code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import math import flax.linen as nn import jax.numpy as jnp def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 1.0E4 , lowerCAmelCase_ = False , lowerCAmelCase_ = 1.0 , ): """simple docstring""" assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, f'''Embedding dimension {embedding_dim} should be even''' _snake_case : Dict = float(embedding_dim // 2 ) _snake_case : Tuple = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) _snake_case : Optional[Any] = min_timescale * jnp.exp(jnp.arange(lowerCAmelCase_ , dtype=jnp.floataa ) * -log_timescale_increment ) _snake_case : Tuple = jnp.expand_dims(lowerCAmelCase_ , 1 ) * jnp.expand_dims(lowerCAmelCase_ , 0 ) # scale embeddings _snake_case : Union[str, Any] = scale * emb if flip_sin_to_cos: _snake_case : str = jnp.concatenate([jnp.cos(lowerCAmelCase_ ), jnp.sin(lowerCAmelCase_ )] , axis=1 ) else: _snake_case : Union[str, Any] = jnp.concatenate([jnp.sin(lowerCAmelCase_ ), jnp.cos(lowerCAmelCase_ )] , axis=1 ) _snake_case : str = jnp.reshape(lowerCAmelCase_ , [jnp.shape(lowerCAmelCase_ )[0], embedding_dim] ) return signal class lowerCamelCase (nn.Module ): _lowercase : int = 32 _lowercase : jnp.dtype = jnp.floataa @nn.compact def __call__( self , lowercase__ ) -> Any: """simple docstring""" _snake_case : Union[str, Any] = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='''linear_1''' )(lowercase__ ) _snake_case : List[Any] = nn.silu(lowercase__ ) _snake_case : List[Any] = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='''linear_2''' )(lowercase__ ) return temb class lowerCamelCase (nn.Module ): _lowercase : int = 32 _lowercase : bool = False _lowercase : float = 1 @nn.compact def __call__( self , lowercase__ ) -> Optional[int]: """simple docstring""" return get_sinusoidal_embeddings( lowercase__ , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
703
'''simple docstring''' from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def _a ( ): """simple docstring""" _snake_case : List[Any] = ArgumentParser('''Transformers CLI tool''' , usage='''transformers-cli <command> [<args>]''' ) _snake_case : List[str] = parser.add_subparsers(help='''transformers-cli command helpers''' ) # Register commands ConvertCommand.register_subcommand(lowerCAmelCase_ ) DownloadCommand.register_subcommand(lowerCAmelCase_ ) EnvironmentCommand.register_subcommand(lowerCAmelCase_ ) RunCommand.register_subcommand(lowerCAmelCase_ ) ServeCommand.register_subcommand(lowerCAmelCase_ ) UserCommands.register_subcommand(lowerCAmelCase_ ) AddNewModelCommand.register_subcommand(lowerCAmelCase_ ) AddNewModelLikeCommand.register_subcommand(lowerCAmelCase_ ) LfsCommands.register_subcommand(lowerCAmelCase_ ) PTtoTFCommand.register_subcommand(lowerCAmelCase_ ) # Let's go _snake_case : str = parser.parse_args() if not hasattr(lowerCAmelCase_ , '''func''' ): parser.print_help() exit(1 ) # Run _snake_case : Union[str, Any] = args.func(lowerCAmelCase_ ) service.run() if __name__ == "__main__": main()
47
0
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" def run_func(lowerCAmelCase_ ): @wraps(lowerCAmelCase_ ) def run_in_eager_mode(*lowerCAmelCase_ , **lowerCAmelCase_ ): return func(*lowerCAmelCase_ , **lowerCAmelCase_ ) @wraps(lowerCAmelCase_ ) @tf.function(experimental_compile=lowerCAmelCase_ ) def run_in_graph_mode(*lowerCAmelCase_ , **lowerCAmelCase_ ): return func(*lowerCAmelCase_ , **lowerCAmelCase_ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( '''Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.''' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : List[Any] = random.Random() _snake_case : Union[str, Any] = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(lowerCAmelCase_ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class lowerCamelCase (a__ ): _lowercase : TensorFlowBenchmarkArguments _lowercase : PretrainedConfig _lowercase : str = "TensorFlow" @property def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" return tf.__version__ def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ ) -> float: """simple docstring""" _snake_case : Optional[Any] = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) _snake_case : Optional[Any] = self._prepare_inference_func(lowercase__ , lowercase__ , lowercase__ ) return self._measure_speed(_inference ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ ) -> float: """simple docstring""" _snake_case : Dict = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) _snake_case : Tuple = self._prepare_train_func(lowercase__ , lowercase__ , lowercase__ ) return self._measure_speed(_train ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ ) -> [Memory, Optional[MemorySummary]]: """simple docstring""" if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowercase__ ) _snake_case : Optional[int] = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) _snake_case : List[Any] = self._prepare_inference_func(lowercase__ , lowercase__ , lowercase__ ) return self._measure_memory(_inference ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ ) -> [Memory, Optional[MemorySummary]]: """simple docstring""" if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowercase__ ) _snake_case : Union[str, Any] = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) _snake_case : List[str] = self._prepare_train_func(lowercase__ , lowercase__ , lowercase__ ) return self._measure_memory(_train ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ ) -> Callable[[], None]: """simple docstring""" _snake_case : Optional[int] = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) _snake_case : List[Any] = ( hasattr(lowercase__ , '''architectures''' ) and isinstance(config.architectures , lowercase__ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _snake_case : int = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model _snake_case : Dict = __import__('''transformers''' , fromlist=[model_class] ) _snake_case : List[Any] = getattr(lowercase__ , lowercase__ ) _snake_case : Tuple = model_cls(lowercase__ ) except ImportError: raise ImportError( F'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: _snake_case : Union[str, Any] = TF_MODEL_MAPPING[config.__class__](lowercase__ ) # encoder-decoder has vocab size saved differently _snake_case : Optional[Any] = config.vocab_size if hasattr(lowercase__ , '''vocab_size''' ) else config.encoder.vocab_size _snake_case : List[str] = random_input_ids(lowercase__ , lowercase__ , lowercase__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(lowercase__ , decoder_input_ids=lowercase__ , training=lowercase__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(lowercase__ , training=lowercase__ ) _snake_case : List[Any] = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ ) -> Callable[[], None]: """simple docstring""" _snake_case : int = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('''Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.''' ) if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) _snake_case : List[str] = ( hasattr(lowercase__ , '''architectures''' ) and isinstance(config.architectures , lowercase__ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _snake_case : Dict = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model _snake_case : List[Any] = __import__('''transformers''' , fromlist=[model_class] ) _snake_case : str = getattr(lowercase__ , lowercase__ ) _snake_case : Optional[int] = model_cls(lowercase__ ) except ImportError: raise ImportError( F'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: _snake_case : Any = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](lowercase__ ) # encoder-decoder has vocab size saved differently _snake_case : Union[str, Any] = config.vocab_size if hasattr(lowercase__ , '''vocab_size''' ) else config.encoder.vocab_size _snake_case : Any = random_input_ids(lowercase__ , lowercase__ , lowercase__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): _snake_case : Optional[int] = model(lowercase__ , decoder_input_ids=lowercase__ , labels=lowercase__ , training=lowercase__ )[0] _snake_case : List[str] = tf.gradients(lowercase__ , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): _snake_case : List[str] = model(lowercase__ , labels=lowercase__ , training=lowercase__ )[0] _snake_case : Optional[int] = tf.gradients(lowercase__ , model.trainable_variables ) return gradients _snake_case : List[Any] = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def UpperCAmelCase_ ( self , lowercase__ ) -> float: """simple docstring""" with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('''Do inference on TPU. Running model 5 times to stabilize compilation''' ) timeit.repeat(lowercase__ , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average _snake_case : Tuple = timeit.repeat( lowercase__ , repeat=self.args.repeat , number=10 , ) return min(lowercase__ ) / 10.0 except ResourceExhaustedError as e: self.print_fn(F'''Doesn\'t fit on GPU. {e}''' ) def UpperCAmelCase_ ( self , lowercase__ ) -> [Memory, MemorySummary]: """simple docstring""" logger.info( '''Note that TensorFlow allocates more memory than ''' '''it might need to speed up computation. ''' '''The memory reported here corresponds to the memory ''' '''reported by `nvidia-smi`, which can vary depending ''' '''on total available memory on the GPU that is used.''' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '''`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory''' ''' consumption line by line.''' ) _snake_case : List[Any] = start_memory_tracing('''transformers''' ) if self.args.is_tpu: # tpu raise NotImplementedError( '''Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking''' ''' with `args.memory=False`''' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( '''py3nvml not installed, we won\'t log GPU memory usage. ''' '''Install py3nvml (pip install py3nvml) to log information about GPU.''' ) _snake_case : str = '''N/A''' else: logger.info( '''Measuring total GPU usage on GPU device. Make sure to not have additional processes''' ''' running on the same GPU.''' ) # init nvml nvml.nvmlInit() func() _snake_case : Optional[int] = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) _snake_case : Tuple = nvml.nvmlDeviceGetMemoryInfo(lowercase__ ) _snake_case : Any = meminfo.used _snake_case : str = Memory(lowercase__ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( '''When enabling line by line tracing, the max peak memory for CPU is inaccurate in''' ''' TensorFlow.''' ) _snake_case : int = None else: _snake_case : Optional[int] = measure_peak_memory_cpu(lowercase__ ) _snake_case : List[str] = Memory(lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else memory_bytes if self.args.trace_memory_line_by_line: _snake_case : Optional[int] = stop_memory_tracing(lowercase__ ) if memory is None: _snake_case : Any = summary.total else: _snake_case : Dict = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F'''Doesn\'t fit on GPU. {e}''' ) return "N/A", None
704
'''simple docstring''' from collections.abc import Generator def _a ( ): """simple docstring""" _snake_case , _snake_case : Union[str, Any] = 0, 1 while True: _snake_case , _snake_case : List[str] = b, a + b yield b def _a ( lowerCAmelCase_ = 1_000 ): """simple docstring""" _snake_case : List[str] = 1 _snake_case : Dict = fibonacci_generator() while len(str(next(lowerCAmelCase_ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
47
0
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar UpperCAmelCase : Any = TypeVar('T') UpperCAmelCase : str = TypeVar('U') class lowerCamelCase (Generic[T, U] ): def __init__( self , lowercase__ , lowercase__ ) -> List[Any]: """simple docstring""" _snake_case : str = key _snake_case : Optional[int] = val _snake_case : DoubleLinkedListNode[T, U] | None = None _snake_case : DoubleLinkedListNode[T, U] | None = None def __repr__( self ) -> str: """simple docstring""" return ( F'''Node: key: {self.key}, val: {self.val}, ''' F'''has next: {bool(self.next )}, has prev: {bool(self.prev )}''' ) class lowerCamelCase (Generic[T, U] ): def __init__( self ) -> None: """simple docstring""" _snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase__ , lowercase__ ) _snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase__ , lowercase__ ) _snake_case : Union[str, Any] = self.rear, self.head def __repr__( self ) -> str: """simple docstring""" _snake_case : List[Any] = ['''DoubleLinkedList'''] _snake_case : str = self.head while node.next is not None: rep.append(str(lowercase__ ) ) _snake_case : List[str] = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> None: """simple docstring""" _snake_case : Tuple = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None _snake_case : Union[str, Any] = node _snake_case : Optional[Any] = previous _snake_case : int = node _snake_case : Union[str, Any] = self.rear def UpperCAmelCase_ ( self , lowercase__ ) -> DoubleLinkedListNode[T, U] | None: """simple docstring""" if node.prev is None or node.next is None: return None _snake_case : Optional[int] = node.next _snake_case : Any = node.prev _snake_case : List[str] = None _snake_case : Optional[int] = None return node class lowerCamelCase (Generic[T, U] ): _lowercase : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self , lowercase__ ) -> Union[str, Any]: """simple docstring""" _snake_case : DoubleLinkedList[T, U] = DoubleLinkedList() _snake_case : Union[str, Any] = capacity _snake_case : int = 0 _snake_case : Dict = 0 _snake_case : Union[str, Any] = 0 _snake_case : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__( self ) -> str: """simple docstring""" return ( F'''CacheInfo(hits={self.hits}, misses={self.miss}, ''' F'''capacity={self.capacity}, current size={self.num_keys})''' ) def __contains__( self , lowercase__ ) -> bool: """simple docstring""" return key in self.cache def UpperCAmelCase_ ( self , lowercase__ ) -> U | None: """simple docstring""" if key in self.cache: self.hits += 1 _snake_case : DoubleLinkedListNode[T, U] = self.cache[key] _snake_case : Tuple = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowercase__ ) return node.val self.miss += 1 return None def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> None: """simple docstring""" if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity _snake_case : Dict = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowercase__ ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 _snake_case : Optional[int] = DoubleLinkedListNode(lowercase__ , lowercase__ ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value _snake_case : Optional[Any] = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list _snake_case : Optional[Any] = value self.list.add(lowercase__ ) @classmethod def UpperCAmelCase_ ( cls , lowercase__ = 128 ) -> Callable[[Callable[[T], U]], Callable[..., U]]: """simple docstring""" def cache_decorator_inner(lowercase__ ) -> Callable[..., U]: def cache_decorator_wrapper(*lowercase__ ) -> U: if func not in cls.decorator_function_to_instance_map: _snake_case : Optional[Any] = LRUCache(lowercase__ ) _snake_case : Union[str, Any] = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: _snake_case : Tuple = func(*lowercase__ ) cls.decorator_function_to_instance_map[func].put(args[0] , lowercase__ ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowercase__ , '''cache_info''' , lowercase__ ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
705
'''simple docstring''' import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor UpperCAmelCase : str = logging.getLogger(__name__) UpperCAmelCase : Dict = 5_0 # max width of layer names UpperCAmelCase : Union[str, Any] = 7_0 # max width of quantizer names def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Dict = parser.add_argument_group('''quant_trainer arguments''' ) group.add_argument('''--wprec''' , type=lowerCAmelCase_ , default=8 , help='''weight precision''' ) group.add_argument('''--aprec''' , type=lowerCAmelCase_ , default=8 , help='''activation precision''' ) group.add_argument('''--quant-per-tensor''' , action='''store_true''' , help='''per tensor weight scaling''' ) group.add_argument('''--quant-disable''' , action='''store_true''' , help='''disable all quantizers''' ) group.add_argument('''--quant-disable-embeddings''' , action='''store_true''' , help='''disable all embeddings quantizers''' ) group.add_argument('''--quant-disable-keyword''' , type=lowerCAmelCase_ , nargs='''+''' , help='''disable quantizers by keyword''' ) group.add_argument('''--quant-disable-layer-module''' , type=lowerCAmelCase_ , help='''disable quantizers by keyword under layer.''' ) group.add_argument('''--quant-enable-layer-module''' , type=lowerCAmelCase_ , help='''enable quantizers by keyword under layer''' ) group.add_argument('''--calibrator''' , default='''max''' , help='''which quantization range calibrator to use''' ) group.add_argument('''--percentile''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help='''percentile for PercentileCalibrator''' ) group.add_argument('''--fuse-qkv''' , action='''store_true''' , help='''use the same scale factor for qkv''' ) group.add_argument('''--clip-gelu''' , metavar='''N''' , type=lowerCAmelCase_ , help='''clip gelu output maximum value to N''' ) group.add_argument( '''--recalibrate-weights''' , action='''store_true''' , help=( '''recalibrate weight amaxes by taking the max of the weights.''' ''' amaxes will be computed with the current quantization granularity (axis).''' ) , ) def _a ( lowerCAmelCase_ ): """simple docstring""" if args.calibrator == "max": _snake_case : Optional[int] = '''max''' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('''Specify --percentile when using percentile calibrator''' ) _snake_case : Tuple = '''histogram''' elif args.calibrator == "mse": _snake_case : int = '''histogram''' else: raise ValueError(f'''Invalid calibrator {args.calibrator}''' ) _snake_case : Tuple = QuantDescriptor(num_bits=args.aprec , calib_method=lowerCAmelCase_ ) _snake_case : str = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(lowerCAmelCase_ ) quant_nn.QuantLinear.set_default_quant_desc_weight(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False , lowerCAmelCase_=False ): """simple docstring""" logger.info('''Configuring Model for Quantization''' ) logger.info(f'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(lowerCAmelCase_ , ['''embeddings'''] , which='''weight''' , _disabled=lowerCAmelCase_ ) if args.quant_disable: set_quantizer_by_name(lowerCAmelCase_ , [''''''] , _disabled=lowerCAmelCase_ ) if args.quant_disable_keyword: set_quantizer_by_name(lowerCAmelCase_ , args.quant_disable_keyword , _disabled=lowerCAmelCase_ ) if args.quant_disable_layer_module: set_quantizer_by_name(lowerCAmelCase_ , [R'''layer.\d+.''' + args.quant_disable_layer_module] , _disabled=lowerCAmelCase_ ) if args.quant_enable_layer_module: set_quantizer_by_name(lowerCAmelCase_ , [R'''layer.\d+.''' + args.quant_enable_layer_module] , _disabled=lowerCAmelCase_ ) if args.recalibrate_weights: recalibrate_weights(lowerCAmelCase_ ) if args.fuse_qkv: fuse_qkv(lowerCAmelCase_ , lowerCAmelCase_ ) if args.clip_gelu: clip_gelu(lowerCAmelCase_ , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ ): """simple docstring""" logger.info('''Enabling Calibration''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(f'''{name:80}: {module}''' ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" logger.info('''Loading calibrated amax''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('''percentile''' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" def fusea(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): for mod in [qq, qk, qv]: if not hasattr(lowerCAmelCase_ , '''_amax''' ): print(''' WARNING: NO AMAX BUFFER''' ) return _snake_case : Tuple = qq._amax.detach().item() _snake_case : Tuple = qk._amax.detach().item() _snake_case : List[Any] = qv._amax.detach().item() _snake_case : List[str] = max(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) qq._amax.fill_(lowerCAmelCase_ ) qk._amax.fill_(lowerCAmelCase_ ) qv._amax.fill_(lowerCAmelCase_ ) logger.info(f''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith('''.attention.self''' ): logger.info(f'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if name.endswith('''.output.dense''' ) and not name.endswith('''attention.output.dense''' ): _snake_case : List[Any] = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=lowerCAmelCase_ ) _snake_case : List[str] = mod._input_quantizer._amax.data.detach().item() logger.info(f'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def _a ( lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ) and mod._weight_quantizer.axis is not None: _snake_case : Dict = mod.weight.shape[0] _snake_case : Optional[int] = mod._weight_quantizer._amax.detach() _snake_case : Optional[int] = torch.ones(lowerCAmelCase_ , dtype=amax.dtype , device=amax.device ) * amax print(f'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def _a ( lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ): if not hasattr(mod.weight_quantizer , '''_amax''' ): print('''RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER''' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) _snake_case : int = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) _snake_case : Dict = set(range(len(mod.weight.size() ) ) ) - axis_set _snake_case : Optional[int] = pytorch_quantization.utils.reduce_amax(mod.weight , axis=lowerCAmelCase_ , keepdims=lowerCAmelCase_ ).detach() logger.info(f'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) _snake_case : Tuple = amax def _a ( lowerCAmelCase_ , lowerCAmelCase_=25 , lowerCAmelCase_=180 , lowerCAmelCase_=None ): """simple docstring""" if ignore is None: _snake_case : Dict = [] elif not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Optional[int] = [ignore] _snake_case : str = 0 for name, mod in model.named_modules(): if not hasattr(lowerCAmelCase_ , '''weight''' ): continue _snake_case : Optional[int] = max(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) for name, mod in model.named_modules(): _snake_case : Optional[Any] = getattr(lowerCAmelCase_ , '''_input_quantizer''' , lowerCAmelCase_ ) _snake_case : Tuple = getattr(lowerCAmelCase_ , '''_weight_quantizer''' , lowerCAmelCase_ ) if not hasattr(lowerCAmelCase_ , '''weight''' ): continue if type(lowerCAmelCase_ ) in ignore: continue if [True for s in ignore if type(lowerCAmelCase_ ) is str and s in name]: continue _snake_case : Optional[int] = f'''Act:{input_q.extra_repr()}''' _snake_case : Any = f'''Wgt:{weight_q.extra_repr()}''' _snake_case : Optional[int] = f'''{name:{name_width}} {act_str} {wgt_str}''' if len(lowerCAmelCase_ ) <= line_width: logger.info(lowerCAmelCase_ ) else: logger.info(f'''{name:{name_width}} {act_str}''' ) logger.info(f'''{" ":{name_width}} {wgt_str}''' ) def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : str = 0 for name, mod in model.named_modules(): if isinstance(lowerCAmelCase_ , pytorch_quantization.nn.TensorQuantizer ): print(f'''{name:80} {mod}''' ) count += 1 print(f'''{count} TensorQuantizers found in model''' ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if quantizer_mod is not None: assert hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: logger.warning(f'''{name} has no {quantizer}''' ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_="both" , **lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = f'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' if which in ["input", "both"]: set_quantizer(lowerCAmelCase_ , lowerCAmelCase_ , '''_input_quantizer''' , lowerCAmelCase_ , lowerCAmelCase_ ) if which in ["weight", "both"]: set_quantizer(lowerCAmelCase_ , lowerCAmelCase_ , '''_weight_quantizer''' , lowerCAmelCase_ , lowerCAmelCase_ ) logger.info(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCAmelCase_ , '''_input_quantizer''' ) or hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ): for n in names: if re.search(lowerCAmelCase_ , lowerCAmelCase_ ): set_quantizers(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) elif name.endswith('''_quantizer''' ): for n in names: if re.search(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Any = f'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) logger.info(lowerCAmelCase_ )
47
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase : Optional[Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for attribute in key.split('''.''' ): _snake_case : Tuple = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if weight_type is not None: _snake_case : Tuple = getattr(lowerCAmelCase_ , lowerCAmelCase_ ).shape else: _snake_case : int = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": _snake_case : List[str] = value elif weight_type == "weight_g": _snake_case : Tuple = value elif weight_type == "weight_v": _snake_case : str = value elif weight_type == "bias": _snake_case : Optional[int] = value else: _snake_case : str = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : int = [] _snake_case : str = fairseq_model.state_dict() _snake_case : Tuple = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _snake_case : int = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , hf_model.config.feat_extract_norm == '''group''' , ) _snake_case : int = True else: for key, mapped_key in MAPPING.items(): _snake_case : List[str] = '''hubert.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or (key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0] and not is_finetuned): _snake_case : Any = True if "*" in mapped_key: _snake_case : List[Any] = name.split(lowerCAmelCase_ )[0].split('''.''' )[-2] _snake_case : str = mapped_key.replace('''*''' , lowerCAmelCase_ ) if "weight_g" in name: _snake_case : Tuple = '''weight_g''' elif "weight_v" in name: _snake_case : Tuple = '''weight_v''' elif "weight" in name: _snake_case : str = '''weight''' elif "bias" in name: _snake_case : List[str] = '''bias''' else: _snake_case : Union[str, Any] = None set_recursively(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) continue if not is_used: unused_weights.append(lowerCAmelCase_ ) logger.warning(f'''Unused weights: {unused_weights}''' ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : int = full_name.split('''conv_layers.''' )[-1] _snake_case : Any = name.split('''.''' ) _snake_case : str = int(items[0] ) _snake_case : Dict = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _snake_case : Any = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _snake_case : Tuple = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _snake_case : List[str] = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _snake_case : List[str] = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCAmelCase_ ) @torch.no_grad() def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=True ): """simple docstring""" if config_path is not None: _snake_case : List[Any] = HubertConfig.from_pretrained(lowerCAmelCase_ ) else: _snake_case : Dict = HubertConfig() if is_finetuned: if dict_path: _snake_case : Dict = Dictionary.load(lowerCAmelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _snake_case : int = target_dict.pad_index _snake_case : List[str] = target_dict.bos_index _snake_case : Union[str, Any] = target_dict.eos_index _snake_case : Tuple = len(target_dict.symbols ) _snake_case : Optional[Any] = os.path.join(lowerCAmelCase_ , '''vocab.json''' ) if not os.path.isdir(lowerCAmelCase_ ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(lowerCAmelCase_ ) ) return os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices , lowerCAmelCase_ ) _snake_case : Any = WavaVecaCTCTokenizer( lowerCAmelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=lowerCAmelCase_ , ) _snake_case : Dict = True if config.feat_extract_norm == '''layer''' else False _snake_case : str = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) _snake_case : int = WavaVecaProcessor(feature_extractor=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ ) processor.save_pretrained(lowerCAmelCase_ ) _snake_case : List[str] = HubertForCTC(lowerCAmelCase_ ) else: _snake_case : List[Any] = HubertModel(lowerCAmelCase_ ) if is_finetuned: _snake_case : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: _snake_case : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _snake_case : Union[str, Any] = model[0].eval() recursively_load_weights(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) hf_wavavec.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": UpperCAmelCase : str = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) UpperCAmelCase : List[str] = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
706
'''simple docstring''' from __future__ import annotations def _a ( lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None ): """simple docstring""" if start is None: _snake_case : Optional[Any] = 0 if end is None: _snake_case : Any = len(lowerCAmelCase_ ) - 1 if start >= end: return _snake_case : Optional[Any] = (start + end) // 2 slowsort(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) slowsort(lowerCAmelCase_ , mid + 1 , lowerCAmelCase_ ) if sequence[end] < sequence[mid]: _snake_case , _snake_case : int = sequence[mid], sequence[end] slowsort(lowerCAmelCase_ , lowerCAmelCase_ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
47
0
'''simple docstring''' def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise ValueError('''String lengths must match!''' ) _snake_case : List[str] = 0 for chara, chara in zip(lowerCAmelCase_ , lowerCAmelCase_ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
707
'''simple docstring''' import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class lowerCamelCase (unittest.TestCase ): @slow def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Tuple = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) _snake_case : Any = AutoTokenizer.from_pretrained('''google/mt5-small''' ) _snake_case : List[str] = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids _snake_case : Dict = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids _snake_case : Any = shift_tokens_right(lowercase__ , model.config.pad_token_id , model.config.decoder_start_token_id ) _snake_case : Any = model(lowercase__ , decoder_input_ids=lowercase__ ).logits _snake_case : Tuple = optax.softmax_cross_entropy(lowercase__ , onehot(lowercase__ , logits.shape[-1] ) ).mean() _snake_case : Tuple = -(labels.shape[-1] * loss.item()) _snake_case : Union[str, Any] = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
47
0
import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version UpperCAmelCase : Union[str, Any] = get_logger(__name__) class lowerCamelCase : _lowercase : List[Any] = """dummy_data""" _lowercase : str = """datasets""" _lowercase : Tuple = False def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = False , lowercase__ = True , lowercase__ = None , ) -> Dict: """simple docstring""" _snake_case : List[Any] = 0 _snake_case : Optional[int] = dataset_name _snake_case : str = cache_dir _snake_case : Optional[int] = use_local_dummy_data _snake_case : Dict = config # download_callbacks take a single url as input _snake_case : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root _snake_case : List[Any] = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general _snake_case : List[str] = str(lowercase__ ) # to be downloaded _snake_case : int = None _snake_case : Tuple = None @property def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" if self._dummy_file is None: _snake_case : List[Any] = self.download_dummy_data() return self._dummy_file @property def UpperCAmelCase_ ( self ) -> str: """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('''dummy''' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('''dummy''' , self.version_name ) @property def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" return os.path.join(self.dummy_data_folder , '''dummy_data.zip''' ) def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" _snake_case : Optional[int] = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) _snake_case : int = cached_path( lowercase__ , cache_dir=self.cache_dir , extract_compressed_file=lowercase__ , force_extract=lowercase__ ) return os.path.join(lowercase__ , self.dummy_file_name ) @property def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" if self._bucket_url is None: _snake_case : Any = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '''/''' ) ) return self._bucket_url @property def UpperCAmelCase_ ( self ) -> str: """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '''/''' ).split('''/''' )[:-1] ) def UpperCAmelCase_ ( self , lowercase__ , *lowercase__ ) -> Union[str, Any]: """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested _snake_case : List[str] = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned _snake_case : Optional[Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(lowercase__ , lowercase__ ): return self.create_dummy_data_dict(lowercase__ , lowercase__ ) elif isinstance(lowercase__ , (list, tuple) ): return self.create_dummy_data_list(lowercase__ , lowercase__ ) else: return self.create_dummy_data_single(lowercase__ , lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , *lowercase__ ) -> Dict: """simple docstring""" return self.download_and_extract(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Tuple: """simple docstring""" return self.download_and_extract(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , *lowercase__ , **lowercase__ ) -> List[str]: """simple docstring""" return path def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" return {} def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(lowercase__ , lowercase__ ): for single_url in single_urls: download_callback(lowercase__ ) else: _snake_case : List[Any] = single_urls download_callback(lowercase__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(lowercase__ , lowercase__ ): _snake_case : int = [os.path.join(lowercase__ , urllib.parse.quote_plus(Path(lowercase__ ).name ) ) for x in single_urls] else: _snake_case : Dict = single_urls _snake_case : Optional[int] = os.path.join(lowercase__ , urllib.parse.quote_plus(Path(lowercase__ ).name ) ) _snake_case : List[Any] = value # make sure that values are unique if all(isinstance(lowercase__ , lowercase__ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique _snake_case : str = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> int: """simple docstring""" _snake_case : Union[str, Any] = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one _snake_case : List[Any] = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''' , lowercase__ ) ) for url in data_url ) _snake_case : Optional[int] = all( url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): _snake_case : Tuple = [data_url[0]] * len(lowercase__ ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(lowercase__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _snake_case : Optional[Any] = os.path.join(lowercase__ , urllib.parse.quote_plus(single_url.split('''/''' )[-1] ) ) dummy_data_list.append(lowercase__ ) return dummy_data_list def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Union[str, Any]: """simple docstring""" for download_callback in self.download_callbacks: download_callback(lowercase__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _snake_case : str = os.path.join(lowercase__ , urllib.parse.quote_plus(data_url.split('''/''' )[-1] ) ) if os.path.exists(lowercase__ ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" pass def UpperCAmelCase_ ( self ) -> str: """simple docstring""" pass def UpperCAmelCase_ ( self , lowercase__ ) -> str: """simple docstring""" def _iter_archive_members(lowercase__ ): # this preserves the order of the members inside the ZIP archive _snake_case : Optional[Any] = Path(self.dummy_file ).parent _snake_case : Any = path.relative_to(lowercase__ ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: _snake_case : List[Any] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(lowercase__ ) _snake_case : Optional[Any] = Path(lowercase__ ) _snake_case : Dict = _iter_archive_members(lowercase__ ) if self.use_local_dummy_data else path.rglob('''*''' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''') ): yield file_path.relative_to(lowercase__ ).as_posix(), file_path.open('''rb''' ) def UpperCAmelCase_ ( self , lowercase__ ) -> Dict: """simple docstring""" if not isinstance(lowercase__ , lowercase__ ): _snake_case : Tuple = [paths] for path in paths: if os.path.isfile(lowercase__ ): if os.path.basename(lowercase__ ).startswith(('''.''', '''__''') ): return yield path else: for dirpath, dirnames, filenames in os.walk(lowercase__ ): if os.path.basename(lowercase__ ).startswith(('''.''', '''__''') ): continue dirnames.sort() for filename in sorted(lowercase__ ): if filename.startswith(('''.''', '''__''') ): continue yield os.path.join(lowercase__ , lowercase__ )
708
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCamelCase (unittest.TestCase ): def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : Any = torch.nn.Linear(10 , 10 ) _snake_case : Optional[int] = torch.optim.SGD(model.parameters() , 0.1 ) _snake_case : List[str] = Accelerator() _snake_case : Optional[Any] = accelerator.prepare(lowercase__ ) try: pickle.loads(pickle.dumps(lowercase__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
47
0
'''simple docstring''' from collections.abc import Generator def _a ( ): """simple docstring""" _snake_case : Union[str, Any] = 0, 1 while True: _snake_case : List[str] = b, a + b yield b def _a ( lowerCAmelCase_ = 1_000 ): """simple docstring""" _snake_case : List[str] = 1 _snake_case : Dict = fibonacci_generator() while len(str(next(lowerCAmelCase_ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
709
'''simple docstring''' UpperCAmelCase : Union[str, Any] = tuple[float, float, float] UpperCAmelCase : int = tuple[float, float, float] def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : str = end_pointa[0] - end_pointa[0] _snake_case : Tuple = end_pointa[1] - end_pointa[1] _snake_case : Any = end_pointa[2] - end_pointa[2] return (x, y, z) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Dict = ab[1] * ac[2] - ab[2] * ac[1] # *i _snake_case : List[str] = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j _snake_case : Optional[int] = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return tuple(round(lowerCAmelCase_ , lowerCAmelCase_ ) for x in vector ) == (0, 0, 0) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 10 ): """simple docstring""" _snake_case : str = create_vector(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Tuple = create_vector(lowerCAmelCase_ , lowerCAmelCase_ ) return is_zero_vector(get_ad_vectors_cross(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ )
47
0
'''simple docstring''' UpperCAmelCase : Optional[Any] = 'Tobias Carryer' from time import time class lowerCamelCase : def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__=int(time() ) ) -> Any: # noqa: B008 """simple docstring""" _snake_case : Dict = multiplier _snake_case : str = increment _snake_case : Dict = modulo _snake_case : str = seed def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" _snake_case : str = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. UpperCAmelCase : Any = LinearCongruentialGenerator(1_6_6_4_5_2_5, 1_0_1_3_9_0_4_2_2_3, 2 << 3_1) while True: print(lcg.next_number())
710
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel UpperCAmelCase : List[str] = logging.getLogger(__name__) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if os.path.exists(lowerCAmelCase_ ): if os.path.exists(os.path.join(lowerCAmelCase_ , '''config.json''' ) ) and os.path.isfile( os.path.join(lowerCAmelCase_ , '''config.json''' ) ): os.remove(os.path.join(lowerCAmelCase_ , '''config.json''' ) ) if os.path.exists(os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) ) and os.path.isfile( os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) ): os.remove(os.path.join(lowerCAmelCase_ , '''pytorch_model.bin''' ) ) else: os.makedirs(lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_=False ): """simple docstring""" _snake_case : Optional[Any] = 2 if unlogit: _snake_case : Any = torch.pow(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Union[str, Any] = p * torch.log(lowerCAmelCase_ ) _snake_case : Optional[Any] = 0 return -plogp.sum(dim=-1 ) def _a ( lowerCAmelCase_ ): """simple docstring""" logger.info('''lv, h >\t''' + '''\t'''.join(f'''{x + 1}''' for x in range(len(lowerCAmelCase_ ) ) ) ) for row in range(len(lowerCAmelCase_ ) ): if tensor.dtype != torch.long: logger.info(f'''layer {row + 1}:\t''' + '''\t'''.join(f'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(f'''layer {row + 1}:\t''' + '''\t'''.join(f'''{x:d}''' for x in tensor[row].cpu().data ) ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=None , lowerCAmelCase_=False ): """simple docstring""" _snake_case , _snake_case : Optional[int] = model.config.num_hidden_layers, model.config.num_attention_heads _snake_case : Tuple = torch.zeros(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device ) _snake_case : Union[str, Any] = torch.zeros(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device ) if head_mask is None: _snake_case : int = torch.ones(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device ) head_mask.requires_grad_(requires_grad=lowerCAmelCase_ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _snake_case : Dict = None _snake_case : Dict = 0.0 _snake_case : Optional[int] = 0.0 for step, inputs in enumerate(tqdm(lowerCAmelCase_ , desc='''Iteration''' , disable=args.local_rank not in [-1, 0] ) ): _snake_case : List[Any] = tuple(t.to(args.device ) for t in inputs ) ((_snake_case) , ) : Optional[Any] = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _snake_case : Any = model(lowerCAmelCase_ , labels=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _snake_case , _snake_case , _snake_case : List[Any] = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(lowerCAmelCase_ ): _snake_case : Union[str, Any] = entropy(attn.detach() , lowerCAmelCase_ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(lowerCAmelCase_ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _snake_case : Any = 2 _snake_case : List[str] = torch.pow(torch.pow(lowerCAmelCase_ , lowerCAmelCase_ ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: _snake_case : Optional[int] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''' ) print_ad_tensor(lowerCAmelCase_ ) if compute_importance: logger.info('''Head importance scores''' ) print_ad_tensor(lowerCAmelCase_ ) logger.info('''Head ranked by importance scores''' ) _snake_case : str = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _snake_case : List[Any] = torch.arange( head_importance.numel() , device=args.device ) _snake_case : List[Any] = head_ranks.view_as(lowerCAmelCase_ ) print_ad_tensor(lowerCAmelCase_ ) return attn_entropy, head_importance, total_loss def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case , _snake_case , _snake_case : str = compute_heads_importance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ ) _snake_case : Optional[Any] = 1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' , lowerCAmelCase_ , original_score * args.masking_threshold ) _snake_case : int = torch.ones_like(lowerCAmelCase_ ) _snake_case : Optional[Any] = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _snake_case : int = original_score while current_score >= original_score * args.masking_threshold: _snake_case : int = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _snake_case : Dict = float('''Inf''' ) _snake_case : Optional[Any] = head_importance.view(-1 ).sort()[1] if len(lowerCAmelCase_ ) <= num_to_mask: print('''BREAK BY num_to_mask''' ) break # mask heads _snake_case : Union[str, Any] = current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist() ) ) _snake_case : Tuple = new_head_mask.view(-1 ) _snake_case : List[str] = 0.0 _snake_case : str = new_head_mask.view_as(lowerCAmelCase_ ) _snake_case : Dict = new_head_mask.clone().detach() print_ad_tensor(lowerCAmelCase_ ) # Compute metric and head importance again _snake_case , _snake_case , _snake_case : Any = compute_heads_importance( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) _snake_case : int = 1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' , lowerCAmelCase_ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info('''Final head mask''' ) print_ad_tensor(lowerCAmelCase_ ) np.save(os.path.join(args.output_dir , '''head_mask.npy''' ) , head_mask.detach().cpu().numpy() ) return head_mask def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = datetime.now() _snake_case , _snake_case , _snake_case : Union[str, Any] = compute_heads_importance( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , compute_importance=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) _snake_case : Tuple = 1 / loss _snake_case : Dict = datetime.now() - before_time _snake_case : List[Any] = sum(p.numel() for p in model.parameters() ) _snake_case : int = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(lowerCAmelCase_ ) ) } for k, v in heads_to_prune.items(): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Union[str, Any] = [ v, ] assert sum(len(lowerCAmelCase_ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(lowerCAmelCase_ ) _snake_case : List[str] = sum(p.numel() for p in model.parameters() ) _snake_case : int = datetime.now() _snake_case , _snake_case , _snake_case : Optional[Any] = compute_heads_importance( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , compute_importance=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , actually_pruned=lowerCAmelCase_ , ) _snake_case : Optional[int] = 1 / loss _snake_case : Dict = datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , lowerCAmelCase_ , lowerCAmelCase_ , pruned_num_params / original_num_params * 100 , ) logger.info('''Pruning: score with masking: %f score with pruning: %f''' , lowerCAmelCase_ , lowerCAmelCase_ ) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 100 ) save_model(lowerCAmelCase_ , args.output_dir ) def _a ( ): """simple docstring""" _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , ) parser.add_argument( '''--model_name_or_path''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--output_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) # Other parameters parser.add_argument( '''--config_name''' , default='''''' , type=lowerCAmelCase_ , help='''Pretrained config name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--tokenizer_name''' , default='''''' , type=lowerCAmelCase_ , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--cache_dir''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help='''Where do you want to store the pre-trained models downloaded from s3''' , ) parser.add_argument( '''--data_subset''' , type=lowerCAmelCase_ , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''' ) parser.add_argument( '''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''' ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) parser.add_argument( '''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''' ) parser.add_argument( '''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , ) parser.add_argument( '''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''' ) parser.add_argument( '''--masking_threshold''' , default=0.9 , type=lowerCAmelCase_ , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , ) parser.add_argument( '''--masking_amount''' , default=0.1 , type=lowerCAmelCase_ , help='''Amount to heads to masking at each masking step.''' ) parser.add_argument('''--metric_name''' , default='''acc''' , type=lowerCAmelCase_ , help='''Metric to use for head masking.''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=lowerCAmelCase_ , help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) , ) parser.add_argument('''--batch_size''' , default=1 , type=lowerCAmelCase_ , help='''Batch size.''' ) parser.add_argument('''--seed''' , type=lowerCAmelCase_ , default=42 ) parser.add_argument('''--local_rank''' , type=lowerCAmelCase_ , default=-1 , help='''local_rank for distributed training on gpus''' ) parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''' ) parser.add_argument('''--server_ip''' , type=lowerCAmelCase_ , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=lowerCAmelCase_ , default='''''' , help='''Can be used for distant debugging.''' ) _snake_case : Optional[Any] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowerCAmelCase_ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _snake_case : str = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''' ) _snake_case : Optional[Any] = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _snake_case : List[str] = torch.device('''cuda''' , args.local_rank ) _snake_case : int = 1 torch.distributed.init_process_group(backend='''nccl''' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _snake_case : Optional[Any] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _snake_case : Optional[int] = nn.parallel.DistributedDataParallel( lowerCAmelCase_ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=lowerCAmelCase_ ) elif args.n_gpu > 1: _snake_case : List[Any] = nn.DataParallel(lowerCAmelCase_ ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=lowerCAmelCase_ ) torch.save(lowerCAmelCase_ , os.path.join(args.output_dir , '''run_args.bin''' ) ) logger.info('''Training/evaluation parameters %s''' , lowerCAmelCase_ ) # Prepare dataset _snake_case : Dict = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _snake_case : int = (torch.from_numpy(lowerCAmelCase_ ),) _snake_case : Tuple = TensorDataset(*lowerCAmelCase_ ) _snake_case : List[str] = RandomSampler(lowerCAmelCase_ ) _snake_case : Dict = DataLoader(lowerCAmelCase_ , sampler=lowerCAmelCase_ , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _snake_case : Optional[int] = mask_heads(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) prune_heads(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
47
0
'''simple docstring''' import os import numpy import onnx def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : List[Any] = a.name _snake_case : List[Any] = b.name _snake_case : Tuple = '''''' _snake_case : Tuple = '''''' _snake_case : Optional[Any] = a == b _snake_case : List[Any] = name_a _snake_case : str = name_b return res def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(lowerCAmelCase_ , lowerCAmelCase_ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , lowerCAmelCase_ , lowerCAmelCase_ ) _graph_replace_input_with(node_proto.attribute[1].g , lowerCAmelCase_ , lowerCAmelCase_ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , lowerCAmelCase_ , lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for n in graph_proto.node: _node_replace_input_with(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = list(model.graph.initializer ) _snake_case : List[str] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i _snake_case : List[Any] = inits[i].name _snake_case : List[str] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , lowerCAmelCase_ , lowerCAmelCase_ ) def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Tuple = os.path.dirname(lowerCAmelCase_ ) _snake_case : str = os.path.basename(lowerCAmelCase_ ) _snake_case : Tuple = onnx.load(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) ) _snake_case : Union[str, Any] = list(model.graph.initializer ) _snake_case : Union[str, Any] = set() _snake_case : Any = {} _snake_case : str = [] _snake_case : Union[str, Any] = 0 for i in range(len(lowerCAmelCase_ ) ): if i in dup_set: continue for j in range(i + 1 , len(lowerCAmelCase_ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(lowerCAmelCase_ ) dup_set.add(lowerCAmelCase_ ) _snake_case : List[Any] = inits[j].data_type _snake_case : Dict = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('''unexpected data type: ''' , lowerCAmelCase_ ) total_reduced_size += mem_size _snake_case : Union[str, Any] = inits[i].name _snake_case : Any = inits[j].name if name_i in dup_map: dup_map[name_i].append(lowerCAmelCase_ ) else: _snake_case : Union[str, Any] = [name_j] ind_to_replace.append((j, i) ) print('''total reduced size: ''' , total_reduced_size / 1_024 / 1_024 / 1_024 , '''GB''' ) _snake_case : List[str] = sorted(lowerCAmelCase_ ) _remove_dup_initializers_from_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : List[str] = '''optimized_''' + model_file_name _snake_case : List[Any] = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) onnx.save(lowerCAmelCase_ , lowerCAmelCase_ ) return new_model
711
'''simple docstring''' def _a ( lowerCAmelCase_ ): """simple docstring""" if n == 1 or not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return 0 elif n == 2: return 1 else: _snake_case : Union[str, Any] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[int] = 0 _snake_case : int = 2 while digits < n: index += 1 _snake_case : Tuple = len(str(fibonacci(lowerCAmelCase_ ) ) ) return index def _a ( lowerCAmelCase_ = 1_000 ): """simple docstring""" return fibonacci_digits_index(lowerCAmelCase_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
47
0
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def _a ( lowerCAmelCase_ ): """simple docstring""" if not is_accelerate_available(): return method _snake_case : Any = version.parse(accelerate.__version__ ).base_version if version.parse(lowerCAmelCase_ ) < version.parse('''0.17.0''' ): return method def wrapper(self , *lowerCAmelCase_ , **lowerCAmelCase_ ): if hasattr(self , '''_hf_hook''' ) and hasattr(self._hf_hook , '''pre_forward''' ): self._hf_hook.pre_forward(self ) return method(self , *lowerCAmelCase_ , **lowerCAmelCase_ ) return wrapper
712
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar UpperCAmelCase : Any = TypeVar('T') UpperCAmelCase : str = TypeVar('U') class lowerCamelCase (Generic[T, U] ): def __init__( self , lowercase__ , lowercase__ ) -> List[Any]: """simple docstring""" _snake_case : str = key _snake_case : Optional[int] = val _snake_case : DoubleLinkedListNode[T, U] | None = None _snake_case : DoubleLinkedListNode[T, U] | None = None def __repr__( self ) -> str: """simple docstring""" return ( F'''Node: key: {self.key}, val: {self.val}, ''' F'''has next: {bool(self.next )}, has prev: {bool(self.prev )}''' ) class lowerCamelCase (Generic[T, U] ): def __init__( self ) -> None: """simple docstring""" _snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase__ , lowercase__ ) _snake_case : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase__ , lowercase__ ) _snake_case , _snake_case : Union[str, Any] = self.rear, self.head def __repr__( self ) -> str: """simple docstring""" _snake_case : List[Any] = ['''DoubleLinkedList'''] _snake_case : str = self.head while node.next is not None: rep.append(str(lowercase__ ) ) _snake_case : List[str] = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> None: """simple docstring""" _snake_case : Tuple = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None _snake_case : Union[str, Any] = node _snake_case : Optional[Any] = previous _snake_case : int = node _snake_case : Union[str, Any] = self.rear def UpperCAmelCase_ ( self , lowercase__ ) -> DoubleLinkedListNode[T, U] | None: """simple docstring""" if node.prev is None or node.next is None: return None _snake_case : Optional[int] = node.next _snake_case : Any = node.prev _snake_case : List[str] = None _snake_case : Optional[int] = None return node class lowerCamelCase (Generic[T, U] ): _lowercase : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self , lowercase__ ) -> Union[str, Any]: """simple docstring""" _snake_case : DoubleLinkedList[T, U] = DoubleLinkedList() _snake_case : Union[str, Any] = capacity _snake_case : int = 0 _snake_case : Dict = 0 _snake_case : Union[str, Any] = 0 _snake_case : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__( self ) -> str: """simple docstring""" return ( F'''CacheInfo(hits={self.hits}, misses={self.miss}, ''' F'''capacity={self.capacity}, current size={self.num_keys})''' ) def __contains__( self , lowercase__ ) -> bool: """simple docstring""" return key in self.cache def UpperCAmelCase_ ( self , lowercase__ ) -> U | None: """simple docstring""" if key in self.cache: self.hits += 1 _snake_case : DoubleLinkedListNode[T, U] = self.cache[key] _snake_case : Tuple = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowercase__ ) return node.val self.miss += 1 return None def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> None: """simple docstring""" if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity _snake_case : Dict = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowercase__ ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 _snake_case : Optional[int] = DoubleLinkedListNode(lowercase__ , lowercase__ ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value _snake_case : Optional[Any] = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list _snake_case : Optional[Any] = value self.list.add(lowercase__ ) @classmethod def UpperCAmelCase_ ( cls , lowercase__ = 128 ) -> Callable[[Callable[[T], U]], Callable[..., U]]: """simple docstring""" def cache_decorator_inner(lowercase__ ) -> Callable[..., U]: def cache_decorator_wrapper(*lowercase__ ) -> U: if func not in cls.decorator_function_to_instance_map: _snake_case : Optional[Any] = LRUCache(lowercase__ ) _snake_case : Union[str, Any] = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: _snake_case : Tuple = func(*lowercase__ ) cls.decorator_function_to_instance_map[func].put(args[0] , lowercase__ ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowercase__ , '''cache_info''' , lowercase__ ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
47
0
