_0_2_1, 2_0_2_3):
UpperCAmelCase : Optional[Any] = 'will be' if year > datetime.now().year else 'was'
print(F"""Easter in {year} {tense} {gauss_easter(year)}""")
| 47
|
'''simple docstring'''
import pickle
import unittest
import torch
from accelerate import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils import require_cpu
@require_cpu
class lowerCamelCase (unittest.TestCase ):
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
"""simple docstring"""
_snake_case : Any = torch.nn.Linear(10 , 10 )
_snake_case : Optional[int] = torch.optim.SGD(model.parameters() , 0.1 )
_snake_case : List[str] = Accelerator()
_snake_case : Optional[Any] = accelerator.prepare(lowercase__ )
try:
pickle.loads(pickle.dumps(lowercase__ ) )
except Exception as e:
self.fail(F'''Accelerated optimizer pickling failed with {e}''' )
AcceleratorState._reset_state()
| 47
| 1
|
'''simple docstring'''
UpperCAmelCase : Optional[Any] = 'Tobias Carryer'
from time import time
class lowerCamelCase :
def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__=int(time() ) ) -> Any: # noqa: B008
"""simple docstring"""
_snake_case : Dict = multiplier
_snake_case : str = increment
_snake_case : Dict = modulo
_snake_case : str = seed
def UpperCAmelCase_ ( self ) -> Tuple:
"""simple docstring"""
_snake_case : str = (self.multiplier * self.seed + self.increment) % self.modulo
return self.seed
if __name__ == "__main__":
# Show the LCG in action.
UpperCAmelCase : Any = LinearCongruentialGenerator(1_6_6_4_5_2_5, 1_0_1_3_9_0_4_2_2_3, 2 << 3_1)
while True:
print(lcg.next_number())
| 47
|
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = tuple[float, float, float]
UpperCAmelCase : int = tuple[float, float, float]
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : str = end_pointa[0] - end_pointa[0]
_snake_case : Tuple = end_pointa[1] - end_pointa[1]
_snake_case : Any = end_pointa[2] - end_pointa[2]
return (x, y, z)
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Dict = ab[1] * ac[2] - ab[2] * ac[1] # *i
_snake_case : List[str] = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j
_snake_case : Optional[int] = ab[0] * ac[1] - ab[1] * ac[0] # *k
return (x, y, z)
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
return tuple(round(lowerCAmelCase_ , lowerCAmelCase_ ) for x in vector ) == (0, 0, 0)
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 10 ):
"""simple docstring"""
_snake_case : str = create_vector(lowerCAmelCase_ , lowerCAmelCase_ )
_snake_case : Tuple = create_vector(lowerCAmelCase_ , lowerCAmelCase_ )
return is_zero_vector(get_ad_vectors_cross(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ )
| 47
| 1
|
'''simple docstring'''
from pathlib import PurePosixPath
from typing import Optional
import fsspec
from fsspec import AbstractFileSystem
from huggingface_hub.hf_api import DatasetInfo
from ..utils.file_utils import get_authentication_headers_for_url
from ..utils.hub import hf_hub_url
class lowerCamelCase (a__ ):
_lowercase : List[Any] = """"""
_lowercase : Tuple = """hf-legacy""" # "hf://"" is reserved for hffs
def __init__( self , lowercase__ = None , lowercase__ = None , **lowercase__ , ) -> Optional[Any]:
"""simple docstring"""
super().__init__(self , **lowercase__ )
_snake_case : List[Any] = repo_info
_snake_case : int = token
_snake_case : Optional[Any] = None
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
"""simple docstring"""
if self.dir_cache is None:
_snake_case : List[str] = {}
for hf_file in self.repo_info.siblings:
# TODO(QL): add sizes
_snake_case : Tuple = {
'''name''': hf_file.rfilename,
'''size''': None,
'''type''': '''file''',
}
self.dir_cache.update(
{
str(lowercase__ ): {'''name''': str(lowercase__ ), '''size''': None, '''type''': '''directory'''}
for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1]
} )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = "rb" , **lowercase__ , ) -> Union[str, Any]:
"""simple docstring"""
if not isinstance(self.repo_info , lowercase__ ):
raise NotImplementedError(F'''Open is only implemented for dataset repositories, but got {self.repo_info}''' )
_snake_case : Optional[Any] = hf_hub_url(self.repo_info.id , lowercase__ , revision=self.repo_info.sha )
return fsspec.open(
lowercase__ , mode=lowercase__ , headers=get_authentication_headers_for_url(lowercase__ , use_auth_token=self.token ) , client_kwargs={'''trust_env''': True} , ).open()
def UpperCAmelCase_ ( self , lowercase__ , **lowercase__ ) -> Optional[int]:
"""simple docstring"""
self._get_dirs()
_snake_case : List[Any] = self._strip_protocol(lowercase__ )
if path in self.dir_cache:
return self.dir_cache[path]
else:
raise FileNotFoundError(lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__=False , **lowercase__ ) -> List[str]:
"""simple docstring"""
self._get_dirs()
_snake_case : Optional[int] = PurePosixPath(path.strip('''/''' ) )
_snake_case : Any = {}
for p, f in self.dir_cache.items():
_snake_case : List[Any] = PurePosixPath(p.strip('''/''' ) )
_snake_case : Tuple = p.parent
if root == path:
_snake_case : int = f
_snake_case : Optional[Any] = list(paths.values() )
if detail:
return out
else:
return sorted(f['''name'''] for f in out )
| 47
|
'''simple docstring'''
import argparse
import logging
import os
from datetime import datetime
import numpy as np
import torch
from torch import nn
from torch.utils.data import DataLoader, RandomSampler, TensorDataset
from tqdm import tqdm
from transformers import GPTaLMHeadModel
UpperCAmelCase : List[str] = logging.getLogger(__name__)
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
if os.path.exists(lowerCAmelCase_ ):
if os.path.exists(os.path.join(lowerCAmelCase_ , '''config.json''' ) ) and os.path.isfile(
os.path.join(lowerCAmelCase_ , '''config.json''' ) ):
os.remove(os.path.join(lowerCAmelCase_ , '''config.json''' ) )
if os.path.exists(os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) ) and os.path.isfile(
os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) ):
os.remove(os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) )
else:
os.makedirs(lowerCAmelCase_ )
model.save_pretrained(lowerCAmelCase_ )
def _a ( lowerCAmelCase_ , lowerCAmelCase_=False ):
"""simple docstring"""
_snake_case : Optional[Any] = 2
if unlogit:
_snake_case : Any = torch.pow(lowerCAmelCase_ , lowerCAmelCase_ )
_snake_case : Union[str, Any] = p * torch.log(lowerCAmelCase_ )
_snake_case : Optional[Any] = 0
return -plogp.sum(dim=-1 )
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
logger.info('''lv, h >\t''' + '''\t'''.join(f'''{x + 1}''' for x in range(len(lowerCAmelCase_ ) ) ) )
for row in range(len(lowerCAmelCase_ ) ):
if tensor.dtype != torch.long:
logger.info(f'''layer {row + 1}:\t''' + '''\t'''.join(f'''{x:.5f}''' for x in tensor[row].cpu().data ) )
else:
logger.info(f'''layer {row + 1}:\t''' + '''\t'''.join(f'''{x:d}''' for x in tensor[row].cpu().data ) )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=None , lowerCAmelCase_=False ):
"""simple docstring"""
_snake_case , _snake_case : Optional[int] = model.config.num_hidden_layers, model.config.num_attention_heads
_snake_case : Tuple = torch.zeros(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device )
_snake_case : Union[str, Any] = torch.zeros(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device )
if head_mask is None:
_snake_case : int = torch.ones(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device )
head_mask.requires_grad_(requires_grad=lowerCAmelCase_ )
# If actually pruned attention multi-head, set head mask to None to avoid shape mismatch
if actually_pruned:
_snake_case : Dict = None
_snake_case : Dict = 0.0
_snake_case : Optional[int] = 0.0
for step, inputs in enumerate(tqdm(lowerCAmelCase_ , desc='''Iteration''' , disable=args.local_rank not in [-1, 0] ) ):
_snake_case : List[Any] = tuple(t.to(args.device ) for t in inputs )
((_snake_case) , ) : Optional[Any] = inputs
# Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below)
_snake_case : Any = model(lowerCAmelCase_ , labels=lowerCAmelCase_ , head_mask=lowerCAmelCase_ )
# (loss), lm_logits, presents, (all hidden_states), (attentions)
_snake_case , _snake_case , _snake_case : List[Any] = (
outputs[0],
outputs[1],
outputs[-1],
) # Loss and logits are the first, attention the last
loss.backward() # Backpropagate to populate the gradients in the head mask
total_loss += loss.detach().cpu().numpy()
if compute_entropy:
for layer, attn in enumerate(lowerCAmelCase_ ):
_snake_case : Union[str, Any] = entropy(attn.detach() , lowerCAmelCase_ )
attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach()
if compute_importance:
head_importance += head_mask.grad.abs().detach()
tot_tokens += torch.ones_like(lowerCAmelCase_ ).float().detach().sum().data
# Normalize
attn_entropy /= tot_tokens
head_importance /= tot_tokens
# Layerwise importance normalization
if not args.dont_normalize_importance_by_layer:
_snake_case : Any = 2
_snake_case : List[str] = torch.pow(torch.pow(lowerCAmelCase_ , lowerCAmelCase_ ).sum(-1 ) , 1 / exponent )
head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20
if not args.dont_normalize_global_importance:
_snake_case : Optional[int] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min())
# Print matrices
if compute_entropy:
logger.info('''Attention entropies''' )
print_ad_tensor(lowerCAmelCase_ )
if compute_importance:
logger.info('''Head importance scores''' )
print_ad_tensor(lowerCAmelCase_ )
logger.info('''Head ranked by importance scores''' )
_snake_case : str = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device )
_snake_case : List[Any] = torch.arange(
head_importance.numel() , device=args.device )
_snake_case : List[Any] = head_ranks.view_as(lowerCAmelCase_ )
print_ad_tensor(lowerCAmelCase_ )
return attn_entropy, head_importance, total_loss
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case , _snake_case , _snake_case : str = compute_heads_importance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ )
_snake_case : Optional[Any] = 1 / loss # instead of downsteam score use the LM loss
logger.info('''Pruning: original score: %f, threshold: %f''' , lowerCAmelCase_ , original_score * args.masking_threshold )
_snake_case : int = torch.ones_like(lowerCAmelCase_ )
_snake_case : Optional[Any] = max(1 , int(new_head_mask.numel() * args.masking_amount ) )
_snake_case : int = original_score
while current_score >= original_score * args.masking_threshold:
_snake_case : int = new_head_mask.clone().detach() # save current head mask
# heads from least important to most - keep only not-masked heads
_snake_case : Dict = float('''Inf''' )
_snake_case : Optional[Any] = head_importance.view(-1 ).sort()[1]
if len(lowerCAmelCase_ ) <= num_to_mask:
print('''BREAK BY num_to_mask''' )
break
# mask heads
_snake_case : Union[str, Any] = current_heads_to_mask[:num_to_mask]
logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist() ) )
_snake_case : Tuple = new_head_mask.view(-1 )
_snake_case : List[str] = 0.0
_snake_case : str = new_head_mask.view_as(lowerCAmelCase_ )
_snake_case : Dict = new_head_mask.clone().detach()
print_ad_tensor(lowerCAmelCase_ )
# Compute metric and head importance again
_snake_case , _snake_case , _snake_case : Any = compute_heads_importance(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , head_mask=lowerCAmelCase_ )
_snake_case : int = 1 / loss
logger.info(
'''Masking: current score: %f, remaining heads %d (%.1f percents)''' , lowerCAmelCase_ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , )
logger.info('''Final head mask''' )
print_ad_tensor(lowerCAmelCase_ )
np.save(os.path.join(args.output_dir , '''head_mask.npy''' ) , head_mask.detach().cpu().numpy() )
return head_mask
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Optional[Any] = datetime.now()
_snake_case , _snake_case , _snake_case : Union[str, Any] = compute_heads_importance(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , compute_importance=lowerCAmelCase_ , head_mask=lowerCAmelCase_ )
_snake_case : Tuple = 1 / loss
_snake_case : Dict = datetime.now() - before_time
_snake_case : List[Any] = sum(p.numel() for p in model.parameters() )
_snake_case : int = {
layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(lowerCAmelCase_ ) )
}
for k, v in heads_to_prune.items():
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
_snake_case : Union[str, Any] = [
v,
]
assert sum(len(lowerCAmelCase_ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item()
model.prune_heads(lowerCAmelCase_ )
_snake_case : List[str] = sum(p.numel() for p in model.parameters() )
_snake_case : int = datetime.now()
_snake_case , _snake_case , _snake_case : Optional[Any] = compute_heads_importance(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , compute_importance=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , actually_pruned=lowerCAmelCase_ , )
_snake_case : Optional[int] = 1 / loss
_snake_case : Dict = datetime.now() - before_time
logger.info(
'''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , lowerCAmelCase_ , lowerCAmelCase_ , pruned_num_params / original_num_params * 100 , )
logger.info('''Pruning: score with masking: %f score with pruning: %f''' , lowerCAmelCase_ , lowerCAmelCase_ )
logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 100 )
save_model(lowerCAmelCase_ , args.output_dir )
def _a ( ):
"""simple docstring"""
_snake_case : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--data_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , )
parser.add_argument(
'''--model_name_or_path''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , )
parser.add_argument(
'''--output_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''The output directory where the model predictions and checkpoints will be written.''' , )
# Other parameters
parser.add_argument(
'''--config_name''' , default='''''' , type=lowerCAmelCase_ , help='''Pretrained config name or path if not the same as model_name_or_path''' , )
parser.add_argument(
'''--tokenizer_name''' , default='''''' , type=lowerCAmelCase_ , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , )
parser.add_argument(
'''--cache_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help='''Where do you want to store the pre-trained models downloaded from s3''' , )
parser.add_argument(
'''--data_subset''' , type=lowerCAmelCase_ , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''' )
parser.add_argument(
'''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''' )
parser.add_argument(
'''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' )
parser.add_argument(
'''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''' )
parser.add_argument(
'''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , )
parser.add_argument(
'''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''' )
parser.add_argument(
'''--masking_threshold''' , default=0.9 , type=lowerCAmelCase_ , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , )
parser.add_argument(
'''--masking_amount''' , default=0.1 , type=lowerCAmelCase_ , help='''Amount to heads to masking at each masking step.''' )
parser.add_argument('''--metric_name''' , default='''acc''' , type=lowerCAmelCase_ , help='''Metric to use for head masking.''' )
parser.add_argument(
'''--max_seq_length''' , default=128 , type=lowerCAmelCase_ , help=(
'''The maximum total input sequence length after WordPiece tokenization. \n'''
'''Sequences longer than this will be truncated, sequences shorter padded.'''
) , )
parser.add_argument('''--batch_size''' , default=1 , type=lowerCAmelCase_ , help='''Batch size.''' )
parser.add_argument('''--seed''' , type=lowerCAmelCase_ , default=42 )
parser.add_argument('''--local_rank''' , type=lowerCAmelCase_ , default=-1 , help='''local_rank for distributed training on gpus''' )
parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''' )
parser.add_argument('''--server_ip''' , type=lowerCAmelCase_ , default='''''' , help='''Can be used for distant debugging.''' )
parser.add_argument('''--server_port''' , type=lowerCAmelCase_ , default='''''' , help='''Can be used for distant debugging.''' )
_snake_case : Optional[Any] = parser.parse_args()
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print('''Waiting for debugger attach''' )
ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowerCAmelCase_ )
ptvsd.wait_for_attach()
# Setup devices and distributed training
if args.local_rank == -1 or args.no_cuda:
_snake_case : str = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''' )
_snake_case : Optional[Any] = 0 if args.no_cuda else torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank )
_snake_case : List[str] = torch.device('''cuda''' , args.local_rank )
_snake_case : int = 1
torch.distributed.init_process_group(backend='''nccl''' ) # Initializes the distributed backend
# Setup logging
logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN )
logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) )
_snake_case : Optional[Any] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path )
# Distributed and parallel training
model.to(args.device )
if args.local_rank != -1:
_snake_case : Optional[int] = nn.parallel.DistributedDataParallel(
lowerCAmelCase_ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=lowerCAmelCase_ )
elif args.n_gpu > 1:
_snake_case : List[Any] = nn.DataParallel(lowerCAmelCase_ )
# Print/save training arguments
os.makedirs(args.output_dir , exist_ok=lowerCAmelCase_ )
torch.save(lowerCAmelCase_ , os.path.join(args.output_dir , '''run_args.bin''' ) )
logger.info('''Training/evaluation parameters %s''' , lowerCAmelCase_ )
# Prepare dataset
_snake_case : Dict = np.concatenate(
[
np.loadtxt(args.data_dir , dtype=np.intaa ),
] )
_snake_case : int = (torch.from_numpy(lowerCAmelCase_ ),)
_snake_case : Tuple = TensorDataset(*lowerCAmelCase_ )
_snake_case : List[str] = RandomSampler(lowerCAmelCase_ )
_snake_case : Dict = DataLoader(lowerCAmelCase_ , sampler=lowerCAmelCase_ , batch_size=args.batch_size )
# Compute head entropy and importance score
compute_heads_importance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
# Try head masking (set heads to zero until the score goes under a threshole)
# and head pruning (remove masked heads and see the effect on the network)
if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0:
_snake_case : Optional[int] = mask_heads(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
prune_heads(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
if __name__ == "__main__":
main()
| 47
| 1
|
'''simple docstring'''
import torch
from diffusers import DDPMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class lowerCamelCase (a__ ):
_lowercase : Union[str, Any] = (DDPMParallelScheduler,)
def UpperCAmelCase_ ( self , **lowercase__ ) -> Optional[int]:
"""simple docstring"""
_snake_case : int = {
'''num_train_timesteps''': 1_000,
'''beta_start''': 0.0_001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
'''variance_type''': '''fixed_small''',
'''clip_sample''': True,
}
config.update(**lowercase__ )
return config
def UpperCAmelCase_ ( self ) -> Optional[Any]:
"""simple docstring"""
for timesteps in [1, 5, 100, 1_000]:
self.check_over_configs(num_train_timesteps=lowercase__ )
def UpperCAmelCase_ ( self ) -> Dict:
"""simple docstring"""
for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=lowercase__ , beta_end=lowercase__ )
def UpperCAmelCase_ ( self ) -> Optional[Any]:
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=lowercase__ )
def UpperCAmelCase_ ( self ) -> List[str]:
"""simple docstring"""
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=lowercase__ )
def UpperCAmelCase_ ( self ) -> Optional[Any]:
"""simple docstring"""
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=lowercase__ )
def UpperCAmelCase_ ( self ) -> int:
"""simple docstring"""
self.check_over_configs(thresholding=lowercase__ )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=lowercase__ , prediction_type=lowercase__ , sample_max_value=lowercase__ , )
def UpperCAmelCase_ ( self ) -> Any:
"""simple docstring"""
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=lowercase__ )
def UpperCAmelCase_ ( self ) -> Any:
"""simple docstring"""
for t in [0, 500, 999]:
self.check_over_forward(time_step=lowercase__ )
def UpperCAmelCase_ ( self ) -> Optional[Any]:
"""simple docstring"""
_snake_case : Union[str, Any] = self.scheduler_classes[0]
_snake_case : Any = self.get_scheduler_config()
_snake_case : Any = scheduler_class(**lowercase__ )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00_979 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5
def UpperCAmelCase_ ( self ) -> List[str]:
"""simple docstring"""
_snake_case : Dict = self.scheduler_classes[0]
_snake_case : Tuple = self.get_scheduler_config()
_snake_case : Optional[Any] = scheduler_class(**lowercase__ )
_snake_case : Optional[int] = len(lowercase__ )
_snake_case : Dict = self.dummy_model()
_snake_case : Dict = self.dummy_sample_deter
_snake_case : List[Any] = self.dummy_sample_deter + 0.1
_snake_case : Dict = self.dummy_sample_deter - 0.1
_snake_case : str = samplea.shape[0]
_snake_case : Optional[int] = torch.stack([samplea, samplea, samplea] , dim=0 )
_snake_case : List[str] = torch.arange(lowercase__ )[0:3, None].repeat(1 , lowercase__ )
_snake_case : int = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
_snake_case : str = scheduler.batch_step_no_noise(lowercase__ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) )
_snake_case : int = torch.sum(torch.abs(lowercase__ ) )
_snake_case : Union[str, Any] = torch.mean(torch.abs(lowercase__ ) )
assert abs(result_sum.item() - 1_153.1_833 ) < 1E-2
assert abs(result_mean.item() - 0.5_005 ) < 1E-3
def UpperCAmelCase_ ( self ) -> List[str]:
"""simple docstring"""
_snake_case : Optional[Any] = self.scheduler_classes[0]
_snake_case : List[str] = self.get_scheduler_config()
_snake_case : Optional[int] = scheduler_class(**lowercase__ )
_snake_case : List[str] = len(lowercase__ )
_snake_case : Optional[Any] = self.dummy_model()
_snake_case : Dict = self.dummy_sample_deter
_snake_case : Optional[int] = torch.manual_seed(0 )
for t in reversed(range(lowercase__ ) ):
# 1. predict noise residual
_snake_case : Union[str, Any] = model(lowercase__ , lowercase__ )
# 2. predict previous mean of sample x_t-1
_snake_case : int = scheduler.step(lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ ).prev_sample
_snake_case : List[str] = pred_prev_sample
_snake_case : int = torch.sum(torch.abs(lowercase__ ) )
_snake_case : Tuple = torch.mean(torch.abs(lowercase__ ) )
assert abs(result_sum.item() - 258.9_606 ) < 1E-2
assert abs(result_mean.item() - 0.3_372 ) < 1E-3
def UpperCAmelCase_ ( self ) -> Optional[int]:
"""simple docstring"""
_snake_case : Tuple = self.scheduler_classes[0]
_snake_case : str = self.get_scheduler_config(prediction_type='''v_prediction''' )
_snake_case : Dict = scheduler_class(**lowercase__ )
_snake_case : Dict = len(lowercase__ )
_snake_case : Union[str, Any] = self.dummy_model()
_snake_case : Optional[int] = self.dummy_sample_deter
_snake_case : List[Any] = torch.manual_seed(0 )
for t in reversed(range(lowercase__ ) ):
# 1. predict noise residual
_snake_case : List[str] = model(lowercase__ , lowercase__ )
# 2. predict previous mean of sample x_t-1
_snake_case : Union[str, Any] = scheduler.step(lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ ).prev_sample
_snake_case : Optional[Any] = pred_prev_sample
_snake_case : List[Any] = torch.sum(torch.abs(lowercase__ ) )
_snake_case : str = torch.mean(torch.abs(lowercase__ ) )
assert abs(result_sum.item() - 202.0_296 ) < 1E-2
assert abs(result_mean.item() - 0.2_631 ) < 1E-3
def UpperCAmelCase_ ( self ) -> Dict:
"""simple docstring"""
_snake_case : Dict = self.scheduler_classes[0]
_snake_case : Optional[Any] = self.get_scheduler_config()
_snake_case : Union[str, Any] = scheduler_class(**lowercase__ )
_snake_case : str = [100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=lowercase__ )
_snake_case : List[str] = scheduler.timesteps
for i, timestep in enumerate(lowercase__ ):
if i == len(lowercase__ ) - 1:
_snake_case : int = -1
else:
_snake_case : Optional[Any] = timesteps[i + 1]
_snake_case : str = scheduler.previous_timestep(lowercase__ )
_snake_case : Tuple = prev_t.item()
self.assertEqual(lowercase__ , lowercase__ )
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
"""simple docstring"""
_snake_case : str = self.scheduler_classes[0]
_snake_case : int = self.get_scheduler_config()
_snake_case : int = scheduler_class(**lowercase__ )
_snake_case : Dict = [100, 87, 50, 51, 0]
with self.assertRaises(lowercase__ , msg='''`custom_timesteps` must be in descending order.''' ):
scheduler.set_timesteps(timesteps=lowercase__ )
def UpperCAmelCase_ ( self ) -> Tuple:
"""simple docstring"""
_snake_case : Optional[Any] = self.scheduler_classes[0]
_snake_case : Any = self.get_scheduler_config()
_snake_case : Any = scheduler_class(**lowercase__ )
_snake_case : Tuple = [100, 87, 50, 1, 0]
_snake_case : List[Any] = len(lowercase__ )
with self.assertRaises(lowercase__ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ):
scheduler.set_timesteps(num_inference_steps=lowercase__ , timesteps=lowercase__ )
def UpperCAmelCase_ ( self ) -> str:
"""simple docstring"""
_snake_case : int = self.scheduler_classes[0]
_snake_case : int = self.get_scheduler_config()
_snake_case : Union[str, Any] = scheduler_class(**lowercase__ )
_snake_case : Union[str, Any] = [scheduler.config.num_train_timesteps]
with self.assertRaises(
lowercase__ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ):
scheduler.set_timesteps(timesteps=lowercase__ )
| 47
|
'''simple docstring'''
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
if n == 1 or not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
return 0
elif n == 2:
return 1
else:
_snake_case : Union[str, Any] = [0, 1]
for i in range(2 , n + 1 ):
sequence.append(sequence[i - 1] + sequence[i - 2] )
return sequence[n]
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Optional[int] = 0
_snake_case : int = 2
while digits < n:
index += 1
_snake_case : Tuple = len(str(fibonacci(lowerCAmelCase_ ) ) )
return index
def _a ( lowerCAmelCase_ = 1_000 ):
"""simple docstring"""
return fibonacci_digits_index(lowerCAmelCase_ )
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 47
| 1
|
'''simple docstring'''
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase : Any = logging.get_logger(__name__)
UpperCAmelCase : Union[str, Any] = {
'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/config.json',
'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/config.json',
}
class lowerCamelCase (a__ ):
_lowercase : Optional[int] = """xlnet"""
_lowercase : Optional[Any] = ["""mems"""]
_lowercase : Any = {
"""n_token""": """vocab_size""", # Backward compatibility
"""hidden_size""": """d_model""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self , lowercase__=32_000 , lowercase__=1_024 , lowercase__=24 , lowercase__=16 , lowercase__=4_096 , lowercase__="gelu" , lowercase__=True , lowercase__="bi" , lowercase__=0.02 , lowercase__=1E-1_2 , lowercase__=0.1 , lowercase__=512 , lowercase__=None , lowercase__=True , lowercase__=False , lowercase__=False , lowercase__=-1 , lowercase__=False , lowercase__="last" , lowercase__=True , lowercase__="tanh" , lowercase__=0.1 , lowercase__=5 , lowercase__=5 , lowercase__=5 , lowercase__=1 , lowercase__=2 , **lowercase__ , ) -> Dict:
"""simple docstring"""
_snake_case : Union[str, Any] = vocab_size
_snake_case : Dict = d_model
_snake_case : int = n_layer
_snake_case : Union[str, Any] = n_head
if d_model % n_head != 0:
raise ValueError(F'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' )
if "d_head" in kwargs:
if kwargs["d_head"] != d_model // n_head:
raise ValueError(
F'''`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})''' )
_snake_case : str = d_model // n_head
_snake_case : Any = ff_activation
_snake_case : int = d_inner
_snake_case : List[Any] = untie_r
_snake_case : Optional[int] = attn_type
_snake_case : Optional[Any] = initializer_range
_snake_case : str = layer_norm_eps
_snake_case : List[Any] = dropout
_snake_case : Any = mem_len
_snake_case : List[Any] = reuse_len
_snake_case : Union[str, Any] = bi_data
_snake_case : List[str] = clamp_len
_snake_case : Optional[int] = same_length
_snake_case : List[Any] = summary_type
_snake_case : str = summary_use_proj
_snake_case : Optional[Any] = summary_activation
_snake_case : Optional[Any] = summary_last_dropout
_snake_case : List[Any] = start_n_top
_snake_case : List[str] = end_n_top
_snake_case : Tuple = bos_token_id
_snake_case : List[Any] = pad_token_id
_snake_case : Optional[int] = eos_token_id
if "use_cache" in kwargs:
warnings.warn(
'''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`'''
''' instead.''' , lowercase__ , )
_snake_case : Optional[int] = kwargs['''use_cache''']
_snake_case : int = use_mems_eval
_snake_case : Union[str, Any] = use_mems_train
super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__ )
@property
def UpperCAmelCase_ ( self ) -> List[Any]:
"""simple docstring"""
logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
return -1
@max_position_embeddings.setter
def UpperCAmelCase_ ( self , lowercase__ ) -> Optional[int]:
"""simple docstring"""
raise NotImplementedError(
F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
| 47
|
'''simple docstring'''
from __future__ import annotations
from collections.abc import Callable
from typing import Generic, TypeVar
UpperCAmelCase : Any = TypeVar('T')
UpperCAmelCase : str = TypeVar('U')
class lowerCamelCase (Generic[T, U] ):
def __init__( self , lowercase__ , lowercase__ ) -> List[Any]:
"""simple docstring"""
_snake_case : str = key
_snake_case : Optional[int] = val
_snake_case : DoubleLinkedListNode[T, U] | None = None
_snake_case : DoubleLinkedListNode[T, U] | None = None
def __repr__( self ) -> str:
"""simple docstring"""
return (
F'''Node: key: {self.key}, val: {self.val}, '''
F'''has next: {bool(self.next )}, has prev: {bool(self.prev )}'''
)
class lowerCamelCase (Generic[T, U] ):
def __init__( self ) -> None:
"""simple docstring"""
_snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase__ , lowercase__ )
_snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase__ , lowercase__ )
_snake_case , _snake_case : Union[str, Any] = self.rear, self.head
def __repr__( self ) -> str:
"""simple docstring"""
_snake_case : List[Any] = ['''DoubleLinkedList''']
_snake_case : str = self.head
while node.next is not None:
rep.append(str(lowercase__ ) )
_snake_case : List[str] = node.next
rep.append(str(self.rear ) )
return ",\n ".join(lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ ) -> None:
"""simple docstring"""
_snake_case : Tuple = self.rear.prev
# All nodes other than self.head are guaranteed to have non-None previous
assert previous is not None
_snake_case : Union[str, Any] = node
_snake_case : Optional[Any] = previous
_snake_case : int = node
_snake_case : Union[str, Any] = self.rear
def UpperCAmelCase_ ( self , lowercase__ ) -> DoubleLinkedListNode[T, U] | None:
"""simple docstring"""
if node.prev is None or node.next is None:
return None
_snake_case : Optional[int] = node.next
_snake_case : Any = node.prev
_snake_case : List[str] = None
_snake_case : Optional[int] = None
return node
class lowerCamelCase (Generic[T, U] ):
_lowercase : dict[Callable[[T], U], LRUCache[T, U]] = {}
def __init__( self , lowercase__ ) -> Union[str, Any]:
"""simple docstring"""
_snake_case : DoubleLinkedList[T, U] = DoubleLinkedList()
_snake_case : Union[str, Any] = capacity
_snake_case : int = 0
_snake_case : Dict = 0
_snake_case : Union[str, Any] = 0
_snake_case : dict[T, DoubleLinkedListNode[T, U]] = {}
def __repr__( self ) -> str:
"""simple docstring"""
return (
F'''CacheInfo(hits={self.hits}, misses={self.miss}, '''
F'''capacity={self.capacity}, current size={self.num_keys})'''
)
def __contains__( self , lowercase__ ) -> bool:
"""simple docstring"""
return key in self.cache
def UpperCAmelCase_ ( self , lowercase__ ) -> U | None:
"""simple docstring"""
if key in self.cache:
self.hits += 1
_snake_case : DoubleLinkedListNode[T, U] = self.cache[key]
_snake_case : Tuple = self.list.remove(self.cache[key] )
assert node == value_node
# node is guaranteed not None because it is in self.cache
assert node is not None
self.list.add(lowercase__ )
return node.val
self.miss += 1
return None
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> None:
"""simple docstring"""
if key not in self.cache:
if self.num_keys >= self.capacity:
# delete first node (oldest) when over capacity
_snake_case : Dict = self.list.head.next
# guaranteed to have a non-None first node when num_keys > 0
# explain to type checker via assertions
assert first_node is not None
assert first_node.key is not None
assert (
self.list.remove(lowercase__ ) is not None
) # node guaranteed to be in list assert node.key is not None
del self.cache[first_node.key]
self.num_keys -= 1
_snake_case : Optional[int] = DoubleLinkedListNode(lowercase__ , lowercase__ )
self.list.add(self.cache[key] )
self.num_keys += 1
else:
# bump node to the end of the list, update value
_snake_case : Optional[Any] = self.list.remove(self.cache[key] )
assert node is not None # node guaranteed to be in list
_snake_case : Optional[Any] = value
self.list.add(lowercase__ )
@classmethod
def UpperCAmelCase_ ( cls , lowercase__ = 128 ) -> Callable[[Callable[[T], U]], Callable[..., U]]:
"""simple docstring"""
def cache_decorator_inner(lowercase__ ) -> Callable[..., U]:
def cache_decorator_wrapper(*lowercase__ ) -> U:
if func not in cls.decorator_function_to_instance_map:
_snake_case : Optional[Any] = LRUCache(lowercase__ )
_snake_case : Union[str, Any] = cls.decorator_function_to_instance_map[func].get(args[0] )
if result is None:
_snake_case : Tuple = func(*lowercase__ )
cls.decorator_function_to_instance_map[func].put(args[0] , lowercase__ )
return result
def cache_info() -> LRUCache[T, U]:
return cls.decorator_function_to_instance_map[func]
setattr(lowercase__ , '''cache_info''' , lowercase__ ) # noqa: B010
return cache_decorator_wrapper
return cache_decorator_inner
if __name__ == "__main__":
import doctest
doctest.testmod()
| 47
| 1
|
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class lowerCamelCase (metaclass=a__ ):
_lowercase : Any = ["""torch""", """transformers""", """onnx"""]
def __init__( self , *lowercase__ , **lowercase__ ) -> Dict:
"""simple docstring"""
requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> List[str]:
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
class lowerCamelCase (metaclass=a__ ):
_lowercase : Union[str, Any] = ["""torch""", """transformers""", """onnx"""]
def __init__( self , *lowercase__ , **lowercase__ ) -> str:
"""simple docstring"""
requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> str:
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> str:
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
class lowerCamelCase (metaclass=a__ ):
_lowercase : Any = ["""torch""", """transformers""", """onnx"""]
def __init__( self , *lowercase__ , **lowercase__ ) -> Tuple:
"""simple docstring"""
requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Any:
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Dict:
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
class lowerCamelCase (metaclass=a__ ):
_lowercase : Optional[Any] = ["""torch""", """transformers""", """onnx"""]
def __init__( self , *lowercase__ , **lowercase__ ) -> int:
"""simple docstring"""
requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Dict:
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> str:
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
class lowerCamelCase (metaclass=a__ ):
_lowercase : Any = ["""torch""", """transformers""", """onnx"""]
def __init__( self , *lowercase__ , **lowercase__ ) -> List[Any]:
"""simple docstring"""
requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> List[str]:
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
class lowerCamelCase (metaclass=a__ ):
_lowercase : Optional[int] = ["""torch""", """transformers""", """onnx"""]
def __init__( self , *lowercase__ , **lowercase__ ) -> List[str]:
"""simple docstring"""
requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> int:
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Any:
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
| 47
|
'''simple docstring'''
import os
import numpy
import onnx
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : List[Any] = a.name
_snake_case : List[Any] = b.name
_snake_case : Tuple = ''''''
_snake_case : Tuple = ''''''
_snake_case : Optional[Any] = a == b
_snake_case : List[Any] = name_a
_snake_case : str = name_b
return res
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
for i, input_name in enumerate(node_proto.input ):
if input_name == name:
node_proto.input.insert(lowerCAmelCase_ , lowerCAmelCase_ )
node_proto.input.pop(i + 1 )
if node_proto.op_type == "If":
_graph_replace_input_with(node_proto.attribute[0].g , lowerCAmelCase_ , lowerCAmelCase_ )
_graph_replace_input_with(node_proto.attribute[1].g , lowerCAmelCase_ , lowerCAmelCase_ )
if node_proto.op_type == "Loop":
_graph_replace_input_with(node_proto.attribute[0].g , lowerCAmelCase_ , lowerCAmelCase_ )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
for n in graph_proto.node:
_node_replace_input_with(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Optional[Any] = list(model.graph.initializer )
_snake_case : List[str] = list(model_without_ext.graph.initializer )
for i, ref_i in ind_to_replace:
assert inits_with_data[i].name == inits[i].name
assert inits_with_data[ref_i].name == inits[ref_i].name
assert i > ref_i
_snake_case : List[Any] = inits[i].name
_snake_case : List[str] = inits[ref_i].name
model_without_ext.graph.initializer.remove(inits[i] )
# for n in model.graph.node:
_graph_replace_input_with(model_without_ext.graph , lowerCAmelCase_ , lowerCAmelCase_ )
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Tuple = os.path.dirname(lowerCAmelCase_ )
_snake_case : str = os.path.basename(lowerCAmelCase_ )
_snake_case : Tuple = onnx.load(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) )
_snake_case : Union[str, Any] = list(model.graph.initializer )
_snake_case : Union[str, Any] = set()
_snake_case : Any = {}
_snake_case : str = []
_snake_case : Union[str, Any] = 0
for i in range(len(lowerCAmelCase_ ) ):
if i in dup_set:
continue
for j in range(i + 1 , len(lowerCAmelCase_ ) ):
if j in dup_set:
continue
if _is_equal_tensor_proto(inits[i] , inits[j] ):
dup_set.add(lowerCAmelCase_ )
dup_set.add(lowerCAmelCase_ )
_snake_case : List[Any] = inits[j].data_type
_snake_case : Dict = numpy.prod(inits[j].dims )
if dtype == 1:
mem_size *= 4
elif dtype == 6:
mem_size *= 4
elif dtype == 7 or dtype == 11:
mem_size *= 8
else:
print('''unexpected data type: ''' , lowerCAmelCase_ )
total_reduced_size += mem_size
_snake_case : Union[str, Any] = inits[i].name
_snake_case : Any = inits[j].name
if name_i in dup_map:
dup_map[name_i].append(lowerCAmelCase_ )
else:
_snake_case : Union[str, Any] = [name_j]
ind_to_replace.append((j, i) )
print('''total reduced size: ''' , total_reduced_size / 1_024 / 1_024 / 1_024 , '''GB''' )
_snake_case : List[str] = sorted(lowerCAmelCase_ )
_remove_dup_initializers_from_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
_snake_case : List[str] = '''optimized_''' + model_file_name
_snake_case : List[Any] = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ )
onnx.save(lowerCAmelCase_ , lowerCAmelCase_ )
return new_model
| 47
| 1
|
'''simple docstring'''
from dataclasses import dataclass, field
from typing import Tuple
from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends
from .benchmark_args_utils import BenchmarkArguments
if is_torch_available():
import torch
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
UpperCAmelCase : Tuple = logging.get_logger(__name__)
@dataclass
class lowerCamelCase (a__ ):
_lowercase : Any = [
"""no_inference""",
"""no_cuda""",
"""no_tpu""",
"""no_speed""",
"""no_memory""",
"""no_env_print""",
"""no_multi_process""",
]
def __init__( self , **lowercase__ ) -> List[Any]:
"""simple docstring"""
for deprecated_arg in self.deprecated_args:
if deprecated_arg in kwargs:
_snake_case : Optional[int] = deprecated_arg[3:]
setattr(self , lowercase__ , not kwargs.pop(lowercase__ ) )
logger.warning(
F'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or'''
F''' {positive_arg}={kwargs[positive_arg]}''' )
_snake_case : Optional[Any] = kwargs.pop('''torchscript''' , self.torchscript )
_snake_case : Dict = kwargs.pop('''torch_xla_tpu_print_metrics''' , self.torch_xla_tpu_print_metrics )
_snake_case : Tuple = kwargs.pop('''fp16_opt_level''' , self.fpaa_opt_level )
super().__init__(**lowercase__ )
_lowercase : bool = field(default=a__ , metadata={"""help""": """Trace the models using torchscript"""} )
_lowercase : bool = field(default=a__ , metadata={"""help""": """Print Xla/PyTorch tpu metrics"""} )
_lowercase : str = field(
default="""O1""" , metadata={
"""help""": (
"""For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. """
"""See details at https://nvidia.github.io/apex/amp.html"""
)
} , )
@cached_property
def UpperCAmelCase_ ( self ) -> Tuple["torch.device", int]:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
logger.info('''PyTorch: setting up devices''' )
if not self.cuda:
_snake_case : List[str] = torch.device('''cpu''' )
_snake_case : int = 0
elif is_torch_tpu_available():
_snake_case : Tuple = xm.xla_device()
_snake_case : int = 0
else:
_snake_case : Union[str, Any] = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' )
_snake_case : Optional[Any] = torch.cuda.device_count()
return device, n_gpu
@property
def UpperCAmelCase_ ( self ) -> List[Any]:
"""simple docstring"""
return is_torch_tpu_available() and self.tpu
@property
def UpperCAmelCase_ ( self ) -> int:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
# TODO(PVP): currently only single GPU is supported
return torch.cuda.current_device()
@property
def UpperCAmelCase_ ( self ) -> "torch.device":
"""simple docstring"""
requires_backends(self , ['''torch'''] )
return self._setup_devices[0]
@property
def UpperCAmelCase_ ( self ) -> Dict:
"""simple docstring"""
requires_backends(self , ['''torch'''] )
return self._setup_devices[1]
@property
def UpperCAmelCase_ ( self ) -> Dict:
"""simple docstring"""
return self.n_gpu > 0
| 47
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase : int = {
'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Union[str, Any] = [
'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST',
'PegasusXForConditionalGeneration',
'PegasusXModel',
'PegasusXPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 47
| 1
|
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
UpperCAmelCase : Any = logging.get_logger(__name__)
UpperCAmelCase : List[Any] = '▁'
UpperCAmelCase : Tuple = {'vocab_file': 'sentencepiece.bpe.model'}
UpperCAmelCase : Optional[int] = {
'vocab_file': {
'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model',
}
}
UpperCAmelCase : int = {
'facebook/xglm-564M': 2_0_4_8,
}
class lowerCamelCase (a__ ):
_lowercase : List[Any] = VOCAB_FILES_NAMES
_lowercase : Any = PRETRAINED_VOCAB_FILES_MAP
_lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowercase : Optional[Any] = ["""input_ids""", """attention_mask"""]
def __init__( self , lowercase__ , lowercase__="<s>" , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__ = None , **lowercase__ , ) -> None:
"""simple docstring"""
_snake_case : Dict = {} if sp_model_kwargs is None else sp_model_kwargs
# Compatibility with the original tokenizer
_snake_case : Union[str, Any] = 7
_snake_case : Union[str, Any] = [F'''<madeupword{i}>''' for i in range(self.num_madeup_words )]
_snake_case : List[str] = kwargs.get('''additional_special_tokens''' , [] )
kwargs["additional_special_tokens"] += [
word for word in madeup_words if word not in kwargs["additional_special_tokens"]
]
super().__init__(
bos_token=lowercase__ , eos_token=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , pad_token=lowercase__ , sp_model_kwargs=self.sp_model_kwargs , **lowercase__ , )
_snake_case : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(lowercase__ ) )
_snake_case : Dict = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
_snake_case : Any = 1
# Mimic fairseq token-to-id alignment for the first 4 token
_snake_case : Optional[Any] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3}
_snake_case : Dict = len(self.sp_model )
_snake_case : str = {F'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )}
self.fairseq_tokens_to_ids.update(lowercase__ )
_snake_case : Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self ) -> List[Any]:
"""simple docstring"""
_snake_case : List[Any] = self.__dict__.copy()
_snake_case : Any = None
_snake_case : List[str] = self.sp_model.serialized_model_proto()
return state
def __setstate__( self , lowercase__ ) -> Tuple:
"""simple docstring"""
_snake_case : Any = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
_snake_case : Any = {}
_snake_case : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> List[int]:
"""simple docstring"""
if token_ids_a is None:
return [self.sep_token_id] + token_ids_a
_snake_case : List[str] = [self.sep_token_id]
return sep + token_ids_a + sep + sep + token_ids_a
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None , lowercase__ = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowercase__ , token_ids_a=lowercase__ , already_has_special_tokens=lowercase__ )
if token_ids_a is None:
return [1] + ([0] * len(lowercase__ ))
return [1] + ([0] * len(lowercase__ )) + [1, 1] + ([0] * len(lowercase__ ))
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> List[int]:
"""simple docstring"""
_snake_case : List[str] = [self.sep_token_id]
if token_ids_a is None:
return len(sep + token_ids_a ) * [0]
return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0]
@property
def UpperCAmelCase_ ( self ) -> List[str]:
"""simple docstring"""
return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words
def UpperCAmelCase_ ( self ) -> str:
"""simple docstring"""
_snake_case : List[Any] = {self.convert_ids_to_tokens(lowercase__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCAmelCase_ ( self , lowercase__ ) -> List[str]:
"""simple docstring"""
return self.sp_model.encode(lowercase__ , out_type=lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ ) -> List[Any]:
"""simple docstring"""
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
_snake_case : List[str] = self.sp_model.PieceToId(lowercase__ )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def UpperCAmelCase_ ( self , lowercase__ ) -> Any:
"""simple docstring"""
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def UpperCAmelCase_ ( self , lowercase__ ) -> str:
"""simple docstring"""
_snake_case : str = ''''''.join(lowercase__ ).replace(lowercase__ , ''' ''' ).strip()
return out_string
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(lowercase__ ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
_snake_case : Any = os.path.join(
lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowercase__ )
elif not os.path.isfile(self.vocab_file ):
with open(lowercase__ , '''wb''' ) as fi:
_snake_case : int = self.sp_model.serialized_model_proto()
fi.write(lowercase__ )
return (out_vocab_file,)
| 47
|
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
import PIL.Image
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
PILImageResampling,
get_image_size,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
UpperCAmelCase : Dict = logging.get_logger(__name__)
class lowerCamelCase (a__ ):
_lowercase : int = ["""pixel_values"""]
def __init__( self , lowercase__ = True , lowercase__ = 32 , lowercase__=PILImageResampling.BILINEAR , lowercase__ = True , **lowercase__ , ) -> None:
"""simple docstring"""
_snake_case : Any = do_resize
_snake_case : List[str] = do_rescale
_snake_case : Any = size_divisor
_snake_case : Optional[Any] = resample
super().__init__(**lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ ) -> np.ndarray:
"""simple docstring"""
_snake_case , _snake_case : Dict = get_image_size(lowercase__ )
# Rounds the height and width down to the closest multiple of size_divisor
_snake_case : Optional[int] = height // size_divisor * size_divisor
_snake_case : Dict = width // size_divisor * size_divisor
_snake_case : str = resize(lowercase__ , (new_h, new_w) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ )
return image
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ ) -> np.ndarray:
"""simple docstring"""
return rescale(image=lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__=None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ) -> BatchFeature:
"""simple docstring"""
_snake_case : Any = do_resize if do_resize is not None else self.do_resize
_snake_case : List[Any] = do_rescale if do_rescale is not None else self.do_rescale
_snake_case : List[str] = size_divisor if size_divisor is not None else self.size_divisor
_snake_case : int = resample if resample is not None else self.resample
if do_resize and size_divisor is None:
raise ValueError('''size_divisor is required for resizing''' )
_snake_case : Tuple = make_list_of_images(lowercase__ )
if not valid_images(lowercase__ ):
raise ValueError('''Invalid image(s)''' )
# All transformations expect numpy arrays.
_snake_case : Tuple = [to_numpy_array(lowercase__ ) for img in images]
if do_resize:
_snake_case : Optional[int] = [self.resize(lowercase__ , size_divisor=lowercase__ , resample=lowercase__ ) for image in images]
if do_rescale:
_snake_case : Union[str, Any] = [self.rescale(lowercase__ , scale=1 / 255 ) for image in images]
_snake_case : Union[str, Any] = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images]
_snake_case : List[str] = {'''pixel_values''': images}
return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
| 47
| 1
|
'''simple docstring'''
def _a ( lowerCAmelCase_ = 10 ):
"""simple docstring"""
if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or n < 0:
raise ValueError('''Invalid input''' )
_snake_case : Tuple = 10**n
_snake_case : Any = 28_433 * (pow(2 , 7_830_457 , lowerCAmelCase_ )) + 1
return str(number % modulus )
if __name__ == "__main__":
from doctest import testmod
testmod()
print(F"""{solution(1_0) = }""")
| 47
|
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import LEDConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFLEDForConditionalGeneration, TFLEDModel
@require_tf
class lowerCamelCase :
_lowercase : Any = LEDConfig
_lowercase : Any = {}
_lowercase : Optional[Any] = """gelu"""
def __init__( self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=False , lowercase__=99 , lowercase__=32 , lowercase__=2 , lowercase__=4 , lowercase__=37 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=20 , lowercase__=2 , lowercase__=1 , lowercase__=0 , lowercase__=4 , ) -> Any:
"""simple docstring"""
_snake_case : Dict = parent
_snake_case : Any = batch_size
_snake_case : List[str] = seq_length
_snake_case : Union[str, Any] = is_training
_snake_case : Tuple = use_labels
_snake_case : int = vocab_size
_snake_case : str = hidden_size
_snake_case : Optional[Any] = num_hidden_layers
_snake_case : List[Any] = num_attention_heads
_snake_case : Optional[int] = intermediate_size
_snake_case : List[Any] = hidden_dropout_prob
_snake_case : List[str] = attention_probs_dropout_prob
_snake_case : Optional[int] = max_position_embeddings
_snake_case : Any = eos_token_id
_snake_case : List[Any] = pad_token_id
_snake_case : Optional[int] = bos_token_id
_snake_case : Any = attention_window
# `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
# [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention
# returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
# because its local attention only attends to `self.attention_window` and one before and one after
_snake_case : Any = self.attention_window + 2
# because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for
# the `test_attention_outputs` and `test_hidden_states_output` tests
_snake_case : Tuple = (
self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window
)
def UpperCAmelCase_ ( self ) -> Optional[int]:
"""simple docstring"""
_snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
_snake_case : Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
_snake_case : Optional[int] = tf.concat([input_ids, eos_tensor] , axis=1 )
_snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_snake_case : List[Any] = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , )
_snake_case : Dict = prepare_led_inputs_dict(lowercase__ , lowercase__ , lowercase__ )
_snake_case : Dict = tf.concat(
[tf.zeros_like(lowercase__ )[:, :-1], tf.ones_like(lowercase__ )[:, -1:]] , axis=-1 , )
_snake_case : Dict = global_attention_mask
return config, inputs_dict
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> int:
"""simple docstring"""
_snake_case : int = TFLEDModel(config=lowercase__ ).get_decoder()
_snake_case : Union[str, Any] = inputs_dict['''input_ids''']
_snake_case : List[str] = input_ids[:1, :]
_snake_case : Tuple = inputs_dict['''attention_mask'''][:1, :]
_snake_case : Dict = 1
# first forward pass
_snake_case : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__ )
_snake_case , _snake_case : Dict = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_snake_case : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size )
_snake_case : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
_snake_case : Tuple = tf.concat([input_ids, next_tokens] , axis=-1 )
_snake_case : List[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
_snake_case : List[Any] = model(lowercase__ , attention_mask=lowercase__ )[0]
_snake_case : Tuple = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__ )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
_snake_case : Tuple = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
_snake_case : int = output_from_no_past[:, -3:, random_slice_idx]
_snake_case : Optional[Any] = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(lowercase__ , lowercase__ , rtol=1E-3 )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , ):
"""simple docstring"""
if attention_mask is None:
_snake_case : Union[str, Any] = tf.cast(tf.math.not_equal(lowerCAmelCase_ , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
_snake_case : str = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
_snake_case : int = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_snake_case : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
}
@require_tf
class lowerCamelCase (a__ , a__ , unittest.TestCase ):
_lowercase : Optional[int] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else ()
_lowercase : int = (TFLEDForConditionalGeneration,) if is_tf_available() else ()
_lowercase : Dict = (
{
"""conversational""": TFLEDForConditionalGeneration,
"""feature-extraction""": TFLEDModel,
"""summarization""": TFLEDForConditionalGeneration,
"""text2text-generation""": TFLEDForConditionalGeneration,
"""translation""": TFLEDForConditionalGeneration,
}
if is_tf_available()
else {}
)
_lowercase : int = True
_lowercase : List[Any] = False
_lowercase : str = False
_lowercase : Union[str, Any] = False
def UpperCAmelCase_ ( self ) -> Optional[Any]:
"""simple docstring"""
_snake_case : str = TFLEDModelTester(self )
_snake_case : Union[str, Any] = ConfigTester(self , config_class=lowercase__ )
def UpperCAmelCase_ ( self ) -> Tuple:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase_ ( self ) -> List[str]:
"""simple docstring"""
_snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*lowercase__ )
def UpperCAmelCase_ ( self ) -> int:
"""simple docstring"""
_snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
_snake_case : Any = tf.zeros_like(inputs_dict['''attention_mask'''] )
_snake_case : Optional[Any] = 2
_snake_case : Any = tf.where(
tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , )
_snake_case : Dict = True
_snake_case : str = self.model_tester.seq_length
_snake_case : Dict = self.model_tester.encoder_seq_length
def check_decoder_attentions_output(lowercase__ ):
_snake_case : Optional[int] = outputs.decoder_attentions
self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
def check_encoder_attentions_output(lowercase__ ):
_snake_case : int = [t.numpy() for t in outputs.encoder_attentions]
_snake_case : Tuple = [t.numpy() for t in outputs.encoder_global_attentions]
self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers )
self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
self.assertListEqual(
list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , )
for model_class in self.all_model_classes:
_snake_case : Union[str, Any] = True
_snake_case : Dict = False
_snake_case : Union[str, Any] = False
_snake_case : List[Any] = model_class(lowercase__ )
_snake_case : Optional[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) )
_snake_case : List[Any] = len(lowercase__ )
self.assertEqual(config.output_hidden_states , lowercase__ )
check_encoder_attentions_output(lowercase__ )
if self.is_encoder_decoder:
_snake_case : Union[str, Any] = model_class(lowercase__ )
_snake_case : List[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) )
self.assertEqual(config.output_hidden_states , lowercase__ )
check_decoder_attentions_output(lowercase__ )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
_snake_case : str = True
_snake_case : Tuple = model_class(lowercase__ )
_snake_case : int = model(self._prepare_for_class(lowercase__ , lowercase__ ) )
self.assertEqual(config.output_hidden_states , lowercase__ )
check_encoder_attentions_output(lowercase__ )
# Check attention is always last and order is fine
_snake_case : int = True
_snake_case : List[str] = True
_snake_case : Tuple = model_class(lowercase__ )
_snake_case : Optional[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase__ ) )
self.assertEqual(model.config.output_hidden_states , lowercase__ )
check_encoder_attentions_output(lowercase__ )
@unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' )
def UpperCAmelCase_ ( self ) -> int:
"""simple docstring"""
pass
def UpperCAmelCase_ ( self ) -> str:
"""simple docstring"""
pass
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
return tf.constant(lowerCAmelCase_ , dtype=tf.intaa )
UpperCAmelCase : Dict = 1E-4
@slow
@require_tf
class lowerCamelCase (unittest.TestCase ):
def UpperCAmelCase_ ( self ) -> Dict:
"""simple docstring"""
_snake_case : List[str] = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led
# change to intended input here
_snake_case : List[str] = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] )
_snake_case : Tuple = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] )
_snake_case : Tuple = prepare_led_inputs_dict(model.config , lowercase__ , lowercase__ )
_snake_case : int = model(**lowercase__ )[0]
_snake_case : Dict = (1, 1_024, 768)
self.assertEqual(output.shape , lowercase__ )
# change to expected output here
_snake_case : List[Any] = tf.convert_to_tensor(
[[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , )
tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1E-3 )
def UpperCAmelCase_ ( self ) -> List[Any]:
"""simple docstring"""
_snake_case : Any = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' )
# change to intended input here
_snake_case : Dict = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] )
_snake_case : Dict = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] )
_snake_case : List[str] = prepare_led_inputs_dict(model.config , lowercase__ , lowercase__ )
_snake_case : Tuple = model(**lowercase__ )[0]
_snake_case : Any = (1, 1_024, model.config.vocab_size)
self.assertEqual(output.shape , lowercase__ )
# change to expected output here
_snake_case : Dict = tf.convert_to_tensor(
[[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , )
tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1E-3 , rtol=1E-3 )
| 47
| 1
|
'''simple docstring'''
import gc
import unittest
from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline
from diffusers.utils import is_flax_available, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class lowerCamelCase (unittest.TestCase ):
def UpperCAmelCase_ ( self ) -> Any:
"""simple docstring"""
super().tearDown()
gc.collect()
def UpperCAmelCase_ ( self ) -> Optional[int]:
"""simple docstring"""
_snake_case , _snake_case : Tuple = FlaxStableDiffusionPipeline.from_pretrained(
'''stabilityai/stable-diffusion-2''' , revision='''bf16''' , dtype=jnp.bfloataa , )
_snake_case : List[Any] = '''A painting of a squirrel eating a burger'''
_snake_case : List[Any] = jax.device_count()
_snake_case : Union[str, Any] = num_samples * [prompt]
_snake_case : Tuple = sd_pipe.prepare_inputs(lowercase__ )
_snake_case : int = replicate(lowercase__ )
_snake_case : List[Any] = shard(lowercase__ )
_snake_case : List[str] = jax.random.PRNGKey(0 )
_snake_case : List[Any] = jax.random.split(lowercase__ , jax.device_count() )
_snake_case : Optional[Any] = sd_pipe(lowercase__ , lowercase__ , lowercase__ , num_inference_steps=25 , jit=lowercase__ )[0]
assert images.shape == (jax.device_count(), 1, 768, 768, 3)
_snake_case : int = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] )
_snake_case : int = images[0, 253:256, 253:256, -1]
_snake_case : List[str] = jnp.asarray(jax.device_get(image_slice.flatten() ) )
_snake_case : Dict = jnp.array([0.4_238, 0.4_414, 0.4_395, 0.4_453, 0.4_629, 0.4_590, 0.4_531, 0.45_508, 0.4_512] )
print(F'''output_slice: {output_slice}''' )
assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
def UpperCAmelCase_ ( self ) -> List[str]:
"""simple docstring"""
_snake_case : List[str] = '''stabilityai/stable-diffusion-2'''
_snake_case , _snake_case : Any = FlaxDPMSolverMultistepScheduler.from_pretrained(lowercase__ , subfolder='''scheduler''' )
_snake_case , _snake_case : List[str] = FlaxStableDiffusionPipeline.from_pretrained(
lowercase__ , scheduler=lowercase__ , revision='''bf16''' , dtype=jnp.bfloataa , )
_snake_case : Optional[Any] = scheduler_params
_snake_case : Optional[int] = '''A painting of a squirrel eating a burger'''
_snake_case : List[Any] = jax.device_count()
_snake_case : Tuple = num_samples * [prompt]
_snake_case : Optional[Any] = sd_pipe.prepare_inputs(lowercase__ )
_snake_case : Tuple = replicate(lowercase__ )
_snake_case : Any = shard(lowercase__ )
_snake_case : str = jax.random.PRNGKey(0 )
_snake_case : List[Any] = jax.random.split(lowercase__ , jax.device_count() )
_snake_case : str = sd_pipe(lowercase__ , lowercase__ , lowercase__ , num_inference_steps=25 , jit=lowercase__ )[0]
assert images.shape == (jax.device_count(), 1, 768, 768, 3)
_snake_case : int = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] )
_snake_case : List[Any] = images[0, 253:256, 253:256, -1]
_snake_case : Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) )
_snake_case : str = jnp.array([0.4_336, 0.42_969, 0.4_453, 0.4_199, 0.4_297, 0.4_531, 0.4_434, 0.4_434, 0.4_297] )
print(F'''output_slice: {output_slice}''' )
assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
| 47
|
'''simple docstring'''
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
UpperCAmelCase : Optional[int] = logging.get_logger(__name__)
UpperCAmelCase : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'}
UpperCAmelCase : Any = {
'tokenizer_file': {
'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json',
},
}
UpperCAmelCase : Optional[Any] = {
'gpt-neox-20b': 2_0_4_8,
}
class lowerCamelCase (a__ ):
_lowercase : Optional[int] = VOCAB_FILES_NAMES
_lowercase : str = PRETRAINED_VOCAB_FILES_MAP
_lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowercase : Optional[int] = ["""input_ids""", """attention_mask"""]
def __init__( self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="<|endoftext|>" , lowercase__="<|endoftext|>" , lowercase__="<|endoftext|>" , lowercase__=False , **lowercase__ , ) -> List[Any]:
"""simple docstring"""
super().__init__(
lowercase__ , lowercase__ , tokenizer_file=lowercase__ , unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , add_prefix_space=lowercase__ , **lowercase__ , )
_snake_case : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('''add_prefix_space''' , lowercase__ ) != add_prefix_space:
_snake_case : int = getattr(lowercase__ , pre_tok_state.pop('''type''' ) )
_snake_case : int = add_prefix_space
_snake_case : Optional[Any] = pre_tok_class(**lowercase__ )
_snake_case : List[str] = add_prefix_space
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> Tuple[str]:
"""simple docstring"""
_snake_case : Optional[int] = self._tokenizer.model.save(lowercase__ , name=lowercase__ )
return tuple(lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ ) -> List[int]:
"""simple docstring"""
_snake_case : List[str] = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(lowercase__ , add_special_tokens=lowercase__ ) + [self.eos_token_id] )
if len(lowercase__ ) > self.model_max_length:
_snake_case : Dict = input_ids[-self.model_max_length :]
return input_ids
| 47
| 1
|
'''simple docstring'''
import json
import os
from collections import Counter
import torch
import torchvision
import torchvision.transforms as transforms
from PIL import Image
from torch import nn
from torch.utils.data import Dataset
UpperCAmelCase : Union[str, Any] = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)}
class lowerCamelCase (nn.Module ):
def __init__( self , lowercase__ ) -> str:
"""simple docstring"""
super().__init__()
_snake_case : Dict = torchvision.models.resnetaaa(pretrained=lowercase__ )
_snake_case : Optional[Any] = list(model.children() )[:-2]
_snake_case : Union[str, Any] = nn.Sequential(*lowercase__ )
_snake_case : str = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] )
def UpperCAmelCase_ ( self , lowercase__ ) -> str:
"""simple docstring"""
_snake_case : Tuple = self.pool(self.model(lowercase__ ) )
_snake_case : Union[str, Any] = torch.flatten(lowercase__ , start_dim=2 )
_snake_case : List[Any] = out.transpose(1 , 2 ).contiguous()
return out # BxNx2048
class lowerCamelCase (a__ ):
def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> int:
"""simple docstring"""
_snake_case : List[Any] = [json.loads(lowercase__ ) for l in open(lowercase__ )]
_snake_case : Optional[Any] = os.path.dirname(lowercase__ )
_snake_case : Dict = tokenizer
_snake_case : Any = labels
_snake_case : Tuple = len(lowercase__ )
_snake_case : Tuple = max_seq_length
_snake_case : Optional[Any] = transforms
def __len__( self ) -> Optional[int]:
"""simple docstring"""
return len(self.data )
def __getitem__( self , lowercase__ ) -> Optional[int]:
"""simple docstring"""
_snake_case : Tuple = torch.LongTensor(self.tokenizer.encode(self.data[index]['''text'''] , add_special_tokens=lowercase__ ) )
_snake_case , _snake_case , _snake_case : Dict = sentence[0], sentence[1:-1], sentence[-1]
_snake_case : int = sentence[: self.max_seq_length]
_snake_case : Union[str, Any] = torch.zeros(self.n_classes )
_snake_case : Any = 1
_snake_case : List[str] = Image.open(os.path.join(self.data_dir , self.data[index]['''img'''] ) ).convert('''RGB''' )
_snake_case : Optional[Any] = self.transforms(lowercase__ )
return {
"image_start_token": start_token,
"image_end_token": end_token,
"sentence": sentence,
"image": image,
"label": label,
}
def UpperCAmelCase_ ( self ) -> Optional[int]:
"""simple docstring"""
_snake_case : Optional[Any] = Counter()
for row in self.data:
label_freqs.update(row['''label'''] )
return label_freqs
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Optional[Any] = [len(row['''sentence'''] ) for row in batch]
_snake_case , _snake_case : List[str] = len(lowerCAmelCase_ ), max(lowerCAmelCase_ )
_snake_case : Dict = torch.zeros(lowerCAmelCase_ , lowerCAmelCase_ , dtype=torch.long )
_snake_case : Tuple = torch.zeros(lowerCAmelCase_ , lowerCAmelCase_ , dtype=torch.long )
for i_batch, (input_row, length) in enumerate(zip(lowerCAmelCase_ , lowerCAmelCase_ ) ):
_snake_case : Dict = input_row['''sentence''']
_snake_case : str = 1
_snake_case : Optional[int] = torch.stack([row['''image'''] for row in batch] )
_snake_case : str = torch.stack([row['''label'''] for row in batch] )
_snake_case : Dict = torch.stack([row['''image_start_token'''] for row in batch] )
_snake_case : Union[str, Any] = torch.stack([row['''image_end_token'''] for row in batch] )
return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor
def _a ( ):
"""simple docstring"""
return [
"Crime",
"Drama",
"Thriller",
"Action",
"Comedy",
"Romance",
"Documentary",
"Short",
"Mystery",
"History",
"Family",
"Adventure",
"Fantasy",
"Sci-Fi",
"Western",
"Horror",
"Sport",
"War",
"Music",
"Musical",
"Animation",
"Biography",
"Film-Noir",
]
def _a ( ):
"""simple docstring"""
return transforms.Compose(
[
transforms.Resize(256 ),
transforms.CenterCrop(224 ),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] , std=[0.12_221_994, 0.12_145_835, 0.14_380_469] , ),
] )
| 47
|
'''simple docstring'''
import math
from numpy import inf
from scipy.integrate import quad
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
if num <= 0:
raise ValueError('''math domain error''' )
return quad(lowerCAmelCase_ , 0 , lowerCAmelCase_ , args=(lowerCAmelCase_) )[0]
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
return math.pow(lowerCAmelCase_ , z - 1 ) * math.exp(-x )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 47
| 1
|
'''simple docstring'''
import argparse
import pathlib
import fairseq
import torch
from fairseq.models.roberta import RobertaModel as FairseqRobertaModel
from fairseq.modules import TransformerSentenceEncoderLayer
from packaging import version
from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
from transformers.models.roberta.modeling_roberta import RobertaAttention
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse('1.0.0a'):
raise Exception('requires fairseq >= 1.0.0a')
logging.set_verbosity_info()
UpperCAmelCase : Tuple = logging.get_logger(__name__)
UpperCAmelCase : Dict = 'Hello world! cécé herlolip'
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Optional[Any] = FairseqRobertaModel.from_pretrained(lowerCAmelCase_ )
roberta.eval() # disable dropout
_snake_case : Optional[int] = roberta.model.encoder.sentence_encoder
_snake_case : Optional[Any] = XLMRobertaConfig(
vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , )
if classification_head:
_snake_case : Dict = roberta.model.classification_heads['''mnli'''].out_proj.weight.shape[0]
print('''Our RoBERTa config:''' , lowerCAmelCase_ )
_snake_case : List[str] = XLMRobertaXLForSequenceClassification(lowerCAmelCase_ ) if classification_head else XLMRobertaXLForMaskedLM(lowerCAmelCase_ )
model.eval()
# Now let's copy all the weights.
# Embeddings
_snake_case : int = roberta_sent_encoder.embed_tokens.weight
_snake_case : Union[str, Any] = roberta_sent_encoder.embed_positions.weight
_snake_case : str = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them.