'''simple docstring''' import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _a ( ): """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(lowerCAmelCase_ ): requests.request('''GET''' , '''https://huggingface.co''' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('''GET''' , '''https://huggingface.co''' , timeout=1.0 ) @pytest.mark.integration def _a ( ): """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('''GET''' , '''https://huggingface.co''' ) def _a ( ): """simple docstring""" with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(lowerCAmelCase_ ): http_head('''https://huggingface.co''' )
713
'''simple docstring''' import os import numpy import onnx def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : List[Any] = a.name _snake_case : List[Any] = b.name _snake_case : Tuple = '''''' _snake_case : Tuple = '''''' _snake_case : Optional[Any] = a == b _snake_case : List[Any] = name_a _snake_case : str = name_b return res def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(lowerCAmelCase_ , lowerCAmelCase_ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , lowerCAmelCase_ , lowerCAmelCase_ ) _graph_replace_input_with(node_proto.attribute[1].g , lowerCAmelCase_ , lowerCAmelCase_ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , lowerCAmelCase_ , lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for n in graph_proto.node: _node_replace_input_with(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = list(model.graph.initializer ) _snake_case : List[str] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i _snake_case : List[Any] = inits[i].name _snake_case : List[str] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , lowerCAmelCase_ , lowerCAmelCase_ ) def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Tuple = os.path.dirname(lowerCAmelCase_ ) _snake_case : str = os.path.basename(lowerCAmelCase_ ) _snake_case : Tuple = onnx.load(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) ) _snake_case : Union[str, Any] = list(model.graph.initializer ) _snake_case : Union[str, Any] = set() _snake_case : Any = {} _snake_case : str = [] _snake_case : Union[str, Any] = 0 for i in range(len(lowerCAmelCase_ ) ): if i in dup_set: continue for j in range(i + 1 , len(lowerCAmelCase_ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(lowerCAmelCase_ ) dup_set.add(lowerCAmelCase_ ) _snake_case : List[Any] = inits[j].data_type _snake_case : Dict = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('''unexpected data type: ''' , lowerCAmelCase_ ) total_reduced_size += mem_size _snake_case : Union[str, Any] = inits[i].name _snake_case : Any = inits[j].name if name_i in dup_map: dup_map[name_i].append(lowerCAmelCase_ ) else: _snake_case : Union[str, Any] = [name_j] ind_to_replace.append((j, i) ) print('''total reduced size: ''' , total_reduced_size / 1_024 / 1_024 / 1_024 , '''GB''' ) _snake_case : List[str] = sorted(lowerCAmelCase_ ) _remove_dup_initializers_from_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : List[str] = '''optimized_''' + model_file_name _snake_case : List[Any] = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) onnx.save(lowerCAmelCase_ , lowerCAmelCase_ ) return new_model
47
0
'''simple docstring''' from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase : List[Any] = logging.get_logger(__name__) class lowerCamelCase (a__ ): _lowercase : int = ["""pixel_values"""] def __init__( self , lowercase__ = True , lowercase__ = None , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = True , lowercase__ = None , lowercase__ = True , lowercase__ = 1 / 255 , lowercase__ = True , lowercase__ = IMAGENET_DEFAULT_MEAN , lowercase__ = IMAGENET_DEFAULT_STD , **lowercase__ , ) -> None: """simple docstring""" super().__init__(**lowercase__ ) _snake_case : Any = size if size is not None else {'''shortest_edge''': 224} _snake_case : Union[str, Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) _snake_case : Optional[int] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _snake_case : str = get_size_dict(lowercase__ , param_name='''crop_size''' ) _snake_case : Optional[Any] = do_resize _snake_case : Tuple = size _snake_case : Dict = resample _snake_case : Optional[int] = do_center_crop _snake_case : List[str] = crop_size _snake_case : int = do_rescale _snake_case : Dict = rescale_factor _snake_case : List[str] = do_normalize _snake_case : Tuple = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _snake_case : List[Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = None , **lowercase__ , ) -> np.ndarray: """simple docstring""" _snake_case : Optional[Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: _snake_case : Union[str, Any] = int((256 / 224) * size['''shortest_edge'''] ) _snake_case : Tuple = get_resize_output_image_size(lowercase__ , size=lowercase__ , default_to_square=lowercase__ ) _snake_case : str = {'''height''': output_size[0], '''width''': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( lowercase__ , size=(size_dict['''height'''], size_dict['''width''']) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ) -> np.ndarray: """simple docstring""" _snake_case : Union[str, Any] = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(lowercase__ , size=(size['''height'''], size['''width''']) , data_format=lowercase__ , **lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ) -> np.ndarray: """simple docstring""" return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ) -> np.ndarray: """simple docstring""" return normalize(lowercase__ , mean=lowercase__ , std=lowercase__ , data_format=lowercase__ , **lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ) -> BatchFeature: """simple docstring""" _snake_case : Optional[int] = do_resize if do_resize is not None else self.do_resize _snake_case : Dict = resample if resample is not None else self.resample _snake_case : Any = do_center_crop if do_center_crop is not None else self.do_center_crop _snake_case : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale _snake_case : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor _snake_case : List[str] = do_normalize if do_normalize is not None else self.do_normalize _snake_case : List[Any] = image_mean if image_mean is not None else self.image_mean _snake_case : Union[str, Any] = image_std if image_std is not None else self.image_std _snake_case : Tuple = size if size is not None else self.size _snake_case : Optional[Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) _snake_case : Union[str, Any] = crop_size if crop_size is not None else self.crop_size _snake_case : str = get_size_dict(lowercase__ , param_name='''crop_size''' ) _snake_case : str = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _snake_case : List[Any] = [to_numpy_array(lowercase__ ) for image in images] if do_resize: _snake_case : Optional[int] = [self.resize(lowercase__ , lowercase__ , lowercase__ ) for image in images] if do_center_crop: _snake_case : Tuple = [self.center_crop(lowercase__ , lowercase__ ) for image in images] if do_rescale: _snake_case : Optional[Any] = [self.rescale(lowercase__ , lowercase__ ) for image in images] if do_normalize: _snake_case : str = [self.normalize(lowercase__ , lowercase__ , lowercase__ ) for image in images] _snake_case : int = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] _snake_case : Dict = {'''pixel_values''': images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
714
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : int = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
47
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase : Dict = logging.get_logger(__name__) class lowerCamelCase (a__ ): _lowercase : int = ["""pixel_values"""] def __init__( self , lowercase__ = True , lowercase__ = 32 , lowercase__=PILImageResampling.BILINEAR , lowercase__ = True , **lowercase__ , ) -> None: """simple docstring""" _snake_case : Any = do_resize _snake_case : List[str] = do_rescale _snake_case : Any = size_divisor _snake_case : Optional[Any] = resample super().__init__(**lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ ) -> np.ndarray: """simple docstring""" _snake_case : Dict = get_image_size(lowercase__ ) # Rounds the height and width down to the closest multiple of size_divisor _snake_case : Optional[int] = height // size_divisor * size_divisor _snake_case : Dict = width // size_divisor * size_divisor _snake_case : str = resize(lowercase__ , (new_h, new_w) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) return image def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ ) -> np.ndarray: """simple docstring""" return rescale(image=lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__=None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ) -> BatchFeature: """simple docstring""" _snake_case : Any = do_resize if do_resize is not None else self.do_resize _snake_case : List[Any] = do_rescale if do_rescale is not None else self.do_rescale _snake_case : List[str] = size_divisor if size_divisor is not None else self.size_divisor _snake_case : int = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) _snake_case : Tuple = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. _snake_case : Tuple = [to_numpy_array(lowercase__ ) for img in images] if do_resize: _snake_case : Optional[int] = [self.resize(lowercase__ , size_divisor=lowercase__ , resample=lowercase__ ) for image in images] if do_rescale: _snake_case : Union[str, Any] = [self.rescale(lowercase__ , scale=1 / 255 ) for image in images] _snake_case : Union[str, Any] = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] _snake_case : List[str] = {'''pixel_values''': images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
715
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase : Dict = logging.get_logger(__name__) class lowerCamelCase (a__ ): _lowercase : int = ["""pixel_values"""] def __init__( self , lowercase__ = True , lowercase__ = 32 , lowercase__=PILImageResampling.BILINEAR , lowercase__ = True , **lowercase__ , ) -> None: """simple docstring""" _snake_case : Any = do_resize _snake_case : List[str] = do_rescale _snake_case : Any = size_divisor _snake_case : Optional[Any] = resample super().__init__(**lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ ) -> np.ndarray: """simple docstring""" _snake_case , _snake_case : Dict = get_image_size(lowercase__ ) # Rounds the height and width down to the closest multiple of size_divisor _snake_case : Optional[int] = height // size_divisor * size_divisor _snake_case : Dict = width // size_divisor * size_divisor _snake_case : str = resize(lowercase__ , (new_h, new_w) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) return image def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ ) -> np.ndarray: """simple docstring""" return rescale(image=lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__=None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ) -> BatchFeature: """simple docstring""" _snake_case : Any = do_resize if do_resize is not None else self.do_resize _snake_case : List[Any] = do_rescale if do_rescale is not None else self.do_rescale _snake_case : List[str] = size_divisor if size_divisor is not None else self.size_divisor _snake_case : int = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) _snake_case : Tuple = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. _snake_case : Tuple = [to_numpy_array(lowercase__ ) for img in images] if do_resize: _snake_case : Optional[int] = [self.resize(lowercase__ , size_divisor=lowercase__ , resample=lowercase__ ) for image in images] if do_rescale: _snake_case : Union[str, Any] = [self.rescale(lowercase__ , scale=1 / 255 ) for image in images] _snake_case : Union[str, Any] = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] _snake_case : List[str] = {'''pixel_values''': images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
47
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase : List[str] = logging.get_logger(__name__) class lowerCamelCase (a__ ): _lowercase : str = ["""pixel_values"""] def __init__( self , lowercase__ = True , lowercase__ = None , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = True , lowercase__ = None , lowercase__ = True , lowercase__ = 1 / 255 , lowercase__ = True , lowercase__ = None , lowercase__ = None , **lowercase__ , ) -> None: """simple docstring""" super().__init__(**lowercase__ ) _snake_case : Optional[int] = size if size is not None else {'''shortest_edge''': 256} _snake_case : Union[str, Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) _snake_case : List[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _snake_case : Union[str, Any] = get_size_dict(lowercase__ ) _snake_case : int = do_resize _snake_case : Dict = size _snake_case : Optional[int] = resample _snake_case : Dict = do_center_crop _snake_case : Any = crop_size _snake_case : List[Any] = do_rescale _snake_case : List[str] = rescale_factor _snake_case : Union[str, Any] = do_normalize _snake_case : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _snake_case : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = None , **lowercase__ , ) -> np.ndarray: """simple docstring""" _snake_case : Dict = get_size_dict(lowercase__ , default_to_square=lowercase__ ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) _snake_case : Optional[int] = get_resize_output_image_size(lowercase__ , size=size['''shortest_edge'''] , default_to_square=lowercase__ ) return resize(lowercase__ , size=lowercase__ , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ) -> np.ndarray: """simple docstring""" _snake_case : List[Any] = get_size_dict(lowercase__ ) return center_crop(lowercase__ , size=(size['''height'''], size['''width''']) , data_format=lowercase__ , **lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ ) -> np.ndarray: """simple docstring""" return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ) -> np.ndarray: """simple docstring""" return normalize(lowercase__ , mean=lowercase__ , std=lowercase__ , data_format=lowercase__ , **lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ) -> Union[str, Any]: """simple docstring""" _snake_case : List[str] = do_resize if do_resize is not None else self.do_resize _snake_case : int = size if size is not None else self.size _snake_case : Optional[int] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) _snake_case : List[str] = resample if resample is not None else self.resample _snake_case : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop _snake_case : Union[str, Any] = crop_size if crop_size is not None else self.crop_size _snake_case : Dict = get_size_dict(lowercase__ ) _snake_case : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale _snake_case : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor _snake_case : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize _snake_case : Optional[Any] = image_mean if image_mean is not None else self.image_mean _snake_case : Optional[int] = image_std if image_std is not None else self.image_std _snake_case : Optional[int] = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _snake_case : Union[str, Any] = [to_numpy_array(lowercase__ ) for image in images] if do_resize: _snake_case : Dict = [self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__ ) for image in images] if do_center_crop: _snake_case : Any = [self.center_crop(image=lowercase__ , size=lowercase__ ) for image in images] if do_rescale: _snake_case : int = [self.rescale(image=lowercase__ , scale=lowercase__ ) for image in images] if do_normalize: _snake_case : Any = [self.normalize(image=lowercase__ , mean=lowercase__ , std=lowercase__ ) for image in images] _snake_case : List[Any] = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] _snake_case : int = {'''pixel_values''': images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
716
'''simple docstring''' from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class lowerCamelCase : _lowercase : Any = LEDConfig _lowercase : Any = {} _lowercase : Optional[Any] = """gelu""" def __init__( self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=False , lowercase__=99 , lowercase__=32 , lowercase__=2 , lowercase__=4 , lowercase__=37 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=20 , lowercase__=2 , lowercase__=1 , lowercase__=0 , lowercase__=4 , ) -> Any: """simple docstring""" _snake_case : Dict = parent _snake_case : Any = batch_size _snake_case : List[str] = seq_length _snake_case : Union[str, Any] = is_training _snake_case : Tuple = use_labels _snake_case : int = vocab_size _snake_case : str = hidden_size _snake_case : Optional[Any] = num_hidden_layers _snake_case : List[Any] = num_attention_heads _snake_case : Optional[int] = intermediate_size _snake_case : List[Any] = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : Optional[int] = max_position_embeddings _snake_case : Any = eos_token_id _snake_case : List[Any] = pad_token_id _snake_case : Optional[int] = bos_token_id _snake_case : Any = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _snake_case : Any = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _snake_case : Tuple = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" _snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _snake_case : Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _snake_case : Optional[int] = tf.concat([input_ids, eos_tensor] , axis=1 ) _snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case : List[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _snake_case : Dict = prepare_led_inputs_dict(lowercase__ , lowercase__ , lowercase__ ) _snake_case : Dict = tf.concat( [tf.zeros_like(lowercase__ )[:, :-1], tf.ones_like(lowercase__ )[:, -1:]] , axis=-1 , ) _snake_case : Dict = global_attention_mask return config, inputs_dict def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> int: """simple docstring""" _snake_case : int = TFLEDModel(config=lowercase__ ).get_decoder() _snake_case : Union[str, Any] = inputs_dict['''input_ids'''] _snake_case : List[str] = input_ids[:1, :] _snake_case : Tuple = inputs_dict['''attention_mask'''][:1, :] _snake_case : Dict = 1 # first forward pass _snake_case : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__ ) _snake_case , _snake_case : Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _snake_case : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _snake_case : Tuple = tf.concat([input_ids, next_tokens] , axis=-1 ) _snake_case : List[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _snake_case : List[Any] = model(lowercase__ , attention_mask=lowercase__ )[0] _snake_case : Tuple = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _snake_case : Tuple = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _snake_case : int = output_from_no_past[:, -3:, random_slice_idx] _snake_case : Optional[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase__ , lowercase__ , rtol=1E-3 ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , ): """simple docstring""" if attention_mask is None: _snake_case : Union[str, Any] = tf.cast(tf.math.not_equal(lowerCAmelCase_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _snake_case : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _snake_case : int = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class lowerCamelCase (a__ , a__ , unittest.TestCase ): _lowercase : Optional[int] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _lowercase : int = (TFLEDForConditionalGeneration,) if is_tf_available() else () _lowercase : Dict = ( { """conversational""": TFLEDForConditionalGeneration, """feature-extraction""": TFLEDModel, """summarization""": TFLEDForConditionalGeneration, """text2text-generation""": TFLEDForConditionalGeneration, """translation""": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _lowercase : int = True _lowercase : List[Any] = False _lowercase : str = False _lowercase : Union[str, Any] = False def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : str = TFLEDModelTester(self ) _snake_case : Union[str, Any] = ConfigTester(self , config_class=lowercase__ ) def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase__ ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Any = tf.zeros_like(inputs_dict['''attention_mask'''] ) _snake_case : Optional[Any] = 2 _snake_case : Any = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) _snake_case : Dict = True _snake_case : str = self.model_tester.seq_length _snake_case : Dict = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowercase__ ): _snake_case : Optional[int] = outputs.decoder_attentions self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowercase__ ): _snake_case : int = [t.numpy() for t in outputs.encoder_attentions] _snake_case : Tuple = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _snake_case : Union[str, Any] = True _snake_case : Dict = False _snake_case : Union[str, Any] = False _snake_case : List[Any] = model_class(lowercase__ ) _snake_case : Optional[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) _snake_case : List[Any] = len(lowercase__ ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) if self.is_encoder_decoder: _snake_case : Union[str, Any] = model_class(lowercase__ ) _snake_case : List[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_decoder_attentions_output(lowercase__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _snake_case : str = True _snake_case : Tuple = model_class(lowercase__ ) _snake_case : int = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) # Check attention is always last and order is fine _snake_case : int = True _snake_case : List[str] = True _snake_case : Tuple = model_class(lowercase__ ) _snake_case : Optional[Any] = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase__ ) ) self.assertEqual(model.config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" pass def UpperCAmelCase_ ( self ) -> str: """simple docstring""" pass def _a ( lowerCAmelCase_ ): """simple docstring""" return tf.constant(lowerCAmelCase_ , dtype=tf.intaa ) UpperCAmelCase : Dict = 1E-4 @slow @require_tf class lowerCamelCase (unittest.TestCase ): def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" _snake_case : List[str] = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here _snake_case : List[str] = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : Tuple = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : Tuple = prepare_led_inputs_dict(model.config , lowercase__ , lowercase__ ) _snake_case : int = model(**lowercase__ )[0] _snake_case : Dict = (1, 1_024, 768) self.assertEqual(output.shape , lowercase__ ) # change to expected output here _snake_case : List[Any] = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1E-3 ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Any = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here _snake_case : Dict = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : Dict = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _snake_case : List[str] = prepare_led_inputs_dict(model.config , lowercase__ , lowercase__ ) _snake_case : Tuple = model(**lowercase__ )[0] _snake_case : Any = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , lowercase__ ) # change to expected output here _snake_case : Dict = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1E-3 , rtol=1E-3 )
47
0
'''simple docstring''' from __future__ import annotations import typing from collections import Counter def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : typing.Counter[int] = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(lowerCAmelCase_ , max_perimeter + 1 ): _snake_case : List[str] = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(lowerCAmelCase_ ): _snake_case : Optional[Any] = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def _a ( lowerCAmelCase_ = 1_000 ): """simple docstring""" _snake_case : Dict = pythagorean_triple(lowerCAmelCase_ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(F"""Perimeter {solution()} has maximum solutions""")
717
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase : Optional[int] = logging.get_logger(__name__) UpperCAmelCase : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase : Any = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } UpperCAmelCase : Optional[Any] = { 'gpt-neox-20b': 2_0_4_8, } class lowerCamelCase (a__ ): _lowercase : Optional[int] = VOCAB_FILES_NAMES _lowercase : str = PRETRAINED_VOCAB_FILES_MAP _lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Optional[int] = ["""input_ids""", """attention_mask"""] def __init__( self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="<|endoftext|>" , lowercase__="<|endoftext|>" , lowercase__="<|endoftext|>" , lowercase__=False , **lowercase__ , ) -> List[Any]: """simple docstring""" super().__init__( lowercase__ , lowercase__ , tokenizer_file=lowercase__ , unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , add_prefix_space=lowercase__ , **lowercase__ , ) _snake_case : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowercase__ ) != add_prefix_space: _snake_case : int = getattr(lowercase__ , pre_tok_state.pop('''type''' ) ) _snake_case : int = add_prefix_space _snake_case : Optional[Any] = pre_tok_class(**lowercase__ ) _snake_case : List[str] = add_prefix_space def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None ) -> Tuple[str]: """simple docstring""" _snake_case : Optional[int] = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> List[int]: """simple docstring""" _snake_case : List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase__ , add_special_tokens=lowercase__ ) + [self.eos_token_id] ) if len(lowercase__ ) > self.model_max_length: _snake_case : Dict = input_ids[-self.model_max_length :] return input_ids
47
0
'''simple docstring''' from __future__ import annotations from fractions import Fraction def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : int = [] _snake_case : Tuple = 11 _snake_case : Optional[int] = int('''1''' + '''0''' * digit_len ) for num in range(lowerCAmelCase_ , lowerCAmelCase_ ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(lowerCAmelCase_ , lowerCAmelCase_ ): solutions.append(f'''{num}/{den}''' ) den += 1 num += 1 _snake_case : int = 10 return solutions def _a ( lowerCAmelCase_ = 2 ): """simple docstring""" _snake_case : Optional[int] = 1.0 for fraction in fraction_list(lowerCAmelCase_ ): _snake_case : Optional[Any] = Fraction(lowerCAmelCase_ ) result *= frac.denominator / frac.numerator return int(lowerCAmelCase_ ) if __name__ == "__main__": print(solution())
718
'''simple docstring''' import math from numpy import inf from scipy.integrate import quad def _a ( lowerCAmelCase_ ): """simple docstring""" if num <= 0: raise ValueError('''math domain error''' ) return quad(lowerCAmelCase_ , 0 , lowerCAmelCase_ , args=(lowerCAmelCase_) )[0] def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return math.pow(lowerCAmelCase_ , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
47
0
'''simple docstring''' import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase (a__ , unittest.TestCase ): _lowercase : List[str] = XLMTokenizer _lowercase : List[str] = False def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _snake_case : Union[str, Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] _snake_case : Any = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) _snake_case : List[Any] = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] _snake_case : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _snake_case : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(lowercase__ ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(lowercase__ ) ) def UpperCAmelCase_ ( self , lowercase__ ) -> Optional[Any]: """simple docstring""" _snake_case : List[Any] = '''lower newer''' _snake_case : Dict = '''lower newer''' return input_text, output_text def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" _snake_case : Tuple = XLMTokenizer(self.vocab_file , self.merges_file ) _snake_case : Optional[int] = '''lower''' _snake_case : str = ['''low''', '''er</w>'''] _snake_case : Optional[Any] = tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) _snake_case : Tuple = tokens + ['''<unk>'''] _snake_case : Dict = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : List[Any] = XLMTokenizer.from_pretrained('''xlm-mlm-en-2048''' ) _snake_case : str = tokenizer.encode('''sequence builders''' , add_special_tokens=lowercase__ ) _snake_case : Tuple = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowercase__ ) _snake_case : Tuple = tokenizer.build_inputs_with_special_tokens(lowercase__ ) _snake_case : List[str] = tokenizer.build_inputs_with_special_tokens(lowercase__ , lowercase__ ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
719
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class lowerCamelCase (unittest.TestCase ): @slow def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Union[str, Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Any = TFAutoModel.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : str = AutoModel.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Optional[Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Dict = TFAutoModelForPreTraining.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Tuple = AutoModelForPreTraining.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Optional[int] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained(lowercase__ , from_pt=lowercase__ ) _snake_case , _snake_case : Tuple = TFAutoModelForCausalLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained(lowercase__ , from_tf=lowercase__ ) _snake_case , _snake_case : Optional[Any] = AutoModelForCausalLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Tuple = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : int = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[str] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(lowercase__ , from_pt=lowercase__ ) _snake_case , _snake_case : List[str] = TFAutoModelForMaskedLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : int = AutoModelForMaskedLM.from_pretrained(lowercase__ , from_tf=lowercase__ ) _snake_case , _snake_case : Optional[int] = AutoModelForMaskedLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[str] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(lowercase__ , from_pt=lowercase__ ) _snake_case , _snake_case : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : List[str] = AutoModelForSeqaSeqLM.from_pretrained(lowercase__ , from_tf=lowercase__ ) _snake_case , _snake_case : Dict = AutoModelForSeqaSeqLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Any = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Any = TFAutoModelForSequenceClassification.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Dict = AutoModelForSequenceClassification.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : str = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : str = TFAutoModelForQuestionAnswering.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Union[str, Any] = AutoModelForQuestionAnswering.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : Union[str, Any] = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 ) _snake_case : Tuple = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : List[str] = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 ) _snake_case : int = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 )
47
0
'''simple docstring''' import os UpperCAmelCase : Optional[int] = {'I': 1, 'V': 5, 'X': 1_0, 'L': 5_0, 'C': 1_0_0, 'D': 5_0_0, 'M': 1_0_0_0} def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = 0 _snake_case : Tuple = 0 while index < len(lowerCAmelCase_ ) - 1: _snake_case : str = SYMBOLS[numerals[index]] _snake_case : List[Any] = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Union[str, Any] = '''''' _snake_case : Any = num // 1_000 numerals += m_count * "M" num %= 1_000 _snake_case : Any = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 _snake_case : int = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def _a ( lowerCAmelCase_ = "/p089_roman.txt" ): """simple docstring""" _snake_case : Tuple = 0 with open(os.path.dirname(lowerCAmelCase_ ) + roman_numerals_filename ) as filea: _snake_case : Optional[int] = filea.readlines() for line in lines: _snake_case : Any = line.strip() _snake_case : str = parse_roman_numerals(lowerCAmelCase_ ) _snake_case : Optional[int] = generate_roman_numerals(lowerCAmelCase_ ) savings += len(lowerCAmelCase_ ) - len(lowerCAmelCase_ ) return savings if __name__ == "__main__": print(F"""{solution() = }""")
720
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : Dict = {'configuration_timm_backbone': ['TimmBackboneConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = ['TimmBackbone'] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
47
0
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def _a ( lowerCAmelCase_ ): """simple docstring""" if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x2_0000 and cp <= 0x2_A6DF) # or (cp >= 0x2_A700 and cp <= 0x2_B73F) # or (cp >= 0x2_B740 and cp <= 0x2_B81F) # or (cp >= 0x2_B820 and cp <= 0x2_CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2_F800 and cp <= 0x2_FA1F) # ): # return True return False def _a ( lowerCAmelCase_ ): """simple docstring""" for char in word: _snake_case : Tuple = ord(lowerCAmelCase_ ) if not _is_chinese_char(lowerCAmelCase_ ): return 0 return 1 def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Tuple = set() for token in tokens: _snake_case : Tuple = len(lowerCAmelCase_ ) > 1 and is_chinese(lowerCAmelCase_ ) if chinese_word: word_set.add(lowerCAmelCase_ ) _snake_case : Any = list(lowerCAmelCase_ ) return word_list def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if not chinese_word_set: return bert_tokens _snake_case : str = max([len(lowerCAmelCase_ ) for w in chinese_word_set] ) _snake_case : Tuple = bert_tokens _snake_case : Dict = 0, len(lowerCAmelCase_ ) while start < end: _snake_case : Any = True if is_chinese(bert_word[start] ): _snake_case : int = min(end - start , lowerCAmelCase_ ) for i in range(lowerCAmelCase_ , 1 , -1 ): _snake_case : int = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _snake_case : Optional[int] = '''##''' + bert_word[j] _snake_case : Dict = start + i _snake_case : Dict = False break if single_word: start += 1 return bert_word def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : List[Any] = [] for i in range(0 , len(lowerCAmelCase_ ) , 100 ): _snake_case : Any = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=['''cws'''] ).cws _snake_case : List[Any] = [get_chinese_word(lowerCAmelCase_ ) for r in res] ltp_res.extend(lowerCAmelCase_ ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) _snake_case : Dict = [] for i in range(0 , len(lowerCAmelCase_ ) , 100 ): _snake_case : Dict = bert_tokenizer(lines[i : i + 100] , add_special_tokens=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) _snake_case : Optional[Any] = [] for input_ids, chinese_word in zip(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Dict = [] for id in input_ids: _snake_case : Optional[int] = bert_tokenizer._convert_id_to_token(lowerCAmelCase_ ) input_tokens.append(lowerCAmelCase_ ) _snake_case : Dict = add_sub_symbol(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Tuple = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(lowerCAmelCase_ ): if token[:2] == "##": _snake_case : Tuple = token[2:] # save chinese tokens' pos if len(lowerCAmelCase_ ) == 1 and _is_chinese_char(ord(lowerCAmelCase_ ) ): ref_id.append(lowerCAmelCase_ ) ref_ids.append(lowerCAmelCase_ ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) return ref_ids def _a ( lowerCAmelCase_ ): """simple docstring""" with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: _snake_case : int = f.readlines() _snake_case : int = [line.strip() for line in data if len(lowerCAmelCase_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _snake_case : Union[str, Any] = LTP(args.ltp ) # faster in GPU device _snake_case : Any = BertTokenizer.from_pretrained(args.bert ) _snake_case : Tuple = prepare_ref(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: _snake_case : Dict = [json.dumps(lowerCAmelCase_ ) + '''\n''' for ref in ref_ids] f.writelines(lowerCAmelCase_ ) if __name__ == "__main__": UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', required=False, type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', required=False, type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path', ) parser.add_argument( '--bert', required=False, type=str, default='./resources/robert', help='resources for Bert tokenizer', ) parser.add_argument( '--save_path', required=False, type=str, default='./resources/ref.txt', help='path to save res', ) UpperCAmelCase : Union[str, Any] = parser.parse_args() main(args)
721
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version UpperCAmelCase : Tuple = logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') UpperCAmelCase : str = { 'base': AutoModel, 'sequence-classification': AutoModelForSequenceClassification, 'question-answering': AutoModelForQuestionAnswering, 'pretraining': AutoModelForPreTraining, 'token-classification': AutoModelForTokenClassification, 'language-modeling': AutoModelWithLMHead, 'summarization': AutoModelForSeqaSeqLM, 'translation': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization UpperCAmelCase : Optional[Any] = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } UpperCAmelCase : Tuple = sorted(arg_to_scheduler.keys()) UpperCAmelCase : Optional[Any] = '{' + ', '.join(arg_to_scheduler_choices) + '}' class lowerCamelCase (pl.LightningModule ): def __init__( self , lowercase__ , lowercase__=None , lowercase__="base" , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ , ) -> Optional[int]: """simple docstring""" super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(lowercase__ ) _snake_case : Union[str, Any] = 0 _snake_case : int = Path(self.hparams.output_dir ) _snake_case : int = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: _snake_case : Tuple = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=lowercase__ , **lowercase__ , ) else: _snake_case : PretrainedConfig = config _snake_case : Optional[Any] = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(self.hparams , lowercase__ , lowercase__ ): assert hasattr(self.config , lowercase__ ), F'''model config doesn\'t have a `{p}` attribute''' setattr(self.config , lowercase__ , getattr(self.hparams , lowercase__ ) ) if tokenizer is None: _snake_case : Optional[int] = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=lowercase__ , ) else: _snake_case : PreTrainedTokenizer = tokenizer _snake_case : Any = MODEL_MODES[mode] if model is None: _snake_case : List[Any] = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=lowercase__ , ) else: _snake_case : Optional[Any] = model def UpperCAmelCase_ ( self , *lowercase__ , **lowercase__ ) -> List[str]: """simple docstring""" _snake_case : Dict = self.model_type.from_pretrained(*lowercase__ , **lowercase__ ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Optional[int] = arg_to_scheduler[self.hparams.lr_scheduler] _snake_case : Optional[int] = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) _snake_case : str = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1} return scheduler def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Any = self.model _snake_case : List[Any] = ['''bias''', '''LayerNorm.weight'''] _snake_case : List[str] = [ { '''params''': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters '''weight_decay''': self.hparams.weight_decay, }, { '''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] if self.hparams.adafactor: _snake_case : Any = Adafactor( lowercase__ , lr=self.hparams.learning_rate , scale_parameter=lowercase__ , relative_step=lowercase__ ) else: _snake_case : List[str] = AdamW( lowercase__ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) _snake_case : List[str] = optimizer _snake_case : Any = self.get_lr_scheduler() return [optimizer], [scheduler] def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Any: """simple docstring""" return self.validation_step(lowercase__ , lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> Tuple: """simple docstring""" return self.validation_end(lowercase__ ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Any = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores _snake_case : Optional[int] = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def UpperCAmelCase_ ( self , lowercase__ ) -> Any: """simple docstring""" if stage == "test": _snake_case : Any = len(self.test_dataloader().dataset ) else: _snake_case : Dict = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=lowercase__ ) _snake_case : Optional[int] = len(self.train_dataloader().dataset ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = False ) -> str: """simple docstring""" raise NotImplementedError('''You must implement this for your task''' ) def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" return self.train_loader def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=lowercase__ ) def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ ) -> Optional[int]: """simple docstring""" return os.path.join( self.hparams.data_dir , '''cached_{}_{}_{}'''.format( lowercase__ , list(filter(lowercase__ , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def UpperCAmelCase_ ( self , lowercase__ ) -> None: """simple docstring""" _snake_case : Dict = self.output_dir.joinpath('''best_tfmr''' ) _snake_case : Tuple = self.step_count self.model.save_pretrained(lowercase__ ) self.tokenizer.save_pretrained(lowercase__ ) @staticmethod def UpperCAmelCase_ ( lowercase__ , lowercase__ ) -> Tuple: """simple docstring""" parser.add_argument( '''--model_name_or_path''' , default=lowercase__ , type=lowercase__ , required=lowercase__ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--config_name''' , default='''''' , type=lowercase__ , help='''Pretrained config name or path if not the same as model_name''' ) parser.add_argument( '''--tokenizer_name''' , default=lowercase__ , type=lowercase__ , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument( '''--cache_dir''' , default=str(Path(lowercase__ ).parent / '''test_run''' / '''cache''' ) , type=lowercase__ , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , ) parser.add_argument( '''--encoder_layerdrop''' , type=lowercase__ , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--decoder_layerdrop''' , type=lowercase__ , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--dropout''' , type=lowercase__ , help='''Dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--attention_dropout''' , type=lowercase__ , help='''Attention dropout probability (Optional). Goes into model.config''' , ) parser.add_argument('''--learning_rate''' , default=5E-5 , type=lowercase__ , help='''The initial learning rate for Adam.''' ) parser.add_argument( '''--lr_scheduler''' , default='''linear''' , choices=lowercase__ , metavar=lowercase__ , type=lowercase__ , help='''Learning rate scheduler''' , ) parser.add_argument('''--weight_decay''' , default=0.0 , type=lowercase__ , help='''Weight decay if we apply some.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=lowercase__ , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--warmup_steps''' , default=0 , type=lowercase__ , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--num_workers''' , default=4 , type=lowercase__ , help='''kwarg passed to DataLoader''' ) parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=lowercase__ ) parser.add_argument('''--train_batch_size''' , default=32 , type=lowercase__ ) parser.add_argument('''--eval_batch_size''' , default=32 , type=lowercase__ ) parser.add_argument('''--adafactor''' , action='''store_true''' ) class lowerCamelCase (pl.Callback ): def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> str: """simple docstring""" if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class lowerCamelCase (pl.Callback ): def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> List[str]: """simple docstring""" for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(lowercase__ ) class lowerCamelCase (pl.Callback ): def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Any: """simple docstring""" _snake_case : Any = trainer.lr_schedulers[0]['''scheduler'''] _snake_case : Optional[int] = {F'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> List[str]: """simple docstring""" rank_zero_info('''***** Validation results *****''' ) _snake_case : Dict = trainer.callback_metrics # Log results for key in sorted(lowercase__ ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ ) -> Dict: """simple docstring""" rank_zero_info('''***** Test results *****''' ) _snake_case : Dict = trainer.callback_metrics # Log and save results to file _snake_case : str = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' ) with open(lowercase__ , '''w''' ) as writer: for key in sorted(lowercase__ ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) ) writer.write('''{} = {}\n'''.format(lowercase__ , str(metrics[key] ) ) ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" parser.add_argument( '''--output_dir''' , default=str(Path(lowerCAmelCase_ ).parent / '''test_run''' / '''model_checkpoints''' ) , type=lowerCAmelCase_ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=lowerCAmelCase_ , default='''O2''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=lowerCAmelCase_ ) parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=lowerCAmelCase_ , help='''Max gradient norm''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' ) parser.add_argument( '''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=lowerCAmelCase_ , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--seed''' , type=lowerCAmelCase_ , default=42 , help='''random seed for initialization''' ) parser.add_argument( '''--data_dir''' , default=str(Path(lowerCAmelCase_ ).parent / '''test_run''' / '''dummy-train-data''' ) , type=lowerCAmelCase_ , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_=[] , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , ): """simple docstring""" pl.seed_everything(args.seed ) # init model _snake_case : Union[str, Any] = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=lowerCAmelCase_ ) # add custom checkpoints if checkpoint_callback is None: _snake_case : Any = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(lowerCAmelCase_ ) if logging_callback is None: _snake_case : str = LoggingCallback() _snake_case : Tuple = {} if args.fpaa: _snake_case : Union[str, Any] = 16 if args.gpus > 1: _snake_case : Optional[Any] = '''auto''' _snake_case : Tuple = '''ddp''' _snake_case : Optional[Any] = args.accumulate_grad_batches _snake_case : Tuple = None _snake_case : str = '''auto''' _snake_case : int = pl.Trainer.from_argparse_args( lowerCAmelCase_ , weights_summary=lowerCAmelCase_ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase_ , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase_ , ) if args.do_train: trainer.fit(lowerCAmelCase_ ) else: print('''RAG modeling tests with new set functions successfuly executed!''' ) return trainer
47
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''microsoft/wavlm-base''': '''https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json''', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : List[str] = """wavlm""" def __init__(self , lowercase__=32 , lowercase__=7_68 , lowercase__=12 , lowercase__=12 , lowercase__=30_72 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.02 , lowercase__=1e-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , lowercase__=(5, 2, 2, 2, 2, 2, 2) , lowercase__=(10, 3, 3, 3, 3, 2, 2) , lowercase__=False , lowercase__=1_28 , lowercase__=16 , lowercase__=3_20 , lowercase__=8_00 , lowercase__=False , lowercase__=True , lowercase__=0.05 , lowercase__=10 , lowercase__=2 , lowercase__=0.0 , lowercase__=10 , lowercase__=3_20 , lowercase__=2 , lowercase__=0.1 , lowercase__=1_00 , lowercase__=2_56 , lowercase__=2_56 , lowercase__=0.1 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=2_56 , lowercase__=(5_12, 5_12, 5_12, 5_12, 15_00) , lowercase__=(5, 3, 3, 1, 1) , lowercase__=(1, 2, 3, 1, 1) , lowercase__=5_12 , lowercase__=80 , lowercase__=0 , lowercase__=1 , lowercase__=2 , lowercase__=False , lowercase__=3 , lowercase__=2 , lowercase__=3 , lowercase__=None , **lowercase__ , ): super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ ) snake_case_ : str = hidden_size snake_case_ : List[str] = feat_extract_norm snake_case_ : Tuple = feat_extract_activation snake_case_ : Any = list(lowercase__ ) snake_case_ : Dict = list(lowercase__ ) snake_case_ : Dict = list(lowercase__ ) snake_case_ : Tuple = conv_bias snake_case_ : Optional[int] = num_buckets snake_case_ : List[Any] = max_bucket_distance snake_case_ : Union[str, Any] = num_conv_pos_embeddings snake_case_ : int = num_conv_pos_embedding_groups snake_case_ : List[Any] = len(self.conv_dim ) snake_case_ : Optional[int] = num_hidden_layers snake_case_ : Any = intermediate_size snake_case_ : Union[str, Any] = hidden_act snake_case_ : Dict = num_attention_heads snake_case_ : str = hidden_dropout snake_case_ : Optional[int] = attention_dropout snake_case_ : Union[str, Any] = activation_dropout snake_case_ : Dict = feat_proj_dropout snake_case_ : List[str] = final_dropout snake_case_ : Union[str, Any] = layerdrop snake_case_ : Tuple = layer_norm_eps snake_case_ : Union[str, Any] = initializer_range snake_case_ : Any = num_ctc_classes snake_case_ : str = vocab_size snake_case_ : Any = do_stable_layer_norm snake_case_ : Optional[int] = use_weighted_layer_sum snake_case_ : Optional[int] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' f' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case_ : Optional[Any] = apply_spec_augment snake_case_ : Tuple = mask_time_prob snake_case_ : Optional[Any] = mask_time_length snake_case_ : List[Any] = mask_time_min_masks snake_case_ : Optional[Any] = mask_feature_prob snake_case_ : Optional[int] = mask_feature_length # parameters for pretraining with codevector quantized representations snake_case_ : int = num_codevectors_per_group snake_case_ : Optional[Any] = num_codevector_groups snake_case_ : List[Any] = contrastive_logits_temperature snake_case_ : str = num_negatives snake_case_ : List[str] = codevector_dim snake_case_ : Optional[Any] = proj_codevector_dim snake_case_ : List[str] = diversity_loss_weight # ctc loss snake_case_ : List[Any] = ctc_loss_reduction snake_case_ : Dict = ctc_zero_infinity # adapter snake_case_ : Any = add_adapter snake_case_ : Union[str, Any] = adapter_kernel_size snake_case_ : str = adapter_stride snake_case_ : str = num_adapter_layers snake_case_ : Optional[int] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. snake_case_ : Dict = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. snake_case_ : str = list(lowercase__ ) snake_case_ : List[str] = list(lowercase__ ) snake_case_ : str = list(lowercase__ ) snake_case_ : str = xvector_output_dim @property def __UpperCamelCase (self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
48
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json''' ), } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """dpr""" def __init__(self , lowercase__=3_05_22 , lowercase__=7_68 , lowercase__=12 , lowercase__=12 , lowercase__=30_72 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_12 , lowercase__=2 , lowercase__=0.02 , lowercase__=1e-12 , lowercase__=0 , lowercase__="absolute" , lowercase__ = 0 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , **lowercase__ ) snake_case_ : List[Any] = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : Tuple = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : int = hidden_act snake_case_ : Dict = intermediate_size snake_case_ : int = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : str = max_position_embeddings snake_case_ : List[str] = type_vocab_size snake_case_ : List[str] = initializer_range snake_case_ : Optional[int] = layer_norm_eps snake_case_ : Union[str, Any] = projection_dim snake_case_ : str = position_embedding_type
48
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class __lowercase : """simple docstring""" def __init__(self , lowercase__ , ): snake_case_ : Tuple = parent snake_case_ : int = 13 snake_case_ : Dict = 7 snake_case_ : int = True snake_case_ : Union[str, Any] = True snake_case_ : int = False snake_case_ : Any = True snake_case_ : Any = 99 snake_case_ : Any = 32 snake_case_ : Any = 2 snake_case_ : Any = 4 snake_case_ : str = 37 snake_case_ : Optional[Any] = """gelu""" snake_case_ : Any = 0.1 snake_case_ : Union[str, Any] = 0.1 snake_case_ : Optional[int] = 5_12 snake_case_ : Any = 16 snake_case_ : Optional[int] = 2 snake_case_ : Optional[int] = 0.02 snake_case_ : List[str] = 3 snake_case_ : List[str] = 4 snake_case_ : List[str] = None def __UpperCamelCase (self ): snake_case_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Any = None if self.use_input_mask: snake_case_ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : Union[str, Any] = None snake_case_ : str = None snake_case_ : Optional[Any] = None if self.use_labels: snake_case_ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ : List[str] = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ : int = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : List[str] = TFDistilBertModel(config=lowercase__ ) snake_case_ : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} snake_case_ : List[Any] = model(lowercase__ ) snake_case_ : Optional[Any] = [input_ids, input_mask] snake_case_ : Dict = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : str = TFDistilBertForMaskedLM(config=lowercase__ ) snake_case_ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} snake_case_ : Optional[Any] = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : Any = TFDistilBertForQuestionAnswering(config=lowercase__ ) snake_case_ : Union[str, Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, } snake_case_ : int = model(lowercase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : Optional[Any] = self.num_labels snake_case_ : Any = TFDistilBertForSequenceClassification(lowercase__ ) snake_case_ : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask} snake_case_ : Optional[int] = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : int = self.num_choices snake_case_ : Union[str, Any] = TFDistilBertForMultipleChoice(lowercase__ ) snake_case_ : List[str] = tf.tile(tf.expand_dims(lowercase__ , 1 ) , (1, self.num_choices, 1) ) snake_case_ : Any = tf.tile(tf.expand_dims(lowercase__ , 1 ) , (1, self.num_choices, 1) ) snake_case_ : List[str] = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, } snake_case_ : Union[str, Any] = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : Union[str, Any] = self.num_labels snake_case_ : Any = TFDistilBertForTokenClassification(lowercase__ ) snake_case_ : int = {"""input_ids""": input_ids, """attention_mask""": input_mask} snake_case_ : Optional[Any] = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase (self ): snake_case_ : Optional[Any] = self.prepare_config_and_inputs() ((snake_case_) , (snake_case_) , (snake_case_) , (snake_case_) , (snake_case_) , (snake_case_)) : Dict = config_and_inputs snake_case_ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : List[str] = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) _A : Dict = ( { """feature-extraction""": TFDistilBertModel, """fill-mask""": TFDistilBertForMaskedLM, """question-answering""": TFDistilBertForQuestionAnswering, """text-classification""": TFDistilBertForSequenceClassification, """token-classification""": TFDistilBertForTokenClassification, """zero-shot""": TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) _A : Tuple = False _A : int = False def __UpperCamelCase (self ): snake_case_ : Any = TFDistilBertModelTester(self ) snake_case_ : Tuple = ConfigTester(self , config_class=lowercase__ , dim=37 ) def __UpperCamelCase (self ): self.config_tester.run_common_tests() def __UpperCamelCase (self ): snake_case_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowercase__ ) @slow def __UpperCamelCase (self ): for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): snake_case_ : List[Any] = TFDistilBertModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @require_tf class __lowercase ( unittest.TestCase): """simple docstring""" @slow def __UpperCamelCase (self ): snake_case_ : str = TFDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) snake_case_ : Optional[int] = tf.constant([[0, 1, 2, 3, 4, 5]] ) snake_case_ : Union[str, Any] = model(lowercase__ )[0] snake_case_ : int = [1, 6, 7_68] self.assertEqual(output.shape , lowercase__ ) snake_case_ : Optional[int] = tf.constant( [ [ [0.19261885, -0.13732955, 0.4119799], [0.22150156, -0.07422661, 0.39037204], [0.22756018, -0.0896414, 0.3701467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1e-4 )
48
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm a_ = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex a_ = 10 a_ = 256 def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" if len(SCREAMING_SNAKE_CASE__ ) < MIN_NUM_TOKENS: return None snake_case_ : Union[str, Any] = MinHash(num_perm=SCREAMING_SNAKE_CASE__ ) for token in set(SCREAMING_SNAKE_CASE__ ): min_hash.update(token.encode() ) return min_hash def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" return {t for t in NON_ALPHA.split(SCREAMING_SNAKE_CASE__ ) if len(t.strip() ) > 0} class __lowercase : """simple docstring""" def __init__(self , *, lowercase__ = 0.85 , ): snake_case_ : Tuple = duplication_jaccard_threshold snake_case_ : Optional[Any] = NUM_PERM snake_case_ : Tuple = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) snake_case_ : List[Any] = defaultdict(lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : int = self._index.query(lowercase__ ) if code_key in self._index.keys: print(f'Duplicate key {code_key}' ) return self._index.insert(lowercase__ , lowercase__ ) if len(lowercase__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowercase__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(lowercase__ ) def __UpperCamelCase (self ): snake_case_ : str = [] for base, duplicates in self._duplicate_clusters.items(): snake_case_ : Optional[Any] = [base] + list(lowercase__ ) # reformat the cluster to be a list of dict snake_case_ : Any = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(lowercase__ ) return duplicate_clusters def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = self.get_duplicate_clusters() with open(lowercase__ , """w""" ) as f: json.dump(lowercase__ , lowercase__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ , snake_case_ : str = element snake_case_ : Tuple = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] ): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(SCREAMING_SNAKE_CASE__ , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ): if data is not None: yield data def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] , SCREAMING_SNAKE_CASE__ : float ): """simple docstring""" snake_case_ : int = DuplicationIndex(duplication_jaccard_threshold=SCREAMING_SNAKE_CASE__ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(SCREAMING_SNAKE_CASE__ ) ) , max_queue_size=1_0_0 ) ): di.add(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : int = get_tokens(SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = get_tokens(SCREAMING_SNAKE_CASE__ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) a_ = None def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Optional[Any] = [] for elementa in cluster: snake_case_ : Union[str, Any] = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: snake_case_ : Any = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) >= jaccard_threshold: elementa["copies"] += 1 break else: snake_case_ : Union[str, Any] = 1 extremes.append(SCREAMING_SNAKE_CASE__ ) return extremes def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" global _shared_dataset snake_case_ : str = dataset snake_case_ : int = [] snake_case_ : Optional[int] = partial(_find_cluster_extremes_shared , jaccard_threshold=SCREAMING_SNAKE_CASE__ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) , total=len(SCREAMING_SNAKE_CASE__ ) , ): extremes_list.append(SCREAMING_SNAKE_CASE__ ) return extremes_list def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] , SCREAMING_SNAKE_CASE__ : float = 0.85 ): """simple docstring""" snake_case_ : List[str] = make_duplicate_clusters(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : str = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} snake_case_ : str = {} snake_case_ : Dict = find_extremes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for extremes in extremes_clusters: for element in extremes: snake_case_ : int = element snake_case_ : Optional[int] = duplicate_indices - set(extreme_dict.keys() ) snake_case_ : List[Any] = dataset.filter(lambda SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : idx not in remove_indices , with_indices=SCREAMING_SNAKE_CASE__ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: snake_case_ : List[Any] = element["""base_index"""] in extreme_dict if element["is_extreme"]: snake_case_ : str = extreme_dict[element["""base_index"""]]["""copies"""] print(f'Original dataset size: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Number of duplicate clusters: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Files in duplicate cluster: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Unique files in duplicate cluster: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Filtered dataset size: {len(SCREAMING_SNAKE_CASE__ )}' ) return ds_filter, duplicate_clusters
48
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self , *lowercase__ , **lowercase__ ): warnings.warn( """The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use OwlViTImageProcessor instead.""" , lowercase__ , ) super().__init__(*lowercase__ , **lowercase__ )
48
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) a_ = logging.getLogger(__name__) if __name__ == "__main__": a_ = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=30522, type=int) a_ = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, '''rb''') as fp: a_ = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') a_ = Counter() for tk_ids in data: counter.update(tk_ids) a_ = [0] * args.vocab_size for k, v in counter.items(): a_ = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
48
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowercase ( _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : List[str] = KandinskyInpaintPipeline _A : List[str] = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] _A : List[Any] = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] _A : Union[str, Any] = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] _A : Tuple = False @property def __UpperCamelCase (self ): return 32 @property def __UpperCamelCase (self ): return 32 @property def __UpperCamelCase (self ): return self.time_input_dim @property def __UpperCamelCase (self ): return self.time_input_dim * 4 @property def __UpperCamelCase (self ): return 1_00 @property def __UpperCamelCase (self ): snake_case_ : Optional[int] = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def __UpperCamelCase (self ): torch.manual_seed(0 ) snake_case_ : Union[str, Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) snake_case_ : List[Any] = MultilingualCLIP(lowercase__ ) snake_case_ : Tuple = text_encoder.eval() return text_encoder @property def __UpperCamelCase (self ): torch.manual_seed(0 ) snake_case_ : Dict = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } snake_case_ : Union[str, Any] = UNetaDConditionModel(**lowercase__ ) return model @property def __UpperCamelCase (self ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __UpperCamelCase (self ): torch.manual_seed(0 ) snake_case_ : int = VQModel(**self.dummy_movq_kwargs ) return model def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = self.dummy_text_encoder snake_case_ : Tuple = self.dummy_tokenizer snake_case_ : Optional[Any] = self.dummy_unet snake_case_ : int = self.dummy_movq snake_case_ : Optional[int] = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.00085 , beta_end=0.012 , clip_sample=lowercase__ , set_alpha_to_one=lowercase__ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=lowercase__ , ) snake_case_ : Any = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def __UpperCamelCase (self , lowercase__ , lowercase__=0 ): snake_case_ : Any = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowercase__ ) ).to(lowercase__ ) snake_case_ : Optional[int] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(lowercase__ ) # create init_image snake_case_ : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowercase__ ) ).to(lowercase__ ) snake_case_ : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case_ : Dict = Image.fromarray(np.uinta(lowercase__ ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create mask snake_case_ : Any = np.ones((64, 64) , dtype=np.floataa ) snake_case_ : List[Any] = 0 if str(lowercase__ ).startswith("""mps""" ): snake_case_ : Any = torch.manual_seed(lowercase__ ) else: snake_case_ : Dict = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) snake_case_ : Union[str, Any] = { """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = """cpu""" snake_case_ : Dict = self.get_dummy_components() snake_case_ : Any = self.pipeline_class(**lowercase__ ) snake_case_ : Any = pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) snake_case_ : Union[str, Any] = pipe(**self.get_dummy_inputs(lowercase__ ) ) snake_case_ : List[Any] = output.images snake_case_ : Any = pipe( **self.get_dummy_inputs(lowercase__ ) , return_dict=lowercase__ , )[0] snake_case_ : List[str] = image[0, -3:, -3:, -1] snake_case_ : List[str] = image_from_tuple[0, -3:, -3:, -1] print(f'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) snake_case_ : Dict = np.array( [0.8326919, 0.73790467, 0.20918581, 0.9309612, 0.5511791, 0.43713328, 0.5513321, 0.49922934, 0.59497786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def __UpperCamelCase (self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __lowercase ( unittest.TestCase): """simple docstring""" def __UpperCamelCase (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase (self ): snake_case_ : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) snake_case_ : Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) snake_case_ : int = np.ones((7_68, 7_68) , dtype=np.floataa ) snake_case_ : int = 0 snake_case_ : str = """a hat""" snake_case_ : int = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(lowercase__ ) snake_case_ : Union[str, Any] = KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) snake_case_ : List[str] = pipeline.to(lowercase__ ) pipeline.set_progress_bar_config(disable=lowercase__ ) snake_case_ : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case_ , snake_case_ : Union[str, Any] = pipe_prior( lowercase__ , generator=lowercase__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() snake_case_ : Optional[int] = pipeline( lowercase__ , image=lowercase__ , mask_image=lowercase__ , image_embeds=lowercase__ , negative_image_embeds=lowercase__ , generator=lowercase__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="""np""" , ) snake_case_ : Union[str, Any] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowercase__ , lowercase__ )
48
"""simple docstring""" import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" snake_case_ : Optional[Any] = tmp_path / """cache""" snake_case_ : Optional[int] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : Tuple = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" snake_case_ : List[Any] = tmp_path / """cache""" snake_case_ : int = {"""text""": """string"""} snake_case_ : Any = features.copy() if features else default_expected_features snake_case_ : List[Any] = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : Dict = TextDatasetReader(SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : Union[str, Any] = tmp_path / """cache""" snake_case_ : Optional[Any] = {"""text""": """string"""} snake_case_ : Optional[int] = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , split=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" if issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : List[str] = text_path elif issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : str = [text_path] snake_case_ : List[str] = tmp_path / """cache""" snake_case_ : List[str] = {"""text""": """string"""} snake_case_ : Dict = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str]=("train",) ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for split in splits: snake_case_ : Dict = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" snake_case_ : int = tmp_path / """cache""" snake_case_ : List[str] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : Optional[Any] = TextDatasetReader({"""train""": text_path} , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Tuple = tmp_path / """cache""" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" snake_case_ : List[str] = {"""text""": """string"""} snake_case_ : int = features.copy() if features else default_expected_features snake_case_ : Tuple = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : str = TextDatasetReader({"""train""": text_path} , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" if split: snake_case_ : Union[str, Any] = {split: text_path} else: snake_case_ : Union[str, Any] = """train""" snake_case_ : int = {"""train""": text_path, """test""": text_path} snake_case_ : List[Any] = tmp_path / """cache""" snake_case_ : Tuple = {"""text""": """string"""} snake_case_ : int = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
48
1
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging a_ = logging.get_logger(__name__) a_ = { '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/resolve/main/config.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/config.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/config.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json''', } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[Any] = """bloom""" _A : Union[str, Any] = ["""past_key_values"""] _A : List[str] = { """num_hidden_layers""": """n_layer""", """num_attention_heads""": """n_head""", } def __init__(self , lowercase__=25_08_80 , lowercase__=64 , lowercase__=2 , lowercase__=8 , lowercase__=1e-5 , lowercase__=0.02 , lowercase__=True , lowercase__=1 , lowercase__=2 , lowercase__=False , lowercase__=0.0 , lowercase__=0.0 , lowercase__=1 , lowercase__=False , **lowercase__ , ): snake_case_ : Any = vocab_size # Backward compatibility with n_embed kwarg snake_case_ : Union[str, Any] = kwargs.pop("""n_embed""" , lowercase__ ) snake_case_ : Any = hidden_size if n_embed is None else n_embed snake_case_ : Optional[Any] = n_layer snake_case_ : Any = n_head snake_case_ : Optional[int] = layer_norm_epsilon snake_case_ : Optional[Any] = initializer_range snake_case_ : Any = use_cache snake_case_ : str = pretraining_tp snake_case_ : Dict = apply_residual_connection_post_layernorm snake_case_ : Tuple = hidden_dropout snake_case_ : str = attention_dropout snake_case_ : Union[str, Any] = bos_token_id snake_case_ : Any = eos_token_id snake_case_ : Any = slow_but_exact super().__init__(bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__ ) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Union[str, Any] = version.parse("""1.12""") def __init__(self , lowercase__ , lowercase__ = "default" , lowercase__ = None , lowercase__ = False , ): super().__init__(lowercase__ , task=lowercase__ , patching_specs=lowercase__ , use_past=lowercase__ ) if not getattr(self._config , """pad_token_id""" , lowercase__ ): # TODO: how to do that better? snake_case_ : Optional[Any] = 0 @property def __UpperCamelCase (self ): snake_case_ : Any = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(lowercase__ , direction="""inputs""" , inverted_values_shape=lowercase__ ) snake_case_ : Tuple = {0: """batch""", 1: """past_sequence + sequence"""} else: snake_case_ : int = {0: """batch""", 1: """sequence"""} return common_inputs @property def __UpperCamelCase (self ): return self._config.n_layer @property def __UpperCamelCase (self ): return self._config.n_head @property def __UpperCamelCase (self ): return 1e-3 def __UpperCamelCase (self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , ): snake_case_ : Any = super(lowercase__ , self ).generate_dummy_inputs( lowercase__ , batch_size=lowercase__ , seq_length=lowercase__ , is_pair=lowercase__ , framework=lowercase__ ) # We need to order the input in the way they appears in the forward() snake_case_ : Any = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch snake_case_ , snake_case_ : Dict = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values snake_case_ : str = seqlen + 2 snake_case_ : List[Any] = self._config.hidden_size // self.num_attention_heads snake_case_ : int = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) snake_case_ : Any = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) snake_case_ : List[Any] = [ (torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) for _ in range(self.num_layers ) ] snake_case_ : int = common_inputs["""attention_mask"""] if self.use_past: snake_case_ : List[str] = ordered_inputs["""attention_mask"""].dtype snake_case_ : int = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(lowercase__ , lowercase__ , dtype=lowercase__ )] , dim=1 ) return ordered_inputs @property def __UpperCamelCase (self ): return 13
48
"""simple docstring""" from copy import deepcopy class __lowercase : """simple docstring""" def __init__(self , lowercase__ = None , lowercase__ = None ): if arr is None and size is not None: snake_case_ : str = size snake_case_ : Optional[Any] = [0] * size elif arr is not None: self.init(lowercase__ ) else: raise ValueError("""Either arr or size must be specified""" ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Optional[Any] = len(lowercase__ ) snake_case_ : int = deepcopy(lowercase__ ) for i in range(1 , self.size ): snake_case_ : Optional[Any] = self.next_(lowercase__ ) if j < self.size: self.tree[j] += self.tree[i] def __UpperCamelCase (self ): snake_case_ : Dict = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): snake_case_ : Optional[int] = self.next_(lowercase__ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def __UpperCamelCase (lowercase__ ): return index + (index & (-index)) @staticmethod def __UpperCamelCase (lowercase__ ): return index - (index & (-index)) def __UpperCamelCase (self , lowercase__ , lowercase__ ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value snake_case_ : Tuple = self.next_(lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): self.add(lowercase__ , value - self.get(lowercase__ ) ) def __UpperCamelCase (self , lowercase__ ): if right == 0: return 0 snake_case_ : List[str] = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] snake_case_ : Optional[int] = self.prev(lowercase__ ) return result def __UpperCamelCase (self , lowercase__ , lowercase__ ): return self.prefix(lowercase__ ) - self.prefix(lowercase__ ) def __UpperCamelCase (self , lowercase__ ): return self.query(lowercase__ , index + 1 ) def __UpperCamelCase (self , lowercase__ ): value -= self.tree[0] if value < 0: return -1 snake_case_ : Tuple = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 snake_case_ : Tuple = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
48
1
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig a_ = logging.get_logger(__name__) a_ = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Tuple = """dpt""" def __init__(self , lowercase__=7_68 , lowercase__=12 , lowercase__=12 , lowercase__=30_72 , lowercase__="gelu" , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.02 , lowercase__=1e-12 , lowercase__=3_84 , lowercase__=16 , lowercase__=3 , lowercase__=False , lowercase__=True , lowercase__=[2, 5, 8, 11] , lowercase__="project" , lowercase__=[4, 2, 1, 0.5] , lowercase__=[96, 1_92, 3_84, 7_68] , lowercase__=2_56 , lowercase__=-1 , lowercase__=False , lowercase__=True , lowercase__=0.4 , lowercase__=2_55 , lowercase__=0.1 , lowercase__=[1, 10_24, 24, 24] , lowercase__=[0, 1] , lowercase__=None , **lowercase__ , ): super().__init__(**lowercase__ ) snake_case_ : Any = hidden_size snake_case_ : List[Any] = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("""Initializing the config with a `BiT` backbone.""" ) snake_case_ : Tuple = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, } snake_case_ : Any = BitConfig(**lowercase__ ) elif isinstance(lowercase__ , lowercase__ ): logger.info("""Initializing the config with a `BiT` backbone.""" ) snake_case_ : List[Any] = BitConfig(**lowercase__ ) elif isinstance(lowercase__ , lowercase__ ): snake_case_ : str = backbone_config else: raise ValueError( f'backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.' ) snake_case_ : List[str] = backbone_featmap_shape snake_case_ : Any = neck_ignore_stages if readout_type != "project": raise ValueError("""Readout type must be 'project' when using `DPT-hybrid` mode.""" ) else: snake_case_ : Optional[int] = None snake_case_ : Dict = None snake_case_ : List[Any] = [] snake_case_ : Tuple = num_hidden_layers snake_case_ : Optional[Any] = num_attention_heads snake_case_ : Tuple = intermediate_size snake_case_ : Tuple = hidden_act snake_case_ : Optional[Any] = hidden_dropout_prob snake_case_ : Union[str, Any] = attention_probs_dropout_prob snake_case_ : int = initializer_range snake_case_ : Tuple = layer_norm_eps snake_case_ : Optional[int] = image_size snake_case_ : str = patch_size snake_case_ : Optional[Any] = num_channels snake_case_ : Union[str, Any] = qkv_bias snake_case_ : List[str] = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("""Readout_type must be one of ['ignore', 'add', 'project']""" ) snake_case_ : str = readout_type snake_case_ : List[Any] = reassemble_factors snake_case_ : Union[str, Any] = neck_hidden_sizes snake_case_ : List[Any] = fusion_hidden_size snake_case_ : Any = head_in_index snake_case_ : Tuple = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) snake_case_ : str = use_auxiliary_head snake_case_ : List[Any] = auxiliary_loss_weight snake_case_ : List[Any] = semantic_loss_ignore_index snake_case_ : Optional[Any] = semantic_classifier_dropout def __UpperCamelCase (self ): snake_case_ : Any = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: snake_case_ : Union[str, Any] = self.backbone_config.to_dict() snake_case_ : Tuple = self.__class__.model_type return output
48
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : list ): """simple docstring""" snake_case_ : Optional[int] = len(SCREAMING_SNAKE_CASE__ ) for i in range(1 , SCREAMING_SNAKE_CASE__ ): snake_case_ : Tuple = collection[i] snake_case_ : Tuple = 0 snake_case_ : str = i - 1 while low <= high: snake_case_ : Optional[int] = (low + high) // 2 if val < collection[mid]: snake_case_ : List[str] = mid - 1 else: snake_case_ : str = mid + 1 for j in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , -1 ): snake_case_ : List[str] = collection[j - 1] snake_case_ : Any = val return collection if __name__ == "__main__": a_ = input('''Enter numbers separated by a comma:\n''').strip() a_ = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
48
1
"""simple docstring""" import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 a_ = get_tests_dir('''fixtures''') class __lowercase ( unittest.TestCase): """simple docstring""" def __UpperCamelCase (self ): # A mock response for an HTTP head request to emulate server down snake_case_ : Union[str, Any] = mock.Mock() snake_case_ : Union[str, Any] = 5_00 snake_case_ : str = {} snake_case_ : Dict = HTTPError snake_case_ : List[str] = {} # Download this model to make sure it's in the cache. snake_case_ : List[str] = WavaVecaFeatureExtractor.from_pretrained("""hf-internal-testing/tiny-random-wav2vec2""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=lowercase__ ) as mock_head: snake_case_ : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained("""hf-internal-testing/tiny-random-wav2vec2""" ) # This check we did call the fake head request mock_head.assert_called() def __UpperCamelCase (self ): # This test is for deprecated behavior and can be removed in v5 snake_case_ : List[str] = WavaVecaFeatureExtractor.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json""" ) @is_staging_test class __lowercase ( unittest.TestCase): """simple docstring""" @classmethod def __UpperCamelCase (cls ): snake_case_ : List[Any] = TOKEN HfFolder.save_token(lowercase__ ) @classmethod def __UpperCamelCase (cls ): try: delete_repo(token=cls._token , repo_id="""test-feature-extractor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-feature-extractor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-feature-extractor""" ) except HTTPError: pass def __UpperCamelCase (self ): snake_case_ : Tuple = WavaVecaFeatureExtractor.from_pretrained(lowercase__ ) feature_extractor.push_to_hub("""test-feature-extractor""" , use_auth_token=self._token ) snake_case_ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained(f'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase__ , getattr(lowercase__ , lowercase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-feature-extractor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowercase__ , repo_id="""test-feature-extractor""" , push_to_hub=lowercase__ , use_auth_token=self._token ) snake_case_ : List[str] = WavaVecaFeatureExtractor.from_pretrained(f'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase__ , getattr(lowercase__ , lowercase__ ) ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained(lowercase__ ) feature_extractor.push_to_hub("""valid_org/test-feature-extractor""" , use_auth_token=self._token ) snake_case_ : Any = WavaVecaFeatureExtractor.from_pretrained("""valid_org/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase__ , getattr(lowercase__ , lowercase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-feature-extractor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowercase__ , repo_id="""valid_org/test-feature-extractor-org""" , push_to_hub=lowercase__ , use_auth_token=self._token ) snake_case_ : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained("""valid_org/test-feature-extractor-org""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase__ , getattr(lowercase__ , lowercase__ ) ) def __UpperCamelCase (self ): CustomFeatureExtractor.register_for_auto_class() snake_case_ : List[Any] = CustomFeatureExtractor.from_pretrained(lowercase__ ) feature_extractor.push_to_hub("""test-dynamic-feature-extractor""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {"""AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor"""} , ) snake_case_ : str = AutoFeatureExtractor.from_pretrained( f'{USER}/test-dynamic-feature-extractor' , trust_remote_code=lowercase__ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , """CustomFeatureExtractor""" )
48
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Union[str, Any] = ["""image_processor""", """tokenizer"""] _A : str = """ChineseCLIPImageProcessor""" _A : Tuple = ("""BertTokenizer""", """BertTokenizerFast""") def __init__(self , lowercase__=None , lowercase__=None , **lowercase__ ): snake_case_ : Any = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowercase__ , ) snake_case_ : Optional[Any] = kwargs.pop("""feature_extractor""" ) snake_case_ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowercase__ , lowercase__ ) snake_case_ : Union[str, Any] = self.image_processor def __call__(self , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ ): if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: snake_case_ : Any = self.tokenizer(lowercase__ , return_tensors=lowercase__ , **lowercase__ ) if images is not None: snake_case_ : Tuple = self.image_processor(lowercase__ , return_tensors=lowercase__ , **lowercase__ ) if text is not None and images is not None: snake_case_ : List[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase__ ) , tensor_type=lowercase__ ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): return self.tokenizer.batch_decode(*lowercase__ , **lowercase__ ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): return self.tokenizer.decode(*lowercase__ , **lowercase__ ) @property def __UpperCamelCase (self ): snake_case_ : Optional[int] = self.tokenizer.model_input_names snake_case_ : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __UpperCamelCase (self ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowercase__ , ) return self.image_processor_class
48
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ = logging.get_logger(__name__) a_ = '''▁''' a_ = {'''vocab_file''': '''sentencepiece.bpe.model'''} a_ = { '''vocab_file''': { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''', } } a_ = { '''facebook/xglm-564M''': 2048, } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : List[Any] = VOCAB_FILES_NAMES _A : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _A : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : int = ["""input_ids""", """attention_mask"""] def __init__(self , lowercase__ , lowercase__="<s>" , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__ = None , **lowercase__ , ): snake_case_ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer snake_case_ : Tuple = 7 snake_case_ : Any = [f'<madeupword{i}>' for i in range(self.num_madeup_words )] snake_case_ : Tuple = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=lowercase__ , eos_token=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , pad_token=lowercase__ , sp_model_kwargs=self.sp_model_kwargs , **lowercase__ , ) snake_case_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowercase__ ) ) snake_case_ : Optional[int] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case_ : str = 1 # Mimic fairseq token-to-id alignment for the first 4 token snake_case_ : Any = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} snake_case_ : List[str] = len(self.sp_model ) snake_case_ : List[str] = {f'<madeupword{i}>': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(lowercase__ ) snake_case_ : Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__(self ): snake_case_ : List[str] = self.__dict__.copy() snake_case_ : Dict = None snake_case_ : int = self.sp_model.serialized_model_proto() return state def __setstate__(self , lowercase__ ): snake_case_ : int = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case_ : Tuple = {} snake_case_ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if token_ids_a is None: return [self.sep_token_id] + token_ids_a snake_case_ : Tuple = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def __UpperCamelCase (self , lowercase__ , lowercase__ = None , lowercase__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase__ , token_ids_a=lowercase__ , already_has_special_tokens=lowercase__ ) if token_ids_a is None: return [1] + ([0] * len(lowercase__ )) return [1] + ([0] * len(lowercase__ )) + [1, 1] + ([0] * len(lowercase__ )) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): snake_case_ : Union[str, Any] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def __UpperCamelCase (self ): return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = {self.convert_ids_to_tokens(lowercase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __UpperCamelCase (self , lowercase__ ): return self.sp_model.encode(lowercase__ , out_type=lowercase__ ) def __UpperCamelCase (self , lowercase__ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case_ : Union[str, Any] = self.sp_model.PieceToId(lowercase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __UpperCamelCase (self , lowercase__ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Optional[Any] = """""".join(lowercase__ ).replace(lowercase__ , """ """ ).strip() return out_string def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if not os.path.isdir(lowercase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return snake_case_ : Any = os.path.join( lowercase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase__ , """wb""" ) as fi: snake_case_ : Dict = self.sp_model.serialized_model_proto() fi.write(lowercase__ ) return (out_vocab_file,)
48
"""simple docstring""" import argparse import copy def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" snake_case_ : List[Any] = {} with open(SCREAMING_SNAKE_CASE__ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: snake_case_ : int = [] _list.append([line.split()[1], line.split()[2]] ) snake_case_ : Optional[Any] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: snake_case_ : str = [] _list.append([line.split()[0], line.split()[2]] ) snake_case_ : Optional[Any] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" with open(SCREAMING_SNAKE_CASE__ ) as f: snake_case_ : Optional[Any] = f.read(1 ) snake_case_ : Union[str, Any] = start_node snake_case_ : Dict = [] snake_case_ : Union[str, Any] = start_node snake_case_ : Tuple = 0 while visiting not in first_solution: snake_case_ : int = 1_0_0_0_0 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(SCREAMING_SNAKE_CASE__ ) and k[0] not in first_solution: snake_case_ : Union[str, Any] = k[1] snake_case_ : Any = k[0] first_solution.append(SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = distance_of_first_solution + int(SCREAMING_SNAKE_CASE__ ) snake_case_ : List[str] = best_node first_solution.append(SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[Any] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 snake_case_ : int = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0_0_0_0 ) return first_solution, distance_of_first_solution def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" snake_case_ : Union[str, Any] = [] for n in solution[1:-1]: snake_case_ : str = solution.index(SCREAMING_SNAKE_CASE__ ) for kn in solution[1:-1]: snake_case_ : Tuple = solution.index(SCREAMING_SNAKE_CASE__ ) if n == kn: continue snake_case_ : Optional[Any] = copy.deepcopy(SCREAMING_SNAKE_CASE__ ) snake_case_ : int = kn snake_case_ : Dict = n snake_case_ : Optional[int] = 0 for k in _tmp[:-1]: snake_case_ : Dict = _tmp[_tmp.index(SCREAMING_SNAKE_CASE__ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: snake_case_ : Dict = distance + int(i[1] ) _tmp.append(SCREAMING_SNAKE_CASE__ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) snake_case_ : Optional[Any] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda SCREAMING_SNAKE_CASE__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] ): """simple docstring""" snake_case_ : Dict = 1 snake_case_ : List[Any] = first_solution snake_case_ : List[Any] = [] snake_case_ : Optional[Any] = distance_of_first_solution snake_case_ : Dict = solution while count <= iters: snake_case_ : List[str] = find_neighborhood(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = 0 snake_case_ : List[Any] = neighborhood[index_of_best_solution] snake_case_ : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ ) - 1 snake_case_ : List[str] = False while not found: snake_case_ : Tuple = 0 while i < len(SCREAMING_SNAKE_CASE__ ): if best_solution[i] != solution[i]: snake_case_ : Optional[Any] = best_solution[i] snake_case_ : int = solution[i] break snake_case_ : List[str] = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) snake_case_ : Tuple = True snake_case_ : Dict = best_solution[:-1] snake_case_ : Tuple = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: snake_case_ : Tuple = cost snake_case_ : Union[str, Any] = solution else: snake_case_ : str = index_of_best_solution + 1 snake_case_ : Tuple = neighborhood[index_of_best_solution] if len(SCREAMING_SNAKE_CASE__ ) >= size: tabu_list.pop(0 ) snake_case_ : List[str] = count + 1 return best_solution_ever, best_cost def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any]=None ): """simple docstring""" snake_case_ : Tuple = generate_neighbours(args.File ) snake_case_ , snake_case_ : Optional[Any] = generate_first_solution( args.File , SCREAMING_SNAKE_CASE__ ) snake_case_ , snake_case_ : Dict = tabu_search( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , args.Iterations , args.Size , ) print(f'Best solution: {best_sol}, with total distance: {best_cost}.' ) if __name__ == "__main__": a_ = argparse.ArgumentParser(description='''Tabu Search''') parser.add_argument( '''-f''', '''--File''', type=str, help='''Path to the file containing the data''', required=True, ) parser.add_argument( '''-i''', '''--Iterations''', type=int, help='''How many iterations the algorithm should perform''', required=True, ) parser.add_argument( '''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True ) # Pass the arguments to main method main(parser.parse_args())
48
1
"""simple docstring""" import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a_ = { '''facebook/mask2former-swin-small-coco-instance''': ( '''https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json''' ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : List[Any] = """mask2former""" _A : List[Any] = ["""swin"""] _A : Any = {"""hidden_size""": """hidden_dim"""} def __init__(self , lowercase__ = None , lowercase__ = 2_56 , lowercase__ = 2_56 , lowercase__ = 2_56 , lowercase__ = 10_24 , lowercase__ = "relu" , lowercase__ = 6 , lowercase__ = 10 , lowercase__ = 8 , lowercase__ = 0.0 , lowercase__ = 20_48 , lowercase__ = False , lowercase__ = False , lowercase__ = 4 , lowercase__ = 2_55 , lowercase__ = 1_00 , lowercase__ = 0.1 , lowercase__ = 2.0 , lowercase__ = 5.0 , lowercase__ = 5.0 , lowercase__ = 1_25_44 , lowercase__ = 3.0 , lowercase__ = 0.75 , lowercase__ = 0.02 , lowercase__ = 1.0 , lowercase__ = True , lowercase__ = [4, 8, 16, 32] , lowercase__ = None , **lowercase__ , ): if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.""" ) snake_case_ : Dict = CONFIG_MAPPING["""swin"""]( image_size=2_24 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=lowercase__ , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(lowercase__ , lowercase__ ): snake_case_ : int = backbone_config.pop("""model_type""" ) snake_case_ : Optional[int] = CONFIG_MAPPING[backbone_model_type] snake_case_ : int = config_class.from_dict(lowercase__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ' f'Supported model types: {",".join(self.backbones_supported )}' ) snake_case_ : Optional[Any] = backbone_config snake_case_ : List[str] = feature_size snake_case_ : Optional[Any] = mask_feature_size snake_case_ : List[str] = hidden_dim snake_case_ : str = encoder_feedforward_dim snake_case_ : str = activation_function snake_case_ : Optional[int] = encoder_layers snake_case_ : Dict = decoder_layers snake_case_ : int = num_attention_heads snake_case_ : str = dropout snake_case_ : Optional[int] = dim_feedforward snake_case_ : Tuple = pre_norm snake_case_ : List[Any] = enforce_input_projection snake_case_ : Tuple = common_stride snake_case_ : Optional[int] = ignore_value snake_case_ : Tuple = num_queries snake_case_ : str = no_object_weight snake_case_ : List[str] = class_weight snake_case_ : List[str] = mask_weight snake_case_ : str = dice_weight snake_case_ : Tuple = train_num_points snake_case_ : List[str] = oversample_ratio snake_case_ : str = importance_sample_ratio snake_case_ : str = init_std snake_case_ : int = init_xavier_std snake_case_ : Tuple = use_auxiliary_loss snake_case_ : Optional[int] = feature_strides snake_case_ : Any = output_auxiliary_logits snake_case_ : List[Any] = decoder_layers super().__init__(**lowercase__ ) @classmethod def __UpperCamelCase (cls , lowercase__ , **lowercase__ ): return cls( backbone_config=lowercase__ , **lowercase__ , ) def __UpperCamelCase (self ): snake_case_ : Tuple = copy.deepcopy(self.__dict__ ) snake_case_ : int = self.backbone_config.to_dict() snake_case_ : str = self.__class__.model_type return output
48
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings a_ = r''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(_UpperCAmelCase) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """rag""" _A : Optional[Any] = True def __init__(self , lowercase__=None , lowercase__=True , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=" / " , lowercase__=" // " , lowercase__=5 , lowercase__=3_00 , lowercase__=7_68 , lowercase__=8 , lowercase__="wiki_dpr" , lowercase__="train" , lowercase__="compressed" , lowercase__=None , lowercase__=None , lowercase__=False , lowercase__=False , lowercase__=0.0 , lowercase__=True , lowercase__=False , lowercase__=False , lowercase__=False , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__( bos_token_id=lowercase__ , pad_token_id=lowercase__ , eos_token_id=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , prefix=lowercase__ , vocab_size=lowercase__ , **lowercase__ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" snake_case_ : List[Any] = kwargs.pop("""question_encoder""" ) snake_case_ : Tuple = question_encoder_config.pop("""model_type""" ) snake_case_ : List[str] = kwargs.pop("""generator""" ) snake_case_ : List[str] = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig snake_case_ : List[str] = AutoConfig.for_model(lowercase__ , **lowercase__ ) snake_case_ : Tuple = AutoConfig.for_model(lowercase__ , **lowercase__ ) snake_case_ : int = reduce_loss snake_case_ : Optional[int] = label_smoothing snake_case_ : Dict = exclude_bos_score snake_case_ : Union[str, Any] = do_marginalize snake_case_ : Union[str, Any] = title_sep snake_case_ : int = doc_sep snake_case_ : int = n_docs snake_case_ : List[str] = max_combined_length snake_case_ : Tuple = dataset snake_case_ : int = dataset_split snake_case_ : str = index_name snake_case_ : List[str] = retrieval_vector_size snake_case_ : Dict = retrieval_batch_size snake_case_ : str = passages_path snake_case_ : Union[str, Any] = index_path snake_case_ : Tuple = use_dummy_dataset snake_case_ : Dict = output_retrieved snake_case_ : str = do_deduplication snake_case_ : Any = use_cache if self.forced_eos_token_id is None: snake_case_ : Any = getattr(self.generator , """forced_eos_token_id""" , lowercase__ ) @classmethod def __UpperCamelCase (cls , lowercase__ , lowercase__ , **lowercase__ ): return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Optional[Any] = copy.deepcopy(self.__dict__ ) snake_case_ : Any = self.question_encoder.to_dict() snake_case_ : Dict = self.generator.to_dict() snake_case_ : Union[str, Any] = self.__class__.model_type return output
48
1
"""simple docstring""" from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging a_ = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[tf.Tensor, np.ndarray] ): """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ): return list(tensor.shape ) snake_case_ : Optional[int] = tf.shape(SCREAMING_SNAKE_CASE__ ) if tensor.shape == tf.TensorShape(SCREAMING_SNAKE_CASE__ ): return dynamic snake_case_ : List[str] = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(SCREAMING_SNAKE_CASE__ )] def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : tf.Tensor , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[str] = None ): """simple docstring""" return tf.nn.softmax(logits=logits + 1E-9 , axis=SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any]=1E-5 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=-1 ): """simple docstring""" if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise NotImplementedError("""Only 1D weight and bias tensors are supported for now, with only a single axis.""" ) # Get mean and variance on the axis to be normalized snake_case_ , snake_case_ : str = tf.nn.moments(SCREAMING_SNAKE_CASE__ , axes=[axis] , keepdims=SCREAMING_SNAKE_CASE__ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis snake_case_ : Optional[Any] = [1] * inputs.shape.rank snake_case_ : Any = shape_list(SCREAMING_SNAKE_CASE__ )[axis] snake_case_ : List[str] = tf.reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = tf.reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Compute layer normalization using the batch_normalization # function. snake_case_ : List[Any] = tf.nn.batch_normalization( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , offset=SCREAMING_SNAKE_CASE__ , scale=SCREAMING_SNAKE_CASE__ , variance_epsilon=SCREAMING_SNAKE_CASE__ , ) return outputs def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict=0 , SCREAMING_SNAKE_CASE__ : Dict=-1 ): """simple docstring""" if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input snake_case_ : int = tf.shape(SCREAMING_SNAKE_CASE__ ) snake_case_ : str = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) snake_case_ : List[str] = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : tf.Tensor ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE__ , tf.Tensor ): snake_case_ : Optional[Any] = tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: snake_case_ : Optional[int] = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: snake_case_ : List[Any] = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) snake_case_ : int = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : tf.Tensor , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str = "input_ids" ): """simple docstring""" tf.debugging.assert_less( SCREAMING_SNAKE_CASE__ , tf.cast(SCREAMING_SNAKE_CASE__ , dtype=tensor.dtype ) , message=( f'The maximum value of {tensor_name} ({tf.math.reduce_max(SCREAMING_SNAKE_CASE__ )}) must be smaller than the embedding ' f'layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.' ) , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : Any = 6_4_5_1_2 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. snake_case_ : Optional[int] = [x for x in data if len(SCREAMING_SNAKE_CASE__ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( """The following attributes cannot be saved to HDF5 file because """ f'they are larger than {HDF5_OBJECT_HEADER_LIMIT} ' f'bytes: {bad_attributes}' ) snake_case_ : str = np.asarray(SCREAMING_SNAKE_CASE__ ) snake_case_ : Union[str, Any] = 1 snake_case_ : Optional[Any] = np.array_split(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 snake_case_ : Any = np.array_split(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(SCREAMING_SNAKE_CASE__ ): snake_case_ : List[Any] = chunk_data else: snake_case_ : Union[str, Any] = data def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" if name in group.attrs: snake_case_ : Tuple = [n.decode("""utf8""" ) if hasattr(SCREAMING_SNAKE_CASE__ , """decode""" ) else n for n in group.attrs[name]] else: snake_case_ : Tuple = [] snake_case_ : Optional[Any] = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("""utf8""" ) if hasattr(SCREAMING_SNAKE_CASE__ , """decode""" ) else n for n in group.attrs["""%s%d""" % (name, chunk_id)]] ) chunk_id += 1 return data def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" def _expand_single_ad_tensor(SCREAMING_SNAKE_CASE__ : Optional[Any] ): if isinstance(SCREAMING_SNAKE_CASE__ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(SCREAMING_SNAKE_CASE__ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , SCREAMING_SNAKE_CASE__ )
48
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """upernet""" def __init__(self , lowercase__=None , lowercase__=5_12 , lowercase__=0.02 , lowercase__=[1, 2, 3, 6] , lowercase__=True , lowercase__=0.4 , lowercase__=3_84 , lowercase__=2_56 , lowercase__=1 , lowercase__=False , lowercase__=2_55 , **lowercase__ , ): super().__init__(**lowercase__ ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) snake_case_ : List[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(lowercase__ , lowercase__ ): snake_case_ : Tuple = backbone_config.get("""model_type""" ) snake_case_ : List[str] = CONFIG_MAPPING[backbone_model_type] snake_case_ : List[Any] = config_class.from_dict(lowercase__ ) snake_case_ : List[Any] = backbone_config snake_case_ : Optional[Any] = hidden_size snake_case_ : Any = initializer_range snake_case_ : str = pool_scales snake_case_ : Dict = use_auxiliary_head snake_case_ : str = auxiliary_loss_weight snake_case_ : List[str] = auxiliary_in_channels snake_case_ : Optional[Any] = auxiliary_channels snake_case_ : Any = auxiliary_num_convs snake_case_ : List[Any] = auxiliary_concat_input snake_case_ : List[str] = loss_ignore_index def __UpperCamelCase (self ): snake_case_ : Dict = copy.deepcopy(self.__dict__ ) snake_case_ : Union[str, Any] = self.backbone_config.to_dict() snake_case_ : Any = self.__class__.model_type return output
48
1
"""simple docstring""" import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __lowercase ( unittest.TestCase): """simple docstring""" _A : int = MODEL_FOR_MASKED_LM_MAPPING _A : Dict = TF_MODEL_FOR_MASKED_LM_MAPPING def __UpperCamelCase (self ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def __UpperCamelCase (self ): snake_case_ : int = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" ) snake_case_ : Dict = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(lowercase__ , decimals=6 ) , [ {"""sequence""": """My name is grouped""", """score""": 2.1e-05, """token""": 3_80_15, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1e-05, """token""": 2_55_06, """token_str""": """ accuser"""}, ] , ) snake_case_ : Any = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(lowercase__ , decimals=6 ) , [ { """sequence""": """The largest city in France is grouped""", """score""": 2.1e-05, """token""": 3_80_15, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1e-05, """token""": 2_55_06, """token_str""": """ accuser""", }, ] , ) snake_case_ : List[Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(lowercase__ , decimals=6 ) , [ {"""sequence""": """My name is Clara""", """score""": 2e-05, """token""": 1_36_06, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2e-05, """token""": 34_99, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9e-05, """token""": 29_41, """token_str""": """ Te"""}, ] , ) @require_torch def __UpperCamelCase (self ): snake_case_ : int = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" ) snake_case_ : str = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(lowercase__ , decimals=6 ) , [ {"""sequence""": """My name is Maul""", """score""": 2.2e-05, """token""": 3_56_76, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2e-05, """token""": 1_64_16, """token_str""": """ELS"""}, ] , ) snake_case_ : str = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(lowercase__ , decimals=6 ) , [ { """sequence""": """The largest city in France is Maul""", """score""": 2.2e-05, """token""": 3_56_76, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2e-05, """token""": 1_64_16, """token_str""": """ELS"""}, ] , ) snake_case_ : Any = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(lowercase__ , decimals=6 ) , [ {"""sequence""": """My name is Patrick""", """score""": 2.1e-05, """token""": 34_99, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2e-05, """token""": 29_41, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2e-05, """token""": 1_36_06, """token_str""": """ Clara"""}, ] , ) snake_case_ : str = unmasker("""My name is <mask> <mask>""" , top_k=2 ) self.assertEqual( nested_simplify(lowercase__ , decimals=6 ) , [ [ { """score""": 2.2e-05, """token""": 3_56_76, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2e-05, """token""": 1_64_16, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2e-05, """token""": 3_56_76, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2e-05, """token""": 1_64_16, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] , ) @require_torch_gpu def __UpperCamelCase (self ): snake_case_ : List[Any] = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" ) # convert model to fp16 pipe.model.half() snake_case_ : Any = pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(lowercase__ , lowercase__ ) @slow @require_torch def __UpperCamelCase (self ): snake_case_ : Tuple = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" ) self.run_large_test(lowercase__ ) @slow @require_tf def __UpperCamelCase (self ): snake_case_ : List[Any] = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" ) self.run_large_test(lowercase__ ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Dict = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(lowercase__ ) , [ {"""sequence""": """My name is John""", """score""": 0.008, """token""": 6_10, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 15_73, """token_str""": """ Chris"""}, ] , ) snake_case_ : Optional[int] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(lowercase__ ) , [ { """sequence""": """The largest city in France is Paris""", """score""": 0.251, """token""": 22_01, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.214, """token""": 1_27_90, """token_str""": """ Lyon""", }, ] , ) snake_case_ : Dict = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(lowercase__ ) , [ {"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 34_99, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 1_36_06, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.000, """token""": 29_41, """token_str""": """ Te"""}, ] , ) @require_torch def __UpperCamelCase (self ): snake_case_ : Tuple = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" ) snake_case_ : Optional[Any] = None snake_case_ : Optional[Any] = None self.run_pipeline_test(lowercase__ , [] ) @require_tf def __UpperCamelCase (self ): snake_case_ : List[str] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" ) snake_case_ : str = None snake_case_ : str = None self.run_pipeline_test(lowercase__ , [] ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) snake_case_ : Dict = FillMaskPipeline(model=lowercase__ , tokenizer=lowercase__ ) snake_case_ : Tuple = [ f'This is another {tokenizer.mask_token} test', ] return fill_masker, examples def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : Optional[int] = fill_masker.tokenizer snake_case_ : Optional[int] = fill_masker.model snake_case_ : Any = fill_masker( f'This is a {tokenizer.mask_token}' , ) self.assertEqual( lowercase__ , [ {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, ] , ) snake_case_ : Union[str, Any] = fill_masker([f'This is a {tokenizer.mask_token}'] ) self.assertEqual( lowercase__ , [ {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, ] , ) snake_case_ : List[Any] = fill_masker([f'This is a {tokenizer.mask_token}', f'Another {tokenizer.mask_token} great test.'] ) self.assertEqual( lowercase__ , [ [ {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, ], [ {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, ], ] , ) with self.assertRaises(lowercase__ ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(lowercase__ ): fill_masker("""This is""" ) self.run_test_top_k(lowercase__ , lowercase__ ) self.run_test_targets(lowercase__ , lowercase__ ) self.run_test_top_k_targets(lowercase__ , lowercase__ ) self.fill_mask_with_duplicate_targets_and_top_k(lowercase__ , lowercase__ ) self.fill_mask_with_multiple_masks(lowercase__ , lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : Tuple = tokenizer.get_vocab() snake_case_ : Tuple = sorted(vocab.keys() )[:2] # Pipeline argument snake_case_ : Union[str, Any] = FillMaskPipeline(model=lowercase__ , tokenizer=lowercase__ , targets=lowercase__ ) snake_case_ : Any = fill_masker(f'This is a {tokenizer.mask_token}' ) self.assertEqual( lowercase__ , [ {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, ] , ) snake_case_ : str = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , lowercase__ ) snake_case_ : Union[str, Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(lowercase__ ) ) # Call argument snake_case_ : Optional[Any] = FillMaskPipeline(model=lowercase__ , tokenizer=lowercase__ ) snake_case_ : List[str] = fill_masker(f'This is a {tokenizer.mask_token}' , targets=lowercase__ ) self.assertEqual( lowercase__ , [ {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, ] , ) snake_case_ : Tuple = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , lowercase__ ) snake_case_ : Dict = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(lowercase__ ) ) # Score equivalence snake_case_ : List[Any] = fill_masker(f'This is a {tokenizer.mask_token}' , targets=lowercase__ ) snake_case_ : List[Any] = [top_mask["""token_str"""] for top_mask in outputs] snake_case_ : Dict = [top_mask["""score"""] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(lowercase__ ) == set(lowercase__ ): snake_case_ : Optional[Any] = fill_masker(f'This is a {tokenizer.mask_token}' , targets=lowercase__ ) snake_case_ : Tuple = [top_mask["""score"""] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(lowercase__ ) , nested_simplify(lowercase__ ) ) # Raises with invalid with self.assertRaises(lowercase__ ): snake_case_ : Optional[Any] = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(lowercase__ ): snake_case_ : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[""""""] ) with self.assertRaises(lowercase__ ): snake_case_ : str = fill_masker(f'This is a {tokenizer.mask_token}' , targets="""""" ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : List[str] = FillMaskPipeline(model=lowercase__ , tokenizer=lowercase__ , top_k=2 ) snake_case_ : Optional[Any] = fill_masker(f'This is a {tokenizer.mask_token}' ) self.assertEqual( lowercase__ , [ {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, ] , ) snake_case_ : Optional[Any] = FillMaskPipeline(model=lowercase__ , tokenizer=lowercase__ ) snake_case_ : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 ) self.assertEqual( lowercase__ , [ {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, ] , ) self.assertEqual(nested_simplify(lowercase__ ) , nested_simplify(lowercase__ ) ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : List[str] = tokenizer.get_vocab() snake_case_ : int = FillMaskPipeline(model=lowercase__ , tokenizer=lowercase__ ) # top_k=2, ntargets=3 snake_case_ : Optional[int] = sorted(vocab.keys() )[:3] snake_case_ : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 , targets=lowercase__ ) # If we use the most probably targets, and filter differently, we should still # have the same results snake_case_ : Any = [el["""token_str"""] for el in sorted(lowercase__ , key=lambda lowercase__ : x["score"] , reverse=lowercase__ )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(lowercase__ ).issubset(lowercase__ ): snake_case_ : Any = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=3 , targets=lowercase__ ) # They should yield exactly the same result self.assertEqual(nested_simplify(lowercase__ ) , nested_simplify(lowercase__ ) ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : List[str] = FillMaskPipeline(model=lowercase__ , tokenizer=lowercase__ ) snake_case_ : Optional[Any] = tokenizer.get_vocab() # String duplicates + id duplicates snake_case_ : str = sorted(vocab.keys() )[:3] snake_case_ : int = [targets[0], targets[1], targets[0], targets[2], targets[1]] snake_case_ : Any = fill_masker(f'My name is {tokenizer.mask_token}' , targets=lowercase__ , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(lowercase__ ) , 3 ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : List[Any] = FillMaskPipeline(model=lowercase__ , tokenizer=lowercase__ ) snake_case_ : List[str] = fill_masker( f'This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}' , top_k=2 ) self.assertEqual( lowercase__ , [ [ {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, ], [ {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, ], [ {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, {"""sequence""": ANY(lowercase__ ), """score""": ANY(lowercase__ ), """token""": ANY(lowercase__ ), """token_str""": ANY(lowercase__ )}, ], ] , )
48