_snake_case : List[Any] = roberta_sent_encoder.layer_norm.weight
_snake_case : List[Any] = roberta_sent_encoder.layer_norm.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
_snake_case : BertLayer = model.roberta.encoder.layer[i]
_snake_case : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i]
_snake_case : RobertaAttention = layer.attention
_snake_case : Optional[Any] = roberta_layer.self_attn_layer_norm.weight
_snake_case : List[str] = roberta_layer.self_attn_layer_norm.bias
# self attention
_snake_case : BertSelfAttention = layer.attention.self
assert (
roberta_layer.self_attn.k_proj.weight.data.shape
== roberta_layer.self_attn.q_proj.weight.data.shape
== roberta_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
)
_snake_case : Optional[Any] = roberta_layer.self_attn.q_proj.weight
_snake_case : int = roberta_layer.self_attn.q_proj.bias
_snake_case : Optional[int] = roberta_layer.self_attn.k_proj.weight
_snake_case : Any = roberta_layer.self_attn.k_proj.bias
_snake_case : List[Any] = roberta_layer.self_attn.v_proj.weight
_snake_case : Any = roberta_layer.self_attn.v_proj.bias
# self-attention output
_snake_case : BertSelfOutput = layer.attention.output
assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape
_snake_case : Optional[Any] = roberta_layer.self_attn.out_proj.weight
_snake_case : Union[str, Any] = roberta_layer.self_attn.out_proj.bias
# this one is final layer norm
_snake_case : str = roberta_layer.final_layer_norm.weight
_snake_case : Optional[Any] = roberta_layer.final_layer_norm.bias
# intermediate
_snake_case : BertIntermediate = layer.intermediate
assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape
_snake_case : str = roberta_layer.fca.weight
_snake_case : List[Any] = roberta_layer.fca.bias
# output
_snake_case : BertOutput = layer.output
assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape
_snake_case : Optional[int] = roberta_layer.fca.weight
_snake_case : Any = roberta_layer.fca.bias
# end of layer
if classification_head:
_snake_case : List[Any] = roberta.model.classification_heads['''mnli'''].dense.weight
_snake_case : Tuple = roberta.model.classification_heads['''mnli'''].dense.bias
_snake_case : int = roberta.model.classification_heads['''mnli'''].out_proj.weight
_snake_case : Any = roberta.model.classification_heads['''mnli'''].out_proj.bias
else:
# LM Head
_snake_case : Tuple = roberta.model.encoder.lm_head.dense.weight
_snake_case : Union[str, Any] = roberta.model.encoder.lm_head.dense.bias
_snake_case : int = roberta.model.encoder.lm_head.layer_norm.weight
_snake_case : Dict = roberta.model.encoder.lm_head.layer_norm.bias
_snake_case : int = roberta.model.encoder.lm_head.weight
_snake_case : Union[str, Any] = roberta.model.encoder.lm_head.bias
# Let's check that we get the same results.
_snake_case : torch.Tensor = roberta.encode(lowerCAmelCase_ ).unsqueeze(0 ) # batch of size 1
_snake_case : Any = model(lowerCAmelCase_ )[0]
if classification_head:
_snake_case : Any = roberta.model.classification_heads['''mnli'''](roberta.extract_features(lowerCAmelCase_ ) )
else:
_snake_case : Any = roberta.model(lowerCAmelCase_ )[0]
print(our_output.shape , their_output.shape )
_snake_case : str = torch.max(torch.abs(our_output - their_output ) ).item()
print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7
_snake_case : List[Any] = torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1E-3 )
print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' )
if not success:
raise Exception('''Something went wRoNg''' )
pathlib.Path(lowerCAmelCase_ ).mkdir(parents=lowerCAmelCase_ , exist_ok=lowerCAmelCase_ )
print(f'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(lowerCAmelCase_ )
if __name__ == "__main__":
UpperCAmelCase : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--roberta_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--classification_head', action='store_true', help='Whether to convert a final classification head.'
)
UpperCAmelCase : Dict = parser.parse_args()
convert_xlm_roberta_xl_checkpoint_to_pytorch(
args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 47
|
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import is_tf_available, is_torch_available
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow
if is_tf_available():
from transformers import (
AutoConfig,
BertConfig,
GPTaConfig,
TaConfig,
TFAutoModel,
TFAutoModelForCausalLM,
TFAutoModelForMaskedLM,
TFAutoModelForPreTraining,
TFAutoModelForQuestionAnswering,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSequenceClassification,
TFAutoModelWithLMHead,
TFBertForMaskedLM,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertModel,
TFGPTaLMHeadModel,
TFRobertaForMaskedLM,
TFTaForConditionalGeneration,
)
from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST
if is_torch_available():
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForMaskedLM,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelWithLMHead,
BertForMaskedLM,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
BertModel,
GPTaLMHeadModel,
RobertaForMaskedLM,
TaForConditionalGeneration,
)
@is_pt_tf_cross_test
class lowerCamelCase (unittest.TestCase ):
@slow
def UpperCAmelCase_ ( self ) -> List[Any]:
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
_snake_case : Union[str, Any] = AutoConfig.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Any = TFAutoModel.from_pretrained(lowercase__ , from_pt=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : str = AutoModel.from_pretrained(lowercase__ , from_tf=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
@slow
def UpperCAmelCase_ ( self ) -> List[str]:
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
_snake_case : Optional[Any] = AutoConfig.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Dict = TFAutoModelForPreTraining.from_pretrained(lowercase__ , from_pt=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Tuple = AutoModelForPreTraining.from_pretrained(lowercase__ , from_tf=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
@slow
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
"""simple docstring"""
for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case : Optional[int] = AutoConfig.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained(lowercase__ , from_pt=lowercase__ )
_snake_case , _snake_case : Tuple = TFAutoModelForCausalLM.from_pretrained(
lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained(lowercase__ , from_tf=lowercase__ )
_snake_case , _snake_case : Optional[Any] = AutoModelForCausalLM.from_pretrained(
lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
@slow
def UpperCAmelCase_ ( self ) -> Optional[Any]:
"""simple docstring"""
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case : List[Any] = AutoConfig.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Tuple = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : int = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
@slow
def UpperCAmelCase_ ( self ) -> Any:
"""simple docstring"""
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case : List[str] = AutoConfig.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(lowercase__ , from_pt=lowercase__ )
_snake_case , _snake_case : List[str] = TFAutoModelForMaskedLM.from_pretrained(
lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : int = AutoModelForMaskedLM.from_pretrained(lowercase__ , from_tf=lowercase__ )
_snake_case , _snake_case : Optional[int] = AutoModelForMaskedLM.from_pretrained(
lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
@slow
def UpperCAmelCase_ ( self ) -> List[str]:
"""simple docstring"""
for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case : List[str] = AutoConfig.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(lowercase__ , from_pt=lowercase__ )
_snake_case , _snake_case : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained(
lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : List[str] = AutoModelForSeqaSeqLM.from_pretrained(lowercase__ , from_tf=lowercase__ )
_snake_case , _snake_case : Dict = AutoModelForSeqaSeqLM.from_pretrained(
lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
@slow
def UpperCAmelCase_ ( self ) -> Dict:
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
_snake_case : Any = AutoConfig.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Any = TFAutoModelForSequenceClassification.from_pretrained(lowercase__ , from_pt=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Dict = AutoModelForSequenceClassification.from_pretrained(lowercase__ , from_tf=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
@slow
def UpperCAmelCase_ ( self ) -> Optional[int]:
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
_snake_case : str = AutoConfig.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : str = TFAutoModelForQuestionAnswering.from_pretrained(lowercase__ , from_pt=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Union[str, Any] = AutoModelForQuestionAnswering.from_pretrained(lowercase__ , from_tf=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
def UpperCAmelCase_ ( self ) -> str:
"""simple docstring"""
_snake_case : Union[str, Any] = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
self.assertEqual(model.num_parameters() , 14_410 )
self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 )
_snake_case : Tuple = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
self.assertEqual(model.num_parameters() , 14_410 )
self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 )
def UpperCAmelCase_ ( self ) -> str:
"""simple docstring"""
_snake_case : List[str] = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
self.assertEqual(model.num_parameters() , 14_410 )
self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 )
_snake_case : int = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
self.assertEqual(model.num_parameters() , 14_410 )
self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 )
| 47
| 1
|
'''simple docstring'''
class lowerCamelCase :
def __init__( self , lowercase__ ) -> None:
"""simple docstring"""
_snake_case : List[str] = size
_snake_case : Optional[int] = [0] * size
_snake_case : Optional[int] = [0] * size
@staticmethod
def UpperCAmelCase_ ( lowercase__ ) -> int:
"""simple docstring"""
return index | (index + 1)
@staticmethod
def UpperCAmelCase_ ( lowercase__ ) -> int:
"""simple docstring"""
return (index & (index + 1)) - 1
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> None:
"""simple docstring"""
_snake_case : Optional[Any] = value
while index < self.size:
_snake_case : Optional[int] = self.get_prev(lowercase__ ) + 1
if current_left_border == index:
_snake_case : Optional[int] = value
else:
_snake_case : Dict = max(lowercase__ , lowercase__ , lowercase__ )
_snake_case : Tuple = self.get_next(lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> int:
"""simple docstring"""
right -= 1 # Because of right is exclusive
_snake_case : Dict = 0
while left <= right:
_snake_case : Tuple = self.get_prev(lowercase__ )
if left <= current_left:
_snake_case : Union[str, Any] = max(lowercase__ , self.tree[right] )
_snake_case : Optional[int] = current_left
else:
_snake_case : str = max(lowercase__ , self.arr[right] )
right -= 1
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 47
|
'''simple docstring'''
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase : Dict = {'configuration_timm_backbone': ['TimmBackboneConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Union[str, Any] = ['TimmBackbone']
if TYPE_CHECKING:
from .configuration_timm_backbone import TimmBackboneConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_timm_backbone import TimmBackbone
else:
import sys
UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 47
| 1
|
'''simple docstring'''
from __future__ import annotations
def _a ( lowerCAmelCase_ = 4 ):
"""simple docstring"""
_snake_case : List[Any] = abs(lowerCAmelCase_ ) or 4
return [[1 + x + y * row_size for x in range(lowerCAmelCase_ )] for y in range(lowerCAmelCase_ )]
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
return reverse_row(transpose(lowerCAmelCase_ ) )
# OR.. transpose(reverse_column(matrix))
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
return reverse_row(reverse_column(lowerCAmelCase_ ) )
# OR.. reverse_column(reverse_row(matrix))
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
return reverse_column(transpose(lowerCAmelCase_ ) )
# OR.. transpose(reverse_row(matrix))
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Tuple = [list(lowerCAmelCase_ ) for x in zip(*lowerCAmelCase_ )]
return matrix
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Dict = matrix[::-1]
return matrix
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Optional[int] = [x[::-1] for x in matrix]
return matrix
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
for i in matrix:
print(*lowerCAmelCase_ )
if __name__ == "__main__":
UpperCAmelCase : Dict = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 90 counterclockwise:\n')
print_matrix(rotate_aa(matrix))
UpperCAmelCase : List[str] = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 180:\n')
print_matrix(rotate_aaa(matrix))
UpperCAmelCase : List[str] = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 270 counterclockwise:\n')
print_matrix(rotate_aaa(matrix))
| 47
|
'''simple docstring'''
import argparse
import logging
import os
from pathlib import Path
from typing import Any, Dict
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info
from transformers import (
AdamW,
AutoConfig,
AutoModel,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
AutoModelWithLMHead,
AutoTokenizer,
PretrainedConfig,
PreTrainedTokenizer,
)
from transformers.optimization import (
Adafactor,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.utils.versions import require_version
UpperCAmelCase : Tuple = logging.getLogger(__name__)
require_version('pytorch_lightning>=1.0.4')
UpperCAmelCase : str = {
'base': AutoModel,
'sequence-classification': AutoModelForSequenceClassification,
'question-answering': AutoModelForQuestionAnswering,
'pretraining': AutoModelForPreTraining,
'token-classification': AutoModelForTokenClassification,
'language-modeling': AutoModelWithLMHead,
'summarization': AutoModelForSeqaSeqLM,
'translation': AutoModelForSeqaSeqLM,
}
# update this and the import above to support new schedulers from transformers.optimization
UpperCAmelCase : Optional[Any] = {
'linear': get_linear_schedule_with_warmup,
'cosine': get_cosine_schedule_with_warmup,
'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup,
'polynomial': get_polynomial_decay_schedule_with_warmup,
# '': get_constant_schedule, # not supported for now
# '': get_constant_schedule_with_warmup, # not supported for now
}
UpperCAmelCase : Tuple = sorted(arg_to_scheduler.keys())
UpperCAmelCase : Optional[Any] = '{' + ', '.join(arg_to_scheduler_choices) + '}'
class lowerCamelCase (pl.LightningModule ):
def __init__( self , lowercase__ , lowercase__=None , lowercase__="base" , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ , ) -> Optional[int]:
"""simple docstring"""
super().__init__()
# TODO: move to self.save_hyperparameters()
# self.save_hyperparameters()
# can also expand arguments into trainer signature for easier reading
self.save_hyperparameters(lowercase__ )
_snake_case : Union[str, Any] = 0
_snake_case : int = Path(self.hparams.output_dir )
_snake_case : int = self.hparams.cache_dir if self.hparams.cache_dir else None
if config is None:
_snake_case : Tuple = AutoConfig.from_pretrained(
self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=lowercase__ , **lowercase__ , )
else:
_snake_case : PretrainedConfig = config
_snake_case : Optional[Any] = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''')
for p in extra_model_params:
if getattr(self.hparams , lowercase__ , lowercase__ ):
assert hasattr(self.config , lowercase__ ), F'''model config doesn\'t have a `{p}` attribute'''
setattr(self.config , lowercase__ , getattr(self.hparams , lowercase__ ) )
if tokenizer is None:
_snake_case : Optional[int] = AutoTokenizer.from_pretrained(
self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=lowercase__ , )
else:
_snake_case : PreTrainedTokenizer = tokenizer
_snake_case : Any = MODEL_MODES[mode]
if model is None:
_snake_case : List[Any] = self.model_type.from_pretrained(
self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=lowercase__ , )
else:
_snake_case : Optional[Any] = model
def UpperCAmelCase_ ( self , *lowercase__ , **lowercase__ ) -> List[str]:
"""simple docstring"""
_snake_case : Dict = self.model_type.from_pretrained(*lowercase__ , **lowercase__ )
def UpperCAmelCase_ ( self ) -> List[Any]:
"""simple docstring"""
_snake_case : Optional[int] = arg_to_scheduler[self.hparams.lr_scheduler]
_snake_case : Optional[int] = get_schedule_func(
self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() )
_snake_case : str = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1}
return scheduler
def UpperCAmelCase_ ( self ) -> int:
"""simple docstring"""
_snake_case : Any = self.model
_snake_case : List[Any] = ['''bias''', '''LayerNorm.weight''']
_snake_case : List[str] = [
{
'''params''': [
p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay )
], # check this named paramters
'''weight_decay''': self.hparams.weight_decay,
},
{
'''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )],
'''weight_decay''': 0.0,
},
]
if self.hparams.adafactor:
_snake_case : Any = Adafactor(
lowercase__ , lr=self.hparams.learning_rate , scale_parameter=lowercase__ , relative_step=lowercase__ )
else:
_snake_case : List[str] = AdamW(
lowercase__ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon )
_snake_case : List[str] = optimizer
_snake_case : Any = self.get_lr_scheduler()
return [optimizer], [scheduler]
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Any:
"""simple docstring"""
return self.validation_step(lowercase__ , lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ ) -> Tuple:
"""simple docstring"""
return self.validation_end(lowercase__ )
def UpperCAmelCase_ ( self ) -> int:
"""simple docstring"""
_snake_case : Any = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores
_snake_case : Optional[int] = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices
return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs
def UpperCAmelCase_ ( self , lowercase__ ) -> Any:
"""simple docstring"""
if stage == "test":
_snake_case : Any = len(self.test_dataloader().dataset )
else:
_snake_case : Dict = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=lowercase__ )
_snake_case : Optional[int] = len(self.train_dataloader().dataset )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = False ) -> str:
"""simple docstring"""
raise NotImplementedError('''You must implement this for your task''' )
def UpperCAmelCase_ ( self ) -> Optional[int]:
"""simple docstring"""
return self.train_loader
def UpperCAmelCase_ ( self ) -> Dict:
"""simple docstring"""
return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=lowercase__ )
def UpperCAmelCase_ ( self ) -> Optional[Any]:
"""simple docstring"""
return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ ) -> Optional[int]:
"""simple docstring"""
return os.path.join(
self.hparams.data_dir , '''cached_{}_{}_{}'''.format(
lowercase__ , list(filter(lowercase__ , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , )
@pl.utilities.rank_zero_only
def UpperCAmelCase_ ( self , lowercase__ ) -> None:
"""simple docstring"""
_snake_case : Dict = self.output_dir.joinpath('''best_tfmr''' )
_snake_case : Tuple = self.step_count
self.model.save_pretrained(lowercase__ )
self.tokenizer.save_pretrained(lowercase__ )
@staticmethod
def UpperCAmelCase_ ( lowercase__ , lowercase__ ) -> Tuple:
"""simple docstring"""
parser.add_argument(
'''--model_name_or_path''' , default=lowercase__ , type=lowercase__ , required=lowercase__ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , )
parser.add_argument(
'''--config_name''' , default='''''' , type=lowercase__ , help='''Pretrained config name or path if not the same as model_name''' )
parser.add_argument(
'''--tokenizer_name''' , default=lowercase__ , type=lowercase__ , help='''Pretrained tokenizer name or path if not the same as model_name''' , )
parser.add_argument(
'''--cache_dir''' , default=str(Path(lowercase__ ).parent / '''test_run''' / '''cache''' ) , type=lowercase__ , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , )
parser.add_argument(
'''--encoder_layerdrop''' , type=lowercase__ , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--decoder_layerdrop''' , type=lowercase__ , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--dropout''' , type=lowercase__ , help='''Dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--attention_dropout''' , type=lowercase__ , help='''Attention dropout probability (Optional). Goes into model.config''' , )
parser.add_argument('''--learning_rate''' , default=5E-5 , type=lowercase__ , help='''The initial learning rate for Adam.''' )
parser.add_argument(
'''--lr_scheduler''' , default='''linear''' , choices=lowercase__ , metavar=lowercase__ , type=lowercase__ , help='''Learning rate scheduler''' , )
parser.add_argument('''--weight_decay''' , default=0.0 , type=lowercase__ , help='''Weight decay if we apply some.''' )
parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=lowercase__ , help='''Epsilon for Adam optimizer.''' )
parser.add_argument('''--warmup_steps''' , default=0 , type=lowercase__ , help='''Linear warmup over warmup_steps.''' )
parser.add_argument('''--num_workers''' , default=4 , type=lowercase__ , help='''kwarg passed to DataLoader''' )
parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=lowercase__ )
parser.add_argument('''--train_batch_size''' , default=32 , type=lowercase__ )
parser.add_argument('''--eval_batch_size''' , default=32 , type=lowercase__ )
parser.add_argument('''--adafactor''' , action='''store_true''' )
class lowerCamelCase (pl.Callback ):
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> str:
"""simple docstring"""
if (
trainer.is_global_zero and trainer.global_rank == 0
): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed.
pl_module.model.rag.retriever.init_retrieval() # better to use hook functions.
class lowerCamelCase (pl.Callback ):
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> List[str]:
"""simple docstring"""
for name, param in pl_module.model.rag.named_parameters():
if param.grad is None:
print(lowercase__ )
class lowerCamelCase (pl.Callback ):
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Any:
"""simple docstring"""
_snake_case : Any = trainer.lr_schedulers[0]['''scheduler''']
_snake_case : Optional[int] = {F'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr() )}
pl_module.logger.log_metrics(lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> List[str]:
"""simple docstring"""
rank_zero_info('''***** Validation results *****''' )
_snake_case : Dict = trainer.callback_metrics
# Log results
for key in sorted(lowercase__ ):
if key not in ["log", "progress_bar"]:
rank_zero_info('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Dict:
"""simple docstring"""
rank_zero_info('''***** Test results *****''' )
_snake_case : Dict = trainer.callback_metrics
# Log and save results to file
_snake_case : str = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' )
with open(lowercase__ , '''w''' ) as writer:
for key in sorted(lowercase__ ):
if key not in ["log", "progress_bar"]:
rank_zero_info('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) )
writer.write('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
parser.add_argument(
'''--output_dir''' , default=str(Path(lowerCAmelCase_ ).parent / '''test_run''' / '''model_checkpoints''' ) , type=lowerCAmelCase_ , help='''The output directory where the model predictions and checkpoints will be written.''' , )
parser.add_argument(
'''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , )
parser.add_argument(
'''--fp16_opt_level''' , type=lowerCAmelCase_ , default='''O2''' , help=(
'''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'''
'''See details at https://nvidia.github.io/apex/amp.html'''
) , )
parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=lowerCAmelCase_ )
parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=lowerCAmelCase_ , help='''Max gradient norm''' )
parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' )
parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' )
parser.add_argument(
'''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=lowerCAmelCase_ , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , )
parser.add_argument('''--seed''' , type=lowerCAmelCase_ , default=42 , help='''random seed for initialization''' )
parser.add_argument(
'''--data_dir''' , default=str(Path(lowerCAmelCase_ ).parent / '''test_run''' / '''dummy-train-data''' ) , type=lowerCAmelCase_ , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_=[] , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , ):
"""simple docstring"""
pl.seed_everything(args.seed )
# init model
_snake_case : Union[str, Any] = Path(model.hparams.output_dir )
odir.mkdir(exist_ok=lowerCAmelCase_ )
# add custom checkpoints
if checkpoint_callback is None:
_snake_case : Any = pl.callbacks.ModelCheckpoint(
filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 )
if early_stopping_callback:
extra_callbacks.append(lowerCAmelCase_ )
if logging_callback is None:
_snake_case : str = LoggingCallback()
_snake_case : Tuple = {}
if args.fpaa:
_snake_case : Union[str, Any] = 16
if args.gpus > 1:
_snake_case : Optional[Any] = '''auto'''
_snake_case : Tuple = '''ddp'''
_snake_case : Optional[Any] = args.accumulate_grad_batches
_snake_case : Tuple = None
_snake_case : str = '''auto'''
_snake_case : int = pl.Trainer.from_argparse_args(
lowerCAmelCase_ , weights_summary=lowerCAmelCase_ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase_ , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase_ , )
if args.do_train:
trainer.fit(lowerCAmelCase_ )
else:
print('''RAG modeling tests with new set functions successfuly executed!''' )
return trainer
| 47
| 1
|
'''simple docstring'''
def _a ( lowerCAmelCase_ = 50 ):
"""simple docstring"""
_snake_case : str = [1] * (length + 1)
for row_length in range(3 , length + 1 ):
for block_length in range(3 , row_length + 1 ):
for block_start in range(row_length - block_length ):
ways_number[row_length] += ways_number[
row_length - block_start - block_length - 1
]
ways_number[row_length] += 1
return ways_number[length]
if __name__ == "__main__":
print(F"""{solution() = }""")
| 47
|
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase : List[str] = logging.get_logger(__name__)
UpperCAmelCase : Dict = {
'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json',
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class lowerCamelCase (a__ ):
_lowercase : List[str] = """sew-d"""
def __init__( self , lowercase__=32 , lowercase__=768 , lowercase__=12 , lowercase__=12 , lowercase__=3_072 , lowercase__=2 , lowercase__=512 , lowercase__=256 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.02 , lowercase__=1E-7 , lowercase__=1E-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=128 , lowercase__=16 , lowercase__=True , lowercase__=0.05 , lowercase__=10 , lowercase__=2 , lowercase__=0.0 , lowercase__=10 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=256 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ) -> Dict:
"""simple docstring"""
super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ )
_snake_case : List[str] = hidden_size
_snake_case : Optional[Any] = feat_extract_norm
_snake_case : Tuple = feat_extract_activation
_snake_case : Tuple = list(lowercase__ )
_snake_case : Any = list(lowercase__ )
_snake_case : Any = list(lowercase__ )
_snake_case : Any = conv_bias
_snake_case : List[Any] = num_conv_pos_embeddings
_snake_case : Any = num_conv_pos_embedding_groups
_snake_case : Union[str, Any] = len(self.conv_dim )
_snake_case : Optional[Any] = num_hidden_layers
_snake_case : Optional[int] = intermediate_size
_snake_case : Any = squeeze_factor
_snake_case : Optional[Any] = max_position_embeddings
_snake_case : Tuple = position_buckets
_snake_case : Tuple = share_att_key
_snake_case : Any = relative_attention
_snake_case : Optional[int] = norm_rel_ebd
_snake_case : Optional[Any] = list(lowercase__ )
_snake_case : List[Any] = hidden_act
_snake_case : List[Any] = num_attention_heads
_snake_case : Dict = hidden_dropout
_snake_case : Tuple = attention_dropout
_snake_case : Union[str, Any] = activation_dropout
_snake_case : List[Any] = feat_proj_dropout
_snake_case : Optional[int] = final_dropout
_snake_case : Optional[Any] = layer_norm_eps
_snake_case : Dict = feature_layer_norm_eps
_snake_case : List[Any] = initializer_range
_snake_case : Dict = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect.'''
'''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'''
F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)'''
F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_snake_case : Union[str, Any] = apply_spec_augment
_snake_case : Any = mask_time_prob
_snake_case : List[str] = mask_time_length
_snake_case : Dict = mask_time_min_masks
_snake_case : Union[str, Any] = mask_feature_prob
_snake_case : Tuple = mask_feature_length
_snake_case : Union[str, Any] = mask_feature_min_masks
# ctc loss
_snake_case : Optional[Any] = ctc_loss_reduction
_snake_case : Optional[Any] = ctc_zero_infinity
# sequence classification
_snake_case : List[Any] = use_weighted_layer_sum
_snake_case : Any = classifier_proj_size
@property
def UpperCAmelCase_ ( self ) -> Any:
"""simple docstring"""
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 47
| 1
|
'''simple docstring'''
from collections import deque
class lowerCamelCase :
def __init__( self , lowercase__ , lowercase__ , lowercase__ ) -> None:
"""simple docstring"""
_snake_case : int = process_name # process name
_snake_case : Any = arrival_time # arrival time of the process
# completion time of finished process or last interrupted time
_snake_case : Any = arrival_time
_snake_case : str = burst_time # remaining burst time
_snake_case : Dict = 0 # total time of the process wait in ready queue
_snake_case : int = 0 # time from arrival time to completion time
class lowerCamelCase :
def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ) -> None:
"""simple docstring"""
_snake_case : Union[str, Any] = number_of_queues
# time slice of queues that round robin algorithm applied
_snake_case : Optional[int] = time_slices
# unfinished process is in this ready_queue
_snake_case : List[Any] = queue
# current time
_snake_case : Any = current_time
# finished process is in this sequence queue
_snake_case : deque[Process] = deque()
def UpperCAmelCase_ ( self ) -> list[str]:
"""simple docstring"""
_snake_case : Tuple = []
for i in range(len(self.finish_queue ) ):
sequence.append(self.finish_queue[i].process_name )
return sequence
def UpperCAmelCase_ ( self , lowercase__ ) -> list[int]:
"""simple docstring"""
_snake_case : Union[str, Any] = []
for i in range(len(lowercase__ ) ):
waiting_times.append(queue[i].waiting_time )
return waiting_times
def UpperCAmelCase_ ( self , lowercase__ ) -> list[int]:
"""simple docstring"""
_snake_case : List[str] = []
for i in range(len(lowercase__ ) ):
turnaround_times.append(queue[i].turnaround_time )
return turnaround_times
def UpperCAmelCase_ ( self , lowercase__ ) -> list[int]:
"""simple docstring"""
_snake_case : Any = []
for i in range(len(lowercase__ ) ):
completion_times.append(queue[i].stop_time )
return completion_times
def UpperCAmelCase_ ( self , lowercase__ ) -> list[int]:
"""simple docstring"""
return [q.burst_time for q in queue]
def UpperCAmelCase_ ( self , lowercase__ ) -> int:
"""simple docstring"""
process.waiting_time += self.current_time - process.stop_time
return process.waiting_time
def UpperCAmelCase_ ( self , lowercase__ ) -> deque[Process]:
"""simple docstring"""
_snake_case : deque[Process] = deque() # sequence deque of finished process
while len(lowercase__ ) != 0:
_snake_case : List[str] = ready_queue.popleft() # current process
# if process's arrival time is later than current time, update current time
if self.current_time < cp.arrival_time:
self.current_time += cp.arrival_time
# update waiting time of current process
self.update_waiting_time(lowercase__ )
# update current time
self.current_time += cp.burst_time
# finish the process and set the process's burst-time 0
_snake_case : Tuple = 0
# set the process's turnaround time because it is finished
_snake_case : Union[str, Any] = self.current_time - cp.arrival_time
# set the completion time
_snake_case : Tuple = self.current_time
# add the process to queue that has finished queue
finished.append(lowercase__ )
self.finish_queue.extend(lowercase__ ) # add finished process to finish queue
# FCFS will finish all remaining processes
return finished
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> tuple[deque[Process], deque[Process]]:
"""simple docstring"""
_snake_case : deque[Process] = deque() # sequence deque of terminated process
# just for 1 cycle and unfinished processes will go back to queue
for _ in range(len(lowercase__ ) ):
_snake_case : Any = ready_queue.popleft() # current process
# if process's arrival time is later than current time, update current time
if self.current_time < cp.arrival_time:
self.current_time += cp.arrival_time
# update waiting time of unfinished processes
self.update_waiting_time(lowercase__ )
# if the burst time of process is bigger than time-slice
if cp.burst_time > time_slice:
# use CPU for only time-slice
self.current_time += time_slice
# update remaining burst time
cp.burst_time -= time_slice
# update end point time
_snake_case : Union[str, Any] = self.current_time
# locate the process behind the queue because it is not finished
ready_queue.append(lowercase__ )
else:
# use CPU for remaining burst time
self.current_time += cp.burst_time
# set burst time 0 because the process is finished
_snake_case : Optional[Any] = 0
# set the finish time
_snake_case : Tuple = self.current_time
# update the process' turnaround time because it is finished
_snake_case : Union[str, Any] = self.current_time - cp.arrival_time
# add the process to queue that has finished queue
finished.append(lowercase__ )
self.finish_queue.extend(lowercase__ ) # add finished process to finish queue
# return finished processes queue and remaining processes queue
return finished, ready_queue
def UpperCAmelCase_ ( self ) -> deque[Process]:
"""simple docstring"""
for i in range(self.number_of_queues - 1 ):
_snake_case , _snake_case : Union[str, Any] = self.round_robin(
self.ready_queue , self.time_slices[i] )
# the last queue has first_come_first_served algorithm
self.first_come_first_served(self.ready_queue )
return self.finish_queue
if __name__ == "__main__":
import doctest
UpperCAmelCase : Any = Process('P1', 0, 5_3)
UpperCAmelCase : int = Process('P2', 0, 1_7)
UpperCAmelCase : List[Any] = Process('P3', 0, 6_8)
UpperCAmelCase : str = Process('P4', 0, 2_4)
UpperCAmelCase : int = 3
UpperCAmelCase : List[Any] = [1_7, 2_5]
UpperCAmelCase : List[str] = deque([Pa, Pa, Pa, Pa])
if len(time_slices) != number_of_queues - 1:
raise SystemExit(0)
doctest.testmod(extraglobs={'queue': deque([Pa, Pa, Pa, Pa])})
UpperCAmelCase : Optional[Any] = Process('P1', 0, 5_3)
UpperCAmelCase : int = Process('P2', 0, 1_7)
UpperCAmelCase : Dict = Process('P3', 0, 6_8)
UpperCAmelCase : Dict = Process('P4', 0, 2_4)
UpperCAmelCase : Tuple = 3
UpperCAmelCase : List[Any] = [1_7, 2_5]
UpperCAmelCase : Tuple = deque([Pa, Pa, Pa, Pa])
UpperCAmelCase : Any = MLFQ(number_of_queues, time_slices, queue, 0)
UpperCAmelCase : str = mlfq.multi_level_feedback_queue()
# print total waiting times of processes(P1, P2, P3, P4)
print(
F"""waiting time:\
\t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}"""
)
# print completion times of processes(P1, P2, P3, P4)
print(
F"""completion time:\
\t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}"""
)
# print total turnaround times of processes(P1, P2, P3, P4)
print(
F"""turnaround time:\
\t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}"""
)
# print sequence of finished processes
print(
F"""sequence of finished processes:\
{mlfq.calculate_sequence_of_finish_queue()}"""
)
| 47
|
'''simple docstring'''
from random import randint
from tempfile import TemporaryFile
import numpy as np
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : List[Any] = 0
if start < end:
_snake_case : List[Any] = randint(lowerCAmelCase_ , lowerCAmelCase_ )
_snake_case : Any = a[end]
_snake_case : List[str] = a[pivot]
_snake_case : Optional[int] = temp
_snake_case , _snake_case : List[Any] = _in_place_partition(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
count += _in_place_quick_sort(lowerCAmelCase_ , lowerCAmelCase_ , p - 1 )
count += _in_place_quick_sort(lowerCAmelCase_ , p + 1 , lowerCAmelCase_ )
return count
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Optional[Any] = 0
_snake_case : Optional[int] = randint(lowerCAmelCase_ , lowerCAmelCase_ )
_snake_case : Tuple = a[end]
_snake_case : Optional[Any] = a[pivot]
_snake_case : Union[str, Any] = temp
_snake_case : Union[str, Any] = start - 1
for index in range(lowerCAmelCase_ , lowerCAmelCase_ ):
count += 1
if a[index] < a[end]: # check if current val is less than pivot value
_snake_case : Optional[int] = new_pivot_index + 1
_snake_case : Optional[Any] = a[new_pivot_index]
_snake_case : Tuple = a[index]
_snake_case : str = temp
_snake_case : Any = a[new_pivot_index + 1]
_snake_case : str = a[end]
_snake_case : Optional[int] = temp
return new_pivot_index + 1, count
UpperCAmelCase : Dict = TemporaryFile()
UpperCAmelCase : Dict = 1_0_0 # 1000 elements are to be sorted
UpperCAmelCase, UpperCAmelCase : str = 0, 1 # mean and standard deviation
UpperCAmelCase : Optional[Any] = np.random.normal(mu, sigma, p)
np.save(outfile, X)
print('The array is')
print(X)
outfile.seek(0) # using the same array
UpperCAmelCase : int = np.load(outfile)
UpperCAmelCase : Optional[int] = len(M) - 1
UpperCAmelCase : str = _in_place_quick_sort(M, 0, r)
print(
'No of Comparisons for 100 elements selected from a standard normal distribution'
'is :'
)
print(z)
| 47
| 1
|
'''simple docstring'''
import socket
def _a ( ):
"""simple docstring"""
_snake_case : List[str] = socket.socket(socket.AF_INET , socket.SOCK_STREAM )
_snake_case : Dict = socket.gethostname()
_snake_case : List[Any] = 12_312
sock.connect((host, port) )
sock.send(b'''Hello server!''' )
with open('''Received_file''' , '''wb''' ) as out_file:
print('''File opened''' )
print('''Receiving data...''' )
while True:
_snake_case : Union[str, Any] = sock.recv(1_024 )
if not data:
break
out_file.write(lowerCAmelCase_ )
print('''Successfully received the file''' )
sock.close()
print('''Connection closed''' )
if __name__ == "__main__":
main()
| 47
|
'''simple docstring'''
from ...utils import is_torch_available, is_transformers_available
if is_transformers_available() and is_torch_available():
from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
| 47
| 1
|
'''simple docstring'''
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
UpperCAmelCase : str = logging.get_logger(__name__)
UpperCAmelCase : str = ['model.decoder.embed_positions.weights']
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
if "emb" in name:
_snake_case : Union[str, Any] = name.replace('''emb''' , '''model.decoder.embed_tokens''' )
if "transformer" in name:
_snake_case : int = name.replace('''transformer''' , '''model.decoder''' )
if "cross_attention" in name:
_snake_case : List[Any] = name.replace('''cross_attention''' , '''encoder_attn''' )
if "linear1" in name:
_snake_case : Dict = name.replace('''linear1''' , '''fc1''' )
if "linear2" in name:
_snake_case : Tuple = name.replace('''linear2''' , '''fc2''' )
if "norm1" in name:
_snake_case : List[str] = name.replace('''norm1''' , '''self_attn_layer_norm''' )
if "norm_cross" in name:
_snake_case : List[str] = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''' )
if "norm2" in name:
_snake_case : Dict = name.replace('''norm2''' , '''final_layer_norm''' )
if "out_norm" in name:
_snake_case : Dict = name.replace('''out_norm''' , '''model.decoder.layer_norm''' )
if "linears" in name:
_snake_case : Union[str, Any] = name.replace('''linears''' , '''lm_heads''' )
if "condition_provider.conditioners.description.output_proj" in name:
_snake_case : Optional[Any] = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''' )
return name
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Dict = list(state_dict.keys() )
_snake_case : Optional[Any] = {}
for key in keys:
_snake_case : str = state_dict.pop(lowerCAmelCase_ )
_snake_case : List[str] = rename_keys(lowerCAmelCase_ )
if "in_proj_weight" in key:
# split fused qkv proj
_snake_case : Dict = val[:hidden_size, :]
_snake_case : List[Any] = val[hidden_size : 2 * hidden_size, :]
_snake_case : Union[str, Any] = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
_snake_case : List[str] = val
else:
_snake_case : Dict = val
return state_dict, enc_dec_proj_state_dict
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
if checkpoint == "small":
# default config values
_snake_case : Union[str, Any] = 1_024
_snake_case : Tuple = 24
_snake_case : Union[str, Any] = 16
elif checkpoint == "medium":
_snake_case : List[Any] = 1_536
_snake_case : Optional[int] = 48
_snake_case : str = 24
elif checkpoint == "large":
_snake_case : Tuple = 2_048
_snake_case : Union[str, Any] = 48
_snake_case : Any = 32
else:
raise ValueError(f'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' )
_snake_case : Tuple = MusicgenDecoderConfig(
hidden_size=lowerCAmelCase_ , ffn_dim=hidden_size * 4 , num_hidden_layers=lowerCAmelCase_ , num_attention_heads=lowerCAmelCase_ , )
return config
@torch.no_grad()
def _a ( lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_="cpu" ):
"""simple docstring"""
_snake_case : List[Any] = MusicGen.get_pretrained(lowerCAmelCase_ , device=lowerCAmelCase_ )
_snake_case : Union[str, Any] = decoder_config_from_checkpoint(lowerCAmelCase_ )
_snake_case : Optional[int] = fairseq_model.lm.state_dict()
_snake_case , _snake_case : str = rename_state_dict(
lowerCAmelCase_ , hidden_size=decoder_config.hidden_size )
_snake_case : int = TaEncoderModel.from_pretrained('''t5-base''' )
_snake_case : Optional[Any] = EncodecModel.from_pretrained('''facebook/encodec_32khz''' )
_snake_case : Optional[int] = MusicgenForCausalLM(lowerCAmelCase_ ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
_snake_case , _snake_case : Optional[Any] = decoder.load_state_dict(lowerCAmelCase_ , strict=lowerCAmelCase_ )
for key in missing_keys.copy():
if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(lowerCAmelCase_ )
if len(lowerCAmelCase_ ) > 0:
raise ValueError(f'''Missing key(s) in state_dict: {missing_keys}''' )
if len(lowerCAmelCase_ ) > 0:
raise ValueError(f'''Unexpected key(s) in state_dict: {unexpected_keys}''' )
# init the composite model
_snake_case : List[str] = MusicgenForConditionalGeneration(text_encoder=lowerCAmelCase_ , audio_encoder=lowerCAmelCase_ , decoder=lowerCAmelCase_ )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(lowerCAmelCase_ )
# check we can do a forward pass
_snake_case : Optional[Any] = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
_snake_case : Optional[int] = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
_snake_case : Optional[int] = model(input_ids=lowerCAmelCase_ , decoder_input_ids=lowerCAmelCase_ ).logits
if logits.shape != (8, 1, 2_048):
raise ValueError('''Incorrect shape for logits''' )
# now construct the processor
_snake_case : List[str] = AutoTokenizer.from_pretrained('''t5-base''' )
_snake_case : Optional[int] = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''' )
_snake_case : Union[str, Any] = MusicgenProcessor(feature_extractor=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ )
# set the appropriate bos/pad token ids
_snake_case : Tuple = 2_048
_snake_case : List[str] = 2_048
# set other default generation config params
_snake_case : List[str] = int(30 * audio_encoder.config.frame_rate )
_snake_case : Optional[Any] = True
_snake_case : int = 3.0
if pytorch_dump_folder is not None:
Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ )
logger.info(f'''Saving model {checkpoint} to {pytorch_dump_folder}''' )
model.save_pretrained(lowerCAmelCase_ )
processor.save_pretrained(lowerCAmelCase_ )
if repo_id:
logger.info(f'''Pushing model {checkpoint} to {repo_id}''' )
model.push_to_hub(lowerCAmelCase_ )
processor.push_to_hub(lowerCAmelCase_ )
if __name__ == "__main__":
UpperCAmelCase : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint',
default='small',
type=str,
help='Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.',
)
parser.add_argument(
'--pytorch_dump_folder',
required=True,
default=None,
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.'
)
parser.add_argument(
'--device', default='cpu', type=str, help='Torch device to run the conversion, either cpu or cuda.'
)
UpperCAmelCase : List[str] = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 47
|
'''simple docstring'''
from argparse import ArgumentParser
from .add_new_model import AddNewModelCommand
from .add_new_model_like import AddNewModelLikeCommand
from .convert import ConvertCommand
from .download import DownloadCommand
from .env import EnvironmentCommand
from .lfs import LfsCommands
from .pt_to_tf import PTtoTFCommand
from .run import RunCommand
from .serving import ServeCommand
from .user import UserCommands
def _a ( ):
"""simple docstring"""
_snake_case : List[Any] = ArgumentParser('''Transformers CLI tool''' , usage='''transformers-cli <command> [<args>]''' )
_snake_case : List[str] = parser.add_subparsers(help='''transformers-cli command helpers''' )
# Register commands
ConvertCommand.register_subcommand(lowerCAmelCase_ )
DownloadCommand.register_subcommand(lowerCAmelCase_ )
EnvironmentCommand.register_subcommand(lowerCAmelCase_ )
RunCommand.register_subcommand(lowerCAmelCase_ )
ServeCommand.register_subcommand(lowerCAmelCase_ )
UserCommands.register_subcommand(lowerCAmelCase_ )
AddNewModelCommand.register_subcommand(lowerCAmelCase_ )
AddNewModelLikeCommand.register_subcommand(lowerCAmelCase_ )
LfsCommands.register_subcommand(lowerCAmelCase_ )
PTtoTFCommand.register_subcommand(lowerCAmelCase_ )
# Let's go
_snake_case : str = parser.parse_args()
if not hasattr(lowerCAmelCase_ , '''func''' ):
parser.print_help()
exit(1 )
# Run
_snake_case : Union[str, Any] = args.func(lowerCAmelCase_ )
service.run()
if __name__ == "__main__":
main()
| 47
| 1
|
'''simple docstring'''
from . import __version__
# Backward compatibility imports, to make sure all those objects can be found in file_utils
from .utils import (
CLOUDFRONT_DISTRIB_PREFIX,
CONFIG_NAME,
DISABLE_TELEMETRY,
DUMMY_INPUTS,
DUMMY_MASK,
ENV_VARS_TRUE_AND_AUTO_VALUES,
ENV_VARS_TRUE_VALUES,
FEATURE_EXTRACTOR_NAME,
FLAX_WEIGHTS_NAME,
HF_MODULES_CACHE,
HUGGINGFACE_CO_PREFIX,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
MODEL_CARD_NAME,
MULTIPLE_CHOICE_DUMMY_INPUTS,
PYTORCH_PRETRAINED_BERT_CACHE,
PYTORCH_TRANSFORMERS_CACHE,
S3_BUCKET_PREFIX,
SENTENCEPIECE_UNDERLINE,
SPIECE_UNDERLINE,
TF2_WEIGHTS_NAME,
TF_WEIGHTS_NAME,
TORCH_FX_REQUIRED_VERSION,
TRANSFORMERS_CACHE,
TRANSFORMERS_DYNAMIC_MODULE_NAME,
USE_JAX,
USE_TF,
USE_TORCH,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
ContextManagers,
DummyObject,
EntryNotFoundError,
ExplicitEnum,
ModelOutput,
PaddingStrategy,
PushToHubMixin,
RepositoryNotFoundError,
RevisionNotFoundError,
TensorType,
_LazyModule,
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
cached_property,
copy_func,
default_cache_path,
define_sagemaker_information,
get_cached_models,
get_file_from_repo,
get_full_repo_name,
get_torch_version,
has_file,
http_user_agent,
is_apex_available,
is_bsa_available,
is_coloredlogs_available,
is_datasets_available,
is_detectrona_available,
is_faiss_available,
is_flax_available,
is_ftfy_available,
is_in_notebook,
is_ipex_available,
is_librosa_available,
is_offline_mode,
is_onnx_available,
is_pandas_available,
is_phonemizer_available,
is_protobuf_available,
is_psutil_available,
is_pyanvml_available,
is_pyctcdecode_available,
is_pytesseract_available,
is_pytorch_quantization_available,
is_rjieba_available,
is_sagemaker_dp_enabled,
is_sagemaker_mp_enabled,
is_scipy_available,
is_sentencepiece_available,
is_seqio_available,
is_sklearn_available,
is_soundfile_availble,
is_spacy_available,
is_speech_available,
is_tensor,
is_tensorflow_probability_available,
is_tfaonnx_available,
is_tf_available,
is_timm_available,
is_tokenizers_available,
is_torch_available,
is_torch_bfaa_available,
is_torch_cuda_available,
is_torch_fx_available,
is_torch_fx_proxy,
is_torch_mps_available,
is_torch_tfaa_available,
is_torch_tpu_available,
is_torchaudio_available,
is_training_run_on_sagemaker,
is_vision_available,
replace_return_docstrings,
requires_backends,
to_numpy,
to_py_obj,
torch_only_method,
)
| 47
|
'''simple docstring'''
from collections.abc import Generator
def _a ( ):
"""simple docstring"""
_snake_case , _snake_case : Union[str, Any] = 0, 1
while True:
_snake_case , _snake_case : List[str] = b, a + b
yield b
def _a ( lowerCAmelCase_ = 1_000 ):
"""simple docstring"""
_snake_case : List[str] = 1
_snake_case : Dict = fibonacci_generator()
while len(str(next(lowerCAmelCase_ ) ) ) < n:
answer += 1
return answer + 1
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 47
| 1
|
'''simple docstring'''
def _a ( lowerCAmelCase_ = 1_000_000 ):
"""simple docstring"""
_snake_case : Tuple = 1
_snake_case : Any = 1
_snake_case : Union[str, Any] = {1: 1}
for inputa in range(2 , lowerCAmelCase_ ):
_snake_case : List[Any] = 0
_snake_case : Tuple = inputa
while True:
if number in counters:
counter += counters[number]
break
if number % 2 == 0:
number //= 2
counter += 1
else:
_snake_case : Optional[Any] = (3 * number) + 1
counter += 1
if inputa not in counters:
_snake_case : Optional[int] = counter
if counter > pre_counter:
_snake_case : Optional[int] = inputa
_snake_case : Any = counter
return largest_number
if __name__ == "__main__":
print(solution(int(input().strip())))
| 47
|
'''simple docstring'''
import logging
import re
import pytorch_quantization
import pytorch_quantization.nn as quant_nn
import torch
from pytorch_quantization import calib
from pytorch_quantization.tensor_quant import QuantDescriptor
UpperCAmelCase : str = logging.getLogger(__name__)
UpperCAmelCase : Dict = 5_0 # max width of layer names
UpperCAmelCase : Union[str, Any] = 7_0 # max width of quantizer names
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Dict = parser.add_argument_group('''quant_trainer arguments''' )
group.add_argument('''--wprec''' , type=lowerCAmelCase_ , default=8 , help='''weight precision''' )
group.add_argument('''--aprec''' , type=lowerCAmelCase_ , default=8 , help='''activation precision''' )
group.add_argument('''--quant-per-tensor''' , action='''store_true''' , help='''per tensor weight scaling''' )
group.add_argument('''--quant-disable''' , action='''store_true''' , help='''disable all quantizers''' )
group.add_argument('''--quant-disable-embeddings''' , action='''store_true''' , help='''disable all embeddings quantizers''' )
group.add_argument('''--quant-disable-keyword''' , type=lowerCAmelCase_ , nargs='''+''' , help='''disable quantizers by keyword''' )
group.add_argument('''--quant-disable-layer-module''' , type=lowerCAmelCase_ , help='''disable quantizers by keyword under layer.''' )
group.add_argument('''--quant-enable-layer-module''' , type=lowerCAmelCase_ , help='''enable quantizers by keyword under layer''' )
group.add_argument('''--calibrator''' , default='''max''' , help='''which quantization range calibrator to use''' )
group.add_argument('''--percentile''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help='''percentile for PercentileCalibrator''' )
group.add_argument('''--fuse-qkv''' , action='''store_true''' , help='''use the same scale factor for qkv''' )
group.add_argument('''--clip-gelu''' , metavar='''N''' , type=lowerCAmelCase_ , help='''clip gelu output maximum value to N''' )
group.add_argument(
'''--recalibrate-weights''' , action='''store_true''' , help=(
'''recalibrate weight amaxes by taking the max of the weights.'''
''' amaxes will be computed with the current quantization granularity (axis).'''