"""simple docstring""" import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask a_ = logging.getLogger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self , lowercase__=-1 ): # in NER datasets, the last column is usually reserved for NER label snake_case_ : Union[str, Any] = label_idx def __UpperCamelCase (self , lowercase__ , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): snake_case_ : List[str] = mode.value snake_case_ : List[Any] = os.path.join(lowercase__ , f'{mode}.txt' ) snake_case_ : Tuple = 1 snake_case_ : Any = [] with open(lowercase__ , encoding="""utf-8""" ) as f: snake_case_ : str = [] snake_case_ : List[Any] = [] for line in f: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) guid_index += 1 snake_case_ : Optional[Any] = [] snake_case_ : int = [] else: snake_case_ : Optional[Any] = line.split(""" """ ) words.append(splits[0] ) if len(lowercase__ ) > 1: labels.append(splits[self.label_idx].replace("""\n""" , """""" ) ) else: # Examples could have no label for mode = "test" labels.append("""O""" ) if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) return examples def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : str = 0 for line in test_input_reader: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": writer.write(lowercase__ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: snake_case_ : Optional[int] = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n""" writer.write(lowercase__ ) else: logger.warning("""Maximum sequence length exceeded: No prediction for '%s'.""" , line.split()[0] ) def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: snake_case_ : Dict = f.read().splitlines() if "O" not in labels: snake_case_ : List[Any] = ["""O"""] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self ): # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: snake_case_ : Any = f.read().splitlines() if "O" not in labels: snake_case_ : Tuple = ["""O"""] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __lowercase ( _UpperCAmelCase): """simple docstring""" def __UpperCamelCase (self , lowercase__ , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): snake_case_ : List[Any] = mode.value snake_case_ : Optional[int] = os.path.join(lowercase__ , f'{mode}.txt' ) snake_case_ : Tuple = 1 snake_case_ : str = [] with open(lowercase__ , encoding="""utf-8""" ) as f: for sentence in parse_incr(lowercase__ ): snake_case_ : Tuple = [] snake_case_ : Any = [] for token in sentence: words.append(token["""form"""] ) labels.append(token["""upos"""] ) assert len(lowercase__ ) == len(lowercase__ ) if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) guid_index += 1 return examples def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : Dict = 0 for sentence in parse_incr(lowercase__ ): snake_case_ : int = preds_list[example_id] snake_case_ : Dict = """""" for token in sentence: out += f'{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) ' out += "\n" writer.write(lowercase__ ) example_id += 1 def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
48
1
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class __lowercase ( unittest.TestCase): """simple docstring""" _A : Optional[Any] = ViTImageProcessor if is_vision_available() else None @property def __UpperCamelCase (self ): return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase (self ): snake_case_ : List[str] = (3, 32, 1_28) snake_case_ : Any = tempfile.mkdtemp() # fmt: off snake_case_ : int = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on snake_case_ : int = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) snake_case_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowercase__ ) + """\n""" ) snake_case_ : Optional[int] = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 1_28}, } snake_case_ : Optional[Any] = os.path.join(self.tmpdirname , lowercase__ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(lowercase__ , lowercase__ ) def __UpperCamelCase (self , **lowercase__ ): return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def __UpperCamelCase (self , **lowercase__ ): return ViTImageProcessor.from_pretrained(self.tmpdirname , **lowercase__ ) def __UpperCamelCase (self ): shutil.rmtree(self.tmpdirname ) def __UpperCamelCase (self ): snake_case_ : Any = np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta ) snake_case_ : str = Image.fromarray(np.moveaxis(lowercase__ , 0 , -1 ) ) return image_input def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = self.get_tokenizer() snake_case_ : Any = self.get_image_processor() snake_case_ : List[Any] = MgpstrProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) processor.save_pretrained(self.tmpdirname ) snake_case_ : Any = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase__ ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , lowercase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : List[Any] = self.get_tokenizer() snake_case_ : Any = self.get_image_processor() snake_case_ : Optional[Any] = MgpstrProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) processor.save_pretrained(self.tmpdirname ) snake_case_ : List[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) snake_case_ : Optional[Any] = self.get_image_processor(do_normalize=lowercase__ , padding_value=1.0 ) snake_case_ : Dict = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowercase__ , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , lowercase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : List[str] = self.get_image_processor() snake_case_ : int = self.get_tokenizer() snake_case_ : int = MgpstrProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) snake_case_ : Any = self.prepare_image_inputs() snake_case_ : Optional[int] = image_processor(lowercase__ , return_tensors="""np""" ) snake_case_ : Union[str, Any] = processor(images=lowercase__ , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __UpperCamelCase (self ): snake_case_ : List[str] = self.get_image_processor() snake_case_ : Tuple = self.get_tokenizer() snake_case_ : List[str] = MgpstrProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) snake_case_ : Any = """test""" snake_case_ : str = processor(text=lowercase__ ) snake_case_ : Optional[Any] = tokenizer(lowercase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCamelCase (self ): snake_case_ : List[str] = self.get_image_processor() snake_case_ : Dict = self.get_tokenizer() snake_case_ : List[Any] = MgpstrProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) snake_case_ : Union[str, Any] = """test""" snake_case_ : Union[str, Any] = self.prepare_image_inputs() snake_case_ : Tuple = processor(text=lowercase__ , images=lowercase__ ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """labels"""] ) # test if it raises when no input is passed with pytest.raises(lowercase__ ): processor() def __UpperCamelCase (self ): snake_case_ : Optional[Any] = self.get_image_processor() snake_case_ : Union[str, Any] = self.get_tokenizer() snake_case_ : Union[str, Any] = MgpstrProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) snake_case_ : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] snake_case_ : str = processor.char_decode(lowercase__ ) snake_case_ : List[str] = tokenizer.batch_decode(lowercase__ ) snake_case_ : Optional[Any] = [seq.replace(""" """ , """""" ) for seq in decoded_tok] self.assertListEqual(lowercase__ , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Optional[Any] = self.get_image_processor() snake_case_ : List[Any] = self.get_tokenizer() snake_case_ : str = MgpstrProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) snake_case_ : List[str] = None snake_case_ : Optional[int] = self.prepare_image_inputs() snake_case_ : Optional[Any] = processor(text=lowercase__ , images=lowercase__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def __UpperCamelCase (self ): snake_case_ : List[Any] = self.get_image_processor() snake_case_ : List[str] = self.get_tokenizer() snake_case_ : Tuple = MgpstrProcessor(tokenizer=lowercase__ , image_processor=lowercase__ ) snake_case_ : Union[str, Any] = torch.randn(1 , 27 , 38 ) snake_case_ : Tuple = torch.randn(1 , 27 , 5_02_57 ) snake_case_ : str = torch.randn(1 , 27 , 3_05_22 ) snake_case_ : Tuple = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""] )
48
"""simple docstring""" import random def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : Union[str, Any] = num - 1 snake_case_ : List[str] = 0 while s % 2 == 0: snake_case_ : str = s // 2 t += 1 for _ in range(5 ): snake_case_ : List[Any] = random.randrange(2 , num - 1 ) snake_case_ : Dict = pow(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if v != 1: snake_case_ : int = 0 while v != (num - 1): if i == t - 1: return False else: snake_case_ : str = i + 1 snake_case_ : int = (v**2) % num return True def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" if num < 2: return False snake_case_ : Dict = [ 2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1, 4_3, 4_7, 5_3, 5_9, 6_1, 6_7, 7_1, 7_3, 7_9, 8_3, 8_9, 9_7, 1_0_1, 1_0_3, 1_0_7, 1_0_9, 1_1_3, 1_2_7, 1_3_1, 1_3_7, 1_3_9, 1_4_9, 1_5_1, 1_5_7, 1_6_3, 1_6_7, 1_7_3, 1_7_9, 1_8_1, 1_9_1, 1_9_3, 1_9_7, 1_9_9, 2_1_1, 2_2_3, 2_2_7, 2_2_9, 2_3_3, 2_3_9, 2_4_1, 2_5_1, 2_5_7, 2_6_3, 2_6_9, 2_7_1, 2_7_7, 2_8_1, 2_8_3, 2_9_3, 3_0_7, 3_1_1, 3_1_3, 3_1_7, 3_3_1, 3_3_7, 3_4_7, 3_4_9, 3_5_3, 3_5_9, 3_6_7, 3_7_3, 3_7_9, 3_8_3, 3_8_9, 3_9_7, 4_0_1, 4_0_9, 4_1_9, 4_2_1, 4_3_1, 4_3_3, 4_3_9, 4_4_3, 4_4_9, 4_5_7, 4_6_1, 4_6_3, 4_6_7, 4_7_9, 4_8_7, 4_9_1, 4_9_9, 5_0_3, 5_0_9, 5_2_1, 5_2_3, 5_4_1, 5_4_7, 5_5_7, 5_6_3, 5_6_9, 5_7_1, 5_7_7, 5_8_7, 5_9_3, 5_9_9, 6_0_1, 6_0_7, 6_1_3, 6_1_7, 6_1_9, 6_3_1, 6_4_1, 6_4_3, 6_4_7, 6_5_3, 6_5_9, 6_6_1, 6_7_3, 6_7_7, 6_8_3, 6_9_1, 7_0_1, 7_0_9, 7_1_9, 7_2_7, 7_3_3, 7_3_9, 7_4_3, 7_5_1, 7_5_7, 7_6_1, 7_6_9, 7_7_3, 7_8_7, 7_9_7, 8_0_9, 8_1_1, 8_2_1, 8_2_3, 8_2_7, 8_2_9, 8_3_9, 8_5_3, 8_5_7, 8_5_9, 8_6_3, 8_7_7, 8_8_1, 8_8_3, 8_8_7, 9_0_7, 9_1_1, 9_1_9, 9_2_9, 9_3_7, 9_4_1, 9_4_7, 9_5_3, 9_6_7, 9_7_1, 9_7_7, 9_8_3, 9_9_1, 9_9_7, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int = 1_0_2_4 ): """simple docstring""" while True: snake_case_ : Tuple = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(SCREAMING_SNAKE_CASE__ ): return num if __name__ == "__main__": a_ = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
48
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = { '''configuration_blenderbot''': [ '''BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlenderbotConfig''', '''BlenderbotOnnxConfig''', ], '''tokenization_blenderbot''': ['''BlenderbotTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['''BlenderbotTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlenderbotForCausalLM''', '''BlenderbotForConditionalGeneration''', '''BlenderbotModel''', '''BlenderbotPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''TFBlenderbotForConditionalGeneration''', '''TFBlenderbotModel''', '''TFBlenderbotPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''FlaxBlenderbotForConditionalGeneration''', '''FlaxBlenderbotModel''', '''FlaxBlenderbotPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
48
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType a_ = logging.get_logger(__name__) a_ = { '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Dict = """deberta-v2""" def __init__(self , lowercase__=12_81_00 , lowercase__=15_36 , lowercase__=24 , lowercase__=24 , lowercase__=61_44 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_12 , lowercase__=0 , lowercase__=0.02 , lowercase__=1e-7 , lowercase__=False , lowercase__=-1 , lowercase__=0 , lowercase__=True , lowercase__=None , lowercase__=0 , lowercase__="gelu" , **lowercase__ , ): super().__init__(**lowercase__ ) snake_case_ : Union[str, Any] = hidden_size snake_case_ : str = num_hidden_layers snake_case_ : Tuple = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : Optional[int] = hidden_act snake_case_ : Union[str, Any] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : List[Any] = max_position_embeddings snake_case_ : Union[str, Any] = type_vocab_size snake_case_ : Union[str, Any] = initializer_range snake_case_ : List[Any] = relative_attention snake_case_ : Dict = max_relative_positions snake_case_ : Optional[int] = pad_token_id snake_case_ : List[str] = position_biased_input # Backwards compatibility if type(lowercase__ ) == str: snake_case_ : Union[str, Any] = [x.strip() for x in pos_att_type.lower().split("""|""" )] snake_case_ : Optional[int] = pos_att_type snake_case_ : List[str] = vocab_size snake_case_ : Tuple = layer_norm_eps snake_case_ : List[Any] = kwargs.get("""pooler_hidden_size""" , lowercase__ ) snake_case_ : List[str] = pooler_dropout snake_case_ : int = pooler_hidden_act class __lowercase ( _UpperCAmelCase): """simple docstring""" @property def __UpperCamelCase (self ): if self.task == "multiple-choice": snake_case_ : List[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case_ : int = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def __UpperCamelCase (self ): return 12 def __UpperCamelCase (self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , lowercase__ = 3 , lowercase__ = 40 , lowercase__ = 40 , lowercase__ = None , ): snake_case_ : str = super().generate_dummy_inputs(preprocessor=lowercase__ , framework=lowercase__ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
48
1
"""simple docstring""" import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore a_ = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" a_ = [file for file in filepaths if file != file.lower()] if upper_files: print(F'''{len(upper_files)} files contain uppercase characters:''') print('''\n'''.join(upper_files) + '''\n''') a_ = [file for file in filepaths if ''' ''' in file] if space_files: print(F'''{len(space_files)} files contain space characters:''') print('''\n'''.join(space_files) + '''\n''') a_ = [file for file in filepaths if '''-''' in file] if hyphen_files: print(F'''{len(hyphen_files)} files contain hyphen characters:''') print('''\n'''.join(hyphen_files) + '''\n''') a_ = [file for file in filepaths if os.sep not in file] if nodir_files: print(F'''{len(nodir_files)} files are not in a directory:''') print('''\n'''.join(nodir_files) + '''\n''') a_ = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
48
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
48
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a_ = {'''configuration_encoder_decoder''': ['''EncoderDecoderConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['''EncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['''TFEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['''FlaxEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
48
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('''fixtures/test_sentencepiece.model''') a_ = {'''target_lang''': '''fi''', '''source_lang''': '''en'''} a_ = '''>>zh<<''' a_ = '''Helsinki-NLP/''' if is_torch_available(): a_ = '''pt''' elif is_tf_available(): a_ = '''tf''' else: a_ = '''jax''' @require_sentencepiece class __lowercase ( _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : str = MarianTokenizer _A : List[str] = False _A : List[str] = True def __UpperCamelCase (self ): super().setUp() snake_case_ : Optional[int] = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] snake_case_ : Any = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) snake_case_ : Any = Path(self.tmpdirname ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) snake_case_ : Optional[Any] = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase (self , **lowercase__ ): return MarianTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def __UpperCamelCase (self , lowercase__ ): return ( "This is a test", "This is a test", ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = """</s>""" snake_case_ : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__ ) , lowercase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__ ) , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(lowercase__ ) , 9 ) def __UpperCamelCase (self ): self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def __UpperCamelCase (self ): snake_case_ : Any = MarianTokenizer.from_pretrained(f'{ORG_NAME}opus-mt-en-de' ) snake_case_ : Tuple = en_de_tokenizer(["""I am a small frog"""] , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) snake_case_ : Dict = [38, 1_21, 14, 6_97, 3_88_48, 0] self.assertListEqual(lowercase__ , batch.input_ids[0] ) snake_case_ : Tuple = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(lowercase__ ) snake_case_ : str = [x.name for x in Path(lowercase__ ).glob("""*""" )] self.assertIn("""source.spm""" , lowercase__ ) MarianTokenizer.from_pretrained(lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = self.get_tokenizer() snake_case_ : List[str] = tok( ["""I am a small frog""" * 10_00, """I am a small frog"""] , padding=lowercase__ , truncation=lowercase__ , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(batch.input_ids.shape , (2, 5_12) ) def __UpperCamelCase (self ): snake_case_ : Tuple = self.get_tokenizer() snake_case_ : Tuple = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=lowercase__ , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def __UpperCamelCase (self ): # fmt: off snake_case_ : str = {"""input_ids""": [[4_34_95, 4_62, 20, 4_21_64, 13_69, 52, 4_64, 1_32, 17_03, 4_92, 13, 74_91, 3_89_99, 6, 8, 4_64, 1_32, 17_03, 4_92, 13, 46_69, 3_78_67, 13, 75_25, 27, 15_93, 9_88, 13, 3_39_72, 70_29, 6, 20, 82_51, 3_83, 2, 2_70, 58_66, 37_88, 2, 23_53, 82_51, 1_23_38, 2, 1_39_58, 3_87, 2, 36_29, 69_53, 1_88, 29_00, 2, 1_39_58, 80_11, 1_15_01, 23, 84_60, 40_73, 3_40_09, 20, 4_35, 1_14_39, 27, 8, 84_60, 40_73, 60_04, 20, 99_88, 3_75, 27, 33, 2_66, 19_45, 10_76, 13_50, 3_78_67, 32_88, 5, 5_77, 10_76, 43_74, 8, 50_82, 5, 2_64_53, 2_57, 5_56, 4_03, 2, 2_42, 1_32, 3_83, 3_16, 4_92, 8, 1_07_67, 6, 3_16, 3_04, 42_39, 3, 0], [1_48, 1_57_22, 19, 18_39, 12, 13_50, 13, 2_23_27, 50_82, 54_18, 4_75_67, 3_59_38, 59, 3_18, 1_95_52, 1_08, 21_83, 54, 1_49_76, 48_35, 32, 5_47, 11_14, 8, 3_15, 24_17, 5, 92, 1_90_88, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00], [36, 63_95, 1_25_70, 3_91_47, 1_15_97, 6, 2_66, 4, 4_54_05, 72_96, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase__ , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def __UpperCamelCase (self ): snake_case_ : Any = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) snake_case_ : Dict = """Tämä on testi""" snake_case_ : List[Any] = """This is a test""" snake_case_ : Optional[int] = [76, 7, 20_47, 2] snake_case_ : List[str] = [69, 12, 11, 9_40, 2] snake_case_ : Any = tokenizer(lowercase__ ).input_ids self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : str = tokenizer(text_target=lowercase__ ).input_ids self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : int = tokenizer.decode(lowercase__ , skip_special_tokens=lowercase__ ) self.assertEqual(lowercase__ , lowercase__ )
48
1
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[Any] = ["""pixel_values"""] def __init__(self , lowercase__ = True , lowercase__ = None , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = True , lowercase__ = None , lowercase__ = True , lowercase__ = 1 / 2_55 , lowercase__ = True , lowercase__ = None , lowercase__ = None , **lowercase__ , ): super().__init__(**lowercase__ ) snake_case_ : Optional[int] = size if size is not None else {"""shortest_edge""": 2_56} snake_case_ : Any = get_size_dict(lowercase__ , default_to_square=lowercase__ ) snake_case_ : List[Any] = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} snake_case_ : Dict = get_size_dict(lowercase__ , param_name="""crop_size""" ) snake_case_ : str = do_resize snake_case_ : Dict = size snake_case_ : List[Any] = resample snake_case_ : List[Any] = do_center_crop snake_case_ : Tuple = crop_size snake_case_ : Optional[Any] = do_rescale snake_case_ : str = rescale_factor snake_case_ : List[str] = do_normalize snake_case_ : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case_ : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = None , **lowercase__ , ): snake_case_ : str = get_size_dict(lowercase__ , default_to_square=lowercase__ ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) snake_case_ : str = get_resize_output_image_size(lowercase__ , size=size["""shortest_edge"""] , default_to_square=lowercase__ ) return resize(lowercase__ , size=lowercase__ , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): snake_case_ : Optional[int] = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(lowercase__ , size=(size["""height"""], size["""width"""]) , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ ): return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return normalize(lowercase__ , mean=lowercase__ , std=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ): snake_case_ : str = do_resize if do_resize is not None else self.do_resize snake_case_ : Dict = size if size is not None else self.size snake_case_ : List[Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) snake_case_ : Union[str, Any] = resample if resample is not None else self.resample snake_case_ : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : Union[str, Any] = crop_size if crop_size is not None else self.crop_size snake_case_ : Any = get_size_dict(lowercase__ , param_name="""crop_size""" ) snake_case_ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : Dict = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : Any = image_mean if image_mean is not None else self.image_mean snake_case_ : int = image_std if image_std is not None else self.image_std snake_case_ : List[str] = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case_ : int = [to_numpy_array(lowercase__ ) for image in images] if do_resize: snake_case_ : Dict = [self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__ ) for image in images] if do_center_crop: snake_case_ : Optional[int] = [self.center_crop(image=lowercase__ , size=lowercase__ ) for image in images] if do_rescale: snake_case_ : Dict = [self.rescale(image=lowercase__ , scale=lowercase__ ) for image in images] if do_normalize: snake_case_ : Any = [self.normalize(image=lowercase__ , mean=lowercase__ , std=lowercase__ ) for image in images] snake_case_ : Any = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] snake_case_ : Any = {"""pixel_values""": images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): snake_case_ : Optional[Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase__ ) != len(lowercase__ ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(lowercase__ ): snake_case_ : List[str] = target_sizes.numpy() snake_case_ : Any = [] for idx in range(len(lowercase__ ) ): snake_case_ : str = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=lowercase__ ) snake_case_ : Tuple = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase__ ) else: snake_case_ : str = logits.argmax(dim=1 ) snake_case_ : str = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
48
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCAmelCase) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True}) _A : ClassVar[Features] = Features({"""audio""": Audio()}) _A : ClassVar[Features] = Features({"""transcription""": Value("""string""")}) _A : str = "audio" _A : str = "transcription" def __UpperCamelCase (self , lowercase__ ): if self.audio_column not in features: raise ValueError(f'Column {self.audio_column} is not present in features.' ) if not isinstance(features[self.audio_column] , lowercase__ ): raise ValueError(f'Column {self.audio_column} is not an Audio type.' ) snake_case_ : Optional[int] = copy.deepcopy(self ) snake_case_ : Tuple = self.input_schema.copy() snake_case_ : List[str] = features[self.audio_column] snake_case_ : Any = input_schema return task_template @property def __UpperCamelCase (self ): return {self.audio_column: "audio", self.transcription_column: "transcription"}
48
1
"""simple docstring""" from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split a_ = datasets.load_iris() a_ = np.array(data['''data''']) a_ = np.array(data['''target''']) a_ = data['''target_names'''] a_ , a_ , a_ , a_ = train_test_split(X, y) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" return np.linalg.norm(np.array(SCREAMING_SNAKE_CASE__ ) - np.array(SCREAMING_SNAKE_CASE__ ) ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any]=5 ): """simple docstring""" snake_case_ : Any = zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # List of distances of all points from the point to be classified snake_case_ : Dict = [] for data_point in data: snake_case_ : Union[str, Any] = euclidean_distance(data_point[0] , SCREAMING_SNAKE_CASE__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. snake_case_ : str = [i[1] for i in sorted(SCREAMING_SNAKE_CASE__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified snake_case_ : Dict = Counter(SCREAMING_SNAKE_CASE__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
48
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : int = ["""pixel_values"""] def __init__(self , lowercase__ = True , lowercase__ = None , lowercase__ = 0.9 , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = True , lowercase__ = None , lowercase__ = 1 / 2_55 , lowercase__ = True , lowercase__ = True , lowercase__ = None , lowercase__ = None , **lowercase__ , ): super().__init__(**lowercase__ ) snake_case_ : Tuple = size if size is not None else {"""shortest_edge""": 2_24} snake_case_ : Union[str, Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) snake_case_ : str = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} snake_case_ : Dict = get_size_dict(lowercase__ , param_name="""crop_size""" ) snake_case_ : Union[str, Any] = do_resize snake_case_ : List[str] = size snake_case_ : str = crop_pct snake_case_ : str = resample snake_case_ : Optional[Any] = do_center_crop snake_case_ : Dict = crop_size snake_case_ : int = do_rescale snake_case_ : Optional[int] = rescale_factor snake_case_ : str = do_normalize snake_case_ : str = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN snake_case_ : List[str] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = None , **lowercase__ , ): snake_case_ : Tuple = get_size_dict(lowercase__ , default_to_square=lowercase__ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f'size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) if crop_pct is not None: if "shortest_edge" in size: snake_case_ : Optional[int] = int(size["""shortest_edge"""] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: snake_case_ : Dict = int(size["""height"""] / crop_pct ) else: snake_case_ : List[str] = (int(size["""height"""] / crop_pct ), int(size["""width"""] / crop_pct )) else: raise ValueError("""Invalid size for resize: {}""".format(lowercase__ ) ) snake_case_ : List[Any] = get_resize_output_image_size(lowercase__ , size=lowercase__ , default_to_square=lowercase__ ) else: if "shortest_edge" in size: snake_case_ : Optional[int] = get_resize_output_image_size(lowercase__ , size=size["""shortest_edge"""] , default_to_square=lowercase__ ) elif "height" in size and "width" in size: snake_case_ : int = (size["""height"""], size["""width"""]) else: raise ValueError("""Invalid size for resize: {}""".format(lowercase__ ) ) return resize(lowercase__ , size=lowercase__ , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): snake_case_ : int = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(f'size must contain \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(lowercase__ , size=(size["""height"""], size["""width"""]) , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return normalize(lowercase__ , mean=lowercase__ , std=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ): snake_case_ : str = do_resize if do_resize is not None else self.do_resize snake_case_ : Any = crop_pct if crop_pct is not None else self.crop_pct snake_case_ : List[Any] = resample if resample is not None else self.resample snake_case_ : str = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : str = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : str = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : List[Any] = image_mean if image_mean is not None else self.image_mean snake_case_ : int = image_std if image_std is not None else self.image_std snake_case_ : List[Any] = size if size is not None else self.size snake_case_ : Optional[Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) snake_case_ : List[Any] = crop_size if crop_size is not None else self.crop_size snake_case_ : int = get_size_dict(lowercase__ , param_name="""crop_size""" ) snake_case_ : List[str] = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_pct is None: raise ValueError("""Crop_pct must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case_ : int = [to_numpy_array(lowercase__ ) for image in images] if do_resize: snake_case_ : str = [self.resize(image=lowercase__ , size=lowercase__ , crop_pct=lowercase__ , resample=lowercase__ ) for image in images] if do_center_crop: snake_case_ : Optional[int] = [self.center_crop(image=lowercase__ , size=lowercase__ ) for image in images] if do_rescale: snake_case_ : List[Any] = [self.rescale(image=lowercase__ , scale=lowercase__ ) for image in images] if do_normalize: snake_case_ : Optional[Any] = [self.normalize(image=lowercase__ , mean=lowercase__ , std=lowercase__ ) for image in images] snake_case_ : List[Any] = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] snake_case_ : Dict = {"""pixel_values""": images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
48
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''tiiuae/falcon-40b''': '''https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json''', '''tiiuae/falcon-7b''': '''https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json''', } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Dict = """falcon""" _A : str = ["""past_key_values"""] def __init__(self , lowercase__=6_50_24 , lowercase__=45_44 , lowercase__=32 , lowercase__=71 , lowercase__=1e-5 , lowercase__=0.02 , lowercase__=True , lowercase__=0.0 , lowercase__=0.0 , lowercase__=None , lowercase__=False , lowercase__=False , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=11 , lowercase__=11 , **lowercase__ , ): snake_case_ : Optional[Any] = vocab_size # Backward compatibility with n_embed kwarg snake_case_ : str = kwargs.pop("""n_embed""" , lowercase__ ) snake_case_ : Any = hidden_size if n_embed is None else n_embed snake_case_ : List[str] = num_hidden_layers snake_case_ : Optional[int] = num_attention_heads snake_case_ : Optional[int] = layer_norm_epsilon snake_case_ : List[str] = initializer_range snake_case_ : Union[str, Any] = use_cache snake_case_ : Dict = hidden_dropout snake_case_ : Optional[Any] = attention_dropout snake_case_ : Tuple = bos_token_id snake_case_ : Tuple = eos_token_id snake_case_ : Optional[Any] = num_attention_heads if num_kv_heads is None else num_kv_heads snake_case_ : Union[str, Any] = alibi snake_case_ : Tuple = new_decoder_architecture snake_case_ : List[Any] = multi_query # Ignored when new_decoder_architecture is True snake_case_ : Tuple = parallel_attn snake_case_ : Union[str, Any] = bias super().__init__(bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__ ) @property def __UpperCamelCase (self ): return self.hidden_size // self.num_attention_heads @property def __UpperCamelCase (self ): return not self.alibi
48
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: a_ = None a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} a_ = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } a_ = { '''facebook/mbart-large-en-ro''': 1024, '''facebook/mbart-large-cc25''': 1024, } # fmt: off a_ = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Dict = VOCAB_FILES_NAMES _A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _A : str = ["""input_ids""", """attention_mask"""] _A : Tuple = MBartTokenizer _A : List[int] = [] _A : List[int] = [] def __init__(self , lowercase__=None , lowercase__=None , lowercase__="<s>" , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<mask>" , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ , ): # Mask token behave like a normal word, i.e. include the space before it snake_case_ : int = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token super().__init__( vocab_file=lowercase__ , tokenizer_file=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , unk_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , src_lang=lowercase__ , tgt_lang=lowercase__ , additional_special_tokens=lowercase__ , **lowercase__ , ) snake_case_ : Dict = vocab_file snake_case_ : Optional[int] = False if not self.vocab_file else True snake_case_ : Optional[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) snake_case_ : Any = { lang_code: self.convert_tokens_to_ids(lowercase__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } snake_case_ : Tuple = src_lang if src_lang is not None else """en_XX""" snake_case_ : Tuple = self.convert_tokens_to_ids(self._src_lang ) snake_case_ : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __UpperCamelCase (self ): return self._src_lang @src_lang.setter def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): snake_case_ : List[Any] = [self.sep_token_id] snake_case_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , **lowercase__ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) snake_case_ : int = src_lang snake_case_ : List[str] = self(lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , **lowercase__ ) snake_case_ : List[str] = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Union[str, Any] = tgt_lang_id return inputs def __UpperCamelCase (self , lowercase__ , lowercase__ = "en_XX" , lowercase__ = None , lowercase__ = "ro_RO" , **lowercase__ , ): snake_case_ : List[str] = src_lang snake_case_ : int = tgt_lang return super().prepare_seqaseq_batch(lowercase__ , lowercase__ , **lowercase__ ) def __UpperCamelCase (self ): return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCamelCase (self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Tuple = [] snake_case_ : List[Any] = [self.eos_token_id, self.cur_lang_code] snake_case_ : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Optional[int] = [] snake_case_ : Optional[Any] = [self.eos_token_id, self.cur_lang_code] snake_case_ : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ : int = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowercase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory.' ) return snake_case_ : List[str] = os.path.join( lowercase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ): copyfile(self.vocab_file , lowercase__ ) return (out_vocab_file,)
48
1
"""simple docstring""" import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class __lowercase : """simple docstring""" def __init__(self , lowercase__ , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="resnet50" , lowercase__=3 , lowercase__=32 , lowercase__=3 , lowercase__=True , lowercase__=True , ): snake_case_ : Union[str, Any] = parent snake_case_ : Optional[Any] = out_indices if out_indices is not None else [4] snake_case_ : int = stage_names snake_case_ : str = out_features snake_case_ : Optional[Any] = backbone snake_case_ : Tuple = batch_size snake_case_ : Union[str, Any] = image_size snake_case_ : List[str] = num_channels snake_case_ : str = use_pretrained_backbone snake_case_ : List[str] = is_training def __UpperCamelCase (self ): snake_case_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ : List[str] = self.get_config() return config, pixel_values def __UpperCamelCase (self ): return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : List[str] = TimmBackbone(config=lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): snake_case_ : str = model(lowercase__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = self.prepare_config_and_inputs() snake_case_ , snake_case_ : str = config_and_inputs snake_case_ : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch @require_timm class __lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : Union[str, Any] = (TimmBackbone,) if is_torch_available() else () _A : Union[str, Any] = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} _A : Optional[Any] = False _A : Dict = False _A : List[Any] = False _A : int = False def __UpperCamelCase (self ): snake_case_ : List[str] = TimmBackboneModelTester(self ) snake_case_ : int = ConfigTester(self , config_class=lowercase__ , has_text_modality=lowercase__ ) def __UpperCamelCase (self ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCamelCase (self ): snake_case_ : Optional[int] = """resnet18""" snake_case_ : Union[str, Any] = """microsoft/resnet-18""" snake_case_ : Optional[Any] = AutoBackbone.from_pretrained(lowercase__ , use_timm_backbone=lowercase__ ) snake_case_ : Optional[Any] = AutoBackbone.from_pretrained(lowercase__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) snake_case_ : Tuple = AutoBackbone.from_pretrained(lowercase__ , use_timm_backbone=lowercase__ , out_indices=[1, 2, 3] ) snake_case_ : List[Any] = AutoBackbone.from_pretrained(lowercase__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("""TimmBackbone doesn't support feed forward chunking""" ) def __UpperCamelCase (self ): pass @unittest.skip("""TimmBackbone doesn't have num_hidden_layers attribute""" ) def __UpperCamelCase (self ): pass @unittest.skip("""TimmBackbone initialization is managed on the timm side""" ) def __UpperCamelCase (self ): pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def __UpperCamelCase (self ): pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def __UpperCamelCase (self ): pass @unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""" ) def __UpperCamelCase (self ): pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def __UpperCamelCase (self ): pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def __UpperCamelCase (self ): pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def __UpperCamelCase (self ): pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def __UpperCamelCase (self ): pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def __UpperCamelCase (self ): pass @unittest.skip("""TimmBackbone doesn't have hidden size info in its configuration.""" ) def __UpperCamelCase (self ): pass @unittest.skip("""TimmBackbone doesn't support output_attentions.""" ) def __UpperCamelCase (self ): pass @unittest.skip("""Safetensors is not supported by timm.""" ) def __UpperCamelCase (self ): pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __UpperCamelCase (self ): pass def __UpperCamelCase (self ): snake_case_ , snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : Optional[int] = model_class(lowercase__ ) snake_case_ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ : List[str] = [*signature.parameters.keys()] snake_case_ : Dict = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowercase__ ) def __UpperCamelCase (self ): snake_case_ , snake_case_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Union[str, Any] = True snake_case_ : List[str] = self.has_attentions # no need to test all models as different heads yield the same functionality snake_case_ : str = self.all_model_classes[0] snake_case_ : str = model_class(lowercase__ ) model.to(lowercase__ ) snake_case_ : Optional[Any] = self._prepare_for_class(lowercase__ , lowercase__ ) snake_case_ : List[Any] = model(**lowercase__ ) snake_case_ : str = outputs[0][-1] # Encoder-/Decoder-only models snake_case_ : int = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: snake_case_ : str = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowercase__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def __UpperCamelCase (self ): snake_case_ , snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : Any = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() snake_case_ : Tuple = model(**lowercase__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None snake_case_ : str = copy.deepcopy(lowercase__ ) snake_case_ : List[str] = None snake_case_ : Tuple = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() snake_case_ : str = model(**lowercase__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights snake_case_ : Dict = copy.deepcopy(lowercase__ ) snake_case_ : Any = False snake_case_ : List[str] = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() snake_case_ : Any = model(**lowercase__ )
48
"""simple docstring""" import argparse import hashlib # hashlib is only used inside the Test class import struct class __lowercase : """simple docstring""" def __init__(self , lowercase__ ): snake_case_ : Union[str, Any] = data snake_case_ : List[str] = [0X6_7_4_5_2_3_0_1, 0Xe_f_c_d_a_b_8_9, 0X9_8_b_a_d_c_f_e, 0X1_0_3_2_5_4_7_6, 0Xc_3_d_2_e_1_f_0] @staticmethod def __UpperCamelCase (lowercase__ , lowercase__ ): return ((n << b) | (n >> (32 - b))) & 0Xf_f_f_f_f_f_f_f def __UpperCamelCase (self ): snake_case_ : Any = B"""\x80""" + B"""\x00""" * (63 - (len(self.data ) + 8) % 64) snake_case_ : Tuple = self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def __UpperCamelCase (self ): return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = list(struct.unpack(""">16L""" , lowercase__ ) ) + [0] * 64 for i in range(16 , 80 ): snake_case_ : Dict = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def __UpperCamelCase (self ): snake_case_ : List[Any] = self.padding() snake_case_ : Any = self.split_blocks() for block in self.blocks: snake_case_ : Any = self.expand_block(lowercase__ ) snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = self.h for i in range(0 , 80 ): if 0 <= i < 20: snake_case_ : Optional[Any] = (b & c) | ((~b) & d) snake_case_ : List[str] = 0X5_a_8_2_7_9_9_9 elif 20 <= i < 40: snake_case_ : Union[str, Any] = b ^ c ^ d snake_case_ : Tuple = 0X6_e_d_9_e_b_a_1 elif 40 <= i < 60: snake_case_ : str = (b & c) | (b & d) | (c & d) snake_case_ : List[str] = 0X8_f_1_b_b_c_d_c elif 60 <= i < 80: snake_case_ : Tuple = b ^ c ^ d snake_case_ : str = 0Xc_a_6_2_c_1_d_6 snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Optional[Any] = ( self.rotate(lowercase__ , 5 ) + f + e + k + expanded_block[i] & 0Xf_f_f_f_f_f_f_f, a, self.rotate(lowercase__ , 30 ), c, d, ) snake_case_ : Any = ( self.h[0] + a & 0Xf_f_f_f_f_f_f_f, self.h[1] + b & 0Xf_f_f_f_f_f_f_f, self.h[2] + c & 0Xf_f_f_f_f_f_f_f, self.h[3] + d & 0Xf_f_f_f_f_f_f_f, self.h[4] + e & 0Xf_f_f_f_f_f_f_f, ) return ("{:08x}" * 5).format(*self.h ) def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Union[str, Any] = b"""Test String""" assert SHAaHash(SCREAMING_SNAKE_CASE__ ).final_hash() == hashlib.shaa(SCREAMING_SNAKE_CASE__ ).hexdigest() # noqa: S324 def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : int = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument("""--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) snake_case_ : Optional[int] = parser.parse_args() snake_case_ : Optional[int] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: snake_case_ : List[str] = f.read() else: snake_case_ : Dict = bytes(SCREAMING_SNAKE_CASE__ , """utf-8""" ) print(SHAaHash(SCREAMING_SNAKE_CASE__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
48
1
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() a_ = logging.get_logger(__name__) a_ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } a_ = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple ): """simple docstring""" for attribute in key.split(""".""" ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models snake_case_ : List[str] = """lm_head""" snake_case_ : Tuple = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if weight_type is not None: snake_case_ : Optional[Any] = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).shape else: snake_case_ : Union[str, Any] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": snake_case_ : List[str] = value elif weight_type == "weight_g": snake_case_ : Optional[Any] = value elif weight_type == "weight_v": snake_case_ : List[str] = value elif weight_type == "bias": snake_case_ : Optional[int] = value else: snake_case_ : str = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" snake_case_ : Tuple = [] snake_case_ : Optional[Any] = fairseq_model.state_dict() snake_case_ : str = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): snake_case_ : Tuple = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hf_model.config.feat_extract_norm == """group""" , ) snake_case_ : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): snake_case_ : Dict = """unispeech.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: snake_case_ : Dict = True if "*" in mapped_key: snake_case_ : Optional[Any] = name.split(SCREAMING_SNAKE_CASE__ )[0].split(""".""" )[-2] snake_case_ : Union[str, Any] = mapped_key.replace("""*""" , SCREAMING_SNAKE_CASE__ ) if "weight_g" in name: snake_case_ : Optional[int] = """weight_g""" elif "weight_v" in name: snake_case_ : Tuple = """weight_v""" elif "bias" in name: snake_case_ : Any = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case_ : str = """weight""" else: snake_case_ : List[str] = None set_recursively(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE__ ) logger.warning(f'Unused weights: {unused_weights}' ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Any = full_name.split("""conv_layers.""" )[-1] snake_case_ : int = name.split(""".""" ) snake_case_ : List[Any] = int(items[0] ) snake_case_ : Any = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) snake_case_ : Any = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) snake_case_ : int = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) snake_case_ : str = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) snake_case_ : int = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : List[str]=True ): """simple docstring""" if config_path is not None: snake_case_ : Union[str, Any] = UniSpeechConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) else: snake_case_ : Optional[int] = UniSpeechConfig() if is_finetuned: if dict_path: snake_case_ : Optional[int] = Dictionary.load_from_json(SCREAMING_SNAKE_CASE__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case_ : Union[str, Any] = target_dict.pad_index snake_case_ : List[Any] = target_dict.bos_index snake_case_ : str = target_dict.eos_index snake_case_ : str = len(target_dict.symbols ) snake_case_ : Dict = os.path.join(SCREAMING_SNAKE_CASE__ , """vocab.json""" ) if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(SCREAMING_SNAKE_CASE__ ) ) return os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[Any] = target_dict.indices # fairseq has the <pad> and <s> switched snake_case_ : int = 4_2 snake_case_ : Optional[int] = 4_3 with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : int = WavaVecaPhonemeCTCTokenizer( SCREAMING_SNAKE_CASE__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=SCREAMING_SNAKE_CASE__ , ) snake_case_ : str = True if config.feat_extract_norm == """layer""" else False snake_case_ : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , ) snake_case_ : Union[str, Any] = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case_ : List[str] = UniSpeechForCTC(SCREAMING_SNAKE_CASE__ ) else: snake_case_ : Dict = UniSpeechForPreTraining(SCREAMING_SNAKE_CASE__ ) if is_finetuned: snake_case_ , snake_case_ , snake_case_ : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path} ) else: snake_case_ , snake_case_ , snake_case_ : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) snake_case_ : Any = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) hf_unispeech.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) a_ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
48
"""simple docstring""" from manim import * class __lowercase ( _UpperCAmelCase): """simple docstring""" def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = Rectangle(height=0.5 , width=0.5 ) snake_case_ : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) snake_case_ : Optional[Any] = [mem.copy() for i in range(6 )] snake_case_ : str = [mem.copy() for i in range(6 )] snake_case_ : str = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : Any = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[str] = VGroup(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[Any] = Text("""CPU""" , font_size=24 ) snake_case_ : Tuple = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowercase__ ) snake_case_ : List[Any] = [mem.copy() for i in range(4 )] snake_case_ : Tuple = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[str] = Text("""GPU""" , font_size=24 ) snake_case_ : Any = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) gpu.move_to([-1, -1, 0] ) self.add(lowercase__ ) snake_case_ : Optional[Any] = [mem.copy() for i in range(6 )] snake_case_ : List[Any] = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : Dict = Text("""Model""" , font_size=24 ) snake_case_ : int = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) model.move_to([3, -1.0, 0] ) self.add(lowercase__ ) snake_case_ : Dict = [] for i, rect in enumerate(lowercase__ ): rect.set_stroke(lowercase__ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) snake_case_ : List[str] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowercase__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowercase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase__ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase__ , buff=0.0 ) self.add(lowercase__ ) cpu_targs.append(lowercase__ ) snake_case_ : List[str] = [mem.copy() for i in range(6 )] snake_case_ : List[str] = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : str = Text("""Loaded Checkpoint""" , font_size=24 ) snake_case_ : Any = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , aligned_edge=lowercase__ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) snake_case_ : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) snake_case_ : Union[str, Any] = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowercase__ , lowercase__ ) snake_case_ : List[Any] = MarkupText( f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(lowercase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) snake_case_ : List[Any] = MarkupText( f'Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowercase__ ) , Write(lowercase__ ) ) self.play(Write(lowercase__ , run_time=1 ) , Create(lowercase__ , run_time=1 ) ) snake_case_ : Optional[int] = [] snake_case_ : List[str] = [] for i, rect in enumerate(lowercase__ ): snake_case_ : Optional[Any] = fill.copy().set_fill(lowercase__ , opacity=0.7 ) target.move_to(lowercase__ ) first_animations.append(GrowFromCenter(lowercase__ , run_time=1 ) ) snake_case_ : List[Any] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(lowercase__ , run_time=1.5 ) ) self.play(*lowercase__ ) self.play(*lowercase__ ) self.wait()
48
1
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ , snake_case_ : Union[str, Any] = [], [] while len(SCREAMING_SNAKE_CASE__ ) > 1: snake_case_ , snake_case_ : int = min(SCREAMING_SNAKE_CASE__ ), max(SCREAMING_SNAKE_CASE__ ) start.append(SCREAMING_SNAKE_CASE__ ) end.append(SCREAMING_SNAKE_CASE__ ) collection.remove(SCREAMING_SNAKE_CASE__ ) collection.remove(SCREAMING_SNAKE_CASE__ ) end.reverse() return start + collection + end if __name__ == "__main__": a_ = input('''Enter numbers separated by a comma:\n''').strip() a_ = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
48
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" snake_case_ : Union[str, Any] = 0 if start < end: snake_case_ : Union[str, Any] = randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = a[end] snake_case_ : Dict = a[pivot] snake_case_ : Any = temp snake_case_ , snake_case_ : Dict = _in_place_partition(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , p - 1 ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE__ , p + 1 , SCREAMING_SNAKE_CASE__ ) return count def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" snake_case_ : Tuple = 0 snake_case_ : List[Any] = randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : Dict = a[end] snake_case_ : List[Any] = a[pivot] snake_case_ : Optional[Any] = temp snake_case_ : List[str] = start - 1 for index in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value snake_case_ : Any = new_pivot_index + 1 snake_case_ : Tuple = a[new_pivot_index] snake_case_ : Optional[int] = a[index] snake_case_ : Tuple = temp snake_case_ : Union[str, Any] = a[new_pivot_index + 1] snake_case_ : Union[str, Any] = a[end] snake_case_ : Union[str, Any] = temp return new_pivot_index + 1, count a_ = TemporaryFile() a_ = 100 # 1000 elements are to be sorted a_ , a_ = 0, 1 # mean and standard deviation a_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array a_ = np.load(outfile) a_ = len(M) - 1 a_ = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
48
1
"""simple docstring""" import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 a_ = sys.version_info >= (3, 10) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Any=None ): """simple docstring""" return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE__ ) @dataclass class __lowercase : """simple docstring""" _A : int _A : float _A : str _A : bool @dataclass class __lowercase : """simple docstring""" _A : int = 42 _A : str = field(default="""toto""" , metadata={"""help""": """help message"""}) @dataclass class __lowercase : """simple docstring""" _A : bool = False _A : bool = True _A : Optional[bool] = None class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : int = """titi""" _A : str = """toto""" class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : int = """titi""" _A : Dict = """toto""" _A : Tuple = 42 @dataclass class __lowercase : """simple docstring""" _A : BasicEnum = "toto" def __UpperCamelCase (self ): snake_case_ : int = BasicEnum(self.foo ) @dataclass class __lowercase : """simple docstring""" _A : MixedTypeEnum = "toto" def __UpperCamelCase (self ): snake_case_ : Optional[Any] = MixedTypeEnum(self.foo ) @dataclass class __lowercase : """simple docstring""" _A : Optional[int] = None _A : Optional[float] = field(default=_UpperCAmelCase , metadata={"""help""": """help message"""}) _A : Optional[str] = None _A : Optional[List[str]] = list_field(default=[]) _A : Optional[List[int]] = list_field(default=[]) @dataclass class __lowercase : """simple docstring""" _A : List[int] = list_field(default=[]) _A : List[int] = list_field(default=[1, 2, 3]) _A : List[str] = list_field(default=["""Hallo""", """Bonjour""", """Hello"""]) _A : List[float] = list_field(default=[0.1, 0.2, 0.3]) @dataclass class __lowercase : """simple docstring""" _A : List[int] = field() _A : str = field() _A : BasicEnum = field() def __UpperCamelCase (self ): snake_case_ : List[Any] = BasicEnum(self.required_enum ) @dataclass class __lowercase : """simple docstring""" _A : int _A : "BasicEnum" = field() _A : "Optional[bool]" = None _A : "str" = field(default="""toto""" , metadata={"""help""": """help message"""}) _A : "List[str]" = list_field(default=["""Hallo""", """Bonjour""", """Hello"""]) if is_python_no_less_than_3_10: @dataclass class __lowercase : """simple docstring""" _A : bool = False _A : bool = True _A : bool | None = None @dataclass class __lowercase : """simple docstring""" _A : int | None = None _A : float | None = field(default=_UpperCAmelCase , metadata={"""help""": """help message"""}) _A : str | None = None _A : list[str] | None = list_field(default=[]) _A : list[int] | None = list_field(default=[]) class __lowercase ( unittest.TestCase): """simple docstring""" def __UpperCamelCase (self , lowercase__ , lowercase__ ): self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): snake_case_ : List[str] = {k: v for k, v in vars(lowercase__ ).items() if k != """container"""} snake_case_ : Optional[Any] = {k: v for k, v in vars(lowercase__ ).items() if k != """container"""} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("""choices""" , lowercase__ ) and yy.get("""choices""" , lowercase__ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["""type"""](lowercase__ ) , yy["""type"""](lowercase__ ) ) del xx["type"], yy["type"] self.assertEqual(lowercase__ , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Any = HfArgumentParser(lowercase__ ) snake_case_ : str = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=lowercase__ , required=lowercase__ ) expected.add_argument("""--bar""" , type=lowercase__ , required=lowercase__ ) expected.add_argument("""--baz""" , type=lowercase__ , required=lowercase__ ) expected.add_argument("""--flag""" , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs="""?""" ) self.argparsersEqual(lowercase__ , lowercase__ ) snake_case_ : Union[str, Any] = ["""--foo""", """1""", """--baz""", """quux""", """--bar""", """0.5"""] ((snake_case_) , ) : Union[str, Any] = parser.parse_args_into_dataclasses(lowercase__ , look_for_args_file=lowercase__ ) self.assertFalse(example.flag ) def __UpperCamelCase (self ): snake_case_ : List[str] = HfArgumentParser(lowercase__ ) snake_case_ : Union[str, Any] = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=42 , type=lowercase__ ) expected.add_argument("""--baz""" , default="""toto""" , type=lowercase__ , help="""help message""" ) self.argparsersEqual(lowercase__ , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs="""?""" ) expected.add_argument("""--baz""" , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs="""?""" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("""--no_baz""" , action="""store_false""" , default=lowercase__ , dest="""baz""" ) expected.add_argument("""--opt""" , type=lowercase__ , default=lowercase__ ) snake_case_ : int = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase__ ) for dataclass_type in dataclass_types: snake_case_ : Any = HfArgumentParser(lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) snake_case_ : int = parser.parse_args([] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) snake_case_ : Optional[int] = parser.parse_args(["""--foo""", """--no_baz"""] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) snake_case_ : Optional[Any] = parser.parse_args(["""--foo""", """--baz"""] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) snake_case_ : Optional[Any] = parser.parse_args(["""--foo""", """True""", """--baz""", """True""", """--opt""", """True"""] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) snake_case_ : Union[str, Any] = parser.parse_args(["""--foo""", """False""", """--baz""", """False""", """--opt""", """False"""] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) def __UpperCamelCase (self ): snake_case_ : Optional[Any] = HfArgumentParser(lowercase__ ) snake_case_ : Any = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=["""titi""", """toto""", 42] , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(lowercase__ , lowercase__ ) snake_case_ : Union[str, Any] = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) snake_case_ : Dict = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) snake_case_ : Optional[Any] = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) snake_case_ : int = parser.parse_args_into_dataclasses(["""--foo""", """titi"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) snake_case_ : Any = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) snake_case_ : List[Any] = parser.parse_args_into_dataclasses(["""--foo""", """42"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def __UpperCamelCase (self ): @dataclass class __lowercase : """simple docstring""" _A : Literal["titi", "toto", 42] = "toto" snake_case_ : List[Any] = HfArgumentParser(lowercase__ ) snake_case_ : Tuple = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=("""titi""", """toto""", 42) , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(lowercase__ , lowercase__ ) snake_case_ : Tuple = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) snake_case_ : Optional[int] = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) snake_case_ : List[str] = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) def __UpperCamelCase (self ): snake_case_ : str = HfArgumentParser(lowercase__ ) snake_case_ : List[str] = argparse.ArgumentParser() expected.add_argument("""--foo_int""" , nargs="""+""" , default=[] , type=lowercase__ ) expected.add_argument("""--bar_int""" , nargs="""+""" , default=[1, 2, 3] , type=lowercase__ ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=lowercase__ ) expected.add_argument("""--foo_float""" , nargs="""+""" , default=[0.1, 0.2, 0.3] , type=lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) snake_case_ : Optional[Any] = parser.parse_args([] ) self.assertEqual( lowercase__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["""Hallo""", """Bonjour""", """Hello"""] , foo_float=[0.1, 0.2, 0.3] ) , ) snake_case_ : Optional[int] = parser.parse_args("""--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7""".split() ) self.assertEqual(lowercase__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["""a""", """b""", """c"""] , foo_float=[0.1, 0.7] ) ) def __UpperCamelCase (self ): snake_case_ : Dict = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=lowercase__ , type=lowercase__ ) expected.add_argument("""--bar""" , default=lowercase__ , type=lowercase__ , help="""help message""" ) expected.add_argument("""--baz""" , default=lowercase__ , type=lowercase__ ) expected.add_argument("""--ces""" , nargs="""+""" , default=[] , type=lowercase__ ) expected.add_argument("""--des""" , nargs="""+""" , default=[] , type=lowercase__ ) snake_case_ : int = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase__ ) for dataclass_type in dataclass_types: snake_case_ : Dict = HfArgumentParser(lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) snake_case_ : int = parser.parse_args([] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , bar=lowercase__ , baz=lowercase__ , ces=[] , des=[] ) ) snake_case_ : Optional[int] = parser.parse_args("""--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3""".split() ) self.assertEqual(lowercase__ , Namespace(foo=12 , bar=3.14 , baz="""42""" , ces=["""a""", """b""", """c"""] , des=[1, 2, 3] ) ) def __UpperCamelCase (self ): snake_case_ : List[Any] = HfArgumentParser(lowercase__ ) snake_case_ : Tuple = argparse.ArgumentParser() expected.add_argument("""--required_list""" , nargs="""+""" , type=lowercase__ , required=lowercase__ ) expected.add_argument("""--required_str""" , type=lowercase__ , required=lowercase__ ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=lowercase__ , ) self.argparsersEqual(lowercase__ , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = HfArgumentParser(lowercase__ ) snake_case_ : List[str] = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=lowercase__ , required=lowercase__ ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=lowercase__ , ) expected.add_argument("""--opt""" , type=lowercase__ , default=lowercase__ ) expected.add_argument("""--baz""" , default="""toto""" , type=lowercase__ , help="""help message""" ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : List[str] = HfArgumentParser(lowercase__ ) snake_case_ : Tuple = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } snake_case_ : List[Any] = parser.parse_dict(lowercase__ )[0] snake_case_ : Optional[int] = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : List[str] = HfArgumentParser(lowercase__ ) snake_case_ : Tuple = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, """extra""": 42, } self.assertRaises(lowercase__ , parser.parse_dict , lowercase__ , allow_extra_keys=lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Optional[int] = HfArgumentParser(lowercase__ ) snake_case_ : Optional[Any] = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ : int = os.path.join(lowercase__ , """temp_json""" ) os.mkdir(lowercase__ ) with open(temp_local_path + """.json""" , """w+""" ) as f: json.dump(lowercase__ , lowercase__ ) snake_case_ : Optional[Any] = parser.parse_yaml_file(Path(temp_local_path + """.json""" ) )[0] snake_case_ : List[Any] = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Optional[Any] = HfArgumentParser(lowercase__ ) snake_case_ : int = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ : Tuple = os.path.join(lowercase__ , """temp_yaml""" ) os.mkdir(lowercase__ ) with open(temp_local_path + """.yaml""" , """w+""" ) as f: yaml.dump(lowercase__ , lowercase__ ) snake_case_ : Any = parser.parse_yaml_file(Path(temp_local_path + """.yaml""" ) )[0] snake_case_ : Optional[int] = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : int = HfArgumentParser(lowercase__ ) self.assertIsNotNone(lowercase__ )
48
"""simple docstring""" import random def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : bool = False ): """simple docstring""" snake_case_ : dict = {i: [] for i in range(SCREAMING_SNAKE_CASE__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(SCREAMING_SNAKE_CASE__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(i + 1 , SCREAMING_SNAKE_CASE__ ): if random.random() < probability: graph[i].append(SCREAMING_SNAKE_CASE__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(SCREAMING_SNAKE_CASE__ ) return graph def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" return { i: [j for j in range(SCREAMING_SNAKE_CASE__ ) if i != j] for i in range(SCREAMING_SNAKE_CASE__ ) } if __name__ == "__main__": import doctest doctest.testmod()
48
1
"""simple docstring""" import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets a_ = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' a_ = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' a_ = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class __lowercase ( datasets.Metric): """simple docstring""" def __UpperCamelCase (self ): if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""http://www.cs.umd.edu/~snover/tercom/""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#ter"""] , reference_urls=[ """https://github.com/jhclark/tercom""", ] , ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = False , lowercase__ = False , lowercase__ = False , lowercase__ = False , ): snake_case_ : int = len(references[0] ) if any(len(lowercase__ ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) snake_case_ : Dict = [[refs[i] for refs in references] for i in range(lowercase__ )] snake_case_ : int = TER( normalized=lowercase__ , no_punct=lowercase__ , asian_support=lowercase__ , case_sensitive=lowercase__ , ) snake_case_ : Dict = sb_ter.corpus_score(lowercase__ , lowercase__ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
48
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json''' ), } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """dpr""" def __init__(self , lowercase__=3_05_22 , lowercase__=7_68 , lowercase__=12 , lowercase__=12 , lowercase__=30_72 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_12 , lowercase__=2 , lowercase__=0.02 , lowercase__=1e-12 , lowercase__=0 , lowercase__="absolute" , lowercase__ = 0 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , **lowercase__ ) snake_case_ : List[Any] = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : Tuple = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : int = hidden_act snake_case_ : Dict = intermediate_size snake_case_ : int = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : str = max_position_embeddings snake_case_ : List[str] = type_vocab_size snake_case_ : List[str] = initializer_range snake_case_ : Optional[int] = layer_norm_eps snake_case_ : Union[str, Any] = projection_dim snake_case_ : str = position_embedding_type
48
1
"""simple docstring""" import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py a_ = '''src/diffusers''' # Matches is_xxx_available() a_ = re.compile(r'''is\_([a-z_]*)_available\(\)''') # Matches from xxx import bla a_ = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') a_ = ''' {0} = None ''' a_ = ''' class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) ''' a_ = ''' def {0}(*args, **kwargs): requires_backends({0}, {1}) ''' def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" snake_case_ : Tuple = _re_backend.findall(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) == 0: return None return "_and_".join(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" with open(os.path.join(SCREAMING_SNAKE_CASE__ , """__init__.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: snake_case_ : str = f.readlines() # Get to the point we do the actual imports for type checking snake_case_ : Any = 0 snake_case_ : str = {} # Go through the end of the file while line_index < len(SCREAMING_SNAKE_CASE__ ): # If the line contains is_backend_available, we grab all objects associated with the `else` block snake_case_ : Any = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("""else:""" ): line_index += 1 line_index += 1 snake_case_ : Optional[Any] = [] # Until we unindent, add backend objects to the list while line_index < len(SCREAMING_SNAKE_CASE__ ) and len(lines[line_index] ) > 1: snake_case_ : int = lines[line_index] snake_case_ : Optional[int] = _re_single_line_import.search(SCREAMING_SNAKE_CASE__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(SCREAMING_SNAKE_CASE__ ) > 0: snake_case_ : int = objects else: line_index += 1 return backend_specific_objects def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple ): """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(SCREAMING_SNAKE_CASE__ ) elif name.islower(): return DUMMY_FUNCTION.format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: return DUMMY_CLASS.format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[int]=None ): """simple docstring""" if backend_specific_objects is None: snake_case_ : Any = read_init() # For special correspondence backend to module name as used in the function requires_modulename snake_case_ : Any = {} for backend, objects in backend_specific_objects.items(): snake_case_ : Optional[Any] = """[""" + """, """.join(f'"{b}"' for b in backend.split("""_and_""" ) ) + """]""" snake_case_ : str = """# This file is autogenerated by the command `make fix-copies`, do not edit.\n""" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for o in objects] ) snake_case_ : str = dummy_file return dummy_files def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict=False ): """simple docstring""" snake_case_ : List[str] = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py snake_case_ : Optional[int] = {"""torch""": """pt"""} # Locate actual dummy modules and read their content. snake_case_ : List[str] = os.path.join(SCREAMING_SNAKE_CASE__ , """utils""" ) snake_case_ : Dict = { backend: os.path.join(SCREAMING_SNAKE_CASE__ , f'dummy_{short_names.get(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}_objects.py' ) for backend in dummy_files.keys() } snake_case_ : Optional[Any] = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(SCREAMING_SNAKE_CASE__ ): with open(SCREAMING_SNAKE_CASE__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: snake_case_ : List[str] = f.read() else: snake_case_ : Any = """""" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f'Updating diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}_objects.py as the main ' """__init__ has new objects.""" ) with open(dummy_file_paths[backend] , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( """The main __init__ has objects that are not present in """ f'diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}_objects.py. Run `make fix-copies` ' """to fix this.""" ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') a_ = parser.parse_args() check_dummies(args.fix_and_overwrite)
48
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm a_ = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex a_ = 10 a_ = 256 def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" if len(SCREAMING_SNAKE_CASE__ ) < MIN_NUM_TOKENS: return None snake_case_ : Union[str, Any] = MinHash(num_perm=SCREAMING_SNAKE_CASE__ ) for token in set(SCREAMING_SNAKE_CASE__ ): min_hash.update(token.encode() ) return min_hash def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" return {t for t in NON_ALPHA.split(SCREAMING_SNAKE_CASE__ ) if len(t.strip() ) > 0} class __lowercase : """simple docstring""" def __init__(self , *, lowercase__ = 0.85 , ): snake_case_ : Tuple = duplication_jaccard_threshold snake_case_ : Optional[Any] = NUM_PERM snake_case_ : Tuple = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) snake_case_ : List[Any] = defaultdict(lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : int = self._index.query(lowercase__ ) if code_key in self._index.keys: print(f'Duplicate key {code_key}' ) return self._index.insert(lowercase__ , lowercase__ ) if len(lowercase__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowercase__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(lowercase__ ) def __UpperCamelCase (self ): snake_case_ : str = [] for base, duplicates in self._duplicate_clusters.items(): snake_case_ : Optional[Any] = [base] + list(lowercase__ ) # reformat the cluster to be a list of dict snake_case_ : Any = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(lowercase__ ) return duplicate_clusters def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = self.get_duplicate_clusters() with open(lowercase__ , """w""" ) as f: json.dump(lowercase__ , lowercase__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ , snake_case_ : str = element snake_case_ : Tuple = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] ): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(SCREAMING_SNAKE_CASE__ , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ): if data is not None: yield data def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] , SCREAMING_SNAKE_CASE__ : float ): """simple docstring""" snake_case_ : int = DuplicationIndex(duplication_jaccard_threshold=SCREAMING_SNAKE_CASE__ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(SCREAMING_SNAKE_CASE__ ) ) , max_queue_size=1_0_0 ) ): di.add(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : int = get_tokens(SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = get_tokens(SCREAMING_SNAKE_CASE__ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) a_ = None def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Optional[Any] = [] for elementa in cluster: snake_case_ : Union[str, Any] = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: snake_case_ : Any = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) >= jaccard_threshold: elementa["copies"] += 1 break else: snake_case_ : Union[str, Any] = 1 extremes.append(SCREAMING_SNAKE_CASE__ ) return extremes def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" global _shared_dataset snake_case_ : str = dataset snake_case_ : int = [] snake_case_ : Optional[int] = partial(_find_cluster_extremes_shared , jaccard_threshold=SCREAMING_SNAKE_CASE__ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) , total=len(SCREAMING_SNAKE_CASE__ ) , ): extremes_list.append(SCREAMING_SNAKE_CASE__ ) return extremes_list def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] , SCREAMING_SNAKE_CASE__ : float = 0.85 ): """simple docstring""" snake_case_ : List[str] = make_duplicate_clusters(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : str = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} snake_case_ : str = {} snake_case_ : Dict = find_extremes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for extremes in extremes_clusters: for element in extremes: snake_case_ : int = element snake_case_ : Optional[int] = duplicate_indices - set(extreme_dict.keys() ) snake_case_ : List[Any] = dataset.filter(lambda SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : idx not in remove_indices , with_indices=SCREAMING_SNAKE_CASE__ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: snake_case_ : List[Any] = element["""base_index"""] in extreme_dict if element["is_extreme"]: snake_case_ : str = extreme_dict[element["""base_index"""]]["""copies"""] print(f'Original dataset size: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Number of duplicate clusters: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Files in duplicate cluster: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Unique files in duplicate cluster: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Filtered dataset size: {len(SCREAMING_SNAKE_CASE__ )}' ) return ds_filter, duplicate_clusters
48
1
"""simple docstring""" from PIL import Image def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Image , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : Dict = (2_5_9 * (level + 2_5_5)) / (2_5_5 * (2_5_9 - level)) def contrast(SCREAMING_SNAKE_CASE__ : int ) -> int: return int(1_2_8 + factor * (c - 1_2_8) ) return img.point(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change contrast to 170 a_ = change_contrast(img, 170) cont_img.save('''image_data/lena_high_contrast.png''', format='''png''')
48
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) a_ = logging.getLogger(__name__) if __name__ == "__main__": a_ = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=30522, type=int) a_ = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, '''rb''') as fp: a_ = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') a_ = Counter() for tk_ids in data: counter.update(tk_ids) a_ = [0] * args.vocab_size for k, v in counter.items(): a_ = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
48
1
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings a_ = r''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(_UpperCAmelCase) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """rag""" _A : Optional[Any] = True def __init__(self , lowercase__=None , lowercase__=True , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=" / " , lowercase__=" // " , lowercase__=5 , lowercase__=3_00 , lowercase__=7_68 , lowercase__=8 , lowercase__="wiki_dpr" , lowercase__="train" , lowercase__="compressed" , lowercase__=None , lowercase__=None , lowercase__=False , lowercase__=False , lowercase__=0.0 , lowercase__=True , lowercase__=False , lowercase__=False , lowercase__=False , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__( bos_token_id=lowercase__ , pad_token_id=lowercase__ , eos_token_id=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , prefix=lowercase__ , vocab_size=lowercase__ , **lowercase__ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" snake_case_ : List[Any] = kwargs.pop("""question_encoder""" ) snake_case_ : Tuple = question_encoder_config.pop("""model_type""" ) snake_case_ : List[str] = kwargs.pop("""generator""" ) snake_case_ : List[str] = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig snake_case_ : List[str] = AutoConfig.for_model(lowercase__ , **lowercase__ ) snake_case_ : Tuple = AutoConfig.for_model(lowercase__ , **lowercase__ ) snake_case_ : int = reduce_loss snake_case_ : Optional[int] = label_smoothing snake_case_ : Dict = exclude_bos_score snake_case_ : Union[str, Any] = do_marginalize snake_case_ : Union[str, Any] = title_sep snake_case_ : int = doc_sep snake_case_ : int = n_docs snake_case_ : List[str] = max_combined_length snake_case_ : Tuple = dataset snake_case_ : int = dataset_split snake_case_ : str = index_name snake_case_ : List[str] = retrieval_vector_size snake_case_ : Dict = retrieval_batch_size snake_case_ : str = passages_path snake_case_ : Union[str, Any] = index_path snake_case_ : Tuple = use_dummy_dataset snake_case_ : Dict = output_retrieved snake_case_ : str = do_deduplication snake_case_ : Any = use_cache if self.forced_eos_token_id is None: snake_case_ : Any = getattr(self.generator , """forced_eos_token_id""" , lowercase__ ) @classmethod def __UpperCamelCase (cls , lowercase__ , lowercase__ , **lowercase__ ): return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Optional[Any] = copy.deepcopy(self.__dict__ ) snake_case_ : Any = self.question_encoder.to_dict() snake_case_ : Dict = self.generator.to_dict() snake_case_ : Union[str, Any] = self.__class__.model_type return output
48
"""simple docstring""" import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" snake_case_ : Optional[Any] = tmp_path / """cache""" snake_case_ : Optional[int] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : Tuple = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" snake_case_ : List[Any] = tmp_path / """cache""" snake_case_ : int = {"""text""": """string"""} snake_case_ : Any = features.copy() if features else default_expected_features snake_case_ : List[Any] = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : Dict = TextDatasetReader(SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : Union[str, Any] = tmp_path / """cache""" snake_case_ : Optional[Any] = {"""text""": """string"""} snake_case_ : Optional[int] = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , split=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" if issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : List[str] = text_path elif issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : str = [text_path] snake_case_ : List[str] = tmp_path / """cache""" snake_case_ : List[str] = {"""text""": """string"""} snake_case_ : Dict = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str]=("train",) ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for split in splits: snake_case_ : Dict = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" snake_case_ : int = tmp_path / """cache""" snake_case_ : List[str] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : Optional[Any] = TextDatasetReader({"""train""": text_path} , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Tuple = tmp_path / """cache""" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" snake_case_ : List[str] = {"""text""": """string"""} snake_case_ : int = features.copy() if features else default_expected_features snake_case_ : Tuple = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : str = TextDatasetReader({"""train""": text_path} , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" if split: snake_case_ : Union[str, Any] = {split: text_path} else: snake_case_ : Union[str, Any] = """train""" snake_case_ : int = {"""train""": text_path, """test""": text_path} snake_case_ : List[Any] = tmp_path / """cache""" snake_case_ : Tuple = {"""text""": """string"""} snake_case_ : int = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
48
1
"""simple docstring""" from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : list[int] ): """simple docstring""" if not nums: return 0 snake_case_ : Optional[Any] = nums[0] snake_case_ : Tuple = 0 for num in nums[1:]: snake_case_ , snake_case_ : str = ( max_excluding + num, max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), ) return max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
48
"""simple docstring""" from copy import deepcopy class __lowercase : """simple docstring""" def __init__(self , lowercase__ = None , lowercase__ = None ): if arr is None and size is not None: snake_case_ : str = size snake_case_ : Optional[Any] = [0] * size elif arr is not None: self.init(lowercase__ ) else: raise ValueError("""Either arr or size must be specified""" ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Optional[Any] = len(lowercase__ ) snake_case_ : int = deepcopy(lowercase__ ) for i in range(1 , self.size ): snake_case_ : Optional[Any] = self.next_(lowercase__ ) if j < self.size: self.tree[j] += self.tree[i] def __UpperCamelCase (self ): snake_case_ : Dict = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): snake_case_ : Optional[int] = self.next_(lowercase__ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def __UpperCamelCase (lowercase__ ): return index + (index & (-index)) @staticmethod def __UpperCamelCase (lowercase__ ): return index - (index & (-index)) def __UpperCamelCase (self , lowercase__ , lowercase__ ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value snake_case_ : Tuple = self.next_(lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): self.add(lowercase__ , value - self.get(lowercase__ ) ) def __UpperCamelCase (self , lowercase__ ): if right == 0: return 0 snake_case_ : List[str] = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] snake_case_ : Optional[int] = self.prev(lowercase__ ) return result def __UpperCamelCase (self , lowercase__ , lowercase__ ): return self.prefix(lowercase__ ) - self.prefix(lowercase__ ) def __UpperCamelCase (self , lowercase__ ): return self.query(lowercase__ , index + 1 ) def __UpperCamelCase (self , lowercase__ ): value -= self.tree[0] if value < 0: return -1 snake_case_ : Tuple = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 snake_case_ : Tuple = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
48
1
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Optional[Any] = 0 snake_case_ : int = len(SCREAMING_SNAKE_CASE__ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None snake_case_ : Optional[int] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(SCREAMING_SNAKE_CASE__ ): return None snake_case_ : Dict = sorted_collection[point] if current_item == item: return point else: if point < left: snake_case_ : List[Any] = left snake_case_ : List[Any] = point elif point > right: snake_case_ : List[Any] = right snake_case_ : Tuple = point else: if item < current_item: snake_case_ : List[Any] = point - 1 else: snake_case_ : Union[str, Any] = point + 1 return None def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None snake_case_ : int = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(SCREAMING_SNAKE_CASE__ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif point > right: return interpolation_search_by_recursion(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , point - 1 ) else: return interpolation_search_by_recursion( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , point + 1 , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" if collection != sorted(SCREAMING_SNAKE_CASE__ ): raise ValueError("""Collection must be ascending sorted""" ) return True if __name__ == "__main__": import sys a_ = 0 if debug == 1: a_ = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit('''Sequence must be ascending sorted to apply interpolation search''') a_ = 67 a_ = interpolation_search(collection, target) if result is not None: print(F'''{target} found at positions: {result}''') else: print('''Not found''')
48
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : list ): """simple docstring""" snake_case_ : Optional[int] = len(SCREAMING_SNAKE_CASE__ ) for i in range(1 , SCREAMING_SNAKE_CASE__ ): snake_case_ : Tuple = collection[i] snake_case_ : Tuple = 0 snake_case_ : str = i - 1 while low <= high: snake_case_ : Optional[int] = (low + high) // 2 if val < collection[mid]: snake_case_ : List[str] = mid - 1 else: snake_case_ : str = mid + 1 for j in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , -1 ): snake_case_ : List[str] = collection[j - 1] snake_case_ : Any = val return collection if __name__ == "__main__": a_ = input('''Enter numbers separated by a comma:\n''').strip() a_ = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
48
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : int = ["""pixel_values"""] def __init__(self , lowercase__ = True , lowercase__ = None , lowercase__ = 0.9 , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = True , lowercase__ = None , lowercase__ = 1 / 2_55 , lowercase__ = True , lowercase__ = True , lowercase__ = None , lowercase__ = None , **lowercase__ , ): super().__init__(**lowercase__ ) snake_case_ : Tuple = size if size is not None else {"""shortest_edge""": 2_24} snake_case_ : Union[str, Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) snake_case_ : str = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} snake_case_ : Dict = get_size_dict(lowercase__ , param_name="""crop_size""" ) snake_case_ : Union[str, Any] = do_resize snake_case_ : List[str] = size snake_case_ : str = crop_pct snake_case_ : str = resample snake_case_ : Optional[Any] = do_center_crop snake_case_ : Dict = crop_size snake_case_ : int = do_rescale snake_case_ : Optional[int] = rescale_factor snake_case_ : str = do_normalize snake_case_ : str = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN snake_case_ : List[str] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = None , **lowercase__ , ): snake_case_ : Tuple = get_size_dict(lowercase__ , default_to_square=lowercase__ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f'size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) if crop_pct is not None: if "shortest_edge" in size: snake_case_ : Optional[int] = int(size["""shortest_edge"""] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: snake_case_ : Dict = int(size["""height"""] / crop_pct ) else: snake_case_ : List[str] = (int(size["""height"""] / crop_pct ), int(size["""width"""] / crop_pct )) else: raise ValueError("""Invalid size for resize: {}""".format(lowercase__ ) ) snake_case_ : List[Any] = get_resize_output_image_size(lowercase__ , size=lowercase__ , default_to_square=lowercase__ ) else: if "shortest_edge" in size: snake_case_ : Optional[int] = get_resize_output_image_size(lowercase__ , size=size["""shortest_edge"""] , default_to_square=lowercase__ ) elif "height" in size and "width" in size: snake_case_ : int = (size["""height"""], size["""width"""]) else: raise ValueError("""Invalid size for resize: {}""".format(lowercase__ ) ) return resize(lowercase__ , size=lowercase__ , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): snake_case_ : int = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(f'size must contain \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(lowercase__ , size=(size["""height"""], size["""width"""]) , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return normalize(lowercase__ , mean=lowercase__ , std=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ): snake_case_ : str = do_resize if do_resize is not None else self.do_resize snake_case_ : Any = crop_pct if crop_pct is not None else self.crop_pct snake_case_ : List[Any] = resample if resample is not None else self.resample snake_case_ : str = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : str = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : str = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : List[Any] = image_mean if image_mean is not None else self.image_mean snake_case_ : int = image_std if image_std is not None else self.image_std snake_case_ : List[Any] = size if size is not None else self.size snake_case_ : Optional[Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) snake_case_ : List[Any] = crop_size if crop_size is not None else self.crop_size snake_case_ : int = get_size_dict(lowercase__ , param_name="""crop_size""" ) snake_case_ : List[str] = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_pct is None: raise ValueError("""Crop_pct must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case_ : int = [to_numpy_array(lowercase__ ) for image in images] if do_resize: snake_case_ : str = [self.resize(image=lowercase__ , size=lowercase__ , crop_pct=lowercase__ , resample=lowercase__ ) for image in images] if do_center_crop: snake_case_ : Optional[int] = [self.center_crop(image=lowercase__ , size=lowercase__ ) for image in images] if do_rescale: snake_case_ : List[Any] = [self.rescale(image=lowercase__ , scale=lowercase__ ) for image in images] if do_normalize: snake_case_ : Optional[Any] = [self.normalize(image=lowercase__ , mean=lowercase__ , std=lowercase__ ) for image in images] snake_case_ : List[Any] = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] snake_case_ : Dict = {"""pixel_values""": images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
48
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Union[str, Any] = ["""image_processor""", """tokenizer"""] _A : str = """ChineseCLIPImageProcessor""" _A : Tuple = ("""BertTokenizer""", """BertTokenizerFast""") def __init__(self , lowercase__=None , lowercase__=None , **lowercase__ ): snake_case_ : Any = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowercase__ , ) snake_case_ : Optional[Any] = kwargs.pop("""feature_extractor""" ) snake_case_ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowercase__ , lowercase__ ) snake_case_ : Union[str, Any] = self.image_processor def __call__(self , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ ): if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: snake_case_ : Any = self.tokenizer(lowercase__ , return_tensors=lowercase__ , **lowercase__ ) if images is not None: snake_case_ : Tuple = self.image_processor(lowercase__ , return_tensors=lowercase__ , **lowercase__ ) if text is not None and images is not None: snake_case_ : List[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase__ ) , tensor_type=lowercase__ ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): return self.tokenizer.batch_decode(*lowercase__ , **lowercase__ ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): return self.tokenizer.decode(*lowercase__ , **lowercase__ ) @property def __UpperCamelCase (self ): snake_case_ : Optional[int] = self.tokenizer.model_input_names snake_case_ : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __UpperCamelCase (self ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowercase__ , ) return self.image_processor_class
48
1
"""simple docstring""" import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_sentencepiece_available(): import sentencepiece as sp a_ = 5 a_ = 10 @require_sentencepiece @require_tokenizers class __lowercase ( _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : str = SpeechaTextTokenizer _A : Any = False _A : Optional[Any] = True def __UpperCamelCase (self ): super().setUp() snake_case_ : List[str] = sp.SentencePieceProcessor() spm_model.Load(lowercase__ ) snake_case_ : Optional[int] = ["""<s>""", """<pad>""", """</s>""", """<unk>"""] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(lowercase__ ) )] snake_case_ : List[Any] = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) snake_case_ : List[str] = Path(self.tmpdirname ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""vocab_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""spm_file"""] ) snake_case_ : Optional[Any] = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase (self ): snake_case_ : Dict = """<pad>""" snake_case_ : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__ ) , lowercase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__ ) , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(lowercase__ ) , 10_01 ) def __UpperCamelCase (self ): self.assertEqual(self.get_tokenizer().vocab_size , 10_01 ) def __UpperCamelCase (self ): snake_case_ : int = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) snake_case_ : str = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowercase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase__ ) , [2_89, 50, 14, 1_74, 3_86] , ) snake_case_ : List[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowercase__ , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""] , ) snake_case_ : Optional[int] = tokenizer.convert_tokens_to_ids(lowercase__ ) self.assertListEqual(lowercase__ , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) snake_case_ : Dict = tokenizer.convert_ids_to_tokens(lowercase__ ) self.assertListEqual( lowercase__ , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""] , ) @slow def __UpperCamelCase (self ): # fmt: off snake_case_ : List[str] = {"""input_ids""": [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase__ , model_name="""facebook/s2t-small-mustc-en-de-st""" , revision="""a14f04cf0776c02f62a8cb800cf7909e15ea23ad""" , ) @require_sentencepiece class __lowercase ( unittest.TestCase): """simple docstring""" _A : str = """valhalla/s2t_mustc_multilinguial_medium""" _A : Tuple = """C'est trop cool""" _A : List[str] = """Esto es genial""" @classmethod def __UpperCamelCase (cls ): snake_case_ : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def __UpperCamelCase (self ): self.assertEqual(self.tokenizer.lang_code_to_id["""pt"""] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id["""ru"""] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id["""it"""] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id["""de"""] , 11 ) def __UpperCamelCase (self ): self.assertEqual(self.tokenizer.vocab_size , 1_00_00 ) def __UpperCamelCase (self ): self.assertIn(lowercase__ , self.tokenizer.all_special_ids ) snake_case_ : List[str] = [ES_CODE, 4, 16_01, 47, 76_47, 2] snake_case_ : Optional[int] = self.tokenizer.decode(lowercase__ , skip_special_tokens=lowercase__ ) snake_case_ : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) self.assertNotIn(self.tokenizer.eos_token , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Tuple = """fr""" snake_case_ : Optional[Any] = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , lowercase__ ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def __UpperCamelCase (self ): snake_case_ : List[Any] = """fr""" self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) snake_case_ : str = """es""" self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
48
"""simple docstring""" import argparse import copy def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" snake_case_ : List[Any] = {} with open(SCREAMING_SNAKE_CASE__ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: snake_case_ : int = [] _list.append([line.split()[1], line.split()[2]] ) snake_case_ : Optional[Any] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: snake_case_ : str = [] _list.append([line.split()[0], line.split()[2]] ) snake_case_ : Optional[Any] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" with open(SCREAMING_SNAKE_CASE__ ) as f: snake_case_ : Optional[Any] = f.read(1 ) snake_case_ : Union[str, Any] = start_node snake_case_ : Dict = [] snake_case_ : Union[str, Any] = start_node snake_case_ : Tuple = 0 while visiting not in first_solution: snake_case_ : int = 1_0_0_0_0 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(SCREAMING_SNAKE_CASE__ ) and k[0] not in first_solution: snake_case_ : Union[str, Any] = k[1] snake_case_ : Any = k[0] first_solution.append(SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = distance_of_first_solution + int(SCREAMING_SNAKE_CASE__ ) snake_case_ : List[str] = best_node first_solution.append(SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[Any] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 snake_case_ : int = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0_0_0_0 ) return first_solution, distance_of_first_solution def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" snake_case_ : Union[str, Any] = [] for n in solution[1:-1]: snake_case_ : str = solution.index(SCREAMING_SNAKE_CASE__ ) for kn in solution[1:-1]: snake_case_ : Tuple = solution.index(SCREAMING_SNAKE_CASE__ ) if n == kn: continue snake_case_ : Optional[Any] = copy.deepcopy(SCREAMING_SNAKE_CASE__ ) snake_case_ : int = kn snake_case_ : Dict = n snake_case_ : Optional[int] = 0 for k in _tmp[:-1]: snake_case_ : Dict = _tmp[_tmp.index(SCREAMING_SNAKE_CASE__ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: snake_case_ : Dict = distance + int(i[1] ) _tmp.append(SCREAMING_SNAKE_CASE__ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) snake_case_ : Optional[Any] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda SCREAMING_SNAKE_CASE__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] ): """simple docstring""" snake_case_ : Dict = 1 snake_case_ : List[Any] = first_solution snake_case_ : List[Any] = [] snake_case_ : Optional[Any] = distance_of_first_solution snake_case_ : Dict = solution while count <= iters: snake_case_ : List[str] = find_neighborhood(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = 0 snake_case_ : List[Any] = neighborhood[index_of_best_solution] snake_case_ : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ ) - 1 snake_case_ : List[str] = False while not found: snake_case_ : Tuple = 0 while i < len(SCREAMING_SNAKE_CASE__ ): if best_solution[i] != solution[i]: snake_case_ : Optional[Any] = best_solution[i] snake_case_ : int = solution[i] break snake_case_ : List[str] = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) snake_case_ : Tuple = True snake_case_ : Dict = best_solution[:-1] snake_case_ : Tuple = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: snake_case_ : Tuple = cost snake_case_ : Union[str, Any] = solution else: snake_case_ : str = index_of_best_solution + 1 snake_case_ : Tuple = neighborhood[index_of_best_solution] if len(SCREAMING_SNAKE_CASE__ ) >= size: tabu_list.pop(0 ) snake_case_ : List[str] = count + 1 return best_solution_ever, best_cost def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any]=None ): """simple docstring""" snake_case_ : Tuple = generate_neighbours(args.File ) snake_case_ , snake_case_ : Optional[Any] = generate_first_solution( args.File , SCREAMING_SNAKE_CASE__ ) snake_case_ , snake_case_ : Dict = tabu_search( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , args.Iterations , args.Size , ) print(f'Best solution: {best_sol}, with total distance: {best_cost}.' ) if __name__ == "__main__": a_ = argparse.ArgumentParser(description='''Tabu Search''') parser.add_argument( '''-f''', '''--File''', type=str, help='''Path to the file containing the data''', required=True, ) parser.add_argument( '''-i''', '''--Iterations''', type=int, help='''How many iterations the algorithm should perform''', required=True, ) parser.add_argument( '''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True ) # Pass the arguments to main method main(parser.parse_args())
48
1
"""simple docstring""" a_ = {'''a''': ['''c''', '''b'''], '''b''': ['''d''', '''e'''], '''c''': [], '''d''': [], '''e''': []} a_ = ['''a''', '''b''', '''c''', '''d''', '''e'''] def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" snake_case_ : Optional[int] = start # add current to visited visited.append(SCREAMING_SNAKE_CASE__ ) snake_case_ : int = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: snake_case_ : Union[str, Any] = topological_sort(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # if all neighbors visited add current to sort sort.append(SCREAMING_SNAKE_CASE__ ) # if all vertices haven't been visited select a new one to visit if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): for vertice in vertices: if vertice not in visited: snake_case_ : List[str] = topological_sort(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # return sort return sort if __name__ == "__main__": a_ = topological_sort('''a''', [], []) print(sort)
48
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings a_ = r''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(_UpperCAmelCase) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """rag""" _A : Optional[Any] = True def __init__(self , lowercase__=None , lowercase__=True , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=" / " , lowercase__=" // " , lowercase__=5 , lowercase__=3_00 , lowercase__=7_68 , lowercase__=8 , lowercase__="wiki_dpr" , lowercase__="train" , lowercase__="compressed" , lowercase__=None , lowercase__=None , lowercase__=False , lowercase__=False , lowercase__=0.0 , lowercase__=True , lowercase__=False , lowercase__=False , lowercase__=False , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__( bos_token_id=lowercase__ , pad_token_id=lowercase__ , eos_token_id=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , prefix=lowercase__ , vocab_size=lowercase__ , **lowercase__ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" snake_case_ : List[Any] = kwargs.pop("""question_encoder""" ) snake_case_ : Tuple = question_encoder_config.pop("""model_type""" ) snake_case_ : List[str] = kwargs.pop("""generator""" ) snake_case_ : List[str] = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig snake_case_ : List[str] = AutoConfig.for_model(lowercase__ , **lowercase__ ) snake_case_ : Tuple = AutoConfig.for_model(lowercase__ , **lowercase__ ) snake_case_ : int = reduce_loss snake_case_ : Optional[int] = label_smoothing snake_case_ : Dict = exclude_bos_score snake_case_ : Union[str, Any] = do_marginalize snake_case_ : Union[str, Any] = title_sep snake_case_ : int = doc_sep snake_case_ : int = n_docs snake_case_ : List[str] = max_combined_length snake_case_ : Tuple = dataset snake_case_ : int = dataset_split snake_case_ : str = index_name snake_case_ : List[str] = retrieval_vector_size snake_case_ : Dict = retrieval_batch_size snake_case_ : str = passages_path snake_case_ : Union[str, Any] = index_path snake_case_ : Tuple = use_dummy_dataset snake_case_ : Dict = output_retrieved snake_case_ : str = do_deduplication snake_case_ : Any = use_cache if self.forced_eos_token_id is None: snake_case_ : Any = getattr(self.generator , """forced_eos_token_id""" , lowercase__ ) @classmethod def __UpperCamelCase (cls , lowercase__ , lowercase__ , **lowercase__ ): return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Optional[Any] = copy.deepcopy(self.__dict__ ) snake_case_ : Any = self.question_encoder.to_dict() snake_case_ : Dict = self.generator.to_dict() snake_case_ : Union[str, Any] = self.__class__.model_type return output
48
1
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCAmelCase) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : str = field(default="""summarization""" , metadata={"""include_in_asdict_even_if_is_default""": True}) _A : ClassVar[Features] = Features({"""text""": Value("""string""")}) _A : ClassVar[Features] = Features({"""summary""": Value("""string""")}) _A : str = "text" _A : str = "summary" @property def __UpperCamelCase (self ): return {self.text_column: "text", self.summary_column: "summary"}
48
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """upernet""" def __init__(self , lowercase__=None , lowercase__=5_12 , lowercase__=0.02 , lowercase__=[1, 2, 3, 6] , lowercase__=True , lowercase__=0.4 , lowercase__=3_84 , lowercase__=2_56 , lowercase__=1 , lowercase__=False , lowercase__=2_55 , **lowercase__ , ): super().__init__(**lowercase__ ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) snake_case_ : List[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(lowercase__ , lowercase__ ): snake_case_ : Tuple = backbone_config.get("""model_type""" ) snake_case_ : List[str] = CONFIG_MAPPING[backbone_model_type] snake_case_ : List[Any] = config_class.from_dict(lowercase__ ) snake_case_ : List[Any] = backbone_config snake_case_ : Optional[Any] = hidden_size snake_case_ : Any = initializer_range snake_case_ : str = pool_scales snake_case_ : Dict = use_auxiliary_head snake_case_ : str = auxiliary_loss_weight snake_case_ : List[str] = auxiliary_in_channels snake_case_ : Optional[Any] = auxiliary_channels snake_case_ : Any = auxiliary_num_convs snake_case_ : List[Any] = auxiliary_concat_input snake_case_ : List[str] = loss_ignore_index def __UpperCamelCase (self ): snake_case_ : Dict = copy.deepcopy(self.__dict__ ) snake_case_ : Union[str, Any] = self.backbone_config.to_dict() snake_case_ : Any = self.__class__.model_type return output
48
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __lowercase ( unittest.TestCase): """simple docstring""" def __init__(self , lowercase__ , lowercase__=7 , lowercase__=3 , lowercase__=18 , lowercase__=30 , lowercase__=4_00 , lowercase__=True , lowercase__=None , lowercase__=True , lowercase__=None , lowercase__=True , ): snake_case_ : List[Any] = size if size is not None else {"""shortest_edge""": 20} snake_case_ : List[Any] = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} snake_case_ : Union[str, Any] = parent snake_case_ : Any = batch_size snake_case_ : Tuple = num_channels snake_case_ : Optional[int] = image_size snake_case_ : int = min_resolution snake_case_ : Union[str, Any] = max_resolution snake_case_ : int = do_resize snake_case_ : List[str] = size snake_case_ : List[Any] = do_center_crop snake_case_ : str = crop_size snake_case_ : Dict = do_flip_channel_order def __UpperCamelCase (self ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class __lowercase ( _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : str = MobileViTImageProcessor if is_vision_available() else None def __UpperCamelCase (self ): snake_case_ : List[Any] = MobileViTImageProcessingTester(self ) @property def __UpperCamelCase (self ): return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase__ , """size""" ) ) self.assertTrue(hasattr(lowercase__ , """do_center_crop""" ) ) self.assertTrue(hasattr(lowercase__ , """center_crop""" ) ) self.assertTrue(hasattr(lowercase__ , """do_flip_channel_order""" ) ) def __UpperCamelCase (self ): snake_case_ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) snake_case_ : int = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def __UpperCamelCase (self ): pass def __UpperCamelCase (self ): # Initialize image_processing snake_case_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , Image.Image ) # Test not batched input snake_case_ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched snake_case_ : Union[str, Any] = image_processing(lowercase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def __UpperCamelCase (self ): # Initialize image_processing snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , numpify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , np.ndarray ) # Test not batched input snake_case_ : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched snake_case_ : Dict = image_processing(lowercase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def __UpperCamelCase (self ): # Initialize image_processing snake_case_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , torchify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , torch.Tensor ) # Test not batched input snake_case_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched snake_case_ : Any = image_processing(lowercase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
48
"""simple docstring""" import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask a_ = logging.getLogger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self , lowercase__=-1 ): # in NER datasets, the last column is usually reserved for NER label snake_case_ : Union[str, Any] = label_idx def __UpperCamelCase (self , lowercase__ , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): snake_case_ : List[str] = mode.value snake_case_ : List[Any] = os.path.join(lowercase__ , f'{mode}.txt' ) snake_case_ : Tuple = 1 snake_case_ : Any = [] with open(lowercase__ , encoding="""utf-8""" ) as f: snake_case_ : str = [] snake_case_ : List[Any] = [] for line in f: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) guid_index += 1 snake_case_ : Optional[Any] = [] snake_case_ : int = [] else: snake_case_ : Optional[Any] = line.split(""" """ ) words.append(splits[0] ) if len(lowercase__ ) > 1: labels.append(splits[self.label_idx].replace("""\n""" , """""" ) ) else: # Examples could have no label for mode = "test" labels.append("""O""" ) if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) return examples def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : str = 0 for line in test_input_reader: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": writer.write(lowercase__ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: snake_case_ : Optional[int] = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n""" writer.write(lowercase__ ) else: logger.warning("""Maximum sequence length exceeded: No prediction for '%s'.""" , line.split()[0] ) def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: snake_case_ : Dict = f.read().splitlines() if "O" not in labels: snake_case_ : List[Any] = ["""O"""] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self ): # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: snake_case_ : Any = f.read().splitlines() if "O" not in labels: snake_case_ : Tuple = ["""O"""] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __lowercase ( _UpperCAmelCase): """simple docstring""" def __UpperCamelCase (self , lowercase__ , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): snake_case_ : List[Any] = mode.value snake_case_ : Optional[int] = os.path.join(lowercase__ , f'{mode}.txt' ) snake_case_ : Tuple = 1 snake_case_ : str = [] with open(lowercase__ , encoding="""utf-8""" ) as f: for sentence in parse_incr(lowercase__ ): snake_case_ : Tuple = [] snake_case_ : Any = [] for token in sentence: words.append(token["""form"""] ) labels.append(token["""upos"""] ) assert len(lowercase__ ) == len(lowercase__ ) if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) guid_index += 1 return examples def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : Dict = 0 for sentence in parse_incr(lowercase__ ): snake_case_ : int = preds_list[example_id] snake_case_ : Dict = """""" for token in sentence: out += f'{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) ' out += "\n" writer.write(lowercase__ ) example_id += 1 def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
48
1
"""simple docstring""" from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Any = ArgumentParser("""Transformers CLI tool""" , usage="""transformers-cli <command> [<args>]""" ) snake_case_ : str = parser.add_subparsers(help="""transformers-cli command helpers""" ) # Register commands ConvertCommand.register_subcommand(SCREAMING_SNAKE_CASE__ ) DownloadCommand.register_subcommand(SCREAMING_SNAKE_CASE__ ) EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE__ ) RunCommand.register_subcommand(SCREAMING_SNAKE_CASE__ ) ServeCommand.register_subcommand(SCREAMING_SNAKE_CASE__ ) UserCommands.register_subcommand(SCREAMING_SNAKE_CASE__ ) AddNewModelCommand.register_subcommand(SCREAMING_SNAKE_CASE__ ) AddNewModelLikeCommand.register_subcommand(SCREAMING_SNAKE_CASE__ ) LfsCommands.register_subcommand(SCREAMING_SNAKE_CASE__ ) PTtoTFCommand.register_subcommand(SCREAMING_SNAKE_CASE__ ) # Let's go snake_case_ : Union[str, Any] = parser.parse_args() if not hasattr(SCREAMING_SNAKE_CASE__ , """func""" ): parser.print_help() exit(1 ) # Run snake_case_ : Tuple = args.func(SCREAMING_SNAKE_CASE__ ) service.run() if __name__ == "__main__": main()
48
"""simple docstring""" import random def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : Union[str, Any] = num - 1 snake_case_ : List[str] = 0 while s % 2 == 0: snake_case_ : str = s // 2 t += 1 for _ in range(5 ): snake_case_ : List[Any] = random.randrange(2 , num - 1 ) snake_case_ : Dict = pow(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if v != 1: snake_case_ : int = 0 while v != (num - 1): if i == t - 1: return False else: snake_case_ : str = i + 1 snake_case_ : int = (v**2) % num return True def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" if num < 2: return False snake_case_ : Dict = [ 2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1, 4_3, 4_7, 5_3, 5_9, 6_1, 6_7, 7_1, 7_3, 7_9, 8_3, 8_9, 9_7, 1_0_1, 1_0_3, 1_0_7, 1_0_9, 1_1_3, 1_2_7, 1_3_1, 1_3_7, 1_3_9, 1_4_9, 1_5_1, 1_5_7, 1_6_3, 1_6_7, 1_7_3, 1_7_9, 1_8_1, 1_9_1, 1_9_3, 1_9_7, 1_9_9, 2_1_1, 2_2_3, 2_2_7, 2_2_9, 2_3_3, 2_3_9, 2_4_1, 2_5_1, 2_5_7, 2_6_3, 2_6_9, 2_7_1, 2_7_7, 2_8_1, 2_8_3, 2_9_3, 3_0_7, 3_1_1, 3_1_3, 3_1_7, 3_3_1, 3_3_7, 3_4_7, 3_4_9, 3_5_3, 3_5_9, 3_6_7, 3_7_3, 3_7_9, 3_8_3, 3_8_9, 3_9_7, 4_0_1, 4_0_9, 4_1_9, 4_2_1, 4_3_1, 4_3_3, 4_3_9, 4_4_3, 4_4_9, 4_5_7, 4_6_1, 4_6_3, 4_6_7, 4_7_9, 4_8_7, 4_9_1, 4_9_9, 5_0_3, 5_0_9, 5_2_1, 5_2_3, 5_4_1, 5_4_7, 5_5_7, 5_6_3, 5_6_9, 5_7_1, 5_7_7, 5_8_7, 5_9_3, 5_9_9, 6_0_1, 6_0_7, 6_1_3, 6_1_7, 6_1_9, 6_3_1, 6_4_1, 6_4_3, 6_4_7, 6_5_3, 6_5_9, 6_6_1, 6_7_3, 6_7_7, 6_8_3, 6_9_1, 7_0_1, 7_0_9, 7_1_9, 7_2_7, 7_3_3, 7_3_9, 7_4_3, 7_5_1, 7_5_7, 7_6_1, 7_6_9, 7_7_3, 7_8_7, 7_9_7, 8_0_9, 8_1_1, 8_2_1, 8_2_3, 8_2_7, 8_2_9, 8_3_9, 8_5_3, 8_5_7, 8_5_9, 8_6_3, 8_7_7, 8_8_1, 8_8_3, 8_8_7, 9_0_7, 9_1_1, 9_1_9, 9_2_9, 9_3_7, 9_4_1, 9_4_7, 9_5_3, 9_6_7, 9_7_1, 9_7_7, 9_8_3, 9_9_1, 9_9_7, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int = 1_0_2_4 ): """simple docstring""" while True: snake_case_ : Tuple = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(SCREAMING_SNAKE_CASE__ ): return num if __name__ == "__main__": a_ = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
48
1