) , )
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
if args.calibrator == "max":
_snake_case : Optional[int] = '''max'''
elif args.calibrator == "percentile":
if args.percentile is None:
raise ValueError('''Specify --percentile when using percentile calibrator''' )
_snake_case : Tuple = '''histogram'''
elif args.calibrator == "mse":
_snake_case : int = '''histogram'''
else:
raise ValueError(f'''Invalid calibrator {args.calibrator}''' )
_snake_case : Tuple = QuantDescriptor(num_bits=args.aprec , calib_method=lowerCAmelCase_ )
_snake_case : str = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) )
quant_nn.QuantLinear.set_default_quant_desc_input(lowerCAmelCase_ )
quant_nn.QuantLinear.set_default_quant_desc_weight(lowerCAmelCase_ )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False , lowerCAmelCase_=False ):
"""simple docstring"""
logger.info('''Configuring Model for Quantization''' )
logger.info(f'''using quantization package {pytorch_quantization.__file__}''' )
if not calib:
if args.quant_disable_embeddings:
set_quantizer_by_name(lowerCAmelCase_ , ['''embeddings'''] , which='''weight''' , _disabled=lowerCAmelCase_ )
if args.quant_disable:
set_quantizer_by_name(lowerCAmelCase_ , [''''''] , _disabled=lowerCAmelCase_ )
if args.quant_disable_keyword:
set_quantizer_by_name(lowerCAmelCase_ , args.quant_disable_keyword , _disabled=lowerCAmelCase_ )
if args.quant_disable_layer_module:
set_quantizer_by_name(lowerCAmelCase_ , [R'''layer.\d+.''' + args.quant_disable_layer_module] , _disabled=lowerCAmelCase_ )
if args.quant_enable_layer_module:
set_quantizer_by_name(lowerCAmelCase_ , [R'''layer.\d+.''' + args.quant_enable_layer_module] , _disabled=lowerCAmelCase_ )
if args.recalibrate_weights:
recalibrate_weights(lowerCAmelCase_ )
if args.fuse_qkv:
fuse_qkv(lowerCAmelCase_ , lowerCAmelCase_ )
if args.clip_gelu:
clip_gelu(lowerCAmelCase_ , args.clip_gelu )
# if args.local_rank in [-1, 0] and not calib:
print_quant_summary(lowerCAmelCase_ )
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
logger.info('''Enabling Calibration''' )
for name, module in model.named_modules():
if name.endswith('''_quantizer''' ):
if module._calibrator is not None:
module.disable_quant()
module.enable_calib()
else:
module.disable()
logger.info(f'''{name:80}: {module}''' )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
logger.info('''Loading calibrated amax''' )
for name, module in model.named_modules():
if name.endswith('''_quantizer''' ):
if module._calibrator is not None:
if isinstance(module._calibrator , calib.MaxCalibrator ):
module.load_calib_amax()
else:
module.load_calib_amax('''percentile''' , percentile=args.percentile )
module.enable_quant()
module.disable_calib()
else:
module.enable()
model.cuda()
print_quant_summary(lowerCAmelCase_ )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
def fusea(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
for mod in [qq, qk, qv]:
if not hasattr(lowerCAmelCase_ , '''_amax''' ):
print(''' WARNING: NO AMAX BUFFER''' )
return
_snake_case : Tuple = qq._amax.detach().item()
_snake_case : Tuple = qk._amax.detach().item()
_snake_case : List[Any] = qv._amax.detach().item()
_snake_case : List[str] = max(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
qq._amax.fill_(lowerCAmelCase_ )
qk._amax.fill_(lowerCAmelCase_ )
qv._amax.fill_(lowerCAmelCase_ )
logger.info(f''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' )
for name, mod in model.named_modules():
if name.endswith('''.attention.self''' ):
logger.info(f'''FUSE_QKV: {name:{name_width}}''' )
fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer )
if args.quant_per_tensor:
fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
for name, mod in model.named_modules():
if name.endswith('''.output.dense''' ) and not name.endswith('''attention.output.dense''' ):
_snake_case : List[Any] = mod._input_quantizer._amax.data.detach().item()
mod._input_quantizer._amax.data.detach().clamp_(max=lowerCAmelCase_ )
_snake_case : List[str] = mod._input_quantizer._amax.data.detach().item()
logger.info(f'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' )
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
for name, mod in model.named_modules():
if hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ) and mod._weight_quantizer.axis is not None:
_snake_case : Dict = mod.weight.shape[0]
_snake_case : Optional[int] = mod._weight_quantizer._amax.detach()
_snake_case : Optional[int] = torch.ones(lowerCAmelCase_ , dtype=amax.dtype , device=amax.device ) * amax
print(f'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' )
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
for name, mod in model.named_modules():
if hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ):
if not hasattr(mod.weight_quantizer , '''_amax''' ):
print('''RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER''' )
continue
# determine which axes to reduce across
# e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3)
_snake_case : int = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis )
_snake_case : Dict = set(range(len(mod.weight.size() ) ) ) - axis_set
_snake_case : Optional[int] = pytorch_quantization.utils.reduce_amax(mod.weight , axis=lowerCAmelCase_ , keepdims=lowerCAmelCase_ ).detach()
logger.info(f'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' )
_snake_case : Tuple = amax
def _a ( lowerCAmelCase_ , lowerCAmelCase_=25 , lowerCAmelCase_=180 , lowerCAmelCase_=None ):
"""simple docstring"""
if ignore is None:
_snake_case : Dict = []
elif not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
_snake_case : Optional[int] = [ignore]
_snake_case : str = 0
for name, mod in model.named_modules():
if not hasattr(lowerCAmelCase_ , '''weight''' ):
continue
_snake_case : Optional[int] = max(lowerCAmelCase_ , len(lowerCAmelCase_ ) )
for name, mod in model.named_modules():
_snake_case : Optional[Any] = getattr(lowerCAmelCase_ , '''_input_quantizer''' , lowerCAmelCase_ )
_snake_case : Tuple = getattr(lowerCAmelCase_ , '''_weight_quantizer''' , lowerCAmelCase_ )
if not hasattr(lowerCAmelCase_ , '''weight''' ):
continue
if type(lowerCAmelCase_ ) in ignore:
continue
if [True for s in ignore if type(lowerCAmelCase_ ) is str and s in name]:
continue
_snake_case : Optional[int] = f'''Act:{input_q.extra_repr()}'''
_snake_case : Any = f'''Wgt:{weight_q.extra_repr()}'''
_snake_case : Optional[int] = f'''{name:{name_width}} {act_str} {wgt_str}'''
if len(lowerCAmelCase_ ) <= line_width:
logger.info(lowerCAmelCase_ )
else:
logger.info(f'''{name:{name_width}} {act_str}''' )
logger.info(f'''{" ":{name_width}} {wgt_str}''' )
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : str = 0
for name, mod in model.named_modules():
if isinstance(lowerCAmelCase_ , pytorch_quantization.nn.TensorQuantizer ):
print(f'''{name:80} {mod}''' )
count += 1
print(f'''{count} TensorQuantizers found in model''' )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Optional[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
if quantizer_mod is not None:
assert hasattr(lowerCAmelCase_ , lowerCAmelCase_ )
setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
else:
logger.warning(f'''{name} has no {quantizer}''' )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_="both" , **lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Optional[Any] = f'''Warning: changing {which} quantizers of {name:{qname_width}}'''
for k, v in kwargs.items():
s += f''' {k}={v}'''
if which in ["input", "both"]:
set_quantizer(lowerCAmelCase_ , lowerCAmelCase_ , '''_input_quantizer''' , lowerCAmelCase_ , lowerCAmelCase_ )
if which in ["weight", "both"]:
set_quantizer(lowerCAmelCase_ , lowerCAmelCase_ , '''_weight_quantizer''' , lowerCAmelCase_ , lowerCAmelCase_ )
logger.info(lowerCAmelCase_ )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ):
"""simple docstring"""
for name, mod in model.named_modules():
if hasattr(lowerCAmelCase_ , '''_input_quantizer''' ) or hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ):
for n in names:
if re.search(lowerCAmelCase_ , lowerCAmelCase_ ):
set_quantizers(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ )
elif name.endswith('''_quantizer''' ):
for n in names:
if re.search(lowerCAmelCase_ , lowerCAmelCase_ ):
_snake_case : Any = f'''Warning: changing {name:{name_width}}'''
for k, v in kwargs.items():
s += f''' {k}={v}'''
setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
logger.info(lowerCAmelCase_ )
| 47
| 1
|
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
UpperCAmelCase : Dict = logging.get_logger(__name__)
UpperCAmelCase : Any = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'adapter_layer': 'encoder.layers.*.adapter_layer',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'quantizer.weight_proj': 'quantizer.weight_proj',
'quantizer.vars': 'quantizer.codevectors',
'project_q': 'project_q',
'final_proj': 'project_hid',
'w2v_encoder.proj': 'lm_head',
'mask_emb': 'masked_spec_embed',
'pooling_layer.linear': 'projector',
'pooling_layer.projection': 'classifier',
}
UpperCAmelCase : Optional[int] = [
'lm_head',
'quantizer.weight_proj',
'quantizer.codevectors',
'project_q',
'project_hid',
'projector',
'classifier',
]
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Tuple = {}
with open(lowerCAmelCase_ , '''r''' ) as file:
for line_number, line in enumerate(lowerCAmelCase_ ):
_snake_case : Any = line.strip()
if line:
_snake_case : List[Any] = line.split()
_snake_case : List[Any] = line_number
_snake_case : Optional[int] = words[0]
_snake_case : int = value
return result
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
for attribute in key.split('''.''' ):
_snake_case : Optional[int] = getattr(lowerCAmelCase_ , lowerCAmelCase_ )
_snake_case : Union[str, Any] = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(lowerCAmelCase_ ):
_snake_case : Optional[int] = PARAM_MAPPING[full_name.split('''.''' )[-1]]
_snake_case : Dict = '''param'''
if weight_type is not None and weight_type != "param":
_snake_case : List[str] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ).shape
elif weight_type is not None and weight_type == "param":
_snake_case : int = hf_pointer
for attribute in hf_param_name.split('''.''' ):
_snake_case : str = getattr(lowerCAmelCase_ , lowerCAmelCase_ )
_snake_case : Optional[int] = shape_pointer.shape
# let's reduce dimension
_snake_case : Optional[int] = value[0]
else:
_snake_case : Optional[Any] = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
f''' {value.shape} for {full_name}''' )
if weight_type == "weight":
_snake_case : Any = value
elif weight_type == "weight_g":
_snake_case : Dict = value
elif weight_type == "weight_v":
_snake_case : Dict = value
elif weight_type == "bias":
_snake_case : Optional[Any] = value
elif weight_type == "param":
for attribute in hf_param_name.split('''.''' ):
_snake_case : List[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ )
_snake_case : Optional[Any] = value
else:
_snake_case : Tuple = value
logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : str = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(lowerCAmelCase_ ):
_snake_case : int = PARAM_MAPPING[full_name.split('''.''' )[-1]]
_snake_case : Dict = '''param'''
if weight_type is not None and weight_type != "param":
_snake_case : str = '''.'''.join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
_snake_case : int = '''.'''.join([key, hf_param_name] )
else:
_snake_case : List[str] = key
_snake_case : Optional[int] = value if '''lm_head''' in full_key else value[0]
UpperCAmelCase : Optional[int] = {
'W_a': 'linear_1.weight',
'W_b': 'linear_2.weight',
'b_a': 'linear_1.bias',
'b_b': 'linear_2.bias',
'ln_W': 'norm.weight',
'ln_b': 'norm.bias',
}
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None ):
"""simple docstring"""
_snake_case : Optional[Any] = False
for key, mapped_key in MAPPING.items():
_snake_case : List[Any] = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]:
_snake_case : Dict = True
if "*" in mapped_key:
_snake_case : Any = name.split(lowerCAmelCase_ )[0].split('''.''' )[-2]
_snake_case : str = mapped_key.replace('''*''' , lowerCAmelCase_ )
if "weight_g" in name:
_snake_case : str = '''weight_g'''
elif "weight_v" in name:
_snake_case : List[Any] = '''weight_v'''
elif "bias" in name:
_snake_case : List[Any] = '''bias'''
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
_snake_case : int = '''weight'''
else:
_snake_case : Optional[int] = None
if hf_dict is not None:
rename_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
else:
set_recursively(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
return is_used
return is_used
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : str = []
_snake_case : Optional[int] = fairseq_model.state_dict()
_snake_case : Optional[int] = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
_snake_case : Dict = False
if "conv_layers" in name:
load_conv_layer(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , hf_model.config.feat_extract_norm == '''group''' , )
_snake_case : Optional[int] = True
else:
_snake_case : Optional[Any] = load_wavaveca_layer(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
if not is_used:
unused_weights.append(lowerCAmelCase_ )
logger.warning(f'''Unused weights: {unused_weights}''' )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : List[str] = full_name.split('''conv_layers.''' )[-1]
_snake_case : Tuple = name.split('''.''' )
_snake_case : int = int(items[0] )
_snake_case : Optional[int] = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' )
_snake_case : Dict = value
logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' )
_snake_case : Dict = value
logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' )
_snake_case : int = value
logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' )
_snake_case : List[str] = value
logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(lowerCAmelCase_ )
@torch.no_grad()
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_=False ):
"""simple docstring"""
if config_path is not None:
_snake_case : Dict = WavaVecaConfig.from_pretrained(lowerCAmelCase_ )
else:
_snake_case : Tuple = WavaVecaConfig()
if is_seq_class:
_snake_case : List[str] = read_txt_into_dict(lowerCAmelCase_ )
_snake_case : Optional[Any] = idalabel
_snake_case : Dict = WavaVecaForSequenceClassification(lowerCAmelCase_ )
_snake_case : List[Any] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , )
feature_extractor.save_pretrained(lowerCAmelCase_ )
elif is_finetuned:
if dict_path:
_snake_case : int = Dictionary.load(lowerCAmelCase_ )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
_snake_case : Optional[int] = target_dict.pad_index
_snake_case : Tuple = target_dict.bos_index
_snake_case : Dict = target_dict.eos_index
_snake_case : Dict = len(target_dict.symbols )
_snake_case : List[Any] = os.path.join(lowerCAmelCase_ , '''vocab.json''' )
if not os.path.isdir(lowerCAmelCase_ ):
logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(lowerCAmelCase_ ) )
return
os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ )
_snake_case : Optional[Any] = target_dict.indices
# fairseq has the <pad> and <s> switched
_snake_case : Any = 0
_snake_case : List[str] = 1
with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as vocab_handle:
json.dump(lowerCAmelCase_ , lowerCAmelCase_ )
_snake_case : str = WavaVecaCTCTokenizer(
lowerCAmelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=lowerCAmelCase_ , )
_snake_case : Any = True if config.feat_extract_norm == '''layer''' else False
_snake_case : Any = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , )
_snake_case : Any = WavaVecaProcessor(feature_extractor=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ )
processor.save_pretrained(lowerCAmelCase_ )
_snake_case : List[Any] = WavaVecaForCTC(lowerCAmelCase_ )
else:
_snake_case : str = WavaVecaForPreTraining(lowerCAmelCase_ )
if is_finetuned or is_seq_class:
_snake_case , _snake_case , _snake_case : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} )
else:
_snake_case : Tuple = argparse.Namespace(task='''audio_pretraining''' )
_snake_case : str = fairseq.tasks.setup_task(lowerCAmelCase_ )
_snake_case , _snake_case , _snake_case : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase_ )
_snake_case : Any = model[0].eval()
recursively_load_weights(lowerCAmelCase_ , lowerCAmelCase_ , not is_finetuned )
hf_wavavec.save_pretrained(lowerCAmelCase_ )
if __name__ == "__main__":
UpperCAmelCase : str = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not'
)
parser.add_argument(
'--is_seq_class',
action='store_true',
help='Whether the model to convert is a fine-tuned sequence classification model or not',
)
UpperCAmelCase : Optional[int] = parser.parse_args()
UpperCAmelCase : Optional[Any] = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 47
|
'''simple docstring'''
from __future__ import annotations
def _a ( lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None ):
"""simple docstring"""
if start is None:
_snake_case : Optional[Any] = 0
if end is None:
_snake_case : Any = len(lowerCAmelCase_ ) - 1
if start >= end:
return
_snake_case : Optional[Any] = (start + end) // 2
slowsort(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
slowsort(lowerCAmelCase_ , mid + 1 , lowerCAmelCase_ )
if sequence[end] < sequence[mid]:
_snake_case , _snake_case : int = sequence[mid], sequence[end]
slowsort(lowerCAmelCase_ , lowerCAmelCase_ , end - 1 )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 47
| 1
|
'''simple docstring'''
from __future__ import annotations
import math
import numpy as np
from numpy.linalg import norm
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(lowerCAmelCase_ , lowerCAmelCase_ ) ) )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
if dataset.ndim != value_array.ndim:
_snake_case : Tuple = (
'''Wrong input data\'s dimensions... '''
f'''dataset : {dataset.ndim}, value_array : {value_array.ndim}'''
)
raise ValueError(lowerCAmelCase_ )
try:
if dataset.shape[1] != value_array.shape[1]:
_snake_case : Union[str, Any] = (
'''Wrong input data\'s shape... '''
f'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}'''
)
raise ValueError(lowerCAmelCase_ )
except IndexError:
if dataset.ndim != value_array.ndim:
raise TypeError('''Wrong shape''' )
if dataset.dtype != value_array.dtype:
_snake_case : Optional[Any] = (
'''Input data have different datatype... '''
f'''dataset : {dataset.dtype}, value_array : {value_array.dtype}'''
)
raise TypeError(lowerCAmelCase_ )
_snake_case : Union[str, Any] = []
for value in value_array:
_snake_case : Tuple = euclidean(lowerCAmelCase_ , dataset[0] )
_snake_case : Optional[Any] = dataset[0].tolist()
for dataset_value in dataset[1:]:
_snake_case : Optional[Any] = euclidean(lowerCAmelCase_ , lowerCAmelCase_ )
if dist > temp_dist:
_snake_case : List[Any] = temp_dist
_snake_case : str = dataset_value.tolist()
answer.append([vector, dist] )
return answer
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
return np.dot(lowerCAmelCase_ , lowerCAmelCase_ ) / (norm(lowerCAmelCase_ ) * norm(lowerCAmelCase_ ))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 47
|
'''simple docstring'''
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class lowerCamelCase (unittest.TestCase ):
@slow
def UpperCAmelCase_ ( self ) -> int:
"""simple docstring"""
_snake_case : Tuple = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' )
_snake_case : Any = AutoTokenizer.from_pretrained('''google/mt5-small''' )
_snake_case : List[str] = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids
_snake_case : Dict = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids
_snake_case : Any = shift_tokens_right(lowercase__ , model.config.pad_token_id , model.config.decoder_start_token_id )
_snake_case : Any = model(lowercase__ , decoder_input_ids=lowercase__ ).logits
_snake_case : Tuple = optax.softmax_cross_entropy(lowercase__ , onehot(lowercase__ , logits.shape[-1] ) ).mean()
_snake_case : Tuple = -(labels.shape[-1] * loss.item())
_snake_case : Union[str, Any] = -84.9_127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
| 47
| 1
|
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class lowerCamelCase (metaclass=a__ ):
_lowercase : str = ["""note_seq"""]
def __init__( self , *lowercase__ , **lowercase__ ) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ['''note_seq'''] )
@classmethod
def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> List[str]:
"""simple docstring"""
requires_backends(cls , ['''note_seq'''] )
@classmethod
def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> List[str]:
"""simple docstring"""
requires_backends(cls , ['''note_seq'''] )
| 47
|
'''simple docstring'''
import pickle
import unittest
import torch
from accelerate import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils import require_cpu
@require_cpu
class lowerCamelCase (unittest.TestCase ):
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
"""simple docstring"""
_snake_case : Any = torch.nn.Linear(10 , 10 )
_snake_case : Optional[int] = torch.optim.SGD(model.parameters() , 0.1 )
_snake_case : List[str] = Accelerator()
_snake_case : Optional[Any] = accelerator.prepare(lowercase__ )
try:
pickle.loads(pickle.dumps(lowercase__ ) )
except Exception as e:
self.fail(F'''Accelerated optimizer pickling failed with {e}''' )
AcceleratorState._reset_state()
| 47
| 1
|
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase : List[str] = logging.get_logger(__name__)
UpperCAmelCase : Dict = {
'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json',
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class lowerCamelCase (a__ ):
_lowercase : List[str] = """sew-d"""
def __init__( self , lowercase__=32 , lowercase__=768 , lowercase__=12 , lowercase__=12 , lowercase__=3_072 , lowercase__=2 , lowercase__=512 , lowercase__=256 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.02 , lowercase__=1E-7 , lowercase__=1E-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=128 , lowercase__=16 , lowercase__=True , lowercase__=0.05 , lowercase__=10 , lowercase__=2 , lowercase__=0.0 , lowercase__=10 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=256 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ) -> Dict:
"""simple docstring"""
super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ )
_snake_case : List[str] = hidden_size
_snake_case : Optional[Any] = feat_extract_norm
_snake_case : Tuple = feat_extract_activation
_snake_case : Tuple = list(lowercase__ )
_snake_case : Any = list(lowercase__ )
_snake_case : Any = list(lowercase__ )
_snake_case : Any = conv_bias
_snake_case : List[Any] = num_conv_pos_embeddings
_snake_case : Any = num_conv_pos_embedding_groups
_snake_case : Union[str, Any] = len(self.conv_dim )
_snake_case : Optional[Any] = num_hidden_layers
_snake_case : Optional[int] = intermediate_size
_snake_case : Any = squeeze_factor
_snake_case : Optional[Any] = max_position_embeddings
_snake_case : Tuple = position_buckets
_snake_case : Tuple = share_att_key
_snake_case : Any = relative_attention
_snake_case : Optional[int] = norm_rel_ebd
_snake_case : Optional[Any] = list(lowercase__ )
_snake_case : List[Any] = hidden_act
_snake_case : List[Any] = num_attention_heads
_snake_case : Dict = hidden_dropout
_snake_case : Tuple = attention_dropout
_snake_case : Union[str, Any] = activation_dropout
_snake_case : List[Any] = feat_proj_dropout
_snake_case : Optional[int] = final_dropout
_snake_case : Optional[Any] = layer_norm_eps
_snake_case : Dict = feature_layer_norm_eps
_snake_case : List[Any] = initializer_range
_snake_case : Dict = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect.'''
'''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'''
F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)'''
F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_snake_case : Union[str, Any] = apply_spec_augment
_snake_case : Any = mask_time_prob
_snake_case : List[str] = mask_time_length
_snake_case : Dict = mask_time_min_masks
_snake_case : Union[str, Any] = mask_feature_prob
_snake_case : Tuple = mask_feature_length
_snake_case : Union[str, Any] = mask_feature_min_masks
# ctc loss
_snake_case : Optional[Any] = ctc_loss_reduction
_snake_case : Optional[Any] = ctc_zero_infinity
# sequence classification
_snake_case : List[Any] = use_weighted_layer_sum
_snake_case : Any = classifier_proj_size
@property
def UpperCAmelCase_ ( self ) -> Any:
"""simple docstring"""
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 47
|
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = tuple[float, float, float]
UpperCAmelCase : int = tuple[float, float, float]
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : str = end_pointa[0] - end_pointa[0]
_snake_case : Tuple = end_pointa[1] - end_pointa[1]
_snake_case : Any = end_pointa[2] - end_pointa[2]
return (x, y, z)
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Dict = ab[1] * ac[2] - ab[2] * ac[1] # *i
_snake_case : List[str] = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j
_snake_case : Optional[int] = ab[0] * ac[1] - ab[1] * ac[0] # *k
return (x, y, z)
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
return tuple(round(lowerCAmelCase_ , lowerCAmelCase_ ) for x in vector ) == (0, 0, 0)
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 10 ):
"""simple docstring"""
_snake_case : str = create_vector(lowerCAmelCase_ , lowerCAmelCase_ )
_snake_case : Tuple = create_vector(lowerCAmelCase_ , lowerCAmelCase_ )
return is_zero_vector(get_ad_vectors_cross(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ )
| 47
| 1
|
'''simple docstring'''
from math import atan, cos, radians, sin, tan
from .haversine_distance import haversine_distance
UpperCAmelCase : str = 6_37_81_37.0
UpperCAmelCase : List[Any] = 6_35_67_52.31_42_45
UpperCAmelCase : Union[str, Any] = 6_3_7_8_1_3_7
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Dict = (AXIS_A - AXIS_B) / AXIS_A
# Parametric latitudes
# https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude
_snake_case : Optional[Any] = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) )
_snake_case : Tuple = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) )
# Compute central angle between two points
# using haversine theta. sigma = haversine_distance / equatorial radius
_snake_case : List[str] = haversine_distance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) / EQUATORIAL_RADIUS
# Intermediate P and Q values
_snake_case : int = (b_lata + b_lata) / 2
_snake_case : Optional[int] = (b_lata - b_lata) / 2
# Intermediate X value
# X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2)
_snake_case : Dict = (sin(lowerCAmelCase_ ) ** 2) * (cos(lowerCAmelCase_ ) ** 2)
_snake_case : Optional[Any] = cos(sigma / 2 ) ** 2
_snake_case : Optional[Any] = (sigma - sin(lowerCAmelCase_ )) * (x_numerator / x_demonimator)
# Intermediate Y value
# Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2)
_snake_case : Optional[Any] = (cos(lowerCAmelCase_ ) ** 2) * (sin(lowerCAmelCase_ ) ** 2)
_snake_case : List[str] = sin(sigma / 2 ) ** 2
_snake_case : Optional[Any] = (sigma + sin(lowerCAmelCase_ )) * (y_numerator / y_denominator)
return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value)))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 47
|
'''simple docstring'''
import argparse
import logging
import os
from datetime import datetime
import numpy as np
import torch
from torch import nn
from torch.utils.data import DataLoader, RandomSampler, TensorDataset
from tqdm import tqdm
from transformers import GPTaLMHeadModel
UpperCAmelCase : List[str] = logging.getLogger(__name__)
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
if os.path.exists(lowerCAmelCase_ ):
if os.path.exists(os.path.join(lowerCAmelCase_ , '''config.json''' ) ) and os.path.isfile(
os.path.join(lowerCAmelCase_ , '''config.json''' ) ):
os.remove(os.path.join(lowerCAmelCase_ , '''config.json''' ) )
if os.path.exists(os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) ) and os.path.isfile(
os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) ):
os.remove(os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) )
else:
os.makedirs(lowerCAmelCase_ )
model.save_pretrained(lowerCAmelCase_ )
def _a ( lowerCAmelCase_ , lowerCAmelCase_=False ):
"""simple docstring"""
_snake_case : Optional[Any] = 2
if unlogit:
_snake_case : Any = torch.pow(lowerCAmelCase_ , lowerCAmelCase_ )
_snake_case : Union[str, Any] = p * torch.log(lowerCAmelCase_ )
_snake_case : Optional[Any] = 0
return -plogp.sum(dim=-1 )
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
logger.info('''lv, h >\t''' + '''\t'''.join(f'''{x + 1}''' for x in range(len(lowerCAmelCase_ ) ) ) )
for row in range(len(lowerCAmelCase_ ) ):
if tensor.dtype != torch.long:
logger.info(f'''layer {row + 1}:\t''' + '''\t'''.join(f'''{x:.5f}''' for x in tensor[row].cpu().data ) )
else:
logger.info(f'''layer {row + 1}:\t''' + '''\t'''.join(f'''{x:d}''' for x in tensor[row].cpu().data ) )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=None , lowerCAmelCase_=False ):
"""simple docstring"""
_snake_case , _snake_case : Optional[int] = model.config.num_hidden_layers, model.config.num_attention_heads
_snake_case : Tuple = torch.zeros(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device )
_snake_case : Union[str, Any] = torch.zeros(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device )
if head_mask is None:
_snake_case : int = torch.ones(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device )
head_mask.requires_grad_(requires_grad=lowerCAmelCase_ )
# If actually pruned attention multi-head, set head mask to None to avoid shape mismatch
if actually_pruned:
_snake_case : Dict = None
_snake_case : Dict = 0.0
_snake_case : Optional[int] = 0.0
for step, inputs in enumerate(tqdm(lowerCAmelCase_ , desc='''Iteration''' , disable=args.local_rank not in [-1, 0] ) ):
_snake_case : List[Any] = tuple(t.to(args.device ) for t in inputs )
((_snake_case) , ) : Optional[Any] = inputs
# Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below)
_snake_case : Any = model(lowerCAmelCase_ , labels=lowerCAmelCase_ , head_mask=lowerCAmelCase_ )
# (loss), lm_logits, presents, (all hidden_states), (attentions)
_snake_case , _snake_case , _snake_case : List[Any] = (
outputs[0],
outputs[1],
outputs[-1],
) # Loss and logits are the first, attention the last
loss.backward() # Backpropagate to populate the gradients in the head mask
total_loss += loss.detach().cpu().numpy()
if compute_entropy:
for layer, attn in enumerate(lowerCAmelCase_ ):
_snake_case : Union[str, Any] = entropy(attn.detach() , lowerCAmelCase_ )
attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach()
if compute_importance:
head_importance += head_mask.grad.abs().detach()
tot_tokens += torch.ones_like(lowerCAmelCase_ ).float().detach().sum().data
# Normalize
attn_entropy /= tot_tokens
head_importance /= tot_tokens
# Layerwise importance normalization
if not args.dont_normalize_importance_by_layer:
_snake_case : Any = 2
_snake_case : List[str] = torch.pow(torch.pow(lowerCAmelCase_ , lowerCAmelCase_ ).sum(-1 ) , 1 / exponent )
head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20
if not args.dont_normalize_global_importance:
_snake_case : Optional[int] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min())
# Print matrices
if compute_entropy:
logger.info('''Attention entropies''' )
print_ad_tensor(lowerCAmelCase_ )
if compute_importance:
logger.info('''Head importance scores''' )
print_ad_tensor(lowerCAmelCase_ )
logger.info('''Head ranked by importance scores''' )
_snake_case : str = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device )
_snake_case : List[Any] = torch.arange(
head_importance.numel() , device=args.device )
_snake_case : List[Any] = head_ranks.view_as(lowerCAmelCase_ )
print_ad_tensor(lowerCAmelCase_ )
return attn_entropy, head_importance, total_loss
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case , _snake_case , _snake_case : str = compute_heads_importance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ )
_snake_case : Optional[Any] = 1 / loss # instead of downsteam score use the LM loss
logger.info('''Pruning: original score: %f, threshold: %f''' , lowerCAmelCase_ , original_score * args.masking_threshold )
_snake_case : int = torch.ones_like(lowerCAmelCase_ )
_snake_case : Optional[Any] = max(1 , int(new_head_mask.numel() * args.masking_amount ) )
_snake_case : int = original_score
while current_score >= original_score * args.masking_threshold:
_snake_case : int = new_head_mask.clone().detach() # save current head mask
# heads from least important to most - keep only not-masked heads
_snake_case : Dict = float('''Inf''' )
_snake_case : Optional[Any] = head_importance.view(-1 ).sort()[1]
if len(lowerCAmelCase_ ) <= num_to_mask:
print('''BREAK BY num_to_mask''' )
break
# mask heads
_snake_case : Union[str, Any] = current_heads_to_mask[:num_to_mask]
logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist() ) )
_snake_case : Tuple = new_head_mask.view(-1 )
_snake_case : List[str] = 0.0
_snake_case : str = new_head_mask.view_as(lowerCAmelCase_ )
_snake_case : Dict = new_head_mask.clone().detach()
print_ad_tensor(lowerCAmelCase_ )
# Compute metric and head importance again
_snake_case , _snake_case , _snake_case : Any = compute_heads_importance(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , head_mask=lowerCAmelCase_ )
_snake_case : int = 1 / loss
logger.info(
'''Masking: current score: %f, remaining heads %d (%.1f percents)''' , lowerCAmelCase_ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , )
logger.info('''Final head mask''' )
print_ad_tensor(lowerCAmelCase_ )
np.save(os.path.join(args.output_dir , '''head_mask.npy''' ) , head_mask.detach().cpu().numpy() )
return head_mask
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Optional[Any] = datetime.now()
_snake_case , _snake_case , _snake_case : Union[str, Any] = compute_heads_importance(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , compute_importance=lowerCAmelCase_ , head_mask=lowerCAmelCase_ )
_snake_case : Tuple = 1 / loss
_snake_case : Dict = datetime.now() - before_time
_snake_case : List[Any] = sum(p.numel() for p in model.parameters() )
_snake_case : int = {
layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(lowerCAmelCase_ ) )
}
for k, v in heads_to_prune.items():
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
_snake_case : Union[str, Any] = [
v,
]
assert sum(len(lowerCAmelCase_ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item()
model.prune_heads(lowerCAmelCase_ )
_snake_case : List[str] = sum(p.numel() for p in model.parameters() )
_snake_case : int = datetime.now()
_snake_case , _snake_case , _snake_case : Optional[Any] = compute_heads_importance(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , compute_importance=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , actually_pruned=lowerCAmelCase_ , )
_snake_case : Optional[int] = 1 / loss
_snake_case : Dict = datetime.now() - before_time
logger.info(
'''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , lowerCAmelCase_ , lowerCAmelCase_ , pruned_num_params / original_num_params * 100 , )
logger.info('''Pruning: score with masking: %f score with pruning: %f''' , lowerCAmelCase_ , lowerCAmelCase_ )
logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 100 )
save_model(lowerCAmelCase_ , args.output_dir )
def _a ( ):
"""simple docstring"""
_snake_case : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--data_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , )
parser.add_argument(
'''--model_name_or_path''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , )
parser.add_argument(
'''--output_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''The output directory where the model predictions and checkpoints will be written.''' , )
# Other parameters
parser.add_argument(
'''--config_name''' , default='''''' , type=lowerCAmelCase_ , help='''Pretrained config name or path if not the same as model_name_or_path''' , )
parser.add_argument(
'''--tokenizer_name''' , default='''''' , type=lowerCAmelCase_ , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , )
parser.add_argument(
'''--cache_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help='''Where do you want to store the pre-trained models downloaded from s3''' , )
parser.add_argument(
'''--data_subset''' , type=lowerCAmelCase_ , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''' )
parser.add_argument(
'''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''' )
parser.add_argument(
'''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' )
parser.add_argument(
'''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''' )
parser.add_argument(
'''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , )
parser.add_argument(
'''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''' )
parser.add_argument(
'''--masking_threshold''' , default=0.9 , type=lowerCAmelCase_ , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , )
parser.add_argument(
'''--masking_amount''' , default=0.1 , type=lowerCAmelCase_ , help='''Amount to heads to masking at each masking step.''' )
parser.add_argument('''--metric_name''' , default='''acc''' , type=lowerCAmelCase_ , help='''Metric to use for head masking.''' )
parser.add_argument(
'''--max_seq_length''' , default=128 , type=lowerCAmelCase_ , help=(
'''The maximum total input sequence length after WordPiece tokenization. \n'''
'''Sequences longer than this will be truncated, sequences shorter padded.'''
) , )
parser.add_argument('''--batch_size''' , default=1 , type=lowerCAmelCase_ , help='''Batch size.''' )
parser.add_argument('''--seed''' , type=lowerCAmelCase_ , default=42 )
parser.add_argument('''--local_rank''' , type=lowerCAmelCase_ , default=-1 , help='''local_rank for distributed training on gpus''' )
parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''' )
parser.add_argument('''--server_ip''' , type=lowerCAmelCase_ , default='''''' , help='''Can be used for distant debugging.''' )
parser.add_argument('''--server_port''' , type=lowerCAmelCase_ , default='''''' , help='''Can be used for distant debugging.''' )
_snake_case : Optional[Any] = parser.parse_args()
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print('''Waiting for debugger attach''' )
ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowerCAmelCase_ )
ptvsd.wait_for_attach()
# Setup devices and distributed training
if args.local_rank == -1 or args.no_cuda:
_snake_case : str = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''' )
_snake_case : Optional[Any] = 0 if args.no_cuda else torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank )
_snake_case : List[str] = torch.device('''cuda''' , args.local_rank )
_snake_case : int = 1
torch.distributed.init_process_group(backend='''nccl''' ) # Initializes the distributed backend
# Setup logging
logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN )
logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) )
_snake_case : Optional[Any] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path )
# Distributed and parallel training
model.to(args.device )
if args.local_rank != -1:
_snake_case : Optional[int] = nn.parallel.DistributedDataParallel(
lowerCAmelCase_ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=lowerCAmelCase_ )
elif args.n_gpu > 1:
_snake_case : List[Any] = nn.DataParallel(lowerCAmelCase_ )
# Print/save training arguments
os.makedirs(args.output_dir , exist_ok=lowerCAmelCase_ )
torch.save(lowerCAmelCase_ , os.path.join(args.output_dir , '''run_args.bin''' ) )
logger.info('''Training/evaluation parameters %s''' , lowerCAmelCase_ )
# Prepare dataset
_snake_case : Dict = np.concatenate(
[
np.loadtxt(args.data_dir , dtype=np.intaa ),
] )
_snake_case : int = (torch.from_numpy(lowerCAmelCase_ ),)
_snake_case : Tuple = TensorDataset(*lowerCAmelCase_ )
_snake_case : List[str] = RandomSampler(lowerCAmelCase_ )
_snake_case : Dict = DataLoader(lowerCAmelCase_ , sampler=lowerCAmelCase_ , batch_size=args.batch_size )
# Compute head entropy and importance score
compute_heads_importance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
# Try head masking (set heads to zero until the score goes under a threshole)
# and head pruning (remove masked heads and see the effect on the network)
if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0:
_snake_case : Optional[int] = mask_heads(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
prune_heads(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
if __name__ == "__main__":
main()
| 47
| 1
|
'''simple docstring'''
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate
# and perform gradient accumulation
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
UpperCAmelCase : Tuple = 1_6
UpperCAmelCase : Dict = 3_2
def _a ( lowerCAmelCase_ , lowerCAmelCase_ = 16 ):
"""simple docstring"""
_snake_case : Optional[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' )
_snake_case : Any = load_dataset('''glue''' , '''mrpc''' )
def tokenize_function(lowerCAmelCase_ ):
# max_length=None => use the model max length (it's actually the default)
_snake_case : Optional[int] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
_snake_case : Optional[Any] = datasets.map(
lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
_snake_case : Any = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(lowerCAmelCase_ ):
# On TPU it's best to pad everything to the same length or training will be very slow.
_snake_case : Optional[Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
_snake_case : Tuple = 16
elif accelerator.mixed_precision != "no":
_snake_case : Any = 8
else:
_snake_case : Dict = None
return tokenizer.pad(
lowerCAmelCase_ , padding='''longest''' , max_length=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_tensors='''pt''' , )
# Instantiate dataloaders.
_snake_case : List[Any] = DataLoader(
tokenized_datasets['''train'''] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ )
_snake_case : str = DataLoader(
tokenized_datasets['''validation'''] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
UpperCAmelCase : Dict = mocked_dataloaders # noqa: F811
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , lowerCAmelCase_ ) == "1":
_snake_case : Optional[Any] = 2
# New Code #
_snake_case : List[str] = int(args.gradient_accumulation_steps )
# Initialize accelerator
_snake_case : List[str] = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=lowerCAmelCase_ )
if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1:
raise NotImplementedError(
'''Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`''' )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
_snake_case : Tuple = config['''lr''']
_snake_case : Optional[int] = int(config['''num_epochs'''] )
_snake_case : Dict = int(config['''seed'''] )
_snake_case : Optional[Any] = int(config['''batch_size'''] )
_snake_case : List[str] = evaluate.load('''glue''' , '''mrpc''' )
set_seed(lowerCAmelCase_ )
_snake_case , _snake_case : Any = get_dataloaders(lowerCAmelCase_ , lowerCAmelCase_ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
_snake_case : Tuple = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=lowerCAmelCase_ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
_snake_case : Optional[Any] = model.to(accelerator.device )
# Instantiate optimizer
_snake_case : Any = AdamW(params=model.parameters() , lr=lowerCAmelCase_ )
# Instantiate scheduler
_snake_case : List[Any] = get_linear_schedule_with_warmup(
optimizer=lowerCAmelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase_ ) * num_epochs) , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
_snake_case , _snake_case , _snake_case , _snake_case , _snake_case : Tuple = accelerator.prepare(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
# Now we train the model
for epoch in range(lowerCAmelCase_ ):
model.train()
for step, batch in enumerate(lowerCAmelCase_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
# New code #
# We use the new `accumulate` context manager to perform gradient accumulation
# We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests.
with accelerator.accumulate(lowerCAmelCase_ ):
_snake_case : Union[str, Any] = model(**lowerCAmelCase_ )
_snake_case : Optional[Any] = output.loss
accelerator.backward(lowerCAmelCase_ )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(lowerCAmelCase_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
_snake_case : Union[str, Any] = model(**lowerCAmelCase_ )
_snake_case : List[Any] = outputs.logits.argmax(dim=-1 )
_snake_case , _snake_case : str = accelerator.gather_for_metrics((predictions, batch['''labels''']) )
metric.add_batch(
predictions=lowerCAmelCase_ , references=lowerCAmelCase_ , )
_snake_case : Tuple = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f'''epoch {epoch}:''' , lowerCAmelCase_ )
def _a ( ):
"""simple docstring"""
_snake_case : int = argparse.ArgumentParser(description='''Simple example of training script.''' )
parser.add_argument(
'''--mixed_precision''' , type=lowerCAmelCase_ , default=lowerCAmelCase_ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''' , )
# New Code #
parser.add_argument(
'''--gradient_accumulation_steps''' , type=lowerCAmelCase_ , default=1 , help='''The number of minibatches to be ran before gradients are accumulated.''' , )
parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' )
_snake_case : List[Any] = parser.parse_args()
_snake_case : Union[str, Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16}
training_function(lowerCAmelCase_ , lowerCAmelCase_ )
if __name__ == "__main__":
main()
| 47
|
'''simple docstring'''
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
if n == 1 or not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
return 0
elif n == 2:
return 1
else:
_snake_case : Union[str, Any] = [0, 1]
for i in range(2 , n + 1 ):
sequence.append(sequence[i - 1] + sequence[i - 2] )
return sequence[n]
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Optional[int] = 0
_snake_case : int = 2
while digits < n:
index += 1
_snake_case : Tuple = len(str(fibonacci(lowerCAmelCase_ ) ) )
return index
def _a ( lowerCAmelCase_ = 1_000 ):
"""simple docstring"""
return fibonacci_digits_index(lowerCAmelCase_ )
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 47
| 1
|
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__)
UpperCAmelCase : Optional[Any] = {'openai-gpt': 'https://huggingface.co/openai-gpt/resolve/main/config.json'}
class lowerCamelCase (a__ ):
_lowercase : Optional[int] = """openai-gpt"""
_lowercase : List[Any] = {
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self , lowercase__=40_478 , lowercase__=512 , lowercase__=768 , lowercase__=12 , lowercase__=12 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=1E-5 , lowercase__=0.02 , lowercase__="cls_index" , lowercase__=True , lowercase__=None , lowercase__=True , lowercase__=0.1 , **lowercase__ , ) -> str:
"""simple docstring"""
_snake_case : Optional[int] = vocab_size
_snake_case : List[Any] = n_positions
_snake_case : List[Any] = n_embd
_snake_case : Tuple = n_layer
_snake_case : str = n_head
_snake_case : str = afn
_snake_case : int = resid_pdrop
_snake_case : Any = embd_pdrop
_snake_case : Optional[int] = attn_pdrop
_snake_case : List[str] = layer_norm_epsilon
_snake_case : int = initializer_range
_snake_case : List[str] = summary_type
_snake_case : List[Any] = summary_use_proj
_snake_case : Union[str, Any] = summary_activation
_snake_case : Dict = summary_first_dropout
_snake_case : str = summary_proj_to_labels
super().__init__(**lowercase__ )
| 47
|
'''simple docstring'''
from __future__ import annotations
from collections.abc import Callable
from typing import Generic, TypeVar
UpperCAmelCase : Any = TypeVar('T')
UpperCAmelCase : str = TypeVar('U')
class lowerCamelCase (Generic[T, U] ):
def __init__( self , lowercase__ , lowercase__ ) -> List[Any]:
"""simple docstring"""
_snake_case : str = key
_snake_case : Optional[int] = val
_snake_case : DoubleLinkedListNode[T, U] | None = None
_snake_case : DoubleLinkedListNode[T, U] | None = None
def __repr__( self ) -> str:
"""simple docstring"""
return (
F'''Node: key: {self.key}, val: {self.val}, '''
F'''has next: {bool(self.next )}, has prev: {bool(self.prev )}'''
)
class lowerCamelCase (Generic[T, U] ):
def __init__( self ) -> None:
"""simple docstring"""
_snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase__ , lowercase__ )
_snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase__ , lowercase__ )
_snake_case , _snake_case : Union[str, Any] = self.rear, self.head
def __repr__( self ) -> str:
"""simple docstring"""
_snake_case : List[Any] = ['''DoubleLinkedList''']
_snake_case : str = self.head
while node.next is not None:
rep.append(str(lowercase__ ) )
_snake_case : List[str] = node.next
rep.append(str(self.rear ) )
return ",\n ".join(lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ ) -> None:
"""simple docstring"""
_snake_case : Tuple = self.rear.prev
# All nodes other than self.head are guaranteed to have non-None previous
assert previous is not None
_snake_case : Union[str, Any] = node
_snake_case : Optional[Any] = previous
_snake_case : int = node
_snake_case : Union[str, Any] = self.rear
def UpperCAmelCase_ ( self , lowercase__ ) -> DoubleLinkedListNode[T, U] | None:
"""simple docstring"""
if node.prev is None or node.next is None:
return None
_snake_case : Optional[int] = node.next
_snake_case : Any = node.prev
_snake_case : List[str] = None
_snake_case : Optional[int] = None
return node
class lowerCamelCase (Generic[T, U] ):
_lowercase : dict[Callable[[T], U], LRUCache[T, U]] = {}
def __init__( self , lowercase__ ) -> Union[str, Any]:
"""simple docstring"""
_snake_case : DoubleLinkedList[T, U] = DoubleLinkedList()
_snake_case : Union[str, Any] = capacity
_snake_case : int = 0
_snake_case : Dict = 0
_snake_case : Union[str, Any] = 0
_snake_case : dict[T, DoubleLinkedListNode[T, U]] = {}
def __repr__( self ) -> str:
"""simple docstring"""
return (
F'''CacheInfo(hits={self.hits}, misses={self.miss}, '''
F'''capacity={self.capacity}, current size={self.num_keys})'''
)
def __contains__( self , lowercase__ ) -> bool:
"""simple docstring"""
return key in self.cache
def UpperCAmelCase_ ( self , lowercase__ ) -> U | None:
"""simple docstring"""
if key in self.cache:
self.hits += 1
_snake_case : DoubleLinkedListNode[T, U] = self.cache[key]
_snake_case : Tuple = self.list.remove(self.cache[key] )
assert node == value_node
# node is guaranteed not None because it is in self.cache
assert node is not None
self.list.add(lowercase__ )
return node.val
self.miss += 1
return None
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> None:
"""simple docstring"""
if key not in self.cache:
if self.num_keys >= self.capacity:
# delete first node (oldest) when over capacity
_snake_case : Dict = self.list.head.next
# guaranteed to have a non-None first node when num_keys > 0
# explain to type checker via assertions
assert first_node is not None
assert first_node.key is not None
assert (
self.list.remove(lowercase__ ) is not None
) # node guaranteed to be in list assert node.key is not None
del self.cache[first_node.key]
self.num_keys -= 1
_snake_case : Optional[int] = DoubleLinkedListNode(lowercase__ , lowercase__ )
self.list.add(self.cache[key] )
self.num_keys += 1
else:
# bump node to the end of the list, update value
_snake_case : Optional[Any] = self.list.remove(self.cache[key] )
assert node is not None # node guaranteed to be in list
_snake_case : Optional[Any] = value
self.list.add(lowercase__ )
@classmethod
def UpperCAmelCase_ ( cls , lowercase__ = 128 ) -> Callable[[Callable[[T], U]], Callable[..., U]]:
"""simple docstring"""
def cache_decorator_inner(lowercase__ ) -> Callable[..., U]:
def cache_decorator_wrapper(*lowercase__ ) -> U:
if func not in cls.decorator_function_to_instance_map:
_snake_case : Optional[Any] = LRUCache(lowercase__ )
_snake_case : Union[str, Any] = cls.decorator_function_to_instance_map[func].get(args[0] )
if result is None:
_snake_case : Tuple = func(*lowercase__ )
cls.decorator_function_to_instance_map[func].put(args[0] , lowercase__ )
return result
def cache_info() -> LRUCache[T, U]:
return cls.decorator_function_to_instance_map[func]
setattr(lowercase__ , '''cache_info''' , lowercase__ ) # noqa: B010
return cache_decorator_wrapper
return cache_decorator_inner
if __name__ == "__main__":
import doctest
doctest.testmod()
| 47
| 1
|
'''simple docstring'''
import math
import flax.linen as nn
import jax.numpy as jnp
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 1.0E4 , lowerCAmelCase_ = False , lowerCAmelCase_ = 1.0 , ):
"""simple docstring"""
assert timesteps.ndim == 1, "Timesteps should be a 1d-array"
assert embedding_dim % 2 == 0, f'''Embedding dimension {embedding_dim} should be even'''
_snake_case : Dict = float(embedding_dim // 2 )
_snake_case : Tuple = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift)
_snake_case : Optional[Any] = min_timescale * jnp.exp(jnp.arange(lowerCAmelCase_ , dtype=jnp.floataa ) * -log_timescale_increment )
_snake_case : Tuple = jnp.expand_dims(lowerCAmelCase_ , 1 ) * jnp.expand_dims(lowerCAmelCase_ , 0 )
# scale embeddings
_snake_case : Union[str, Any] = scale * emb
if flip_sin_to_cos:
_snake_case : str = jnp.concatenate([jnp.cos(lowerCAmelCase_ ), jnp.sin(lowerCAmelCase_ )] , axis=1 )
else:
_snake_case : Union[str, Any] = jnp.concatenate([jnp.sin(lowerCAmelCase_ ), jnp.cos(lowerCAmelCase_ )] , axis=1 )
_snake_case : str = jnp.reshape(lowerCAmelCase_ , [jnp.shape(lowerCAmelCase_ )[0], embedding_dim] )
return signal
class lowerCamelCase (nn.Module ):
_lowercase : int = 32
_lowercase : jnp.dtype = jnp.floataa
@nn.compact
def __call__( self , lowercase__ ) -> Any:
"""simple docstring"""
_snake_case : Union[str, Any] = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='''linear_1''' )(lowercase__ )
_snake_case : List[Any] = nn.silu(lowercase__ )
_snake_case : List[Any] = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='''linear_2''' )(lowercase__ )
return temb
class lowerCamelCase (nn.Module ):
_lowercase : int = 32
_lowercase : bool = False
_lowercase : float = 1
@nn.compact
def __call__( self , lowercase__ ) -> Optional[int]:
"""simple docstring"""
return get_sinusoidal_embeddings(
lowercase__ , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
| 47
|
'''simple docstring'''
import os
import numpy
import onnx
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : List[Any] = a.name
_snake_case : List[Any] = b.name
_snake_case : Tuple = ''''''
_snake_case : Tuple = ''''''
_snake_case : Optional[Any] = a == b
_snake_case : List[Any] = name_a
_snake_case : str = name_b
return res
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
for i, input_name in enumerate(node_proto.input ):
if input_name == name:
node_proto.input.insert(lowerCAmelCase_ , lowerCAmelCase_ )
node_proto.input.pop(i + 1 )
if node_proto.op_type == "If":
_graph_replace_input_with(node_proto.attribute[0].g , lowerCAmelCase_ , lowerCAmelCase_ )
_graph_replace_input_with(node_proto.attribute[1].g , lowerCAmelCase_ , lowerCAmelCase_ )
if node_proto.op_type == "Loop":
_graph_replace_input_with(node_proto.attribute[0].g , lowerCAmelCase_ , lowerCAmelCase_ )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
for n in graph_proto.node:
_node_replace_input_with(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Optional[Any] = list(model.graph.initializer )
_snake_case : List[str] = list(model_without_ext.graph.initializer )
for i, ref_i in ind_to_replace:
assert inits_with_data[i].name == inits[i].name
assert inits_with_data[ref_i].name == inits[ref_i].name
assert i > ref_i
_snake_case : List[Any] = inits[i].name
_snake_case : List[str] = inits[ref_i].name
model_without_ext.graph.initializer.remove(inits[i] )
# for n in model.graph.node:
_graph_replace_input_with(model_without_ext.graph , lowerCAmelCase_ , lowerCAmelCase_ )
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Tuple = os.path.dirname(lowerCAmelCase_ )
_snake_case : str = os.path.basename(lowerCAmelCase_ )
_snake_case : Tuple = onnx.load(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) )
_snake_case : Union[str, Any] = list(model.graph.initializer )
_snake_case : Union[str, Any] = set()
_snake_case : Any = {}
_snake_case : str = []
_snake_case : Union[str, Any] = 0
for i in range(len(lowerCAmelCase_ ) ):
if i in dup_set:
continue
for j in range(i + 1 , len(lowerCAmelCase_ ) ):
if j in dup_set:
continue
if _is_equal_tensor_proto(inits[i] , inits[j] ):
dup_set.add(lowerCAmelCase_ )
dup_set.add(lowerCAmelCase_ )
_snake_case : List[Any] = inits[j].data_type
_snake_case : Dict = numpy.prod(inits[j].dims )
if dtype == 1:
mem_size *= 4
elif dtype == 6:
mem_size *= 4
elif dtype == 7 or dtype == 11:
mem_size *= 8
else:
print('''unexpected data type: ''' , lowerCAmelCase_ )
total_reduced_size += mem_size
_snake_case : Union[str, Any] = inits[i].name
_snake_case : Any = inits[j].name
if name_i in dup_map:
dup_map[name_i].append(lowerCAmelCase_ )
else:
_snake_case : Union[str, Any] = [name_j]
ind_to_replace.append((j, i) )
print('''total reduced size: ''' , total_reduced_size / 1_024 / 1_024 / 1_024 , '''GB''' )
_snake_case : List[str] = sorted(lowerCAmelCase_ )
_remove_dup_initializers_from_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
_snake_case : List[str] = '''optimized_''' + model_file_name
_snake_case : List[Any] = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ )
onnx.save(lowerCAmelCase_ , lowerCAmelCase_ )
return new_model
| 47
| 1
|
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = tuple[float, float, float]
UpperCAmelCase : int = tuple[float, float, float]
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : str = end_pointa[0] - end_pointa[0]
_snake_case : Tuple = end_pointa[1] - end_pointa[1]
_snake_case : Any = end_pointa[2] - end_pointa[2]
return (x, y, z)
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Dict = ab[1] * ac[2] - ab[2] * ac[1] # *i
_snake_case : List[str] = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j
_snake_case : Optional[int] = ab[0] * ac[1] - ab[1] * ac[0] # *k
return (x, y, z)
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
return tuple(round(lowerCAmelCase_ , lowerCAmelCase_ ) for x in vector ) == (0, 0, 0)
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 10 ):
"""simple docstring"""
_snake_case : str = create_vector(lowerCAmelCase_ , lowerCAmelCase_ )
_snake_case : Tuple = create_vector(lowerCAmelCase_ , lowerCAmelCase_ )
return is_zero_vector(get_ad_vectors_cross(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ )
| 47
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase : int = {
'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Union[str, Any] = [
'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST',
'PegasusXForConditionalGeneration',
'PegasusXModel',
'PegasusXPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 47
| 1
|
'''simple docstring'''
import re
import string
import numpy as np
import datasets
UpperCAmelCase : Optional[Any] = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n'
UpperCAmelCase : int = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n'
UpperCAmelCase : List[Any] = '\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase (datasets.Metric ):
def UpperCAmelCase_ ( self ) -> List[str]:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Value('''string''' , id='''sequence''' ),
} ) , reference_urls=[] , )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__=None , lowercase__=False , lowercase__=False , lowercase__=False , ) -> str:
"""simple docstring"""
if regexes_to_ignore is not None:
for s in regexes_to_ignore:
_snake_case : Dict = np.array([re.sub(lowercase__ , '''''' , lowercase__ ) for x in predictions] )
_snake_case : Optional[int] = np.array([re.sub(lowercase__ , '''''' , lowercase__ ) for x in references] )
else:
_snake_case : Tuple = np.asarray(lowercase__ )
_snake_case : Dict = np.asarray(lowercase__ )
if ignore_case:
_snake_case : Dict = np.char.lower(lowercase__ )
_snake_case : Dict = np.char.lower(lowercase__ )
if ignore_punctuation:
_snake_case : Optional[Any] = string.punctuation.maketrans('''''' , '''''' , string.punctuation )
_snake_case : int = np.char.translate(lowercase__ , table=lowercase__ )
_snake_case : Tuple = np.char.translate(lowercase__ , table=lowercase__ )
if ignore_numbers:
_snake_case : Any = string.digits.maketrans('''''' , '''''' , string.digits )
_snake_case : Optional[Any] = np.char.translate(lowercase__ , table=lowercase__ )
_snake_case : str = np.char.translate(lowercase__ , table=lowercase__ )
_snake_case : str = predictions == references
return {"exact_match": np.mean(lowercase__ ) * 100}
| 47
|
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
import PIL.Image
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
PILImageResampling,
get_image_size,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
UpperCAmelCase : Dict = logging.get_logger(__name__)
class lowerCamelCase (a__ ):
_lowercase : int = ["""pixel_values"""]
def __init__( self , lowercase__ = True , lowercase__ = 32 , lowercase__=PILImageResampling.BILINEAR , lowercase__ = True , **lowercase__ , ) -> None:
"""simple docstring"""
_snake_case : Any = do_resize
_snake_case : List[str] = do_rescale
_snake_case : Any = size_divisor
_snake_case : Optional[Any] = resample
super().__init__(**lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ ) -> np.ndarray:
"""simple docstring"""
_snake_case , _snake_case : Dict = get_image_size(lowercase__ )
# Rounds the height and width down to the closest multiple of size_divisor
_snake_case : Optional[int] = height // size_divisor * size_divisor
_snake_case : Dict = width // size_divisor * size_divisor
_snake_case : str = resize(lowercase__ , (new_h, new_w) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ )
return image
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ ) -> np.ndarray:
"""simple docstring"""
return rescale(image=lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__=None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ) -> BatchFeature:
"""simple docstring"""
_snake_case : Any = do_resize if do_resize is not None else self.do_resize
_snake_case : List[Any] = do_rescale if do_rescale is not None else self.do_rescale
_snake_case : List[str] = size_divisor if size_divisor is not None else self.size_divisor
_snake_case : int = resample if resample is not None else self.resample
if do_resize and size_divisor is None:
raise ValueError('''size_divisor is required for resizing''' )
_snake_case : Tuple = make_list_of_images(lowercase__ )
if not valid_images(lowercase__ ):
raise ValueError('''Invalid image(s)''' )
# All transformations expect numpy arrays.
_snake_case : Tuple = [to_numpy_array(lowercase__ ) for img in images]
if do_resize:
_snake_case : Optional[int] = [self.resize(lowercase__ , size_divisor=lowercase__ , resample=lowercase__ ) for image in images]
if do_rescale:
_snake_case : Union[str, Any] = [self.rescale(lowercase__ , scale=1 / 255 ) for image in images]
_snake_case : Union[str, Any] = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images]
_snake_case : List[str] = {'''pixel_values''': images}
return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
| 47
| 1
|
'''simple docstring'''
import argparse
from tax import checkpoints
from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Union[str, Any] = AutoConfig.from_pretrained(lowerCAmelCase_ )
_snake_case : Optional[int] = FlaxAutoModelForSeqaSeqLM.from_config(config=lowerCAmelCase_ )
_snake_case : Optional[Any] = checkpoints.load_tax_checkpoint(lowerCAmelCase_ )
_snake_case : str = '''wi_0''' in tax_model['''target''']['''encoder''']['''layers_0''']['''mlp''']
if config.model_type == "t5":
_snake_case : Union[str, Any] = '''SelfAttention'''
if config.model_type == "longt5" and config.encoder_attention_type == "local":
_snake_case : Tuple = '''LocalSelfAttention'''
elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
_snake_case : int = '''TransientGlobalSelfAttention'''
else:
raise ValueError(
'''Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`'''
''' attribute with a value from [\'local\', \'transient-global].''' )
# Encoder
for layer_index in range(config.num_layers ):
_snake_case : Optional[Any] = f'''layers_{str(lowerCAmelCase_ )}'''
# Self-Attention
_snake_case : Optional[int] = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''key''']['''kernel''']
_snake_case : List[str] = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''out''']['''kernel''']
_snake_case : List[Any] = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''query''']['''kernel''']
_snake_case : Optional[int] = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''value''']['''kernel''']
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
_snake_case : Union[str, Any] = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''T5LayerNorm_0''']['''scale''']
# Layer Normalization
_snake_case : Dict = tax_model['''target''']['''encoder'''][layer_name]['''pre_attention_layer_norm''']['''scale''']
if split_mlp_wi:
_snake_case : List[str] = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel''']
_snake_case : Dict = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel''']
else:
_snake_case : Any = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi''']['''kernel''']
_snake_case : Any = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wo''']['''kernel''']
# Layer Normalization
_snake_case : str = tax_model['''target''']['''encoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale''']
# Assigning
_snake_case : int = flax_model.params['''encoder''']['''block'''][str(lowerCAmelCase_ )]['''layer''']
_snake_case : str = tax_attention_key
_snake_case : Dict = tax_attention_out
_snake_case : Optional[Any] = tax_attention_query
_snake_case : int = tax_attention_value
_snake_case : List[str] = tax_attention_layer_norm
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
_snake_case : Tuple = tax_global_layer_norm
if split_mlp_wi:
_snake_case : List[Any] = tax_mlp_wi_a
_snake_case : Any = tax_mlp_wi_a
else:
_snake_case : int = tax_mlp_wi
_snake_case : Any = tax_mlp_wo
_snake_case : Optional[Any] = tax_mlp_layer_norm
_snake_case : Optional[Any] = flax_model_encoder_layer_block
# Only for layer 0:
_snake_case : Optional[Any] = tax_model['''target''']['''encoder''']['''relpos_bias''']['''rel_embedding'''].T
_snake_case : List[Any] = tax_encoder_rel_embedding
# Side/global relative position_bias + layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
_snake_case : List[str] = tax_model['''target''']['''encoder''']['''side_relpos_bias''']['''rel_embedding'''].T
_snake_case : str = tax_encoder_global_rel_embedding
# Assigning
_snake_case : Tuple = tax_model['''target''']['''encoder''']['''encoder_norm''']['''scale''']
_snake_case : str = tax_encoder_norm
# Decoder
for layer_index in range(config.num_layers ):
_snake_case : Union[str, Any] = f'''layers_{str(lowerCAmelCase_ )}'''
# Self-Attention
_snake_case : Union[str, Any] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''key''']['''kernel''']
_snake_case : Tuple = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''out''']['''kernel''']
_snake_case : List[str] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''query''']['''kernel''']
_snake_case : Union[str, Any] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''value''']['''kernel''']
# Layer Normalization
_snake_case : Any = tax_model['''target''']['''decoder'''][layer_name]['''pre_self_attention_layer_norm'''][
'''scale'''
]
# Encoder-Decoder-Attention
_snake_case : Optional[int] = tax_model['''target''']['''decoder'''][layer_name]['''encoder_decoder_attention''']
_snake_case : Union[str, Any] = tax_enc_dec_attention_module['''key''']['''kernel''']
_snake_case : Optional[int] = tax_enc_dec_attention_module['''out''']['''kernel''']
_snake_case : Union[str, Any] = tax_enc_dec_attention_module['''query''']['''kernel''']
_snake_case : List[str] = tax_enc_dec_attention_module['''value''']['''kernel''']
# Layer Normalization
_snake_case : int = tax_model['''target''']['''decoder'''][layer_name]['''pre_cross_attention_layer_norm''']['''scale''']
# MLP
if split_mlp_wi:
_snake_case : Optional[Any] = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel''']
_snake_case : List[Any] = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel''']
else:
_snake_case : Optional[int] = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi''']['''kernel''']
_snake_case : Optional[Any] = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wo''']['''kernel''']
# Layer Normalization
_snake_case : Union[str, Any] = tax_model['''target''']['''decoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale''']
# Assigning
_snake_case : Optional[int] = flax_model.params['''decoder''']['''block'''][str(lowerCAmelCase_ )]['''layer''']
_snake_case : Tuple = tax_attention_key
_snake_case : Union[str, Any] = tax_attention_out
_snake_case : Union[str, Any] = tax_attention_query
_snake_case : Tuple = tax_attention_value
_snake_case : List[str] = tax_pre_attention_layer_norm
_snake_case : List[Any] = tax_enc_dec_attention_key
_snake_case : Optional[int] = tax_enc_dec_attention_out
_snake_case : List[str] = tax_enc_dec_attention_query
_snake_case : List[str] = tax_enc_dec_attention_value
_snake_case : List[str] = tax_cross_layer_norm
if split_mlp_wi:
_snake_case : List[Any] = tax_mlp_wi_a
_snake_case : List[Any] = tax_mlp_wi_a
else:
_snake_case : Any = tax_mlp_wi
_snake_case : Dict = tax_mlp_wo
_snake_case : int = txa_mlp_layer_norm
_snake_case : Any = flax_model_decoder_layer_block
# Decoder Normalization
_snake_case : Optional[Any] = tax_model['''target''']['''decoder''']['''decoder_norm''']['''scale''']
_snake_case : List[Any] = txa_decoder_norm
# Only for layer 0:
_snake_case : Dict = tax_model['''target''']['''decoder''']['''relpos_bias''']['''rel_embedding'''].T
_snake_case : int = tax_decoder_rel_embedding
# Token Embeddings
_snake_case : Any = tax_model['''target''']['''token_embedder''']['''embedding''']
_snake_case : Any = txa_token_embeddings
# LM Head (only in v1.1 and LongT5 checkpoints)
if "logits_dense" in tax_model["target"]["decoder"]:
_snake_case : Union[str, Any] = tax_model['''target''']['''decoder''']['''logits_dense''']['''kernel''']
flax_model.save_pretrained(lowerCAmelCase_ )
print('''T5X Model was sucessfully converted!''' )
if __name__ == "__main__":
UpperCAmelCase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.'
)
parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.')
parser.add_argument(
'--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.'