"""simple docstring""" import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[int] ): # picklable for multiprocessing """simple docstring""" return x.sum() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] ): # picklable for multiprocessing """simple docstring""" return i + 1 @dataclass class __lowercase : """simple docstring""" _A : int _A : str class __lowercase ( _UpperCAmelCase): """simple docstring""" def __UpperCamelCase (self ): snake_case_ : Tuple = {} snake_case_ : Any = [] snake_case_ : Any = 1 snake_case_ : List[str] = [1, 2] snake_case_ : Dict = {"""a""": 1, """b""": 2} snake_case_ : Tuple = {"""a""": [1, 2], """b""": [3, 4]} snake_case_ : Optional[Any] = {"""a""": {"""1""": 1}, """b""": 2} snake_case_ : List[str] = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4} snake_case_ : List[str] = {} snake_case_ : List[Any] = [] snake_case_ : Optional[int] = 2 snake_case_ : List[Any] = [2, 3] snake_case_ : List[str] = {"""a""": 2, """b""": 3} snake_case_ : Tuple = {"""a""": [2, 3], """b""": [4, 5]} snake_case_ : Optional[Any] = {"""a""": {"""1""": 2}, """b""": 3} snake_case_ : Optional[int] = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5} self.assertEqual(map_nested(lowercase__ , lowercase__ ) , lowercase__ ) self.assertEqual(map_nested(lowercase__ , lowercase__ ) , lowercase__ ) self.assertEqual(map_nested(lowercase__ , lowercase__ ) , lowercase__ ) self.assertEqual(map_nested(lowercase__ , lowercase__ ) , lowercase__ ) self.assertEqual(map_nested(lowercase__ , lowercase__ ) , lowercase__ ) self.assertEqual(map_nested(lowercase__ , lowercase__ ) , lowercase__ ) self.assertEqual(map_nested(lowercase__ , lowercase__ ) , lowercase__ ) self.assertEqual(map_nested(lowercase__ , lowercase__ ) , lowercase__ ) snake_case_ : Optional[Any] = 2 self.assertEqual(map_nested(lowercase__ , lowercase__ , num_proc=lowercase__ ) , lowercase__ ) self.assertEqual(map_nested(lowercase__ , lowercase__ , num_proc=lowercase__ ) , lowercase__ ) self.assertEqual(map_nested(lowercase__ , lowercase__ , num_proc=lowercase__ ) , lowercase__ ) self.assertEqual(map_nested(lowercase__ , lowercase__ , num_proc=lowercase__ ) , lowercase__ ) self.assertEqual(map_nested(lowercase__ , lowercase__ , num_proc=lowercase__ ) , lowercase__ ) self.assertEqual(map_nested(lowercase__ , lowercase__ , num_proc=lowercase__ ) , lowercase__ ) self.assertEqual(map_nested(lowercase__ , lowercase__ , num_proc=lowercase__ ) , lowercase__ ) self.assertEqual(map_nested(lowercase__ , lowercase__ , num_proc=lowercase__ ) , lowercase__ ) snake_case_ : List[str] = {"""a""": np.eye(2 ), """b""": np.zeros(3 ), """c""": np.ones(2 )} snake_case_ : List[str] = {"""a""": 2, """b""": 0, """c""": 2} snake_case_ : Any = { """a""": np.eye(2 ).astype(lowercase__ ), """b""": np.zeros(3 ).astype(lowercase__ ), """c""": np.ones(2 ).astype(lowercase__ ), } self.assertEqual(map_nested(lowercase__ , lowercase__ , map_numpy=lowercase__ ) , lowercase__ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(lowercase__ , lowercase__ , map_numpy=lowercase__ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(lowercase__ , lowercase__ , map_numpy=lowercase__ , num_proc=lowercase__ ) , lowercase__ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(lowercase__ , lowercase__ , map_numpy=lowercase__ , num_proc=lowercase__ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(lowercase__ ): # can't pickle a local lambda map_nested(lambda lowercase__ : x + 1 , lowercase__ , num_proc=lowercase__ ) def __UpperCamelCase (self ): snake_case_ : List[str] = {"""a""": 1, """b""": 2} snake_case_ : Dict = {"""a""": 3, """b""": 4} snake_case_ : Dict = {"""a""": 5, """b""": 6} snake_case_ : List[Any] = sorted([("""a""", (1, 3, 5)), ("""b""", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(lowercase__ , lowercase__ , lowercase__ ) ) , lowercase__ ) def __UpperCamelCase (self ): class __lowercase : """simple docstring""" _A : str = """bar""" snake_case_ : Dict = Foo() self.assertEqual(foo.my_attr , """bar""" ) with temporary_assignment(lowercase__ , """my_attr""" , """BAR""" ): self.assertEqual(foo.my_attr , """BAR""" ) self.assertEqual(foo.my_attr , """bar""" ) @pytest.mark.parametrize( """iterable_length, num_proc, expected_num_proc""" , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (1_6, 1_6, 1_6), (1_6, 1_7, 1_6), (1_7, 1_6, 1_6), ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" with patch("""datasets.utils.py_utils._single_map_nested""" ) as mock_single_map_nested, patch( """datasets.parallel.parallel.Pool""" ) as mock_multiprocessing_pool: snake_case_ : Optional[Any] = {f'{i}': i for i in range(SCREAMING_SNAKE_CASE__ )} snake_case_ : Union[str, Any] = map_nested(lambda SCREAMING_SNAKE_CASE__ : x + 1_0 , SCREAMING_SNAKE_CASE__ , num_proc=SCREAMING_SNAKE_CASE__ , parallel_min_length=1_6 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class __lowercase ( _UpperCAmelCase): """simple docstring""" @require_tf def __UpperCamelCase (self ): import tensorflow as tf from tensorflow.keras import layers snake_case_ : Tuple = layers.Dense(2 ) def gen_random_output(): snake_case_ : List[Any] = tf.random.uniform((1, 3) ) return model(lowercase__ ).numpy() with temp_seed(42 , set_tensorflow=lowercase__ ): snake_case_ : Tuple = gen_random_output() with temp_seed(42 , set_tensorflow=lowercase__ ): snake_case_ : str = gen_random_output() snake_case_ : Optional[int] = gen_random_output() np.testing.assert_equal(lowercase__ , lowercase__ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def __UpperCamelCase (self ): import torch def gen_random_output(): snake_case_ : Any = torch.nn.Linear(3 , 2 ) snake_case_ : Optional[int] = torch.rand(1 , 3 ) return model(lowercase__ ).detach().numpy() with temp_seed(42 , set_pytorch=lowercase__ ): snake_case_ : Optional[Any] = gen_random_output() with temp_seed(42 , set_pytorch=lowercase__ ): snake_case_ : Optional[Any] = gen_random_output() snake_case_ : Tuple = gen_random_output() np.testing.assert_equal(lowercase__ , lowercase__ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def __UpperCamelCase (self ): def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): snake_case_ : List[Any] = gen_random_output() with temp_seed(42 ): snake_case_ : Union[str, Any] = gen_random_output() snake_case_ : Optional[Any] = gen_random_output() np.testing.assert_equal(lowercase__ , lowercase__ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("""input_data""" , [{}] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : Union[str, Any] = NestedDataStructure(SCREAMING_SNAKE_CASE__ ).data assert output_data == input_data @pytest.mark.parametrize( """data, expected_output""" , [ ({}, []), ([], []), ("""foo""", ["""foo"""]), (["""foo""", """bar"""], ["""foo""", """bar"""]), ([["""foo""", """bar"""]], ["""foo""", """bar"""]), ([[["""foo"""], ["""bar"""]]], ["""foo""", """bar"""]), ([[["""foo"""], """bar"""]], ["""foo""", """bar"""]), ({"""a""": 1, """b""": 2}, [1, 2]), ({"""a""": [1, 2], """b""": [3, 4]}, [1, 2, 3, 4]), ({"""a""": [[1, 2]], """b""": [[3, 4]]}, [1, 2, 3, 4]), ({"""a""": [[1, 2]], """b""": [3, 4]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [[[3], [4]]]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [[3, 4]]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [3, 4]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [3, [4]]}, [1, 2, 3, 4]), ({"""a""": {"""1""": 1}, """b""": 2}, [1, 2]), ({"""a""": {"""1""": [1]}, """b""": 2}, [1, 2]), ({"""a""": {"""1""": [1]}, """b""": [2]}, [1, 2]), ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] ): """simple docstring""" snake_case_ : Dict = NestedDataStructure(SCREAMING_SNAKE_CASE__ ).flatten() assert output == expected_output def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Union[str, Any] = A(x=1 , y="""foobar""" ) snake_case_ : List[Any] = {"""x""": 1, """y""": """foobar"""} assert asdict(SCREAMING_SNAKE_CASE__ ) == expected_output snake_case_ : Tuple = {"""a""": {"""b""": A(x=1_0 , y="""foo""" )}, """c""": [A(x=2_0 , y="""bar""" )]} snake_case_ : Union[str, Any] = {"""a""": {"""b""": {"""x""": 1_0, """y""": """foo"""}}, """c""": [{"""x""": 2_0, """y""": """bar"""}]} assert asdict(SCREAMING_SNAKE_CASE__ ) == expected_output with pytest.raises(SCREAMING_SNAKE_CASE__ ): asdict([1, A(x=1_0 , y="""foo""" )] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" return text.split() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" with Pool(2 ) as pool: snake_case_ : Optional[int] = list(iflatmap_unordered(SCREAMING_SNAKE_CASE__ , _split_text , kwargs_iterable=[{"""text""": """hello there"""}] * 1_0 ) ) assert out.count("""hello""" ) == 1_0 assert out.count("""there""" ) == 1_0 assert len(SCREAMING_SNAKE_CASE__ ) == 2_0 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: snake_case_ : Union[str, Any] = list(iflatmap_unordered(SCREAMING_SNAKE_CASE__ , _split_text , kwargs_iterable=[{"""text""": """hello there"""}] * 1_0 ) ) assert out.count("""hello""" ) == 1_0 assert out.count("""there""" ) == 1_0 assert len(SCREAMING_SNAKE_CASE__ ) == 2_0 # check that we get items as fast as possible with Pool(2 ) as pool: snake_case_ : Optional[int] = [] for yield_time, content in iflatmap_unordered( SCREAMING_SNAKE_CASE__ , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{"""content""": """a"""}, {"""content""": """b"""}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(SCREAMING_SNAKE_CASE__ ) assert out.count("""a""" ) == 2 assert out.count("""b""" ) == 2 assert len(SCREAMING_SNAKE_CASE__ ) == 4
48
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType a_ = logging.get_logger(__name__) a_ = { '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Dict = """deberta-v2""" def __init__(self , lowercase__=12_81_00 , lowercase__=15_36 , lowercase__=24 , lowercase__=24 , lowercase__=61_44 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_12 , lowercase__=0 , lowercase__=0.02 , lowercase__=1e-7 , lowercase__=False , lowercase__=-1 , lowercase__=0 , lowercase__=True , lowercase__=None , lowercase__=0 , lowercase__="gelu" , **lowercase__ , ): super().__init__(**lowercase__ ) snake_case_ : Union[str, Any] = hidden_size snake_case_ : str = num_hidden_layers snake_case_ : Tuple = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : Optional[int] = hidden_act snake_case_ : Union[str, Any] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : List[Any] = max_position_embeddings snake_case_ : Union[str, Any] = type_vocab_size snake_case_ : Union[str, Any] = initializer_range snake_case_ : List[Any] = relative_attention snake_case_ : Dict = max_relative_positions snake_case_ : Optional[int] = pad_token_id snake_case_ : List[str] = position_biased_input # Backwards compatibility if type(lowercase__ ) == str: snake_case_ : Union[str, Any] = [x.strip() for x in pos_att_type.lower().split("""|""" )] snake_case_ : Optional[int] = pos_att_type snake_case_ : List[str] = vocab_size snake_case_ : Tuple = layer_norm_eps snake_case_ : List[Any] = kwargs.get("""pooler_hidden_size""" , lowercase__ ) snake_case_ : List[str] = pooler_dropout snake_case_ : int = pooler_hidden_act class __lowercase ( _UpperCAmelCase): """simple docstring""" @property def __UpperCamelCase (self ): if self.task == "multiple-choice": snake_case_ : List[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case_ : int = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def __UpperCamelCase (self ): return 12 def __UpperCamelCase (self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , lowercase__ = 3 , lowercase__ = 40 , lowercase__ = 40 , lowercase__ = None , ): snake_case_ : str = super().generate_dummy_inputs(preprocessor=lowercase__ , framework=lowercase__ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
48
1
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class __lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : str = StableDiffusionPanoramaPipeline _A : Optional[Any] = TEXT_TO_IMAGE_PARAMS _A : List[Any] = TEXT_TO_IMAGE_BATCH_PARAMS _A : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS _A : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS def __UpperCamelCase (self ): torch.manual_seed(0 ) snake_case_ : int = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) snake_case_ : str = DDIMScheduler() torch.manual_seed(0 ) snake_case_ : List[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case_ : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) snake_case_ : Union[str, Any] = CLIPTextModel(lowercase__ ) snake_case_ : Optional[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) snake_case_ : List[str] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def __UpperCamelCase (self , lowercase__ , lowercase__=0 ): snake_case_ : Any = torch.manual_seed(lowercase__ ) snake_case_ : List[str] = { """prompt""": """a photo of the dolomites""", """generator""": generator, # Setting height and width to None to prevent OOMs on CPU. """height""": None, """width""": None, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case_ : List[str] = self.get_dummy_components() snake_case_ : Any = StableDiffusionPanoramaPipeline(**lowercase__ ) snake_case_ : List[str] = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) snake_case_ : str = self.get_dummy_inputs(lowercase__ ) snake_case_ : str = sd_pipe(**lowercase__ ).images snake_case_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ : str = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase (self ): super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def __UpperCamelCase (self ): super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25e-3 ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case_ : Tuple = self.get_dummy_components() snake_case_ : Any = StableDiffusionPanoramaPipeline(**lowercase__ ) snake_case_ : List[str] = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) snake_case_ : Union[str, Any] = self.get_dummy_inputs(lowercase__ ) snake_case_ : Union[str, Any] = """french fries""" snake_case_ : List[Any] = sd_pipe(**lowercase__ , negative_prompt=lowercase__ ) snake_case_ : Any = output.images snake_case_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ : List[str] = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase (self ): snake_case_ : str = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case_ : int = self.get_dummy_components() snake_case_ : Union[str, Any] = StableDiffusionPanoramaPipeline(**lowercase__ ) snake_case_ : Any = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) snake_case_ : Tuple = self.get_dummy_inputs(lowercase__ ) snake_case_ : str = sd_pipe(**lowercase__ , view_batch_size=2 ) snake_case_ : str = output.images snake_case_ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ : int = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase (self ): snake_case_ : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case_ : Any = self.get_dummy_components() snake_case_ : Any = EulerAncestralDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) snake_case_ : Any = StableDiffusionPanoramaPipeline(**lowercase__ ) snake_case_ : List[Any] = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) snake_case_ : int = self.get_dummy_inputs(lowercase__ ) snake_case_ : Dict = sd_pipe(**lowercase__ ).images snake_case_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ : int = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase (self ): snake_case_ : str = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case_ : Tuple = self.get_dummy_components() snake_case_ : int = PNDMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , skip_prk_steps=lowercase__ ) snake_case_ : Optional[int] = StableDiffusionPanoramaPipeline(**lowercase__ ) snake_case_ : List[Any] = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) snake_case_ : str = self.get_dummy_inputs(lowercase__ ) snake_case_ : Dict = sd_pipe(**lowercase__ ).images snake_case_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ : List[str] = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __lowercase ( unittest.TestCase): """simple docstring""" def __UpperCamelCase (self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase (self , lowercase__=0 ): snake_case_ : int = torch.manual_seed(lowercase__ ) snake_case_ : str = { """prompt""": """a photo of the dolomites""", """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def __UpperCamelCase (self ): snake_case_ : Tuple = """stabilityai/stable-diffusion-2-base""" snake_case_ : str = DDIMScheduler.from_pretrained(lowercase__ , subfolder="""scheduler""" ) snake_case_ : Any = StableDiffusionPanoramaPipeline.from_pretrained(lowercase__ , scheduler=lowercase__ , safety_checker=lowercase__ ) pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) pipe.enable_attention_slicing() snake_case_ : Any = self.get_inputs() snake_case_ : Tuple = pipe(**lowercase__ ).images snake_case_ : List[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) snake_case_ : List[str] = np.array( [ 0.36968392, 0.27025372, 0.32446766, 0.28379387, 0.36363274, 0.30733347, 0.27100027, 0.27054125, 0.25536096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def __UpperCamelCase (self ): snake_case_ : Optional[int] = StableDiffusionPanoramaPipeline.from_pretrained( """stabilityai/stable-diffusion-2-base""" , safety_checker=lowercase__ ) snake_case_ : Optional[int] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) pipe.enable_attention_slicing() snake_case_ : Tuple = self.get_inputs() snake_case_ : List[Any] = pipe(**lowercase__ ).images snake_case_ : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) snake_case_ : str = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = 0 def callback_fn(lowercase__ , lowercase__ , lowercase__ ) -> None: snake_case_ : Optional[int] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: snake_case_ : Optional[int] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) snake_case_ : Dict = latents[0, -3:, -3:, -1] snake_case_ : Dict = np.array( [ 0.18681869, 0.33907816, 0.5361276, 0.14432865, -0.02856611, -0.73941123, 0.23397987, 0.47322682, -0.37823164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: snake_case_ : Optional[Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) snake_case_ : Optional[int] = latents[0, -3:, -3:, -1] snake_case_ : int = np.array( [ 0.18539645, 0.33987248, 0.5378559, 0.14437142, -0.02455261, -0.7338317, 0.23990755, 0.47356272, -0.3786505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 snake_case_ : Tuple = False snake_case_ : Optional[Any] = """stabilityai/stable-diffusion-2-base""" snake_case_ : Dict = DDIMScheduler.from_pretrained(lowercase__ , subfolder="""scheduler""" ) snake_case_ : Any = StableDiffusionPanoramaPipeline.from_pretrained(lowercase__ , scheduler=lowercase__ , safety_checker=lowercase__ ) snake_case_ : Union[str, Any] = pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) pipe.enable_attention_slicing() snake_case_ : List[Any] = self.get_inputs() pipe(**lowercase__ , callback=lowercase__ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __UpperCamelCase (self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case_ : str = """stabilityai/stable-diffusion-2-base""" snake_case_ : Tuple = DDIMScheduler.from_pretrained(lowercase__ , subfolder="""scheduler""" ) snake_case_ : Tuple = StableDiffusionPanoramaPipeline.from_pretrained(lowercase__ , scheduler=lowercase__ , safety_checker=lowercase__ ) snake_case_ : Optional[int] = pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case_ : Any = self.get_inputs() snake_case_ : List[str] = pipe(**lowercase__ ) snake_case_ : int = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
48
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
48
1
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Any class __lowercase : """simple docstring""" def __init__(self , lowercase__ ): snake_case_ : Any = data snake_case_ : Node | None = None class __lowercase : """simple docstring""" def __init__(self ): snake_case_ : Union[str, Any] = None snake_case_ : int = None def __iter__(self ): snake_case_ : Tuple = self.head while self.head: yield node.data snake_case_ : Union[str, Any] = node.next if node == self.head: break def __len__(self ): return sum(1 for _ in self ) def __repr__(self ): return "->".join(str(lowercase__ ) for item in iter(self ) ) def __UpperCamelCase (self , lowercase__ ): self.insert_nth(len(self ) , lowercase__ ) def __UpperCamelCase (self , lowercase__ ): self.insert_nth(0 , lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): if index < 0 or index > len(self ): raise IndexError("""list index out of range.""" ) snake_case_ : Union[str, Any] = Node(lowercase__ ) if self.head is None: snake_case_ : List[Any] = new_node # first node points itself snake_case_ : Union[str, Any] = new_node elif index == 0: # insert at head snake_case_ : int = self.head snake_case_ : str = new_node else: snake_case_ : Any = self.head for _ in range(index - 1 ): snake_case_ : Union[str, Any] = temp.next snake_case_ : Dict = temp.next snake_case_ : List[str] = new_node if index == len(self ) - 1: # insert at tail snake_case_ : Tuple = new_node def __UpperCamelCase (self ): return self.delete_nth(0 ) def __UpperCamelCase (self ): return self.delete_nth(len(self ) - 1 ) def __UpperCamelCase (self , lowercase__ = 0 ): if not 0 <= index < len(self ): raise IndexError("""list index out of range.""" ) snake_case_ : Union[str, Any] = self.head if self.head == self.tail: # just one node snake_case_ : Tuple = None elif index == 0: # delete head node snake_case_ : List[str] = self.tail.next.next snake_case_ : Optional[Any] = self.head.next else: snake_case_ : Union[str, Any] = self.head for _ in range(index - 1 ): snake_case_ : Tuple = temp.next snake_case_ : str = temp.next snake_case_ : Optional[Any] = temp.next.next if index == len(self ) - 1: # delete at tail snake_case_ : List[str] = temp return delete_node.data def __UpperCamelCase (self ): return len(self ) == 0 def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Optional[Any] = CircularLinkedList() assert len(SCREAMING_SNAKE_CASE__ ) == 0 assert circular_linked_list.is_empty() is True assert str(SCREAMING_SNAKE_CASE__ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(SCREAMING_SNAKE_CASE__ ) == i circular_linked_list.insert_nth(SCREAMING_SNAKE_CASE__ , i + 1 ) assert str(SCREAMING_SNAKE_CASE__ ) == "->".join(str(SCREAMING_SNAKE_CASE__ ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(SCREAMING_SNAKE_CASE__ ) == "->".join(str(SCREAMING_SNAKE_CASE__ ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(SCREAMING_SNAKE_CASE__ ) == "->".join(str(SCREAMING_SNAKE_CASE__ ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(SCREAMING_SNAKE_CASE__ ) == "->".join(str(SCREAMING_SNAKE_CASE__ ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(SCREAMING_SNAKE_CASE__ ) == "->".join(str(SCREAMING_SNAKE_CASE__ ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
48
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('''fixtures/test_sentencepiece.model''') a_ = {'''target_lang''': '''fi''', '''source_lang''': '''en'''} a_ = '''>>zh<<''' a_ = '''Helsinki-NLP/''' if is_torch_available(): a_ = '''pt''' elif is_tf_available(): a_ = '''tf''' else: a_ = '''jax''' @require_sentencepiece class __lowercase ( _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : str = MarianTokenizer _A : List[str] = False _A : List[str] = True def __UpperCamelCase (self ): super().setUp() snake_case_ : Optional[int] = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] snake_case_ : Any = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) snake_case_ : Any = Path(self.tmpdirname ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) snake_case_ : Optional[Any] = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase (self , **lowercase__ ): return MarianTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def __UpperCamelCase (self , lowercase__ ): return ( "This is a test", "This is a test", ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = """</s>""" snake_case_ : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__ ) , lowercase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__ ) , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(lowercase__ ) , 9 ) def __UpperCamelCase (self ): self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def __UpperCamelCase (self ): snake_case_ : Any = MarianTokenizer.from_pretrained(f'{ORG_NAME}opus-mt-en-de' ) snake_case_ : Tuple = en_de_tokenizer(["""I am a small frog"""] , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) snake_case_ : Dict = [38, 1_21, 14, 6_97, 3_88_48, 0] self.assertListEqual(lowercase__ , batch.input_ids[0] ) snake_case_ : Tuple = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(lowercase__ ) snake_case_ : str = [x.name for x in Path(lowercase__ ).glob("""*""" )] self.assertIn("""source.spm""" , lowercase__ ) MarianTokenizer.from_pretrained(lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = self.get_tokenizer() snake_case_ : List[str] = tok( ["""I am a small frog""" * 10_00, """I am a small frog"""] , padding=lowercase__ , truncation=lowercase__ , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(batch.input_ids.shape , (2, 5_12) ) def __UpperCamelCase (self ): snake_case_ : Tuple = self.get_tokenizer() snake_case_ : Tuple = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=lowercase__ , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def __UpperCamelCase (self ): # fmt: off snake_case_ : str = {"""input_ids""": [[4_34_95, 4_62, 20, 4_21_64, 13_69, 52, 4_64, 1_32, 17_03, 4_92, 13, 74_91, 3_89_99, 6, 8, 4_64, 1_32, 17_03, 4_92, 13, 46_69, 3_78_67, 13, 75_25, 27, 15_93, 9_88, 13, 3_39_72, 70_29, 6, 20, 82_51, 3_83, 2, 2_70, 58_66, 37_88, 2, 23_53, 82_51, 1_23_38, 2, 1_39_58, 3_87, 2, 36_29, 69_53, 1_88, 29_00, 2, 1_39_58, 80_11, 1_15_01, 23, 84_60, 40_73, 3_40_09, 20, 4_35, 1_14_39, 27, 8, 84_60, 40_73, 60_04, 20, 99_88, 3_75, 27, 33, 2_66, 19_45, 10_76, 13_50, 3_78_67, 32_88, 5, 5_77, 10_76, 43_74, 8, 50_82, 5, 2_64_53, 2_57, 5_56, 4_03, 2, 2_42, 1_32, 3_83, 3_16, 4_92, 8, 1_07_67, 6, 3_16, 3_04, 42_39, 3, 0], [1_48, 1_57_22, 19, 18_39, 12, 13_50, 13, 2_23_27, 50_82, 54_18, 4_75_67, 3_59_38, 59, 3_18, 1_95_52, 1_08, 21_83, 54, 1_49_76, 48_35, 32, 5_47, 11_14, 8, 3_15, 24_17, 5, 92, 1_90_88, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00], [36, 63_95, 1_25_70, 3_91_47, 1_15_97, 6, 2_66, 4, 4_54_05, 72_96, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase__ , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def __UpperCamelCase (self ): snake_case_ : Any = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) snake_case_ : Dict = """Tämä on testi""" snake_case_ : List[Any] = """This is a test""" snake_case_ : Optional[int] = [76, 7, 20_47, 2] snake_case_ : List[str] = [69, 12, 11, 9_40, 2] snake_case_ : Any = tokenizer(lowercase__ ).input_ids self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : str = tokenizer(text_target=lowercase__ ).input_ids self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : int = tokenizer.decode(lowercase__ , skip_special_tokens=lowercase__ ) self.assertEqual(lowercase__ , lowercase__ )
48
1
"""simple docstring""" import torch from transformers import AutoModel class __lowercase ( torch.nn.Module): """simple docstring""" def __init__(self , lowercase__="sayef/fsner-bert-base-uncased" ): super(lowercase__ , self ).__init__() snake_case_ : Optional[Any] = AutoModel.from_pretrained(lowercase__ , return_dict=lowercase__ ) snake_case_ : int = torch.nn.CosineSimilarity(3 , 1e-08 ) snake_case_ : Optional[int] = torch.nn.Softmax(dim=1 ) def __UpperCamelCase (self , **lowercase__ ): return self.bert(**lowercase__ ).last_hidden_state def __UpperCamelCase (self , lowercase__ ): return token_embeddings.sum(2 , keepdim=lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__=1 ): return self.softmax(T * self.cos(lowercase__ , lowercase__ ) ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : Tuple = W_supports["""sizes"""].tolist() snake_case_ : Optional[Any] = W_supports["""start_token_id"""].item() snake_case_ : Dict = W_supports["""end_token_id"""].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] snake_case_ : int = self.BERT(**lowercase__ ) snake_case_ : Union[str, Any] = self.BERT(**lowercase__ ) snake_case_ : Union[str, Any] = None snake_case_ : List[Any] = None snake_case_ : Optional[int] = W_supports["""input_ids"""] == start_token_id snake_case_ : List[Any] = W_supports["""input_ids"""] == end_token_id for i, size in enumerate(lowercase__ ): if i == 0: snake_case_ : Union[str, Any] = 0 else: snake_case_ : List[Any] = support_sizes[i - 1] snake_case_ : Dict = S[s : s + size][start_token_masks[s : s + size]] snake_case_ : Tuple = S[s : s + size][end_token_masks[s : s + size]] snake_case_ : List[str] = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) snake_case_ : str = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: snake_case_ : Union[str, Any] = torch.vstack((p_starts, p_start) ) snake_case_ : str = torch.vstack((p_ends, p_end) ) else: snake_case_ : str = p_start snake_case_ : List[str] = p_end return p_starts, p_ends
48
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCAmelCase) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True}) _A : ClassVar[Features] = Features({"""audio""": Audio()}) _A : ClassVar[Features] = Features({"""transcription""": Value("""string""")}) _A : str = "audio" _A : str = "transcription" def __UpperCamelCase (self , lowercase__ ): if self.audio_column not in features: raise ValueError(f'Column {self.audio_column} is not present in features.' ) if not isinstance(features[self.audio_column] , lowercase__ ): raise ValueError(f'Column {self.audio_column} is not an Audio type.' ) snake_case_ : Optional[int] = copy.deepcopy(self ) snake_case_ : Tuple = self.input_schema.copy() snake_case_ : List[str] = features[self.audio_column] snake_case_ : Any = input_schema return task_template @property def __UpperCamelCase (self ): return {self.audio_column: "audio", self.transcription_column: "transcription"}
48
1
"""simple docstring""" # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests a_ = open # noqa: we just need to have a builtin inside this module to test it properly
48
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : int = ["""pixel_values"""] def __init__(self , lowercase__ = True , lowercase__ = None , lowercase__ = 0.9 , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = True , lowercase__ = None , lowercase__ = 1 / 2_55 , lowercase__ = True , lowercase__ = True , lowercase__ = None , lowercase__ = None , **lowercase__ , ): super().__init__(**lowercase__ ) snake_case_ : Tuple = size if size is not None else {"""shortest_edge""": 2_24} snake_case_ : Union[str, Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) snake_case_ : str = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} snake_case_ : Dict = get_size_dict(lowercase__ , param_name="""crop_size""" ) snake_case_ : Union[str, Any] = do_resize snake_case_ : List[str] = size snake_case_ : str = crop_pct snake_case_ : str = resample snake_case_ : Optional[Any] = do_center_crop snake_case_ : Dict = crop_size snake_case_ : int = do_rescale snake_case_ : Optional[int] = rescale_factor snake_case_ : str = do_normalize snake_case_ : str = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN snake_case_ : List[str] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = None , **lowercase__ , ): snake_case_ : Tuple = get_size_dict(lowercase__ , default_to_square=lowercase__ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f'size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) if crop_pct is not None: if "shortest_edge" in size: snake_case_ : Optional[int] = int(size["""shortest_edge"""] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: snake_case_ : Dict = int(size["""height"""] / crop_pct ) else: snake_case_ : List[str] = (int(size["""height"""] / crop_pct ), int(size["""width"""] / crop_pct )) else: raise ValueError("""Invalid size for resize: {}""".format(lowercase__ ) ) snake_case_ : List[Any] = get_resize_output_image_size(lowercase__ , size=lowercase__ , default_to_square=lowercase__ ) else: if "shortest_edge" in size: snake_case_ : Optional[int] = get_resize_output_image_size(lowercase__ , size=size["""shortest_edge"""] , default_to_square=lowercase__ ) elif "height" in size and "width" in size: snake_case_ : int = (size["""height"""], size["""width"""]) else: raise ValueError("""Invalid size for resize: {}""".format(lowercase__ ) ) return resize(lowercase__ , size=lowercase__ , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): snake_case_ : int = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(f'size must contain \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(lowercase__ , size=(size["""height"""], size["""width"""]) , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return normalize(lowercase__ , mean=lowercase__ , std=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ): snake_case_ : str = do_resize if do_resize is not None else self.do_resize snake_case_ : Any = crop_pct if crop_pct is not None else self.crop_pct snake_case_ : List[Any] = resample if resample is not None else self.resample snake_case_ : str = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : str = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : str = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : List[Any] = image_mean if image_mean is not None else self.image_mean snake_case_ : int = image_std if image_std is not None else self.image_std snake_case_ : List[Any] = size if size is not None else self.size snake_case_ : Optional[Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) snake_case_ : List[Any] = crop_size if crop_size is not None else self.crop_size snake_case_ : int = get_size_dict(lowercase__ , param_name="""crop_size""" ) snake_case_ : List[str] = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_pct is None: raise ValueError("""Crop_pct must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case_ : int = [to_numpy_array(lowercase__ ) for image in images] if do_resize: snake_case_ : str = [self.resize(image=lowercase__ , size=lowercase__ , crop_pct=lowercase__ , resample=lowercase__ ) for image in images] if do_center_crop: snake_case_ : Optional[int] = [self.center_crop(image=lowercase__ , size=lowercase__ ) for image in images] if do_rescale: snake_case_ : List[Any] = [self.rescale(image=lowercase__ , scale=lowercase__ ) for image in images] if do_normalize: snake_case_ : Optional[Any] = [self.normalize(image=lowercase__ , mean=lowercase__ , std=lowercase__ ) for image in images] snake_case_ : List[Any] = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] snake_case_ : Dict = {"""pixel_values""": images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
48
1
"""simple docstring""" from itertools import permutations def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : tuple ): """simple docstring""" if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False snake_case_ : Tuple = [7, 1_1, 1_3, 1_7] for i, test in enumerate(SCREAMING_SNAKE_CASE__ ): if (num[i + 4] * 1_0_0 + num[i + 5] * 1_0 + num[i + 6]) % test != 0: return False return True def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int = 1_0 ): """simple docstring""" return sum( int("""""".join(map(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) ) for num in permutations(range(SCREAMING_SNAKE_CASE__ ) ) if is_substring_divisible(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": print(F'''{solution() = }''')
48
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: a_ = None a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} a_ = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } a_ = { '''facebook/mbart-large-en-ro''': 1024, '''facebook/mbart-large-cc25''': 1024, } # fmt: off a_ = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Dict = VOCAB_FILES_NAMES _A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _A : str = ["""input_ids""", """attention_mask"""] _A : Tuple = MBartTokenizer _A : List[int] = [] _A : List[int] = [] def __init__(self , lowercase__=None , lowercase__=None , lowercase__="<s>" , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<mask>" , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ , ): # Mask token behave like a normal word, i.e. include the space before it snake_case_ : int = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token super().__init__( vocab_file=lowercase__ , tokenizer_file=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , unk_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , src_lang=lowercase__ , tgt_lang=lowercase__ , additional_special_tokens=lowercase__ , **lowercase__ , ) snake_case_ : Dict = vocab_file snake_case_ : Optional[int] = False if not self.vocab_file else True snake_case_ : Optional[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) snake_case_ : Any = { lang_code: self.convert_tokens_to_ids(lowercase__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } snake_case_ : Tuple = src_lang if src_lang is not None else """en_XX""" snake_case_ : Tuple = self.convert_tokens_to_ids(self._src_lang ) snake_case_ : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __UpperCamelCase (self ): return self._src_lang @src_lang.setter def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): snake_case_ : List[Any] = [self.sep_token_id] snake_case_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , **lowercase__ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) snake_case_ : int = src_lang snake_case_ : List[str] = self(lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , **lowercase__ ) snake_case_ : List[str] = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Union[str, Any] = tgt_lang_id return inputs def __UpperCamelCase (self , lowercase__ , lowercase__ = "en_XX" , lowercase__ = None , lowercase__ = "ro_RO" , **lowercase__ , ): snake_case_ : List[str] = src_lang snake_case_ : int = tgt_lang return super().prepare_seqaseq_batch(lowercase__ , lowercase__ , **lowercase__ ) def __UpperCamelCase (self ): return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCamelCase (self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Tuple = [] snake_case_ : List[Any] = [self.eos_token_id, self.cur_lang_code] snake_case_ : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Optional[int] = [] snake_case_ : Optional[Any] = [self.eos_token_id, self.cur_lang_code] snake_case_ : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ : int = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowercase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory.' ) return snake_case_ : List[str] = os.path.join( lowercase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ): copyfile(self.vocab_file , lowercase__ ) return (out_vocab_file,)
48
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class __lowercase : """simple docstring""" def __init__(self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=True , lowercase__=99 , lowercase__=[1, 1, 2] , lowercase__=1 , lowercase__=32 , lowercase__=4 , lowercase__=8 , lowercase__=37 , lowercase__="gelu_new" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=5_12 , lowercase__=3 , lowercase__=0.02 , lowercase__=3 , lowercase__=4 , lowercase__=None , lowercase__=False , ): snake_case_ : Union[str, Any] = parent snake_case_ : List[str] = batch_size snake_case_ : Union[str, Any] = seq_length snake_case_ : int = is_training snake_case_ : List[str] = use_input_mask snake_case_ : Optional[int] = use_token_type_ids snake_case_ : int = use_labels snake_case_ : List[str] = vocab_size snake_case_ : List[Any] = block_sizes snake_case_ : Any = num_decoder_layers snake_case_ : Optional[Any] = d_model snake_case_ : List[Any] = n_head snake_case_ : Any = d_head snake_case_ : Optional[int] = d_inner snake_case_ : Tuple = hidden_act snake_case_ : List[str] = hidden_dropout snake_case_ : Optional[Any] = attention_dropout snake_case_ : Union[str, Any] = activation_dropout snake_case_ : List[str] = max_position_embeddings snake_case_ : Tuple = type_vocab_size snake_case_ : Dict = 2 snake_case_ : Dict = num_labels snake_case_ : List[Any] = num_choices snake_case_ : str = scope snake_case_ : int = initializer_std # Used in the tests to check the size of the first attention layer snake_case_ : List[Any] = n_head # Used in the tests to check the size of the first hidden state snake_case_ : Optional[Any] = self.d_model # Used in the tests to check the number of output hidden states/attentions snake_case_ : Optional[Any] = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: snake_case_ : Optional[int] = self.num_hidden_layers + 2 def __UpperCamelCase (self ): snake_case_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : List[str] = None if self.use_input_mask: snake_case_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : Any = None if self.use_token_type_ids: snake_case_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : List[str] = None snake_case_ : List[str] = None snake_case_ : Optional[Any] = None if self.use_labels: snake_case_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ : Any = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ : str = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): snake_case_ : Optional[int] = TFFunnelModel(config=lowercase__ ) snake_case_ : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case_ : Optional[Any] = model(lowercase__ ) snake_case_ : Tuple = [input_ids, input_mask] snake_case_ : Any = model(lowercase__ ) snake_case_ : Tuple = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) snake_case_ : Optional[int] = False snake_case_ : int = TFFunnelModel(config=lowercase__ ) snake_case_ : int = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) snake_case_ : Dict = False snake_case_ : Any = TFFunnelModel(config=lowercase__ ) snake_case_ : Any = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): snake_case_ : int = TFFunnelBaseModel(config=lowercase__ ) snake_case_ : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case_ : Optional[int] = model(lowercase__ ) snake_case_ : Optional[Any] = [input_ids, input_mask] snake_case_ : Optional[Any] = model(lowercase__ ) snake_case_ : str = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) snake_case_ : Optional[int] = False snake_case_ : Optional[Any] = TFFunnelBaseModel(config=lowercase__ ) snake_case_ : Optional[Any] = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) snake_case_ : Dict = False snake_case_ : int = TFFunnelBaseModel(config=lowercase__ ) snake_case_ : Tuple = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): snake_case_ : str = TFFunnelForPreTraining(config=lowercase__ ) snake_case_ : List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case_ : List[Any] = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): snake_case_ : Union[str, Any] = TFFunnelForMaskedLM(config=lowercase__ ) snake_case_ : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case_ : Any = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): snake_case_ : Union[str, Any] = self.num_labels snake_case_ : Any = TFFunnelForSequenceClassification(config=lowercase__ ) snake_case_ : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case_ : List[Any] = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): snake_case_ : Union[str, Any] = self.num_choices snake_case_ : List[str] = TFFunnelForMultipleChoice(config=lowercase__ ) snake_case_ : str = tf.tile(tf.expand_dims(lowercase__ , 1 ) , (1, self.num_choices, 1) ) snake_case_ : Optional[int] = tf.tile(tf.expand_dims(lowercase__ , 1 ) , (1, self.num_choices, 1) ) snake_case_ : Any = tf.tile(tf.expand_dims(lowercase__ , 1 ) , (1, self.num_choices, 1) ) snake_case_ : List[str] = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } snake_case_ : Union[str, Any] = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): snake_case_ : int = self.num_labels snake_case_ : Tuple = TFFunnelForTokenClassification(config=lowercase__ ) snake_case_ : str = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case_ : Optional[Any] = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): snake_case_ : Tuple = TFFunnelForQuestionAnswering(config=lowercase__ ) snake_case_ : str = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case_ : str = model(lowercase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase (self ): snake_case_ : List[str] = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) : List[Any] = config_and_inputs snake_case_ : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : List[Any] = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) _A : Union[str, Any] = ( { """feature-extraction""": (TFFunnelBaseModel, TFFunnelModel), """fill-mask""": TFFunnelForMaskedLM, """question-answering""": TFFunnelForQuestionAnswering, """text-classification""": TFFunnelForSequenceClassification, """token-classification""": TFFunnelForTokenClassification, """zero-shot""": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) _A : Any = False _A : List[str] = False def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = TFFunnelModelTester(self ) snake_case_ : Any = ConfigTester(self , config_class=lowercase__ ) def __UpperCamelCase (self ): self.config_tester.run_common_tests() def __UpperCamelCase (self ): snake_case_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase__ ) def __UpperCamelCase (self ): snake_case_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase__ ) @require_tf class __lowercase ( _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : int = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) _A : str = False _A : str = False def __UpperCamelCase (self ): snake_case_ : Optional[int] = TFFunnelModelTester(self , base=lowercase__ ) snake_case_ : List[str] = ConfigTester(self , config_class=lowercase__ ) def __UpperCamelCase (self ): self.config_tester.run_common_tests() def __UpperCamelCase (self ): snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase__ ) def __UpperCamelCase (self ): snake_case_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase__ )
48
"""simple docstring""" import argparse import hashlib # hashlib is only used inside the Test class import struct class __lowercase : """simple docstring""" def __init__(self , lowercase__ ): snake_case_ : Union[str, Any] = data snake_case_ : List[str] = [0X6_7_4_5_2_3_0_1, 0Xe_f_c_d_a_b_8_9, 0X9_8_b_a_d_c_f_e, 0X1_0_3_2_5_4_7_6, 0Xc_3_d_2_e_1_f_0] @staticmethod def __UpperCamelCase (lowercase__ , lowercase__ ): return ((n << b) | (n >> (32 - b))) & 0Xf_f_f_f_f_f_f_f def __UpperCamelCase (self ): snake_case_ : Any = B"""\x80""" + B"""\x00""" * (63 - (len(self.data ) + 8) % 64) snake_case_ : Tuple = self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def __UpperCamelCase (self ): return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = list(struct.unpack(""">16L""" , lowercase__ ) ) + [0] * 64 for i in range(16 , 80 ): snake_case_ : Dict = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def __UpperCamelCase (self ): snake_case_ : List[Any] = self.padding() snake_case_ : Any = self.split_blocks() for block in self.blocks: snake_case_ : Any = self.expand_block(lowercase__ ) snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = self.h for i in range(0 , 80 ): if 0 <= i < 20: snake_case_ : Optional[Any] = (b & c) | ((~b) & d) snake_case_ : List[str] = 0X5_a_8_2_7_9_9_9 elif 20 <= i < 40: snake_case_ : Union[str, Any] = b ^ c ^ d snake_case_ : Tuple = 0X6_e_d_9_e_b_a_1 elif 40 <= i < 60: snake_case_ : str = (b & c) | (b & d) | (c & d) snake_case_ : List[str] = 0X8_f_1_b_b_c_d_c elif 60 <= i < 80: snake_case_ : Tuple = b ^ c ^ d snake_case_ : str = 0Xc_a_6_2_c_1_d_6 snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Optional[Any] = ( self.rotate(lowercase__ , 5 ) + f + e + k + expanded_block[i] & 0Xf_f_f_f_f_f_f_f, a, self.rotate(lowercase__ , 30 ), c, d, ) snake_case_ : Any = ( self.h[0] + a & 0Xf_f_f_f_f_f_f_f, self.h[1] + b & 0Xf_f_f_f_f_f_f_f, self.h[2] + c & 0Xf_f_f_f_f_f_f_f, self.h[3] + d & 0Xf_f_f_f_f_f_f_f, self.h[4] + e & 0Xf_f_f_f_f_f_f_f, ) return ("{:08x}" * 5).format(*self.h ) def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Union[str, Any] = b"""Test String""" assert SHAaHash(SCREAMING_SNAKE_CASE__ ).final_hash() == hashlib.shaa(SCREAMING_SNAKE_CASE__ ).hexdigest() # noqa: S324 def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : int = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument("""--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) snake_case_ : Optional[int] = parser.parse_args() snake_case_ : Optional[int] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: snake_case_ : List[str] = f.read() else: snake_case_ : Dict = bytes(SCREAMING_SNAKE_CASE__ , """utf-8""" ) print(SHAaHash(SCREAMING_SNAKE_CASE__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
48
1
"""simple docstring""" import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" snake_case_ : Optional[Any] = tmp_path / """cache""" snake_case_ : Optional[int] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : Tuple = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" snake_case_ : List[Any] = tmp_path / """cache""" snake_case_ : int = {"""text""": """string"""} snake_case_ : Any = features.copy() if features else default_expected_features snake_case_ : List[Any] = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : Dict = TextDatasetReader(SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : Union[str, Any] = tmp_path / """cache""" snake_case_ : Optional[Any] = {"""text""": """string"""} snake_case_ : Optional[int] = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , split=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" if issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : List[str] = text_path elif issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : str = [text_path] snake_case_ : List[str] = tmp_path / """cache""" snake_case_ : List[str] = {"""text""": """string"""} snake_case_ : Dict = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str]=("train",) ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for split in splits: snake_case_ : Dict = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" snake_case_ : int = tmp_path / """cache""" snake_case_ : List[str] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : Optional[Any] = TextDatasetReader({"""train""": text_path} , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Tuple = tmp_path / """cache""" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" snake_case_ : List[str] = {"""text""": """string"""} snake_case_ : int = features.copy() if features else default_expected_features snake_case_ : Tuple = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : str = TextDatasetReader({"""train""": text_path} , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" if split: snake_case_ : Union[str, Any] = {split: text_path} else: snake_case_ : Union[str, Any] = """train""" snake_case_ : int = {"""train""": text_path, """test""": text_path} snake_case_ : List[Any] = tmp_path / """cache""" snake_case_ : Tuple = {"""text""": """string"""} snake_case_ : int = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
48
"""simple docstring""" from manim import * class __lowercase ( _UpperCAmelCase): """simple docstring""" def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = Rectangle(height=0.5 , width=0.5 ) snake_case_ : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) snake_case_ : Optional[Any] = [mem.copy() for i in range(6 )] snake_case_ : str = [mem.copy() for i in range(6 )] snake_case_ : str = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : Any = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[str] = VGroup(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[Any] = Text("""CPU""" , font_size=24 ) snake_case_ : Tuple = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowercase__ ) snake_case_ : List[Any] = [mem.copy() for i in range(4 )] snake_case_ : Tuple = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[str] = Text("""GPU""" , font_size=24 ) snake_case_ : Any = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) gpu.move_to([-1, -1, 0] ) self.add(lowercase__ ) snake_case_ : Optional[Any] = [mem.copy() for i in range(6 )] snake_case_ : List[Any] = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : Dict = Text("""Model""" , font_size=24 ) snake_case_ : int = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) model.move_to([3, -1.0, 0] ) self.add(lowercase__ ) snake_case_ : Dict = [] for i, rect in enumerate(lowercase__ ): rect.set_stroke(lowercase__ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) snake_case_ : List[str] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowercase__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowercase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase__ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase__ , buff=0.0 ) self.add(lowercase__ ) cpu_targs.append(lowercase__ ) snake_case_ : List[str] = [mem.copy() for i in range(6 )] snake_case_ : List[str] = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : str = Text("""Loaded Checkpoint""" , font_size=24 ) snake_case_ : Any = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , aligned_edge=lowercase__ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) snake_case_ : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) snake_case_ : Union[str, Any] = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowercase__ , lowercase__ ) snake_case_ : List[Any] = MarkupText( f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(lowercase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) snake_case_ : List[Any] = MarkupText( f'Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowercase__ ) , Write(lowercase__ ) ) self.play(Write(lowercase__ , run_time=1 ) , Create(lowercase__ , run_time=1 ) ) snake_case_ : Optional[int] = [] snake_case_ : List[str] = [] for i, rect in enumerate(lowercase__ ): snake_case_ : Optional[Any] = fill.copy().set_fill(lowercase__ , opacity=0.7 ) target.move_to(lowercase__ ) first_animations.append(GrowFromCenter(lowercase__ , run_time=1 ) ) snake_case_ : List[Any] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(lowercase__ , run_time=1.5 ) ) self.play(*lowercase__ ) self.play(*lowercase__ ) self.wait()
48
1
"""simple docstring""" import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self , lowercase__ , lowercase__ , lowercase__=10_24 , lowercase__=10_24 , lowercase__=3.6 ): snake_case_ : List[str] = tokenizer snake_case_ : Optional[Any] = tokenizer.bos_token_id snake_case_ : List[Any] = dataset snake_case_ : int = seq_length snake_case_ : Any = seq_length * chars_per_token * num_of_sequences def __iter__(self ): snake_case_ : int = iter(self.dataset ) snake_case_ : Optional[int] = True while more_examples: snake_case_ , snake_case_ : Any = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(lowercase__ )["""content"""] ) buffer_len += len(buffer[-1] ) except StopIteration: snake_case_ : int = False break snake_case_ : Optional[Any] = tokenizer(lowercase__ , truncation=lowercase__ )["""input_ids"""] snake_case_ : List[Any] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(lowercase__ ) , self.seq_length ): snake_case_ : Union[str, Any] = all_token_ids[i : i + self.seq_length] if len(lowercase__ ) == self.seq_length: yield torch.tensor(lowercase__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" snake_case_ : List[Any] = {"""streaming""": True} snake_case_ : Any = load_dataset(args.dataset_name , split="""train""" , **SCREAMING_SNAKE_CASE__ ) snake_case_ : List[str] = ConstantLengthDataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , seq_length=args.seq_length ) snake_case_ : Optional[Any] = DataLoader(SCREAMING_SNAKE_CASE__ , batch_size=args.batch_size ) return eval_dataloader def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" model.eval() snake_case_ : List[Any] = [] for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): with torch.no_grad(): snake_case_ : List[str] = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) snake_case_ : Any = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(SCREAMING_SNAKE_CASE__ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break snake_case_ : Any = torch.mean(torch.cat(SCREAMING_SNAKE_CASE__ ) ) try: snake_case_ : List[str] = torch.exp(SCREAMING_SNAKE_CASE__ ) except OverflowError: snake_case_ : int = float("""inf""" ) return loss.item(), perplexity.item() # Setup Accelerator a_ = Accelerator() # Parse configuration a_ = HfArgumentParser(EvaluationArguments) a_ = parser.parse_args() set_seed(args.seed) # Logging a_ = logging.getLogger(__name__) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) # Load model and tokenizer a_ = AutoModelForCausalLM.from_pretrained(args.model_ckpt) a_ = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader a_ = create_dataloader(args) # Prepare everything with our `accelerator`. a_ , a_ = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('''Evaluating and saving model after training''') a_ , a_ = evaluate(args) logger.info(F'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
48
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" snake_case_ : Union[str, Any] = 0 if start < end: snake_case_ : Union[str, Any] = randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = a[end] snake_case_ : Dict = a[pivot] snake_case_ : Any = temp snake_case_ , snake_case_ : Dict = _in_place_partition(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , p - 1 ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE__ , p + 1 , SCREAMING_SNAKE_CASE__ ) return count def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" snake_case_ : Tuple = 0 snake_case_ : List[Any] = randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : Dict = a[end] snake_case_ : List[Any] = a[pivot] snake_case_ : Optional[Any] = temp snake_case_ : List[str] = start - 1 for index in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value snake_case_ : Any = new_pivot_index + 1 snake_case_ : Tuple = a[new_pivot_index] snake_case_ : Optional[int] = a[index] snake_case_ : Tuple = temp snake_case_ : Union[str, Any] = a[new_pivot_index + 1] snake_case_ : Union[str, Any] = a[end] snake_case_ : Union[str, Any] = temp return new_pivot_index + 1, count a_ = TemporaryFile() a_ = 100 # 1000 elements are to be sorted a_ , a_ = 0, 1 # mean and standard deviation a_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array a_ = np.load(outfile) a_ = len(M) - 1 a_ = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
48
1
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" if number > 0: raise ValueError("""input must be a negative integer""" ) snake_case_ : int = len(bin(SCREAMING_SNAKE_CASE__ )[3:] ) snake_case_ : Union[str, Any] = bin(abs(SCREAMING_SNAKE_CASE__ ) - (1 << binary_number_length) )[3:] snake_case_ : List[str] = ( ( """1""" + """0""" * (binary_number_length - len(SCREAMING_SNAKE_CASE__ )) + twos_complement_number ) if number < 0 else """0""" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
48
"""simple docstring""" import random def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : bool = False ): """simple docstring""" snake_case_ : dict = {i: [] for i in range(SCREAMING_SNAKE_CASE__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(SCREAMING_SNAKE_CASE__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(i + 1 , SCREAMING_SNAKE_CASE__ ): if random.random() < probability: graph[i].append(SCREAMING_SNAKE_CASE__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(SCREAMING_SNAKE_CASE__ ) return graph def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" return { i: [j for j in range(SCREAMING_SNAKE_CASE__ ) if i != j] for i in range(SCREAMING_SNAKE_CASE__ ) } if __name__ == "__main__": import doctest doctest.testmod()
48
1
"""simple docstring""" from __future__ import annotations a_ = '''Muhammad Umer Farooq''' a_ = '''MIT''' a_ = '''1.0.0''' a_ = '''Muhammad Umer Farooq''' a_ = '''contact@muhammadumerfarooq.me''' a_ = '''Alpha''' import re from html.parser import HTMLParser from urllib import parse import requests class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self , lowercase__ ): super().__init__() snake_case_ : list[str] = [] snake_case_ : Optional[Any] = domain def __UpperCamelCase (self , lowercase__ , lowercase__ ): # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: snake_case_ : Dict = parse.urljoin(self.domain , lowercase__ ) self.urls.append(lowercase__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" return ".".join(get_sub_domain_name(SCREAMING_SNAKE_CASE__ ).split(""".""" )[-2:] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" return parse.urlparse(SCREAMING_SNAKE_CASE__ ).netloc def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str = "https://github.com" ): """simple docstring""" snake_case_ : int = get_domain_name(SCREAMING_SNAKE_CASE__ ) # Initialize the parser snake_case_ : str = Parser(SCREAMING_SNAKE_CASE__ ) try: # Open URL snake_case_ : Any = requests.get(SCREAMING_SNAKE_CASE__ ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through snake_case_ : str = set() for link in parser.urls: # open URL. # read = requests.get(link) try: snake_case_ : Any = requests.get(SCREAMING_SNAKE_CASE__ ) # Get the valid email. snake_case_ : Optional[Any] = re.findall("""[a-zA-Z0-9]+@""" + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(SCREAMING_SNAKE_CASE__ ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a_ = emails_from_url('''https://github.com''') print(F'''{len(emails)} emails found:''') print('''\n'''.join(sorted(emails)))
48
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json''' ), } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """dpr""" def __init__(self , lowercase__=3_05_22 , lowercase__=7_68 , lowercase__=12 , lowercase__=12 , lowercase__=30_72 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_12 , lowercase__=2 , lowercase__=0.02 , lowercase__=1e-12 , lowercase__=0 , lowercase__="absolute" , lowercase__ = 0 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , **lowercase__ ) snake_case_ : List[Any] = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : Tuple = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : int = hidden_act snake_case_ : Dict = intermediate_size snake_case_ : int = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : str = max_position_embeddings snake_case_ : List[str] = type_vocab_size snake_case_ : List[str] = initializer_range snake_case_ : Optional[int] = layer_norm_eps snake_case_ : Union[str, Any] = projection_dim snake_case_ : str = position_embedding_type
48
1
"""simple docstring""" from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
48
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm a_ = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex a_ = 10 a_ = 256 def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" if len(SCREAMING_SNAKE_CASE__ ) < MIN_NUM_TOKENS: return None snake_case_ : Union[str, Any] = MinHash(num_perm=SCREAMING_SNAKE_CASE__ ) for token in set(SCREAMING_SNAKE_CASE__ ): min_hash.update(token.encode() ) return min_hash def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" return {t for t in NON_ALPHA.split(SCREAMING_SNAKE_CASE__ ) if len(t.strip() ) > 0} class __lowercase : """simple docstring""" def __init__(self , *, lowercase__ = 0.85 , ): snake_case_ : Tuple = duplication_jaccard_threshold snake_case_ : Optional[Any] = NUM_PERM snake_case_ : Tuple = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) snake_case_ : List[Any] = defaultdict(lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : int = self._index.query(lowercase__ ) if code_key in self._index.keys: print(f'Duplicate key {code_key}' ) return self._index.insert(lowercase__ , lowercase__ ) if len(lowercase__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowercase__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(lowercase__ ) def __UpperCamelCase (self ): snake_case_ : str = [] for base, duplicates in self._duplicate_clusters.items(): snake_case_ : Optional[Any] = [base] + list(lowercase__ ) # reformat the cluster to be a list of dict snake_case_ : Any = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(lowercase__ ) return duplicate_clusters def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = self.get_duplicate_clusters() with open(lowercase__ , """w""" ) as f: json.dump(lowercase__ , lowercase__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ , snake_case_ : str = element snake_case_ : Tuple = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] ): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(SCREAMING_SNAKE_CASE__ , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ): if data is not None: yield data def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] , SCREAMING_SNAKE_CASE__ : float ): """simple docstring""" snake_case_ : int = DuplicationIndex(duplication_jaccard_threshold=SCREAMING_SNAKE_CASE__ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(SCREAMING_SNAKE_CASE__ ) ) , max_queue_size=1_0_0 ) ): di.add(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : int = get_tokens(SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = get_tokens(SCREAMING_SNAKE_CASE__ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) a_ = None def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Optional[Any] = [] for elementa in cluster: snake_case_ : Union[str, Any] = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: snake_case_ : Any = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) >= jaccard_threshold: elementa["copies"] += 1 break else: snake_case_ : Union[str, Any] = 1 extremes.append(SCREAMING_SNAKE_CASE__ ) return extremes def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" global _shared_dataset snake_case_ : str = dataset snake_case_ : int = [] snake_case_ : Optional[int] = partial(_find_cluster_extremes_shared , jaccard_threshold=SCREAMING_SNAKE_CASE__ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) , total=len(SCREAMING_SNAKE_CASE__ ) , ): extremes_list.append(SCREAMING_SNAKE_CASE__ ) return extremes_list def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] , SCREAMING_SNAKE_CASE__ : float = 0.85 ): """simple docstring""" snake_case_ : List[str] = make_duplicate_clusters(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : str = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} snake_case_ : str = {} snake_case_ : Dict = find_extremes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for extremes in extremes_clusters: for element in extremes: snake_case_ : int = element snake_case_ : Optional[int] = duplicate_indices - set(extreme_dict.keys() ) snake_case_ : List[Any] = dataset.filter(lambda SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : idx not in remove_indices , with_indices=SCREAMING_SNAKE_CASE__ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: snake_case_ : List[Any] = element["""base_index"""] in extreme_dict if element["is_extreme"]: snake_case_ : str = extreme_dict[element["""base_index"""]]["""copies"""] print(f'Original dataset size: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Number of duplicate clusters: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Files in duplicate cluster: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Unique files in duplicate cluster: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Filtered dataset size: {len(SCREAMING_SNAKE_CASE__ )}' ) return ds_filter, duplicate_clusters
48
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self , *lowercase__ , **lowercase__ ): warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , lowercase__ , ) super().__init__(*lowercase__ , **lowercase__ )
48
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) a_ = logging.getLogger(__name__) if __name__ == "__main__": a_ = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=30522, type=int) a_ = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, '''rb''') as fp: a_ = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') a_ = Counter() for tk_ids in data: counter.update(tk_ids) a_ = [0] * args.vocab_size for k, v in counter.items(): a_ = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
48
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/config.json''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/config.json''' # See all FNet models at https://huggingface.co/models?filter=fnet } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : List[Any] = """fnet""" def __init__(self , lowercase__=3_20_00 , lowercase__=7_68 , lowercase__=12 , lowercase__=30_72 , lowercase__="gelu_new" , lowercase__=0.1 , lowercase__=5_12 , lowercase__=4 , lowercase__=0.02 , lowercase__=1e-12 , lowercase__=False , lowercase__=5_12 , lowercase__=3 , lowercase__=1 , lowercase__=2 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__ ) snake_case_ : List[Any] = vocab_size snake_case_ : str = max_position_embeddings snake_case_ : List[Any] = hidden_size snake_case_ : Any = num_hidden_layers snake_case_ : Any = intermediate_size snake_case_ : Optional[Any] = hidden_act snake_case_ : List[Any] = hidden_dropout_prob snake_case_ : Union[str, Any] = initializer_range snake_case_ : List[Any] = type_vocab_size snake_case_ : List[Any] = layer_norm_eps snake_case_ : Dict = use_tpu_fourier_optimizations snake_case_ : Tuple = tpu_short_seq_length
48
"""simple docstring""" import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" snake_case_ : Optional[Any] = tmp_path / """cache""" snake_case_ : Optional[int] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : Tuple = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" snake_case_ : List[Any] = tmp_path / """cache""" snake_case_ : int = {"""text""": """string"""} snake_case_ : Any = features.copy() if features else default_expected_features snake_case_ : List[Any] = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : Dict = TextDatasetReader(SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : Union[str, Any] = tmp_path / """cache""" snake_case_ : Optional[Any] = {"""text""": """string"""} snake_case_ : Optional[int] = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , split=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" if issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : List[str] = text_path elif issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : str = [text_path] snake_case_ : List[str] = tmp_path / """cache""" snake_case_ : List[str] = {"""text""": """string"""} snake_case_ : Dict = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str]=("train",) ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for split in splits: snake_case_ : Dict = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" snake_case_ : int = tmp_path / """cache""" snake_case_ : List[str] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : Optional[Any] = TextDatasetReader({"""train""": text_path} , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Tuple = tmp_path / """cache""" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" snake_case_ : List[str] = {"""text""": """string"""} snake_case_ : int = features.copy() if features else default_expected_features snake_case_ : Tuple = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : str = TextDatasetReader({"""train""": text_path} , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" if split: snake_case_ : Union[str, Any] = {split: text_path} else: snake_case_ : Union[str, Any] = """train""" snake_case_ : int = {"""train""": text_path, """test""": text_path} snake_case_ : List[Any] = tmp_path / """cache""" snake_case_ : Tuple = {"""text""": """string"""} snake_case_ : int = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
48
1
"""simple docstring""" import argparse import hashlib # hashlib is only used inside the Test class import struct class __lowercase : """simple docstring""" def __init__(self , lowercase__ ): snake_case_ : Union[str, Any] = data snake_case_ : List[str] = [0X6_7_4_5_2_3_0_1, 0Xe_f_c_d_a_b_8_9, 0X9_8_b_a_d_c_f_e, 0X1_0_3_2_5_4_7_6, 0Xc_3_d_2_e_1_f_0] @staticmethod def __UpperCamelCase (lowercase__ , lowercase__ ): return ((n << b) | (n >> (32 - b))) & 0Xf_f_f_f_f_f_f_f def __UpperCamelCase (self ): snake_case_ : Any = B"""\x80""" + B"""\x00""" * (63 - (len(self.data ) + 8) % 64) snake_case_ : Tuple = self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def __UpperCamelCase (self ): return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = list(struct.unpack(""">16L""" , lowercase__ ) ) + [0] * 64 for i in range(16 , 80 ): snake_case_ : Dict = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def __UpperCamelCase (self ): snake_case_ : List[Any] = self.padding() snake_case_ : Any = self.split_blocks() for block in self.blocks: snake_case_ : Any = self.expand_block(lowercase__ ) snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = self.h for i in range(0 , 80 ): if 0 <= i < 20: snake_case_ : Optional[Any] = (b & c) | ((~b) & d) snake_case_ : List[str] = 0X5_a_8_2_7_9_9_9 elif 20 <= i < 40: snake_case_ : Union[str, Any] = b ^ c ^ d snake_case_ : Tuple = 0X6_e_d_9_e_b_a_1 elif 40 <= i < 60: snake_case_ : str = (b & c) | (b & d) | (c & d) snake_case_ : List[str] = 0X8_f_1_b_b_c_d_c elif 60 <= i < 80: snake_case_ : Tuple = b ^ c ^ d snake_case_ : str = 0Xc_a_6_2_c_1_d_6 snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Optional[Any] = ( self.rotate(lowercase__ , 5 ) + f + e + k + expanded_block[i] & 0Xf_f_f_f_f_f_f_f, a, self.rotate(lowercase__ , 30 ), c, d, ) snake_case_ : Any = ( self.h[0] + a & 0Xf_f_f_f_f_f_f_f, self.h[1] + b & 0Xf_f_f_f_f_f_f_f, self.h[2] + c & 0Xf_f_f_f_f_f_f_f, self.h[3] + d & 0Xf_f_f_f_f_f_f_f, self.h[4] + e & 0Xf_f_f_f_f_f_f_f, ) return ("{:08x}" * 5).format(*self.h ) def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Union[str, Any] = b"""Test String""" assert SHAaHash(SCREAMING_SNAKE_CASE__ ).final_hash() == hashlib.shaa(SCREAMING_SNAKE_CASE__ ).hexdigest() # noqa: S324 def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : int = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument("""--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) snake_case_ : Optional[int] = parser.parse_args() snake_case_ : Optional[int] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: snake_case_ : List[str] = f.read() else: snake_case_ : Dict = bytes(SCREAMING_SNAKE_CASE__ , """utf-8""" ) print(SHAaHash(SCREAMING_SNAKE_CASE__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
48
"""simple docstring""" from copy import deepcopy class __lowercase : """simple docstring""" def __init__(self , lowercase__ = None , lowercase__ = None ): if arr is None and size is not None: snake_case_ : str = size snake_case_ : Optional[Any] = [0] * size elif arr is not None: self.init(lowercase__ ) else: raise ValueError("""Either arr or size must be specified""" ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Optional[Any] = len(lowercase__ ) snake_case_ : int = deepcopy(lowercase__ ) for i in range(1 , self.size ): snake_case_ : Optional[Any] = self.next_(lowercase__ ) if j < self.size: self.tree[j] += self.tree[i] def __UpperCamelCase (self ): snake_case_ : Dict = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): snake_case_ : Optional[int] = self.next_(lowercase__ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def __UpperCamelCase (lowercase__ ): return index + (index & (-index)) @staticmethod def __UpperCamelCase (lowercase__ ): return index - (index & (-index)) def __UpperCamelCase (self , lowercase__ , lowercase__ ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value snake_case_ : Tuple = self.next_(lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): self.add(lowercase__ , value - self.get(lowercase__ ) ) def __UpperCamelCase (self , lowercase__ ): if right == 0: return 0 snake_case_ : List[str] = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] snake_case_ : Optional[int] = self.prev(lowercase__ ) return result def __UpperCamelCase (self , lowercase__ , lowercase__ ): return self.prefix(lowercase__ ) - self.prefix(lowercase__ ) def __UpperCamelCase (self , lowercase__ ): return self.query(lowercase__ , index + 1 ) def __UpperCamelCase (self , lowercase__ ): value -= self.tree[0] if value < 0: return -1 snake_case_ : Tuple = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 snake_case_ : Tuple = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
48
1
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : list[int] ): """simple docstring""" snake_case_ : Dict = len(SCREAMING_SNAKE_CASE__ ) for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(i + 1 , SCREAMING_SNAKE_CASE__ ): if numbers[j] < numbers[i]: snake_case_ , snake_case_ : List[Any] = numbers[j], numbers[i] return numbers if __name__ == "__main__": a_ = input('''Enter numbers separated by a comma:\n''').strip() a_ = [int(item) for item in user_input.split(''',''')] print(exchange_sort(unsorted))
48
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : list ): """simple docstring""" snake_case_ : Optional[int] = len(SCREAMING_SNAKE_CASE__ ) for i in range(1 , SCREAMING_SNAKE_CASE__ ): snake_case_ : Tuple = collection[i] snake_case_ : Tuple = 0 snake_case_ : str = i - 1 while low <= high: snake_case_ : Optional[int] = (low + high) // 2 if val < collection[mid]: snake_case_ : List[str] = mid - 1 else: snake_case_ : str = mid + 1 for j in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , -1 ): snake_case_ : List[str] = collection[j - 1] snake_case_ : Any = val return collection if __name__ == "__main__": a_ = input('''Enter numbers separated by a comma:\n''').strip() a_ = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
48
1
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py a_ = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. a_ = importlib.util.spec_from_file_location( '''transformers''', os.path.join(PATH_TO_TRANSFORMERS, '''__init__.py'''), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) a_ = spec.loader.load_module() a_ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` a_ = re.compile('''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') a_ = { '''CLIPConfigMixin''', '''DecisionTransformerConfigMixin''', '''EncoderDecoderConfigMixin''', '''RagConfigMixin''', '''SpeechEncoderDecoderConfigMixin''', '''VisionEncoderDecoderConfigMixin''', '''VisionTextDualEncoderConfigMixin''', } def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Optional[Any] = [] for config_class in list(CONFIG_MAPPING.values() ): snake_case_ : List[str] = False # source code of `config_class` snake_case_ : Dict = inspect.getsource(SCREAMING_SNAKE_CASE__ ) snake_case_ : Dict = _re_checkpoint.findall(SCREAMING_SNAKE_CASE__ ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` snake_case_ , snake_case_ : int = checkpoint # verify the checkpoint name corresponds to the checkpoint link snake_case_ : List[Any] = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: snake_case_ : Optional[Any] = True break snake_case_ : int = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: snake_case_ : str = """\n""".join(sorted(SCREAMING_SNAKE_CASE__ ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
48
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Union[str, Any] = ["""image_processor""", """tokenizer"""] _A : str = """ChineseCLIPImageProcessor""" _A : Tuple = ("""BertTokenizer""", """BertTokenizerFast""") def __init__(self , lowercase__=None , lowercase__=None , **lowercase__ ): snake_case_ : Any = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowercase__ , ) snake_case_ : Optional[Any] = kwargs.pop("""feature_extractor""" ) snake_case_ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowercase__ , lowercase__ ) snake_case_ : Union[str, Any] = self.image_processor def __call__(self , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ ): if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: snake_case_ : Any = self.tokenizer(lowercase__ , return_tensors=lowercase__ , **lowercase__ ) if images is not None: snake_case_ : Tuple = self.image_processor(lowercase__ , return_tensors=lowercase__ , **lowercase__ ) if text is not None and images is not None: snake_case_ : List[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase__ ) , tensor_type=lowercase__ ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): return self.tokenizer.batch_decode(*lowercase__ , **lowercase__ ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): return self.tokenizer.decode(*lowercase__ , **lowercase__ ) @property def __UpperCamelCase (self ): snake_case_ : Optional[int] = self.tokenizer.model_input_names snake_case_ : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __UpperCamelCase (self ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowercase__ , ) return self.image_processor_class
48
1
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class __lowercase : """simple docstring""" def __init__(self ): snake_case_ : str = """""" snake_case_ : Dict = """""" snake_case_ : List[str] = [] snake_case_ : List[Any] = 0 snake_case_ : Union[str, Any] = 2_56 snake_case_ : int = 0 snake_case_ : Dict = 0 snake_case_ : Optional[int] = 0 snake_case_ : List[str] = 0 def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = cva.imread(lowercase__ , 0 ) snake_case_ : Optional[int] = copy.deepcopy(self.img ) snake_case_ , snake_case_ , snake_case_ : Optional[int] = plt.hist(self.img.ravel() , 2_56 , [0, 2_56] , label="""x""" ) snake_case_ : Union[str, Any] = np.sum(lowercase__ ) for i in range(len(lowercase__ ) ): snake_case_ : Optional[int] = x[i] / self.k self.sk += prk snake_case_ : str = (self.L - 1) * self.sk if self.rem != 0: snake_case_ : int = int(last % last ) snake_case_ : List[str] = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(lowercase__ ) snake_case_ : List[str] = int(np.ma.count(self.img ) / self.img[1].size ) snake_case_ : str = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): snake_case_ : Optional[int] = self.img[j][i] if num != self.last_list[num]: snake_case_ : int = self.last_list[num] cva.imwrite("""output_data/output.jpg""" , self.img ) def __UpperCamelCase (self ): plt.hist(self.img.ravel() , 2_56 , [0, 2_56] ) def __UpperCamelCase (self ): cva.imshow("""Output-Image""" , self.img ) cva.imshow("""Input-Image""" , self.original_image ) cva.waitKey(50_00 ) cva.destroyAllWindows() if __name__ == "__main__": a_ = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''') a_ = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
48
"""simple docstring""" import argparse import copy def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" snake_case_ : List[Any] = {} with open(SCREAMING_SNAKE_CASE__ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: snake_case_ : int = [] _list.append([line.split()[1], line.split()[2]] ) snake_case_ : Optional[Any] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: snake_case_ : str = [] _list.append([line.split()[0], line.split()[2]] ) snake_case_ : Optional[Any] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" with open(SCREAMING_SNAKE_CASE__ ) as f: snake_case_ : Optional[Any] = f.read(1 ) snake_case_ : Union[str, Any] = start_node snake_case_ : Dict = [] snake_case_ : Union[str, Any] = start_node snake_case_ : Tuple = 0 while visiting not in first_solution: snake_case_ : int = 1_0_0_0_0 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(SCREAMING_SNAKE_CASE__ ) and k[0] not in first_solution: snake_case_ : Union[str, Any] = k[1] snake_case_ : Any = k[0] first_solution.append(SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = distance_of_first_solution + int(SCREAMING_SNAKE_CASE__ ) snake_case_ : List[str] = best_node first_solution.append(SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[Any] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 snake_case_ : int = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0_0_0_0 ) return first_solution, distance_of_first_solution def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" snake_case_ : Union[str, Any] = [] for n in solution[1:-1]: snake_case_ : str = solution.index(SCREAMING_SNAKE_CASE__ ) for kn in solution[1:-1]: snake_case_ : Tuple = solution.index(SCREAMING_SNAKE_CASE__ ) if n == kn: continue snake_case_ : Optional[Any] = copy.deepcopy(SCREAMING_SNAKE_CASE__ ) snake_case_ : int = kn snake_case_ : Dict = n snake_case_ : Optional[int] = 0 for k in _tmp[:-1]: snake_case_ : Dict = _tmp[_tmp.index(SCREAMING_SNAKE_CASE__ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: snake_case_ : Dict = distance + int(i[1] ) _tmp.append(SCREAMING_SNAKE_CASE__ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) snake_case_ : Optional[Any] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda SCREAMING_SNAKE_CASE__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] ): """simple docstring""" snake_case_ : Dict = 1 snake_case_ : List[Any] = first_solution snake_case_ : List[Any] = [] snake_case_ : Optional[Any] = distance_of_first_solution snake_case_ : Dict = solution while count <= iters: snake_case_ : List[str] = find_neighborhood(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = 0 snake_case_ : List[Any] = neighborhood[index_of_best_solution] snake_case_ : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ ) - 1 snake_case_ : List[str] = False while not found: snake_case_ : Tuple = 0 while i < len(SCREAMING_SNAKE_CASE__ ): if best_solution[i] != solution[i]: snake_case_ : Optional[Any] = best_solution[i] snake_case_ : int = solution[i] break snake_case_ : List[str] = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) snake_case_ : Tuple = True snake_case_ : Dict = best_solution[:-1] snake_case_ : Tuple = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: snake_case_ : Tuple = cost snake_case_ : Union[str, Any] = solution else: snake_case_ : str = index_of_best_solution + 1 snake_case_ : Tuple = neighborhood[index_of_best_solution] if len(SCREAMING_SNAKE_CASE__ ) >= size: tabu_list.pop(0 ) snake_case_ : List[str] = count + 1 return best_solution_ever, best_cost def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any]=None ): """simple docstring""" snake_case_ : Tuple = generate_neighbours(args.File ) snake_case_ , snake_case_ : Optional[Any] = generate_first_solution( args.File , SCREAMING_SNAKE_CASE__ ) snake_case_ , snake_case_ : Dict = tabu_search( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , args.Iterations , args.Size , ) print(f'Best solution: {best_sol}, with total distance: {best_cost}.' ) if __name__ == "__main__": a_ = argparse.ArgumentParser(description='''Tabu Search''') parser.add_argument( '''-f''', '''--File''', type=str, help='''Path to the file containing the data''', required=True, ) parser.add_argument( '''-i''', '''--Iterations''', type=int, help='''How many iterations the algorithm should perform''', required=True, ) parser.add_argument( '''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True ) # Pass the arguments to main method main(parser.parse_args())
48
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = { '''configuration_roformer''': ['''ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoFormerConfig''', '''RoFormerOnnxConfig'''], '''tokenization_roformer''': ['''RoFormerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['''RoFormerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoFormerForCausalLM''', '''RoFormerForMaskedLM''', '''RoFormerForMultipleChoice''', '''RoFormerForQuestionAnswering''', '''RoFormerForSequenceClassification''', '''RoFormerForTokenClassification''', '''RoFormerLayer''', '''RoFormerModel''', '''RoFormerPreTrainedModel''', '''load_tf_weights_in_roformer''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRoFormerForCausalLM''', '''TFRoFormerForMaskedLM''', '''TFRoFormerForMultipleChoice''', '''TFRoFormerForQuestionAnswering''', '''TFRoFormerForSequenceClassification''', '''TFRoFormerForTokenClassification''', '''TFRoFormerLayer''', '''TFRoFormerModel''', '''TFRoFormerPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxRoFormerForMaskedLM''', '''FlaxRoFormerForMultipleChoice''', '''FlaxRoFormerForQuestionAnswering''', '''FlaxRoFormerForSequenceClassification''', '''FlaxRoFormerForTokenClassification''', '''FlaxRoFormerModel''', '''FlaxRoFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
48
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings a_ = r''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(_UpperCAmelCase) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """rag""" _A : Optional[Any] = True def __init__(self , lowercase__=None , lowercase__=True , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=" / " , lowercase__=" // " , lowercase__=5 , lowercase__=3_00 , lowercase__=7_68 , lowercase__=8 , lowercase__="wiki_dpr" , lowercase__="train" , lowercase__="compressed" , lowercase__=None , lowercase__=None , lowercase__=False , lowercase__=False , lowercase__=0.0 , lowercase__=True , lowercase__=False , lowercase__=False , lowercase__=False , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__( bos_token_id=lowercase__ , pad_token_id=lowercase__ , eos_token_id=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , prefix=lowercase__ , vocab_size=lowercase__ , **lowercase__ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" snake_case_ : List[Any] = kwargs.pop("""question_encoder""" ) snake_case_ : Tuple = question_encoder_config.pop("""model_type""" ) snake_case_ : List[str] = kwargs.pop("""generator""" ) snake_case_ : List[str] = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig snake_case_ : List[str] = AutoConfig.for_model(lowercase__ , **lowercase__ ) snake_case_ : Tuple = AutoConfig.for_model(lowercase__ , **lowercase__ ) snake_case_ : int = reduce_loss snake_case_ : Optional[int] = label_smoothing snake_case_ : Dict = exclude_bos_score snake_case_ : Union[str, Any] = do_marginalize snake_case_ : Union[str, Any] = title_sep snake_case_ : int = doc_sep snake_case_ : int = n_docs snake_case_ : List[str] = max_combined_length snake_case_ : Tuple = dataset snake_case_ : int = dataset_split snake_case_ : str = index_name snake_case_ : List[str] = retrieval_vector_size snake_case_ : Dict = retrieval_batch_size snake_case_ : str = passages_path snake_case_ : Union[str, Any] = index_path snake_case_ : Tuple = use_dummy_dataset snake_case_ : Dict = output_retrieved snake_case_ : str = do_deduplication snake_case_ : Any = use_cache if self.forced_eos_token_id is None: snake_case_ : Any = getattr(self.generator , """forced_eos_token_id""" , lowercase__ ) @classmethod def __UpperCamelCase (cls , lowercase__ , lowercase__ , **lowercase__ ): return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Optional[Any] = copy.deepcopy(self.__dict__ ) snake_case_ : Any = self.question_encoder.to_dict() snake_case_ : Dict = self.generator.to_dict() snake_case_ : Union[str, Any] = self.__class__.model_type return output
48
1
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ = {'''configuration_van''': ['''VAN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VanConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''VAN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VanForImageClassification''', '''VanModel''', '''VanPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
48
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """upernet""" def __init__(self , lowercase__=None , lowercase__=5_12 , lowercase__=0.02 , lowercase__=[1, 2, 3, 6] , lowercase__=True , lowercase__=0.4 , lowercase__=3_84 , lowercase__=2_56 , lowercase__=1 , lowercase__=False , lowercase__=2_55 , **lowercase__ , ): super().__init__(**lowercase__ ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) snake_case_ : List[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(lowercase__ , lowercase__ ): snake_case_ : Tuple = backbone_config.get("""model_type""" ) snake_case_ : List[str] = CONFIG_MAPPING[backbone_model_type] snake_case_ : List[Any] = config_class.from_dict(lowercase__ ) snake_case_ : List[Any] = backbone_config snake_case_ : Optional[Any] = hidden_size snake_case_ : Any = initializer_range snake_case_ : str = pool_scales snake_case_ : Dict = use_auxiliary_head snake_case_ : str = auxiliary_loss_weight snake_case_ : List[str] = auxiliary_in_channels snake_case_ : Optional[Any] = auxiliary_channels snake_case_ : Any = auxiliary_num_convs snake_case_ : List[Any] = auxiliary_concat_input snake_case_ : List[str] = loss_ignore_index def __UpperCamelCase (self ): snake_case_ : Dict = copy.deepcopy(self.__dict__ ) snake_case_ : Union[str, Any] = self.backbone_config.to_dict() snake_case_ : Any = self.__class__.model_type return output
48
1
"""simple docstring""" from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : jnp.ndarray @flax_register_to_config class __lowercase ( nn.Module , _UpperCAmelCase , _UpperCAmelCase): """simple docstring""" _A : int = 32 _A : int = 4 _A : int = 4 _A : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) _A : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") _A : Union[bool, Tuple[bool]] = False _A : Tuple[int] = (320, 640, 1280, 1280) _A : int = 2 _A : Union[int, Tuple[int]] = 8 _A : Optional[Union[int, Tuple[int]]] = None _A : int = 1280 _A : float = 0.0 _A : bool = False _A : jnp.dtype = jnp.floataa _A : bool = True _A : int = 0 _A : bool = False def __UpperCamelCase (self , lowercase__ ): # init input tensors snake_case_ : str = (1, self.in_channels, self.sample_size, self.sample_size) snake_case_ : Any = jnp.zeros(lowercase__ , dtype=jnp.floataa ) snake_case_ : Optional[Any] = jnp.ones((1,) , dtype=jnp.intaa ) snake_case_ : Optional[int] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) snake_case_ , snake_case_ : str = jax.random.split(lowercase__ ) snake_case_ : Optional[int] = {"""params""": params_rng, """dropout""": dropout_rng} return self.init(lowercase__ , lowercase__ , lowercase__ , lowercase__ )["params"] def __UpperCamelCase (self ): snake_case_ : Any = self.block_out_channels snake_case_ : Union[str, Any] = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( """At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.""" ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. snake_case_ : Dict = self.num_attention_heads or self.attention_head_dim # input snake_case_ : Optional[int] = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time snake_case_ : Any = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) snake_case_ : str = FlaxTimestepEmbedding(lowercase__ , dtype=self.dtype ) snake_case_ : Optional[Any] = self.only_cross_attention if isinstance(lowercase__ , lowercase__ ): snake_case_ : int = (only_cross_attention,) * len(self.down_block_types ) if isinstance(lowercase__ , lowercase__ ): snake_case_ : List[str] = (num_attention_heads,) * len(self.down_block_types ) # down snake_case_ : str = [] snake_case_ : Tuple = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): snake_case_ : Tuple = output_channel snake_case_ : Any = block_out_channels[i] snake_case_ : int = i == len(lowercase__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": snake_case_ : Optional[Any] = FlaxCrossAttnDownBlockaD( in_channels=lowercase__ , out_channels=lowercase__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: snake_case_ : Optional[Any] = FlaxDownBlockaD( in_channels=lowercase__ , out_channels=lowercase__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(lowercase__ ) snake_case_ : Optional[int] = down_blocks # mid snake_case_ : str = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up snake_case_ : int = [] snake_case_ : Any = list(reversed(lowercase__ ) ) snake_case_ : Tuple = list(reversed(lowercase__ ) ) snake_case_ : str = list(reversed(lowercase__ ) ) snake_case_ : Optional[Any] = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): snake_case_ : Optional[Any] = output_channel snake_case_ : Union[str, Any] = reversed_block_out_channels[i] snake_case_ : str = reversed_block_out_channels[min(i + 1 , len(lowercase__ ) - 1 )] snake_case_ : Tuple = i == len(lowercase__ ) - 1 if up_block_type == "CrossAttnUpBlock2D": snake_case_ : Dict = FlaxCrossAttnUpBlockaD( in_channels=lowercase__ , out_channels=lowercase__ , prev_output_channel=lowercase__ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: snake_case_ : List[str] = FlaxUpBlockaD( in_channels=lowercase__ , out_channels=lowercase__ , prev_output_channel=lowercase__ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(lowercase__ ) snake_case_ : Optional[Any] = output_channel snake_case_ : Optional[int] = up_blocks # out snake_case_ : Dict = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) snake_case_ : Dict = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__(self , lowercase__ , lowercase__ , lowercase__ , lowercase__=None , lowercase__=None , lowercase__ = True , lowercase__ = False , ): # 1. time if not isinstance(lowercase__ , jnp.ndarray ): snake_case_ : Dict = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(lowercase__ , jnp.ndarray ) and len(timesteps.shape ) == 0: snake_case_ : Any = timesteps.astype(dtype=jnp.floataa ) snake_case_ : List[Any] = jnp.expand_dims(lowercase__ , 0 ) snake_case_ : List[str] = self.time_proj(lowercase__ ) snake_case_ : Any = self.time_embedding(lowercase__ ) # 2. pre-process snake_case_ : int = jnp.transpose(lowercase__ , (0, 2, 3, 1) ) snake_case_ : Any = self.conv_in(lowercase__ ) # 3. down snake_case_ : int = (sample,) for down_block in self.down_blocks: if isinstance(lowercase__ , lowercase__ ): snake_case_ , snake_case_ : List[Any] = down_block(lowercase__ , lowercase__ , lowercase__ , deterministic=not train ) else: snake_case_ , snake_case_ : List[Any] = down_block(lowercase__ , lowercase__ , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: snake_case_ : Optional[Any] = () for down_block_res_sample, down_block_additional_residual in zip( lowercase__ , lowercase__ ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) snake_case_ : str = new_down_block_res_samples # 4. mid snake_case_ : Tuple = self.mid_block(lowercase__ , lowercase__ , lowercase__ , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: snake_case_ : Optional[Any] = down_block_res_samples[-(self.layers_per_block + 1) :] snake_case_ : List[Any] = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(lowercase__ , lowercase__ ): snake_case_ : Union[str, Any] = up_block( lowercase__ , temb=lowercase__ , encoder_hidden_states=lowercase__ , res_hidden_states_tuple=lowercase__ , deterministic=not train , ) else: snake_case_ : List[Any] = up_block(lowercase__ , temb=lowercase__ , res_hidden_states_tuple=lowercase__ , deterministic=not train ) # 6. post-process snake_case_ : List[Any] = self.conv_norm_out(lowercase__ ) snake_case_ : Tuple = nn.silu(lowercase__ ) snake_case_ : List[Any] = self.conv_out(lowercase__ ) snake_case_ : Optional[Any] = jnp.transpose(lowercase__ , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=lowercase__ )
48
"""simple docstring""" import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask a_ = logging.getLogger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self , lowercase__=-1 ): # in NER datasets, the last column is usually reserved for NER label snake_case_ : Union[str, Any] = label_idx def __UpperCamelCase (self , lowercase__ , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): snake_case_ : List[str] = mode.value snake_case_ : List[Any] = os.path.join(lowercase__ , f'{mode}.txt' ) snake_case_ : Tuple = 1 snake_case_ : Any = [] with open(lowercase__ , encoding="""utf-8""" ) as f: snake_case_ : str = [] snake_case_ : List[Any] = [] for line in f: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) guid_index += 1 snake_case_ : Optional[Any] = [] snake_case_ : int = [] else: snake_case_ : Optional[Any] = line.split(""" """ ) words.append(splits[0] ) if len(lowercase__ ) > 1: labels.append(splits[self.label_idx].replace("""\n""" , """""" ) ) else: # Examples could have no label for mode = "test" labels.append("""O""" ) if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) return examples def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : str = 0 for line in test_input_reader: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": writer.write(lowercase__ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: snake_case_ : Optional[int] = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n""" writer.write(lowercase__ ) else: logger.warning("""Maximum sequence length exceeded: No prediction for '%s'.""" , line.split()[0] ) def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: snake_case_ : Dict = f.read().splitlines() if "O" not in labels: snake_case_ : List[Any] = ["""O"""] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self ): # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: snake_case_ : Any = f.read().splitlines() if "O" not in labels: snake_case_ : Tuple = ["""O"""] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __lowercase ( _UpperCAmelCase): """simple docstring""" def __UpperCamelCase (self , lowercase__ , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): snake_case_ : List[Any] = mode.value snake_case_ : Optional[int] = os.path.join(lowercase__ , f'{mode}.txt' ) snake_case_ : Tuple = 1 snake_case_ : str = [] with open(lowercase__ , encoding="""utf-8""" ) as f: for sentence in parse_incr(lowercase__ ): snake_case_ : Tuple = [] snake_case_ : Any = [] for token in sentence: words.append(token["""form"""] ) labels.append(token["""upos"""] ) assert len(lowercase__ ) == len(lowercase__ ) if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) guid_index += 1 return examples def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : Dict = 0 for sentence in parse_incr(lowercase__ ): snake_case_ : int = preds_list[example_id] snake_case_ : Dict = """""" for token in sentence: out += f'{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) ' out += "\n" writer.write(lowercase__ ) example_id += 1 def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
48
1
"""simple docstring""" import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() a_ = logging.get_logger(__name__) a_ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } a_ = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" for attribute in key.split(""".""" ): snake_case_ : Optional[int] = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if weight_type is not None: snake_case_ : Any = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).shape else: snake_case_ : str = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": snake_case_ : Dict = value elif weight_type == "weight_g": snake_case_ : Optional[int] = value elif weight_type == "weight_v": snake_case_ : Optional[Any] = value elif weight_type == "bias": snake_case_ : Union[str, Any] = value else: snake_case_ : Dict = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : int = [] snake_case_ : List[Any] = fairseq_model.state_dict() snake_case_ : Union[str, Any] = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight snake_case_ : Any = None for name, value in fairseq_dict.items(): snake_case_ : List[str] = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hf_model.config.feat_extract_norm == """group""" , ) snake_case_ : Dict = True elif name.split(""".""" )[0] == "proj": snake_case_ : Any = fairseq_model.proj snake_case_ : str = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: snake_case_ : Tuple = True if "*" in mapped_key: snake_case_ : List[Any] = name.split(SCREAMING_SNAKE_CASE__ )[0].split(""".""" )[-2] snake_case_ : List[Any] = mapped_key.replace("""*""" , SCREAMING_SNAKE_CASE__ ) if "weight_g" in name: snake_case_ : Optional[Any] = """weight_g""" elif "weight_v" in name: snake_case_ : Any = """weight_v""" elif "bias" in name: snake_case_ : Tuple = """bias""" elif "weight" in name: snake_case_ : int = """weight""" else: snake_case_ : Optional[Any] = None set_recursively(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE__ ) logger.warning(f'Unused weights: {unused_weights}' ) return proj_weight def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : Union[str, Any] = full_name.split("""conv_layers.""" )[-1] snake_case_ : List[str] = name.split(""".""" ) snake_case_ : Dict = int(items[0] ) snake_case_ : str = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) snake_case_ : Optional[int] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) snake_case_ : Tuple = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) snake_case_ : int = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) snake_case_ : List[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ , snake_case_ : List[str] = emb.weight.shape snake_case_ : Optional[int] = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[int] = emb.weight.data return lin_layer def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" with open(SCREAMING_SNAKE_CASE__ , """r""" , encoding="""utf-8""" ) as f: snake_case_ : List[Any] = f.readlines() snake_case_ : List[str] = [line.split(""" """ )[0] for line in lines] snake_case_ : Optional[Any] = len(SCREAMING_SNAKE_CASE__ ) snake_case_ : str = { """<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3, } vocab_dict.update(dict(zip(SCREAMING_SNAKE_CASE__ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , ): """simple docstring""" snake_case_ : List[Any] = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case_ : Dict = SpeechaTextaConfig.from_pretrained( SCREAMING_SNAKE_CASE__ , vocab_size=SCREAMING_SNAKE_CASE__ , decoder_layers=SCREAMING_SNAKE_CASE__ , do_stable_layer_norm=SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , ) snake_case_ , snake_case_ , snake_case_ : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) snake_case_ : Optional[Any] = model[0].eval() # set weights for wav2vec2 encoder snake_case_ : Any = WavaVecaModel(SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[Any] = recursively_load_weights_wavaveca(model.encoder , SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = SpeechaTextaForCausalLM(SCREAMING_SNAKE_CASE__ ) snake_case_ , snake_case_ : List[str] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=SCREAMING_SNAKE_CASE__ ) # set output linear layer unexpected_keys.remove("""embed_out""" ) snake_case_ : Any = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(f'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) snake_case_ : Dict = SpeechEncoderDecoderModel(encoder=SCREAMING_SNAKE_CASE__ , decoder=SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = False # add projection layer snake_case_ : Dict = nn.Parameter(projection_layer.weight ) snake_case_ : List[Any] = nn.Parameter(projection_layer.bias ) snake_case_ : List[Any] = create_vocab_dict(SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , """vocab.json""" ) , """w""" ) as fp: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[int] = SpeechaTextaTokenizer(os.path.join(SCREAMING_SNAKE_CASE__ , """vocab.json""" ) ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case_ : int = hf_wavavec.config.to_dict() snake_case_ : Optional[Any] = tokenizer.pad_token_id snake_case_ : Optional[Any] = tokenizer.bos_token_id snake_case_ : Union[str, Any] = tokenizer.eos_token_id snake_case_ : List[str] = """speech_to_text_2""" snake_case_ : str = """wav2vec2""" snake_case_ : Optional[Any] = SpeechEncoderDecoderConfig.from_dict(SCREAMING_SNAKE_CASE__ ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE__ ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument( '''--encoder_config_path''', default='''facebook/wav2vec2-large-lv60''', type=str, help='''Path to hf encoder wav2vec2 checkpoint config''', ) parser.add_argument( '''--decoder_config_path''', default='''facebook/s2t-small-mustc-en-fr-st''', type=str, help='''Path to hf decoder s2t checkpoint config''', ) parser.add_argument('''--vocab_size''', default=10224, type=int, help='''Vocab size of decoder''') parser.add_argument('''--num_decoder_layers''', default=7, type=int, help='''Number of decoder layers''') a_ = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
48
"""simple docstring""" import random def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : Union[str, Any] = num - 1 snake_case_ : List[str] = 0 while s % 2 == 0: snake_case_ : str = s // 2 t += 1 for _ in range(5 ): snake_case_ : List[Any] = random.randrange(2 , num - 1 ) snake_case_ : Dict = pow(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if v != 1: snake_case_ : int = 0 while v != (num - 1): if i == t - 1: return False else: snake_case_ : str = i + 1 snake_case_ : int = (v**2) % num return True def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" if num < 2: return False snake_case_ : Dict = [ 2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1, 4_3, 4_7, 5_3, 5_9, 6_1, 6_7, 7_1, 7_3, 7_9, 8_3, 8_9, 9_7, 1_0_1, 1_0_3, 1_0_7, 1_0_9, 1_1_3, 1_2_7, 1_3_1, 1_3_7, 1_3_9, 1_4_9, 1_5_1, 1_5_7, 1_6_3, 1_6_7, 1_7_3, 1_7_9, 1_8_1, 1_9_1, 1_9_3, 1_9_7, 1_9_9, 2_1_1, 2_2_3, 2_2_7, 2_2_9, 2_3_3, 2_3_9, 2_4_1, 2_5_1, 2_5_7, 2_6_3, 2_6_9, 2_7_1, 2_7_7, 2_8_1, 2_8_3, 2_9_3, 3_0_7, 3_1_1, 3_1_3, 3_1_7, 3_3_1, 3_3_7, 3_4_7, 3_4_9, 3_5_3, 3_5_9, 3_6_7, 3_7_3, 3_7_9, 3_8_3, 3_8_9, 3_9_7, 4_0_1, 4_0_9, 4_1_9, 4_2_1, 4_3_1, 4_3_3, 4_3_9, 4_4_3, 4_4_9, 4_5_7, 4_6_1, 4_6_3, 4_6_7, 4_7_9, 4_8_7, 4_9_1, 4_9_9, 5_0_3, 5_0_9, 5_2_1, 5_2_3, 5_4_1, 5_4_7, 5_5_7, 5_6_3, 5_6_9, 5_7_1, 5_7_7, 5_8_7, 5_9_3, 5_9_9, 6_0_1, 6_0_7, 6_1_3, 6_1_7, 6_1_9, 6_3_1, 6_4_1, 6_4_3, 6_4_7, 6_5_3, 6_5_9, 6_6_1, 6_7_3, 6_7_7, 6_8_3, 6_9_1, 7_0_1, 7_0_9, 7_1_9, 7_2_7, 7_3_3, 7_3_9, 7_4_3, 7_5_1, 7_5_7, 7_6_1, 7_6_9, 7_7_3, 7_8_7, 7_9_7, 8_0_9, 8_1_1, 8_2_1, 8_2_3, 8_2_7, 8_2_9, 8_3_9, 8_5_3, 8_5_7, 8_5_9, 8_6_3, 8_7_7, 8_8_1, 8_8_3, 8_8_7, 9_0_7, 9_1_1, 9_1_9, 9_2_9, 9_3_7, 9_4_1, 9_4_7, 9_5_3, 9_6_7, 9_7_1, 9_7_7, 9_8_3, 9_9_1, 9_9_7, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int = 1_0_2_4 ): """simple docstring""" while True: snake_case_ : Tuple = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(SCREAMING_SNAKE_CASE__ ): return num if __name__ == "__main__": a_ = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
48
1
"""simple docstring""" import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class __lowercase : """simple docstring""" _A : Tuple = None def __UpperCamelCase (self ): snake_case_ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) snake_case_ : Dict = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ : Dict = os.path.join(lowercase__ , """feat_extract.json""" ) feat_extract_first.to_json_file(lowercase__ ) snake_case_ : Any = self.feature_extraction_class.from_json_file(lowercase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __UpperCamelCase (self ): snake_case_ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ : Optional[Any] = feat_extract_first.save_pretrained(lowercase__ )[0] check_json_file_has_correct_format(lowercase__ ) snake_case_ : List[Any] = self.feature_extraction_class.from_pretrained(lowercase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __UpperCamelCase (self ): snake_case_ : Optional[int] = self.feature_extraction_class() self.assertIsNotNone(lowercase__ )
48
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType a_ = logging.get_logger(__name__) a_ = { '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Dict = """deberta-v2""" def __init__(self , lowercase__=12_81_00 , lowercase__=15_36 , lowercase__=24 , lowercase__=24 , lowercase__=61_44 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_12 , lowercase__=0 , lowercase__=0.02 , lowercase__=1e-7 , lowercase__=False , lowercase__=-1 , lowercase__=0 , lowercase__=True , lowercase__=None , lowercase__=0 , lowercase__="gelu" , **lowercase__ , ): super().__init__(**lowercase__ ) snake_case_ : Union[str, Any] = hidden_size snake_case_ : str = num_hidden_layers snake_case_ : Tuple = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : Optional[int] = hidden_act snake_case_ : Union[str, Any] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : List[Any] = max_position_embeddings snake_case_ : Union[str, Any] = type_vocab_size snake_case_ : Union[str, Any] = initializer_range snake_case_ : List[Any] = relative_attention snake_case_ : Dict = max_relative_positions snake_case_ : Optional[int] = pad_token_id snake_case_ : List[str] = position_biased_input # Backwards compatibility if type(lowercase__ ) == str: snake_case_ : Union[str, Any] = [x.strip() for x in pos_att_type.lower().split("""|""" )] snake_case_ : Optional[int] = pos_att_type snake_case_ : List[str] = vocab_size snake_case_ : Tuple = layer_norm_eps snake_case_ : List[Any] = kwargs.get("""pooler_hidden_size""" , lowercase__ ) snake_case_ : List[str] = pooler_dropout snake_case_ : int = pooler_hidden_act class __lowercase ( _UpperCAmelCase): """simple docstring""" @property def __UpperCamelCase (self ): if self.task == "multiple-choice": snake_case_ : List[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case_ : int = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def __UpperCamelCase (self ): return 12 def __UpperCamelCase (self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , lowercase__ = 3 , lowercase__ = 40 , lowercase__ = 40 , lowercase__ = None , ): snake_case_ : str = super().generate_dummy_inputs(preprocessor=lowercase__ , framework=lowercase__ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
48
1
"""simple docstring""" import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch a_ = logging.get_logger(__name__) class __lowercase : """simple docstring""" def __init__(self , lowercase__ = None , lowercase__ = None , lowercase__=None , lowercase__=None ): if not conversation_id: snake_case_ : int = uuid.uuida() if past_user_inputs is None: snake_case_ : int = [] if generated_responses is None: snake_case_ : List[Any] = [] snake_case_ : uuid.UUID = conversation_id snake_case_ : List[str] = past_user_inputs snake_case_ : List[str] = generated_responses snake_case_ : Optional[str] = text def __eq__(self , lowercase__ ): if not isinstance(lowercase__ , lowercase__ ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def __UpperCamelCase (self , lowercase__ , lowercase__ = False ): if self.new_user_input: if overwrite: logger.warning( f'User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ' f'with: "{text}".' ) snake_case_ : Any = text else: logger.warning( f'User input added while unprocessed input was existing: "{self.new_user_input}" new input ' f'ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input' ) else: snake_case_ : List[Any] = text def __UpperCamelCase (self ): if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) snake_case_ : Dict = None def __UpperCamelCase (self , lowercase__ ): self.generated_responses.append(lowercase__ ) def __UpperCamelCase (self ): for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__(self ): snake_case_ : List[str] = f'Conversation id: {self.uuid} \n' for is_user, text in self.iter_texts(): snake_case_ : Optional[Any] = """user""" if is_user else """bot""" output += f'{name} >> {text} \n' return output @add_end_docstrings( _UpperCAmelCase , R""" min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. """ , ) class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self , *lowercase__ , **lowercase__ ): super().__init__(*lowercase__ , **lowercase__ ) if self.tokenizer.pad_token_id is None: snake_case_ : Union[str, Any] = self.tokenizer.eos_token def __UpperCamelCase (self , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ ): snake_case_ : Tuple = {} snake_case_ : Optional[Any] = {} snake_case_ : Optional[Any] = {} if min_length_for_response is not None: snake_case_ : Dict = min_length_for_response if minimum_tokens is not None: snake_case_ : Union[str, Any] = minimum_tokens if "max_length" in generate_kwargs: snake_case_ : List[str] = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: snake_case_ : Union[str, Any] = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(lowercase__ ) return preprocess_params, forward_params, postprocess_params def __call__(self , lowercase__ , lowercase__=0 , **lowercase__ ): snake_case_ : List[str] = super().__call__(lowercase__ , num_workers=lowercase__ , **lowercase__ ) if isinstance(lowercase__ , lowercase__ ) and len(lowercase__ ) == 1: return outputs[0] return outputs def __UpperCamelCase (self , lowercase__ , lowercase__=32 ): if not isinstance(lowercase__ , lowercase__ ): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" ) if conversation.new_user_input is None: raise ValueError( f'Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ' """Add user inputs with the conversation's `add_user_input` method""" ) if hasattr(self.tokenizer , """_build_conversation_input_ids""" ): snake_case_ : str = self.tokenizer._build_conversation_input_ids(lowercase__ ) else: # If the tokenizer cannot handle conversations, we default to only the old version snake_case_ : Any = self._legacy_parse_and_tokenize(lowercase__ ) if self.framework == "pt": snake_case_ : Optional[Any] = torch.LongTensor([input_ids] ) elif self.framework == "tf": snake_case_ : Dict = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def __UpperCamelCase (self , lowercase__ , lowercase__=10 , **lowercase__ ): snake_case_ : Optional[int] = generate_kwargs.get("""max_length""" , self.model.config.max_length ) snake_case_ : str = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(f'Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})' ) snake_case_ : int = max_length - minimum_tokens snake_case_ : List[Any] = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: snake_case_ : Union[str, Any] = model_inputs["""attention_mask"""][:, -trim:] snake_case_ : int = model_inputs.pop("""conversation""" ) snake_case_ : Dict = max_length snake_case_ : Tuple = self.model.generate(**lowercase__ , **lowercase__ ) if self.model.config.is_encoder_decoder: snake_case_ : str = 1 else: snake_case_ : List[Any] = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def __UpperCamelCase (self , lowercase__ , lowercase__=True ): snake_case_ : int = model_outputs["""output_ids"""] snake_case_ : List[Any] = self.tokenizer.decode( output_ids[0] , skip_special_tokens=lowercase__ , clean_up_tokenization_spaces=lowercase__ , ) snake_case_ : Optional[Any] = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(lowercase__ ) return conversation def __UpperCamelCase (self , lowercase__ ): snake_case_ : Dict = self.tokenizer.eos_token_id snake_case_ : Optional[int] = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ ) ) if len(lowercase__ ) > self.tokenizer.model_max_length: snake_case_ : int = input_ids[-self.tokenizer.model_max_length :] return input_ids