)
UpperCAmelCase : List[Any] = parser.parse_args()
convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
| 47
|
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import LEDConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFLEDForConditionalGeneration, TFLEDModel
@require_tf
class lowerCamelCase :
_lowercase : Any = LEDConfig
_lowercase : Any = {}
_lowercase : Optional[Any] = """gelu"""
def __init__( self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=False , lowercase__=99 , lowercase__=32 , lowercase__=2 , lowercase__=4 , lowercase__=37 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=20 , lowercase__=2 , lowercase__=1 , lowercase__=0 , lowercase__=4 , ) -> Any:
"""simple docstring"""
_snake_case : Dict = parent
_snake_case : Any = batch_size
_snake_case : List[str] = seq_length
_snake_case : Union[str, Any] = is_training
_snake_case : Tuple = use_labels
_snake_case : int = vocab_size
_snake_case : str = hidden_size
_snake_case : Optional[Any] = num_hidden_layers
_snake_case : List[Any] = num_attention_heads
_snake_case : Optional[int] = intermediate_size
_snake_case : List[Any] = hidden_dropout_prob
_snake_case : List[str] = attention_probs_dropout_prob
_snake_case : Optional[int] = max_position_embeddings
_snake_case : Any = eos_token_id
_snake_case : List[Any] = pad_token_id
_snake_case : Optional[int] = bos_token_id
_snake_case : Any = attention_window
# `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
# [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention
# returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
# because its local attention only attends to `self.attention_window` and one before and one after
_snake_case : Any = self.attention_window + 2
# because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for
# the `test_attention_outputs` and `test_hidden_states_output` tests
_snake_case : Tuple = (
self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window
)
def UpperCAmelCase_ ( self ) -> Optional[int]:
"""simple docstring"""
_snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
_snake_case : Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
_snake_case : Optional[int] = tf.concat([input_ids, eos_tensor] , axis=1 )
_snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_snake_case : List[Any] = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , )
_snake_case : Dict = prepare_led_inputs_dict(lowercase__ , lowercase__ , lowercase__ )
_snake_case : Dict = tf.concat(
[tf.zeros_like(lowercase__ )[:, :-1], tf.ones_like(lowercase__ )[:, -1:]] , axis=-1 , )
_snake_case : Dict = global_attention_mask
return config, inputs_dict
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> int:
"""simple docstring"""
_snake_case : int = TFLEDModel(config=lowercase__ ).get_decoder()
_snake_case : Union[str, Any] = inputs_dict['''input_ids''']
_snake_case : List[str] = input_ids[:1, :]
_snake_case : Tuple = inputs_dict['''attention_mask'''][:1, :]
_snake_case : Dict = 1
# first forward pass
_snake_case : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__ )
_snake_case , _snake_case : Dict = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_snake_case : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size )
_snake_case : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
_snake_case : Tuple = tf.concat([input_ids, next_tokens] , axis=-1 )
_snake_case : List[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
_snake_case : List[Any] = model(lowercase__ , attention_mask=lowercase__ )[0]
_snake_case : Tuple = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__ )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
_snake_case : Tuple = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
_snake_case : int = output_from_no_past[:, -3:, random_slice_idx]
_snake_case : Optional[Any] = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(lowercase__ , lowercase__ , rtol=1E-3 )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , ):
"""simple docstring"""
if attention_mask is None:
_snake_case : Union[str, Any] = tf.cast(tf.math.not_equal(lowerCAmelCase_ , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
_snake_case : str = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
_snake_case : int = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_snake_case : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
}
@require_tf
class lowerCamelCase (a__ , a__ , unittest.TestCase ):
_lowercase : Optional[int] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else ()
_lowercase : int = (TFLEDForConditionalGeneration,) if is_tf_available() else ()
_lowercase : Dict = (
{
"""conversational""": TFLEDForConditionalGeneration,
"""feature-extraction""": TFLEDModel,
"""summarization""": TFLEDForConditionalGeneration,
"""text2text-generation""": TFLEDForConditionalGeneration,
"""translation""": TFLEDForConditionalGeneration,
}
if is_tf_available()
else {}
)
_lowercase : int = True
_lowercase : List[Any] = False
_lowercase : str = False
_lowercase : Union[str, Any] = False
def UpperCAmelCase_ ( self ) -> Optional[Any]:
"""simple docstring"""
_snake_case : str = TFLEDModelTester(self )
_snake_case : Union[str, Any] = ConfigTester(self , config_class=lowercase__ )
def UpperCAmelCase_ ( self ) -> Tuple:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase_ ( self ) -> List[str]:
"""simple docstring"""
_snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*lowercase__ )
def UpperCAmelCase_ ( self ) -> int:
"""simple docstring"""
_snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
_snake_case : Any = tf.zeros_like(inputs_dict['''attention_mask'''] )
_snake_case : Optional[Any] = 2
_snake_case : Any = tf.where(
tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , )
_snake_case : Dict = True
_snake_case : str = self.model_tester.seq_length
_snake_case : Dict = self.model_tester.encoder_seq_length
def check_decoder_attentions_output(lowercase__ ):
_snake_case : Optional[int] = outputs.decoder_attentions
self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
def check_encoder_attentions_output(lowercase__ ):
_snake_case : int = [t.numpy() for t in outputs.encoder_attentions]
_snake_case : Tuple = [t.numpy() for t in outputs.encoder_global_attentions]
self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers )
self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
self.assertListEqual(
list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , )
for model_class in self.all_model_classes:
_snake_case : Union[str, Any] = True
_snake_case : Dict = False
_snake_case : Union[str, Any] = False
_snake_case : List[Any] = model_class(lowercase__ )
_snake_case : Optional[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) )
_snake_case : List[Any] = len(lowercase__ )
self.assertEqual(config.output_hidden_states , lowercase__ )
check_encoder_attentions_output(lowercase__ )
if self.is_encoder_decoder:
_snake_case : Union[str, Any] = model_class(lowercase__ )
_snake_case : List[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) )
self.assertEqual(config.output_hidden_states , lowercase__ )
check_decoder_attentions_output(lowercase__ )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
_snake_case : str = True
_snake_case : Tuple = model_class(lowercase__ )
_snake_case : int = model(self._prepare_for_class(lowercase__ , lowercase__ ) )
self.assertEqual(config.output_hidden_states , lowercase__ )
check_encoder_attentions_output(lowercase__ )
# Check attention is always last and order is fine
_snake_case : int = True
_snake_case : List[str] = True
_snake_case : Tuple = model_class(lowercase__ )
_snake_case : Optional[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase__ ) )
self.assertEqual(model.config.output_hidden_states , lowercase__ )
check_encoder_attentions_output(lowercase__ )
@unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' )
def UpperCAmelCase_ ( self ) -> int:
"""simple docstring"""
pass
def UpperCAmelCase_ ( self ) -> str:
"""simple docstring"""
pass
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
return tf.constant(lowerCAmelCase_ , dtype=tf.intaa )
UpperCAmelCase : Dict = 1E-4
@slow
@require_tf
class lowerCamelCase (unittest.TestCase ):
def UpperCAmelCase_ ( self ) -> Dict:
"""simple docstring"""
_snake_case : List[str] = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led
# change to intended input here
_snake_case : List[str] = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] )
_snake_case : Tuple = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] )
_snake_case : Tuple = prepare_led_inputs_dict(model.config , lowercase__ , lowercase__ )
_snake_case : int = model(**lowercase__ )[0]
_snake_case : Dict = (1, 1_024, 768)
self.assertEqual(output.shape , lowercase__ )
# change to expected output here
_snake_case : List[Any] = tf.convert_to_tensor(
[[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , )
tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1E-3 )
def UpperCAmelCase_ ( self ) -> List[Any]:
"""simple docstring"""
_snake_case : Any = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' )
# change to intended input here
_snake_case : Dict = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] )
_snake_case : Dict = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] )
_snake_case : List[str] = prepare_led_inputs_dict(model.config , lowercase__ , lowercase__ )
_snake_case : Tuple = model(**lowercase__ )[0]
_snake_case : Any = (1, 1_024, model.config.vocab_size)
self.assertEqual(output.shape , lowercase__ )
# change to expected output here
_snake_case : Dict = tf.convert_to_tensor(
[[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , )
tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1E-3 , rtol=1E-3 )
| 47
| 1
|
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
UpperCAmelCase : Tuple = logging.get_logger(__name__)
UpperCAmelCase : Optional[Any] = {'vocab_file': 'spiece.model'}
UpperCAmelCase : Optional[Any] = {
'vocab_file': {
'bert_for_seq_generation': (
'https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model'
),
}
}
UpperCAmelCase : int = {'bert_for_seq_generation': 5_1_2}
class lowerCamelCase (a__ ):
_lowercase : Tuple = VOCAB_FILES_NAMES
_lowercase : Tuple = PRETRAINED_VOCAB_FILES_MAP
_lowercase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowercase : List[int] = []
_lowercase : Any = ["""input_ids""", """attention_mask"""]
def __init__( self , lowercase__ , lowercase__="<s>" , lowercase__="</s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<::::>" , lowercase__ = None , **lowercase__ , ) -> None:
"""simple docstring"""
_snake_case : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs
# Add extra_ids to the special token list
super().__init__(
bos_token=lowercase__ , eos_token=lowercase__ , unk_token=lowercase__ , pad_token=lowercase__ , sep_token=lowercase__ , sp_model_kwargs=self.sp_model_kwargs , **lowercase__ , )
_snake_case : Dict = vocab_file
_snake_case : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(lowercase__ )
@property
def UpperCAmelCase_ ( self ) -> Tuple:
"""simple docstring"""
return self.sp_model.get_piece_size()
def UpperCAmelCase_ ( self ) -> Any:
"""simple docstring"""
_snake_case : str = {self.convert_ids_to_tokens(lowercase__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) -> Dict:
"""simple docstring"""
_snake_case : Tuple = self.__dict__.copy()
_snake_case : Union[str, Any] = None
return state
def __setstate__( self , lowercase__ ) -> List[str]:
"""simple docstring"""
_snake_case : Tuple = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
_snake_case : List[Any] = {}
_snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def UpperCAmelCase_ ( self , lowercase__ ) -> List[str]:
"""simple docstring"""
return self.sp_model.encode(lowercase__ , out_type=lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ ) -> str:
"""simple docstring"""
return self.sp_model.piece_to_id(lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ ) -> List[Any]:
"""simple docstring"""
_snake_case : Dict = self.sp_model.IdToPiece(lowercase__ )
return token
def UpperCAmelCase_ ( self , lowercase__ ) -> int:
"""simple docstring"""
_snake_case : Any = []
_snake_case : List[Any] = ''''''
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(lowercase__ ) + token
_snake_case : str = []
else:
current_sub_tokens.append(lowercase__ )
out_string += self.sp_model.decode(lowercase__ )
return out_string.strip()
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(lowercase__ ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
_snake_case : Optional[int] = os.path.join(
lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowercase__ )
elif not os.path.isfile(self.vocab_file ):
with open(lowercase__ , '''wb''' ) as fi:
_snake_case : Union[str, Any] = self.sp_model.serialized_model_proto()
fi.write(lowercase__ )
return (out_vocab_file,)
| 47
|
'''simple docstring'''
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
UpperCAmelCase : Optional[int] = logging.get_logger(__name__)
UpperCAmelCase : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'}
UpperCAmelCase : Any = {
'tokenizer_file': {
'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json',
},
}
UpperCAmelCase : Optional[Any] = {
'gpt-neox-20b': 2_0_4_8,
}
class lowerCamelCase (a__ ):
_lowercase : Optional[int] = VOCAB_FILES_NAMES
_lowercase : str = PRETRAINED_VOCAB_FILES_MAP
_lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowercase : Optional[int] = ["""input_ids""", """attention_mask"""]
def __init__( self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="<|endoftext|>" , lowercase__="<|endoftext|>" , lowercase__="<|endoftext|>" , lowercase__=False , **lowercase__ , ) -> List[Any]:
"""simple docstring"""
super().__init__(
lowercase__ , lowercase__ , tokenizer_file=lowercase__ , unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , add_prefix_space=lowercase__ , **lowercase__ , )
_snake_case : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('''add_prefix_space''' , lowercase__ ) != add_prefix_space:
_snake_case : int = getattr(lowercase__ , pre_tok_state.pop('''type''' ) )
_snake_case : int = add_prefix_space
_snake_case : Optional[Any] = pre_tok_class(**lowercase__ )
_snake_case : List[str] = add_prefix_space
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> Tuple[str]:
"""simple docstring"""
_snake_case : Optional[int] = self._tokenizer.model.save(lowercase__ , name=lowercase__ )
return tuple(lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ ) -> List[int]:
"""simple docstring"""
_snake_case : List[str] = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(lowercase__ , add_special_tokens=lowercase__ ) + [self.eos_token_id] )
if len(lowercase__ ) > self.model_max_length:
_snake_case : Dict = input_ids[-self.model_max_length :]
return input_ids
| 47
| 1
|
'''simple docstring'''
import os
from pathlib import Path
def _a ( ):
"""simple docstring"""
from torch.utils.cpp_extension import load
_snake_case : Tuple = Path(lowerCAmelCase_ ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr'''
_snake_case : Optional[Any] = [
root / filename
for filename in [
'''vision.cpp''',
os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ),
os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ),
]
]
load(
'''MultiScaleDeformableAttention''' , lowerCAmelCase_ , with_cuda=lowerCAmelCase_ , extra_include_paths=[str(lowerCAmelCase_ )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[
'''-DCUDA_HAS_FP16=1''',
'''-D__CUDA_NO_HALF_OPERATORS__''',
'''-D__CUDA_NO_HALF_CONVERSIONS__''',
'''-D__CUDA_NO_HALF2_OPERATORS__''',
] , )
import MultiScaleDeformableAttention as MSDA
return MSDA
| 47
|
'''simple docstring'''
import math
from numpy import inf
from scipy.integrate import quad
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
if num <= 0:
raise ValueError('''math domain error''' )
return quad(lowerCAmelCase_ , 0 , lowerCAmelCase_ , args=(lowerCAmelCase_) )[0]
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
return math.pow(lowerCAmelCase_ , z - 1 ) * math.exp(-x )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 47
| 1
|
'''simple docstring'''
import argparse
import logging
import os
import datasets
import tensorflow as tf
from transformers import AutoTokenizer
UpperCAmelCase : Optional[Any] = logging.getLogger(__name__)
def _a ( ):
"""simple docstring"""
_snake_case : int = argparse.ArgumentParser(
description='''Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.''' )
parser.add_argument(
'''--dataset_name''' , type=lowerCAmelCase_ , default='''wikitext''' , help='''Name of the training. Explore datasets at: hf.co/datasets.''' , )
parser.add_argument(
'''--dataset_config''' , type=lowerCAmelCase_ , default='''wikitext-103-raw-v1''' , help='''Configuration name of the dataset.''' )
parser.add_argument(
'''--tokenizer_name_or_path''' , type=lowerCAmelCase_ , default='''sayakpaul/unigram-tokenizer-wikitext''' , help='''Tokenizer identifier. Can be a local filepath or a Hub identifier.''' , )
parser.add_argument(
'''--shard_size''' , type=lowerCAmelCase_ , default=1_000 , help='''Number of entries to go in a single shard.''' , )
parser.add_argument('''--split''' , type=lowerCAmelCase_ , default='''train''' , choices=['''train''', '''test''', '''validation'''] )
parser.add_argument(
'''--limit''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help='''Limit the number of shards (used for debugging).''' , )
parser.add_argument(
'''--max_length''' , type=lowerCAmelCase_ , default=512 , help='''Maximum sequence length. For training on TPUs, it helps to have a maximum'''
''' sequence length that is a multiple of 8.''' , )
parser.add_argument(
'''--output_dir''' , default='''tf-tpu''' , type=lowerCAmelCase_ , help='''Output directory where the TFRecord shards will be saved. If the'''
''' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord'''
''' shards will be directly saved to a Google Cloud Storage bucket.''' , )
_snake_case : Union[str, Any] = parser.parse_args()
return args
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
def fn(lowerCAmelCase_ ):
return tokenizer(examples['''text'''] )
return fn
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Optional[Any] = []
for i in range(len(tokenized_data['''input_ids'''] ) ):
_snake_case : Tuple = {
'''input_ids''': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['''input_ids'''][i] ) ),
'''attention_mask''': tf.train.Feature(
intaa_list=tf.train.IntaaList(value=tokenized_data['''attention_mask'''][i] ) ),
}
_snake_case : List[Any] = tf.train.Features(feature=lowerCAmelCase_ )
_snake_case : str = tf.train.Example(features=lowerCAmelCase_ )
_snake_case : List[str] = example.SerializeToString()
records.append(lowerCAmelCase_ )
return records
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : List[Any] = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split )
if args.limit is not None:
_snake_case : str = min(len(lowerCAmelCase_ ) , args.limit )
_snake_case : Optional[Any] = dataset.select(range(lowerCAmelCase_ ) )
print(f'''Limiting the dataset to {args.limit} entries.''' )
_snake_case : int = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path )
# Handle output directory creation.
# For serializing into a Google Cloud Storage Bucket, one needs to first
# create a bucket.
if "gs" not in args.output_dir:
if not os.path.exists(args.output_dir ):
os.makedirs(args.output_dir )
_snake_case : Dict = os.path.join(args.output_dir , args.split )
if not os.path.exists(lowerCAmelCase_ ):
os.makedirs(lowerCAmelCase_ )
else:
_snake_case : Optional[int] = os.path.join(args.output_dir , args.split )
# Tokenize the whole dataset at once.
_snake_case : List[str] = tokenize_function(lowerCAmelCase_ )
_snake_case : List[str] = dataset.map(lowerCAmelCase_ , batched=lowerCAmelCase_ , num_proc=4 , remove_columns=['''text'''] )
# We need to concatenate all our texts together, and then split the result
# into chunks of a fixed size, which we will call block_size. To do this, we
# will use the map method again, with the option batched=True. When we use batched=True,
# the function we pass to map() will be passed multiple inputs at once, allowing us
# to group them into more or fewer examples than we had in the input.
# This allows us to create our new fixed-length samples. The advantage of this
# method is that we don't lose a whole lot of content from the dataset compared to the
# case where we simply tokenize with a pre-defined max_length.
def group_texts(lowerCAmelCase_ ):
# Concatenate all texts.
_snake_case : Optional[int] = {k: sum(examples[k] , [] ) for k in examples.keys()}
_snake_case : Optional[Any] = len(concatenated_examples[list(examples.keys() )[0]] )
# We drop the small remainder, though you could add padding instead if the model supports it
# In this, as in all things, we advise you to follow your heart 🫀
_snake_case : int = (total_length // args.max_length) * args.max_length
# Split by chunks of max_len.
_snake_case : int = {
k: [t[i : i + args.max_length] for i in range(0 , lowerCAmelCase_ , args.max_length )]
for k, t in concatenated_examples.items()
}
return result
_snake_case : Tuple = dataset_tokenized.map(lowerCAmelCase_ , batched=lowerCAmelCase_ , batch_size=1_000 , num_proc=4 )
_snake_case : Tuple = 0
_snake_case : Union[str, Any] = 0
for shard in range(0 , len(lowerCAmelCase_ ) , args.shard_size ):
_snake_case : Union[str, Any] = grouped_dataset[shard : shard + args.shard_size]
_snake_case : Union[str, Any] = len(dataset_snapshot['''input_ids'''] )
_snake_case : Any = os.path.join(lowerCAmelCase_ , f'''dataset-{shard_count}-{records_containing}.tfrecord''' )
_snake_case : int = get_serialized_examples(lowerCAmelCase_ )
with tf.io.TFRecordWriter(lowerCAmelCase_ ) as out_file:
for i in range(len(lowerCAmelCase_ ) ):
_snake_case : int = serialized_examples[i]
out_file.write(lowerCAmelCase_ )
print('''Wrote file {} containing {} records'''.format(lowerCAmelCase_ , lowerCAmelCase_ ) )
shard_count += 1
total_records += records_containing
with open(f'''split-{args.split}-records-count.txt''' , '''w''' ) as f:
print(f'''Total {args.split} records: {total_records}''' , file=lowerCAmelCase_ )
if __name__ == "__main__":
UpperCAmelCase : int = parse_args()
main(args)
| 47
|
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import is_tf_available, is_torch_available
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow
if is_tf_available():
from transformers import (
AutoConfig,
BertConfig,
GPTaConfig,
TaConfig,
TFAutoModel,
TFAutoModelForCausalLM,
TFAutoModelForMaskedLM,
TFAutoModelForPreTraining,
TFAutoModelForQuestionAnswering,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSequenceClassification,
TFAutoModelWithLMHead,
TFBertForMaskedLM,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertModel,
TFGPTaLMHeadModel,
TFRobertaForMaskedLM,
TFTaForConditionalGeneration,
)
from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST
if is_torch_available():
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForMaskedLM,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelWithLMHead,
BertForMaskedLM,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
BertModel,
GPTaLMHeadModel,
RobertaForMaskedLM,
TaForConditionalGeneration,
)
@is_pt_tf_cross_test
class lowerCamelCase (unittest.TestCase ):
@slow
def UpperCAmelCase_ ( self ) -> List[Any]:
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
_snake_case : Union[str, Any] = AutoConfig.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Any = TFAutoModel.from_pretrained(lowercase__ , from_pt=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : str = AutoModel.from_pretrained(lowercase__ , from_tf=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
@slow
def UpperCAmelCase_ ( self ) -> List[str]:
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
_snake_case : Optional[Any] = AutoConfig.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Dict = TFAutoModelForPreTraining.from_pretrained(lowercase__ , from_pt=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Tuple = AutoModelForPreTraining.from_pretrained(lowercase__ , from_tf=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
@slow
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
"""simple docstring"""
for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case : Optional[int] = AutoConfig.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained(lowercase__ , from_pt=lowercase__ )
_snake_case , _snake_case : Tuple = TFAutoModelForCausalLM.from_pretrained(
lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained(lowercase__ , from_tf=lowercase__ )
_snake_case , _snake_case : Optional[Any] = AutoModelForCausalLM.from_pretrained(
lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
@slow
def UpperCAmelCase_ ( self ) -> Optional[Any]:
"""simple docstring"""
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case : List[Any] = AutoConfig.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Tuple = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : int = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
@slow
def UpperCAmelCase_ ( self ) -> Any:
"""simple docstring"""
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case : List[str] = AutoConfig.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(lowercase__ , from_pt=lowercase__ )
_snake_case , _snake_case : List[str] = TFAutoModelForMaskedLM.from_pretrained(
lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : int = AutoModelForMaskedLM.from_pretrained(lowercase__ , from_tf=lowercase__ )
_snake_case , _snake_case : Optional[int] = AutoModelForMaskedLM.from_pretrained(
lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
@slow
def UpperCAmelCase_ ( self ) -> List[str]:
"""simple docstring"""
for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case : List[str] = AutoConfig.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(lowercase__ , from_pt=lowercase__ )
_snake_case , _snake_case : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained(
lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : List[str] = AutoModelForSeqaSeqLM.from_pretrained(lowercase__ , from_tf=lowercase__ )
_snake_case , _snake_case : Dict = AutoModelForSeqaSeqLM.from_pretrained(
lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
@slow
def UpperCAmelCase_ ( self ) -> Dict:
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
_snake_case : Any = AutoConfig.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Any = TFAutoModelForSequenceClassification.from_pretrained(lowercase__ , from_pt=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Dict = AutoModelForSequenceClassification.from_pretrained(lowercase__ , from_tf=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
@slow
def UpperCAmelCase_ ( self ) -> Optional[int]:
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
_snake_case : str = AutoConfig.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : str = TFAutoModelForQuestionAnswering.from_pretrained(lowercase__ , from_pt=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Union[str, Any] = AutoModelForQuestionAnswering.from_pretrained(lowercase__ , from_tf=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
def UpperCAmelCase_ ( self ) -> str:
"""simple docstring"""
_snake_case : Union[str, Any] = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
self.assertEqual(model.num_parameters() , 14_410 )
self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 )
_snake_case : Tuple = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
self.assertEqual(model.num_parameters() , 14_410 )
self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 )
def UpperCAmelCase_ ( self ) -> str:
"""simple docstring"""
_snake_case : List[str] = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
self.assertEqual(model.num_parameters() , 14_410 )
self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 )
_snake_case : int = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
self.assertEqual(model.num_parameters() , 14_410 )
self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 )
| 47
| 1
|
'''simple docstring'''
import logging
import os
import sys
from pathlib import Path
from unittest.mock import patch
from parameterized import parameterized
from run_eval import run_generate
from run_eval_search import run_search
from transformers.testing_utils import CaptureStdout, TestCasePlus, slow
from utils import ROUGE_KEYS
logging.basicConfig(level=logging.DEBUG)
UpperCAmelCase : List[str] = logging.getLogger()
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Union[str, Any] = '''\n'''.join(lowerCAmelCase_ )
Path(lowerCAmelCase_ ).open('''w''' ).writelines(lowerCAmelCase_ )
UpperCAmelCase : Union[str, Any] = 'patrickvonplaten/t5-tiny-random'
UpperCAmelCase : Optional[int] = 'sshleifer/bart-tiny-random'
UpperCAmelCase : List[Any] = 'sshleifer/tiny-mbart'
UpperCAmelCase : List[str] = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks
class lowerCamelCase (a__ ):
def UpperCAmelCase_ ( self , lowercase__ ) -> List[Any]:
"""simple docstring"""
_snake_case : Tuple = Path(self.get_auto_remove_tmp_dir() ) / '''utest_input.source'''
_snake_case : Union[str, Any] = input_file_name.parent / '''utest_output.txt'''
assert not output_file_name.exists()
_snake_case : Any = [''' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.''']
_dump_articles(lowercase__ , lowercase__ )
_snake_case : Union[str, Any] = str(Path(self.get_auto_remove_tmp_dir() ) / '''scores.json''' )
_snake_case : Optional[Any] = '''translation_en_to_de''' if model == T5_TINY else '''summarization'''
_snake_case : Optional[int] = F'''
run_eval_search.py
{model}
{input_file_name}
{output_file_name}
--score_path {score_path}
--task {task}
--num_beams 2
--length_penalty 2.0
'''.split()
with patch.object(lowercase__ , '''argv''' , lowercase__ ):
run_generate()
assert Path(lowercase__ ).exists()
# os.remove(Path(output_file_name))
def UpperCAmelCase_ ( self ) -> Optional[int]:
"""simple docstring"""
self.run_eval_tester(lowercase__ )
@parameterized.expand([BART_TINY, MBART_TINY] )
@slow
def UpperCAmelCase_ ( self , lowercase__ ) -> Any:
"""simple docstring"""
self.run_eval_tester(lowercase__ )
@parameterized.expand([T5_TINY, MBART_TINY] )
@slow
def UpperCAmelCase_ ( self , lowercase__ ) -> Union[str, Any]:
"""simple docstring"""
_snake_case : Dict = Path(self.get_auto_remove_tmp_dir() ) / '''utest_input.source'''
_snake_case : Dict = input_file_name.parent / '''utest_output.txt'''
assert not output_file_name.exists()
_snake_case : List[Any] = {
'''en''': ['''Machine learning is great, isn\'t it?''', '''I like to eat bananas''', '''Tomorrow is another great day!'''],
'''de''': [
'''Maschinelles Lernen ist großartig, oder?''',
'''Ich esse gerne Bananen''',
'''Morgen ist wieder ein toller Tag!''',
],
}
_snake_case : Tuple = Path(self.get_auto_remove_tmp_dir() )
_snake_case : List[Any] = str(tmp_dir / '''scores.json''' )
_snake_case : Tuple = str(tmp_dir / '''val.target''' )
_dump_articles(lowercase__ , text['''en'''] )
_dump_articles(lowercase__ , text['''de'''] )
_snake_case : List[Any] = '''translation_en_to_de''' if model == T5_TINY else '''summarization'''
_snake_case : Dict = F'''
run_eval_search.py
{model}
{str(lowercase__ )}
{str(lowercase__ )}
--score_path {score_path}
--reference_path {reference_path}
--task {task}
'''.split()
testargs.extend(['''--search''', '''num_beams=1:2 length_penalty=0.9:1.0'''] )
with patch.object(lowercase__ , '''argv''' , lowercase__ ):
with CaptureStdout() as cs:
run_search()
_snake_case : List[str] = [''' num_beams | length_penalty''', model, '''Best score args''']
_snake_case : str = ['''Info''']
if "translation" in task:
expected_strings.append('''bleu''' )
else:
expected_strings.extend(lowercase__ )
for w in expected_strings:
assert w in cs.out
for w in un_expected_strings:
assert w not in cs.out
assert Path(lowercase__ ).exists()
os.remove(Path(lowercase__ ) )
| 47
|
'''simple docstring'''
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase : Dict = {'configuration_timm_backbone': ['TimmBackboneConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Union[str, Any] = ['TimmBackbone']
if TYPE_CHECKING:
from .configuration_timm_backbone import TimmBackboneConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_timm_backbone import TimmBackbone
else:
import sys
UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 47
| 1
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
UpperCAmelCase : List[Any] = {'processing_layoutxlm': ['LayoutXLMProcessor']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Tuple = ['LayoutXLMTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Optional[Any] = ['LayoutXLMTokenizerFast']
if TYPE_CHECKING:
from .processing_layoutxlm import LayoutXLMProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm import LayoutXLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast
else:
import sys
UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 47
|
'''simple docstring'''
import argparse
import logging
import os
from pathlib import Path
from typing import Any, Dict
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info
from transformers import (
AdamW,
AutoConfig,
AutoModel,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
AutoModelWithLMHead,
AutoTokenizer,
PretrainedConfig,
PreTrainedTokenizer,
)
from transformers.optimization import (
Adafactor,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.utils.versions import require_version
UpperCAmelCase : Tuple = logging.getLogger(__name__)
require_version('pytorch_lightning>=1.0.4')
UpperCAmelCase : str = {
'base': AutoModel,
'sequence-classification': AutoModelForSequenceClassification,
'question-answering': AutoModelForQuestionAnswering,
'pretraining': AutoModelForPreTraining,
'token-classification': AutoModelForTokenClassification,
'language-modeling': AutoModelWithLMHead,
'summarization': AutoModelForSeqaSeqLM,
'translation': AutoModelForSeqaSeqLM,
}
# update this and the import above to support new schedulers from transformers.optimization
UpperCAmelCase : Optional[Any] = {
'linear': get_linear_schedule_with_warmup,
'cosine': get_cosine_schedule_with_warmup,
'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup,
'polynomial': get_polynomial_decay_schedule_with_warmup,
# '': get_constant_schedule, # not supported for now
# '': get_constant_schedule_with_warmup, # not supported for now
}
UpperCAmelCase : Tuple = sorted(arg_to_scheduler.keys())
UpperCAmelCase : Optional[Any] = '{' + ', '.join(arg_to_scheduler_choices) + '}'
class lowerCamelCase (pl.LightningModule ):
def __init__( self , lowercase__ , lowercase__=None , lowercase__="base" , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ , ) -> Optional[int]:
"""simple docstring"""
super().__init__()
# TODO: move to self.save_hyperparameters()
# self.save_hyperparameters()
# can also expand arguments into trainer signature for easier reading
self.save_hyperparameters(lowercase__ )
_snake_case : Union[str, Any] = 0
_snake_case : int = Path(self.hparams.output_dir )
_snake_case : int = self.hparams.cache_dir if self.hparams.cache_dir else None
if config is None:
_snake_case : Tuple = AutoConfig.from_pretrained(
self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=lowercase__ , **lowercase__ , )
else:
_snake_case : PretrainedConfig = config
_snake_case : Optional[Any] = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''')
for p in extra_model_params:
if getattr(self.hparams , lowercase__ , lowercase__ ):
assert hasattr(self.config , lowercase__ ), F'''model config doesn\'t have a `{p}` attribute'''
setattr(self.config , lowercase__ , getattr(self.hparams , lowercase__ ) )
if tokenizer is None:
_snake_case : Optional[int] = AutoTokenizer.from_pretrained(
self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=lowercase__ , )
else:
_snake_case : PreTrainedTokenizer = tokenizer
_snake_case : Any = MODEL_MODES[mode]
if model is None:
_snake_case : List[Any] = self.model_type.from_pretrained(
self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=lowercase__ , )
else:
_snake_case : Optional[Any] = model
def UpperCAmelCase_ ( self , *lowercase__ , **lowercase__ ) -> List[str]:
"""simple docstring"""
_snake_case : Dict = self.model_type.from_pretrained(*lowercase__ , **lowercase__ )
def UpperCAmelCase_ ( self ) -> List[Any]:
"""simple docstring"""
_snake_case : Optional[int] = arg_to_scheduler[self.hparams.lr_scheduler]
_snake_case : Optional[int] = get_schedule_func(
self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() )
_snake_case : str = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1}
return scheduler
def UpperCAmelCase_ ( self ) -> int:
"""simple docstring"""
_snake_case : Any = self.model
_snake_case : List[Any] = ['''bias''', '''LayerNorm.weight''']
_snake_case : List[str] = [
{
'''params''': [
p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay )
], # check this named paramters
'''weight_decay''': self.hparams.weight_decay,
},
{
'''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )],
'''weight_decay''': 0.0,
},
]
if self.hparams.adafactor:
_snake_case : Any = Adafactor(
lowercase__ , lr=self.hparams.learning_rate , scale_parameter=lowercase__ , relative_step=lowercase__ )
else:
_snake_case : List[str] = AdamW(
lowercase__ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon )
_snake_case : List[str] = optimizer
_snake_case : Any = self.get_lr_scheduler()
return [optimizer], [scheduler]
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Any:
"""simple docstring"""
return self.validation_step(lowercase__ , lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ ) -> Tuple:
"""simple docstring"""
return self.validation_end(lowercase__ )
def UpperCAmelCase_ ( self ) -> int:
"""simple docstring"""
_snake_case : Any = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores
_snake_case : Optional[int] = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices
return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs
def UpperCAmelCase_ ( self , lowercase__ ) -> Any:
"""simple docstring"""
if stage == "test":
_snake_case : Any = len(self.test_dataloader().dataset )
else:
_snake_case : Dict = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=lowercase__ )
_snake_case : Optional[int] = len(self.train_dataloader().dataset )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = False ) -> str:
"""simple docstring"""
raise NotImplementedError('''You must implement this for your task''' )
def UpperCAmelCase_ ( self ) -> Optional[int]:
"""simple docstring"""
return self.train_loader
def UpperCAmelCase_ ( self ) -> Dict:
"""simple docstring"""
return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=lowercase__ )
def UpperCAmelCase_ ( self ) -> Optional[Any]:
"""simple docstring"""
return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ ) -> Optional[int]:
"""simple docstring"""
return os.path.join(
self.hparams.data_dir , '''cached_{}_{}_{}'''.format(
lowercase__ , list(filter(lowercase__ , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , )
@pl.utilities.rank_zero_only
def UpperCAmelCase_ ( self , lowercase__ ) -> None:
"""simple docstring"""
_snake_case : Dict = self.output_dir.joinpath('''best_tfmr''' )
_snake_case : Tuple = self.step_count
self.model.save_pretrained(lowercase__ )
self.tokenizer.save_pretrained(lowercase__ )
@staticmethod
def UpperCAmelCase_ ( lowercase__ , lowercase__ ) -> Tuple:
"""simple docstring"""
parser.add_argument(
'''--model_name_or_path''' , default=lowercase__ , type=lowercase__ , required=lowercase__ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , )
parser.add_argument(
'''--config_name''' , default='''''' , type=lowercase__ , help='''Pretrained config name or path if not the same as model_name''' )
parser.add_argument(
'''--tokenizer_name''' , default=lowercase__ , type=lowercase__ , help='''Pretrained tokenizer name or path if not the same as model_name''' , )
parser.add_argument(
'''--cache_dir''' , default=str(Path(lowercase__ ).parent / '''test_run''' / '''cache''' ) , type=lowercase__ , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , )
parser.add_argument(
'''--encoder_layerdrop''' , type=lowercase__ , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--decoder_layerdrop''' , type=lowercase__ , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--dropout''' , type=lowercase__ , help='''Dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--attention_dropout''' , type=lowercase__ , help='''Attention dropout probability (Optional). Goes into model.config''' , )
parser.add_argument('''--learning_rate''' , default=5E-5 , type=lowercase__ , help='''The initial learning rate for Adam.''' )
parser.add_argument(
'''--lr_scheduler''' , default='''linear''' , choices=lowercase__ , metavar=lowercase__ , type=lowercase__ , help='''Learning rate scheduler''' , )
parser.add_argument('''--weight_decay''' , default=0.0 , type=lowercase__ , help='''Weight decay if we apply some.''' )
parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=lowercase__ , help='''Epsilon for Adam optimizer.''' )
parser.add_argument('''--warmup_steps''' , default=0 , type=lowercase__ , help='''Linear warmup over warmup_steps.''' )
parser.add_argument('''--num_workers''' , default=4 , type=lowercase__ , help='''kwarg passed to DataLoader''' )
parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=lowercase__ )
parser.add_argument('''--train_batch_size''' , default=32 , type=lowercase__ )
parser.add_argument('''--eval_batch_size''' , default=32 , type=lowercase__ )
parser.add_argument('''--adafactor''' , action='''store_true''' )
class lowerCamelCase (pl.Callback ):
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> str:
"""simple docstring"""
if (
trainer.is_global_zero and trainer.global_rank == 0
): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed.
pl_module.model.rag.retriever.init_retrieval() # better to use hook functions.
class lowerCamelCase (pl.Callback ):
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> List[str]:
"""simple docstring"""
for name, param in pl_module.model.rag.named_parameters():
if param.grad is None:
print(lowercase__ )
class lowerCamelCase (pl.Callback ):
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Any:
"""simple docstring"""
_snake_case : Any = trainer.lr_schedulers[0]['''scheduler''']
_snake_case : Optional[int] = {F'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr() )}
pl_module.logger.log_metrics(lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> List[str]:
"""simple docstring"""
rank_zero_info('''***** Validation results *****''' )
_snake_case : Dict = trainer.callback_metrics
# Log results
for key in sorted(lowercase__ ):
if key not in ["log", "progress_bar"]:
rank_zero_info('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Dict:
"""simple docstring"""
rank_zero_info('''***** Test results *****''' )
_snake_case : Dict = trainer.callback_metrics
# Log and save results to file
_snake_case : str = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' )
with open(lowercase__ , '''w''' ) as writer:
for key in sorted(lowercase__ ):
if key not in ["log", "progress_bar"]:
rank_zero_info('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) )
writer.write('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
parser.add_argument(
'''--output_dir''' , default=str(Path(lowerCAmelCase_ ).parent / '''test_run''' / '''model_checkpoints''' ) , type=lowerCAmelCase_ , help='''The output directory where the model predictions and checkpoints will be written.''' , )
parser.add_argument(
'''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , )
parser.add_argument(
'''--fp16_opt_level''' , type=lowerCAmelCase_ , default='''O2''' , help=(
'''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'''
'''See details at https://nvidia.github.io/apex/amp.html'''
) , )
parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=lowerCAmelCase_ )
parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=lowerCAmelCase_ , help='''Max gradient norm''' )
parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' )
parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' )
parser.add_argument(
'''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=lowerCAmelCase_ , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , )
parser.add_argument('''--seed''' , type=lowerCAmelCase_ , default=42 , help='''random seed for initialization''' )
parser.add_argument(
'''--data_dir''' , default=str(Path(lowerCAmelCase_ ).parent / '''test_run''' / '''dummy-train-data''' ) , type=lowerCAmelCase_ , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_=[] , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , ):
"""simple docstring"""
pl.seed_everything(args.seed )
# init model
_snake_case : Union[str, Any] = Path(model.hparams.output_dir )
odir.mkdir(exist_ok=lowerCAmelCase_ )
# add custom checkpoints
if checkpoint_callback is None:
_snake_case : Any = pl.callbacks.ModelCheckpoint(
filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 )
if early_stopping_callback:
extra_callbacks.append(lowerCAmelCase_ )
if logging_callback is None:
_snake_case : str = LoggingCallback()
_snake_case : Tuple = {}
if args.fpaa:
_snake_case : Union[str, Any] = 16
if args.gpus > 1:
_snake_case : Optional[Any] = '''auto'''
_snake_case : Tuple = '''ddp'''
_snake_case : Optional[Any] = args.accumulate_grad_batches
_snake_case : Tuple = None
_snake_case : str = '''auto'''
_snake_case : int = pl.Trainer.from_argparse_args(
lowerCAmelCase_ , weights_summary=lowerCAmelCase_ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase_ , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase_ , )
if args.do_train:
trainer.fit(lowerCAmelCase_ )
else:
print('''RAG modeling tests with new set functions successfuly executed!''' )
return trainer
| 47
| 1
|
'''simple docstring'''
# flake8: noqa
# Lint as: python3
from typing import Dict, List, Optional, Type
from .. import config
from ..utils import logging
from .formatting import (
ArrowFormatter,
CustomFormatter,
Formatter,
PandasFormatter,
PythonFormatter,
TensorFormatter,
format_table,
query_table,
)
from .np_formatter import NumpyFormatter
UpperCAmelCase : Any = logging.get_logger(__name__)
UpperCAmelCase : Dict[Optional[str], Type[Formatter]] = {}
UpperCAmelCase : Dict[Optional[str], str] = {}
UpperCAmelCase : Dict[Optional[str], Exception] = {}
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , ):
"""simple docstring"""
_snake_case : Tuple = aliases if aliases is not None else []
if format_type in _FORMAT_TYPES:
logger.warning(
f'''Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})''' )
_snake_case : Tuple = formatter_cls
for alias in set(aliases + [format_type] ):
if alias in _FORMAT_TYPES_ALIASES:
logger.warning(
f'''Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})''' )
_snake_case : Optional[Any] = format_type
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None ):
"""simple docstring"""
_snake_case : Tuple = aliases if aliases is not None else []
for alias in set(aliases + [format_type] ):
_snake_case : Dict = unavailable_error
# Here we define all the available formatting functions that can be used by `Dataset.set_format`
_register_formatter(PythonFormatter, None, aliases=['python'])
_register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow'])
_register_formatter(NumpyFormatter, 'numpy', aliases=['np'])
_register_formatter(PandasFormatter, 'pandas', aliases=['pd'])
_register_formatter(CustomFormatter, 'custom')
if config.TORCH_AVAILABLE:
from .torch_formatter import TorchFormatter
_register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch'])
else:
UpperCAmelCase : Tuple = ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.')
_register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch'])
if config.TF_AVAILABLE:
from .tf_formatter import TFFormatter
_register_formatter(TFFormatter, 'tensorflow', aliases=['tf'])
else:
UpperCAmelCase : Dict = ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.')
_register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf'])
if config.JAX_AVAILABLE:
from .jax_formatter import JaxFormatter
_register_formatter(JaxFormatter, 'jax', aliases=[])
else:
UpperCAmelCase : Optional[int] = ValueError('JAX needs to be installed to be able to return JAX arrays.')
_register_unavailable_formatter(_jax_error, 'jax', aliases=[])
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
if format_type in _FORMAT_TYPES_ALIASES:
return _FORMAT_TYPES_ALIASES[format_type]
else:
return format_type
def _a ( lowerCAmelCase_ , **lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Dict = get_format_type_from_alias(lowerCAmelCase_ )
if format_type in _FORMAT_TYPES:
return _FORMAT_TYPES[format_type](**lowerCAmelCase_ )
if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE:
raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type]
else:
raise ValueError(
f'''Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'''' )
| 47
|
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase : List[str] = logging.get_logger(__name__)
UpperCAmelCase : Dict = {
'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json',
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class lowerCamelCase (a__ ):
_lowercase : List[str] = """sew-d"""
def __init__( self , lowercase__=32 , lowercase__=768 , lowercase__=12 , lowercase__=12 , lowercase__=3_072 , lowercase__=2 , lowercase__=512 , lowercase__=256 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.02 , lowercase__=1E-7 , lowercase__=1E-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=128 , lowercase__=16 , lowercase__=True , lowercase__=0.05 , lowercase__=10 , lowercase__=2 , lowercase__=0.0 , lowercase__=10 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=256 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ) -> Dict:
"""simple docstring"""
super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ )
_snake_case : List[str] = hidden_size
_snake_case : Optional[Any] = feat_extract_norm
_snake_case : Tuple = feat_extract_activation
_snake_case : Tuple = list(lowercase__ )
_snake_case : Any = list(lowercase__ )
_snake_case : Any = list(lowercase__ )
_snake_case : Any = conv_bias
_snake_case : List[Any] = num_conv_pos_embeddings
_snake_case : Any = num_conv_pos_embedding_groups
_snake_case : Union[str, Any] = len(self.conv_dim )
_snake_case : Optional[Any] = num_hidden_layers
_snake_case : Optional[int] = intermediate_size
_snake_case : Any = squeeze_factor
_snake_case : Optional[Any] = max_position_embeddings
_snake_case : Tuple = position_buckets
_snake_case : Tuple = share_att_key
_snake_case : Any = relative_attention
_snake_case : Optional[int] = norm_rel_ebd
_snake_case : Optional[Any] = list(lowercase__ )
_snake_case : List[Any] = hidden_act
_snake_case : List[Any] = num_attention_heads
_snake_case : Dict = hidden_dropout
_snake_case : Tuple = attention_dropout
_snake_case : Union[str, Any] = activation_dropout
_snake_case : List[Any] = feat_proj_dropout
_snake_case : Optional[int] = final_dropout
_snake_case : Optional[Any] = layer_norm_eps
_snake_case : Dict = feature_layer_norm_eps
_snake_case : List[Any] = initializer_range
_snake_case : Dict = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect.'''
'''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'''
F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)'''
F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_snake_case : Union[str, Any] = apply_spec_augment
_snake_case : Any = mask_time_prob
_snake_case : List[str] = mask_time_length
_snake_case : Dict = mask_time_min_masks
_snake_case : Union[str, Any] = mask_feature_prob
_snake_case : Tuple = mask_feature_length
_snake_case : Union[str, Any] = mask_feature_min_masks
# ctc loss
_snake_case : Optional[Any] = ctc_loss_reduction
_snake_case : Optional[Any] = ctc_zero_infinity
# sequence classification
_snake_case : List[Any] = use_weighted_layer_sum
_snake_case : Any = classifier_proj_size
@property
def UpperCAmelCase_ ( self ) -> Any:
"""simple docstring"""
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 47
| 1
|
'''simple docstring'''
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
if a < 0 or b < 0:
raise ValueError('''the value of both inputs must be positive''' )
_snake_case : Optional[Any] = str(bin(lowerCAmelCase_ ) )[2:] # remove the leading "0b"
_snake_case : Optional[int] = str(bin(lowerCAmelCase_ ) )[2:]
_snake_case : Any = max(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) )
return "0b" + "".join(
str(int('''1''' in (char_a, char_b) ) )
for char_a, char_b in zip(a_binary.zfill(lowerCAmelCase_ ) , b_binary.zfill(lowerCAmelCase_ ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 47
|
'''simple docstring'''
from random import randint
from tempfile import TemporaryFile
import numpy as np
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : List[Any] = 0
if start < end:
_snake_case : List[Any] = randint(lowerCAmelCase_ , lowerCAmelCase_ )
_snake_case : Any = a[end]
_snake_case : List[str] = a[pivot]
_snake_case : Optional[int] = temp
_snake_case , _snake_case : List[Any] = _in_place_partition(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
count += _in_place_quick_sort(lowerCAmelCase_ , lowerCAmelCase_ , p - 1 )
count += _in_place_quick_sort(lowerCAmelCase_ , p + 1 , lowerCAmelCase_ )
return count
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Optional[Any] = 0
_snake_case : Optional[int] = randint(lowerCAmelCase_ , lowerCAmelCase_ )
_snake_case : Tuple = a[end]
_snake_case : Optional[Any] = a[pivot]
_snake_case : Union[str, Any] = temp
_snake_case : Union[str, Any] = start - 1
for index in range(lowerCAmelCase_ , lowerCAmelCase_ ):
count += 1
if a[index] < a[end]: # check if current val is less than pivot value
_snake_case : Optional[int] = new_pivot_index + 1
_snake_case : Optional[Any] = a[new_pivot_index]
_snake_case : Tuple = a[index]
_snake_case : str = temp
_snake_case : Any = a[new_pivot_index + 1]
_snake_case : str = a[end]
_snake_case : Optional[int] = temp
return new_pivot_index + 1, count
UpperCAmelCase : Dict = TemporaryFile()
UpperCAmelCase : Dict = 1_0_0 # 1000 elements are to be sorted
UpperCAmelCase, UpperCAmelCase : str = 0, 1 # mean and standard deviation
UpperCAmelCase : Optional[Any] = np.random.normal(mu, sigma, p)
np.save(outfile, X)
print('The array is')
print(X)
outfile.seek(0) # using the same array
UpperCAmelCase : int = np.load(outfile)
UpperCAmelCase : Optional[int] = len(M) - 1
UpperCAmelCase : str = _in_place_quick_sort(M, 0, r)
print(
'No of Comparisons for 100 elements selected from a standard normal distribution'
'is :'
)
print(z)
| 47
| 1
|
'''simple docstring'''
from __future__ import annotations
from collections.abc import Callable
from typing import Generic, TypeVar
UpperCAmelCase : Any = TypeVar('T')
UpperCAmelCase : str = TypeVar('U')
class lowerCamelCase (Generic[T, U] ):
def __init__( self , lowercase__ , lowercase__ ) -> List[Any]:
"""simple docstring"""
_snake_case : str = key
_snake_case : Optional[int] = val
_snake_case : DoubleLinkedListNode[T, U] | None = None
_snake_case : DoubleLinkedListNode[T, U] | None = None
def __repr__( self ) -> str:
"""simple docstring"""
return (
F'''Node: key: {self.key}, val: {self.val}, '''
F'''has next: {bool(self.next )}, has prev: {bool(self.prev )}'''
)
class lowerCamelCase (Generic[T, U] ):
def __init__( self ) -> None:
"""simple docstring"""
_snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase__ , lowercase__ )
_snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase__ , lowercase__ )
_snake_case , _snake_case : Union[str, Any] = self.rear, self.head
def __repr__( self ) -> str:
"""simple docstring"""
_snake_case : List[Any] = ['''DoubleLinkedList''']
_snake_case : str = self.head
while node.next is not None:
rep.append(str(lowercase__ ) )
_snake_case : List[str] = node.next
rep.append(str(self.rear ) )
return ",\n ".join(lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ ) -> None:
"""simple docstring"""
_snake_case : Tuple = self.rear.prev
# All nodes other than self.head are guaranteed to have non-None previous
assert previous is not None
_snake_case : Union[str, Any] = node
_snake_case : Optional[Any] = previous
_snake_case : int = node
_snake_case : Union[str, Any] = self.rear
def UpperCAmelCase_ ( self , lowercase__ ) -> DoubleLinkedListNode[T, U] | None:
"""simple docstring"""
if node.prev is None or node.next is None:
return None
_snake_case : Optional[int] = node.next
_snake_case : Any = node.prev
_snake_case : List[str] = None
_snake_case : Optional[int] = None
return node
class lowerCamelCase (Generic[T, U] ):
_lowercase : dict[Callable[[T], U], LRUCache[T, U]] = {}
def __init__( self , lowercase__ ) -> Union[str, Any]:
"""simple docstring"""
_snake_case : DoubleLinkedList[T, U] = DoubleLinkedList()
_snake_case : Union[str, Any] = capacity
_snake_case : int = 0
_snake_case : Dict = 0
_snake_case : Union[str, Any] = 0
_snake_case : dict[T, DoubleLinkedListNode[T, U]] = {}
def __repr__( self ) -> str:
"""simple docstring"""
return (
F'''CacheInfo(hits={self.hits}, misses={self.miss}, '''
F'''capacity={self.capacity}, current size={self.num_keys})'''
)
def __contains__( self , lowercase__ ) -> bool:
"""simple docstring"""
return key in self.cache
def UpperCAmelCase_ ( self , lowercase__ ) -> U | None:
"""simple docstring"""
if key in self.cache:
self.hits += 1
_snake_case : DoubleLinkedListNode[T, U] = self.cache[key]
_snake_case : Tuple = self.list.remove(self.cache[key] )
assert node == value_node
# node is guaranteed not None because it is in self.cache
assert node is not None
self.list.add(lowercase__ )
return node.val
self.miss += 1
return None
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> None:
"""simple docstring"""
if key not in self.cache:
if self.num_keys >= self.capacity:
# delete first node (oldest) when over capacity
_snake_case : Dict = self.list.head.next
# guaranteed to have a non-None first node when num_keys > 0
# explain to type checker via assertions
assert first_node is not None
assert first_node.key is not None
assert (
self.list.remove(lowercase__ ) is not None
) # node guaranteed to be in list assert node.key is not None
del self.cache[first_node.key]
self.num_keys -= 1
_snake_case : Optional[int] = DoubleLinkedListNode(lowercase__ , lowercase__ )
self.list.add(self.cache[key] )
self.num_keys += 1
else:
# bump node to the end of the list, update value
_snake_case : Optional[Any] = self.list.remove(self.cache[key] )
assert node is not None # node guaranteed to be in list
_snake_case : Optional[Any] = value
self.list.add(lowercase__ )
@classmethod
def UpperCAmelCase_ ( cls , lowercase__ = 128 ) -> Callable[[Callable[[T], U]], Callable[..., U]]:
"""simple docstring"""
def cache_decorator_inner(lowercase__ ) -> Callable[..., U]:
def cache_decorator_wrapper(*lowercase__ ) -> U:
if func not in cls.decorator_function_to_instance_map:
_snake_case : Optional[Any] = LRUCache(lowercase__ )
_snake_case : Union[str, Any] = cls.decorator_function_to_instance_map[func].get(args[0] )
if result is None:
_snake_case : Tuple = func(*lowercase__ )
cls.decorator_function_to_instance_map[func].put(args[0] , lowercase__ )
return result
def cache_info() -> LRUCache[T, U]:
return cls.decorator_function_to_instance_map[func]
setattr(lowercase__ , '''cache_info''' , lowercase__ ) # noqa: B010
return cache_decorator_wrapper
return cache_decorator_inner
if __name__ == "__main__":
import doctest
doctest.testmod()
| 47
|
'''simple docstring'''
from ...utils import is_torch_available, is_transformers_available
if is_transformers_available() and is_torch_available():
from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
| 47
| 1
|
'''simple docstring'''
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
UpperCAmelCase : List[str] = get_tests_dir('fixtures/test_sentencepiece.model')
if is_torch_available():
from transformers.models.plbart.modeling_plbart import shift_tokens_right
UpperCAmelCase : Any = 5_0_0_0_3
UpperCAmelCase : Optional[Any] = 5_0_0_0_2
@require_sentencepiece
@require_tokenizers
class lowerCamelCase (a__ , unittest.TestCase ):
_lowercase : Any = PLBartTokenizer
_lowercase : Optional[Any] = None
_lowercase : List[str] = False
def UpperCAmelCase_ ( self ) -> str:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
_snake_case : Dict = PLBartTokenizer(lowercase__ , language_codes='''base''' , keep_accents=lowercase__ )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCAmelCase_ ( self ) -> Optional[Any]:
"""simple docstring"""
_snake_case : Optional[int] = PLBartTokenizer(lowercase__ , language_codes='''base''' , keep_accents=lowercase__ )
_snake_case : int = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(lowercase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowercase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
_snake_case : Tuple = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
lowercase__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
_snake_case : Optional[int] = tokenizer.convert_tokens_to_ids(lowercase__ )
self.assertListEqual(
lowercase__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
_snake_case : Optional[Any] = tokenizer.convert_ids_to_tokens(lowercase__ )
self.assertListEqual(
lowercase__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
_snake_case : Any = tokenizer.vocab_size
_snake_case : int = [tokenizer.convert_ids_to_tokens(lowercase__ ) for x in range(end - 4 , lowercase__ )]
self.assertListEqual(lowercase__ , ['''__java__''', '''__python__''', '''__en_XX__''', '''<mask>'''] )
_snake_case : Tuple = '''java.lang.Exception, python.lang.Exception, javascript, php, ruby, go'''
_snake_case : Dict = tokenizer(lowercase__ ).input_ids
self.assertEqual(
tokenizer.decode(lowercase__ , skip_special_tokens=lowercase__ , clean_up_tokenization_spaces=lowercase__ ) , lowercase__ , )
def UpperCAmelCase_ ( self ) -> List[Any]:
"""simple docstring"""
_snake_case : Union[str, Any] = PLBartTokenizer(lowercase__ , language_codes='''multi''' , keep_accents=lowercase__ )
_snake_case : Dict = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(lowercase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowercase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
_snake_case : Dict = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
lowercase__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
_snake_case : List[Any] = tokenizer.convert_tokens_to_ids(lowercase__ )
self.assertListEqual(
lowercase__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
_snake_case : Any = tokenizer.convert_ids_to_tokens(lowercase__ )
self.assertListEqual(
lowercase__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
_snake_case : List[Any] = tokenizer.vocab_size
_snake_case : Any = [tokenizer.convert_ids_to_tokens(lowercase__ ) for x in range(end - 7 , lowercase__ )]
self.assertListEqual(
lowercase__ , ['''__java__''', '''__python__''', '''__en_XX__''', '''__javascript__''', '''__php__''', '''__ruby__''', '''__go__'''] )
_snake_case : Optional[int] = '''java.lang.Exception, python.lang.Exception, javascript, php, ruby, go'''
_snake_case : str = tokenizer(lowercase__ ).input_ids
self.assertEqual(
tokenizer.decode(lowercase__ , skip_special_tokens=lowercase__ , clean_up_tokenization_spaces=lowercase__ ) , lowercase__ , )
@require_torch
@require_sentencepiece
@require_tokenizers
class lowerCamelCase (unittest.TestCase ):
_lowercase : Union[str, Any] = """uclanlp/plbart-python-en_XX"""
_lowercase : Optional[int] = [
"""def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])""",
"""def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""",
]
_lowercase : List[Any] = [
"""Returns the maximum value of a b c.""",
"""Sums the values of a b c.""",
]
_lowercase : List[Any] = [
134,
5_452,
33_460,
33_441,
33_463,
33_465,
33_463,
33_449,
988,
20,
33_456,
19,
33_456,
771,
39,
4_258,
889,
3_318,
33_441,
33_463,
33_465,
33_463,
33_449,
2_471,
2,
PYTHON_CODE,
]
@classmethod
def UpperCAmelCase_ ( cls ) -> List[str]:
"""simple docstring"""
_snake_case : PLBartTokenizer = PLBartTokenizer.from_pretrained(
cls.checkpoint_name , language_codes='''base''' , src_lang='''python''' , tgt_lang='''en_XX''' )
_snake_case : Optional[Any] = 1
return cls
def UpperCAmelCase_ ( self ) -> Dict:
"""simple docstring"""
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__java__'''] , 50_001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__python__'''] , 50_002 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__en_XX__'''] , 50_003 )
def UpperCAmelCase_ ( self ) -> int:
"""simple docstring"""
_snake_case : List[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , lowercase__ )
def UpperCAmelCase_ ( self ) -> Optional[int]:
"""simple docstring"""
self.assertIn(lowercase__ , self.tokenizer.all_special_ids )
_snake_case : Optional[Any] = [EN_CODE, 9_037, 33_442, 57, 752, 153, 14, 56, 18, 9, 2]
_snake_case : Any = self.tokenizer.decode(lowercase__ , skip_special_tokens=lowercase__ )
_snake_case : Tuple = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowercase__ )
self.assertEqual(lowercase__ , lowercase__ )
self.assertNotIn(self.tokenizer.eos_token , lowercase__ )
def UpperCAmelCase_ ( self ) -> Dict:
"""simple docstring"""
_snake_case : Tuple = ['''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''' * 20]
self.assertIsInstance(src_text[0] , lowercase__ )
_snake_case : int = 10
_snake_case : int = self.tokenizer(lowercase__ , max_length=lowercase__ , truncation=lowercase__ ).input_ids[0]
self.assertEqual(ids[-2] , 2 )
self.assertEqual(ids[-1] , lowercase__ )
self.assertEqual(len(lowercase__ ) , lowercase__ )
def UpperCAmelCase_ ( self ) -> Optional[Any]:
"""simple docstring"""
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''__java__'''] ) , [50_004, 50_001] )
def UpperCAmelCase_ ( self ) -> List[Any]:
"""simple docstring"""
_snake_case : Optional[int] = tempfile.mkdtemp()
_snake_case : Optional[Any] = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(lowercase__ )
_snake_case : List[Any] = PLBartTokenizer.from_pretrained(lowercase__ )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowercase__ )
@require_torch
def UpperCAmelCase_ ( self ) -> List[Any]:
"""simple docstring"""
_snake_case : List[str] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowercase__ , return_tensors='''pt''' )
_snake_case : Any = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] )
self.assertEqual(batch.decoder_input_ids[1][0] , lowercase__ )
self.assertEqual(batch.decoder_input_ids[1][-1] , 2 )
self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] )
@require_torch
def UpperCAmelCase_ ( self ) -> Any:
"""simple docstring"""
_snake_case : List[str] = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=lowercase__ , truncation=lowercase__ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , )
_snake_case : List[str] = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
self.assertIsInstance(lowercase__ , lowercase__ )
self.assertEqual((2, 26) , batch.input_ids.shape )
self.assertEqual((2, 26) , batch.attention_mask.shape )
_snake_case : List[str] = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , lowercase__ )
self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] )
def UpperCAmelCase_ ( self ) -> str:
"""simple docstring"""
_snake_case : Dict = self.tokenizer(self.src_text , padding=lowercase__ , truncation=lowercase__ , max_length=3 , return_tensors='''pt''' )
_snake_case : Tuple = self.tokenizer(
text_target=self.tgt_text , padding=lowercase__ , truncation=lowercase__ , max_length=10 , return_tensors='''pt''' )
_snake_case : Optional[int] = targets['''input_ids''']
_snake_case : Optional[Any] = shift_tokens_right(lowercase__ , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def UpperCAmelCase_ ( self ) -> List[Any]:
"""simple docstring"""
_snake_case : int = self.tokenizer._build_translation_inputs(
'''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''java''' )
self.assertEqual(
nested_simplify(lowercase__ ) , {
# A, test, EOS, en_XX
'''input_ids''': [[150, 242, 2, 50_003]],
'''attention_mask''': [[1, 1, 1, 1]],
# java
'''forced_bos_token_id''': 50_001,
} , )
| 47
|
'''simple docstring'''
from argparse import ArgumentParser
from .add_new_model import AddNewModelCommand
from .add_new_model_like import AddNewModelLikeCommand
from .convert import ConvertCommand
from .download import DownloadCommand
from .env import EnvironmentCommand
from .lfs import LfsCommands
from .pt_to_tf import PTtoTFCommand
from .run import RunCommand
from .serving import ServeCommand
from .user import UserCommands
def _a ( ):
"""simple docstring"""
_snake_case : List[Any] = ArgumentParser('''Transformers CLI tool''' , usage='''transformers-cli <command> [<args>]''' )
_snake_case : List[str] = parser.add_subparsers(help='''transformers-cli command helpers''' )
# Register commands
ConvertCommand.register_subcommand(lowerCAmelCase_ )
DownloadCommand.register_subcommand(lowerCAmelCase_ )
EnvironmentCommand.register_subcommand(lowerCAmelCase_ )
RunCommand.register_subcommand(lowerCAmelCase_ )
ServeCommand.register_subcommand(lowerCAmelCase_ )
UserCommands.register_subcommand(lowerCAmelCase_ )
AddNewModelCommand.register_subcommand(lowerCAmelCase_ )
AddNewModelLikeCommand.register_subcommand(lowerCAmelCase_ )
LfsCommands.register_subcommand(lowerCAmelCase_ )
PTtoTFCommand.register_subcommand(lowerCAmelCase_ )
# Let's go
_snake_case : str = parser.parse_args()
if not hasattr(lowerCAmelCase_ , '''func''' ):
parser.print_help()
exit(1 )
# Run
_snake_case : Union[str, Any] = args.func(lowerCAmelCase_ )
service.run()
if __name__ == "__main__":
main()
| 47
| 1
|
'''simple docstring'''
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
if n_term == "":
return []
_snake_case : list = []
for temp in range(int(lowerCAmelCase_ ) ):
series.append(f'''1/{temp + 1}''' if series else '''1''' )
return series
if __name__ == "__main__":
UpperCAmelCase : List[str] = input('Enter the last number (nth term) of the Harmonic Series')
print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n')
print(harmonic_series(nth_term))
| 47
|
'''simple docstring'''
from collections.abc import Generator
def _a ( ):
"""simple docstring"""
_snake_case , _snake_case : Union[str, Any] = 0, 1
while True:
_snake_case , _snake_case : List[str] = b, a + b
yield b
def _a ( lowerCAmelCase_ = 1_000 ):
"""simple docstring"""
_snake_case : List[str] = 1
_snake_case : Dict = fibonacci_generator()
while len(str(next(lowerCAmelCase_ ) ) ) < n:
answer += 1
return answer + 1
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 47
| 1
|
'''simple docstring'''
import os
UpperCAmelCase : Optional[int] = {'I': 1, 'V': 5, 'X': 1_0, 'L': 5_0, 'C': 1_0_0, 'D': 5_0_0, 'M': 1_0_0_0}
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Optional[Any] = 0
_snake_case : Tuple = 0
while index < len(lowerCAmelCase_ ) - 1:
_snake_case : str = SYMBOLS[numerals[index]]
_snake_case : List[Any] = SYMBOLS[numerals[index + 1]]
if current_value < next_value:
total_value -= current_value
else:
total_value += current_value
index += 1
total_value += SYMBOLS[numerals[index]]
return total_value
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Union[str, Any] = ''''''
_snake_case : Any = num // 1_000
numerals += m_count * "M"
num %= 1_000
_snake_case : Any = num // 100
if c_count == 9:
numerals += "CM"
c_count -= 9
elif c_count == 4:
numerals += "CD"
c_count -= 4
if c_count >= 5:
numerals += "D"
c_count -= 5
numerals += c_count * "C"
num %= 100
_snake_case : int = num // 10
if x_count == 9:
numerals += "XC"
x_count -= 9
elif x_count == 4:
numerals += "XL"
x_count -= 4
if x_count >= 5:
numerals += "L"
x_count -= 5
numerals += x_count * "X"
num %= 10
if num == 9:
numerals += "IX"
num -= 9
elif num == 4:
numerals += "IV"
num -= 4
if num >= 5:
numerals += "V"
num -= 5
numerals += num * "I"
return numerals
def _a ( lowerCAmelCase_ = "/p089_roman.txt" ):
"""simple docstring"""
_snake_case : Tuple = 0
with open(os.path.dirname(lowerCAmelCase_ ) + roman_numerals_filename ) as filea:
_snake_case : Optional[int] = filea.readlines()
for line in lines:
_snake_case : Any = line.strip()
_snake_case : str = parse_roman_numerals(lowerCAmelCase_ )
_snake_case : Optional[int] = generate_roman_numerals(lowerCAmelCase_ )
savings += len(lowerCAmelCase_ ) - len(lowerCAmelCase_ )
return savings
if __name__ == "__main__":
print(F"""{solution() = }""")
| 47
|
'''simple docstring'''
import logging
import re
import pytorch_quantization
import pytorch_quantization.nn as quant_nn
import torch
from pytorch_quantization import calib
from pytorch_quantization.tensor_quant import QuantDescriptor
UpperCAmelCase : str = logging.getLogger(__name__)
UpperCAmelCase : Dict = 5_0 # max width of layer names
UpperCAmelCase : Union[str, Any] = 7_0 # max width of quantizer names
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Dict = parser.add_argument_group('''quant_trainer arguments''' )
group.add_argument('''--wprec''' , type=lowerCAmelCase_ , default=8 , help='''weight precision''' )
group.add_argument('''--aprec''' , type=lowerCAmelCase_ , default=8 , help='''activation precision''' )
group.add_argument('''--quant-per-tensor''' , action='''store_true''' , help='''per tensor weight scaling''' )
group.add_argument('''--quant-disable''' , action='''store_true''' , help='''disable all quantizers''' )
group.add_argument('''--quant-disable-embeddings''' , action='''store_true''' , help='''disable all embeddings quantizers''' )
group.add_argument('''--quant-disable-keyword''' , type=lowerCAmelCase_ , nargs='''+''' , help='''disable quantizers by keyword''' )
group.add_argument('''--quant-disable-layer-module''' , type=lowerCAmelCase_ , help='''disable quantizers by keyword under layer.''' )
group.add_argument('''--quant-enable-layer-module''' , type=lowerCAmelCase_ , help='''enable quantizers by keyword under layer''' )
group.add_argument('''--calibrator''' , default='''max''' , help='''which quantization range calibrator to use''' )
group.add_argument('''--percentile''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help='''percentile for PercentileCalibrator''' )
group.add_argument('''--fuse-qkv''' , action='''store_true''' , help='''use the same scale factor for qkv''' )
group.add_argument('''--clip-gelu''' , metavar='''N''' , type=lowerCAmelCase_ , help='''clip gelu output maximum value to N''' )
group.add_argument(
'''--recalibrate-weights''' , action='''store_true''' , help=(
'''recalibrate weight amaxes by taking the max of the weights.'''
''' amaxes will be computed with the current quantization granularity (axis).'''
) , )
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
if args.calibrator == "max":
_snake_case : Optional[int] = '''max'''
elif args.calibrator == "percentile":
if args.percentile is None:
raise ValueError('''Specify --percentile when using percentile calibrator''' )
_snake_case : Tuple = '''histogram'''
elif args.calibrator == "mse":
_snake_case : int = '''histogram'''
else:
raise ValueError(f'''Invalid calibrator {args.calibrator}''' )
_snake_case : Tuple = QuantDescriptor(num_bits=args.aprec , calib_method=lowerCAmelCase_ )
_snake_case : str = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) )
quant_nn.QuantLinear.set_default_quant_desc_input(lowerCAmelCase_ )
quant_nn.QuantLinear.set_default_quant_desc_weight(lowerCAmelCase_ )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False , lowerCAmelCase_=False ):
"""simple docstring"""
logger.info('''Configuring Model for Quantization''' )
logger.info(f'''using quantization package {pytorch_quantization.__file__}''' )
if not calib:
if args.quant_disable_embeddings:
set_quantizer_by_name(lowerCAmelCase_ , ['''embeddings'''] , which='''weight''' , _disabled=lowerCAmelCase_ )
if args.quant_disable:
set_quantizer_by_name(lowerCAmelCase_ , [''''''] , _disabled=lowerCAmelCase_ )
if args.quant_disable_keyword:
set_quantizer_by_name(lowerCAmelCase_ , args.quant_disable_keyword , _disabled=lowerCAmelCase_ )
if args.quant_disable_layer_module:
set_quantizer_by_name(lowerCAmelCase_ , [R'''layer.\d+.''' + args.quant_disable_layer_module] , _disabled=lowerCAmelCase_ )
if args.quant_enable_layer_module:
set_quantizer_by_name(lowerCAmelCase_ , [R'''layer.\d+.''' + args.quant_enable_layer_module] , _disabled=lowerCAmelCase_ )
if args.recalibrate_weights:
recalibrate_weights(lowerCAmelCase_ )
if args.fuse_qkv:
fuse_qkv(lowerCAmelCase_ , lowerCAmelCase_ )
if args.clip_gelu:
clip_gelu(lowerCAmelCase_ , args.clip_gelu )
# if args.local_rank in [-1, 0] and not calib:
print_quant_summary(lowerCAmelCase_ )
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
logger.info('''Enabling Calibration''' )
for name, module in model.named_modules():
if name.endswith('''_quantizer''' ):
if module._calibrator is not None:
module.disable_quant()
module.enable_calib()
else:
module.disable()
logger.info(f'''{name:80}: {module}''' )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
logger.info('''Loading calibrated amax''' )
for name, module in model.named_modules():
if name.endswith('''_quantizer''' ):
if module._calibrator is not None:
if isinstance(module._calibrator , calib.MaxCalibrator ):
module.load_calib_amax()
else:
module.load_calib_amax('''percentile''' , percentile=args.percentile )
module.enable_quant()
module.disable_calib()
else:
module.enable()
model.cuda()
print_quant_summary(lowerCAmelCase_ )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
def fusea(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
for mod in [qq, qk, qv]:
if not hasattr(lowerCAmelCase_ , '''_amax''' ):
print(''' WARNING: NO AMAX BUFFER''' )
return
_snake_case : Tuple = qq._amax.detach().item()
_snake_case : Tuple = qk._amax.detach().item()
_snake_case : List[Any] = qv._amax.detach().item()
_snake_case : List[str] = max(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
qq._amax.fill_(lowerCAmelCase_ )
qk._amax.fill_(lowerCAmelCase_ )
qv._amax.fill_(lowerCAmelCase_ )
logger.info(f''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' )
for name, mod in model.named_modules():
if name.endswith('''.attention.self''' ):
logger.info(f'''FUSE_QKV: {name:{name_width}}''' )
fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer )
if args.quant_per_tensor:
fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
for name, mod in model.named_modules():
if name.endswith('''.output.dense''' ) and not name.endswith('''attention.output.dense''' ):
_snake_case : List[Any] = mod._input_quantizer._amax.data.detach().item()
mod._input_quantizer._amax.data.detach().clamp_(max=lowerCAmelCase_ )
_snake_case : List[str] = mod._input_quantizer._amax.data.detach().item()
logger.info(f'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' )
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
for name, mod in model.named_modules():
if hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ) and mod._weight_quantizer.axis is not None:
_snake_case : Dict = mod.weight.shape[0]
_snake_case : Optional[int] = mod._weight_quantizer._amax.detach()
_snake_case : Optional[int] = torch.ones(lowerCAmelCase_ , dtype=amax.dtype , device=amax.device ) * amax
print(f'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' )
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
for name, mod in model.named_modules():
if hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ):
if not hasattr(mod.weight_quantizer , '''_amax''' ):
print('''RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER''' )
continue
# determine which axes to reduce across
# e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3)
_snake_case : int = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis )
_snake_case : Dict = set(range(len(mod.weight.size() ) ) ) - axis_set
_snake_case : Optional[int] = pytorch_quantization.utils.reduce_amax(mod.weight , axis=lowerCAmelCase_ , keepdims=lowerCAmelCase_ ).detach()
logger.info(f'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' )
_snake_case : Tuple = amax
def _a ( lowerCAmelCase_ , lowerCAmelCase_=25 , lowerCAmelCase_=180 , lowerCAmelCase_=None ):
"""simple docstring"""
if ignore is None:
_snake_case : Dict = []
elif not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
_snake_case : Optional[int] = [ignore]
_snake_case : str = 0
for name, mod in model.named_modules():
if not hasattr(lowerCAmelCase_ , '''weight''' ):
continue
_snake_case : Optional[int] = max(lowerCAmelCase_ , len(lowerCAmelCase_ ) )
for name, mod in model.named_modules():
_snake_case : Optional[Any] = getattr(lowerCAmelCase_ , '''_input_quantizer''' , lowerCAmelCase_ )
_snake_case : Tuple = getattr(lowerCAmelCase_ , '''_weight_quantizer''' , lowerCAmelCase_ )
if not hasattr(lowerCAmelCase_ , '''weight''' ):
continue
if type(lowerCAmelCase_ ) in ignore:
continue
if [True for s in ignore if type(lowerCAmelCase_ ) is str and s in name]:
continue
_snake_case : Optional[int] = f'''Act:{input_q.extra_repr()}'''
_snake_case : Any = f'''Wgt:{weight_q.extra_repr()}'''
_snake_case : Optional[int] = f'''{name:{name_width}} {act_str} {wgt_str}'''
if len(lowerCAmelCase_ ) <= line_width:
logger.info(lowerCAmelCase_ )
else:
logger.info(f'''{name:{name_width}} {act_str}''' )
logger.info(f'''{" ":{name_width}} {wgt_str}''' )
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : str = 0
for name, mod in model.named_modules():
if isinstance(lowerCAmelCase_ , pytorch_quantization.nn.TensorQuantizer ):
print(f'''{name:80} {mod}''' )
count += 1
print(f'''{count} TensorQuantizers found in model''' )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Optional[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
if quantizer_mod is not None:
assert hasattr(lowerCAmelCase_ , lowerCAmelCase_ )
setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
else:
logger.warning(f'''{name} has no {quantizer}''' )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_="both" , **lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Optional[Any] = f'''Warning: changing {which} quantizers of {name:{qname_width}}'''
for k, v in kwargs.items():
s += f''' {k}={v}'''
if which in ["input", "both"]:
set_quantizer(lowerCAmelCase_ , lowerCAmelCase_ , '''_input_quantizer''' , lowerCAmelCase_ , lowerCAmelCase_ )
if which in ["weight", "both"]:
set_quantizer(lowerCAmelCase_ , lowerCAmelCase_ , '''_weight_quantizer''' , lowerCAmelCase_ , lowerCAmelCase_ )
logger.info(lowerCAmelCase_ )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ):
"""simple docstring"""
for name, mod in model.named_modules():
if hasattr(lowerCAmelCase_ , '''_input_quantizer''' ) or hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ):
for n in names:
if re.search(lowerCAmelCase_ , lowerCAmelCase_ ):
set_quantizers(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ )
elif name.endswith('''_quantizer''' ):
for n in names:
if re.search(lowerCAmelCase_ , lowerCAmelCase_ ):
_snake_case : Any = f'''Warning: changing {name:{name_width}}'''
for k, v in kwargs.items():
s += f''' {k}={v}'''
setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
logger.info(lowerCAmelCase_ )
| 47
| 1
|
'''simple docstring'''
from datetime import datetime
import requests
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : str = '''https://downloadgram.net/wp-json/wppress/video-downloader/video?url='''
_snake_case : Optional[Any] = requests.get(base_url + url ).json()[0]['''urls'''][0]['''src''']
return requests.get(lowerCAmelCase_ ).content
if __name__ == "__main__":
UpperCAmelCase : Optional[Any] = input('Enter Video/IGTV url: ').strip()
UpperCAmelCase : Any = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4"""
with open(file_name, 'wb') as fp:
fp.write(download_video(url))
print(F"""Done. Video saved to disk as {file_name}.""")
| 47
|
'''simple docstring'''
from __future__ import annotations
def _a ( lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None ):
"""simple docstring"""
if start is None:
_snake_case : Optional[Any] = 0
if end is None:
_snake_case : Any = len(lowerCAmelCase_ ) - 1
if start >= end:
return
_snake_case : Optional[Any] = (start + end) // 2
slowsort(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
slowsort(lowerCAmelCase_ , mid + 1 , lowerCAmelCase_ )
if sequence[end] < sequence[mid]:
_snake_case , _snake_case : int = sequence[mid], sequence[end]
slowsort(lowerCAmelCase_ , lowerCAmelCase_ , end - 1 )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 47
| 1
|
'''simple docstring'''
import unittest
from transformers.utils.backbone_utils import (
BackboneMixin,
get_aligned_output_features_output_indices,
verify_out_features_out_indices,
)
class lowerCamelCase (unittest.TestCase ):
def UpperCAmelCase_ ( self ) -> Tuple:
"""simple docstring"""
_snake_case : Tuple = ['''a''', '''b''', '''c''']
# Defaults to last layer if both are None
_snake_case , _snake_case : Dict = get_aligned_output_features_output_indices(lowercase__ , lowercase__ , lowercase__ )
self.assertEqual(lowercase__ , ['''c'''] )
self.assertEqual(lowercase__ , [2] )
# Out indices set to match out features
_snake_case , _snake_case : str = get_aligned_output_features_output_indices(['''a''', '''c'''] , lowercase__ , lowercase__ )
self.assertEqual(lowercase__ , ['''a''', '''c'''] )
self.assertEqual(lowercase__ , [0, 2] )
# Out features set to match out indices
_snake_case , _snake_case : Any = get_aligned_output_features_output_indices(lowercase__ , [0, 2] , lowercase__ )
self.assertEqual(lowercase__ , ['''a''', '''c'''] )
self.assertEqual(lowercase__ , [0, 2] )
# Out features selected from negative indices
_snake_case , _snake_case : Optional[int] = get_aligned_output_features_output_indices(lowercase__ , [-3, -1] , lowercase__ )
self.assertEqual(lowercase__ , ['''a''', '''c'''] )
self.assertEqual(lowercase__ , [-3, -1] )
def UpperCAmelCase_ ( self ) -> int:
"""simple docstring"""
with self.assertRaises(lowercase__ ):
verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , lowercase__ )
# Out features must be a list
with self.assertRaises(lowercase__ ):
verify_out_features_out_indices(('''a''', '''b''') , (0, 1) , ['''a''', '''b'''] )
# Out features must be a subset of stage names
with self.assertRaises(lowercase__ ):
verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , ['''a'''] )
# Out indices must be a list or tuple
with self.assertRaises(lowercase__ ):
verify_out_features_out_indices(lowercase__ , 0 , ['''a''', '''b'''] )
# Out indices must be a subset of stage names
with self.assertRaises(lowercase__ ):
verify_out_features_out_indices(lowercase__ , (0, 1) , ['''a'''] )
# Out features and out indices must be the same length
with self.assertRaises(lowercase__ ):
verify_out_features_out_indices(['''a''', '''b'''] , (0,) , ['''a''', '''b''', '''c'''] )
# Out features should match out indices
with self.assertRaises(lowercase__ ):
verify_out_features_out_indices(['''a''', '''b'''] , (0, 2) , ['''a''', '''b''', '''c'''] )
# Out features and out indices should be in order
with self.assertRaises(lowercase__ ):
verify_out_features_out_indices(['''b''', '''a'''] , (0, 1) , ['''a''', '''b'''] )
# Check passes with valid inputs
verify_out_features_out_indices(['''a''', '''b''', '''d'''] , (0, 1, -1) , ['''a''', '''b''', '''c''', '''d'''] )
def UpperCAmelCase_ ( self ) -> Optional[Any]:
"""simple docstring"""
_snake_case : Optional[int] = BackboneMixin()
_snake_case : List[Any] = ['''a''', '''b''', '''c''']
_snake_case : Union[str, Any] = ['''a''', '''c''']
_snake_case : Any = [0, 2]
# Check that the output features and indices are set correctly
self.assertEqual(backbone.out_features , ['''a''', '''c'''] )
self.assertEqual(backbone.out_indices , [0, 2] )
# Check out features and indices are updated correctly
_snake_case : List[str] = ['''a''', '''b''']
self.assertEqual(backbone.out_features , ['''a''', '''b'''] )
self.assertEqual(backbone.out_indices , [0, 1] )
_snake_case : Dict = [-3, -1]
self.assertEqual(backbone.out_features , ['''a''', '''c'''] )
self.assertEqual(backbone.out_indices , [-3, -1] )
| 47
|
'''simple docstring'''
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class lowerCamelCase (unittest.TestCase ):
@slow
def UpperCAmelCase_ ( self ) -> int:
"""simple docstring"""
_snake_case : Tuple = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' )
_snake_case : Any = AutoTokenizer.from_pretrained('''google/mt5-small''' )
_snake_case : List[str] = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids
_snake_case : Dict = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids
_snake_case : Any = shift_tokens_right(lowercase__ , model.config.pad_token_id , model.config.decoder_start_token_id )
_snake_case : Any = model(lowercase__ , decoder_input_ids=lowercase__ ).logits
_snake_case : Tuple = optax.softmax_cross_entropy(lowercase__ , onehot(lowercase__ , logits.shape[-1] ) ).mean()
_snake_case : Tuple = -(labels.shape[-1] * loss.item())
_snake_case : Union[str, Any] = -84.9_127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
| 47
| 1
|
'''simple docstring'''
import json
import os
import unittest
from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast
from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowerCamelCase (a__ , unittest.TestCase ):
_lowercase : int = LEDTokenizer
_lowercase : List[Any] = LEDTokenizerFast
_lowercase : Dict = True
def UpperCAmelCase_ ( self ) -> Optional[int]:
"""simple docstring"""
super().setUp()
_snake_case : Dict = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''<unk>''',
]
_snake_case : str = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) )
_snake_case : int = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
_snake_case : List[Any] = {'''unk_token''': '''<unk>'''}
_snake_case : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
_snake_case : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(lowercase__ ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(lowercase__ ) )
def UpperCAmelCase_ ( self , **lowercase__ ) -> str:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase__ )
def UpperCAmelCase_ ( self , **lowercase__ ) -> List[Any]:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ ) -> Union[str, Any]:
"""simple docstring"""
return "lower newer", "lower newer"
@cached_property
def UpperCAmelCase_ ( self ) -> Optional[Any]:
"""simple docstring"""
return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' )
@cached_property
def UpperCAmelCase_ ( self ) -> List[str]:
"""simple docstring"""
return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' )
@require_torch
def UpperCAmelCase_ ( self ) -> List[Any]:
"""simple docstring"""
_snake_case : Any = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
_snake_case : Optional[Any] = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_snake_case : Any = tokenizer(lowercase__ , max_length=len(lowercase__ ) , padding=lowercase__ , return_tensors='''pt''' )
self.assertIsInstance(lowercase__ , lowercase__ )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
_snake_case : Union[str, Any] = batch.input_ids.tolist()[0]
self.assertListEqual(lowercase__ , lowercase__ )
@require_torch
def UpperCAmelCase_ ( self ) -> Dict:
"""simple docstring"""
_snake_case : Tuple = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_snake_case : Dict = tokenizer(lowercase__ , padding=lowercase__ , return_tensors='''pt''' )
self.assertIn('''input_ids''' , lowercase__ )
self.assertIn('''attention_mask''' , lowercase__ )
self.assertNotIn('''labels''' , lowercase__ )
self.assertNotIn('''decoder_attention_mask''' , lowercase__ )
@require_torch
def UpperCAmelCase_ ( self ) -> int:
"""simple docstring"""
_snake_case : Optional[Any] = [
'''Summary of the text.''',
'''Another summary.''',
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_snake_case : Union[str, Any] = tokenizer(text_target=lowercase__ , max_length=32 , padding='''max_length''' , return_tensors='''pt''' )
self.assertEqual(32 , targets['''input_ids'''].shape[1] )
@require_torch
def UpperCAmelCase_ ( self ) -> int:
"""simple docstring"""
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_snake_case : Optional[Any] = tokenizer(
['''I am a small frog''' * 1_024, '''I am a small frog'''] , padding=lowercase__ , truncation=lowercase__ , return_tensors='''pt''' )
self.assertIsInstance(lowercase__ , lowercase__ )
self.assertEqual(batch.input_ids.shape , (2, 5_122) )
@require_torch
def UpperCAmelCase_ ( self ) -> Tuple:
"""simple docstring"""
_snake_case : str = ['''A long paragraph for summarization.''']
_snake_case : int = [
'''Summary of the text.''',
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_snake_case : Optional[Any] = tokenizer(lowercase__ , return_tensors='''pt''' )
_snake_case : Union[str, Any] = tokenizer(text_target=lowercase__ , return_tensors='''pt''' )
_snake_case : Tuple = inputs['''input_ids''']
_snake_case : List[str] = targets['''input_ids''']
self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() )
self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() )
@require_torch
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
"""simple docstring"""
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_snake_case : Union[str, Any] = ['''Summary of the text.''', '''Another summary.''']
_snake_case : int = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]]
_snake_case : str = tokenizer(lowercase__ , padding=lowercase__ )
_snake_case : str = [[0] * len(lowercase__ ) for x in encoded_output['''input_ids''']]
_snake_case : List[str] = tokenizer.pad(lowercase__ )
self.assertSequenceEqual(outputs['''global_attention_mask'''] , lowercase__ )
def UpperCAmelCase_ ( self ) -> Any:
"""simple docstring"""
pass
def UpperCAmelCase_ ( self ) -> Optional[Any]:
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
_snake_case : int = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__ )
_snake_case : str = self.tokenizer_class.from_pretrained(lowercase__ , **lowercase__ )
_snake_case : List[Any] = '''A, <mask> AllenNLP sentence.'''
_snake_case : Tuple = tokenizer_r.encode_plus(lowercase__ , add_special_tokens=lowercase__ , return_token_type_ids=lowercase__ )
_snake_case : Union[str, Any] = tokenizer_p.encode_plus(lowercase__ , add_special_tokens=lowercase__ , return_token_type_ids=lowercase__ )
self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) )
self.assertEqual(
sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , )
_snake_case : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] )
_snake_case : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] )
self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(
lowercase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
self.assertSequenceEqual(
lowercase__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
| 47
|
'''simple docstring'''
import pickle
import unittest
import torch
from accelerate import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils import require_cpu
@require_cpu
class lowerCamelCase (unittest.TestCase ):
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
"""simple docstring"""
_snake_case : Any = torch.nn.Linear(10 , 10 )
_snake_case : Optional[int] = torch.optim.SGD(model.parameters() , 0.1 )
_snake_case : List[str] = Accelerator()
_snake_case : Optional[Any] = accelerator.prepare(lowercase__ )
try:
pickle.loads(pickle.dumps(lowercase__ ) )
except Exception as e:
self.fail(F'''Accelerated optimizer pickling failed with {e}''' )
AcceleratorState._reset_state()
| 47
| 1
|
'''simple docstring'''
import unittest
from .lib import (
Matrix,
Vector,
axpy,
square_zero_matrix,
unit_basis_vector,
zero_vector,
)
class lowerCamelCase (unittest.TestCase ):
def UpperCAmelCase_ ( self ) -> None:
"""simple docstring"""
_snake_case : Dict = Vector([1, 2, 3] )
self.assertEqual(x.component(0 ) , 1 )
self.assertEqual(x.component(2 ) , 3 )
_snake_case : Union[str, Any] = Vector()
def UpperCAmelCase_ ( self ) -> None:
"""simple docstring"""
_snake_case : Optional[int] = Vector([0, 0, 0, 0, 0, 1] )
self.assertEqual(str(lowercase__ ) , '''(0,0,0,0,0,1)''' )
def UpperCAmelCase_ ( self ) -> None:
"""simple docstring"""
_snake_case : List[str] = Vector([1, 2, 3, 4] )
self.assertEqual(len(lowercase__ ) , 4 )
def UpperCAmelCase_ ( self ) -> None:
"""simple docstring"""
_snake_case : Dict = Vector([1, 2] )
_snake_case : Union[str, Any] = Vector([1, 2, 3, 4, 5] )
_snake_case : Dict = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] )
_snake_case : Union[str, Any] = Vector([1, -1, 1, -1, 2, -3, 4, -5] )
self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 )
self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 )
self.assertEqual(z.euclidean_length() , 0 )
self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 )
def UpperCAmelCase_ ( self ) -> None:
"""simple docstring"""
_snake_case : Dict = Vector([1, 2, 3] )
_snake_case : int = Vector([1, 1, 1] )
self.assertEqual((x + y).component(0 ) , 2 )
self.assertEqual((x + y).component(1 ) , 3 )
self.assertEqual((x + y).component(2 ) , 4 )
def UpperCAmelCase_ ( self ) -> None:
"""simple docstring"""
_snake_case : int = Vector([1, 2, 3] )
_snake_case : Tuple = Vector([1, 1, 1] )
self.assertEqual((x - y).component(0 ) , 0 )
self.assertEqual((x - y).component(1 ) , 1 )
self.assertEqual((x - y).component(2 ) , 2 )
def UpperCAmelCase_ ( self ) -> None:
"""simple docstring"""
_snake_case : str = Vector([1, 2, 3] )
_snake_case : Any = Vector([2, -1, 4] ) # for test of dot product
_snake_case : str = Vector([1, -2, -1] )
self.assertEqual(str(x * 3.0 ) , '''(3.0,6.0,9.0)''' )
self.assertEqual((a * b) , 0 )
def UpperCAmelCase_ ( self ) -> None:
"""simple docstring"""
self.assertEqual(str(zero_vector(10 ) ).count('''0''' ) , 10 )
def UpperCAmelCase_ ( self ) -> None:
"""simple docstring"""
self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '''(0,1,0)''' )
def UpperCAmelCase_ ( self ) -> None:
"""simple docstring"""
_snake_case : List[Any] = Vector([1, 2, 3] )
_snake_case : Any = Vector([1, 0, 1] )
self.assertEqual(str(axpy(2 , lowercase__ , lowercase__ ) ) , '''(3,4,7)''' )
def UpperCAmelCase_ ( self ) -> None:
"""simple docstring"""
_snake_case : Optional[int] = Vector([1, 0, 0, 0, 0, 0] )
_snake_case : List[Any] = x.copy()
self.assertEqual(str(lowercase__ ) , str(lowercase__ ) )
def UpperCAmelCase_ ( self ) -> None:
"""simple docstring"""
_snake_case : List[str] = Vector([1, 0, 0] )
x.change_component(0 , 0 )
x.change_component(1 , 1 )
self.assertEqual(str(lowercase__ ) , '''(0,1,0)''' )
def UpperCAmelCase_ ( self ) -> None:
"""simple docstring"""
_snake_case : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual('''|1,2,3|\n|2,4,5|\n|6,7,8|\n''' , str(lowercase__ ) )
def UpperCAmelCase_ ( self ) -> None:
"""simple docstring"""
_snake_case : Optional[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
_snake_case : Dict = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(minors[x][y] , a.minor(lowercase__ , lowercase__ ) )
def UpperCAmelCase_ ( self ) -> None:
"""simple docstring"""
_snake_case : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
_snake_case : List[Any] = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(cofactors[x][y] , a.cofactor(lowercase__ , lowercase__ ) )
def UpperCAmelCase_ ( self ) -> None:
"""simple docstring"""
_snake_case : List[str] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(-5 , a.determinant() )
def UpperCAmelCase_ ( self ) -> None:
"""simple docstring"""
_snake_case : str = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 )
_snake_case : Union[str, Any] = Vector([1, 2, 3] )
self.assertEqual('''(14,32,50)''' , str(a * x ) )
self.assertEqual('''|2,4,6|\n|8,10,12|\n|14,16,18|\n''' , str(a * 2 ) )
def UpperCAmelCase_ ( self ) -> None:
"""simple docstring"""
_snake_case : List[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
a.change_component(0 , 2 , 5 )
self.assertEqual('''|1,2,5|\n|2,4,5|\n|6,7,8|\n''' , str(lowercase__ ) )
def UpperCAmelCase_ ( self ) -> None:
"""simple docstring"""
_snake_case : Optional[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(7 , a.component(2 , 1 ) , 0.01 )
def UpperCAmelCase_ ( self ) -> None:
"""simple docstring"""
_snake_case : Optional[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
_snake_case : Dict = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 )
self.assertEqual('''|2,4,10|\n|4,8,10|\n|12,14,18|\n''' , str(a + b ) )
def UpperCAmelCase_ ( self ) -> None:
"""simple docstring"""
_snake_case : Tuple = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
_snake_case : Optional[Any] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 )
self.assertEqual('''|0,0,-4|\n|0,0,0|\n|0,0,-2|\n''' , str(a - b ) )
def UpperCAmelCase_ ( self ) -> None:
"""simple docstring"""
self.assertEqual(
'''|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n''' , str(square_zero_matrix(5 ) ) , )
if __name__ == "__main__":
unittest.main()
| 47
|
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = tuple[float, float, float]
UpperCAmelCase : int = tuple[float, float, float]
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : str = end_pointa[0] - end_pointa[0]
_snake_case : Tuple = end_pointa[1] - end_pointa[1]
_snake_case : Any = end_pointa[2] - end_pointa[2]
return (x, y, z)
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Dict = ab[1] * ac[2] - ab[2] * ac[1] # *i
_snake_case : List[str] = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j
_snake_case : Optional[int] = ab[0] * ac[1] - ab[1] * ac[0] # *k
return (x, y, z)
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
return tuple(round(lowerCAmelCase_ , lowerCAmelCase_ ) for x in vector ) == (0, 0, 0)
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 10 ):
"""simple docstring"""
_snake_case : str = create_vector(lowerCAmelCase_ , lowerCAmelCase_ )
_snake_case : Tuple = create_vector(lowerCAmelCase_ , lowerCAmelCase_ )
return is_zero_vector(get_ad_vectors_cross(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ )
| 47
| 1
|
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class lowerCamelCase (metaclass=a__ ):
_lowercase : Any = ["""flax"""]
def __init__( self , *lowercase__ , **lowercase__ ) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ['''flax'''] )
@classmethod
def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Dict:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
@classmethod
def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> List[str]:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
class lowerCamelCase (metaclass=a__ ):
_lowercase : Union[str, Any] = ["""flax"""]
def __init__( self , *lowercase__ , **lowercase__ ) -> List[Any]:
"""simple docstring"""
requires_backends(self , ['''flax'''] )
@classmethod
def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Dict:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
@classmethod
def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Dict:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
class lowerCamelCase (metaclass=a__ ):
_lowercase : Optional[Any] = ["""flax"""]
def __init__( self , *lowercase__ , **lowercase__ ) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ['''flax'''] )
@classmethod
def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Dict:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
@classmethod
def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Dict:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
class lowerCamelCase (metaclass=a__ ):
_lowercase : List[str] = ["""flax"""]
def __init__( self , *lowercase__ , **lowercase__ ) -> Any:
"""simple docstring"""
requires_backends(self , ['''flax'''] )
@classmethod
def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Tuple:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
@classmethod
def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Tuple:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
class lowerCamelCase (metaclass=a__ ):
_lowercase : List[str] = ["""flax"""]
def __init__( self , *lowercase__ , **lowercase__ ) -> List[Any]:
"""simple docstring"""
requires_backends(self , ['''flax'''] )
@classmethod
def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
@classmethod
def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
class lowerCamelCase (metaclass=a__ ):
_lowercase : str = ["""flax"""]
def __init__( self , *lowercase__ , **lowercase__ ) -> List[str]:
"""simple docstring"""
requires_backends(self , ['''flax'''] )
@classmethod
def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
@classmethod
def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
class lowerCamelCase (metaclass=a__ ):
_lowercase : Any = ["""flax"""]
def __init__( self , *lowercase__ , **lowercase__ ) -> str:
"""simple docstring"""
requires_backends(self , ['''flax'''] )
@classmethod
def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Any:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
@classmethod
def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Tuple:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
class lowerCamelCase (metaclass=a__ ):
_lowercase : Optional[Any] = ["""flax"""]
def __init__( self , *lowercase__ , **lowercase__ ) -> str:
"""simple docstring"""
requires_backends(self , ['''flax'''] )
@classmethod
def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
@classmethod
def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Tuple:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
class lowerCamelCase (metaclass=a__ ):
_lowercase : Dict = ["""flax"""]
def __init__( self , *lowercase__ , **lowercase__ ) -> Any:
"""simple docstring"""
requires_backends(self , ['''flax'''] )
@classmethod
def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Any:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
@classmethod
def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Tuple:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
class lowerCamelCase (metaclass=a__ ):
_lowercase : List[Any] = ["""flax"""]
def __init__( self , *lowercase__ , **lowercase__ ) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ['''flax'''] )
@classmethod
def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
@classmethod
def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Any:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
class lowerCamelCase (metaclass=a__ ):
_lowercase : Any = ["""flax"""]
def __init__( self , *lowercase__ , **lowercase__ ) -> str:
"""simple docstring"""
requires_backends(self , ['''flax'''] )
@classmethod
def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Any:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
@classmethod
def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
class lowerCamelCase (metaclass=a__ ):
_lowercase : List[str] = ["""flax"""]
def __init__( self , *lowercase__ , **lowercase__ ) -> Any:
"""simple docstring"""
requires_backends(self , ['''flax'''] )
@classmethod
def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> int:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
@classmethod
def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> int:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
class lowerCamelCase (metaclass=a__ ):
_lowercase : int = ["""flax"""]
def __init__( self , *lowercase__ , **lowercase__ ) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ['''flax'''] )
@classmethod
def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
@classmethod
def UpperCAmelCase_ ( cls , *lowercase__ , **lowercase__ ) -> List[str]:
"""simple docstring"""
requires_backends(cls , ['''flax'''] )
| 47
|
'''simple docstring'''
import argparse
import logging
import os
from datetime import datetime
import numpy as np
import torch
from torch import nn
from torch.utils.data import DataLoader, RandomSampler, TensorDataset
from tqdm import tqdm
from transformers import GPTaLMHeadModel
UpperCAmelCase : List[str] = logging.getLogger(__name__)
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
if os.path.exists(lowerCAmelCase_ ):
if os.path.exists(os.path.join(lowerCAmelCase_ , '''config.json''' ) ) and os.path.isfile(
os.path.join(lowerCAmelCase_ , '''config.json''' ) ):
os.remove(os.path.join(lowerCAmelCase_ , '''config.json''' ) )
if os.path.exists(os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) ) and os.path.isfile(
os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) ):
os.remove(os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) )
else:
os.makedirs(lowerCAmelCase_ )
model.save_pretrained(lowerCAmelCase_ )
def _a ( lowerCAmelCase_ , lowerCAmelCase_=False ):
"""simple docstring"""
_snake_case : Optional[Any] = 2
if unlogit:
_snake_case : Any = torch.pow(lowerCAmelCase_ , lowerCAmelCase_ )
_snake_case : Union[str, Any] = p * torch.log(lowerCAmelCase_ )
_snake_case : Optional[Any] = 0
return -plogp.sum(dim=-1 )
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
logger.info('''lv, h >\t''' + '''\t'''.join(f'''{x + 1}''' for x in range(len(lowerCAmelCase_ ) ) ) )
for row in range(len(lowerCAmelCase_ ) ):
if tensor.dtype != torch.long:
logger.info(f'''layer {row + 1}:\t''' + '''\t'''.join(f'''{x:.5f}''' for x in tensor[row].cpu().data ) )
else:
logger.info(f'''layer {row + 1}:\t''' + '''\t'''.join(f'''{x:d}''' for x in tensor[row].cpu().data ) )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=None , lowerCAmelCase_=False ):
"""simple docstring"""
_snake_case , _snake_case : Optional[int] = model.config.num_hidden_layers, model.config.num_attention_heads
_snake_case : Tuple = torch.zeros(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device )
_snake_case : Union[str, Any] = torch.zeros(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device )
if head_mask is None:
_snake_case : int = torch.ones(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device )
head_mask.requires_grad_(requires_grad=lowerCAmelCase_ )
# If actually pruned attention multi-head, set head mask to None to avoid shape mismatch
if actually_pruned:
_snake_case : Dict = None
_snake_case : Dict = 0.0
_snake_case : Optional[int] = 0.0
for step, inputs in enumerate(tqdm(lowerCAmelCase_ , desc='''Iteration''' , disable=args.local_rank not in [-1, 0] ) ):
_snake_case : List[Any] = tuple(t.to(args.device ) for t in inputs )
((_snake_case) , ) : Optional[Any] = inputs
# Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below)
_snake_case : Any = model(lowerCAmelCase_ , labels=lowerCAmelCase_ , head_mask=lowerCAmelCase_ )
# (loss), lm_logits, presents, (all hidden_states), (attentions)
_snake_case , _snake_case , _snake_case : List[Any] = (
outputs[0],
outputs[1],
outputs[-1],
) # Loss and logits are the first, attention the last
loss.backward() # Backpropagate to populate the gradients in the head mask
total_loss += loss.detach().cpu().numpy()
if compute_entropy:
for layer, attn in enumerate(lowerCAmelCase_ ):
_snake_case : Union[str, Any] = entropy(attn.detach() , lowerCAmelCase_ )
attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach()
if compute_importance:
head_importance += head_mask.grad.abs().detach()
tot_tokens += torch.ones_like(lowerCAmelCase_ ).float().detach().sum().data
# Normalize
attn_entropy /= tot_tokens
head_importance /= tot_tokens
# Layerwise importance normalization
if not args.dont_normalize_importance_by_layer:
_snake_case : Any = 2
_snake_case : List[str] = torch.pow(torch.pow(lowerCAmelCase_ , lowerCAmelCase_ ).sum(-1 ) , 1 / exponent )
head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20
if not args.dont_normalize_global_importance:
_snake_case : Optional[int] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min())
# Print matrices
if compute_entropy:
logger.info('''Attention entropies''' )
print_ad_tensor(lowerCAmelCase_ )
if compute_importance:
logger.info('''Head importance scores''' )
print_ad_tensor(lowerCAmelCase_ )
logger.info('''Head ranked by importance scores''' )
_snake_case : str = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device )
_snake_case : List[Any] = torch.arange(
head_importance.numel() , device=args.device )
_snake_case : List[Any] = head_ranks.view_as(lowerCAmelCase_ )
print_ad_tensor(lowerCAmelCase_ )
return attn_entropy, head_importance, total_loss
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case , _snake_case , _snake_case : str = compute_heads_importance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ )
_snake_case : Optional[Any] = 1 / loss # instead of downsteam score use the LM loss
logger.info('''Pruning: original score: %f, threshold: %f''' , lowerCAmelCase_ , original_score * args.masking_threshold )
_snake_case : int = torch.ones_like(lowerCAmelCase_ )
_snake_case : Optional[Any] = max(1 , int(new_head_mask.numel() * args.masking_amount ) )
_snake_case : int = original_score
while current_score >= original_score * args.masking_threshold:
_snake_case : int = new_head_mask.clone().detach() # save current head mask
# heads from least important to most - keep only not-masked heads
_snake_case : Dict = float('''Inf''' )
_snake_case : Optional[Any] = head_importance.view(-1 ).sort()[1]
if len(lowerCAmelCase_ ) <= num_to_mask:
print('''BREAK BY num_to_mask''' )
break
# mask heads
_snake_case : Union[str, Any] = current_heads_to_mask[:num_to_mask]
logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist() ) )
_snake_case : Tuple = new_head_mask.view(-1 )
_snake_case : List[str] = 0.0
_snake_case : str = new_head_mask.view_as(lowerCAmelCase_ )
_snake_case : Dict = new_head_mask.clone().detach()
print_ad_tensor(lowerCAmelCase_ )
# Compute metric and head importance again
_snake_case , _snake_case , _snake_case : Any = compute_heads_importance(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , head_mask=lowerCAmelCase_ )
_snake_case : int = 1 / loss
logger.info(
'''Masking: current score: %f, remaining heads %d (%.1f percents)''' , lowerCAmelCase_ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , )
logger.info('''Final head mask''' )
print_ad_tensor(lowerCAmelCase_ )
np.save(os.path.join(args.output_dir , '''head_mask.npy''' ) , head_mask.detach().cpu().numpy() )
return head_mask
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Optional[Any] = datetime.now()
_snake_case , _snake_case , _snake_case : Union[str, Any] = compute_heads_importance(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , compute_importance=lowerCAmelCase_ , head_mask=lowerCAmelCase_ )
_snake_case : Tuple = 1 / loss
_snake_case : Dict = datetime.now() - before_time
_snake_case : List[Any] = sum(p.numel() for p in model.parameters() )
_snake_case : int = {
layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(lowerCAmelCase_ ) )
}
for k, v in heads_to_prune.items():
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
_snake_case : Union[str, Any] = [
v,
]
assert sum(len(lowerCAmelCase_ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item()
model.prune_heads(lowerCAmelCase_ )
_snake_case : List[str] = sum(p.numel() for p in model.parameters() )
_snake_case : int = datetime.now()
_snake_case , _snake_case , _snake_case : Optional[Any] = compute_heads_importance(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , compute_importance=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , actually_pruned=lowerCAmelCase_ , )
_snake_case : Optional[int] = 1 / loss
_snake_case : Dict = datetime.now() - before_time
logger.info(
'''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , lowerCAmelCase_ , lowerCAmelCase_ , pruned_num_params / original_num_params * 100 , )
logger.info('''Pruning: score with masking: %f score with pruning: %f''' , lowerCAmelCase_ , lowerCAmelCase_ )
logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 100 )
save_model(lowerCAmelCase_ , args.output_dir )
def _a ( ):
"""simple docstring"""
_snake_case : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--data_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , )
parser.add_argument(
'''--model_name_or_path''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , )
parser.add_argument(
'''--output_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''The output directory where the model predictions and checkpoints will be written.''' , )
# Other parameters
parser.add_argument(
'''--config_name''' , default='''''' , type=lowerCAmelCase_ , help='''Pretrained config name or path if not the same as model_name_or_path''' , )
parser.add_argument(
'''--tokenizer_name''' , default='''''' , type=lowerCAmelCase_ , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , )
parser.add_argument(
'''--cache_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help='''Where do you want to store the pre-trained models downloaded from s3''' , )
parser.add_argument(
'''--data_subset''' , type=lowerCAmelCase_ , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''' )
parser.add_argument(
'''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''' )
parser.add_argument(
'''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' )
parser.add_argument(
'''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''' )
parser.add_argument(
'''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , )
parser.add_argument(
'''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''' )
parser.add_argument(
'''--masking_threshold''' , default=0.9 , type=lowerCAmelCase_ , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , )
parser.add_argument(
'''--masking_amount''' , default=0.1 , type=lowerCAmelCase_ , help='''Amount to heads to masking at each masking step.''' )
parser.add_argument('''--metric_name''' , default='''acc''' , type=lowerCAmelCase_ , help='''Metric to use for head masking.''' )
parser.add_argument(
'''--max_seq_length''' , default=128 , type=lowerCAmelCase_ , help=(
'''The maximum total input sequence length after WordPiece tokenization. \n'''
'''Sequences longer than this will be truncated, sequences shorter padded.'''
) , )
parser.add_argument('''--batch_size''' , default=1 , type=lowerCAmelCase_ , help='''Batch size.''' )
parser.add_argument('''--seed''' , type=lowerCAmelCase_ , default=42 )
parser.add_argument('''--local_rank''' , type=lowerCAmelCase_ , default=-1 , help='''local_rank for distributed training on gpus''' )
parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''' )
parser.add_argument('''--server_ip''' , type=lowerCAmelCase_ , default='''''' , help='''Can be used for distant debugging.''' )
parser.add_argument('''--server_port''' , type=lowerCAmelCase_ , default='''''' , help='''Can be used for distant debugging.''' )
_snake_case : Optional[Any] = parser.parse_args()
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print('''Waiting for debugger attach''' )
ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowerCAmelCase_ )
ptvsd.wait_for_attach()
# Setup devices and distributed training
if args.local_rank == -1 or args.no_cuda:
_snake_case : str = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''' )
_snake_case : Optional[Any] = 0 if args.no_cuda else torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank )
_snake_case : List[str] = torch.device('''cuda''' , args.local_rank )
_snake_case : int = 1
torch.distributed.init_process_group(backend='''nccl''' ) # Initializes the distributed backend
# Setup logging
logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN )
logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) )
_snake_case : Optional[Any] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path )
# Distributed and parallel training
model.to(args.device )
if args.local_rank != -1:
_snake_case : Optional[int] = nn.parallel.DistributedDataParallel(
lowerCAmelCase_ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=lowerCAmelCase_ )
elif args.n_gpu > 1:
_snake_case : List[Any] = nn.DataParallel(lowerCAmelCase_ )
# Print/save training arguments
os.makedirs(args.output_dir , exist_ok=lowerCAmelCase_ )
torch.save(lowerCAmelCase_ , os.path.join(args.output_dir , '''run_args.bin''' ) )
logger.info('''Training/evaluation parameters %s''' , lowerCAmelCase_ )
# Prepare dataset
_snake_case : Dict = np.concatenate(
[
np.loadtxt(args.data_dir , dtype=np.intaa ),
] )
_snake_case : int = (torch.from_numpy(lowerCAmelCase_ ),)
_snake_case : Tuple = TensorDataset(*lowerCAmelCase_ )
_snake_case : List[str] = RandomSampler(lowerCAmelCase_ )
_snake_case : Dict = DataLoader(lowerCAmelCase_ , sampler=lowerCAmelCase_ , batch_size=args.batch_size )
# Compute head entropy and importance score
compute_heads_importance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
# Try head masking (set heads to zero until the score goes under a threshole)
# and head pruning (remove masked heads and see the effect on the network)
if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0:
_snake_case : Optional[int] = mask_heads(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
prune_heads(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
if __name__ == "__main__":
main()
| 47
| 1
|
'''simple docstring'''
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : int = [1]
_snake_case , _snake_case , _snake_case : Union[str, Any] = 0, 0, 0
_snake_case : List[Any] = ugly_nums[ia] * 2
_snake_case : Optional[int] = ugly_nums[ia] * 3
_snake_case : List[str] = ugly_nums[ia] * 5
for _ in range(1 , lowerCAmelCase_ ):
_snake_case : List[str] = min(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
ugly_nums.append(lowerCAmelCase_ )
if next_num == next_a:
ia += 1
_snake_case : Optional[Any] = ugly_nums[ia] * 2
if next_num == next_a:
ia += 1
_snake_case : int = ugly_nums[ia] * 3
if next_num == next_a:
ia += 1
_snake_case : Any = ugly_nums[ia] * 5
return ugly_nums[-1]
if __name__ == "__main__":
from doctest import testmod
testmod(verbose=True)
print(F"""{ugly_numbers(2_0_0) = }""")
| 47
|
'''simple docstring'''
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
if n == 1 or not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
return 0
elif n == 2:
return 1
else:
_snake_case : Union[str, Any] = [0, 1]
for i in range(2 , n + 1 ):
sequence.append(sequence[i - 1] + sequence[i - 2] )
return sequence[n]
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Optional[int] = 0
_snake_case : int = 2
while digits < n:
index += 1
_snake_case : Tuple = len(str(fibonacci(lowerCAmelCase_ ) ) )
return index
def _a ( lowerCAmelCase_ = 1_000 ):
"""simple docstring"""
return fibonacci_digits_index(lowerCAmelCase_ )
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 47
| 1
|
'''simple docstring'''
UpperCAmelCase : Dict = [0, 2, 4, 6, 8]
UpperCAmelCase : List[str] = [1, 3, 5, 7, 9]
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
if remaining_length == 0:
if digits[0] == 0 or digits[-1] == 0:
return 0
for i in range(length // 2 - 1 , -1 , -1 ):
remainder += digits[i] + digits[length - i - 1]
if remainder % 2 == 0:
return 0
remainder //= 10
return 1
if remaining_length == 1:
if remainder % 2 == 0:
return 0
_snake_case : Union[str, Any] = 0
for digit in range(10 ):
_snake_case : Optional[int] = digit
result += reversible_numbers(
0 , (remainder + 2 * digit) // 10 , lowerCAmelCase_ , lowerCAmelCase_ )
return result
_snake_case : List[Any] = 0
for digita in range(10 ):
_snake_case : Tuple = digita
if (remainder + digita) % 2 == 0:
_snake_case : str = ODD_DIGITS
else:
_snake_case : Optional[Any] = EVEN_DIGITS
for digita in other_parity_digits:
_snake_case : Union[str, Any] = digita
result += reversible_numbers(
remaining_length - 2 , (remainder + digita + digita) // 10 , lowerCAmelCase_ , lowerCAmelCase_ , )
return result
def _a ( lowerCAmelCase_ = 9 ):
"""simple docstring"""
_snake_case : List[Any] = 0
for length in range(1 , max_power + 1 ):
result += reversible_numbers(lowerCAmelCase_ , 0 , [0] * length , lowerCAmelCase_ )
return result
if __name__ == "__main__":
print(F"""{solution() = }""")
| 47
|
'''simple docstring'''
from __future__ import annotations
from collections.abc import Callable
from typing import Generic, TypeVar
UpperCAmelCase : Any = TypeVar('T')
UpperCAmelCase : str = TypeVar('U')
class lowerCamelCase (Generic[T, U] ):
def __init__( self , lowercase__ , lowercase__ ) -> List[Any]:
"""simple docstring"""
_snake_case : str = key
_snake_case : Optional[int] = val
_snake_case : DoubleLinkedListNode[T, U] | None = None
_snake_case : DoubleLinkedListNode[T, U] | None = None
def __repr__( self ) -> str:
"""simple docstring"""
return (
F'''Node: key: {self.key}, val: {self.val}, '''
F'''has next: {bool(self.next )}, has prev: {bool(self.prev )}'''
)
class lowerCamelCase (Generic[T, U] ):
def __init__( self ) -> None:
"""simple docstring"""
_snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase__ , lowercase__ )
_snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase__ , lowercase__ )
_snake_case , _snake_case : Union[str, Any] = self.rear, self.head
def __repr__( self ) -> str:
"""simple docstring"""
_snake_case : List[Any] = ['''DoubleLinkedList''']
_snake_case : str = self.head
while node.next is not None:
rep.append(str(lowercase__ ) )
_snake_case : List[str] = node.next
rep.append(str(self.rear ) )
return ",\n ".join(lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ ) -> None:
"""simple docstring"""
_snake_case : Tuple = self.rear.prev
# All nodes other than self.head are guaranteed to have non-None previous
assert previous is not None
_snake_case : Union[str, Any] = node
_snake_case : Optional[Any] = previous
_snake_case : int = node
_snake_case : Union[str, Any] = self.rear
def UpperCAmelCase_ ( self , lowercase__ ) -> DoubleLinkedListNode[T, U] | None:
"""simple docstring"""
if node.prev is None or node.next is None:
return None
_snake_case : Optional[int] = node.next
_snake_case : Any = node.prev
_snake_case : List[str] = None
_snake_case : Optional[int] = None
return node
class lowerCamelCase (Generic[T, U] ):
_lowercase : dict[Callable[[T], U], LRUCache[T, U]] = {}
def __init__( self , lowercase__ ) -> Union[str, Any]:
"""simple docstring"""
_snake_case : DoubleLinkedList[T, U] = DoubleLinkedList()
_snake_case : Union[str, Any] = capacity
_snake_case : int = 0
_snake_case : Dict = 0
_snake_case : Union[str, Any] = 0
_snake_case : dict[T, DoubleLinkedListNode[T, U]] = {}
def __repr__( self ) -> str:
"""simple docstring"""
return (
F'''CacheInfo(hits={self.hits}, misses={self.miss}, '''
F'''capacity={self.capacity}, current size={self.num_keys})'''
)
def __contains__( self , lowercase__ ) -> bool:
"""simple docstring"""
return key in self.cache
def UpperCAmelCase_ ( self , lowercase__ ) -> U | None:
"""simple docstring"""
if key in self.cache:
self.hits += 1
_snake_case : DoubleLinkedListNode[T, U] = self.cache[key]
_snake_case : Tuple = self.list.remove(self.cache[key] )
assert node == value_node
# node is guaranteed not None because it is in self.cache
assert node is not None
self.list.add(lowercase__ )
return node.val
self.miss += 1
return None
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> None:
"""simple docstring"""
if key not in self.cache:
if self.num_keys >= self.capacity:
# delete first node (oldest) when over capacity
_snake_case : Dict = self.list.head.next
# guaranteed to have a non-None first node when num_keys > 0
# explain to type checker via assertions
assert first_node is not None
assert first_node.key is not None
assert (
self.list.remove(lowercase__ ) is not None
) # node guaranteed to be in list assert node.key is not None
del self.cache[first_node.key]
self.num_keys -= 1
_snake_case : Optional[int] = DoubleLinkedListNode(lowercase__ , lowercase__ )
self.list.add(self.cache[key] )
self.num_keys += 1
else:
# bump node to the end of the list, update value
_snake_case : Optional[Any] = self.list.remove(self.cache[key] )
assert node is not None # node guaranteed to be in list
_snake_case : Optional[Any] = value
self.list.add(lowercase__ )
@classmethod
def UpperCAmelCase_ ( cls , lowercase__ = 128 ) -> Callable[[Callable[[T], U]], Callable[..., U]]:
"""simple docstring"""
def cache_decorator_inner(lowercase__ ) -> Callable[..., U]:
def cache_decorator_wrapper(*lowercase__ ) -> U:
if func not in cls.decorator_function_to_instance_map:
_snake_case : Optional[Any] = LRUCache(lowercase__ )
_snake_case : Union[str, Any] = cls.decorator_function_to_instance_map[func].get(args[0] )
if result is None:
_snake_case : Tuple = func(*lowercase__ )
cls.decorator_function_to_instance_map[func].put(args[0] , lowercase__ )
return result
def cache_info() -> LRUCache[T, U]:
return cls.decorator_function_to_instance_map[func]
setattr(lowercase__ , '''cache_info''' , lowercase__ ) # noqa: B010
return cache_decorator_wrapper
return cache_decorator_inner
if __name__ == "__main__":
import doctest
doctest.testmod()
| 47
| 1
|
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class lowerCamelCase (unittest.TestCase ):
@slow
def UpperCAmelCase_ ( self ) -> List[Any]:
"""simple docstring"""
_snake_case : str = TFCamembertModel.from_pretrained('''jplu/tf-camembert-base''' )
_snake_case : Optional[int] = tf.convert_to_tensor(
[[5, 121, 11, 660, 16, 730, 25_543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
_snake_case : int = model(lowercase__ )['''last_hidden_state''']
_snake_case : List[Any] = tf.TensorShape((1, 10, 768) )
self.assertEqual(output.shape , lowercase__ )
# compare the actual values for a slice.
_snake_case : int = tf.convert_to_tensor(
[[[-0.0_254, 0.0_235, 0.1_027], [0.0_606, -0.1_811, -0.0_418], [-0.1_561, -0.1_127, 0.2_687]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 47
|
'''simple docstring'''
import os
import numpy
import onnx
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : List[Any] = a.name
_snake_case : List[Any] = b.name
_snake_case : Tuple = ''''''
_snake_case : Tuple = ''''''
_snake_case : Optional[Any] = a == b
_snake_case : List[Any] = name_a
_snake_case : str = name_b
return res
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
for i, input_name in enumerate(node_proto.input ):
if input_name == name:
node_proto.input.insert(lowerCAmelCase_ , lowerCAmelCase_ )
node_proto.input.pop(i + 1 )
if node_proto.op_type == "If":
_graph_replace_input_with(node_proto.attribute[0].g , lowerCAmelCase_ , lowerCAmelCase_ )
_graph_replace_input_with(node_proto.attribute[1].g , lowerCAmelCase_ , lowerCAmelCase_ )
if node_proto.op_type == "Loop":
_graph_replace_input_with(node_proto.attribute[0].g , lowerCAmelCase_ , lowerCAmelCase_ )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
for n in graph_proto.node:
_node_replace_input_with(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Optional[Any] = list(model.graph.initializer )
_snake_case : List[str] = list(model_without_ext.graph.initializer )
for i, ref_i in ind_to_replace:
assert inits_with_data[i].name == inits[i].name
assert inits_with_data[ref_i].name == inits[ref_i].name
assert i > ref_i
_snake_case : List[Any] = inits[i].name
_snake_case : List[str] = inits[ref_i].name
model_without_ext.graph.initializer.remove(inits[i] )
# for n in model.graph.node:
_graph_replace_input_with(model_without_ext.graph , lowerCAmelCase_ , lowerCAmelCase_ )
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Tuple = os.path.dirname(lowerCAmelCase_ )
_snake_case : str = os.path.basename(lowerCAmelCase_ )
_snake_case : Tuple = onnx.load(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) )
_snake_case : Union[str, Any] = list(model.graph.initializer )
_snake_case : Union[str, Any] = set()
_snake_case : Any = {}
_snake_case : str = []
_snake_case : Union[str, Any] = 0
for i in range(len(lowerCAmelCase_ ) ):
if i in dup_set:
continue
for j in range(i + 1 , len(lowerCAmelCase_ ) ):
if j in dup_set:
continue
if _is_equal_tensor_proto(inits[i] , inits[j] ):
dup_set.add(lowerCAmelCase_ )
dup_set.add(lowerCAmelCase_ )
_snake_case : List[Any] = inits[j].data_type
_snake_case : Dict = numpy.prod(inits[j].dims )
if dtype == 1:
mem_size *= 4
elif dtype == 6:
mem_size *= 4
elif dtype == 7 or dtype == 11:
mem_size *= 8
else:
print('''unexpected data type: ''' , lowerCAmelCase_ )
total_reduced_size += mem_size
_snake_case : Union[str, Any] = inits[i].name
_snake_case : Any = inits[j].name
if name_i in dup_map:
dup_map[name_i].append(lowerCAmelCase_ )
else:
_snake_case : Union[str, Any] = [name_j]
ind_to_replace.append((j, i) )
print('''total reduced size: ''' , total_reduced_size / 1_024 / 1_024 / 1_024 , '''GB''' )
_snake_case : List[str] = sorted(lowerCAmelCase_ )
_remove_dup_initializers_from_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
_snake_case : List[str] = '''optimized_''' + model_file_name
_snake_case : List[Any] = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ )
onnx.save(lowerCAmelCase_ , lowerCAmelCase_ )
return new_model
| 47
| 1
|
'''simple docstring'''
import argparse
import collections
import json
import os
import re
import string
import sys
import numpy as np
UpperCAmelCase : List[str] = re.compile(R'\b(a|an|the)\b', re.UNICODE)
UpperCAmelCase : Dict = None
def _a ( ):
"""simple docstring"""
_snake_case : int = argparse.ArgumentParser('''Official evaluation script for SQuAD version 2.0.''' )
parser.add_argument('''data_file''' , metavar='''data.json''' , help='''Input data JSON file.''' )
parser.add_argument('''pred_file''' , metavar='''pred.json''' , help='''Model predictions.''' )
parser.add_argument(
'''--out-file''' , '''-o''' , metavar='''eval.json''' , help='''Write accuracy metrics to file (default is stdout).''' )
parser.add_argument(
'''--na-prob-file''' , '''-n''' , metavar='''na_prob.json''' , help='''Model estimates of probability of no answer.''' )
parser.add_argument(
'''--na-prob-thresh''' , '''-t''' , type=lowerCAmelCase_ , default=1.0 , help='''Predict "" if no-answer probability exceeds this (default = 1.0).''' , )
parser.add_argument(
'''--out-image-dir''' , '''-p''' , metavar='''out_images''' , default=lowerCAmelCase_ , help='''Save precision-recall curves to directory.''' )
parser.add_argument('''--verbose''' , '''-v''' , action='''store_true''' )
if len(sys.argv ) == 1:
parser.print_help()
sys.exit(1 )
return parser.parse_args()
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : List[str] = {}
for article in dataset:
for p in article["paragraphs"]:
for qa in p["qas"]:
_snake_case : Union[str, Any] = bool(qa['''answers''']['''text'''] )
return qid_to_has_ans
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
def remove_articles(lowerCAmelCase_ ):
return ARTICLES_REGEX.sub(''' ''' , lowerCAmelCase_ )
def white_space_fix(lowerCAmelCase_ ):
return " ".join(text.split() )
def remove_punc(lowerCAmelCase_ ):
_snake_case : List[str] = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(lowerCAmelCase_ ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(lowerCAmelCase_ ) ) ) )
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
if not s:
return []
return normalize_answer(lowerCAmelCase_ ).split()
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
return int(normalize_answer(lowerCAmelCase_ ) == normalize_answer(lowerCAmelCase_ ) )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Tuple = get_tokens(lowerCAmelCase_ )
_snake_case : int = get_tokens(lowerCAmelCase_ )
_snake_case : str = collections.Counter(lowerCAmelCase_ ) & collections.Counter(lowerCAmelCase_ )
_snake_case : List[Any] = sum(common.values() )
if len(lowerCAmelCase_ ) == 0 or len(lowerCAmelCase_ ) == 0:
# If either is no-answer, then F1 is 1 if they agree, 0 otherwise
return int(gold_toks == pred_toks )
if num_same == 0:
return 0
_snake_case : Union[str, Any] = 1.0 * num_same / len(lowerCAmelCase_ )
_snake_case : Any = 1.0 * num_same / len(lowerCAmelCase_ )
_snake_case : List[Any] = (2 * precision * recall) / (precision + recall)
return fa
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : int = {}
_snake_case : Optional[int] = {}
for article in dataset:
for p in article["paragraphs"]:
for qa in p["qas"]:
_snake_case : str = qa['''id''']
_snake_case : List[Any] = [t for t in qa['''answers''']['''text'''] if normalize_answer(lowerCAmelCase_ )]
if not gold_answers:
# For unanswerable questions, only correct answer is empty string
_snake_case : Any = ['''''']
if qid not in preds:
print(f'''Missing prediction for {qid}''' )
continue
_snake_case : Any = preds[qid]
# Take max over all gold answers
_snake_case : Union[str, Any] = max(compute_exact(lowerCAmelCase_ , lowerCAmelCase_ ) for a in gold_answers )
_snake_case : Dict = max(compute_fa(lowerCAmelCase_ , lowerCAmelCase_ ) for a in gold_answers )
return exact_scores, fa_scores
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : int = {}
for qid, s in scores.items():
_snake_case : Any = na_probs[qid] > na_prob_thresh
if pred_na:
_snake_case : Optional[Any] = float(not qid_to_has_ans[qid] )
else:
_snake_case : int = s
return new_scores
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None ):
"""simple docstring"""
if not qid_list:
_snake_case : List[Any] = len(lowerCAmelCase_ )
return collections.OrderedDict(
[
('''exact''', 100.0 * sum(exact_scores.values() ) / total),
('''f1''', 100.0 * sum(fa_scores.values() ) / total),
('''total''', total),
] )
else:
_snake_case : Tuple = len(lowerCAmelCase_ )
return collections.OrderedDict(
[
('''exact''', 100.0 * sum(exact_scores[k] for k in qid_list ) / total),
('''f1''', 100.0 * sum(fa_scores[k] for k in qid_list ) / total),
('''total''', total),
] )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
for k in new_eval:
_snake_case : Dict = new_eval[k]
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
plt.step(lowerCAmelCase_ , lowerCAmelCase_ , color='''b''' , alpha=0.2 , where='''post''' )
plt.fill_between(lowerCAmelCase_ , lowerCAmelCase_ , step='''post''' , alpha=0.2 , color='''b''' )
plt.xlabel('''Recall''' )
plt.ylabel('''Precision''' )
plt.xlim([0.0, 1.05] )
plt.ylim([0.0, 1.05] )
plt.title(lowerCAmelCase_ )
plt.savefig(lowerCAmelCase_ )
plt.clf()
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None ):
"""simple docstring"""
_snake_case : Union[str, Any] = sorted(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : na_probs[k] )
_snake_case : Any = 0.0
_snake_case : Optional[Any] = 1.0
_snake_case : str = 0.0
_snake_case : List[str] = [1.0]
_snake_case : str = [0.0]
_snake_case : Optional[Any] = 0.0
for i, qid in enumerate(lowerCAmelCase_ ):
if qid_to_has_ans[qid]:
true_pos += scores[qid]
_snake_case : str = true_pos / float(i + 1 )
_snake_case : List[str] = true_pos / float(lowerCAmelCase_ )
if i == len(lowerCAmelCase_ ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]:
# i.e., if we can put a threshold after this point
avg_prec += cur_p * (cur_r - recalls[-1])
precisions.append(lowerCAmelCase_ )
recalls.append(lowerCAmelCase_ )
if out_image:
plot_pr_curve(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
return {"ap": 100.0 * avg_prec}
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
if out_image_dir and not os.path.exists(lowerCAmelCase_ ):
os.makedirs(lowerCAmelCase_ )
_snake_case : str = sum(1 for v in qid_to_has_ans.values() if v )
if num_true_pos == 0:
return
_snake_case : List[str] = make_precision_recall_eval(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , out_image=os.path.join(lowerCAmelCase_ , '''pr_exact.png''' ) , title='''Precision-Recall curve for Exact Match score''' , )
_snake_case : Any = make_precision_recall_eval(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , out_image=os.path.join(lowerCAmelCase_ , '''pr_f1.png''' ) , title='''Precision-Recall curve for F1 score''' , )
_snake_case : Any = {k: float(lowerCAmelCase_ ) for k, v in qid_to_has_ans.items()}
_snake_case : Optional[int] = make_precision_recall_eval(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , out_image=os.path.join(lowerCAmelCase_ , '''pr_oracle.png''' ) , title='''Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)''' , )
merge_eval(lowerCAmelCase_ , lowerCAmelCase_ , '''pr_exact''' )
merge_eval(lowerCAmelCase_ , lowerCAmelCase_ , '''pr_f1''' )
merge_eval(lowerCAmelCase_ , lowerCAmelCase_ , '''pr_oracle''' )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
if not qid_list:
return
_snake_case : int = [na_probs[k] for k in qid_list]
_snake_case : List[Any] = np.ones_like(lowerCAmelCase_ ) / float(len(lowerCAmelCase_ ) )
plt.hist(lowerCAmelCase_ , weights=lowerCAmelCase_ , bins=20 , range=(0.0, 1.0) )
plt.xlabel('''Model probability of no-answer''' )
plt.ylabel('''Proportion of dataset''' )
plt.title(f'''Histogram of no-answer probability: {name}''' )
plt.savefig(os.path.join(lowerCAmelCase_ , f'''na_prob_hist_{name}.png''' ) )
plt.clf()
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Tuple = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] )
_snake_case : str = num_no_ans
_snake_case : int = cur_score
_snake_case : Union[str, Any] = 0.0
_snake_case : List[str] = sorted(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : na_probs[k] )
for i, qid in enumerate(lowerCAmelCase_ ):
if qid not in scores:
continue
if qid_to_has_ans[qid]:
_snake_case : Optional[Any] = scores[qid]
else:
if preds[qid]:
_snake_case : Optional[Any] = -1
else:
_snake_case : str = 0
cur_score += diff
if cur_score > best_score:
_snake_case : int = cur_score
_snake_case : int = na_probs[qid]
return 100.0 * best_score / len(lowerCAmelCase_ ), best_thresh
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case , _snake_case : Dict = find_best_thresh(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
_snake_case , _snake_case : str = find_best_thresh(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
_snake_case : str = best_exact
_snake_case : Any = exact_thresh
_snake_case : Union[str, Any] = best_fa
_snake_case : List[str] = fa_thresh
def _a ( ):
"""simple docstring"""
with open(OPTS.data_file ) as f:
_snake_case : str = json.load(lowerCAmelCase_ )
_snake_case : List[str] = dataset_json['''data''']
with open(OPTS.pred_file ) as f:
_snake_case : List[Any] = json.load(lowerCAmelCase_ )
if OPTS.na_prob_file:
with open(OPTS.na_prob_file ) as f:
_snake_case : List[Any] = json.load(lowerCAmelCase_ )
else:
_snake_case : List[Any] = {k: 0.0 for k in preds}
_snake_case : int = make_qid_to_has_ans(lowerCAmelCase_ ) # maps qid to True/False
_snake_case : Optional[int] = [k for k, v in qid_to_has_ans.items() if v]
_snake_case : Any = [k for k, v in qid_to_has_ans.items() if not v]
_snake_case , _snake_case : Union[str, Any] = get_raw_scores(lowerCAmelCase_ , lowerCAmelCase_ )
_snake_case : Union[str, Any] = apply_no_ans_threshold(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , OPTS.na_prob_thresh )
_snake_case : Dict = apply_no_ans_threshold(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , OPTS.na_prob_thresh )
_snake_case : Any = make_eval_dict(lowerCAmelCase_ , lowerCAmelCase_ )
if has_ans_qids:
_snake_case : Optional[int] = make_eval_dict(lowerCAmelCase_ , lowerCAmelCase_ , qid_list=lowerCAmelCase_ )
merge_eval(lowerCAmelCase_ , lowerCAmelCase_ , '''HasAns''' )
if no_ans_qids:
_snake_case : int = make_eval_dict(lowerCAmelCase_ , lowerCAmelCase_ , qid_list=lowerCAmelCase_ )
merge_eval(lowerCAmelCase_ , lowerCAmelCase_ , '''NoAns''' )
if OPTS.na_prob_file:
find_all_best_thresh(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
if OPTS.na_prob_file and OPTS.out_image_dir:
run_precision_recall_analysis(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , OPTS.out_image_dir )
histogram_na_prob(lowerCAmelCase_ , lowerCAmelCase_ , OPTS.out_image_dir , '''hasAns''' )
histogram_na_prob(lowerCAmelCase_ , lowerCAmelCase_ , OPTS.out_image_dir , '''noAns''' )
if OPTS.out_file:
with open(OPTS.out_file , '''w''' ) as f:
json.dump(lowerCAmelCase_ , lowerCAmelCase_ )
else:
print(json.dumps(lowerCAmelCase_ , indent=2 ) )
if __name__ == "__main__":
UpperCAmelCase : Any = parse_args()
if OPTS.out_image_dir:
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
main()
| 47
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase : int = {
'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Union[str, Any] = [
'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST',
'PegasusXForConditionalGeneration',
'PegasusXModel',
'PegasusXPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 47
| 1
|
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
HubertConfig,
HubertForCTC,
HubertModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
UpperCAmelCase : Optional[Any] = logging.get_logger(__name__)
UpperCAmelCase : Optional[Any] = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'w2v_encoder.proj': 'lm_head',
'mask_emb': 'masked_spec_embed',
}
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
for attribute in key.split('''.''' ):
_snake_case : Tuple = getattr(lowerCAmelCase_ , lowerCAmelCase_ )
if weight_type is not None:
_snake_case : Tuple = getattr(lowerCAmelCase_ , lowerCAmelCase_ ).shape
else:
_snake_case : int = hf_pointer.shape
assert hf_shape == value.shape, (
f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
f''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
_snake_case : List[str] = value
elif weight_type == "weight_g":
_snake_case : Tuple = value
elif weight_type == "weight_v":
_snake_case : str = value
elif weight_type == "bias":
_snake_case : Optional[int] = value
else:
_snake_case : str = value
logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : int = []
_snake_case : str = fairseq_model.state_dict()
_snake_case : Tuple = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
_snake_case : int = False
if "conv_layers" in name:
load_conv_layer(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , hf_model.config.feat_extract_norm == '''group''' , )
_snake_case : int = True
else:
for key, mapped_key in MAPPING.items():
_snake_case : List[str] = '''hubert.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key
if key in name or (key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0] and not is_finetuned):
_snake_case : Any = True
if "*" in mapped_key:
_snake_case : List[Any] = name.split(lowerCAmelCase_ )[0].split('''.''' )[-2]
_snake_case : str = mapped_key.replace('''*''' , lowerCAmelCase_ )
if "weight_g" in name:
_snake_case : Tuple = '''weight_g'''
elif "weight_v" in name:
_snake_case : Tuple = '''weight_v'''
elif "weight" in name:
_snake_case : str = '''weight'''
elif "bias" in name:
_snake_case : List[str] = '''bias'''
else:
_snake_case : Union[str, Any] = None
set_recursively(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
continue
if not is_used:
unused_weights.append(lowerCAmelCase_ )
logger.warning(f'''Unused weights: {unused_weights}''' )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : int = full_name.split('''conv_layers.''' )[-1]
_snake_case : Any = name.split('''.''' )
_snake_case : str = int(items[0] )
_snake_case : Dict = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
_snake_case : Any = value
logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
_snake_case : Tuple = value
logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
_snake_case : List[str] = value
logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
_snake_case : List[str] = value
logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(lowerCAmelCase_ )
@torch.no_grad()
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=True ):
"""simple docstring"""
if config_path is not None:
_snake_case : List[Any] = HubertConfig.from_pretrained(lowerCAmelCase_ )
else:
_snake_case : Dict = HubertConfig()
if is_finetuned:
if dict_path:
_snake_case : Dict = Dictionary.load(lowerCAmelCase_ )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
_snake_case : int = target_dict.pad_index
_snake_case : List[str] = target_dict.bos_index
_snake_case : Union[str, Any] = target_dict.eos_index
_snake_case : Tuple = len(target_dict.symbols )
_snake_case : Optional[Any] = os.path.join(lowerCAmelCase_ , '''vocab.json''' )
if not os.path.isdir(lowerCAmelCase_ ):
logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(lowerCAmelCase_ ) )
return
os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ )
with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as vocab_handle:
json.dump(target_dict.indices , lowerCAmelCase_ )
_snake_case : Any = WavaVecaCTCTokenizer(
lowerCAmelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=lowerCAmelCase_ , )
_snake_case : Dict = True if config.feat_extract_norm == '''layer''' else False
_snake_case : str = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , )
_snake_case : int = WavaVecaProcessor(feature_extractor=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ )
processor.save_pretrained(lowerCAmelCase_ )
_snake_case : List[str] = HubertForCTC(lowerCAmelCase_ )
else:
_snake_case : List[Any] = HubertModel(lowerCAmelCase_ )
if is_finetuned:
_snake_case , _snake_case , _snake_case : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} )
else:
_snake_case , _snake_case , _snake_case : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
_snake_case : Union[str, Any] = model[0].eval()
recursively_load_weights(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
hf_wavavec.save_pretrained(lowerCAmelCase_ )
if __name__ == "__main__":
UpperCAmelCase : str = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not'
)
UpperCAmelCase : List[str] = parser.parse_args()
convert_hubert_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 47
|
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
import PIL.Image
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
PILImageResampling,
get_image_size,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
UpperCAmelCase : Dict = logging.get_logger(__name__)
class lowerCamelCase (a__ ):
_lowercase : int = ["""pixel_values"""]
def __init__( self , lowercase__ = True , lowercase__ = 32 , lowercase__=PILImageResampling.BILINEAR , lowercase__ = True , **lowercase__ , ) -> None:
"""simple docstring"""
_snake_case : Any = do_resize
_snake_case : List[str] = do_rescale
_snake_case : Any = size_divisor
_snake_case : Optional[Any] = resample
super().__init__(**lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ ) -> np.ndarray:
"""simple docstring"""
_snake_case , _snake_case : Dict = get_image_size(lowercase__ )
# Rounds the height and width down to the closest multiple of size_divisor
_snake_case : Optional[int] = height // size_divisor * size_divisor
_snake_case : Dict = width // size_divisor * size_divisor
_snake_case : str = resize(lowercase__ , (new_h, new_w) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ )
return image
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ ) -> np.ndarray:
"""simple docstring"""
return rescale(image=lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__=None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ) -> BatchFeature:
"""simple docstring"""
_snake_case : Any = do_resize if do_resize is not None else self.do_resize
_snake_case : List[Any] = do_rescale if do_rescale is not None else self.do_rescale
_snake_case : List[str] = size_divisor if size_divisor is not None else self.size_divisor
_snake_case : int = resample if resample is not None else self.resample
if do_resize and size_divisor is None:
raise ValueError('''size_divisor is required for resizing''' )
_snake_case : Tuple = make_list_of_images(lowercase__ )
if not valid_images(lowercase__ ):
raise ValueError('''Invalid image(s)''' )
# All transformations expect numpy arrays.
_snake_case : Tuple = [to_numpy_array(lowercase__ ) for img in images]
if do_resize:
_snake_case : Optional[int] = [self.resize(lowercase__ , size_divisor=lowercase__ , resample=lowercase__ ) for image in images]
if do_rescale:
_snake_case : Union[str, Any] = [self.rescale(lowercase__ , scale=1 / 255 ) for image in images]
_snake_case : Union[str, Any] = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images]
_snake_case : List[str] = {'''pixel_values''': images}
return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
| 47
| 1
|
'''simple docstring'''
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available
from ...utils import OptionalDependencyNotAvailable
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .notes_encoder import SpectrogramNotesEncoder
from .continous_encoder import SpectrogramContEncoder
from .pipeline_spectrogram_diffusion import (
SpectrogramContEncoder,
SpectrogramDiffusionPipeline,
TaFilmDecoder,
)
try:
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403
else:
from .midi_utils import MidiProcessor
| 47
|
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import LEDConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFLEDForConditionalGeneration, TFLEDModel
@require_tf
class lowerCamelCase :
_lowercase : Any = LEDConfig
_lowercase : Any = {}
_lowercase : Optional[Any] = """gelu"""
def __init__( self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=False , lowercase__=99 , lowercase__=32 , lowercase__=2 , lowercase__=4 , lowercase__=37 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=20 , lowercase__=2 , lowercase__=1 , lowercase__=0 , lowercase__=4 , ) -> Any:
"""simple docstring"""
_snake_case : Dict = parent
_snake_case : Any = batch_size
_snake_case : List[str] = seq_length
_snake_case : Union[str, Any] = is_training
_snake_case : Tuple = use_labels
_snake_case : int = vocab_size
_snake_case : str = hidden_size
_snake_case : Optional[Any] = num_hidden_layers
_snake_case : List[Any] = num_attention_heads
_snake_case : Optional[int] = intermediate_size
_snake_case : List[Any] = hidden_dropout_prob
_snake_case : List[str] = attention_probs_dropout_prob
_snake_case : Optional[int] = max_position_embeddings
_snake_case : Any = eos_token_id
_snake_case : List[Any] = pad_token_id
_snake_case : Optional[int] = bos_token_id
_snake_case : Any = attention_window
# `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
# [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention
# returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
# because its local attention only attends to `self.attention_window` and one before and one after
_snake_case : Any = self.attention_window + 2
# because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for
# the `test_attention_outputs` and `test_hidden_states_output` tests
_snake_case : Tuple = (
self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window
)
def UpperCAmelCase_ ( self ) -> Optional[int]:
"""simple docstring"""
_snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
_snake_case : Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
_snake_case : Optional[int] = tf.concat([input_ids, eos_tensor] , axis=1 )
_snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_snake_case : List[Any] = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , )
_snake_case : Dict = prepare_led_inputs_dict(lowercase__ , lowercase__ , lowercase__ )
_snake_case : Dict = tf.concat(
[tf.zeros_like(lowercase__ )[:, :-1], tf.ones_like(lowercase__ )[:, -1:]] , axis=-1 , )
_snake_case : Dict = global_attention_mask
return config, inputs_dict
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> int:
"""simple docstring"""
_snake_case : int = TFLEDModel(config=lowercase__ ).get_decoder()
_snake_case : Union[str, Any] = inputs_dict['''input_ids''']
_snake_case : List[str] = input_ids[:1, :]
_snake_case : Tuple = inputs_dict['''attention_mask'''][:1, :]
_snake_case : Dict = 1
# first forward pass
_snake_case : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__ )
_snake_case , _snake_case : Dict = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_snake_case : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size )
_snake_case : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
_snake_case : Tuple = tf.concat([input_ids, next_tokens] , axis=-1 )
_snake_case : List[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
_snake_case : List[Any] = model(lowercase__ , attention_mask=lowercase__ )[0]
_snake_case : Tuple = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__ )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
_snake_case : Tuple = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
_snake_case : int = output_from_no_past[:, -3:, random_slice_idx]
_snake_case : Optional[Any] = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(lowercase__ , lowercase__ , rtol=1E-3 )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , ):
"""simple docstring"""
if attention_mask is None:
_snake_case : Union[str, Any] = tf.cast(tf.math.not_equal(lowerCAmelCase_ , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
_snake_case : str = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
_snake_case : int = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_snake_case : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
}
@require_tf
class lowerCamelCase (a__ , a__ , unittest.TestCase ):
_lowercase : Optional[int] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else ()
_lowercase : int = (TFLEDForConditionalGeneration,) if is_tf_available() else ()
_lowercase : Dict = (
{
"""conversational""": TFLEDForConditionalGeneration,
"""feature-extraction""": TFLEDModel,
"""summarization""": TFLEDForConditionalGeneration,
"""text2text-generation""": TFLEDForConditionalGeneration,
"""translation""": TFLEDForConditionalGeneration,
}
if is_tf_available()
else {}
)
_lowercase : int = True
_lowercase : List[Any] = False
_lowercase : str = False
_lowercase : Union[str, Any] = False
def UpperCAmelCase_ ( self ) -> Optional[Any]:
"""simple docstring"""
_snake_case : str = TFLEDModelTester(self )
_snake_case : Union[str, Any] = ConfigTester(self , config_class=lowercase__ )
def UpperCAmelCase_ ( self ) -> Tuple:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase_ ( self ) -> List[str]:
"""simple docstring"""
_snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*lowercase__ )
def UpperCAmelCase_ ( self ) -> int:
"""simple docstring"""
_snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
_snake_case : Any = tf.zeros_like(inputs_dict['''attention_mask'''] )
_snake_case : Optional[Any] = 2
_snake_case : Any = tf.where(
tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , )
_snake_case : Dict = True
_snake_case : str = self.model_tester.seq_length
_snake_case : Dict = self.model_tester.encoder_seq_length
def check_decoder_attentions_output(lowercase__ ):
_snake_case : Optional[int] = outputs.decoder_attentions
self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
def check_encoder_attentions_output(lowercase__ ):
_snake_case : int = [t.numpy() for t in outputs.encoder_attentions]
_snake_case : Tuple = [t.numpy() for t in outputs.encoder_global_attentions]
self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers )
self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
self.assertListEqual(
list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , )
for model_class in self.all_model_classes:
_snake_case : Union[str, Any] = True
_snake_case : Dict = False
_snake_case : Union[str, Any] = False
_snake_case : List[Any] = model_class(lowercase__ )
_snake_case : Optional[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) )
_snake_case : List[Any] = len(lowercase__ )
self.assertEqual(config.output_hidden_states , lowercase__ )
check_encoder_attentions_output(lowercase__ )
if self.is_encoder_decoder:
_snake_case : Union[str, Any] = model_class(lowercase__ )
_snake_case : List[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) )
self.assertEqual(config.output_hidden_states , lowercase__ )
check_decoder_attentions_output(lowercase__ )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
_snake_case : str = True
_snake_case : Tuple = model_class(lowercase__ )
_snake_case : int = model(self._prepare_for_class(lowercase__ , lowercase__ ) )
self.assertEqual(config.output_hidden_states , lowercase__ )
check_encoder_attentions_output(lowercase__ )
# Check attention is always last and order is fine
_snake_case : int = True
_snake_case : List[str] = True
_snake_case : Tuple = model_class(lowercase__ )
_snake_case : Optional[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase__ ) )
self.assertEqual(model.config.output_hidden_states , lowercase__ )
check_encoder_attentions_output(lowercase__ )
@unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' )
def UpperCAmelCase_ ( self ) -> int:
"""simple docstring"""
pass
def UpperCAmelCase_ ( self ) -> str:
"""simple docstring"""
pass
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
return tf.constant(lowerCAmelCase_ , dtype=tf.intaa )
UpperCAmelCase : Dict = 1E-4
@slow
@require_tf
class lowerCamelCase (unittest.TestCase ):
def UpperCAmelCase_ ( self ) -> Dict:
"""simple docstring"""
_snake_case : List[str] = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led
# change to intended input here
_snake_case : List[str] = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] )
_snake_case : Tuple = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] )
_snake_case : Tuple = prepare_led_inputs_dict(model.config , lowercase__ , lowercase__ )
_snake_case : int = model(**lowercase__ )[0]
_snake_case : Dict = (1, 1_024, 768)
self.assertEqual(output.shape , lowercase__ )
# change to expected output here
_snake_case : List[Any] = tf.convert_to_tensor(
[[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , )
tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1E-3 )
def UpperCAmelCase_ ( self ) -> List[Any]:
"""simple docstring"""
_snake_case : Any = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' )
# change to intended input here
_snake_case : Dict = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] )
_snake_case : Dict = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] )
_snake_case : List[str] = prepare_led_inputs_dict(model.config , lowercase__ , lowercase__ )
_snake_case : Tuple = model(**lowercase__ )[0]
_snake_case : Any = (1, 1_024, model.config.vocab_size)
self.assertEqual(output.shape , lowercase__ )
# change to expected output here
_snake_case : Dict = tf.convert_to_tensor(
[[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , )
tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1E-3 , rtol=1E-3 )
| 47
| 1
|
'''simple docstring'''
def _a ( lowerCAmelCase_ = 1 , lowerCAmelCase_ = 1_000 ):
"""simple docstring"""
_snake_case : int = 1
_snake_case : List[str] = 0
for divide_by_number in range(lowerCAmelCase_ , digit + 1 ):
_snake_case : list[int] = []
_snake_case : Optional[Any] = numerator
for _ in range(1 , digit + 1 ):
if now_divide in has_been_divided:
if longest_list_length < len(lowerCAmelCase_ ):
_snake_case : Dict = len(lowerCAmelCase_ )
_snake_case : List[Any] = divide_by_number
else:
has_been_divided.append(lowerCAmelCase_ )
_snake_case : Any = now_divide * 10 % divide_by_number
return the_digit
# Tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 47
|
'''simple docstring'''
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
UpperCAmelCase : Optional[int] = logging.get_logger(__name__)
UpperCAmelCase : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'}
UpperCAmelCase : Any = {
'tokenizer_file': {
'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json',
},
}
UpperCAmelCase : Optional[Any] = {
'gpt-neox-20b': 2_0_4_8,
}
class lowerCamelCase (a__ ):
_lowercase : Optional[int] = VOCAB_FILES_NAMES
_lowercase : str = PRETRAINED_VOCAB_FILES_MAP
_lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowercase : Optional[int] = ["""input_ids""", """attention_mask"""]
def __init__( self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="<|endoftext|>" , lowercase__="<|endoftext|>" , lowercase__="<|endoftext|>" , lowercase__=False , **lowercase__ , ) -> List[Any]:
"""simple docstring"""
super().__init__(
lowercase__ , lowercase__ , tokenizer_file=lowercase__ , unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , add_prefix_space=lowercase__ , **lowercase__ , )
_snake_case : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('''add_prefix_space''' , lowercase__ ) != add_prefix_space:
_snake_case : int = getattr(lowercase__ , pre_tok_state.pop('''type''' ) )
_snake_case : int = add_prefix_space
_snake_case : Optional[Any] = pre_tok_class(**lowercase__ )
_snake_case : List[str] = add_prefix_space
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> Tuple[str]:
"""simple docstring"""
_snake_case : Optional[int] = self._tokenizer.model.save(lowercase__ , name=lowercase__ )
return tuple(lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ ) -> List[int]:
"""simple docstring"""
_snake_case : List[str] = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(lowercase__ , add_special_tokens=lowercase__ ) + [self.eos_token_id] )
if len(lowercase__ ) > self.model_max_length:
_snake_case : Dict = input_ids[-self.model_max_length :]
return input_ids
| 47
| 1
|
'''simple docstring'''
from __future__ import annotations
from collections.abc import Callable
from typing import Any, Generic, TypeVar
UpperCAmelCase : List[str] = TypeVar('T')
class lowerCamelCase (Generic[T] ):
def __init__( self , lowercase__ , lowercase__ ) -> None:
"""simple docstring"""
_snake_case : Any | T = None
_snake_case : int = len(lowercase__ )
_snake_case : list[T] = [any_type for _ in range(self.N )] + arr
_snake_case : Optional[Any] = fnc
self.build()
def UpperCAmelCase_ ( self ) -> None:
"""simple docstring"""
for p in range(self.N - 1 , 0 , -1 ):
_snake_case : Optional[int] = self.fn(self.st[p * 2] , self.st[p * 2 + 1] )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> None:
"""simple docstring"""
p += self.N
_snake_case : int = v
while p > 1:
_snake_case : str = p // 2
_snake_case : str = self.fn(self.st[p * 2] , self.st[p * 2 + 1] )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> T | None: # noqa: E741
"""simple docstring"""
_snake_case , _snake_case : Optional[Any] = l + self.N, r + self.N
_snake_case : T | None = None
while l <= r:
if l % 2 == 1:
_snake_case : Any = self.st[l] if res is None else self.fn(lowercase__ , self.st[l] )
if r % 2 == 0:
_snake_case : List[str] = self.st[r] if res is None else self.fn(lowercase__ , self.st[r] )
_snake_case , _snake_case : Any = (l + 1) // 2, (r - 1) // 2
return res
if __name__ == "__main__":
from functools import reduce
UpperCAmelCase : Any = [1, 1_0, -2, 9, -3, 8, 4, -7, 5, 6, 1_1, -1_2]
UpperCAmelCase : Union[str, Any] = {
0: 7,
1: 2,
2: 6,
3: -1_4,
4: 5,
5: 4,
6: 7,
7: -1_0,
8: 9,
9: 1_0,
1_0: 1_2,
1_1: 1,
}
UpperCAmelCase : Optional[int] = SegmentTree(test_array, min)
UpperCAmelCase : Dict = SegmentTree(test_array, max)
UpperCAmelCase : Tuple = SegmentTree(test_array, lambda a, b: a + b)
def _a ( ):
"""simple docstring"""
for i in range(len(lowerCAmelCase_ ) ):
for j in range(lowerCAmelCase_ , len(lowerCAmelCase_ ) ):
_snake_case : List[str] = reduce(lowerCAmelCase_ , test_array[i : j + 1] )
_snake_case : Optional[int] = reduce(lowerCAmelCase_ , test_array[i : j + 1] )
_snake_case : Dict = reduce(lambda lowerCAmelCase_ , lowerCAmelCase_ : a + b , test_array[i : j + 1] )
assert min_range == min_segment_tree.query(lowerCAmelCase_ , lowerCAmelCase_ )
assert max_range == max_segment_tree.query(lowerCAmelCase_ , lowerCAmelCase_ )
assert sum_range == sum_segment_tree.query(lowerCAmelCase_ , lowerCAmelCase_ )
test_all_segments()
for index, value in test_updates.items():
UpperCAmelCase : Tuple = value
min_segment_tree.update(index, value)
max_segment_tree.update(index, value)
sum_segment_tree.update(index, value)
test_all_segments()
| 47
|
'''simple docstring'''
import math
from numpy import inf
from scipy.integrate import quad
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
if num <= 0:
raise ValueError('''math domain error''' )
return quad(lowerCAmelCase_ , 0 , lowerCAmelCase_ , args=(lowerCAmelCase_) )[0]
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
return math.pow(lowerCAmelCase_ , z - 1 ) * math.exp(-x )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 47
| 1
|
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
if is_torch_available():
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
@require_torch
@require_sentencepiece
@require_tokenizers
class lowerCamelCase (unittest.TestCase ):
@slow
def UpperCAmelCase_ ( self ) -> Optional[int]:
"""simple docstring"""
_snake_case : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' , return_dict=lowercase__ ).to(lowercase__ )
_snake_case : Optional[Any] = AutoTokenizer.from_pretrained('''google/mt5-small''' )
_snake_case : Optional[Any] = tokenizer('''Hello there''' , return_tensors='''pt''' ).input_ids
_snake_case : Tuple = tokenizer('''Hi I am''' , return_tensors='''pt''' ).input_ids
_snake_case : Any = model(input_ids.to(lowercase__ ) , labels=labels.to(lowercase__ ) ).loss
_snake_case : int = -(labels.shape[-1] * loss.item())
_snake_case : Dict = -84.9_127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
| 47
|
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import is_tf_available, is_torch_available
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow
if is_tf_available():
from transformers import (
AutoConfig,
BertConfig,
GPTaConfig,
TaConfig,
TFAutoModel,
TFAutoModelForCausalLM,
TFAutoModelForMaskedLM,
TFAutoModelForPreTraining,
TFAutoModelForQuestionAnswering,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSequenceClassification,
TFAutoModelWithLMHead,
TFBertForMaskedLM,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertModel,
TFGPTaLMHeadModel,
TFRobertaForMaskedLM,
TFTaForConditionalGeneration,
)
from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST
if is_torch_available():
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForMaskedLM,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelWithLMHead,
BertForMaskedLM,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
BertModel,
GPTaLMHeadModel,
RobertaForMaskedLM,
TaForConditionalGeneration,
)
@is_pt_tf_cross_test
class lowerCamelCase (unittest.TestCase ):
@slow
def UpperCAmelCase_ ( self ) -> List[Any]:
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
_snake_case : Union[str, Any] = AutoConfig.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Any = TFAutoModel.from_pretrained(lowercase__ , from_pt=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : str = AutoModel.from_pretrained(lowercase__ , from_tf=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
@slow
def UpperCAmelCase_ ( self ) -> List[str]:
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
_snake_case : Optional[Any] = AutoConfig.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Dict = TFAutoModelForPreTraining.from_pretrained(lowercase__ , from_pt=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Tuple = AutoModelForPreTraining.from_pretrained(lowercase__ , from_tf=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
@slow
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
"""simple docstring"""
for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case : Optional[int] = AutoConfig.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained(lowercase__ , from_pt=lowercase__ )
_snake_case , _snake_case : Tuple = TFAutoModelForCausalLM.from_pretrained(
lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained(lowercase__ , from_tf=lowercase__ )
_snake_case , _snake_case : Optional[Any] = AutoModelForCausalLM.from_pretrained(
lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
@slow
def UpperCAmelCase_ ( self ) -> Optional[Any]:
"""simple docstring"""
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case : List[Any] = AutoConfig.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Tuple = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : int = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
@slow
def UpperCAmelCase_ ( self ) -> Any:
"""simple docstring"""
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case : List[str] = AutoConfig.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(lowercase__ , from_pt=lowercase__ )
_snake_case , _snake_case : List[str] = TFAutoModelForMaskedLM.from_pretrained(
lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : int = AutoModelForMaskedLM.from_pretrained(lowercase__ , from_tf=lowercase__ )
_snake_case , _snake_case : Optional[int] = AutoModelForMaskedLM.from_pretrained(
lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
@slow
def UpperCAmelCase_ ( self ) -> List[str]:
"""simple docstring"""
for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case : List[str] = AutoConfig.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(lowercase__ , from_pt=lowercase__ )
_snake_case , _snake_case : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained(
lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : List[str] = AutoModelForSeqaSeqLM.from_pretrained(lowercase__ , from_tf=lowercase__ )
_snake_case , _snake_case : Dict = AutoModelForSeqaSeqLM.from_pretrained(
lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
@slow
def UpperCAmelCase_ ( self ) -> Dict:
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
_snake_case : Any = AutoConfig.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Any = TFAutoModelForSequenceClassification.from_pretrained(lowercase__ , from_pt=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Dict = AutoModelForSequenceClassification.from_pretrained(lowercase__ , from_tf=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
@slow
def UpperCAmelCase_ ( self ) -> Optional[int]:
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
_snake_case : str = AutoConfig.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : str = TFAutoModelForQuestionAnswering.from_pretrained(lowercase__ , from_pt=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Union[str, Any] = AutoModelForQuestionAnswering.from_pretrained(lowercase__ , from_tf=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
def UpperCAmelCase_ ( self ) -> str:
"""simple docstring"""
_snake_case : Union[str, Any] = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
self.assertEqual(model.num_parameters() , 14_410 )
self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 )
_snake_case : Tuple = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
self.assertEqual(model.num_parameters() , 14_410 )
self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 )
def UpperCAmelCase_ ( self ) -> str:
"""simple docstring"""
_snake_case : List[str] = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
self.assertEqual(model.num_parameters() , 14_410 )
self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 )
_snake_case : int = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
self.assertEqual(model.num_parameters() , 14_410 )
self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 )
| 47
| 1
|
'''simple docstring'''
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ):
"""simple docstring"""
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
_snake_case : Union[str, Any] = len(set_a.intersection(lowerCAmelCase_ ) )
if alternative_union:
_snake_case : Optional[Any] = len(lowerCAmelCase_ ) + len(lowerCAmelCase_ )
else:
_snake_case : List[str] = len(set_a.union(lowerCAmelCase_ ) )
return intersection / union
if isinstance(lowerCAmelCase_ , (list, tuple) ) and isinstance(lowerCAmelCase_ , (list, tuple) ):
_snake_case : Optional[int] = [element for element in set_a if element in set_b]
if alternative_union:
_snake_case : int = len(lowerCAmelCase_ ) + len(lowerCAmelCase_ )
return len(lowerCAmelCase_ ) / union
else:
_snake_case : List[str] = set_a + [element for element in set_b if element not in set_a]
return len(lowerCAmelCase_ ) / len(lowerCAmelCase_ )
return len(lowerCAmelCase_ ) / len(lowerCAmelCase_ )
return None
if __name__ == "__main__":
UpperCAmelCase : str = {'a', 'b', 'c', 'd', 'e'}
UpperCAmelCase : Tuple = {'c', 'd', 'e', 'f', 'h', 'i'}
print(jaccard_similarity(set_a, set_b))
| 47
|
'''simple docstring'''
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase : Dict = {'configuration_timm_backbone': ['TimmBackboneConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Union[str, Any] = ['TimmBackbone']
if TYPE_CHECKING:
from .configuration_timm_backbone import TimmBackboneConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_timm_backbone import TimmBackbone
else:
import sys
UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 47
| 1
|
'''simple docstring'''
import math
from numpy import inf
from scipy.integrate import quad
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
if num <= 0:
raise ValueError('''math domain error''' )
return quad(lowerCAmelCase_ , 0 , lowerCAmelCase_ , args=(lowerCAmelCase_) )[0]
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
return math.pow(lowerCAmelCase_ , z - 1 ) * math.exp(-x )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 47
|
'''simple docstring'''
import argparse
import logging
import os
from pathlib import Path
from typing import Any, Dict
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info
from transformers import (
AdamW,
AutoConfig,
AutoModel,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
AutoModelWithLMHead,
AutoTokenizer,
PretrainedConfig,
PreTrainedTokenizer,
)
from transformers.optimization import (
Adafactor,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.utils.versions import require_version
UpperCAmelCase : Tuple = logging.getLogger(__name__)
require_version('pytorch_lightning>=1.0.4')
UpperCAmelCase : str = {
'base': AutoModel,
'sequence-classification': AutoModelForSequenceClassification,
'question-answering': AutoModelForQuestionAnswering,
'pretraining': AutoModelForPreTraining,
'token-classification': AutoModelForTokenClassification,
'language-modeling': AutoModelWithLMHead,
'summarization': AutoModelForSeqaSeqLM,
'translation': AutoModelForSeqaSeqLM,
}
# update this and the import above to support new schedulers from transformers.optimization
UpperCAmelCase : Optional[Any] = {
'linear': get_linear_schedule_with_warmup,
'cosine': get_cosine_schedule_with_warmup,
'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup,
'polynomial': get_polynomial_decay_schedule_with_warmup,
# '': get_constant_schedule, # not supported for now
# '': get_constant_schedule_with_warmup, # not supported for now
}
UpperCAmelCase : Tuple = sorted(arg_to_scheduler.keys())
UpperCAmelCase : Optional[Any] = '{' + ', '.join(arg_to_scheduler_choices) + '}'
class lowerCamelCase (pl.LightningModule ):
def __init__( self , lowercase__ , lowercase__=None , lowercase__="base" , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ , ) -> Optional[int]:
"""simple docstring"""
super().__init__()
# TODO: move to self.save_hyperparameters()
# self.save_hyperparameters()
# can also expand arguments into trainer signature for easier reading
self.save_hyperparameters(lowercase__ )
_snake_case : Union[str, Any] = 0
_snake_case : int = Path(self.hparams.output_dir )
_snake_case : int = self.hparams.cache_dir if self.hparams.cache_dir else None
if config is None:
_snake_case : Tuple = AutoConfig.from_pretrained(
self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=lowercase__ , **lowercase__ , )
else:
_snake_case : PretrainedConfig = config
_snake_case : Optional[Any] = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''')
for p in extra_model_params:
if getattr(self.hparams , lowercase__ , lowercase__ ):
assert hasattr(self.config , lowercase__ ), F'''model config doesn\'t have a `{p}` attribute'''
setattr(self.config , lowercase__ , getattr(self.hparams , lowercase__ ) )
if tokenizer is None:
_snake_case : Optional[int] = AutoTokenizer.from_pretrained(
self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=lowercase__ , )
else:
_snake_case : PreTrainedTokenizer = tokenizer
_snake_case : Any = MODEL_MODES[mode]
if model is None:
_snake_case : List[Any] = self.model_type.from_pretrained(
self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=lowercase__ , )
else:
_snake_case : Optional[Any] = model
def UpperCAmelCase_ ( self , *lowercase__ , **lowercase__ ) -> List[str]:
"""simple docstring"""
_snake_case : Dict = self.model_type.from_pretrained(*lowercase__ , **lowercase__ )
def UpperCAmelCase_ ( self ) -> List[Any]:
"""simple docstring"""
_snake_case : Optional[int] = arg_to_scheduler[self.hparams.lr_scheduler]
_snake_case : Optional[int] = get_schedule_func(
self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() )
_snake_case : str = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1}
return scheduler
def UpperCAmelCase_ ( self ) -> int:
"""simple docstring"""
_snake_case : Any = self.model
_snake_case : List[Any] = ['''bias''', '''LayerNorm.weight''']
_snake_case : List[str] = [
{
'''params''': [
p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay )
], # check this named paramters
'''weight_decay''': self.hparams.weight_decay,
},
{
'''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )],
'''weight_decay''': 0.0,
},
]
if self.hparams.adafactor:
_snake_case : Any = Adafactor(
lowercase__ , lr=self.hparams.learning_rate , scale_parameter=lowercase__ , relative_step=lowercase__ )
else:
_snake_case : List[str] = AdamW(
lowercase__ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon )
_snake_case : List[str] = optimizer
_snake_case : Any = self.get_lr_scheduler()
return [optimizer], [scheduler]
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Any:
"""simple docstring"""
return self.validation_step(lowercase__ , lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ ) -> Tuple:
"""simple docstring"""
return self.validation_end(lowercase__ )
def UpperCAmelCase_ ( self ) -> int:
"""simple docstring"""
_snake_case : Any = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores
_snake_case : Optional[int] = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices
return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs
def UpperCAmelCase_ ( self , lowercase__ ) -> Any:
"""simple docstring"""
if stage == "test":
_snake_case : Any = len(self.test_dataloader().dataset )
else:
_snake_case : Dict = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=lowercase__ )
_snake_case : Optional[int] = len(self.train_dataloader().dataset )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = False ) -> str:
"""simple docstring"""
raise NotImplementedError('''You must implement this for your task''' )
def UpperCAmelCase_ ( self ) -> Optional[int]:
"""simple docstring"""
return self.train_loader
def UpperCAmelCase_ ( self ) -> Dict:
"""simple docstring"""
return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=lowercase__ )
def UpperCAmelCase_ ( self ) -> Optional[Any]:
"""simple docstring"""
return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ ) -> Optional[int]:
"""simple docstring"""
return os.path.join(
self.hparams.data_dir , '''cached_{}_{}_{}'''.format(
lowercase__ , list(filter(lowercase__ , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , )
@pl.utilities.rank_zero_only
def UpperCAmelCase_ ( self , lowercase__ ) -> None:
"""simple docstring"""
_snake_case : Dict = self.output_dir.joinpath('''best_tfmr''' )
_snake_case : Tuple = self.step_count
self.model.save_pretrained(lowercase__ )
self.tokenizer.save_pretrained(lowercase__ )
@staticmethod
def UpperCAmelCase_ ( lowercase__ , lowercase__ ) -> Tuple:
"""simple docstring"""
parser.add_argument(
'''--model_name_or_path''' , default=lowercase__ , type=lowercase__ , required=lowercase__ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , )
parser.add_argument(
'''--config_name''' , default='''''' , type=lowercase__ , help='''Pretrained config name or path if not the same as model_name''' )
parser.add_argument(
'''--tokenizer_name''' , default=lowercase__ , type=lowercase__ , help='''Pretrained tokenizer name or path if not the same as model_name''' , )
parser.add_argument(
'''--cache_dir''' , default=str(Path(lowercase__ ).parent / '''test_run''' / '''cache''' ) , type=lowercase__ , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , )
parser.add_argument(
'''--encoder_layerdrop''' , type=lowercase__ , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--decoder_layerdrop''' , type=lowercase__ , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--dropout''' , type=lowercase__ , help='''Dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--attention_dropout''' , type=lowercase__ , help='''Attention dropout probability (Optional). Goes into model.config''' , )
parser.add_argument('''--learning_rate''' , default=5E-5 , type=lowercase__ , help='''The initial learning rate for Adam.''' )
parser.add_argument(
'''--lr_scheduler''' , default='''linear''' , choices=lowercase__ , metavar=lowercase__ , type=lowercase__ , help='''Learning rate scheduler''' , )
parser.add_argument('''--weight_decay''' , default=0.0 , type=lowercase__ , help='''Weight decay if we apply some.''' )
parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=lowercase__ , help='''Epsilon for Adam optimizer.''' )
parser.add_argument('''--warmup_steps''' , default=0 , type=lowercase__ , help='''Linear warmup over warmup_steps.''' )
parser.add_argument('''--num_workers''' , default=4 , type=lowercase__ , help='''kwarg passed to DataLoader''' )
parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=lowercase__ )
parser.add_argument('''--train_batch_size''' , default=32 , type=lowercase__ )
parser.add_argument('''--eval_batch_size''' , default=32 , type=lowercase__ )
parser.add_argument('''--adafactor''' , action='''store_true''' )
class lowerCamelCase (pl.Callback ):
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> str:
"""simple docstring"""
if (
trainer.is_global_zero and trainer.global_rank == 0
): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed.
pl_module.model.rag.retriever.init_retrieval() # better to use hook functions.
class lowerCamelCase (pl.Callback ):
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> List[str]:
"""simple docstring"""
for name, param in pl_module.model.rag.named_parameters():
if param.grad is None:
print(lowercase__ )
class lowerCamelCase (pl.Callback ):
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Any:
"""simple docstring"""
_snake_case : Any = trainer.lr_schedulers[0]['''scheduler''']
_snake_case : Optional[int] = {F'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr() )}
pl_module.logger.log_metrics(lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> List[str]:
"""simple docstring"""
rank_zero_info('''***** Validation results *****''' )
_snake_case : Dict = trainer.callback_metrics
# Log results
for key in sorted(lowercase__ ):
if key not in ["log", "progress_bar"]:
rank_zero_info('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Dict:
"""simple docstring"""
rank_zero_info('''***** Test results *****''' )
_snake_case : Dict = trainer.callback_metrics
# Log and save results to file
_snake_case : str = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' )
with open(lowercase__ , '''w''' ) as writer:
for key in sorted(lowercase__ ):
if key not in ["log", "progress_bar"]:
rank_zero_info('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) )
writer.write('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
parser.add_argument(
'''--output_dir''' , default=str(Path(lowerCAmelCase_ ).parent / '''test_run''' / '''model_checkpoints''' ) , type=lowerCAmelCase_ , help='''The output directory where the model predictions and checkpoints will be written.''' , )
parser.add_argument(
'''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , )
parser.add_argument(
'''--fp16_opt_level''' , type=lowerCAmelCase_ , default='''O2''' , help=(
'''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'''
'''See details at https://nvidia.github.io/apex/amp.html'''
) , )
parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=lowerCAmelCase_ )
parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=lowerCAmelCase_ , help='''Max gradient norm''' )
parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' )
parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' )
parser.add_argument(
'''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=lowerCAmelCase_ , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , )
parser.add_argument('''--seed''' , type=lowerCAmelCase_ , default=42 , help='''random seed for initialization''' )
parser.add_argument(
'''--data_dir''' , default=str(Path(lowerCAmelCase_ ).parent / '''test_run''' / '''dummy-train-data''' ) , type=lowerCAmelCase_ , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_=[] , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , ):
"""simple docstring"""
pl.seed_everything(args.seed )
# init model
_snake_case : Union[str, Any] = Path(model.hparams.output_dir )
odir.mkdir(exist_ok=lowerCAmelCase_ )
# add custom checkpoints
if checkpoint_callback is None:
_snake_case : Any = pl.callbacks.ModelCheckpoint(
filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 )
if early_stopping_callback:
extra_callbacks.append(lowerCAmelCase_ )
if logging_callback is None:
_snake_case : str = LoggingCallback()
_snake_case : Tuple = {}
if args.fpaa:
_snake_case : Union[str, Any] = 16
if args.gpus > 1:
_snake_case : Optional[Any] = '''auto'''
_snake_case : Tuple = '''ddp'''
_snake_case : Optional[Any] = args.accumulate_grad_batches
_snake_case : Tuple = None
_snake_case : str = '''auto'''
_snake_case : int = pl.Trainer.from_argparse_args(
lowerCAmelCase_ , weights_summary=lowerCAmelCase_ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase_ , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase_ , )
if args.do_train:
trainer.fit(lowerCAmelCase_ )
else:
print('''RAG modeling tests with new set functions successfuly executed!''' )
return trainer
| 47
| 1
|
'''simple docstring'''
import sys
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
UpperCAmelCase : int = 'python tqdm regex requests packaging filelock numpy tokenizers'.split()
if sys.version_info < (3, 7):
pkgs_to_check_at_runtime.append('dataclasses')
if sys.version_info < (3, 8):
pkgs_to_check_at_runtime.append('importlib_metadata')
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(F"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""")
def _a ( lowerCAmelCase_ , lowerCAmelCase_=None ):
"""simple docstring"""
require_version(deps[pkg] , lowerCAmelCase_ )
| 47
|
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase : List[str] = logging.get_logger(__name__)
UpperCAmelCase : Dict = {
'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json',
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class lowerCamelCase (a__ ):
_lowercase : List[str] = """sew-d"""
def __init__( self , lowercase__=32 , lowercase__=768 , lowercase__=12 , lowercase__=12 , lowercase__=3_072 , lowercase__=2 , lowercase__=512 , lowercase__=256 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.02 , lowercase__=1E-7 , lowercase__=1E-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=128 , lowercase__=16 , lowercase__=True , lowercase__=0.05 , lowercase__=10 , lowercase__=2 , lowercase__=0.0 , lowercase__=10 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=256 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ) -> Dict:
"""simple docstring"""
super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ )
_snake_case : List[str] = hidden_size
_snake_case : Optional[Any] = feat_extract_norm
_snake_case : Tuple = feat_extract_activation
_snake_case : Tuple = list(lowercase__ )
_snake_case : Any = list(lowercase__ )
_snake_case : Any = list(lowercase__ )
_snake_case : Any = conv_bias
_snake_case : List[Any] = num_conv_pos_embeddings
_snake_case : Any = num_conv_pos_embedding_groups
_snake_case : Union[str, Any] = len(self.conv_dim )
_snake_case : Optional[Any] = num_hidden_layers
_snake_case : Optional[int] = intermediate_size
_snake_case : Any = squeeze_factor
_snake_case : Optional[Any] = max_position_embeddings
_snake_case : Tuple = position_buckets
_snake_case : Tuple = share_att_key
_snake_case : Any = relative_attention
_snake_case : Optional[int] = norm_rel_ebd
_snake_case : Optional[Any] = list(lowercase__ )
_snake_case : List[Any] = hidden_act
_snake_case : List[Any] = num_attention_heads
_snake_case : Dict = hidden_dropout
_snake_case : Tuple = attention_dropout
_snake_case : Union[str, Any] = activation_dropout
_snake_case : List[Any] = feat_proj_dropout
_snake_case : Optional[int] = final_dropout
_snake_case : Optional[Any] = layer_norm_eps
_snake_case : Dict = feature_layer_norm_eps
_snake_case : List[Any] = initializer_range
_snake_case : Dict = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect.'''
'''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'''
F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)'''
F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_snake_case : Union[str, Any] = apply_spec_augment
_snake_case : Any = mask_time_prob
_snake_case : List[str] = mask_time_length
_snake_case : Dict = mask_time_min_masks
_snake_case : Union[str, Any] = mask_feature_prob
_snake_case : Tuple = mask_feature_length
_snake_case : Union[str, Any] = mask_feature_min_masks
# ctc loss
_snake_case : Optional[Any] = ctc_loss_reduction
_snake_case : Optional[Any] = ctc_zero_infinity
# sequence classification
_snake_case : List[Any] = use_weighted_layer_sum
_snake_case : Any = classifier_proj_size
@property
def UpperCAmelCase_ ( self ) -> Any:
"""simple docstring"""
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 47
| 1
|
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
import PIL.Image
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
PILImageResampling,
get_image_size,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
UpperCAmelCase : Dict = logging.get_logger(__name__)
class lowerCamelCase (a__ ):
_lowercase : int = ["""pixel_values"""]
def __init__( self , lowercase__ = True , lowercase__ = 32 , lowercase__=PILImageResampling.BILINEAR , lowercase__ = True , **lowercase__ , ) -> None:
"""simple docstring"""
_snake_case : Any = do_resize
_snake_case : List[str] = do_rescale
_snake_case : Any = size_divisor
_snake_case : Optional[Any] = resample
super().__init__(**lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ ) -> np.ndarray:
"""simple docstring"""
_snake_case , _snake_case : Dict = get_image_size(lowercase__ )
# Rounds the height and width down to the closest multiple of size_divisor
_snake_case : Optional[int] = height // size_divisor * size_divisor
_snake_case : Dict = width // size_divisor * size_divisor
_snake_case : str = resize(lowercase__ , (new_h, new_w) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ )
return image
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ ) -> np.ndarray:
"""simple docstring"""
return rescale(image=lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__=None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ) -> BatchFeature:
"""simple docstring"""
_snake_case : Any = do_resize if do_resize is not None else self.do_resize
_snake_case : List[Any] = do_rescale if do_rescale is not None else self.do_rescale
_snake_case : List[str] = size_divisor if size_divisor is not None else self.size_divisor
_snake_case : int = resample if resample is not None else self.resample
if do_resize and size_divisor is None:
raise ValueError('''size_divisor is required for resizing''' )
_snake_case : Tuple = make_list_of_images(lowercase__ )
if not valid_images(lowercase__ ):
raise ValueError('''Invalid image(s)''' )
# All transformations expect numpy arrays.
_snake_case : Tuple = [to_numpy_array(lowercase__ ) for img in images]
if do_resize:
_snake_case : Optional[int] = [self.resize(lowercase__ , size_divisor=lowercase__ , resample=lowercase__ ) for image in images]
if do_rescale:
_snake_case : Union[str, Any] = [self.rescale(lowercase__ , scale=1 / 255 ) for image in images]
_snake_case : Union[str, Any] = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images]
_snake_case : List[str] = {'''pixel_values''': images}
return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
| 47
|
'''simple docstring'''
from random import randint
from tempfile import TemporaryFile
import numpy as np
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : List[Any] = 0
if start < end:
_snake_case : List[Any] = randint(lowerCAmelCase_ , lowerCAmelCase_ )
_snake_case : Any = a[end]
_snake_case : List[str] = a[pivot]
_snake_case : Optional[int] = temp
_snake_case , _snake_case : List[Any] = _in_place_partition(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
count += _in_place_quick_sort(lowerCAmelCase_ , lowerCAmelCase_ , p - 1 )
count += _in_place_quick_sort(lowerCAmelCase_ , p + 1 , lowerCAmelCase_ )
return count
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Optional[Any] = 0
_snake_case : Optional[int] = randint(lowerCAmelCase_ , lowerCAmelCase_ )
_snake_case : Tuple = a[end]
_snake_case : Optional[Any] = a[pivot]
_snake_case : Union[str, Any] = temp
_snake_case : Union[str, Any] = start - 1
for index in range(lowerCAmelCase_ , lowerCAmelCase_ ):
count += 1
if a[index] < a[end]: # check if current val is less than pivot value
_snake_case : Optional[int] = new_pivot_index + 1
_snake_case : Optional[Any] = a[new_pivot_index]
_snake_case : Tuple = a[index]
_snake_case : str = temp
_snake_case : Any = a[new_pivot_index + 1]
_snake_case : str = a[end]
_snake_case : Optional[int] = temp
return new_pivot_index + 1, count
UpperCAmelCase : Dict = TemporaryFile()
UpperCAmelCase : Dict = 1_0_0 # 1000 elements are to be sorted
UpperCAmelCase, UpperCAmelCase : str = 0, 1 # mean and standard deviation
UpperCAmelCase : Optional[Any] = np.random.normal(mu, sigma, p)
np.save(outfile, X)
print('The array is')
print(X)
outfile.seek(0) # using the same array
UpperCAmelCase : int = np.load(outfile)
UpperCAmelCase : Optional[int] = len(M) - 1
UpperCAmelCase : str = _in_place_quick_sort(M, 0, r)
print(
'No of Comparisons for 100 elements selected from a standard normal distribution'
'is :'
)
print(z)
| 47
| 1
|
'''simple docstring'''
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Optional[int] = []
_snake_case : Optional[int] = set({'''(''', '''[''', '''{'''} )
_snake_case : List[Any] = set({''')''', ''']''', '''}'''} )
_snake_case : Tuple = {'''{''': '''}''', '''[''': ''']''', '''(''': ''')'''}
for i in range(len(lowerCAmelCase_ ) ):
if s[i] in open_brackets:
stack.append(s[i] )
elif s[i] in closed_brackets and (
len(lowerCAmelCase_ ) == 0 or (len(lowerCAmelCase_ ) > 0 and open_to_closed[stack.pop()] != s[i])
):
return False
return len(lowerCAmelCase_ ) == 0
def _a ( ):
"""simple docstring"""
_snake_case : Dict = input('''Enter sequence of brackets: ''' )
if is_balanced(lowerCAmelCase_ ):
print(lowerCAmelCase_ , '''is balanced''' )
else:
print(lowerCAmelCase_ , '''is not balanced''' )
if __name__ == "__main__":
main()
| 47
|
'''simple docstring'''
from ...utils import is_torch_available, is_transformers_available
if is_transformers_available() and is_torch_available():
from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
| 47
| 1
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
UpperCAmelCase : str = {'configuration_yolos': ['YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'YolosConfig', 'YolosOnnxConfig']}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Optional[int] = ['YolosFeatureExtractor']
UpperCAmelCase : Dict = ['YolosImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : List[Any] = [
'YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST',
'YolosForObjectDetection',
'YolosModel',
'YolosPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_yolos import YolosFeatureExtractor
from .image_processing_yolos import YolosImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_yolos import (
YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST,
YolosForObjectDetection,
YolosModel,
YolosPreTrainedModel,
)
else:
import sys
UpperCAmelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 47
|
'''simple docstring'''
from argparse import ArgumentParser
from .add_new_model import AddNewModelCommand
from .add_new_model_like import AddNewModelLikeCommand
from .convert import ConvertCommand
from .download import DownloadCommand
from .env import EnvironmentCommand
from .lfs import LfsCommands
from .pt_to_tf import PTtoTFCommand
from .run import RunCommand
from .serving import ServeCommand
from .user import UserCommands
def _a ( ):
"""simple docstring"""
_snake_case : List[Any] = ArgumentParser('''Transformers CLI tool''' , usage='''transformers-cli <command> [<args>]''' )
_snake_case : List[str] = parser.add_subparsers(help='''transformers-cli command helpers''' )
# Register commands
ConvertCommand.register_subcommand(lowerCAmelCase_ )
DownloadCommand.register_subcommand(lowerCAmelCase_ )
EnvironmentCommand.register_subcommand(lowerCAmelCase_ )
RunCommand.register_subcommand(lowerCAmelCase_ )
ServeCommand.register_subcommand(lowerCAmelCase_ )
UserCommands.register_subcommand(lowerCAmelCase_ )
AddNewModelCommand.register_subcommand(lowerCAmelCase_ )
AddNewModelLikeCommand.register_subcommand(lowerCAmelCase_ )
LfsCommands.register_subcommand(lowerCAmelCase_ )
PTtoTFCommand.register_subcommand(lowerCAmelCase_ )
# Let's go
_snake_case : str = parser.parse_args()
if not hasattr(lowerCAmelCase_ , '''func''' ):
parser.print_help()
exit(1 )
# Run
_snake_case : Union[str, Any] = args.func(lowerCAmelCase_ )
service.run()
if __name__ == "__main__":
main()
| 47
| 1
|
'''simple docstring'''
import argparse
import ast
import logging
import os
import sys
import pandas as pd
import torch
from tqdm import tqdm
from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration
from transformers import logging as transformers_logging
sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip
from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip
UpperCAmelCase : List[str] = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
transformers_logging.set_verbosity_info()
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
if "token" in model_name_or_path:
return "rag_token"
if "sequence" in model_name_or_path:
return "rag_sequence"
if "bart" in model_name_or_path:
return "bart"
return None
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
return max(metric_fn(lowerCAmelCase_ , lowerCAmelCase_ ) for gt in ground_truths )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : str = [line.strip() for line in open(lowerCAmelCase_ , '''r''' ).readlines()]
_snake_case : int = []
if args.gold_data_mode == "qa":
_snake_case : Tuple = pd.read_csv(lowerCAmelCase_ , sep='''\t''' , header=lowerCAmelCase_ )
for answer_list in data[1]:
_snake_case : Any = ast.literal_eval(lowerCAmelCase_ )
answers.append(lowerCAmelCase_ )
else:
_snake_case : Optional[int] = [line.strip() for line in open(lowerCAmelCase_ , '''r''' ).readlines()]
_snake_case : List[Any] = [[reference] for reference in references]
_snake_case : str = 0
for prediction, ground_truths in zip(lowerCAmelCase_ , lowerCAmelCase_ ):
total += 1
em += metric_max_over_ground_truths(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
fa += metric_max_over_ground_truths(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
_snake_case : Union[str, Any] = 100.0 * em / total
_snake_case : Dict = 100.0 * fa / total
logger.info(f'''F1: {fa:.2f}''' )
logger.info(f'''EM: {em:.2f}''' )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : int = args.k
_snake_case : List[str] = [line.strip() for line in open(lowerCAmelCase_ , '''r''' ).readlines()]
_snake_case : Dict = [line.strip() for line in open(lowerCAmelCase_ , '''r''' ).readlines()]
_snake_case : str = 0
for hypo, reference in zip(lowerCAmelCase_ , lowerCAmelCase_ ):
_snake_case : Union[str, Any] = set(hypo.split('''\t''' )[:k] )
_snake_case : int = set(reference.split('''\t''' ) )
total += 1
em += len(hypo_provenance & ref_provenance ) / k
_snake_case : str = 100.0 * em / total
logger.info(f'''Precision@{k}: {em: .2f}''' )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
def strip_title(lowerCAmelCase_ ):
if title.startswith('''"''' ):
_snake_case : int = title[1:]
if title.endswith('''"''' ):
_snake_case : Optional[Any] = title[:-1]
return title
_snake_case : List[Any] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
lowerCAmelCase_ , return_tensors='''pt''' , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , )['''input_ids'''].to(args.device )
_snake_case : Any = rag_model.rag.question_encoder(lowerCAmelCase_ )
_snake_case : Any = question_enc_outputs[0]
_snake_case : Optional[Any] = rag_model.retriever(
lowerCAmelCase_ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='''pt''' , )
_snake_case : Any = rag_model.retriever.index.get_doc_dicts(result.doc_ids )
_snake_case : Any = []
for docs in all_docs:
_snake_case : Optional[int] = [strip_title(lowerCAmelCase_ ) for title in docs['''title''']]
provenance_strings.append('''\t'''.join(lowerCAmelCase_ ) )
return provenance_strings
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
with torch.no_grad():
_snake_case : Dict = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
lowerCAmelCase_ , return_tensors='''pt''' , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ )
_snake_case : Tuple = inputs_dict.input_ids.to(args.device )
_snake_case : int = inputs_dict.attention_mask.to(args.device )
_snake_case : int = rag_model.generate( # rag_model overwrites generate
lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=lowerCAmelCase_ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , )
_snake_case : Union[str, Any] = rag_model.retriever.generator_tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ )
if args.print_predictions:
for q, a in zip(lowerCAmelCase_ , lowerCAmelCase_ ):
logger.info('''Q: {} - A: {}'''.format(lowerCAmelCase_ , lowerCAmelCase_ ) )
return answers
def _a ( ):
"""simple docstring"""
_snake_case : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
'''--model_type''' , choices=['''rag_sequence''', '''rag_token''', '''bart'''] , type=lowerCAmelCase_ , help=(
'''RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the'''
''' model_name_or_path'''
) , )
parser.add_argument(
'''--index_name''' , default=lowerCAmelCase_ , choices=['''exact''', '''compressed''', '''legacy'''] , type=lowerCAmelCase_ , help='''RAG model retriever type''' , )
parser.add_argument(
'''--index_path''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help='''Path to the retrieval index''' , )
parser.add_argument('''--n_docs''' , default=5 , type=lowerCAmelCase_ , help='''Number of retrieved docs''' )
parser.add_argument(
'''--model_name_or_path''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''Path to pretrained checkpoints or model identifier from huggingface.co/models''' , )
parser.add_argument(
'''--eval_mode''' , choices=['''e2e''', '''retrieval'''] , default='''e2e''' , type=lowerCAmelCase_ , help=(
'''Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates'''
''' precision@k.'''
) , )
parser.add_argument('''--k''' , default=1 , type=lowerCAmelCase_ , help='''k for the precision@k calculation''' )
parser.add_argument(
'''--evaluation_set''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''Path to a file containing evaluation samples''' , )
parser.add_argument(
'''--gold_data_path''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''Path to a tab-separated file with gold samples''' , )
parser.add_argument(
'''--gold_data_mode''' , default='''qa''' , type=lowerCAmelCase_ , choices=['''qa''', '''ans'''] , help=(
'''Format of the gold data file'''
'''qa - a single line in the following format: question [tab] answer_list'''
'''ans - a single line of the gold file contains the expected answer string'''
) , )
parser.add_argument(
'''--predictions_path''' , type=lowerCAmelCase_ , default='''predictions.txt''' , help='''Name of the predictions file, to be stored in the checkpoints directory''' , )
parser.add_argument(
'''--eval_all_checkpoints''' , action='''store_true''' , help='''Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number''' , )
parser.add_argument(
'''--eval_batch_size''' , default=8 , type=lowerCAmelCase_ , help='''Batch size per GPU/CPU for evaluation.''' , )
parser.add_argument(
'''--recalculate''' , help='''Recalculate predictions even if the prediction file exists''' , action='''store_true''' , )
parser.add_argument(
'''--num_beams''' , default=4 , type=lowerCAmelCase_ , help='''Number of beams to be used when generating answers''' , )
parser.add_argument('''--min_length''' , default=1 , type=lowerCAmelCase_ , help='''Min length of the generated answers''' )
parser.add_argument('''--max_length''' , default=50 , type=lowerCAmelCase_ , help='''Max length of the generated answers''' )
parser.add_argument(
'''--print_predictions''' , action='''store_true''' , help='''If True, prints predictions while evaluating.''' , )
parser.add_argument(
'''--print_docs''' , action='''store_true''' , help='''If True, prints docs retried while generating.''' , )
_snake_case : Optional[Any] = parser.parse_args()
_snake_case : List[str] = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' )
return args
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : str = {}
if args.model_type is None:
_snake_case : int = infer_model_type(args.model_name_or_path )
assert args.model_type is not None
if args.model_type.startswith('''rag''' ):
_snake_case : Optional[int] = RagTokenForGeneration if args.model_type == '''rag_token''' else RagSequenceForGeneration
_snake_case : Optional[int] = args.n_docs
if args.index_name is not None:
_snake_case : str = args.index_name
if args.index_path is not None:
_snake_case : Any = args.index_path
else:
_snake_case : str = BartForConditionalGeneration
_snake_case : Any = (
[f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()]
if args.eval_all_checkpoints
else [args.model_name_or_path]
)
logger.info('''Evaluate the following checkpoints: %s''' , lowerCAmelCase_ )
_snake_case : Optional[int] = get_scores if args.eval_mode == '''e2e''' else get_precision_at_k
_snake_case : str = evaluate_batch_eae if args.eval_mode == '''e2e''' else evaluate_batch_retrieval
for checkpoint in checkpoints:
if os.path.exists(args.predictions_path ) and (not args.recalculate):
logger.info('''Calculating metrics based on an existing predictions file: {}'''.format(args.predictions_path ) )
score_fn(lowerCAmelCase_ , args.predictions_path , args.gold_data_path )
continue
logger.info('''***** Running evaluation for {} *****'''.format(lowerCAmelCase_ ) )
logger.info(''' Batch size = %d''' , args.eval_batch_size )
logger.info(''' Predictions will be stored under {}'''.format(args.predictions_path ) )
if args.model_type.startswith('''rag''' ):
_snake_case : List[str] = RagRetriever.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ )
_snake_case : List[Any] = model_class.from_pretrained(lowerCAmelCase_ , retriever=lowerCAmelCase_ , **lowerCAmelCase_ )
model.retriever.init_retrieval()
else:
_snake_case : Optional[Any] = model_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ )
model.to(args.device )
with open(args.evaluation_set , '''r''' ) as eval_file, open(args.predictions_path , '''w''' ) as preds_file:
_snake_case : Tuple = []
for line in tqdm(lowerCAmelCase_ ):
questions.append(line.strip() )
if len(lowerCAmelCase_ ) == args.eval_batch_size:
_snake_case : List[Any] = evaluate_batch_fn(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
preds_file.write('''\n'''.join(lowerCAmelCase_ ) + '''\n''' )
preds_file.flush()
_snake_case : Any = []
if len(lowerCAmelCase_ ) > 0:
_snake_case : List[Any] = evaluate_batch_fn(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
preds_file.write('''\n'''.join(lowerCAmelCase_ ) )
preds_file.flush()
score_fn(lowerCAmelCase_ , args.predictions_path , args.gold_data_path )
if __name__ == "__main__":
UpperCAmelCase : int = get_args()
main(args)
| 47
|
'''simple docstring'''
from collections.abc import Generator
def _a ( ):
"""simple docstring"""
_snake_case , _snake_case : Union[str, Any] = 0, 1
while True:
_snake_case , _snake_case : List[str] = b, a + b
yield b
def _a ( lowerCAmelCase_ = 1_000 ):
"""simple docstring"""
_snake_case : List[str] = 1
_snake_case : Dict = fibonacci_generator()
while len(str(next(lowerCAmelCase_ ) ) ) < n:
answer += 1
return answer + 1
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 47
| 1
|
'''simple docstring'''
from collections import Counter
from pathlib import Path
from typing import Optional, Tuple
import yaml
class lowerCamelCase (yaml.SafeLoader ):
def UpperCAmelCase_ ( self , lowercase__ ) -> Any:
"""simple docstring"""
_snake_case : int = [self.constructed_objects[key_node] for key_node, _ in node.value]
_snake_case : str = [tuple(lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else key for key in keys]
_snake_case : str = Counter(lowercase__ )
_snake_case : List[str] = [key for key in counter if counter[key] > 1]
if duplicate_keys:
raise TypeError(F'''Got duplicate yaml keys: {duplicate_keys}''' )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__=False ) -> Tuple:
"""simple docstring"""
_snake_case : Tuple = super().construct_mapping(lowercase__ , deep=lowercase__ )
self._check_no_duplicates_on_constructed_node(lowercase__ )
return mapping
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : int = list(readme_content.splitlines() )
if full_content and full_content[0] == "---" and "---" in full_content[1:]:
_snake_case : int = full_content[1:].index('''---''' ) + 1
_snake_case : Optional[Any] = '''\n'''.join(full_content[1:sep_idx] )
return yamlblock, "\n".join(full_content[sep_idx + 1 :] )
return None, "\n".join(lowerCAmelCase_ )
class lowerCamelCase (a__ ):
# class attributes
_lowercase : Tuple = {"""train_eval_index"""} # train-eval-index in the YAML metadata
@classmethod
def UpperCAmelCase_ ( cls , lowercase__ ) -> "DatasetMetadata":
"""simple docstring"""
with open(lowercase__ , encoding='''utf-8''' ) as readme_file:
_snake_case , _snake_case : Tuple = _split_yaml_from_readme(readme_file.read() )
if yaml_string is not None:
return cls.from_yaml_string(lowercase__ )
else:
return cls()
def UpperCAmelCase_ ( self , lowercase__ ) -> Dict:
"""simple docstring"""
if path.exists():
with open(lowercase__ , encoding='''utf-8''' ) as readme_file:
_snake_case : Any = readme_file.read()
else:
_snake_case : int = None
_snake_case : Optional[int] = self._to_readme(lowercase__ )
with open(lowercase__ , '''w''' , encoding='''utf-8''' ) as readme_file:
readme_file.write(lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ = None ) -> str:
"""simple docstring"""
if readme_content is not None:
_snake_case , _snake_case : Any = _split_yaml_from_readme(lowercase__ )
_snake_case : Tuple = '''---\n''' + self.to_yaml_string() + '''---\n''' + content
else:
_snake_case : int = '''---\n''' + self.to_yaml_string() + '''---\n'''
return full_content
@classmethod
def UpperCAmelCase_ ( cls , lowercase__ ) -> "DatasetMetadata":
"""simple docstring"""
_snake_case : Optional[int] = yaml.load(lowercase__ , Loader=_NoDuplicateSafeLoader ) or {}
# Convert the YAML keys to DatasetMetadata fields
_snake_case : Optional[Any] = {
(key.replace('''-''' , '''_''' ) if key.replace('''-''' , '''_''' ) in cls._FIELDS_WITH_DASHES else key): value
for key, value in metadata_dict.items()
}
return cls(**lowercase__ )
def UpperCAmelCase_ ( self ) -> str:
"""simple docstring"""
return yaml.safe_dump(
{
(key.replace('''_''' , '''-''' ) if key in self._FIELDS_WITH_DASHES else key): value
for key, value in self.items()
} , sort_keys=lowercase__ , allow_unicode=lowercase__ , encoding='''utf-8''' , ).decode('''utf-8''' )
UpperCAmelCase : Optional[Any] = {
'image-classification': [],
'translation': [],
'image-segmentation': [],
'fill-mask': [],
'automatic-speech-recognition': [],
'token-classification': [],
'sentence-similarity': [],
'audio-classification': [],
'question-answering': [],
'summarization': [],
'zero-shot-classification': [],
'table-to-text': [],
'feature-extraction': [],
'other': [],
'multiple-choice': [],
'text-classification': [],
'text-to-image': [],
'text2text-generation': [],
'zero-shot-image-classification': [],
'tabular-classification': [],
'tabular-regression': [],
'image-to-image': [],
'tabular-to-text': [],
'unconditional-image-generation': [],
'text-retrieval': [],
'text-to-speech': [],
'object-detection': [],
'audio-to-audio': [],
'text-generation': [],
'conversational': [],
'table-question-answering': [],
'visual-question-answering': [],
'image-to-text': [],
'reinforcement-learning': [],
'voice-activity-detection': [],
'time-series-forecasting': [],
'document-question-answering': [],
}
if __name__ == "__main__":
from argparse import ArgumentParser
UpperCAmelCase : Optional[Any] = ArgumentParser(usage='Validate the yaml metadata block of a README.md file.')
ap.add_argument('readme_filepath')
UpperCAmelCase : Optional[int] = ap.parse_args()
UpperCAmelCase : int = Path(args.readme_filepath)
UpperCAmelCase : Optional[int] = DatasetMetadata.from_readme(readme_filepath)
print(dataset_metadata)
dataset_metadata.to_readme(readme_filepath)
| 47
|
'''simple docstring'''
import logging
import re
import pytorch_quantization
import pytorch_quantization.nn as quant_nn
import torch
from pytorch_quantization import calib
from pytorch_quantization.tensor_quant import QuantDescriptor
UpperCAmelCase : str = logging.getLogger(__name__)
UpperCAmelCase : Dict = 5_0 # max width of layer names
UpperCAmelCase : Union[str, Any] = 7_0 # max width of quantizer names
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Dict = parser.add_argument_group('''quant_trainer arguments''' )
group.add_argument('''--wprec''' , type=lowerCAmelCase_ , default=8 , help='''weight precision''' )
group.add_argument('''--aprec''' , type=lowerCAmelCase_ , default=8 , help='''activation precision''' )
group.add_argument('''--quant-per-tensor''' , action='''store_true''' , help='''per tensor weight scaling''' )
group.add_argument('''--quant-disable''' , action='''store_true''' , help='''disable all quantizers''' )
group.add_argument('''--quant-disable-embeddings''' , action='''store_true''' , help='''disable all embeddings quantizers''' )
group.add_argument('''--quant-disable-keyword''' , type=lowerCAmelCase_ , nargs='''+''' , help='''disable quantizers by keyword''' )
group.add_argument('''--quant-disable-layer-module''' , type=lowerCAmelCase_ , help='''disable quantizers by keyword under layer.''' )
group.add_argument('''--quant-enable-layer-module''' , type=lowerCAmelCase_ , help='''enable quantizers by keyword under layer''' )
group.add_argument('''--calibrator''' , default='''max''' , help='''which quantization range calibrator to use''' )
group.add_argument('''--percentile''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help='''percentile for PercentileCalibrator''' )
group.add_argument('''--fuse-qkv''' , action='''store_true''' , help='''use the same scale factor for qkv''' )
group.add_argument('''--clip-gelu''' , metavar='''N''' , type=lowerCAmelCase_ , help='''clip gelu output maximum value to N''' )
group.add_argument(
'''--recalibrate-weights''' , action='''store_true''' , help=(
'''recalibrate weight amaxes by taking the max of the weights.'''
''' amaxes will be computed with the current quantization granularity (axis).'''
) , )
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
if args.calibrator == "max":
_snake_case : Optional[int] = '''max'''
elif args.calibrator == "percentile":
if args.percentile is None:
raise ValueError('''Specify --percentile when using percentile calibrator''' )
_snake_case : Tuple = '''histogram'''
elif args.calibrator == "mse":
_snake_case : int = '''histogram'''
else:
raise ValueError(f'''Invalid calibrator {args.calibrator}''' )
_snake_case : Tuple = QuantDescriptor(num_bits=args.aprec , calib_method=lowerCAmelCase_ )
_snake_case : str = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) )
quant_nn.QuantLinear.set_default_quant_desc_input(lowerCAmelCase_ )
quant_nn.QuantLinear.set_default_quant_desc_weight(lowerCAmelCase_ )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False , lowerCAmelCase_=False ):
"""simple docstring"""
logger.info('''Configuring Model for Quantization''' )
logger.info(f'''using quantization package {pytorch_quantization.__file__}''' )
if not calib:
if args.quant_disable_embeddings:
set_quantizer_by_name(lowerCAmelCase_ , ['''embeddings'''] , which='''weight''' , _disabled=lowerCAmelCase_ )
if args.quant_disable:
set_quantizer_by_name(lowerCAmelCase_ , [''''''] , _disabled=lowerCAmelCase_ )
if args.quant_disable_keyword:
set_quantizer_by_name(lowerCAmelCase_ , args.quant_disable_keyword , _disabled=lowerCAmelCase_ )
if args.quant_disable_layer_module:
set_quantizer_by_name(lowerCAmelCase_ , [R'''layer.\d+.''' + args.quant_disable_layer_module] , _disabled=lowerCAmelCase_ )
if args.quant_enable_layer_module:
set_quantizer_by_name(lowerCAmelCase_ , [R'''layer.\d+.''' + args.quant_enable_layer_module] , _disabled=lowerCAmelCase_ )
if args.recalibrate_weights:
recalibrate_weights(lowerCAmelCase_ )
if args.fuse_qkv:
fuse_qkv(lowerCAmelCase_ , lowerCAmelCase_ )
if args.clip_gelu:
clip_gelu(lowerCAmelCase_ , args.clip_gelu )
# if args.local_rank in [-1, 0] and not calib:
print_quant_summary(lowerCAmelCase_ )
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
logger.info('''Enabling Calibration''' )
for name, module in model.named_modules():
if name.endswith('''_quantizer''' ):
if module._calibrator is not None:
module.disable_quant()
module.enable_calib()
else:
module.disable()
logger.info(f'''{name:80}: {module}''' )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
logger.info('''Loading calibrated amax''' )
for name, module in model.named_modules():
if name.endswith('''_quantizer''' ):
if module._calibrator is not None:
if isinstance(module._calibrator , calib.MaxCalibrator ):
module.load_calib_amax()
else:
module.load_calib_amax('''percentile''' , percentile=args.percentile )
module.enable_quant()
module.disable_calib()
else:
module.enable()
model.cuda()
print_quant_summary(lowerCAmelCase_ )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
def fusea(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
for mod in [qq, qk, qv]:
if not hasattr(lowerCAmelCase_ , '''_amax''' ):
print(''' WARNING: NO AMAX BUFFER''' )
return
_snake_case : Tuple = qq._amax.detach().item()
_snake_case : Tuple = qk._amax.detach().item()
_snake_case : List[Any] = qv._amax.detach().item()
_snake_case : List[str] = max(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
qq._amax.fill_(lowerCAmelCase_ )
qk._amax.fill_(lowerCAmelCase_ )
qv._amax.fill_(lowerCAmelCase_ )
logger.info(f''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' )
for name, mod in model.named_modules():
if name.endswith('''.attention.self''' ):
logger.info(f'''FUSE_QKV: {name:{name_width}}''' )
fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer )
if args.quant_per_tensor:
fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
for name, mod in model.named_modules():
if name.endswith('''.output.dense''' ) and not name.endswith('''attention.output.dense''' ):
_snake_case : List[Any] = mod._input_quantizer._amax.data.detach().item()
mod._input_quantizer._amax.data.detach().clamp_(max=lowerCAmelCase_ )
_snake_case : List[str] = mod._input_quantizer._amax.data.detach().item()
logger.info(f'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' )
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
for name, mod in model.named_modules():
if hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ) and mod._weight_quantizer.axis is not None:
_snake_case : Dict = mod.weight.shape[0]
_snake_case : Optional[int] = mod._weight_quantizer._amax.detach()
_snake_case : Optional[int] = torch.ones(lowerCAmelCase_ , dtype=amax.dtype , device=amax.device ) * amax
print(f'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' )
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
for name, mod in model.named_modules():
if hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ):
if not hasattr(mod.weight_quantizer , '''_amax''' ):
print('''RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER''' )
continue
# determine which axes to reduce across
# e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3)
_snake_case : int = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis )
_snake_case : Dict = set(range(len(mod.weight.size() ) ) ) - axis_set
_snake_case : Optional[int] = pytorch_quantization.utils.reduce_amax(mod.weight , axis=lowerCAmelCase_ , keepdims=lowerCAmelCase_ ).detach()
logger.info(f'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' )
_snake_case : Tuple = amax
def _a ( lowerCAmelCase_ , lowerCAmelCase_=25 , lowerCAmelCase_=180 , lowerCAmelCase_=None ):
"""simple docstring"""
if ignore is None:
_snake_case : Dict = []
elif not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
_snake_case : Optional[int] = [ignore]
_snake_case : str = 0
for name, mod in model.named_modules():
if not hasattr(lowerCAmelCase_ , '''weight''' ):
continue
_snake_case : Optional[int] = max(lowerCAmelCase_ , len(lowerCAmelCase_ ) )
for name, mod in model.named_modules():
_snake_case : Optional[Any] = getattr(lowerCAmelCase_ , '''_input_quantizer''' , lowerCAmelCase_ )
_snake_case : Tuple = getattr(lowerCAmelCase_ , '''_weight_quantizer''' , lowerCAmelCase_ )
if not hasattr(lowerCAmelCase_ , '''weight''' ):
continue
if type(lowerCAmelCase_ ) in ignore:
continue
if [True for s in ignore if type(lowerCAmelCase_ ) is str and s in name]:
continue
_snake_case : Optional[int] = f'''Act:{input_q.extra_repr()}'''
_snake_case : Any = f'''Wgt:{weight_q.extra_repr()}'''
_snake_case : Optional[int] = f'''{name:{name_width}} {act_str} {wgt_str}'''
if len(lowerCAmelCase_ ) <= line_width:
logger.info(lowerCAmelCase_ )
else:
logger.info(f'''{name:{name_width}} {act_str}''' )
logger.info(f'''{" ":{name_width}} {wgt_str}''' )
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : str = 0
for name, mod in model.named_modules():
if isinstance(lowerCAmelCase_ , pytorch_quantization.nn.TensorQuantizer ):
print(f'''{name:80} {mod}''' )
count += 1
print(f'''{count} TensorQuantizers found in model''' )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Optional[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
if quantizer_mod is not None:
assert hasattr(lowerCAmelCase_ , lowerCAmelCase_ )
setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
else:
logger.warning(f'''{name} has no {quantizer}''' )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_="both" , **lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Optional[Any] = f'''Warning: changing {which} quantizers of {name:{qname_width}}'''
for k, v in kwargs.items():
s += f''' {k}={v}'''
if which in ["input", "both"]:
set_quantizer(lowerCAmelCase_ , lowerCAmelCase_ , '''_input_quantizer''' , lowerCAmelCase_ , lowerCAmelCase_ )
if which in ["weight", "both"]:
set_quantizer(lowerCAmelCase_ , lowerCAmelCase_ , '''_weight_quantizer''' , lowerCAmelCase_ , lowerCAmelCase_ )
logger.info(lowerCAmelCase_ )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ):
"""simple docstring"""
for name, mod in model.named_modules():
if hasattr(lowerCAmelCase_ , '''_input_quantizer''' ) or hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ):
for n in names:
if re.search(lowerCAmelCase_ , lowerCAmelCase_ ):
set_quantizers(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ )
elif name.endswith('''_quantizer''' ):
for n in names:
if re.search(lowerCAmelCase_ , lowerCAmelCase_ ):
_snake_case : Any = f'''Warning: changing {name:{name_width}}'''
for k, v in kwargs.items():
s += f''' {k}={v}'''
setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
logger.info(lowerCAmelCase_ )
| 47
| 1
|
'''simple docstring'''
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
if n == 1 or not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
return 0
elif n == 2:
return 1
else:
_snake_case : Union[str, Any] = [0, 1]
for i in range(2 , n + 1 ):
sequence.append(sequence[i - 1] + sequence[i - 2] )
return sequence[n]
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Optional[int] = 0
_snake_case : int = 2
while digits < n:
index += 1
_snake_case : Tuple = len(str(fibonacci(lowerCAmelCase_ ) ) )
return index
def _a ( lowerCAmelCase_ = 1_000 ):
"""simple docstring"""
return fibonacci_digits_index(lowerCAmelCase_ )
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 47
|
'''simple docstring'''
from __future__ import annotations
def _a ( lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None ):
"""simple docstring"""
if start is None:
_snake_case : Optional[Any] = 0
if end is None:
_snake_case : Any = len(lowerCAmelCase_ ) - 1
if start >= end:
return
_snake_case : Optional[Any] = (start + end) // 2
slowsort(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
slowsort(lowerCAmelCase_ , mid + 1 , lowerCAmelCase_ )
if sequence[end] < sequence[mid]:
_snake_case , _snake_case : int = sequence[mid], sequence[end]
slowsort(lowerCAmelCase_ , lowerCAmelCase_ , end - 1 )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 47
| 1
|
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__)
UpperCAmelCase : int = {
'unc-nlp/lxmert-base-uncased': 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json',
}
class lowerCamelCase (a__ ):
_lowercase : int = """lxmert"""
_lowercase : Optional[int] = {}
def __init__( self , lowercase__=30_522 , lowercase__=768 , lowercase__=12 , lowercase__=9_500 , lowercase__=1_600 , lowercase__=400 , lowercase__=3_072 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=512 , lowercase__=2 , lowercase__=0.02 , lowercase__=1E-1_2 , lowercase__=9 , lowercase__=5 , lowercase__=5 , lowercase__=2_048 , lowercase__=4 , lowercase__=6.67 , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=True , **lowercase__ , ) -> Dict:
"""simple docstring"""
_snake_case : Optional[Any] = vocab_size
_snake_case : Dict = hidden_size
_snake_case : List[Any] = num_attention_heads
_snake_case : Union[str, Any] = hidden_act
_snake_case : int = intermediate_size
_snake_case : Union[str, Any] = hidden_dropout_prob
_snake_case : Dict = attention_probs_dropout_prob
_snake_case : Optional[Any] = max_position_embeddings
_snake_case : int = type_vocab_size
_snake_case : int = initializer_range
_snake_case : Any = layer_norm_eps
_snake_case : Optional[Any] = num_qa_labels
_snake_case : str = num_object_labels
_snake_case : List[Any] = num_attr_labels
_snake_case : Optional[Any] = l_layers
_snake_case : Optional[int] = x_layers
_snake_case : Dict = r_layers
_snake_case : str = visual_feat_dim
_snake_case : Union[str, Any] = visual_pos_dim
_snake_case : Any = visual_loss_normalizer
_snake_case : int = task_matched
_snake_case : Optional[int] = task_mask_lm
_snake_case : Tuple = task_obj_predict
_snake_case : Tuple = task_qa
_snake_case : List[str] = visual_obj_loss
_snake_case : Optional[int] = visual_attr_loss
_snake_case : str = visual_feat_loss
_snake_case : Union[str, Any] = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers}
super().__init__(**lowercase__ )
| 47
|
'''simple docstring'''
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class lowerCamelCase (unittest.TestCase ):
@slow
def UpperCAmelCase_ ( self ) -> int:
"""simple docstring"""
_snake_case : Tuple = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' )
_snake_case : Any = AutoTokenizer.from_pretrained('''google/mt5-small''' )
_snake_case : List[str] = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids
_snake_case : Dict = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids
_snake_case : Any = shift_tokens_right(lowercase__ , model.config.pad_token_id , model.config.decoder_start_token_id )
_snake_case : Any = model(lowercase__ , decoder_input_ids=lowercase__ ).logits
_snake_case : Tuple = optax.softmax_cross_entropy(lowercase__ , onehot(lowercase__ , logits.shape[-1] ) ).mean()
_snake_case : Tuple = -(labels.shape[-1] * loss.item())
_snake_case : Union[str, Any] = -84.9_127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
| 47
| 1
|
'''simple docstring'''
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Optional[int] = len(lowerCAmelCase_ )
_snake_case : List[Any] = len(lowerCAmelCase_ )
_snake_case : Any = [[False for _ in range(m + 1 )] for _ in range(n + 1 )]
_snake_case : List[Any] = True
for i in range(lowerCAmelCase_ ):
for j in range(m + 1 ):
if dp[i][j]:
if j < m and a[i].upper() == b[j]:
_snake_case : List[str] = True
if a[i].islower():
_snake_case : List[Any] = True
return dp[n][m]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 47
|
'''simple docstring'''
import pickle
import unittest
import torch
from accelerate import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils import require_cpu
@require_cpu
class lowerCamelCase (unittest.TestCase ):
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
"""simple docstring"""
_snake_case : Any = torch.nn.Linear(10 , 10 )
_snake_case : Optional[int] = torch.optim.SGD(model.parameters() , 0.1 )
_snake_case : List[str] = Accelerator()
_snake_case : Optional[Any] = accelerator.prepare(lowercase__ )
try:
pickle.loads(pickle.dumps(lowercase__ ) )
except Exception as e:
self.fail(F'''Accelerated optimizer pickling failed with {e}''' )
AcceleratorState._reset_state()
| 47
| 1
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase : int = {
'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Union[str, Any] = [
'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST',
'PegasusXForConditionalGeneration',
'PegasusXModel',
'PegasusXPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 47
|
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = tuple[float, float, float]
UpperCAmelCase : int = tuple[float, float, float]
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : str = end_pointa[0] - end_pointa[0]
_snake_case : Tuple = end_pointa[1] - end_pointa[1]
_snake_case : Any = end_pointa[2] - end_pointa[2]
return (x, y, z)
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Dict = ab[1] * ac[2] - ab[2] * ac[1] # *i
_snake_case : List[str] = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j
_snake_case : Optional[int] = ab[0] * ac[1] - ab[1] * ac[0] # *k
return (x, y, z)
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
return tuple(round(lowerCAmelCase_ , lowerCAmelCase_ ) for x in vector ) == (0, 0, 0)
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 10 ):
"""simple docstring"""
_snake_case : str = create_vector(lowerCAmelCase_ , lowerCAmelCase_ )
_snake_case : Tuple = create_vector(lowerCAmelCase_ , lowerCAmelCase_ )
return is_zero_vector(get_ad_vectors_cross(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ )
| 47
| 1
|
'''simple docstring'''
import os
import posixpath
import uuid
from dataclasses import dataclass
from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union
import numpy as np
import pyarrow as pa
import datasets
from datasets.arrow_writer import ArrowWriter, ParquetWriter
from datasets.config import MAX_SHARD_SIZE
from datasets.filesystems import (
is_remote_filesystem,
rename,
)
from datasets.iterable_dataset import _BaseExamplesIterable
from datasets.utils.py_utils import convert_file_size_to_int
UpperCAmelCase : Tuple = datasets.utils.logging.get_logger(__name__)
if TYPE_CHECKING:
import pyspark
@dataclass
class lowerCamelCase (datasets.BuilderConfig ):
_lowercase : Optional[datasets.Features] = None
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , ):
"""simple docstring"""
import pyspark
def generate_fn():
_snake_case : Tuple = df.select('''*''' , pyspark.sql.functions.spark_partition_id().alias('''part_id''' ) )
for partition_id in partition_order:
_snake_case : List[Any] = df_with_partition_id.select('''*''' ).where(f'''part_id = {partition_id}''' ).drop('''part_id''' )
_snake_case : Optional[Any] = partition_df.collect()
_snake_case : List[Any] = 0
for row in rows:
yield f'''{partition_id}_{row_id}''', row.asDict()
row_id += 1
return generate_fn
class lowerCamelCase (_BaseExamplesIterable ):
def __init__( self , lowercase__ , lowercase__=None , ) -> Union[str, Any]:
"""simple docstring"""
_snake_case : int = df
_snake_case : Any = partition_order or range(self.df.rdd.getNumPartitions() )
_snake_case : Optional[Any] = _generate_iterable_examples(self.df , self.partition_order )
def __iter__( self ) -> Optional[int]:
"""simple docstring"""
yield from self.generate_examples_fn()
def UpperCAmelCase_ ( self , lowercase__ ) -> "SparkExamplesIterable":
"""simple docstring"""
_snake_case : Union[str, Any] = list(range(self.df.rdd.getNumPartitions() ) )
generator.shuffle(lowercase__ )
return SparkExamplesIterable(self.df , partition_order=lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> "SparkExamplesIterable":
"""simple docstring"""
_snake_case : Tuple = self.split_shard_indices_by_worker(lowercase__ , lowercase__ )
return SparkExamplesIterable(self.df , partition_order=lowercase__ )
@property
def UpperCAmelCase_ ( self ) -> int:
"""simple docstring"""
return len(self.partition_order )
class lowerCamelCase (datasets.DatasetBuilder ):
_lowercase : List[Any] = SparkConfig
def __init__( self , lowercase__ , lowercase__ = None , lowercase__ = None , **lowercase__ , ) -> Optional[int]:
"""simple docstring"""
import pyspark
_snake_case : Union[str, Any] = pyspark.sql.SparkSession.builder.getOrCreate()
_snake_case : List[str] = df
_snake_case : List[Any] = working_dir
super().__init__(
cache_dir=lowercase__ , config_name=str(self.df.semanticHash() ) , **lowercase__ , )
def UpperCAmelCase_ ( self ) -> Optional[Any]:
"""simple docstring"""
def create_cache_and_write_probe(lowercase__ ):
# makedirs with exist_ok will recursively create the directory. It will not throw an error if directories
# already exist.
os.makedirs(self._cache_dir , exist_ok=lowercase__ )
_snake_case : List[Any] = os.path.join(self._cache_dir , '''fs_test''' + uuid.uuida().hex )
# Opening the file in append mode will create a new file unless it already exists, in which case it will not
# change the file contents.
open(lowercase__ , '''a''' )
return [probe_file]
if self._spark.conf.get('''spark.master''' , '''''' ).startswith('''local''' ):
return
# If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS
# accessible to the driver.
# TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error.
if self._cache_dir:
_snake_case : int = (
self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(lowercase__ ).collect()
)
if os.path.isfile(probe[0] ):
return
raise ValueError(
'''When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir''' )
def UpperCAmelCase_ ( self ) -> str:
"""simple docstring"""
return datasets.DatasetInfo(features=self.config.features )
def UpperCAmelCase_ ( self , lowercase__ ) -> Optional[int]:
"""simple docstring"""
return [datasets.SplitGenerator(name=datasets.Split.TRAIN )]
def UpperCAmelCase_ ( self , lowercase__ ) -> Union[str, Any]:
"""simple docstring"""
import pyspark
def get_arrow_batch_size(lowercase__ ):
for batch in it:
yield pa.RecordBatch.from_pydict({'''batch_bytes''': [batch.nbytes]} )
_snake_case : Any = self.df.count()
_snake_case : List[Any] = df_num_rows if df_num_rows <= 100 else 100
# Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample.
_snake_case : List[str] = (
self.df.limit(lowercase__ )
.repartition(1 )
.mapInArrow(lowercase__ , '''batch_bytes: long''' )
.agg(pyspark.sql.functions.sum('''batch_bytes''' ).alias('''sample_bytes''' ) )
.collect()[0]
.sample_bytes
/ sample_num_rows
)
_snake_case : Optional[int] = approx_bytes_per_row * df_num_rows
if approx_total_size > max_shard_size:
# Make sure there is at least one row per partition.
_snake_case : Union[str, Any] = min(lowercase__ , int(approx_total_size / max_shard_size ) )
_snake_case : Optional[int] = self.df.repartition(lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , ) -> Iterable[Tuple[int, bool, Union[int, tuple]]]:
"""simple docstring"""
import pyspark
_snake_case : int = ParquetWriter if file_format == '''parquet''' else ArrowWriter
_snake_case : Optional[Any] = os.path.join(self._working_dir , os.path.basename(lowercase__ ) ) if self._working_dir else fpath
_snake_case : int = file_format == '''parquet'''
# Define these so that we don't reference self in write_arrow, which will result in a pickling error due to
# pickling the SparkContext.
_snake_case : Tuple = self.config.features
_snake_case : Dict = self._writer_batch_size
_snake_case : Dict = self._fs.storage_options
def write_arrow(lowercase__ ):
# Within the same SparkContext, no two task attempts will share the same attempt ID.
_snake_case : int = pyspark.TaskContext().taskAttemptId()
_snake_case : List[str] = next(lowercase__ , lowercase__ )
if first_batch is None:
# Some partitions might not receive any data.
return pa.RecordBatch.from_arrays(
[[task_id], [0], [0]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , )
_snake_case : List[str] = 0
_snake_case : str = writer_class(
features=lowercase__ , path=working_fpath.replace('''SSSSS''' , F'''{shard_id:05d}''' ).replace('''TTTTT''' , F'''{task_id:05d}''' ) , writer_batch_size=lowercase__ , storage_options=lowercase__ , embed_local_files=lowercase__ , )
_snake_case : Optional[int] = pa.Table.from_batches([first_batch] )
writer.write_table(lowercase__ )
for batch in it:
if max_shard_size is not None and writer._num_bytes >= max_shard_size:
_snake_case , _snake_case : Any = writer.finalize()
writer.close()
yield pa.RecordBatch.from_arrays(
[[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , )
shard_id += 1
_snake_case : Tuple = writer_class(
features=writer._features , path=working_fpath.replace('''SSSSS''' , F'''{shard_id:05d}''' ).replace('''TTTTT''' , F'''{task_id:05d}''' ) , writer_batch_size=lowercase__ , storage_options=lowercase__ , embed_local_files=lowercase__ , )
_snake_case : List[Any] = pa.Table.from_batches([batch] )
writer.write_table(lowercase__ )
if writer._num_bytes > 0:
_snake_case , _snake_case : List[str] = writer.finalize()
writer.close()
yield pa.RecordBatch.from_arrays(
[[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , )
if working_fpath != fpath:
for file in os.listdir(os.path.dirname(lowercase__ ) ):
_snake_case : Any = os.path.join(os.path.dirname(lowercase__ ) , os.path.basename(lowercase__ ) )
shutil.move(lowercase__ , lowercase__ )
_snake_case : Dict = (
self.df.mapInArrow(lowercase__ , '''task_id: long, num_examples: long, num_bytes: long''' )
.groupBy('''task_id''' )
.agg(
pyspark.sql.functions.sum('''num_examples''' ).alias('''total_num_examples''' ) , pyspark.sql.functions.sum('''num_bytes''' ).alias('''total_num_bytes''' ) , pyspark.sql.functions.count('''num_bytes''' ).alias('''num_shards''' ) , pyspark.sql.functions.collect_list('''num_examples''' ).alias('''shard_lengths''' ) , )
.collect()
)
for row in stats:
yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths)
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = "arrow" , lowercase__ = None , lowercase__ = None , **lowercase__ , ) -> Optional[int]:
"""simple docstring"""
self._validate_cache_dir()
_snake_case : int = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE )
self._repartition_df_if_needed(lowercase__ )
_snake_case : Any = not is_remote_filesystem(self._fs )
_snake_case : str = os.path.join if is_local else posixpath.join
_snake_case : int = '''-TTTTT-SSSSS-of-NNNNN'''
_snake_case : Dict = F'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}'''
_snake_case : Optional[int] = path_join(self._output_dir , lowercase__ )
_snake_case : int = 0
_snake_case : Tuple = 0
_snake_case : List[str] = 0
_snake_case : Optional[Any] = []
_snake_case : Optional[int] = []
for task_id, content in self._prepare_split_single(lowercase__ , lowercase__ , lowercase__ ):
(
(
_snake_case
) , (
_snake_case
) , (
_snake_case
) , (
_snake_case
) ,
) : Union[str, Any] = content
if num_bytes > 0:
total_num_examples += num_examples
total_num_bytes += num_bytes
total_shards += num_shards
task_id_and_num_shards.append((task_id, num_shards) )
all_shard_lengths.extend(lowercase__ )
_snake_case : Dict = total_num_examples
_snake_case : List[Any] = total_num_bytes
# should rename everything at the end
logger.debug(F'''Renaming {total_shards} shards.''' )
if total_shards > 1:
_snake_case : Dict = all_shard_lengths
# Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a
# pickling error due to pickling the SparkContext.
_snake_case : List[Any] = self._fs
# use the -SSSSS-of-NNNNN pattern
def _rename_shard(
lowercase__ , lowercase__ , lowercase__ , ):
rename(
lowercase__ , fpath.replace('''SSSSS''' , F'''{shard_id:05d}''' ).replace('''TTTTT''' , F'''{task_id:05d}''' ) , fpath.replace('''TTTTT-SSSSS''' , F'''{global_shard_id:05d}''' ).replace('''NNNNN''' , F'''{total_shards:05d}''' ) , )
_snake_case : int = []
_snake_case : Dict = 0
for i in range(len(lowercase__ ) ):
_snake_case , _snake_case : Union[str, Any] = task_id_and_num_shards[i]
for shard_id in range(lowercase__ ):
args.append([task_id, shard_id, global_shard_id] )
global_shard_id += 1
self._spark.sparkContext.parallelize(lowercase__ , len(lowercase__ ) ).map(lambda lowercase__ : _rename_shard(*lowercase__ ) ).collect()
else:
# don't use any pattern
_snake_case : Any = 0
_snake_case : int = task_id_and_num_shards[0][0]
self._rename(
fpath.replace('''SSSSS''' , F'''{shard_id:05d}''' ).replace('''TTTTT''' , F'''{task_id:05d}''' ) , fpath.replace(lowercase__ , '''''' ) , )
def UpperCAmelCase_ ( self , lowercase__ , ) -> SparkExamplesIterable:
"""simple docstring"""
return SparkExamplesIterable(self.df )
| 47
|
'''simple docstring'''
import argparse
import logging
import os
from datetime import datetime
import numpy as np
import torch
from torch import nn
from torch.utils.data import DataLoader, RandomSampler, TensorDataset
from tqdm import tqdm
from transformers import GPTaLMHeadModel
UpperCAmelCase : List[str] = logging.getLogger(__name__)
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
if os.path.exists(lowerCAmelCase_ ):
if os.path.exists(os.path.join(lowerCAmelCase_ , '''config.json''' ) ) and os.path.isfile(
os.path.join(lowerCAmelCase_ , '''config.json''' ) ):
os.remove(os.path.join(lowerCAmelCase_ , '''config.json''' ) )
if os.path.exists(os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) ) and os.path.isfile(
os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) ):
os.remove(os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) )
else:
os.makedirs(lowerCAmelCase_ )
model.save_pretrained(lowerCAmelCase_ )
def _a ( lowerCAmelCase_ , lowerCAmelCase_=False ):
"""simple docstring"""
_snake_case : Optional[Any] = 2
if unlogit:
_snake_case : Any = torch.pow(lowerCAmelCase_ , lowerCAmelCase_ )
_snake_case : Union[str, Any] = p * torch.log(lowerCAmelCase_ )
_snake_case : Optional[Any] = 0
return -plogp.sum(dim=-1 )
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
logger.info('''lv, h >\t''' + '''\t'''.join(f'''{x + 1}''' for x in range(len(lowerCAmelCase_ ) ) ) )
for row in range(len(lowerCAmelCase_ ) ):
if tensor.dtype != torch.long:
logger.info(f'''layer {row + 1}:\t''' + '''\t'''.join(f'''{x:.5f}''' for x in tensor[row].cpu().data ) )
else:
logger.info(f'''layer {row + 1}:\t''' + '''\t'''.join(f'''{x:d}''' for x in tensor[row].cpu().data ) )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=None , lowerCAmelCase_=False ):
"""simple docstring"""
_snake_case , _snake_case : Optional[int] = model.config.num_hidden_layers, model.config.num_attention_heads
_snake_case : Tuple = torch.zeros(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device )
_snake_case : Union[str, Any] = torch.zeros(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device )
if head_mask is None:
_snake_case : int = torch.ones(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device )
head_mask.requires_grad_(requires_grad=lowerCAmelCase_ )
# If actually pruned attention multi-head, set head mask to None to avoid shape mismatch
if actually_pruned:
_snake_case : Dict = None
_snake_case : Dict = 0.0
_snake_case : Optional[int] = 0.0
for step, inputs in enumerate(tqdm(lowerCAmelCase_ , desc='''Iteration''' , disable=args.local_rank not in [-1, 0] ) ):
_snake_case : List[Any] = tuple(t.to(args.device ) for t in inputs )
((_snake_case) , ) : Optional[Any] = inputs
# Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below)
_snake_case : Any = model(lowerCAmelCase_ , labels=lowerCAmelCase_ , head_mask=lowerCAmelCase_ )
# (loss), lm_logits, presents, (all hidden_states), (attentions)
_snake_case , _snake_case , _snake_case : List[Any] = (
outputs[0],
outputs[1],
outputs[-1],
) # Loss and logits are the first, attention the last
loss.backward() # Backpropagate to populate the gradients in the head mask
total_loss += loss.detach().cpu().numpy()
if compute_entropy:
for layer, attn in enumerate(lowerCAmelCase_ ):
_snake_case : Union[str, Any] = entropy(attn.detach() , lowerCAmelCase_ )
attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach()
if compute_importance:
head_importance += head_mask.grad.abs().detach()
tot_tokens += torch.ones_like(lowerCAmelCase_ ).float().detach().sum().data
# Normalize
attn_entropy /= tot_tokens
head_importance /= tot_tokens
# Layerwise importance normalization
if not args.dont_normalize_importance_by_layer:
_snake_case : Any = 2
_snake_case : List[str] = torch.pow(torch.pow(lowerCAmelCase_ , lowerCAmelCase_ ).sum(-1 ) , 1 / exponent )
head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20
if not args.dont_normalize_global_importance:
_snake_case : Optional[int] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min())
# Print matrices
if compute_entropy:
logger.info('''Attention entropies''' )
print_ad_tensor(lowerCAmelCase_ )
if compute_importance:
logger.info('''Head importance scores''' )
print_ad_tensor(lowerCAmelCase_ )
logger.info('''Head ranked by importance scores''' )
_snake_case : str = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device )
_snake_case : List[Any] = torch.arange(
head_importance.numel() , device=args.device )
_snake_case : List[Any] = head_ranks.view_as(lowerCAmelCase_ )
print_ad_tensor(lowerCAmelCase_ )
return attn_entropy, head_importance, total_loss
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case , _snake_case , _snake_case : str = compute_heads_importance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ )
_snake_case : Optional[Any] = 1 / loss # instead of downsteam score use the LM loss
logger.info('''Pruning: original score: %f, threshold: %f''' , lowerCAmelCase_ , original_score * args.masking_threshold )
_snake_case : int = torch.ones_like(lowerCAmelCase_ )
_snake_case : Optional[Any] = max(1 , int(new_head_mask.numel() * args.masking_amount ) )
_snake_case : int = original_score
while current_score >= original_score * args.masking_threshold:
_snake_case : int = new_head_mask.clone().detach() # save current head mask
# heads from least important to most - keep only not-masked heads
_snake_case : Dict = float('''Inf''' )
_snake_case : Optional[Any] = head_importance.view(-1 ).sort()[1]
if len(lowerCAmelCase_ ) <= num_to_mask:
print('''BREAK BY num_to_mask''' )
break
# mask heads
_snake_case : Union[str, Any] = current_heads_to_mask[:num_to_mask]
logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist() ) )
_snake_case : Tuple = new_head_mask.view(-1 )
_snake_case : List[str] = 0.0
_snake_case : str = new_head_mask.view_as(lowerCAmelCase_ )
_snake_case : Dict = new_head_mask.clone().detach()
print_ad_tensor(lowerCAmelCase_ )
# Compute metric and head importance again
_snake_case , _snake_case , _snake_case : Any = compute_heads_importance(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , head_mask=lowerCAmelCase_ )
_snake_case : int = 1 / loss
logger.info(
'''Masking: current score: %f, remaining heads %d (%.1f percents)''' , lowerCAmelCase_ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , )
logger.info('''Final head mask''' )
print_ad_tensor(lowerCAmelCase_ )
np.save(os.path.join(args.output_dir , '''head_mask.npy''' ) , head_mask.detach().cpu().numpy() )
return head_mask
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Optional[Any] = datetime.now()
_snake_case , _snake_case , _snake_case : Union[str, Any] = compute_heads_importance(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , compute_importance=lowerCAmelCase_ , head_mask=lowerCAmelCase_ )
_snake_case : Tuple = 1 / loss
_snake_case : Dict = datetime.now() - before_time
_snake_case : List[Any] = sum(p.numel() for p in model.parameters() )
_snake_case : int = {
layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(lowerCAmelCase_ ) )
}
for k, v in heads_to_prune.items():
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
_snake_case : Union[str, Any] = [
v,
]
assert sum(len(lowerCAmelCase_ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item()
model.prune_heads(lowerCAmelCase_ )
_snake_case : List[str] = sum(p.numel() for p in model.parameters() )
_snake_case : int = datetime.now()
_snake_case , _snake_case , _snake_case : Optional[Any] = compute_heads_importance(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , compute_importance=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , actually_pruned=lowerCAmelCase_ , )
_snake_case : Optional[int] = 1 / loss
_snake_case : Dict = datetime.now() - before_time
logger.info(
'''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , lowerCAmelCase_ , lowerCAmelCase_ , pruned_num_params / original_num_params * 100 , )
logger.info('''Pruning: score with masking: %f score with pruning: %f''' , lowerCAmelCase_ , lowerCAmelCase_ )
logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 100 )
save_model(lowerCAmelCase_ , args.output_dir )
def _a ( ):
"""simple docstring"""
_snake_case : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--data_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , )
parser.add_argument(
'''--model_name_or_path''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , )
parser.add_argument(
'''--output_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''The output directory where the model predictions and checkpoints will be written.''' , )
# Other parameters
parser.add_argument(
'''--config_name''' , default='''''' , type=lowerCAmelCase_ , help='''Pretrained config name or path if not the same as model_name_or_path''' , )
parser.add_argument(
'''--tokenizer_name''' , default='''''' , type=lowerCAmelCase_ , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , )
parser.add_argument(
'''--cache_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help='''Where do you want to store the pre-trained models downloaded from s3''' , )
parser.add_argument(
'''--data_subset''' , type=lowerCAmelCase_ , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''' )
parser.add_argument(
'''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''' )
parser.add_argument(
'''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' )
parser.add_argument(
'''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''' )
parser.add_argument(
'''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , )
parser.add_argument(
'''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''' )
parser.add_argument(
'''--masking_threshold''' , default=0.9 , type=lowerCAmelCase_ , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , )
parser.add_argument(
'''--masking_amount''' , default=0.1 , type=lowerCAmelCase_ , help='''Amount to heads to masking at each masking step.''' )
parser.add_argument('''--metric_name''' , default='''acc''' , type=lowerCAmelCase_ , help='''Metric to use for head masking.''' )
parser.add_argument(
'''--max_seq_length''' , default=128 , type=lowerCAmelCase_ , help=(
'''The maximum total input sequence length after WordPiece tokenization. \n'''
'''Sequences longer than this will be truncated, sequences shorter padded.'''
) , )
parser.add_argument('''--batch_size''' , default=1 , type=lowerCAmelCase_ , help='''Batch size.''' )
parser.add_argument('''--seed''' , type=lowerCAmelCase_ , default=42 )
parser.add_argument('''--local_rank''' , type=lowerCAmelCase_ , default=-1 , help='''local_rank for distributed training on gpus''' )
parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''' )
parser.add_argument('''--server_ip''' , type=lowerCAmelCase_ , default='''''' , help='''Can be used for distant debugging.''' )
parser.add_argument('''--server_port''' , type=lowerCAmelCase_ , default='''''' , help='''Can be used for distant debugging.''' )
_snake_case : Optional[Any] = parser.parse_args()
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print('''Waiting for debugger attach''' )
ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowerCAmelCase_ )
ptvsd.wait_for_attach()
# Setup devices and distributed training
if args.local_rank == -1 or args.no_cuda:
_snake_case : str = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''' )
_snake_case : Optional[Any] = 0 if args.no_cuda else torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank )
_snake_case : List[str] = torch.device('''cuda''' , args.local_rank )
_snake_case : int = 1
torch.distributed.init_process_group(backend='''nccl''' ) # Initializes the distributed backend
# Setup logging
logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN )
logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) )
_snake_case : Optional[Any] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path )
# Distributed and parallel training
model.to(args.device )
if args.local_rank != -1:
_snake_case : Optional[int] = nn.parallel.DistributedDataParallel(
lowerCAmelCase_ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=lowerCAmelCase_ )
elif args.n_gpu > 1:
_snake_case : List[Any] = nn.DataParallel(lowerCAmelCase_ )
# Print/save training arguments
os.makedirs(args.output_dir , exist_ok=lowerCAmelCase_ )
torch.save(lowerCAmelCase_ , os.path.join(args.output_dir , '''run_args.bin''' ) )
logger.info('''Training/evaluation parameters %s''' , lowerCAmelCase_ )
# Prepare dataset
_snake_case : Dict = np.concatenate(
[
np.loadtxt(args.data_dir , dtype=np.intaa ),
] )
_snake_case : int = (torch.from_numpy(lowerCAmelCase_ ),)
_snake_case : Tuple = TensorDataset(*lowerCAmelCase_ )
_snake_case : List[str] = RandomSampler(lowerCAmelCase_ )
_snake_case : Dict = DataLoader(lowerCAmelCase_ , sampler=lowerCAmelCase_ , batch_size=args.batch_size )
# Compute head entropy and importance score
compute_heads_importance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
# Try head masking (set heads to zero until the score goes under a threshole)
# and head pruning (remove masked heads and see the effect on the network)
if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0:
_snake_case : Optional[int] = mask_heads(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
prune_heads(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
if __name__ == "__main__":
main()
| 47
| 1
|
'''simple docstring'''
import os
import random
import sys
from . import cryptomath_module as cryptomath
from . import rabin_miller
UpperCAmelCase : List[str] = 3
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
print('''Generating primitive root of p''' )
while True:
_snake_case : Tuple = random.randrange(3 , lowerCAmelCase_ )
if pow(lowerCAmelCase_ , 2 , lowerCAmelCase_ ) == 1:
continue
if pow(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) == 1:
continue
return g
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
print('''Generating prime p...''' )
_snake_case : str = rabin_miller.generate_large_prime(lowerCAmelCase_ ) # select large prime number.
_snake_case : int = primitive_root(lowerCAmelCase_ ) # one primitive root on modulo p.
_snake_case : Tuple = random.randrange(3 , lowerCAmelCase_ ) # private_key -> have to be greater than 2 for safety.
_snake_case : Any = cryptomath.find_mod_inverse(pow(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ )
_snake_case : Optional[Any] = (key_size, e_a, e_a, p)
_snake_case : Optional[int] = (key_size, d)
return public_key, private_key
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
if os.path.exists(f'''{name}_pubkey.txt''' ) or os.path.exists(f'''{name}_privkey.txt''' ):
print('''\nWARNING:''' )
print(
f'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n'''
'''Use a different name or delete these files and re-run this program.''' )
sys.exit()
_snake_case , _snake_case : Tuple = generate_key(lowerCAmelCase_ )
print(f'''\nWriting public key to file {name}_pubkey.txt...''' )
with open(f'''{name}_pubkey.txt''' , '''w''' ) as fo:
fo.write(f'''{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}''' )
print(f'''Writing private key to file {name}_privkey.txt...''' )
with open(f'''{name}_privkey.txt''' , '''w''' ) as fo:
fo.write(f'''{private_key[0]},{private_key[1]}''' )
def _a ( ):
"""simple docstring"""
print('''Making key files...''' )
make_key_files('''elgamal''' , 2_048 )
print('''Key files generation successful''' )
if __name__ == "__main__":
main()
| 47
|
'''simple docstring'''
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
if n == 1 or not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
return 0
elif n == 2:
return 1
else:
_snake_case : Union[str, Any] = [0, 1]
for i in range(2 , n + 1 ):
sequence.append(sequence[i - 1] + sequence[i - 2] )
return sequence[n]
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Optional[int] = 0
_snake_case : int = 2
while digits < n:
index += 1
_snake_case : Tuple = len(str(fibonacci(lowerCAmelCase_ ) ) )
return index
def _a ( lowerCAmelCase_ = 1_000 ):
"""simple docstring"""
return fibonacci_digits_index(lowerCAmelCase_ )
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 47
| 1
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_torch_available,
)
UpperCAmelCase : Optional[Any] = {
'configuration_speecht5': [
'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP',
'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP',
'SpeechT5Config',
'SpeechT5HifiGanConfig',
],
'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'],
'processing_speecht5': ['SpeechT5Processor'],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : str = ['SpeechT5Tokenizer']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Any = [
'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST',
'SpeechT5ForSpeechToText',
'SpeechT5ForSpeechToSpeech',
'SpeechT5ForTextToSpeech',
'SpeechT5Model',
'SpeechT5PreTrainedModel',
'SpeechT5HifiGan',
]
if TYPE_CHECKING:
from .configuration_speechta import (
SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP,
SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP,
SpeechTaConfig,
SpeechTaHifiGanConfig,
)
from .feature_extraction_speechta import SpeechTaFeatureExtractor
from .processing_speechta import SpeechTaProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speechta import SpeechTaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speechta import (
SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaHifiGan,
SpeechTaModel,
SpeechTaPreTrainedModel,
)
else:
import sys
UpperCAmelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 47
|
'''simple docstring'''
from __future__ import annotations
from collections.abc import Callable
from typing import Generic, TypeVar
UpperCAmelCase : Any = TypeVar('T')
UpperCAmelCase : str = TypeVar('U')
class lowerCamelCase (Generic[T, U] ):
def __init__( self , lowercase__ , lowercase__ ) -> List[Any]:
"""simple docstring"""
_snake_case : str = key
_snake_case : Optional[int] = val
_snake_case : DoubleLinkedListNode[T, U] | None = None
_snake_case : DoubleLinkedListNode[T, U] | None = None
def __repr__( self ) -> str:
"""simple docstring"""
return (
F'''Node: key: {self.key}, val: {self.val}, '''
F'''has next: {bool(self.next )}, has prev: {bool(self.prev )}'''
)
class lowerCamelCase (Generic[T, U] ):
def __init__( self ) -> None:
"""simple docstring"""
_snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase__ , lowercase__ )
_snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase__ , lowercase__ )
_snake_case , _snake_case : Union[str, Any] = self.rear, self.head
def __repr__( self ) -> str:
"""simple docstring"""
_snake_case : List[Any] = ['''DoubleLinkedList''']
_snake_case : str = self.head
while node.next is not None:
rep.append(str(lowercase__ ) )
_snake_case : List[str] = node.next
rep.append(str(self.rear ) )
return ",\n ".join(lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ ) -> None:
"""simple docstring"""
_snake_case : Tuple = self.rear.prev
# All nodes other than self.head are guaranteed to have non-None previous
assert previous is not None
_snake_case : Union[str, Any] = node
_snake_case : Optional[Any] = previous
_snake_case : int = node
_snake_case : Union[str, Any] = self.rear
def UpperCAmelCase_ ( self , lowercase__ ) -> DoubleLinkedListNode[T, U] | None:
"""simple docstring"""
if node.prev is None or node.next is None:
return None
_snake_case : Optional[int] = node.next
_snake_case : Any = node.prev
_snake_case : List[str] = None
_snake_case : Optional[int] = None
return node
class lowerCamelCase (Generic[T, U] ):
_lowercase : dict[Callable[[T], U], LRUCache[T, U]] = {}
def __init__( self , lowercase__ ) -> Union[str, Any]:
"""simple docstring"""
_snake_case : DoubleLinkedList[T, U] = DoubleLinkedList()
_snake_case : Union[str, Any] = capacity
_snake_case : int = 0
_snake_case : Dict = 0
_snake_case : Union[str, Any] = 0
_snake_case : dict[T, DoubleLinkedListNode[T, U]] = {}
def __repr__( self ) -> str:
"""simple docstring"""
return (
F'''CacheInfo(hits={self.hits}, misses={self.miss}, '''
F'''capacity={self.capacity}, current size={self.num_keys})'''
)
def __contains__( self , lowercase__ ) -> bool:
"""simple docstring"""
return key in self.cache
def UpperCAmelCase_ ( self , lowercase__ ) -> U | None:
"""simple docstring"""
if key in self.cache:
self.hits += 1
_snake_case : DoubleLinkedListNode[T, U] = self.cache[key]
_snake_case : Tuple = self.list.remove(self.cache[key] )
assert node == value_node
# node is guaranteed not None because it is in self.cache
assert node is not None
self.list.add(lowercase__ )
return node.val
self.miss += 1
return None
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> None:
"""simple docstring"""
if key not in self.cache:
if self.num_keys >= self.capacity:
# delete first node (oldest) when over capacity
_snake_case : Dict = self.list.head.next
# guaranteed to have a non-None first node when num_keys > 0
# explain to type checker via assertions
assert first_node is not None
assert first_node.key is not None
assert (
self.list.remove(lowercase__ ) is not None
) # node guaranteed to be in list assert node.key is not None
del self.cache[first_node.key]
self.num_keys -= 1
_snake_case : Optional[int] = DoubleLinkedListNode(lowercase__ , lowercase__ )
self.list.add(self.cache[key] )
self.num_keys += 1
else:
# bump node to the end of the list, update value
_snake_case : Optional[Any] = self.list.remove(self.cache[key] )
assert node is not None # node guaranteed to be in list
_snake_case : Optional[Any] = value
self.list.add(lowercase__ )
@classmethod
def UpperCAmelCase_ ( cls , lowercase__ = 128 ) -> Callable[[Callable[[T], U]], Callable[..., U]]:
"""simple docstring"""
def cache_decorator_inner(lowercase__ ) -> Callable[..., U]:
def cache_decorator_wrapper(*lowercase__ ) -> U:
if func not in cls.decorator_function_to_instance_map:
_snake_case : Optional[Any] = LRUCache(lowercase__ )
_snake_case : Union[str, Any] = cls.decorator_function_to_instance_map[func].get(args[0] )
if result is None:
_snake_case : Tuple = func(*lowercase__ )
cls.decorator_function_to_instance_map[func].put(args[0] , lowercase__ )
return result
def cache_info() -> LRUCache[T, U]:
return cls.decorator_function_to_instance_map[func]
setattr(lowercase__ , '''cache_info''' , lowercase__ ) # noqa: B010
return cache_decorator_wrapper
return cache_decorator_inner
if __name__ == "__main__":
import doctest
doctest.testmod()
| 47
| 1
|
'''simple docstring'''
from __future__ import annotations
import typing
from collections import Counter
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : typing.Counter[int] = Counter()
for base in range(1 , max_perimeter + 1 ):
for perpendicular in range(lowerCAmelCase_ , max_perimeter + 1 ):
_snake_case : List[str] = (base * base + perpendicular * perpendicular) ** 0.5
if hypotenuse == int(lowerCAmelCase_ ):
_snake_case : Optional[Any] = int(base + perpendicular + hypotenuse )
if perimeter > max_perimeter:
continue
triplets[perimeter] += 1
return triplets
def _a ( lowerCAmelCase_ = 1_000 ):
"""simple docstring"""
_snake_case : Dict = pythagorean_triple(lowerCAmelCase_ )
return triplets.most_common(1 )[0][0]
if __name__ == "__main__":
print(F"""Perimeter {solution()} has maximum solutions""")
| 47
|
'''simple docstring'''
import os
import numpy
import onnx
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : List[Any] = a.name
_snake_case : List[Any] = b.name
_snake_case : Tuple = ''''''
_snake_case : Tuple = ''''''
_snake_case : Optional[Any] = a == b
_snake_case : List[Any] = name_a
_snake_case : str = name_b
return res
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
for i, input_name in enumerate(node_proto.input ):
if input_name == name:
node_proto.input.insert(lowerCAmelCase_ , lowerCAmelCase_ )
node_proto.input.pop(i + 1 )
if node_proto.op_type == "If":
_graph_replace_input_with(node_proto.attribute[0].g , lowerCAmelCase_ , lowerCAmelCase_ )
_graph_replace_input_with(node_proto.attribute[1].g , lowerCAmelCase_ , lowerCAmelCase_ )
if node_proto.op_type == "Loop":
_graph_replace_input_with(node_proto.attribute[0].g , lowerCAmelCase_ , lowerCAmelCase_ )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
for n in graph_proto.node:
_node_replace_input_with(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Optional[Any] = list(model.graph.initializer )
_snake_case : List[str] = list(model_without_ext.graph.initializer )
for i, ref_i in ind_to_replace:
assert inits_with_data[i].name == inits[i].name
assert inits_with_data[ref_i].name == inits[ref_i].name
assert i > ref_i
_snake_case : List[Any] = inits[i].name
_snake_case : List[str] = inits[ref_i].name
model_without_ext.graph.initializer.remove(inits[i] )
# for n in model.graph.node:
_graph_replace_input_with(model_without_ext.graph , lowerCAmelCase_ , lowerCAmelCase_ )
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Tuple = os.path.dirname(lowerCAmelCase_ )
_snake_case : str = os.path.basename(lowerCAmelCase_ )
_snake_case : Tuple = onnx.load(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) )
_snake_case : Union[str, Any] = list(model.graph.initializer )
_snake_case : Union[str, Any] = set()
_snake_case : Any = {}
_snake_case : str = []
_snake_case : Union[str, Any] = 0
for i in range(len(lowerCAmelCase_ ) ):
if i in dup_set:
continue
for j in range(i + 1 , len(lowerCAmelCase_ ) ):
if j in dup_set:
continue
if _is_equal_tensor_proto(inits[i] , inits[j] ):
dup_set.add(lowerCAmelCase_ )
dup_set.add(lowerCAmelCase_ )
_snake_case : List[Any] = inits[j].data_type
_snake_case : Dict = numpy.prod(inits[j].dims )
if dtype == 1:
mem_size *= 4
elif dtype == 6:
mem_size *= 4
elif dtype == 7 or dtype == 11:
mem_size *= 8
else:
print('''unexpected data type: ''' , lowerCAmelCase_ )
total_reduced_size += mem_size
_snake_case : Union[str, Any] = inits[i].name
_snake_case : Any = inits[j].name
if name_i in dup_map:
dup_map[name_i].append(lowerCAmelCase_ )
else:
_snake_case : Union[str, Any] = [name_j]
ind_to_replace.append((j, i) )
print('''total reduced size: ''' , total_reduced_size / 1_024 / 1_024 / 1_024 , '''GB''' )
_snake_case : List[str] = sorted(lowerCAmelCase_ )
_remove_dup_initializers_from_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
_snake_case : List[str] = '''optimized_''' + model_file_name
_snake_case : List[Any] = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ )
onnx.save(lowerCAmelCase_ , lowerCAmelCase_ )
return new_model
| 47
| 1
|
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer
from .base import PipelineTool
class lowerCamelCase (a__ ):
_lowercase : Dict = """facebook/bart-large-mnli"""
_lowercase : Union[str, Any] = (
"""This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which """
"""should be the text to classify, and `labels`, which should be the list of labels to use for classification. """
"""It returns the most likely label in the list of provided `labels` for the input text."""
)
_lowercase : Optional[Any] = """text_classifier"""
_lowercase : Dict = AutoTokenizer
_lowercase : Dict = AutoModelForSequenceClassification
_lowercase : str = ["""text""", ["""text"""]]
_lowercase : Optional[int] = ["""text"""]
def UpperCAmelCase_ ( self ) -> int:
"""simple docstring"""
super().setup()
_snake_case : Dict = self.model.config
_snake_case : Union[str, Any] = -1
for idx, label in config.idalabel.items():
if label.lower().startswith('''entail''' ):
_snake_case : List[Any] = int(lowercase__ )
if self.entailment_id == -1:
raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Any:
"""simple docstring"""
_snake_case : Tuple = labels
return self.pre_processor(
[text] * len(lowercase__ ) , [F'''This example is {label}''' for label in labels] , return_tensors='''pt''' , padding='''max_length''' , )
def UpperCAmelCase_ ( self , lowercase__ ) -> Tuple:
"""simple docstring"""
_snake_case : int = outputs.logits
_snake_case : Optional[int] = torch.argmax(logits[:, 2] ).item()
return self._labels[label_id]
| 47
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase : int = {
'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Union[str, Any] = [
'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST',
'PegasusXForConditionalGeneration',
'PegasusXModel',
'PegasusXPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 47
| 1
|
'''simple docstring'''
# HF Trainer benchmarking tool
#
# This tool can be used to run and compare multiple dimensions of the HF Trainers args.
#
# It then prints a report once in github format with all the information that needs to be shared
# with others and second time in a console-friendly format, so it's easier to use for tuning things up.
#
# The main idea is:
#
# ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \
# --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \
# --target-metric-key train_samples_per_second
#
# The variations can be any command line argument that you want to compare and not just dtype as in
# the example.
#
# --variations allows you to compare variations in multiple dimensions.
#
# as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6
# times adding one of:
#
# 1. --tf32 0 --fp16 0
# 2. --tf32 0 --fp16 1
# 3. --tf32 0 --bf16 1
# 4. --tf32 1 --fp16 0
# 5. --tf32 1 --fp16 1
# 6. --tf32 1 --bf16 1
#
# and print the results. This is just a cartesian product - and more than 2 dimensions can be used.
#
# If you want to rely on defaults, this:
# --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1'
# is identical to this:
# --variations '--tf32 0|--tf32 1' '|--fp16|--bf16'
#
# the leading empty variation in the 2nd dimension is a valid variation.
#
# So here we get the following 6 variations:
#
# 1. --tf32 0
# 2. --tf32 0 --fp16
# 3. --tf32 0 --bf16
# 4. --tf32 1
# 5. --tf32 1 --fp16
# 6. --tf32 1 --bf16
#
# In this particular case we don't know what the default tf32 setting is as it's normally
# pytorch-version dependent). That's why it's best to do an explicit setting of each variation:
# `--tf32 0|--tf32 1`
#
# Here is a full example of a train:
#
# CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \
# --base-cmd \
# ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \
# --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \
# --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \
# --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \
# --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \
# --source_prefix "translate English to Romanian: " --warmup_steps 50 \
# --max_train_samples 20000 --dataloader_num_workers 2 ' \
# --target-metric-key train_samples_per_second --repeat-times 1 --variations \
# '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \
# --repeat-times 1 --base-variation '--tf32 0'
#
# and here is a possible output:
#
#
# | Variation | Train | Diff | Train |
# | | samples | % | loss |
# | | per | | |
# | | second | | |
# |:----------------|----------:|-------:|--------:|
# | --tf32 0 | 285.11 | 0 | 2.51 |
# | --tf32 1 | 342.09 | 20 | 2.51 |
# | --fp16 --tf32 0 | 423.49 | 49 | 2.51 |
# | --fp16 --tf32 1 | 423.13 | 48 | 2.51 |
# | --bf16 --tf32 0 | 416.80 | 46 | 2.52 |
# | --bf16 --tf32 1 | 415.87 | 46 | 2.52 |
#
#
# So you can quickly compare the different outcomes.
#
# Typically running each experiment once is enough, but if the environment is unstable you can
# re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results.
#
# By default it'll use the lowest result as the base line to use as 100% and then compare the rest to
# it as can be seen from the table above, but you can also specify which combination is the one to use as
# the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0'
#
# --target-metric-key is there to tell the program which metrics to compare - the different metric keys are
# inside output_dir/all_results.json. e.g., to measure eval performance instead of train use:
# --target-metric-key eval_samples_per_second
# but of course you will need to adjust the --base-cmd value in the example to perform evaluation as
# well (as currently it doesn't)
#
import argparse
import datetime
import io
import itertools
import json
import math
import os
import platform
import re
import shlex
import subprocess
import sys
from pathlib import Path
from statistics import fmean
import pandas as pd
import torch
from tqdm import tqdm
import transformers
UpperCAmelCase : List[str] = float('nan')
class lowerCamelCase :
def __init__( self , lowercase__ ) -> List[str]:
"""simple docstring"""
_snake_case : Union[str, Any] = sys.stdout
_snake_case : List[Any] = open(lowercase__ , '''a''' )
def __getattr__( self , lowercase__ ) -> Optional[int]:
"""simple docstring"""
return getattr(self.stdout , lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ ) -> Dict:
"""simple docstring"""
self.stdout.write(lowercase__ )
# strip tqdm codes
self.file.write(re.sub(r'''^.*\r''' , '''''' , lowercase__ , 0 , re.M ) )
def _a ( lowerCAmelCase_=80 , lowerCAmelCase_=False ):
"""simple docstring"""
_snake_case : Any = []
# deal with critical env vars
_snake_case : List[str] = ['''CUDA_VISIBLE_DEVICES''']
for key in env_keys:
_snake_case : List[Any] = os.environ.get(lowerCAmelCase_ , lowerCAmelCase_ )
if val is not None:
cmd.append(f'''{key}={val}''' )
# python executable (not always needed if the script is executable)
_snake_case : Any = sys.executable if full_python_path else sys.executable.split('''/''' )[-1]
cmd.append(lowerCAmelCase_ )
# now the normal args
cmd += list(map(shlex.quote , sys.argv ) )
# split up into up to MAX_WIDTH lines with shell multi-line escapes
_snake_case : Union[str, Any] = []
_snake_case : str = ''''''
while len(lowerCAmelCase_ ) > 0:
current_line += f'''{cmd.pop(0 )} '''
if len(lowerCAmelCase_ ) == 0 or len(lowerCAmelCase_ ) + len(cmd[0] ) + 1 > max_width - 1:
lines.append(lowerCAmelCase_ )
_snake_case : Optional[Any] = ''''''
return "\\\n".join(lowerCAmelCase_ )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : str = re.sub(R'''[\\\n]+''' , ''' ''' , args.base_cmd )
# remove --output_dir if any and set our own
_snake_case : Optional[Any] = re.sub('''--output_dir\s+[^\s]+''' , '''''' , args.base_cmd )
args.base_cmd += f''' --output_dir {output_dir}'''
# ensure we have --overwrite_output_dir
_snake_case : List[str] = re.sub('''--overwrite_output_dir\s+''' , '''''' , args.base_cmd )
args.base_cmd += " --overwrite_output_dir"
return [sys.executable] + shlex.split(args.base_cmd )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
if 0:
import random
from time import sleep
sleep(0 )
return dict(
{k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6_666, 222.22_222_222] )} , )
_snake_case : int = subprocess.run(lowerCAmelCase_ , capture_output=lowerCAmelCase_ , text=lowerCAmelCase_ )
if verbose:
print('''STDOUT''' , result.stdout )
print('''STDERR''' , result.stderr )
# save the streams
_snake_case : Optional[Any] = variation.replace(''' ''' , '''-''' )
with open(Path(lowerCAmelCase_ ) / f'''log.{prefix}.stdout.txt''' , '''w''' ) as f:
f.write(result.stdout )
with open(Path(lowerCAmelCase_ ) / f'''log.{prefix}.stderr.txt''' , '''w''' ) as f:
f.write(result.stderr )
if result.returncode != 0:
if verbose:
print('''failed''' )
return {target_metric_key: nan}
with io.open(f'''{output_dir}/all_results.json''' , '''r''' , encoding='''utf-8''' ) as f:
_snake_case : Union[str, Any] = json.load(lowerCAmelCase_ )
# filter out just the keys we want
return {k: v for k, v in metrics.items() if k in metric_keys}
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ):
"""simple docstring"""
_snake_case : Optional[Any] = []
_snake_case : Optional[Any] = []
_snake_case : Dict = f'''{id}: {variation:<{longest_variation_len}}'''
_snake_case : int = f'''{preamble}: '''
_snake_case : Union[str, Any] = set(report_metric_keys + [target_metric_key] )
for i in tqdm(range(lowerCAmelCase_ ) , desc=lowerCAmelCase_ , leave=lowerCAmelCase_ ):
_snake_case : Optional[Any] = process_run_single(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
_snake_case : Union[str, Any] = single_run_metrics[target_metric_key]
if not math.isnan(lowerCAmelCase_ ):
metrics.append(lowerCAmelCase_ )
results.append(lowerCAmelCase_ )
outcome += "✓"
else:
outcome += "✘"
_snake_case : Any = f'''\33[2K\r{outcome}'''
if len(lowerCAmelCase_ ) > 0:
_snake_case : List[str] = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()}
_snake_case : str = round(mean_metrics[target_metric_key] , 2 )
_snake_case : Any = f'''{outcome} {mean_target}'''
if len(lowerCAmelCase_ ) > 1:
results_str += f''' {tuple(round(lowerCAmelCase_ , 2 ) for x in results )}'''
print(lowerCAmelCase_ )
_snake_case : List[Any] = variation
return mean_metrics
else:
print(lowerCAmelCase_ )
return {variation_key: variation, target_metric_key: nan}
def _a ( ):
"""simple docstring"""
_snake_case : Any = torch.cuda.get_device_properties(torch.device('''cuda''' ) )
return f'''
Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )}
Software:
transformers: {transformers.__version__}
torch : {torch.__version__}
cuda : {torch.version.cuda}
python : {platform.python_version()}
Hardware:
{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB
'''
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Union[str, Any] = pd.DataFrame(lowerCAmelCase_ )
_snake_case : Tuple = '''variation'''
_snake_case : Any = '''diff_%'''
_snake_case : Any = nan
if base_variation is not None and len(df[df[variation_key] == base_variation] ):
# this may still return nan
_snake_case : Optional[Any] = df.loc[df[variation_key] == base_variation][target_metric_key].item()
if math.isnan(lowerCAmelCase_ ):
# as a fallback, use the minimal value as the sentinel
_snake_case : Any = df.loc[df[target_metric_key] != nan][target_metric_key].min()
# create diff column if possible
if not math.isnan(lowerCAmelCase_ ):
_snake_case : str = df.apply(
lambda lowerCAmelCase_ : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value )
if not math.isnan(r[target_metric_key] )
else 0 , axis='''columns''' , )
# re-order columns
_snake_case : Optional[int] = [variation_key, target_metric_key, diff_key, *report_metric_keys]
_snake_case : List[str] = df.reindex(lowerCAmelCase_ , axis='''columns''' ) # reorder cols
# capitalize
_snake_case : List[str] = df.rename(str.capitalize , axis='''columns''' )
# make the cols as narrow as possible
_snake_case : str = df.rename(lambda lowerCAmelCase_ : c.replace('''_''' , '''<br>''' ) , axis='''columns''' )
_snake_case : Any = df.rename(lambda lowerCAmelCase_ : c.replace('''_''' , '''\n''' ) , axis='''columns''' )
_snake_case : List[str] = ['''''', '''Copy between the cut-here-lines and paste as is to github or a forum''']
report += ["----------8<-----------------8<--------"]
report += ["*** Results:", df_github.to_markdown(index=lowerCAmelCase_ , floatfmt='''.2f''' )]
report += ["```"]
report += ["*** Setup:", get_versions()]
report += ["*** The benchmark command line was:", get_original_command()]
report += ["```"]
report += ["----------8<-----------------8<--------"]
report += ["*** Results (console):", df_console.to_markdown(index=lowerCAmelCase_ , floatfmt='''.2f''' )]
print('''\n\n'''.join(lowerCAmelCase_ ) )
def _a ( ):
"""simple docstring"""
_snake_case : Tuple = argparse.ArgumentParser()
parser.add_argument(
'''--base-cmd''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''Base cmd''' , )
parser.add_argument(
'''--variations''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , nargs='''+''' , required=lowerCAmelCase_ , help='''Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'''' , )
parser.add_argument(
'''--base-variation''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help='''Baseline variation to compare to. if None the minimal target value will be used to compare against''' , )
parser.add_argument(
'''--target-metric-key''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''Target metric key in output_dir/all_results.json, e.g., train_samples_per_second''' , )
parser.add_argument(
'''--report-metric-keys''' , default='''''' , type=lowerCAmelCase_ , help='''Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples''' , )
parser.add_argument(
'''--repeat-times''' , default=1 , type=lowerCAmelCase_ , help='''How many times to re-run each variation - an average will be reported''' , )
parser.add_argument(
'''--output_dir''' , default='''output_benchmark''' , type=lowerCAmelCase_ , help='''The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked''' , )
parser.add_argument(
'''--verbose''' , default=lowerCAmelCase_ , action='''store_true''' , help='''Whether to show the outputs of each run or just the benchmark progress''' , )
_snake_case : Any = parser.parse_args()
_snake_case : Dict = args.output_dir
Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ )
_snake_case : Any = get_base_command(lowerCAmelCase_ , lowerCAmelCase_ )
# split each dimension into its --foo variations
_snake_case : Optional[int] = [list(map(str.strip , re.split(R'''\|''' , lowerCAmelCase_ ) ) ) for x in args.variations]
# build a cartesian product of dimensions and convert those back into cmd-line arg strings,
# while stripping white space for inputs that were empty
_snake_case : int = list(map(str.strip , map(''' '''.join , itertools.product(*lowerCAmelCase_ ) ) ) )
_snake_case : Dict = max(len(lowerCAmelCase_ ) for x in variations )
# split wanted keys
_snake_case : str = args.report_metric_keys.split()
# capture prints into a log file for convenience
_snake_case : Any = f'''benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt'''
print(f'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''' )
print(f'''and this script\'s output is also piped into {report_fn}''' )
_snake_case : List[Any] = Tee(lowerCAmelCase_ )
print(f'''\n*** Running {len(lowerCAmelCase_ )} benchmarks:''' )
print(f'''Base command: {" ".join(lowerCAmelCase_ )}''' )
_snake_case : List[Any] = '''variation'''
_snake_case : Tuple = []
for id, variation in enumerate(tqdm(lowerCAmelCase_ , desc='''Total completion: ''' , leave=lowerCAmelCase_ ) ):
_snake_case : Optional[int] = base_cmd + variation.split()
results.append(
process_run(
id + 1 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , args.target_metric_key , lowerCAmelCase_ , args.repeat_times , lowerCAmelCase_ , args.verbose , ) )
process_results(lowerCAmelCase_ , args.target_metric_key , lowerCAmelCase_ , args.base_variation , lowerCAmelCase_ )
if __name__ == "__main__":
main()
| 47
|
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
import PIL.Image
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
PILImageResampling,
get_image_size,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
UpperCAmelCase : Dict = logging.get_logger(__name__)
class lowerCamelCase (a__ ):
_lowercase : int = ["""pixel_values"""]
def __init__( self , lowercase__ = True , lowercase__ = 32 , lowercase__=PILImageResampling.BILINEAR , lowercase__ = True , **lowercase__ , ) -> None:
"""simple docstring"""
_snake_case : Any = do_resize
_snake_case : List[str] = do_rescale
_snake_case : Any = size_divisor
_snake_case : Optional[Any] = resample
super().__init__(**lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ ) -> np.ndarray:
"""simple docstring"""
_snake_case , _snake_case : Dict = get_image_size(lowercase__ )
# Rounds the height and width down to the closest multiple of size_divisor
_snake_case : Optional[int] = height // size_divisor * size_divisor
_snake_case : Dict = width // size_divisor * size_divisor
_snake_case : str = resize(lowercase__ , (new_h, new_w) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ )
return image
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ ) -> np.ndarray:
"""simple docstring"""
return rescale(image=lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__=None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ) -> BatchFeature:
"""simple docstring"""
_snake_case : Any = do_resize if do_resize is not None else self.do_resize
_snake_case : List[Any] = do_rescale if do_rescale is not None else self.do_rescale
_snake_case : List[str] = size_divisor if size_divisor is not None else self.size_divisor
_snake_case : int = resample if resample is not None else self.resample
if do_resize and size_divisor is None:
raise ValueError('''size_divisor is required for resizing''' )
_snake_case : Tuple = make_list_of_images(lowercase__ )
if not valid_images(lowercase__ ):
raise ValueError('''Invalid image(s)''' )
# All transformations expect numpy arrays.
_snake_case : Tuple = [to_numpy_array(lowercase__ ) for img in images]
if do_resize:
_snake_case : Optional[int] = [self.resize(lowercase__ , size_divisor=lowercase__ , resample=lowercase__ ) for image in images]
if do_rescale:
_snake_case : Union[str, Any] = [self.rescale(lowercase__ , scale=1 / 255 ) for image in images]
_snake_case : Union[str, Any] = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images]
_snake_case : List[str] = {'''pixel_values''': images}
return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
| 47
| 1
|
'''simple docstring'''
import datasets
from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
UpperCAmelCase : str = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n'
UpperCAmelCase : str = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n'
UpperCAmelCase : Optional[int] = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase (datasets.Metric ):
def UpperCAmelCase_ ( self ) -> Optional[Any]:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ),
'''references''': datasets.Sequence(
datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ),
} ) , codebase_urls=['''https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'''] , reference_urls=[
'''https://en.wikipedia.org/wiki/BLEU''',
'''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''',
] , )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__=4 , lowercase__=False ) -> Dict:
"""simple docstring"""
_snake_case : List[Any] = compute_bleu(
reference_corpus=lowercase__ , translation_corpus=lowercase__ , max_order=lowercase__ , smooth=lowercase__ )
((_snake_case) , (_snake_case) , (_snake_case) , (_snake_case) , (_snake_case) , (_snake_case)) : str = score
return {
"bleu": bleu,
"precisions": precisions,
"brevity_penalty": bp,
"length_ratio": ratio,
"translation_length": translation_length,
"reference_length": reference_length,
}
| 47
|
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import LEDConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFLEDForConditionalGeneration, TFLEDModel
@require_tf
class lowerCamelCase :
_lowercase : Any = LEDConfig
_lowercase : Any = {}
_lowercase : Optional[Any] = """gelu"""
def __init__( self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=False , lowercase__=99 , lowercase__=32 , lowercase__=2 , lowercase__=4 , lowercase__=37 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=20 , lowercase__=2 , lowercase__=1 , lowercase__=0 , lowercase__=4 , ) -> Any:
"""simple docstring"""
_snake_case : Dict = parent
_snake_case : Any = batch_size
_snake_case : List[str] = seq_length
_snake_case : Union[str, Any] = is_training
_snake_case : Tuple = use_labels
_snake_case : int = vocab_size
_snake_case : str = hidden_size
_snake_case : Optional[Any] = num_hidden_layers
_snake_case : List[Any] = num_attention_heads
_snake_case : Optional[int] = intermediate_size
_snake_case : List[Any] = hidden_dropout_prob
_snake_case : List[str] = attention_probs_dropout_prob
_snake_case : Optional[int] = max_position_embeddings
_snake_case : Any = eos_token_id
_snake_case : List[Any] = pad_token_id
_snake_case : Optional[int] = bos_token_id
_snake_case : Any = attention_window
# `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
# [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention
# returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
# because its local attention only attends to `self.attention_window` and one before and one after
_snake_case : Any = self.attention_window + 2
# because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for
# the `test_attention_outputs` and `test_hidden_states_output` tests
_snake_case : Tuple = (
self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window
)
def UpperCAmelCase_ ( self ) -> Optional[int]:
"""simple docstring"""
_snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
_snake_case : Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
_snake_case : Optional[int] = tf.concat([input_ids, eos_tensor] , axis=1 )
_snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_snake_case : List[Any] = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , )
_snake_case : Dict = prepare_led_inputs_dict(lowercase__ , lowercase__ , lowercase__ )
_snake_case : Dict = tf.concat(
[tf.zeros_like(lowercase__ )[:, :-1], tf.ones_like(lowercase__ )[:, -1:]] , axis=-1 , )
_snake_case : Dict = global_attention_mask
return config, inputs_dict
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> int:
"""simple docstring"""
_snake_case : int = TFLEDModel(config=lowercase__ ).get_decoder()
_snake_case : Union[str, Any] = inputs_dict['''input_ids''']
_snake_case : List[str] = input_ids[:1, :]
_snake_case : Tuple = inputs_dict['''attention_mask'''][:1, :]
_snake_case : Dict = 1
# first forward pass
_snake_case : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__ )
_snake_case , _snake_case : Dict = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_snake_case : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size )
_snake_case : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
_snake_case : Tuple = tf.concat([input_ids, next_tokens] , axis=-1 )
_snake_case : List[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
_snake_case : List[Any] = model(lowercase__ , attention_mask=lowercase__ )[0]
_snake_case : Tuple = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__ )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
_snake_case : Tuple = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
_snake_case : int = output_from_no_past[:, -3:, random_slice_idx]
_snake_case : Optional[Any] = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(lowercase__ , lowercase__ , rtol=1E-3 )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , ):
"""simple docstring"""
if attention_mask is None:
_snake_case : Union[str, Any] = tf.cast(tf.math.not_equal(lowerCAmelCase_ , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
_snake_case : str = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
_snake_case : int = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_snake_case : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
}
@require_tf
class lowerCamelCase (a__ , a__ , unittest.TestCase ):
_lowercase : Optional[int] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else ()
_lowercase : int = (TFLEDForConditionalGeneration,) if is_tf_available() else ()
_lowercase : Dict = (
{
"""conversational""": TFLEDForConditionalGeneration,
"""feature-extraction""": TFLEDModel,
"""summarization""": TFLEDForConditionalGeneration,
"""text2text-generation""": TFLEDForConditionalGeneration,
"""translation""": TFLEDForConditionalGeneration,
}
if is_tf_available()
else {}
)
_lowercase : int = True
_lowercase : List[Any] = False
_lowercase : str = False
_lowercase : Union[str, Any] = False
def UpperCAmelCase_ ( self ) -> Optional[Any]:
"""simple docstring"""
_snake_case : str = TFLEDModelTester(self )
_snake_case : Union[str, Any] = ConfigTester(self , config_class=lowercase__ )
def UpperCAmelCase_ ( self ) -> Tuple:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase_ ( self ) -> List[str]:
"""simple docstring"""
_snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*lowercase__ )
def UpperCAmelCase_ ( self ) -> int:
"""simple docstring"""
_snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
_snake_case : Any = tf.zeros_like(inputs_dict['''attention_mask'''] )
_snake_case : Optional[Any] = 2
_snake_case : Any = tf.where(
tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , )
_snake_case : Dict = True
_snake_case : str = self.model_tester.seq_length
_snake_case : Dict = self.model_tester.encoder_seq_length
def check_decoder_attentions_output(lowercase__ ):
_snake_case : Optional[int] = outputs.decoder_attentions
self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
def check_encoder_attentions_output(lowercase__ ):
_snake_case : int = [t.numpy() for t in outputs.encoder_attentions]
_snake_case : Tuple = [t.numpy() for t in outputs.encoder_global_attentions]
self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers )
self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
self.assertListEqual(
list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , )
for model_class in self.all_model_classes:
_snake_case : Union[str, Any] = True
_snake_case : Dict = False
_snake_case : Union[str, Any] = False
_snake_case : List[Any] = model_class(lowercase__ )
_snake_case : Optional[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) )
_snake_case : List[Any] = len(lowercase__ )
self.assertEqual(config.output_hidden_states , lowercase__ )
check_encoder_attentions_output(lowercase__ )
if self.is_encoder_decoder:
_snake_case : Union[str, Any] = model_class(lowercase__ )
_snake_case : List[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) )
self.assertEqual(config.output_hidden_states , lowercase__ )
check_decoder_attentions_output(lowercase__ )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
_snake_case : str = True
_snake_case : Tuple = model_class(lowercase__ )
_snake_case : int = model(self._prepare_for_class(lowercase__ , lowercase__ ) )
self.assertEqual(config.output_hidden_states , lowercase__ )
check_encoder_attentions_output(lowercase__ )
# Check attention is always last and order is fine
_snake_case : int = True
_snake_case : List[str] = True
_snake_case : Tuple = model_class(lowercase__ )
_snake_case : Optional[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase__ ) )
self.assertEqual(model.config.output_hidden_states , lowercase__ )
check_encoder_attentions_output(lowercase__ )
@unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' )
def UpperCAmelCase_ ( self ) -> int:
"""simple docstring"""
pass
def UpperCAmelCase_ ( self ) -> str:
"""simple docstring"""
pass
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
return tf.constant(lowerCAmelCase_ , dtype=tf.intaa )
UpperCAmelCase : Dict = 1E-4
@slow
@require_tf
class lowerCamelCase (unittest.TestCase ):
def UpperCAmelCase_ ( self ) -> Dict:
"""simple docstring"""
_snake_case : List[str] = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led
# change to intended input here
_snake_case : List[str] = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] )
_snake_case : Tuple = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] )
_snake_case : Tuple = prepare_led_inputs_dict(model.config , lowercase__ , lowercase__ )
_snake_case : int = model(**lowercase__ )[0]
_snake_case : Dict = (1, 1_024, 768)
self.assertEqual(output.shape , lowercase__ )
# change to expected output here
_snake_case : List[Any] = tf.convert_to_tensor(
[[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , )
tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1E-3 )
def UpperCAmelCase_ ( self ) -> List[Any]:
"""simple docstring"""
_snake_case : Any = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' )
# change to intended input here
_snake_case : Dict = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] )
_snake_case : Dict = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] )
_snake_case : List[str] = prepare_led_inputs_dict(model.config , lowercase__ , lowercase__ )
_snake_case : Tuple = model(**lowercase__ )[0]
_snake_case : Any = (1, 1_024, model.config.vocab_size)
self.assertEqual(output.shape , lowercase__ )
# change to expected output here
_snake_case : Dict = tf.convert_to_tensor(
[[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , )
tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1E-3 , rtol=1E-3 )
| 47
| 1
|
'''simple docstring'''
import argparse
import os
import numpy as np
import tensorflow as tf
import torch
from transformers import BertModel
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : Any = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''')
_snake_case : Dict = (
('''layer.''', '''layer_'''),
('''word_embeddings.weight''', '''word_embeddings'''),
('''position_embeddings.weight''', '''position_embeddings'''),
('''token_type_embeddings.weight''', '''token_type_embeddings'''),
('''.''', '''/'''),
('''LayerNorm/weight''', '''LayerNorm/gamma'''),
('''LayerNorm/bias''', '''LayerNorm/beta'''),
('''weight''', '''kernel'''),
)
if not os.path.isdir(lowerCAmelCase_ ):
os.makedirs(lowerCAmelCase_ )
_snake_case : Tuple = model.state_dict()
def to_tf_var_name(lowerCAmelCase_ ):
for patt, repl in iter(lowerCAmelCase_ ):
_snake_case : List[Any] = name.replace(lowerCAmelCase_ , lowerCAmelCase_ )
return f'''bert/{name}'''
def create_tf_var(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
_snake_case : Optional[int] = tf.dtypes.as_dtype(tensor.dtype )
_snake_case : Any = tf.get_variable(dtype=lowerCAmelCase_ , shape=tensor.shape , name=lowerCAmelCase_ , initializer=tf.zeros_initializer() )
session.run(tf.variables_initializer([tf_var] ) )
session.run(lowerCAmelCase_ )
return tf_var
tf.reset_default_graph()
with tf.Session() as session:
for var_name in state_dict:
_snake_case : Dict = to_tf_var_name(lowerCAmelCase_ )
_snake_case : Tuple = state_dict[var_name].numpy()
if any(x in var_name for x in tensors_to_transpose ):
_snake_case : Any = torch_tensor.T
_snake_case : Dict = create_tf_var(tensor=lowerCAmelCase_ , name=lowerCAmelCase_ , session=lowerCAmelCase_ )
tf.keras.backend.set_value(lowerCAmelCase_ , lowerCAmelCase_ )
_snake_case : Optional[Any] = session.run(lowerCAmelCase_ )
print(f'''Successfully created {tf_name}: {np.allclose(lowerCAmelCase_ , lowerCAmelCase_ )}''' )
_snake_case : Optional[Any] = tf.train.Saver(tf.trainable_variables() )
saver.save(lowerCAmelCase_ , os.path.join(lowerCAmelCase_ , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) )
def _a ( lowerCAmelCase_=None ):
"""simple docstring"""
_snake_case : Tuple = argparse.ArgumentParser()
parser.add_argument('''--model_name''' , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''model name e.g. bert-base-uncased''' )
parser.add_argument(
'''--cache_dir''' , type=lowerCAmelCase_ , default=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''Directory containing pytorch model''' )
parser.add_argument('''--pytorch_model_path''' , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''/path/to/<pytorch-model-name>.bin''' )
parser.add_argument('''--tf_cache_dir''' , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''Directory in which to save tensorflow model''' )
_snake_case : Any = parser.parse_args(lowerCAmelCase_ )
_snake_case : Tuple = BertModel.from_pretrained(
pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , )
convert_pytorch_checkpoint_to_tf(model=lowerCAmelCase_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name )
if __name__ == "__main__":
main()
| 47
|
'''simple docstring'''
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
UpperCAmelCase : Optional[int] = logging.get_logger(__name__)
UpperCAmelCase : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'}
UpperCAmelCase : Any = {
'tokenizer_file': {
'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json',
},
}
UpperCAmelCase : Optional[Any] = {
'gpt-neox-20b': 2_0_4_8,
}
class lowerCamelCase (a__ ):
_lowercase : Optional[int] = VOCAB_FILES_NAMES
_lowercase : str = PRETRAINED_VOCAB_FILES_MAP
_lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowercase : Optional[int] = ["""input_ids""", """attention_mask"""]
def __init__( self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="<|endoftext|>" , lowercase__="<|endoftext|>" , lowercase__="<|endoftext|>" , lowercase__=False , **lowercase__ , ) -> List[Any]:
"""simple docstring"""
super().__init__(
lowercase__ , lowercase__ , tokenizer_file=lowercase__ , unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , add_prefix_space=lowercase__ , **lowercase__ , )
_snake_case : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('''add_prefix_space''' , lowercase__ ) != add_prefix_space:
_snake_case : int = getattr(lowercase__ , pre_tok_state.pop('''type''' ) )
_snake_case : int = add_prefix_space
_snake_case : Optional[Any] = pre_tok_class(**lowercase__ )
_snake_case : List[str] = add_prefix_space
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> Tuple[str]:
"""simple docstring"""
_snake_case : Optional[int] = self._tokenizer.model.save(lowercase__ , name=lowercase__ )
return tuple(lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ ) -> List[int]:
"""simple docstring"""
_snake_case : List[str] = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(lowercase__ , add_special_tokens=lowercase__ ) + [self.eos_token_id] )
if len(lowercase__ ) > self.model_max_length:
_snake_case : Dict = input_ids[-self.model_max_length :]
return input_ids
| 47
| 1
|
'''simple docstring'''
import inspect
import re
from hashlib import shaaaa
from typing import Dict, List
from .arrow import arrow
from .audiofolder import audiofolder
from .csv import csv
from .imagefolder import imagefolder
from .json import json
from .pandas import pandas
from .parquet import parquet
from .sql import sql # noqa F401
from .text import text
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : List[Any] = []
for line in lines:
_snake_case : Tuple = re.sub(R'''#.*''' , '''''' , lowerCAmelCase_ ) # remove comments
if line:
filtered_lines.append(lowerCAmelCase_ )
_snake_case : Dict = '''\n'''.join(lowerCAmelCase_ )
# Make a hash from all this code
_snake_case : Union[str, Any] = full_str.encode('''utf-8''' )
return shaaaa(lowerCAmelCase_ ).hexdigest()
# get importable module names and hash for caching
UpperCAmelCase : List[Any] = {
'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())),
'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())),
'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())),
'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())),
'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())),
'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())),
'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())),
'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())),
}
# Used to infer the module to use based on the data files extensions
UpperCAmelCase : List[str] = {
'.csv': ('csv', {}),
'.tsv': ('csv', {'sep': '\t'}),
'.json': ('json', {}),
'.jsonl': ('json', {}),
'.parquet': ('parquet', {}),
'.arrow': ('arrow', {}),
'.txt': ('text', {}),
}
_EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS})
UpperCAmelCase : str = {'imagefolder', 'audiofolder'}
# Used to filter data files based on extensions given a module name
UpperCAmelCase : Dict[str, List[str]] = {}
for _ext, (_module, _) in _EXTENSION_TO_MODULE.items():
_MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext)
_MODULE_TO_EXTENSIONS["imagefolder"].append('.zip')
_MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
| 47
|
'''simple docstring'''
import math
from numpy import inf
from scipy.integrate import quad
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
if num <= 0:
raise ValueError('''math domain error''' )
return quad(lowerCAmelCase_ , 0 , lowerCAmelCase_ , args=(lowerCAmelCase_) )[0]
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
return math.pow(lowerCAmelCase_ , z - 1 ) * math.exp(-x )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 47
| 1
|
'''simple docstring'''
import random
import timeit
from functools import wraps
from typing import Callable, Optional
from ..configuration_utils import PretrainedConfig
from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING
from ..utils import is_pyanvml_available, is_tf_available, logging
from .benchmark_utils import (
Benchmark,
Memory,
MemorySummary,
measure_peak_memory_cpu,
start_memory_tracing,
stop_memory_tracing,
)
if is_tf_available():
import tensorflow as tf
from tensorflow.python.framework.errors_impl import ResourceExhaustedError
from .benchmark_args_tf import TensorFlowBenchmarkArguments
if is_pyanvml_available():
import pyanvml.pyanvml as nvml
UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__)
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
def run_func(lowerCAmelCase_ ):
@wraps(lowerCAmelCase_ )
def run_in_eager_mode(*lowerCAmelCase_ , **lowerCAmelCase_ ):
return func(*lowerCAmelCase_ , **lowerCAmelCase_ )
@wraps(lowerCAmelCase_ )
@tf.function(experimental_compile=lowerCAmelCase_ )
def run_in_graph_mode(*lowerCAmelCase_ , **lowerCAmelCase_ ):
return func(*lowerCAmelCase_ , **lowerCAmelCase_ )
if do_eager_mode is True:
if use_xla is not False:
raise ValueError(
'''Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.''' )
return run_in_eager_mode
else:
return run_in_graph_mode
return run_func
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : List[Any] = random.Random()
_snake_case : Union[str, Any] = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )]
return tf.constant(lowerCAmelCase_ , shape=(batch_size, sequence_length) , dtype=tf.intaa )
class lowerCamelCase (a__ ):
_lowercase : TensorFlowBenchmarkArguments
_lowercase : PretrainedConfig
_lowercase : str = "TensorFlow"
@property
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
"""simple docstring"""
return tf.__version__
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ ) -> float:
"""simple docstring"""
_snake_case : Optional[Any] = self.args.strategy
if strategy is None:
raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' )
_snake_case : Optional[Any] = self._prepare_inference_func(lowercase__ , lowercase__ , lowercase__ )
return self._measure_speed(_inference )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ ) -> float:
"""simple docstring"""
_snake_case : Dict = self.args.strategy
if strategy is None:
raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' )
_snake_case : Tuple = self._prepare_train_func(lowercase__ , lowercase__ , lowercase__ )
return self._measure_speed(_train )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ ) -> [Memory, Optional[MemorySummary]]:
"""simple docstring"""
if self.args.is_gpu:
tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowercase__ )
_snake_case : Optional[int] = self.args.strategy
if strategy is None:
raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' )
_snake_case : List[Any] = self._prepare_inference_func(lowercase__ , lowercase__ , lowercase__ )
return self._measure_memory(_inference )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ ) -> [Memory, Optional[MemorySummary]]:
"""simple docstring"""
if self.args.is_gpu:
tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowercase__ )
_snake_case : Union[str, Any] = self.args.strategy
if strategy is None:
raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' )
_snake_case : List[str] = self._prepare_train_func(lowercase__ , lowercase__ , lowercase__ )
return self._measure_memory(_train )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ ) -> Callable[[], None]:
"""simple docstring"""
_snake_case : Optional[int] = self.config_dict[model_name]
if self.args.fpaa:
raise NotImplementedError('''Mixed precision is currently not supported.''' )
_snake_case : List[Any] = (
hasattr(lowercase__ , '''architectures''' )
and isinstance(config.architectures , lowercase__ )
and len(config.architectures ) > 0
)
if not self.args.only_pretrain_model and has_model_class_in_config:
try:
_snake_case : int = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model
_snake_case : Dict = __import__('''transformers''' , fromlist=[model_class] )
_snake_case : List[Any] = getattr(lowercase__ , lowercase__ )
_snake_case : Tuple = model_cls(lowercase__ )
except ImportError:
raise ImportError(
F'''{model_class} does not exist. If you just want to test the pretrained model, you might want to'''
''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' )
else:
_snake_case : Union[str, Any] = TF_MODEL_MAPPING[config.__class__](lowercase__ )
# encoder-decoder has vocab size saved differently
_snake_case : Optional[Any] = config.vocab_size if hasattr(lowercase__ , '''vocab_size''' ) else config.encoder.vocab_size
_snake_case : List[str] = random_input_ids(lowercase__ , lowercase__ , lowercase__ )
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla )
def encoder_decoder_forward():
return model(lowercase__ , decoder_input_ids=lowercase__ , training=lowercase__ )
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla )
def encoder_forward():
return model(lowercase__ , training=lowercase__ )
_snake_case : List[Any] = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward
return _inference
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ ) -> Callable[[], None]:
"""simple docstring"""
_snake_case : int = self.config_dict[model_name]
if self.args.eager_mode is not False:
raise ValueError('''Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.''' )
if self.args.fpaa:
raise NotImplementedError('''Mixed precision is currently not supported.''' )
_snake_case : List[str] = (
hasattr(lowercase__ , '''architectures''' )
and isinstance(config.architectures , lowercase__ )
and len(config.architectures ) > 0
)
if not self.args.only_pretrain_model and has_model_class_in_config:
try:
_snake_case : Dict = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model
_snake_case : List[Any] = __import__('''transformers''' , fromlist=[model_class] )
_snake_case : str = getattr(lowercase__ , lowercase__ )
_snake_case : Optional[int] = model_cls(lowercase__ )
except ImportError:
raise ImportError(
F'''{model_class} does not exist. If you just want to test the pretrained model, you might want to'''
''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' )
else:
_snake_case : Any = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](lowercase__ )
# encoder-decoder has vocab size saved differently
_snake_case : Union[str, Any] = config.vocab_size if hasattr(lowercase__ , '''vocab_size''' ) else config.encoder.vocab_size
_snake_case : Any = random_input_ids(lowercase__ , lowercase__ , lowercase__ )
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla )
def encoder_decoder_train():
_snake_case : Optional[int] = model(lowercase__ , decoder_input_ids=lowercase__ , labels=lowercase__ , training=lowercase__ )[0]
_snake_case : List[str] = tf.gradients(lowercase__ , model.trainable_variables )
return gradients
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla )
def encoder_train():
_snake_case : List[str] = model(lowercase__ , labels=lowercase__ , training=lowercase__ )[0]
_snake_case : Optional[int] = tf.gradients(lowercase__ , model.trainable_variables )
return gradients
_snake_case : List[Any] = encoder_decoder_train if config.is_encoder_decoder else encoder_train
return _train
def UpperCAmelCase_ ( self , lowercase__ ) -> float:
"""simple docstring"""
with self.args.strategy.scope():
try:
if self.args.is_tpu or self.args.use_xla:
# run additional 10 times to stabilize compilation for tpu
logger.info('''Do inference on TPU. Running model 5 times to stabilize compilation''' )
timeit.repeat(lowercase__ , repeat=1 , number=5 )
# as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average
_snake_case : Tuple = timeit.repeat(
lowercase__ , repeat=self.args.repeat , number=10 , )
return min(lowercase__ ) / 10.0
except ResourceExhaustedError as e:
self.print_fn(F'''Doesn\'t fit on GPU. {e}''' )
def UpperCAmelCase_ ( self , lowercase__ ) -> [Memory, MemorySummary]:
"""simple docstring"""
logger.info(
'''Note that TensorFlow allocates more memory than '''
'''it might need to speed up computation. '''
'''The memory reported here corresponds to the memory '''
'''reported by `nvidia-smi`, which can vary depending '''
'''on total available memory on the GPU that is used.''' )
with self.args.strategy.scope():
try:
if self.args.trace_memory_line_by_line:
if not self.args.eager_mode:
raise ValueError(
'''`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory'''
''' consumption line by line.''' )
_snake_case : List[Any] = start_memory_tracing('''transformers''' )
if self.args.is_tpu:
# tpu
raise NotImplementedError(
'''Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking'''
''' with `args.memory=False`''' )
elif self.args.is_gpu:
# gpu
if not is_pyanvml_available():
logger.warning(
'''py3nvml not installed, we won\'t log GPU memory usage. '''
'''Install py3nvml (pip install py3nvml) to log information about GPU.''' )
_snake_case : str = '''N/A'''
else:
logger.info(
'''Measuring total GPU usage on GPU device. Make sure to not have additional processes'''
''' running on the same GPU.''' )
# init nvml
nvml.nvmlInit()
func()
_snake_case : Optional[int] = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx )
_snake_case : Tuple = nvml.nvmlDeviceGetMemoryInfo(lowercase__ )
_snake_case : Any = meminfo.used
_snake_case : str = Memory(lowercase__ )
# shutdown nvml
nvml.nvmlShutdown()
else:
# cpu
if self.args.trace_memory_line_by_line:
logger.info(
'''When enabling line by line tracing, the max peak memory for CPU is inaccurate in'''
''' TensorFlow.''' )
_snake_case : int = None
else:
_snake_case : Optional[int] = measure_peak_memory_cpu(lowercase__ )
_snake_case : List[str] = Memory(lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else memory_bytes
if self.args.trace_memory_line_by_line:
_snake_case : Optional[int] = stop_memory_tracing(lowercase__ )
if memory is None:
_snake_case : Any = summary.total
else:
_snake_case : Dict = None
return memory, summary
except ResourceExhaustedError as e:
self.print_fn(F'''Doesn\'t fit on GPU. {e}''' )
return "N/A", None
| 47
|
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import is_tf_available, is_torch_available
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow
if is_tf_available():
from transformers import (
AutoConfig,
BertConfig,
GPTaConfig,
TaConfig,
TFAutoModel,
TFAutoModelForCausalLM,
TFAutoModelForMaskedLM,
TFAutoModelForPreTraining,
TFAutoModelForQuestionAnswering,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSequenceClassification,
TFAutoModelWithLMHead,
TFBertForMaskedLM,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertModel,
TFGPTaLMHeadModel,
TFRobertaForMaskedLM,
TFTaForConditionalGeneration,
)
from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST
if is_torch_available():
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForMaskedLM,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelWithLMHead,
BertForMaskedLM,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
BertModel,
GPTaLMHeadModel,
RobertaForMaskedLM,
TaForConditionalGeneration,
)
@is_pt_tf_cross_test
class lowerCamelCase (unittest.TestCase ):
@slow
def UpperCAmelCase_ ( self ) -> List[Any]:
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
_snake_case : Union[str, Any] = AutoConfig.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Any = TFAutoModel.from_pretrained(lowercase__ , from_pt=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : str = AutoModel.from_pretrained(lowercase__ , from_tf=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
@slow
def UpperCAmelCase_ ( self ) -> List[str]:
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
_snake_case : Optional[Any] = AutoConfig.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Dict = TFAutoModelForPreTraining.from_pretrained(lowercase__ , from_pt=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Tuple = AutoModelForPreTraining.from_pretrained(lowercase__ , from_tf=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
@slow
def UpperCAmelCase_ ( self ) -> Union[str, Any]:
"""simple docstring"""
for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case : Optional[int] = AutoConfig.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained(lowercase__ , from_pt=lowercase__ )
_snake_case , _snake_case : Tuple = TFAutoModelForCausalLM.from_pretrained(
lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained(lowercase__ , from_tf=lowercase__ )
_snake_case , _snake_case : Optional[Any] = AutoModelForCausalLM.from_pretrained(
lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
@slow
def UpperCAmelCase_ ( self ) -> Optional[Any]:
"""simple docstring"""
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case : List[Any] = AutoConfig.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Tuple = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : int = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
@slow
def UpperCAmelCase_ ( self ) -> Any:
"""simple docstring"""
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case : List[str] = AutoConfig.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(lowercase__ , from_pt=lowercase__ )
_snake_case , _snake_case : List[str] = TFAutoModelForMaskedLM.from_pretrained(
lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : int = AutoModelForMaskedLM.from_pretrained(lowercase__ , from_tf=lowercase__ )
_snake_case , _snake_case : Optional[int] = AutoModelForMaskedLM.from_pretrained(
lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
@slow
def UpperCAmelCase_ ( self ) -> List[str]:
"""simple docstring"""
for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case : List[str] = AutoConfig.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(lowercase__ , from_pt=lowercase__ )
_snake_case , _snake_case : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained(
lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : List[str] = AutoModelForSeqaSeqLM.from_pretrained(lowercase__ , from_tf=lowercase__ )
_snake_case , _snake_case : Dict = AutoModelForSeqaSeqLM.from_pretrained(
lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
@slow
def UpperCAmelCase_ ( self ) -> Dict:
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
_snake_case : Any = AutoConfig.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Any = TFAutoModelForSequenceClassification.from_pretrained(lowercase__ , from_pt=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Dict = AutoModelForSequenceClassification.from_pretrained(lowercase__ , from_tf=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
@slow
def UpperCAmelCase_ ( self ) -> Optional[int]:
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
_snake_case : str = AutoConfig.from_pretrained(lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : str = TFAutoModelForQuestionAnswering.from_pretrained(lowercase__ , from_pt=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
_snake_case : Union[str, Any] = AutoModelForQuestionAnswering.from_pretrained(lowercase__ , from_tf=lowercase__ )
self.assertIsNotNone(lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
def UpperCAmelCase_ ( self ) -> str:
"""simple docstring"""
_snake_case : Union[str, Any] = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
self.assertEqual(model.num_parameters() , 14_410 )
self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 )
_snake_case : Tuple = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
self.assertEqual(model.num_parameters() , 14_410 )
self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 )
def UpperCAmelCase_ ( self ) -> str:
"""simple docstring"""
_snake_case : List[str] = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
self.assertEqual(model.num_parameters() , 14_410 )
self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 )
_snake_case : int = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
self.assertEqual(model.num_parameters() , 14_410 )
self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 )
| 47
| 1
|
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_nllb import NllbTokenizer
else:
UpperCAmelCase : Any = None
UpperCAmelCase : List[str] = logging.get_logger(__name__)
UpperCAmelCase : List[Any] = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'}
UpperCAmelCase : List[str] = {
'vocab_file': {
'facebook/nllb-200-distilled-600M': (
'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model'
),
},
'tokenizer_file': {
'facebook/nllb-200-distilled-600M': (
'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json'
),
},
}
UpperCAmelCase : int = {
'facebook/nllb-large-en-ro': 1_0_2_4,
'facebook/nllb-200-distilled-600M': 1_0_2_4,
}
# fmt: off
UpperCAmelCase : Optional[int] = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn']
class lowerCamelCase (a__ ):
_lowercase : Dict = VOCAB_FILES_NAMES
_lowercase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowercase : List[str] = PRETRAINED_VOCAB_FILES_MAP
_lowercase : Optional[Any] = ["""input_ids""", """attention_mask"""]
_lowercase : List[Any] = NllbTokenizer
_lowercase : List[int] = []
_lowercase : List[int] = []
def __init__( self , lowercase__=None , lowercase__=None , lowercase__="<s>" , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<mask>" , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=False , **lowercase__ , ) -> Tuple:
"""simple docstring"""
_snake_case : List[Any] = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token
_snake_case : Union[str, Any] = legacy_behaviour
super().__init__(
vocab_file=lowercase__ , tokenizer_file=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , unk_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , src_lang=lowercase__ , tgt_lang=lowercase__ , additional_special_tokens=lowercase__ , legacy_behaviour=lowercase__ , **lowercase__ , )
_snake_case : Tuple = vocab_file
_snake_case : int = False if not self.vocab_file else True
_snake_case : Tuple = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} )
_snake_case : Union[str, Any] = {
lang_code: self.convert_tokens_to_ids(lowercase__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
_snake_case : List[str] = src_lang if src_lang is not None else '''eng_Latn'''
_snake_case : List[str] = self.convert_tokens_to_ids(self._src_lang )
_snake_case : Union[str, Any] = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def UpperCAmelCase_ ( self ) -> str:
"""simple docstring"""
return self._src_lang
@src_lang.setter
def UpperCAmelCase_ ( self , lowercase__ ) -> None:
"""simple docstring"""
_snake_case : str = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> List[int]:
"""simple docstring"""
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> List[int]:
"""simple docstring"""
_snake_case : List[str] = [self.sep_token_id]
_snake_case : Optional[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , **lowercase__ ) -> Any:
"""simple docstring"""
if src_lang is None or tgt_lang is None:
raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' )
_snake_case : List[str] = src_lang
_snake_case : Optional[Any] = self(lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , **lowercase__ )
_snake_case : str = self.convert_tokens_to_ids(lowercase__ )
_snake_case : str = tgt_lang_id
return inputs
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = "eng_Latn" , lowercase__ = None , lowercase__ = "fra_Latn" , **lowercase__ , ) -> BatchEncoding:
"""simple docstring"""
_snake_case : Optional[Any] = src_lang
_snake_case : Tuple = tgt_lang
return super().prepare_seqaseq_batch(lowercase__ , lowercase__ , **lowercase__ )
def UpperCAmelCase_ ( self ) -> Optional[Any]:
"""simple docstring"""
return self.set_src_lang_special_tokens(self.src_lang )
def UpperCAmelCase_ ( self ) -> int:
"""simple docstring"""
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def UpperCAmelCase_ ( self , lowercase__ ) -> None:
"""simple docstring"""
_snake_case : List[Any] = self.convert_tokens_to_ids(lowercase__ )
if self.legacy_behaviour:
_snake_case : Any = []
_snake_case : Optional[int] = [self.eos_token_id, self.cur_lang_code]
else:
_snake_case : int = [self.cur_lang_code]
_snake_case : List[Any] = [self.eos_token_id]
_snake_case : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens )
_snake_case : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens )
_snake_case : Dict = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def UpperCAmelCase_ ( self , lowercase__ ) -> None:
"""simple docstring"""
_snake_case : str = self.convert_tokens_to_ids(lowercase__ )
if self.legacy_behaviour:
_snake_case : List[str] = []
_snake_case : Optional[int] = [self.eos_token_id, self.cur_lang_code]
else:
_snake_case : int = [self.cur_lang_code]
_snake_case : str = [self.eos_token_id]
_snake_case : Any = self.convert_ids_to_tokens(self.prefix_tokens )
_snake_case : int = self.convert_ids_to_tokens(self.suffix_tokens )
_snake_case : Dict = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> Tuple[str]:
"""simple docstring"""
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(lowercase__ ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory.''' )
return
_snake_case : Optional[int] = os.path.join(
lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ):
copyfile(self.vocab_file , lowercase__ )
return (out_vocab_file,)
| 47
|
'''simple docstring'''
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase : Dict = {'configuration_timm_backbone': ['TimmBackboneConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Union[str, Any] = ['TimmBackbone']
if TYPE_CHECKING:
from .configuration_timm_backbone import TimmBackboneConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_timm_backbone import TimmBackbone
else:
import sys
UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 47
| 1
|
'''simple docstring'''
from __future__ import annotations
from fractions import Fraction
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
return (
num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den
)
def _a ( lowerCAmelCase_ ):
"""simple docstring"""
_snake_case : int = []
_snake_case : Tuple = 11
_snake_case : Optional[int] = int('''1''' + '''0''' * digit_len )
for num in range(lowerCAmelCase_ , lowerCAmelCase_ ):
while den <= 99:
if (num != den) and (num % 10 == den // 10) and (den % 10 != 0):
if is_digit_cancelling(lowerCAmelCase_ , lowerCAmelCase_ ):
solutions.append(f'''{num}/{den}''' )
den += 1
num += 1
_snake_case : int = 10
return solutions
def _a ( lowerCAmelCase_ = 2 ):
"""simple docstring"""
_snake_case : Optional[int] = 1.0
for fraction in fraction_list(lowerCAmelCase_ ):
_snake_case : Optional[Any] = Fraction(lowerCAmelCase_ )
result *= frac.denominator / frac.numerator
return int(lowerCAmelCase_ )
if __name__ == "__main__":
print(solution())
| 47
|
'''simple docstring'''
import argparse
import logging
import os
from pathlib import Path
from typing import Any, Dict
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info
from transformers import (
AdamW,
AutoConfig,
AutoModel,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
AutoModelWithLMHead,
AutoTokenizer,
PretrainedConfig,
PreTrainedTokenizer,
)
from transformers.optimization import (
Adafactor,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.utils.versions import require_version
UpperCAmelCase : Tuple = logging.getLogger(__name__)
require_version('pytorch_lightning>=1.0.4')
UpperCAmelCase : str = {
'base': AutoModel,
'sequence-classification': AutoModelForSequenceClassification,
'question-answering': AutoModelForQuestionAnswering,
'pretraining': AutoModelForPreTraining,
'token-classification': AutoModelForTokenClassification,
'language-modeling': AutoModelWithLMHead,
'summarization': AutoModelForSeqaSeqLM,
'translation': AutoModelForSeqaSeqLM,
}
# update this and the import above to support new schedulers from transformers.optimization
UpperCAmelCase : Optional[Any] = {
'linear': get_linear_schedule_with_warmup,
'cosine': get_cosine_schedule_with_warmup,
'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup,
'polynomial': get_polynomial_decay_schedule_with_warmup,
# '': get_constant_schedule, # not supported for now
# '': get_constant_schedule_with_warmup, # not supported for now
}
UpperCAmelCase : Tuple = sorted(arg_to_scheduler.keys())
UpperCAmelCase : Optional[Any] = '{' + ', '.join(arg_to_scheduler_choices) + '}'
class lowerCamelCase (pl.LightningModule ):
def __init__( self , lowercase__ , lowercase__=None , lowercase__="base" , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ , ) -> Optional[int]:
"""simple docstring"""
super().__init__()
# TODO: move to self.save_hyperparameters()
# self.save_hyperparameters()
# can also expand arguments into trainer signature for easier reading
self.save_hyperparameters(lowercase__ )
_snake_case : Union[str, Any] = 0
_snake_case : int = Path(self.hparams.output_dir )
_snake_case : int = self.hparams.cache_dir if self.hparams.cache_dir else None
if config is None:
_snake_case : Tuple = AutoConfig.from_pretrained(
self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=lowercase__ , **lowercase__ , )
else:
_snake_case : PretrainedConfig = config
_snake_case : Optional[Any] = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''')
for p in extra_model_params:
if getattr(self.hparams , lowercase__ , lowercase__ ):
assert hasattr(self.config , lowercase__ ), F'''model config doesn\'t have a `{p}` attribute'''
setattr(self.config , lowercase__ , getattr(self.hparams , lowercase__ ) )
if tokenizer is None:
_snake_case : Optional[int] = AutoTokenizer.from_pretrained(
self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=lowercase__ , )
else:
_snake_case : PreTrainedTokenizer = tokenizer
_snake_case : Any = MODEL_MODES[mode]
if model is None:
_snake_case : List[Any] = self.model_type.from_pretrained(
self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=lowercase__ , )
else:
_snake_case : Optional[Any] = model
def UpperCAmelCase_ ( self , *lowercase__ , **lowercase__ ) -> List[str]:
"""simple docstring"""
_snake_case : Dict = self.model_type.from_pretrained(*lowercase__ , **lowercase__ )
def UpperCAmelCase_ ( self ) -> List[Any]:
"""simple docstring"""
_snake_case : Optional[int] = arg_to_scheduler[self.hparams.lr_scheduler]
_snake_case : Optional[int] = get_schedule_func(
self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() )
_snake_case : str = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1}
return scheduler
def UpperCAmelCase_ ( self ) -> int:
"""simple docstring"""
_snake_case : Any = self.model
_snake_case : List[Any] = ['''bias''', '''LayerNorm.weight''']
_snake_case : List[str] = [
{
'''params''': [
p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay )
], # check this named paramters
'''weight_decay''': self.hparams.weight_decay,
},
{
'''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )],
'''weight_decay''': 0.0,
},
]
if self.hparams.adafactor:
_snake_case : Any = Adafactor(
lowercase__ , lr=self.hparams.learning_rate , scale_parameter=lowercase__ , relative_step=lowercase__ )
else:
_snake_case : List[str] = AdamW(
lowercase__ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon )
_snake_case : List[str] = optimizer
_snake_case : Any = self.get_lr_scheduler()
return [optimizer], [scheduler]
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Any:
"""simple docstring"""
return self.validation_step(lowercase__ , lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ ) -> Tuple:
"""simple docstring"""
return self.validation_end(lowercase__ )
def UpperCAmelCase_ ( self ) -> int:
"""simple docstring"""
_snake_case : Any = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores
_snake_case : Optional[int] = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices
return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs
def UpperCAmelCase_ ( self , lowercase__ ) -> Any:
"""simple docstring"""
if stage == "test":
_snake_case : Any = len(self.test_dataloader().dataset )
else:
_snake_case : Dict = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=lowercase__ )
_snake_case : Optional[int] = len(self.train_dataloader().dataset )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = False ) -> str:
"""simple docstring"""
raise NotImplementedError('''You must implement this for your task''' )
def UpperCAmelCase_ ( self ) -> Optional[int]:
"""simple docstring"""
return self.train_loader
def UpperCAmelCase_ ( self ) -> Dict:
"""simple docstring"""
return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=lowercase__ )
def UpperCAmelCase_ ( self ) -> Optional[Any]:
"""simple docstring"""
return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ ) -> Optional[int]:
"""simple docstring"""
return os.path.join(
self.hparams.data_dir , '''cached_{}_{}_{}'''.format(
lowercase__ , list(filter(lowercase__ , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , )
@pl.utilities.rank_zero_only
def UpperCAmelCase_ ( self , lowercase__ ) -> None:
"""simple docstring"""
_snake_case : Dict = self.output_dir.joinpath('''best_tfmr''' )
_snake_case : Tuple = self.step_count
self.model.save_pretrained(lowercase__ )
self.tokenizer.save_pretrained(lowercase__ )
@staticmethod
def UpperCAmelCase_ ( lowercase__ , lowercase__ ) -> Tuple:
"""simple docstring"""
parser.add_argument(
'''--model_name_or_path''' , default=lowercase__ , type=lowercase__ , required=lowercase__ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , )
parser.add_argument(
'''--config_name''' , default='''''' , type=lowercase__ , help='''Pretrained config name or path if not the same as model_name''' )
parser.add_argument(
'''--tokenizer_name''' , default=lowercase__ , type=lowercase__ , help='''Pretrained tokenizer name or path if not the same as model_name''' , )
parser.add_argument(
'''--cache_dir''' , default=str(Path(lowercase__ ).parent / '''test_run''' / '''cache''' ) , type=lowercase__ , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , )
parser.add_argument(
'''--encoder_layerdrop''' , type=lowercase__ , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--decoder_layerdrop''' , type=lowercase__ , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--dropout''' , type=lowercase__ , help='''Dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--attention_dropout''' , type=lowercase__ , help='''Attention dropout probability (Optional). Goes into model.config''' , )
parser.add_argument('''--learning_rate''' , default=5E-5 , type=lowercase__ , help='''The initial learning rate for Adam.''' )
parser.add_argument(
'''--lr_scheduler''' , default='''linear''' , choices=lowercase__ , metavar=lowercase__ , type=lowercase__ , help='''Learning rate scheduler''' , )
parser.add_argument('''--weight_decay''' , default=0.0 , type=lowercase__ , help='''Weight decay if we apply some.''' )
parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=lowercase__ , help='''Epsilon for Adam optimizer.''' )
parser.add_argument('''--warmup_steps''' , default=0 , type=lowercase__ , help='''Linear warmup over warmup_steps.''' )
parser.add_argument('''--num_workers''' , default=4 , type=lowercase__ , help='''kwarg passed to DataLoader''' )
parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=lowercase__ )
parser.add_argument('''--train_batch_size''' , default=32 , type=lowercase__ )
parser.add_argument('''--eval_batch_size''' , default=32 , type=lowercase__ )
parser.add_argument('''--adafactor''' , action='''store_true''' )
class lowerCamelCase (pl.Callback ):
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> str:
"""simple docstring"""
if (
trainer.is_global_zero and trainer.global_rank == 0
): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed.
pl_module.model.rag.retriever.init_retrieval() # better to use hook functions.
class lowerCamelCase (pl.Callback ):
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> List[str]:
"""simple docstring"""
for name, param in pl_module.model.rag.named_parameters():
if param.grad is None:
print(lowercase__ )
class lowerCamelCase (pl.Callback ):
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Any:
"""simple docstring"""
_snake_case : Any = trainer.lr_schedulers[0]['''scheduler''']
_snake_case : Optional[int] = {F'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr() )}
pl_module.logger.log_metrics(lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> List[str]:
"""simple docstring"""
rank_zero_info('''***** Validation results *****''' )
_snake_case : Dict = trainer.callback_metrics
# Log results
for key in sorted(lowercase__ ):
if key not in ["log", "progress_bar"]:
rank_zero_info('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Dict:
"""simple docstring"""
rank_zero_info('''***** Test results *****''' )
_snake_case : Dict = trainer.callback_metrics
# Log and save results to file
_snake_case : str = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' )
with open(lowercase__ , '''w''' ) as writer:
for key in sorted(lowercase__ ):
if key not in ["log", "progress_bar"]:
rank_zero_info('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) )
writer.write('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
parser.add_argument(
'''--output_dir''' , default=str(Path(lowerCAmelCase_ ).parent / '''test_run''' / '''model_checkpoints''' ) , type=lowerCAmelCase_ , help='''The output directory where the model predictions and checkpoints will be written.''' , )
parser.add_argument(
'''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , )
parser.add_argument(
'''--fp16_opt_level''' , type=lowerCAmelCase_ , default='''O2''' , help=(
'''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'''
'''See details at https://nvidia.github.io/apex/amp.html'''
) , )
parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=lowerCAmelCase_ )
parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=lowerCAmelCase_ , help='''Max gradient norm''' )
parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' )
parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' )
parser.add_argument(
'''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=lowerCAmelCase_ , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , )
parser.add_argument('''--seed''' , type=lowerCAmelCase_ , default=42 , help='''random seed for initialization''' )
parser.add_argument(
'''--data_dir''' , default=str(Path(lowerCAmelCase_ ).parent / '''test_run''' / '''dummy-train-data''' ) , type=lowerCAmelCase_ , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , )
def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_=[] , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , ):
"""simple docstring"""
pl.seed_everything(args.seed )
# init model
_snake_case : Union[str, Any] = Path(model.hparams.output_dir )
odir.mkdir(exist_ok=lowerCAmelCase_ )
# add custom checkpoints
if checkpoint_callback is None:
_snake_case : Any = pl.callbacks.ModelCheckpoint(
filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 )
if early_stopping_callback:
extra_callbacks.append(lowerCAmelCase_ )
if logging_callback is None:
_snake_case : str = LoggingCallback()
_snake_case : Tuple = {}
if args.fpaa:
_snake_case : Union[str, Any] = 16
if args.gpus > 1:
_snake_case : Optional[Any] = '''auto'''
_snake_case : Tuple = '''ddp'''
_snake_case : Optional[Any] = args.accumulate_grad_batches
_snake_case : Tuple = None
_snake_case : str = '''auto'''
_snake_case : int = pl.Trainer.from_argparse_args(
lowerCAmelCase_ , weights_summary=lowerCAmelCase_ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase_ , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase_ , )
if args.do_train:
trainer.fit(lowerCAmelCase_ )
else:
print('''RAG modeling tests with new set functions successfuly executed!''' )
return trainer
| 47
| 1
|
'''simple docstring'''
import math
def _a ( lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
if 0 not in (x, y):
# We use the relation x^y = y*log10(x), where 10 is the base.
return y * math.logaa(SCREAMING_SNAKE_CASE_ )
else:
if x == 0: # 0 raised to any number is 0
return 0
elif y == 0:
return 1 # any number raised to 0 is 1
raise AssertionError('''This should never happen''' )
if __name__ == "__main__": # Main function
# Read two numbers from input and typecast them to int using map function.
# Here x is the base and y is the power.
UpperCAmelCase : Dict = "Enter the base and the power separated by a comma: "
UpperCAmelCase : Dict = map(int, input(prompt).split(','))
UpperCAmelCase : Union[str, Any] = map(int, input(prompt).split(','))
# We find the log of each number, using the function res(), which takes two
# arguments.
UpperCAmelCase : int = res(xa, ya)
UpperCAmelCase : Optional[Any] = res(xa, ya)
# We check for the largest number
if resa > resa:
print('Largest number is', xa, '^', ya)
elif resa > resa:
print('Largest number is', xa, '^', ya)
else:
print('Both are equal')
| 700
|
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase : List[str] = logging.get_logger(__name__)
UpperCAmelCase : Dict = {
'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json',
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class lowerCamelCase (a__ ):
_lowercase : List[str] = """sew-d"""
def __init__( self , lowercase__=32 , lowercase__=768 , lowercase__=12 , lowercase__=12 , lowercase__=3_072 , lowercase__=2 , lowercase__=512 , lowercase__=256 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.02 , lowercase__=1E-7 , lowercase__=1E-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=128 , lowercase__=16 , lowercase__=True , lowercase__=0.05 , lowercase__=10 , lowercase__=2 , lowercase__=0.0 , lowercase__=10 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=256 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ) -> Dict:
"""simple docstring"""
super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ )
_snake_case : List[str] = hidden_size
_snake_case : Optional[Any] = feat_extract_norm
_snake_case : Tuple = feat_extract_activation
_snake_case : Tuple = list(lowercase__ )
_snake_case : Any = list(lowercase__ )
_snake_case : Any = list(lowercase__ )
_snake_case : Any = conv_bias
_snake_case : List[Any] = num_conv_pos_embeddings
_snake_case : Any = num_conv_pos_embedding_groups
_snake_case : Union[str, Any] = len(self.conv_dim )
_snake_case : Optional[Any] = num_hidden_layers
_snake_case : Optional[int] = intermediate_size
_snake_case : Any = squeeze_factor
_snake_case : Optional[Any] = max_position_embeddings
_snake_case : Tuple = position_buckets
_snake_case : Tuple = share_att_key
_snake_case : Any = relative_attention
_snake_case : Optional[int] = norm_rel_ebd
_snake_case : Optional[Any] = list(lowercase__ )
_snake_case : List[Any] = hidden_act
_snake_case : List[Any] = num_attention_heads
_snake_case : Dict = hidden_dropout
_snake_case : Tuple = attention_dropout
_snake_case : Union[str, Any] = activation_dropout
_snake_case : List[Any] = feat_proj_dropout
_snake_case : Optional[int] = final_dropout
_snake_case : Optional[Any] = layer_norm_eps
_snake_case : Dict = feature_layer_norm_eps
_snake_case : List[Any] = initializer_range
_snake_case : Dict = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect.'''
'''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'''
F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)'''
F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_snake_case : Union[str, Any] = apply_spec_augment
_snake_case : Any = mask_time_prob
_snake_case : List[str] = mask_time_length
_snake_case : Dict = mask_time_min_masks
_snake_case : Union[str, Any] = mask_feature_prob
_snake_case : Tuple = mask_feature_length
_snake_case : Union[str, Any] = mask_feature_min_masks
# ctc loss
_snake_case : Optional[Any] = ctc_loss_reduction
_snake_case : Optional[Any] = ctc_zero_infinity
# sequence classification
_snake_case : List[Any] = use_weighted_layer_sum
_snake_case : Any = classifier_proj_size
@property
def UpperCAmelCase_ ( self ) -> Any:
"""simple docstring"""
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 47
| 0
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.