48
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
48
1
"""simple docstring""" import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class __lowercase ( _UpperCAmelCase): """simple docstring""" def __get__(self , lowercase__ , lowercase__=None ): # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError("""unreadable attribute""" ) snake_case_ : int = """__cached_""" + self.fget.__name__ snake_case_ : str = getattr(lowercase__ , lowercase__ , lowercase__ ) if cached is None: snake_case_ : Any = self.fget(lowercase__ ) setattr(lowercase__ , lowercase__ , lowercase__ ) return cached def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" snake_case_ : List[Any] = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f'invalid truth value {val!r}' ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" if is_torch_fx_proxy(SCREAMING_SNAKE_CASE__ ): return True if is_torch_available(): import torch if isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(SCREAMING_SNAKE_CASE__ , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(SCREAMING_SNAKE_CASE__ , (jnp.ndarray, Tracer) ): return True return isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] ): """simple docstring""" return isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" return _is_numpy(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" import torch return isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] ): """simple docstring""" return False if not is_torch_available() else _is_torch(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" import torch return isinstance(SCREAMING_SNAKE_CASE__ , torch.device ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" return False if not is_torch_available() else _is_torch_device(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] ): """simple docstring""" import torch if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : List[Any] = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: return False return isinstance(SCREAMING_SNAKE_CASE__ , torch.dtype ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" return False if not is_torch_available() else _is_torch_dtype(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" import tensorflow as tf return isinstance(SCREAMING_SNAKE_CASE__ , tf.Tensor ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" return False if not is_tf_available() else _is_tensorflow(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(SCREAMING_SNAKE_CASE__ , """is_symbolic_tensor""" ): return tf.is_symbolic_tensor(SCREAMING_SNAKE_CASE__ ) return type(SCREAMING_SNAKE_CASE__ ) == tf.Tensor def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" return False if not is_tf_available() else _is_tf_symbolic_tensor(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" import jax.numpy as jnp # noqa: F811 return isinstance(SCREAMING_SNAKE_CASE__ , jnp.ndarray ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" return False if not is_flax_available() else _is_jax(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple ): """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE__ , (dict, UserDict) ): return {k: to_py_obj(SCREAMING_SNAKE_CASE__ ) for k, v in obj.items()} elif isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ): return [to_py_obj(SCREAMING_SNAKE_CASE__ ) for o in obj] elif is_tf_tensor(SCREAMING_SNAKE_CASE__ ): return obj.numpy().tolist() elif is_torch_tensor(SCREAMING_SNAKE_CASE__ ): return obj.detach().cpu().tolist() elif is_jax_tensor(SCREAMING_SNAKE_CASE__ ): return np.asarray(SCREAMING_SNAKE_CASE__ ).tolist() elif isinstance(SCREAMING_SNAKE_CASE__ , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple ): """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE__ , (dict, UserDict) ): return {k: to_numpy(SCREAMING_SNAKE_CASE__ ) for k, v in obj.items()} elif isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ): return np.array(SCREAMING_SNAKE_CASE__ ) elif is_tf_tensor(SCREAMING_SNAKE_CASE__ ): return obj.numpy() elif is_torch_tensor(SCREAMING_SNAKE_CASE__ ): return obj.detach().cpu().numpy() elif is_jax_tensor(SCREAMING_SNAKE_CASE__ ): return np.asarray(SCREAMING_SNAKE_CASE__ ) else: return obj class __lowercase ( _UpperCAmelCase): """simple docstring""" def __UpperCamelCase (self ): snake_case_ : str = fields(self ) # Safety and consistency checks if not len(lowercase__ ): raise ValueError(f'{self.__class__.__name__} has no fields.' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f'{self.__class__.__name__} should not have more than one required field.' ) snake_case_ : Union[str, Any] = getattr(self , class_fields[0].name ) snake_case_ : Any = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(lowercase__ ): if isinstance(lowercase__ , lowercase__ ): snake_case_ : Optional[Any] = first_field.items() snake_case_ : int = True else: try: snake_case_ : Any = iter(lowercase__ ) snake_case_ : str = True except TypeError: snake_case_ : List[Any] = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(lowercase__ ): if ( not isinstance(lowercase__ , (list, tuple) ) or not len(lowercase__ ) == 2 or not isinstance(element[0] , lowercase__ ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute snake_case_ : Dict = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f'Cannot set key/value for {element}. It needs to be a tuple (key, value).' ) break setattr(self , element[0] , element[1] ) if element[1] is not None: snake_case_ : Union[str, Any] = element[1] elif first_field is not None: snake_case_ : Tuple = first_field else: for field in class_fields: snake_case_ : Optional[int] = getattr(self , field.name ) if v is not None: snake_case_ : Optional[int] = v def __delitem__(self , *lowercase__ , **lowercase__ ): raise Exception(f'You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.' ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): raise Exception(f'You cannot use ``setdefault`` on a {self.__class__.__name__} instance.' ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): raise Exception(f'You cannot use ``pop`` on a {self.__class__.__name__} instance.' ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): raise Exception(f'You cannot use ``update`` on a {self.__class__.__name__} instance.' ) def __getitem__(self , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): snake_case_ : Union[str, Any] = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__(self , lowercase__ , lowercase__ ): if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(lowercase__ , lowercase__ ) super().__setattr__(lowercase__ , lowercase__ ) def __setitem__(self , lowercase__ , lowercase__ ): # Will raise a KeyException if needed super().__setitem__(lowercase__ , lowercase__ ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(lowercase__ , lowercase__ ) def __UpperCamelCase (self ): return tuple(self[k] for k in self.keys() ) class __lowercase ( _UpperCAmelCase , _UpperCAmelCase): """simple docstring""" @classmethod def __UpperCamelCase (cls , lowercase__ ): raise ValueError( f'{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}' ) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : str = """longest""" _A : Optional[Any] = """max_length""" _A : Optional[int] = """do_not_pad""" class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Any = """pt""" _A : Tuple = """tf""" _A : Any = """np""" _A : Dict = """jax""" class __lowercase : """simple docstring""" def __init__(self , lowercase__ ): snake_case_ : Any = context_managers snake_case_ : int = ExitStack() def __enter__(self ): for context_manager in self.context_managers: self.stack.enter_context(lowercase__ ) def __exit__(self , *lowercase__ , **lowercase__ ): self.stack.__exit__(*lowercase__ , **lowercase__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" snake_case_ : Dict = infer_framework(SCREAMING_SNAKE_CASE__ ) if framework == "tf": snake_case_ : Dict = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": snake_case_ : Union[str, Any] = inspect.signature(model_class.forward ) # PyTorch models else: snake_case_ : List[str] = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" snake_case_ : Optional[int] = model_class.__name__ snake_case_ : Tuple = infer_framework(SCREAMING_SNAKE_CASE__ ) if framework == "tf": snake_case_ : int = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": snake_case_ : List[str] = inspect.signature(model_class.forward ) # PyTorch models else: snake_case_ : List[Any] = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : MutableMapping , SCREAMING_SNAKE_CASE__ : str = "" , SCREAMING_SNAKE_CASE__ : str = "." ): """simple docstring""" def _flatten_dict(SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int]="" , SCREAMING_SNAKE_CASE__ : List[Any]="." ): for k, v in d.items(): snake_case_ : Tuple = str(SCREAMING_SNAKE_CASE__ ) + delimiter + str(SCREAMING_SNAKE_CASE__ ) if parent_key else k if v and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): yield from flatten_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , delimiter=SCREAMING_SNAKE_CASE__ ).items() else: yield key, v return dict(_flatten_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) @contextmanager def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : bool = False ): """simple docstring""" if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ): """simple docstring""" if is_numpy_array(SCREAMING_SNAKE_CASE__ ): return np.transpose(SCREAMING_SNAKE_CASE__ , axes=SCREAMING_SNAKE_CASE__ ) elif is_torch_tensor(SCREAMING_SNAKE_CASE__ ): return array.T if axes is None else array.permute(*SCREAMING_SNAKE_CASE__ ) elif is_tf_tensor(SCREAMING_SNAKE_CASE__ ): import tensorflow as tf return tf.transpose(SCREAMING_SNAKE_CASE__ , perm=SCREAMING_SNAKE_CASE__ ) elif is_jax_tensor(SCREAMING_SNAKE_CASE__ ): return jnp.transpose(SCREAMING_SNAKE_CASE__ , axes=SCREAMING_SNAKE_CASE__ ) else: raise ValueError(f'Type not supported for transpose: {type(SCREAMING_SNAKE_CASE__ )}.' ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" if is_numpy_array(SCREAMING_SNAKE_CASE__ ): return np.reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif is_torch_tensor(SCREAMING_SNAKE_CASE__ ): return array.reshape(*SCREAMING_SNAKE_CASE__ ) elif is_tf_tensor(SCREAMING_SNAKE_CASE__ ): import tensorflow as tf return tf.reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif is_jax_tensor(SCREAMING_SNAKE_CASE__ ): return jnp.reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: raise ValueError(f'Type not supported for reshape: {type(SCREAMING_SNAKE_CASE__ )}.' ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str]=None ): """simple docstring""" if is_numpy_array(SCREAMING_SNAKE_CASE__ ): return np.squeeze(SCREAMING_SNAKE_CASE__ , axis=SCREAMING_SNAKE_CASE__ ) elif is_torch_tensor(SCREAMING_SNAKE_CASE__ ): return array.squeeze() if axis is None else array.squeeze(dim=SCREAMING_SNAKE_CASE__ ) elif is_tf_tensor(SCREAMING_SNAKE_CASE__ ): import tensorflow as tf return tf.squeeze(SCREAMING_SNAKE_CASE__ , axis=SCREAMING_SNAKE_CASE__ ) elif is_jax_tensor(SCREAMING_SNAKE_CASE__ ): return jnp.squeeze(SCREAMING_SNAKE_CASE__ , axis=SCREAMING_SNAKE_CASE__ ) else: raise ValueError(f'Type not supported for squeeze: {type(SCREAMING_SNAKE_CASE__ )}.' ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" if is_numpy_array(SCREAMING_SNAKE_CASE__ ): return np.expand_dims(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif is_torch_tensor(SCREAMING_SNAKE_CASE__ ): return array.unsqueeze(dim=SCREAMING_SNAKE_CASE__ ) elif is_tf_tensor(SCREAMING_SNAKE_CASE__ ): import tensorflow as tf return tf.expand_dims(SCREAMING_SNAKE_CASE__ , axis=SCREAMING_SNAKE_CASE__ ) elif is_jax_tensor(SCREAMING_SNAKE_CASE__ ): return jnp.expand_dims(SCREAMING_SNAKE_CASE__ , axis=SCREAMING_SNAKE_CASE__ ) else: raise ValueError(f'Type not supported for expand_dims: {type(SCREAMING_SNAKE_CASE__ )}.' ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" if is_numpy_array(SCREAMING_SNAKE_CASE__ ): return np.size(SCREAMING_SNAKE_CASE__ ) elif is_torch_tensor(SCREAMING_SNAKE_CASE__ ): return array.numel() elif is_tf_tensor(SCREAMING_SNAKE_CASE__ ): import tensorflow as tf return tf.size(SCREAMING_SNAKE_CASE__ ) elif is_jax_tensor(SCREAMING_SNAKE_CASE__ ): return array.size else: raise ValueError(f'Type not supported for expand_dims: {type(SCREAMING_SNAKE_CASE__ )}.' ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" for key, value in auto_map.items(): if isinstance(SCREAMING_SNAKE_CASE__ , (tuple, list) ): snake_case_ : Dict = [f'{repo_id}--{v}' if (v is not None and """--""" not in v) else v for v in value] elif value is not None and "--" not in value: snake_case_ : Union[str, Any] = f'{repo_id}--{value}' return auto_map def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple ): """simple docstring""" for base_class in inspect.getmro(SCREAMING_SNAKE_CASE__ ): snake_case_ : Dict = base_class.__module__ snake_case_ : int = base_class.__name__ if module.startswith("""tensorflow""" ) or module.startswith("""keras""" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("""torch""" ) or name == "PreTrainedModel": return "pt" elif module.startswith("""flax""" ) or module.startswith("""jax""" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f'Could not infer framework from class {model_class}.' )
48
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('''fixtures/test_sentencepiece.model''') a_ = {'''target_lang''': '''fi''', '''source_lang''': '''en'''} a_ = '''>>zh<<''' a_ = '''Helsinki-NLP/''' if is_torch_available(): a_ = '''pt''' elif is_tf_available(): a_ = '''tf''' else: a_ = '''jax''' @require_sentencepiece class __lowercase ( _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : str = MarianTokenizer _A : List[str] = False _A : List[str] = True def __UpperCamelCase (self ): super().setUp() snake_case_ : Optional[int] = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] snake_case_ : Any = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) snake_case_ : Any = Path(self.tmpdirname ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) snake_case_ : Optional[Any] = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase (self , **lowercase__ ): return MarianTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def __UpperCamelCase (self , lowercase__ ): return ( "This is a test", "This is a test", ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = """</s>""" snake_case_ : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__ ) , lowercase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__ ) , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(lowercase__ ) , 9 ) def __UpperCamelCase (self ): self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def __UpperCamelCase (self ): snake_case_ : Any = MarianTokenizer.from_pretrained(f'{ORG_NAME}opus-mt-en-de' ) snake_case_ : Tuple = en_de_tokenizer(["""I am a small frog"""] , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) snake_case_ : Dict = [38, 1_21, 14, 6_97, 3_88_48, 0] self.assertListEqual(lowercase__ , batch.input_ids[0] ) snake_case_ : Tuple = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(lowercase__ ) snake_case_ : str = [x.name for x in Path(lowercase__ ).glob("""*""" )] self.assertIn("""source.spm""" , lowercase__ ) MarianTokenizer.from_pretrained(lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = self.get_tokenizer() snake_case_ : List[str] = tok( ["""I am a small frog""" * 10_00, """I am a small frog"""] , padding=lowercase__ , truncation=lowercase__ , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(batch.input_ids.shape , (2, 5_12) ) def __UpperCamelCase (self ): snake_case_ : Tuple = self.get_tokenizer() snake_case_ : Tuple = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=lowercase__ , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def __UpperCamelCase (self ): # fmt: off snake_case_ : str = {"""input_ids""": [[4_34_95, 4_62, 20, 4_21_64, 13_69, 52, 4_64, 1_32, 17_03, 4_92, 13, 74_91, 3_89_99, 6, 8, 4_64, 1_32, 17_03, 4_92, 13, 46_69, 3_78_67, 13, 75_25, 27, 15_93, 9_88, 13, 3_39_72, 70_29, 6, 20, 82_51, 3_83, 2, 2_70, 58_66, 37_88, 2, 23_53, 82_51, 1_23_38, 2, 1_39_58, 3_87, 2, 36_29, 69_53, 1_88, 29_00, 2, 1_39_58, 80_11, 1_15_01, 23, 84_60, 40_73, 3_40_09, 20, 4_35, 1_14_39, 27, 8, 84_60, 40_73, 60_04, 20, 99_88, 3_75, 27, 33, 2_66, 19_45, 10_76, 13_50, 3_78_67, 32_88, 5, 5_77, 10_76, 43_74, 8, 50_82, 5, 2_64_53, 2_57, 5_56, 4_03, 2, 2_42, 1_32, 3_83, 3_16, 4_92, 8, 1_07_67, 6, 3_16, 3_04, 42_39, 3, 0], [1_48, 1_57_22, 19, 18_39, 12, 13_50, 13, 2_23_27, 50_82, 54_18, 4_75_67, 3_59_38, 59, 3_18, 1_95_52, 1_08, 21_83, 54, 1_49_76, 48_35, 32, 5_47, 11_14, 8, 3_15, 24_17, 5, 92, 1_90_88, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00], [36, 63_95, 1_25_70, 3_91_47, 1_15_97, 6, 2_66, 4, 4_54_05, 72_96, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase__ , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def __UpperCamelCase (self ): snake_case_ : Any = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) snake_case_ : Dict = """Tämä on testi""" snake_case_ : List[Any] = """This is a test""" snake_case_ : Optional[int] = [76, 7, 20_47, 2] snake_case_ : List[str] = [69, 12, 11, 9_40, 2] snake_case_ : Any = tokenizer(lowercase__ ).input_ids self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : str = tokenizer(text_target=lowercase__ ).input_ids self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : int = tokenizer.decode(lowercase__ , skip_special_tokens=lowercase__ ) self.assertEqual(lowercase__ , lowercase__ )
48
1
"""simple docstring""" from __future__ import annotations from collections.abc import Sequence from typing import Literal def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : int = list(SCREAMING_SNAKE_CASE__ ) snake_case_ : Union[str, Any] = list(SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = 0 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): if lista[i] != lista[i]: count += 1 snake_case_ : Tuple = """_""" if count > 1: return False else: return "".join(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : list[str] ): """simple docstring""" snake_case_ : Any = [] while True: snake_case_ : Tuple = ["""$"""] * len(SCREAMING_SNAKE_CASE__ ) snake_case_ : int = [] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): for j in range(i + 1 , len(SCREAMING_SNAKE_CASE__ ) ): snake_case_ : Tuple = compare_string(binary[i] , binary[j] ) if k is False: snake_case_ : List[str] = """*""" snake_case_ : Optional[Any] = """*""" temp.append("""X""" ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(SCREAMING_SNAKE_CASE__ ) == 0: return pi snake_case_ : List[str] = list(set(SCREAMING_SNAKE_CASE__ ) ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Sequence[float] ): """simple docstring""" snake_case_ : Tuple = [] for minterm in minterms: snake_case_ : Optional[int] = """""" for _ in range(SCREAMING_SNAKE_CASE__ ): snake_case_ : List[str] = str(minterm % 2 ) + string minterm //= 2 temp.append(SCREAMING_SNAKE_CASE__ ) return temp def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : Optional[Any] = list(SCREAMING_SNAKE_CASE__ ) snake_case_ : Union[str, Any] = list(SCREAMING_SNAKE_CASE__ ) snake_case_ : Dict = 0 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : list[list[int]] , SCREAMING_SNAKE_CASE__ : list[str] ): """simple docstring""" snake_case_ : Tuple = [] snake_case_ : int = [0] * len(SCREAMING_SNAKE_CASE__ ) for i in range(len(chart[0] ) ): snake_case_ : List[Any] = 0 snake_case_ : List[str] = -1 for j in range(len(SCREAMING_SNAKE_CASE__ ) ): if chart[j][i] == 1: count += 1 snake_case_ : List[str] = j if count == 1: snake_case_ : List[str] = 1 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(SCREAMING_SNAKE_CASE__ ) ): snake_case_ : Dict = 0 temp.append(prime_implicants[i] ) while True: snake_case_ : str = 0 snake_case_ : Optional[int] = -1 snake_case_ : Dict = 0 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): snake_case_ : Union[str, Any] = chart[i].count(1 ) if count_n > max_n: snake_case_ : Dict = count_n snake_case_ : str = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(SCREAMING_SNAKE_CASE__ ) ): snake_case_ : Any = 0 def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : list[str] , SCREAMING_SNAKE_CASE__ : list[str] ): """simple docstring""" snake_case_ : List[str] = [[0 for x in range(len(SCREAMING_SNAKE_CASE__ ) )] for x in range(len(SCREAMING_SNAKE_CASE__ ) )] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): snake_case_ : List[str] = prime_implicants[i].count("""_""" ) for j in range(len(SCREAMING_SNAKE_CASE__ ) ): if is_for_table(prime_implicants[i] , binary[j] , SCREAMING_SNAKE_CASE__ ): snake_case_ : str = 1 return chart def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Dict = int(input("""Enter the no. of variables\n""" ) ) snake_case_ : List[str] = [ float(SCREAMING_SNAKE_CASE__ ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] snake_case_ : List[Any] = decimal_to_binary(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : int = check(SCREAMING_SNAKE_CASE__ ) print("""Prime Implicants are:""" ) print(SCREAMING_SNAKE_CASE__ ) snake_case_ : str = prime_implicant_chart(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[Any] = selection(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print("""Essential Prime Implicants are:""" ) print(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
48
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCAmelCase) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True}) _A : ClassVar[Features] = Features({"""audio""": Audio()}) _A : ClassVar[Features] = Features({"""transcription""": Value("""string""")}) _A : str = "audio" _A : str = "transcription" def __UpperCamelCase (self , lowercase__ ): if self.audio_column not in features: raise ValueError(f'Column {self.audio_column} is not present in features.' ) if not isinstance(features[self.audio_column] , lowercase__ ): raise ValueError(f'Column {self.audio_column} is not an Audio type.' ) snake_case_ : Optional[int] = copy.deepcopy(self ) snake_case_ : Tuple = self.input_schema.copy() snake_case_ : List[str] = features[self.audio_column] snake_case_ : Any = input_schema return task_template @property def __UpperCamelCase (self ): return {self.audio_column: "audio", self.transcription_column: "transcription"}
48
1
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Dict = ["""pixel_values"""] def __init__(self , lowercase__ = True , lowercase__ = 32 , lowercase__=PILImageResampling.BILINEAR , lowercase__ = True , **lowercase__ , ): snake_case_ : Union[str, Any] = do_resize snake_case_ : Dict = do_rescale snake_case_ : int = size_divisor snake_case_ : int = resample super().__init__(**lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ ): snake_case_ , snake_case_ : Dict = get_image_size(lowercase__ ) # Rounds the height and width down to the closest multiple of size_divisor snake_case_ : Optional[int] = height // size_divisor * size_divisor snake_case_ : int = width // size_divisor * size_divisor snake_case_ : str = resize(lowercase__ , (new_h, new_w) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) return image def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ ): return rescale(image=lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__=None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ): snake_case_ : Optional[int] = do_resize if do_resize is not None else self.do_resize snake_case_ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : int = size_divisor if size_divisor is not None else self.size_divisor snake_case_ : List[str] = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("""size_divisor is required for resizing""" ) snake_case_ : int = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError("""Invalid image(s)""" ) # All transformations expect numpy arrays. snake_case_ : List[str] = [to_numpy_array(lowercase__ ) for img in images] if do_resize: snake_case_ : Any = [self.resize(lowercase__ , size_divisor=lowercase__ , resample=lowercase__ ) for image in images] if do_rescale: snake_case_ : Dict = [self.rescale(lowercase__ , scale=1 / 2_55 ) for image in images] snake_case_ : int = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] snake_case_ : int = {"""pixel_values""": images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
48
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : int = ["""pixel_values"""] def __init__(self , lowercase__ = True , lowercase__ = None , lowercase__ = 0.9 , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = True , lowercase__ = None , lowercase__ = 1 / 2_55 , lowercase__ = True , lowercase__ = True , lowercase__ = None , lowercase__ = None , **lowercase__ , ): super().__init__(**lowercase__ ) snake_case_ : Tuple = size if size is not None else {"""shortest_edge""": 2_24} snake_case_ : Union[str, Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) snake_case_ : str = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} snake_case_ : Dict = get_size_dict(lowercase__ , param_name="""crop_size""" ) snake_case_ : Union[str, Any] = do_resize snake_case_ : List[str] = size snake_case_ : str = crop_pct snake_case_ : str = resample snake_case_ : Optional[Any] = do_center_crop snake_case_ : Dict = crop_size snake_case_ : int = do_rescale snake_case_ : Optional[int] = rescale_factor snake_case_ : str = do_normalize snake_case_ : str = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN snake_case_ : List[str] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = None , **lowercase__ , ): snake_case_ : Tuple = get_size_dict(lowercase__ , default_to_square=lowercase__ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f'size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) if crop_pct is not None: if "shortest_edge" in size: snake_case_ : Optional[int] = int(size["""shortest_edge"""] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: snake_case_ : Dict = int(size["""height"""] / crop_pct ) else: snake_case_ : List[str] = (int(size["""height"""] / crop_pct ), int(size["""width"""] / crop_pct )) else: raise ValueError("""Invalid size for resize: {}""".format(lowercase__ ) ) snake_case_ : List[Any] = get_resize_output_image_size(lowercase__ , size=lowercase__ , default_to_square=lowercase__ ) else: if "shortest_edge" in size: snake_case_ : Optional[int] = get_resize_output_image_size(lowercase__ , size=size["""shortest_edge"""] , default_to_square=lowercase__ ) elif "height" in size and "width" in size: snake_case_ : int = (size["""height"""], size["""width"""]) else: raise ValueError("""Invalid size for resize: {}""".format(lowercase__ ) ) return resize(lowercase__ , size=lowercase__ , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): snake_case_ : int = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(f'size must contain \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(lowercase__ , size=(size["""height"""], size["""width"""]) , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ): return normalize(lowercase__ , mean=lowercase__ , std=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ): snake_case_ : str = do_resize if do_resize is not None else self.do_resize snake_case_ : Any = crop_pct if crop_pct is not None else self.crop_pct snake_case_ : List[Any] = resample if resample is not None else self.resample snake_case_ : str = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : str = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : str = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : List[Any] = image_mean if image_mean is not None else self.image_mean snake_case_ : int = image_std if image_std is not None else self.image_std snake_case_ : List[Any] = size if size is not None else self.size snake_case_ : Optional[Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) snake_case_ : List[Any] = crop_size if crop_size is not None else self.crop_size snake_case_ : int = get_size_dict(lowercase__ , param_name="""crop_size""" ) snake_case_ : List[str] = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_pct is None: raise ValueError("""Crop_pct must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case_ : int = [to_numpy_array(lowercase__ ) for image in images] if do_resize: snake_case_ : str = [self.resize(image=lowercase__ , size=lowercase__ , crop_pct=lowercase__ , resample=lowercase__ ) for image in images] if do_center_crop: snake_case_ : Optional[int] = [self.center_crop(image=lowercase__ , size=lowercase__ ) for image in images] if do_rescale: snake_case_ : List[Any] = [self.rescale(image=lowercase__ , scale=lowercase__ ) for image in images] if do_normalize: snake_case_ : Optional[Any] = [self.normalize(image=lowercase__ , mean=lowercase__ , std=lowercase__ ) for image in images] snake_case_ : List[Any] = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] snake_case_ : Dict = {"""pixel_values""": images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
48
1
"""simple docstring""" import sys from collections import defaultdict class __lowercase : """simple docstring""" def __init__(self ): snake_case_ : Optional[Any] = [] def __UpperCamelCase (self , lowercase__ ): return self.node_position[vertex] def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : Tuple = pos def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: snake_case_ : Tuple = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: snake_case_ : Union[str, Any] = 2 * start + 1 else: snake_case_ : List[str] = 2 * start + 2 if heap[smallest_child] < heap[start]: snake_case_ , snake_case_ : Dict = heap[smallest_child], positions[smallest_child] snake_case_ , snake_case_ : Optional[int] = ( heap[start], positions[start], ) snake_case_ , snake_case_ : Optional[int] = temp, tempa snake_case_ : str = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , lowercase__ ) self.top_to_bottom(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : Any = position[index] while index != 0: snake_case_ : str = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: snake_case_ : List[str] = heap[parent] snake_case_ : Dict = position[parent] self.set_position(position[parent] , lowercase__ ) else: snake_case_ : Dict = val snake_case_ : int = temp self.set_position(lowercase__ , lowercase__ ) break snake_case_ : Any = parent else: snake_case_ : int = val snake_case_ : List[Any] = temp self.set_position(lowercase__ , 0 ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : Optional[int] = len(lowercase__ ) // 2 - 1 for i in range(lowercase__ , -1 , -1 ): self.top_to_bottom(lowercase__ , lowercase__ , len(lowercase__ ) , lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : List[str] = positions[0] snake_case_ : int = sys.maxsize self.top_to_bottom(lowercase__ , 0 , len(lowercase__ ) , lowercase__ ) return temp def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" snake_case_ : List[str] = Heap() snake_case_ : List[Any] = [0] * len(SCREAMING_SNAKE_CASE__ ) snake_case_ : List[str] = [-1] * len(SCREAMING_SNAKE_CASE__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph snake_case_ : str = [] # Heap of Distance of vertices from their neighboring vertex snake_case_ : int = [] for vertex in range(len(SCREAMING_SNAKE_CASE__ ) ): distance_tv.append(sys.maxsize ) positions.append(SCREAMING_SNAKE_CASE__ ) heap.node_position.append(SCREAMING_SNAKE_CASE__ ) snake_case_ : str = [] snake_case_ : str = 1 snake_case_ : List[Any] = sys.maxsize for neighbor, distance in adjacency_list[0]: snake_case_ : Dict = 0 snake_case_ : Dict = distance heap.heapify(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): snake_case_ : Any = heap.delete_minimum(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) snake_case_ : Tuple = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(SCREAMING_SNAKE_CASE__ )] ): snake_case_ : List[Any] = distance heap.bottom_to_top( SCREAMING_SNAKE_CASE__ , heap.get_position(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : Any = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > a_ = int(input('''Enter number of edges: ''').strip()) a_ = defaultdict(list) for _ in range(edges_number): a_ = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
48
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: a_ = None a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} a_ = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } a_ = { '''facebook/mbart-large-en-ro''': 1024, '''facebook/mbart-large-cc25''': 1024, } # fmt: off a_ = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Dict = VOCAB_FILES_NAMES _A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _A : str = ["""input_ids""", """attention_mask"""] _A : Tuple = MBartTokenizer _A : List[int] = [] _A : List[int] = [] def __init__(self , lowercase__=None , lowercase__=None , lowercase__="<s>" , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<mask>" , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ , ): # Mask token behave like a normal word, i.e. include the space before it snake_case_ : int = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token super().__init__( vocab_file=lowercase__ , tokenizer_file=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , unk_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , src_lang=lowercase__ , tgt_lang=lowercase__ , additional_special_tokens=lowercase__ , **lowercase__ , ) snake_case_ : Dict = vocab_file snake_case_ : Optional[int] = False if not self.vocab_file else True snake_case_ : Optional[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) snake_case_ : Any = { lang_code: self.convert_tokens_to_ids(lowercase__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } snake_case_ : Tuple = src_lang if src_lang is not None else """en_XX""" snake_case_ : Tuple = self.convert_tokens_to_ids(self._src_lang ) snake_case_ : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __UpperCamelCase (self ): return self._src_lang @src_lang.setter def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): snake_case_ : List[Any] = [self.sep_token_id] snake_case_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , **lowercase__ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) snake_case_ : int = src_lang snake_case_ : List[str] = self(lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , **lowercase__ ) snake_case_ : List[str] = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Union[str, Any] = tgt_lang_id return inputs def __UpperCamelCase (self , lowercase__ , lowercase__ = "en_XX" , lowercase__ = None , lowercase__ = "ro_RO" , **lowercase__ , ): snake_case_ : List[str] = src_lang snake_case_ : int = tgt_lang return super().prepare_seqaseq_batch(lowercase__ , lowercase__ , **lowercase__ ) def __UpperCamelCase (self ): return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCamelCase (self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Tuple = [] snake_case_ : List[Any] = [self.eos_token_id, self.cur_lang_code] snake_case_ : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Optional[int] = [] snake_case_ : Optional[Any] = [self.eos_token_id, self.cur_lang_code] snake_case_ : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ : int = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowercase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory.' ) return snake_case_ : List[str] = os.path.join( lowercase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ): copyfile(self.vocab_file , lowercase__ ) return (out_vocab_file,)
48
1
"""simple docstring""" import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" snake_case_ : Dict = AlbertConfig.from_json_file(SCREAMING_SNAKE_CASE__ ) print(f'Building PyTorch model from configuration: {config}' ) snake_case_ : List[str] = AlbertForPreTraining(SCREAMING_SNAKE_CASE__ ) # Load weights from tf checkpoint load_tf_weights_in_albert(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--albert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained ALBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) a_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
48
"""simple docstring""" import argparse import hashlib # hashlib is only used inside the Test class import struct class __lowercase : """simple docstring""" def __init__(self , lowercase__ ): snake_case_ : Union[str, Any] = data snake_case_ : List[str] = [0X6_7_4_5_2_3_0_1, 0Xe_f_c_d_a_b_8_9, 0X9_8_b_a_d_c_f_e, 0X1_0_3_2_5_4_7_6, 0Xc_3_d_2_e_1_f_0] @staticmethod def __UpperCamelCase (lowercase__ , lowercase__ ): return ((n << b) | (n >> (32 - b))) & 0Xf_f_f_f_f_f_f_f def __UpperCamelCase (self ): snake_case_ : Any = B"""\x80""" + B"""\x00""" * (63 - (len(self.data ) + 8) % 64) snake_case_ : Tuple = self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def __UpperCamelCase (self ): return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = list(struct.unpack(""">16L""" , lowercase__ ) ) + [0] * 64 for i in range(16 , 80 ): snake_case_ : Dict = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def __UpperCamelCase (self ): snake_case_ : List[Any] = self.padding() snake_case_ : Any = self.split_blocks() for block in self.blocks: snake_case_ : Any = self.expand_block(lowercase__ ) snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = self.h for i in range(0 , 80 ): if 0 <= i < 20: snake_case_ : Optional[Any] = (b & c) | ((~b) & d) snake_case_ : List[str] = 0X5_a_8_2_7_9_9_9 elif 20 <= i < 40: snake_case_ : Union[str, Any] = b ^ c ^ d snake_case_ : Tuple = 0X6_e_d_9_e_b_a_1 elif 40 <= i < 60: snake_case_ : str = (b & c) | (b & d) | (c & d) snake_case_ : List[str] = 0X8_f_1_b_b_c_d_c elif 60 <= i < 80: snake_case_ : Tuple = b ^ c ^ d snake_case_ : str = 0Xc_a_6_2_c_1_d_6 snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Optional[Any] = ( self.rotate(lowercase__ , 5 ) + f + e + k + expanded_block[i] & 0Xf_f_f_f_f_f_f_f, a, self.rotate(lowercase__ , 30 ), c, d, ) snake_case_ : Any = ( self.h[0] + a & 0Xf_f_f_f_f_f_f_f, self.h[1] + b & 0Xf_f_f_f_f_f_f_f, self.h[2] + c & 0Xf_f_f_f_f_f_f_f, self.h[3] + d & 0Xf_f_f_f_f_f_f_f, self.h[4] + e & 0Xf_f_f_f_f_f_f_f, ) return ("{:08x}" * 5).format(*self.h ) def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Union[str, Any] = b"""Test String""" assert SHAaHash(SCREAMING_SNAKE_CASE__ ).final_hash() == hashlib.shaa(SCREAMING_SNAKE_CASE__ ).hexdigest() # noqa: S324 def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : int = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument("""--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) snake_case_ : Optional[int] = parser.parse_args() snake_case_ : Optional[int] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: snake_case_ : List[str] = f.read() else: snake_case_ : Dict = bytes(SCREAMING_SNAKE_CASE__ , """utf-8""" ) print(SHAaHash(SCREAMING_SNAKE_CASE__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
48
1
"""simple docstring""" import argparse import json import subprocess def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : List[str] = [] snake_case_ : Dict = ( f'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"' """ https://api.github.com/repos/huggingface/transformers/actions/runners""" ) snake_case_ : Union[str, Any] = subprocess.run(SCREAMING_SNAKE_CASE__ , shell=SCREAMING_SNAKE_CASE__ , stdout=subprocess.PIPE ) snake_case_ : Tuple = output.stdout.decode("""utf-8""" ) snake_case_ : Dict = json.loads(SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = status["""runners"""] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(SCREAMING_SNAKE_CASE__ ) # save the result so we can report them on Slack with open("""offline_runners.txt""" , """w""" ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) ) if len(SCREAMING_SNAKE_CASE__ ) > 0: snake_case_ : Optional[int] = """\n""".join([x["""name"""] for x in offline_runners] ) raise ValueError(f'The following runners are offline:\n{failed}' ) if __name__ == "__main__": def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" return values.split(""",""" ) a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--target_runners''', default=None, type=list_str, required=True, help='''Comma-separated list of runners to check status.''', ) parser.add_argument( '''--token''', default=None, type=str, required=True, help='''A token that has actions:read permission.''' ) a_ = parser.parse_args() get_runner_status(args.target_runners, args.token)
48
"""simple docstring""" from manim import * class __lowercase ( _UpperCAmelCase): """simple docstring""" def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = Rectangle(height=0.5 , width=0.5 ) snake_case_ : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) snake_case_ : Optional[Any] = [mem.copy() for i in range(6 )] snake_case_ : str = [mem.copy() for i in range(6 )] snake_case_ : str = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : Any = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[str] = VGroup(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[Any] = Text("""CPU""" , font_size=24 ) snake_case_ : Tuple = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowercase__ ) snake_case_ : List[Any] = [mem.copy() for i in range(4 )] snake_case_ : Tuple = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[str] = Text("""GPU""" , font_size=24 ) snake_case_ : Any = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) gpu.move_to([-1, -1, 0] ) self.add(lowercase__ ) snake_case_ : Optional[Any] = [mem.copy() for i in range(6 )] snake_case_ : List[Any] = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : Dict = Text("""Model""" , font_size=24 ) snake_case_ : int = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) model.move_to([3, -1.0, 0] ) self.add(lowercase__ ) snake_case_ : Dict = [] for i, rect in enumerate(lowercase__ ): rect.set_stroke(lowercase__ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) snake_case_ : List[str] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowercase__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowercase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase__ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase__ , buff=0.0 ) self.add(lowercase__ ) cpu_targs.append(lowercase__ ) snake_case_ : List[str] = [mem.copy() for i in range(6 )] snake_case_ : List[str] = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : str = Text("""Loaded Checkpoint""" , font_size=24 ) snake_case_ : Any = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , aligned_edge=lowercase__ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) snake_case_ : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) snake_case_ : Union[str, Any] = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowercase__ , lowercase__ ) snake_case_ : List[Any] = MarkupText( f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(lowercase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) snake_case_ : List[Any] = MarkupText( f'Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowercase__ ) , Write(lowercase__ ) ) self.play(Write(lowercase__ , run_time=1 ) , Create(lowercase__ , run_time=1 ) ) snake_case_ : Optional[int] = [] snake_case_ : List[str] = [] for i, rect in enumerate(lowercase__ ): snake_case_ : Optional[Any] = fill.copy().set_fill(lowercase__ , opacity=0.7 ) target.move_to(lowercase__ ) first_animations.append(GrowFromCenter(lowercase__ , run_time=1 ) ) snake_case_ : List[Any] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(lowercase__ , run_time=1.5 ) ) self.play(*lowercase__ ) self.play(*lowercase__ ) self.wait()
48
1
"""simple docstring""" import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple ): """simple docstring""" return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Optional[Any] = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue snake_case_ : Optional[Any] = key.replace("""heads.cmd.mim_head.cls.predictions""" , """mmm_image_head""" ) snake_case_ : List[Any] = key.replace("""heads.cmd.mlm_head.cls.predictions""" , """mmm_text_head""" ) snake_case_ : Optional[Any] = key.replace("""heads.cmd.itm_head.cls""" , """itm_head""" ) snake_case_ : Optional[Any] = key.replace("""heads.cmd.itm_head.pooler""" , """itm_head.pooler""" ) snake_case_ : Dict = key.replace("""heads.cmd.clip_head.logit_scale""" , """flava.logit_scale""" ) snake_case_ : List[Any] = key.replace("""heads.fairseq_mlm.cls.predictions""" , """mlm_head""" ) snake_case_ : Union[str, Any] = key.replace("""heads.imagenet.mim_head.cls.predictions""" , """mim_head""" ) snake_case_ : Tuple = key.replace("""mm_text_projection""" , """flava.text_to_mm_projection""" ) snake_case_ : Optional[int] = key.replace("""mm_image_projection""" , """flava.image_to_mm_projection""" ) snake_case_ : str = key.replace("""image_encoder.module""" , """flava.image_model""" ) snake_case_ : Optional[Any] = key.replace("""text_encoder.module""" , """flava.text_model""" ) snake_case_ : List[Any] = key.replace("""mm_encoder.module.encoder.cls_token""" , """flava.multimodal_model.cls_token""" ) snake_case_ : List[str] = key.replace("""mm_encoder.module""" , """flava.multimodal_model""" ) snake_case_ : Any = key.replace("""text_projection""" , """flava.text_projection""" ) snake_case_ : Tuple = key.replace("""image_projection""" , """flava.image_projection""" ) snake_case_ : Tuple = value.float() for key, value in codebook_state_dict.items(): snake_case_ : Union[str, Any] = value return upgrade @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple=None ): """simple docstring""" if config_path is not None: snake_case_ : Dict = FlavaConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) else: snake_case_ : Union[str, Any] = FlavaConfig() snake_case_ : Optional[Any] = FlavaForPreTraining(SCREAMING_SNAKE_CASE__ ).eval() snake_case_ : str = convert_dalle_checkpoint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , save_checkpoint=SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): snake_case_ : str = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" ) else: snake_case_ : str = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" ) snake_case_ : Tuple = upgrade_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) hf_model.load_state_dict(SCREAMING_SNAKE_CASE__ ) snake_case_ : Any = hf_model.state_dict() snake_case_ : Any = count_parameters(SCREAMING_SNAKE_CASE__ ) snake_case_ : int = count_parameters(SCREAMING_SNAKE_CASE__ ) + count_parameters(SCREAMING_SNAKE_CASE__ ) assert torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) hf_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--codebook_path''', default=None, type=str, help='''Path to flava codebook checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') a_ = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
48
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" snake_case_ : Union[str, Any] = 0 if start < end: snake_case_ : Union[str, Any] = randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = a[end] snake_case_ : Dict = a[pivot] snake_case_ : Any = temp snake_case_ , snake_case_ : Dict = _in_place_partition(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , p - 1 ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE__ , p + 1 , SCREAMING_SNAKE_CASE__ ) return count def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" snake_case_ : Tuple = 0 snake_case_ : List[Any] = randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : Dict = a[end] snake_case_ : List[Any] = a[pivot] snake_case_ : Optional[Any] = temp snake_case_ : List[str] = start - 1 for index in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value snake_case_ : Any = new_pivot_index + 1 snake_case_ : Tuple = a[new_pivot_index] snake_case_ : Optional[int] = a[index] snake_case_ : Tuple = temp snake_case_ : Union[str, Any] = a[new_pivot_index + 1] snake_case_ : Union[str, Any] = a[end] snake_case_ : Union[str, Any] = temp return new_pivot_index + 1, count a_ = TemporaryFile() a_ = 100 # 1000 elements are to be sorted a_ , a_ = 0, 1 # mean and standard deviation a_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array a_ = np.load(outfile) a_ = len(M) - 1 a_ = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
48
1
"""simple docstring""" import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : int = RemBertConfig.from_json_file(SCREAMING_SNAKE_CASE__ ) print("""Building PyTorch model from configuration: {}""".format(str(SCREAMING_SNAKE_CASE__ ) ) ) snake_case_ : Any = RemBertModel(SCREAMING_SNAKE_CASE__ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Save pytorch-model print("""Save PyTorch model to {}""".format(SCREAMING_SNAKE_CASE__ ) ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--rembert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained RemBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) a_ = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
48
"""simple docstring""" import random def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : bool = False ): """simple docstring""" snake_case_ : dict = {i: [] for i in range(SCREAMING_SNAKE_CASE__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(SCREAMING_SNAKE_CASE__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(i + 1 , SCREAMING_SNAKE_CASE__ ): if random.random() < probability: graph[i].append(SCREAMING_SNAKE_CASE__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(SCREAMING_SNAKE_CASE__ ) return graph def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" return { i: [j for j in range(SCREAMING_SNAKE_CASE__ ) if i != j] for i in range(SCREAMING_SNAKE_CASE__ ) } if __name__ == "__main__": import doctest doctest.testmod()
48
1
"""simple docstring""" from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig a_ = logging.get_logger(__name__) # General docstring a_ = '''RegNetConfig''' # Base docstring a_ = '''facebook/regnet-y-040''' a_ = [1, 1088, 7, 7] # Image classification docstring a_ = '''facebook/regnet-y-040''' a_ = '''tabby, tabby cat''' a_ = [ '''facebook/regnet-y-040''', # See all regnet models at https://huggingface.co/models?filter=regnet ] class __lowercase ( tf.keras.layers.Layer): """simple docstring""" def __init__(self , lowercase__ , lowercase__ = 3 , lowercase__ = 1 , lowercase__ = 1 , lowercase__ = "relu" , **lowercase__ , ): super().__init__(**lowercase__ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb snake_case_ : Dict = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) snake_case_ : List[Any] = tf.keras.layers.ConvaD( filters=lowercase__ , kernel_size=lowercase__ , strides=lowercase__ , padding="""VALID""" , groups=lowercase__ , use_bias=lowercase__ , name="""convolution""" , ) snake_case_ : str = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="""normalization""" ) snake_case_ : List[str] = ACTaFN[activation] if activation is not None else tf.identity def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = self.convolution(self.padding(lowercase__ ) ) snake_case_ : Tuple = self.normalization(lowercase__ ) snake_case_ : int = self.activation(lowercase__ ) return hidden_state class __lowercase ( tf.keras.layers.Layer): """simple docstring""" def __init__(self , lowercase__ , **lowercase__ ): super().__init__(**lowercase__ ) snake_case_ : Optional[Any] = config.num_channels snake_case_ : Optional[int] = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="""embedder""" , ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Optional[int] = shape_list(lowercase__ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) snake_case_ : Union[str, Any] = tf.transpose(lowercase__ , perm=(0, 2, 3, 1) ) snake_case_ : Optional[Any] = self.embedder(lowercase__ ) return hidden_state class __lowercase ( tf.keras.layers.Layer): """simple docstring""" def __init__(self , lowercase__ , lowercase__ = 2 , **lowercase__ ): super().__init__(**lowercase__ ) snake_case_ : Dict = tf.keras.layers.ConvaD( filters=lowercase__ , kernel_size=1 , strides=lowercase__ , use_bias=lowercase__ , name="""convolution""" ) snake_case_ : Any = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="""normalization""" ) def __UpperCamelCase (self , lowercase__ , lowercase__ = False ): return self.normalization(self.convolution(lowercase__ ) , training=lowercase__ ) class __lowercase ( tf.keras.layers.Layer): """simple docstring""" def __init__(self , lowercase__ , lowercase__ , **lowercase__ ): super().__init__(**lowercase__ ) snake_case_ : int = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowercase__ , name="""pooler""" ) snake_case_ : str = [ tf.keras.layers.ConvaD(filters=lowercase__ , kernel_size=1 , activation="""relu""" , name="""attention.0""" ), tf.keras.layers.ConvaD(filters=lowercase__ , kernel_size=1 , activation="""sigmoid""" , name="""attention.2""" ), ] def __UpperCamelCase (self , lowercase__ ): # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] snake_case_ : int = self.pooler(lowercase__ ) for layer_module in self.attention: snake_case_ : Union[str, Any] = layer_module(lowercase__ ) snake_case_ : List[Any] = hidden_state * pooled return hidden_state class __lowercase ( tf.keras.layers.Layer): """simple docstring""" def __init__(self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = 1 , **lowercase__ ): super().__init__(**lowercase__ ) snake_case_ : str = in_channels != out_channels or stride != 1 snake_case_ : Any = max(1 , out_channels // config.groups_width ) snake_case_ : int = ( TFRegNetShortCut(lowercase__ , stride=lowercase__ , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. snake_case_ : str = [ TFRegNetConvLayer(lowercase__ , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( lowercase__ , stride=lowercase__ , groups=lowercase__ , activation=config.hidden_act , name="""layer.1""" ), TFRegNetConvLayer(lowercase__ , kernel_size=1 , activation=lowercase__ , name="""layer.2""" ), ] snake_case_ : Any = ACTaFN[config.hidden_act] def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = hidden_state for layer_module in self.layers: snake_case_ : Tuple = layer_module(lowercase__ ) snake_case_ : List[Any] = self.shortcut(lowercase__ ) hidden_state += residual snake_case_ : List[Any] = self.activation(lowercase__ ) return hidden_state class __lowercase ( tf.keras.layers.Layer): """simple docstring""" def __init__(self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = 1 , **lowercase__ ): super().__init__(**lowercase__ ) snake_case_ : str = in_channels != out_channels or stride != 1 snake_case_ : List[Any] = max(1 , out_channels // config.groups_width ) snake_case_ : Optional[Any] = ( TFRegNetShortCut(lowercase__ , stride=lowercase__ , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) snake_case_ : Tuple = [ TFRegNetConvLayer(lowercase__ , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( lowercase__ , stride=lowercase__ , groups=lowercase__ , activation=config.hidden_act , name="""layer.1""" ), TFRegNetSELayer(lowercase__ , reduced_channels=int(round(in_channels / 4 ) ) , name="""layer.2""" ), TFRegNetConvLayer(lowercase__ , kernel_size=1 , activation=lowercase__ , name="""layer.3""" ), ] snake_case_ : Optional[Any] = ACTaFN[config.hidden_act] def __UpperCamelCase (self , lowercase__ ): snake_case_ : str = hidden_state for layer_module in self.layers: snake_case_ : Optional[int] = layer_module(lowercase__ ) snake_case_ : List[str] = self.shortcut(lowercase__ ) hidden_state += residual snake_case_ : List[Any] = self.activation(lowercase__ ) return hidden_state class __lowercase ( tf.keras.layers.Layer): """simple docstring""" def __init__(self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = 2 , lowercase__ = 2 , **lowercase__ ): super().__init__(**lowercase__ ) snake_case_ : Any = TFRegNetXLayer if config.layer_type == """x""" else TFRegNetYLayer snake_case_ : List[str] = [ # downsampling is done in the first layer with stride of 2 layer(lowercase__ , lowercase__ , lowercase__ , stride=lowercase__ , name="""layers.0""" ), *[layer(lowercase__ , lowercase__ , lowercase__ , name=f'layers.{i+1}' ) for i in range(depth - 1 )], ] def __UpperCamelCase (self , lowercase__ ): for layer_module in self.layers: snake_case_ : str = layer_module(lowercase__ ) return hidden_state class __lowercase ( tf.keras.layers.Layer): """simple docstring""" def __init__(self , lowercase__ , **lowercase__ ): super().__init__(**lowercase__ ) snake_case_ : List[str] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowercase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="""stages.0""" , ) ) snake_case_ : Optional[int] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowercase__ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowercase__ , lowercase__ , lowercase__ , depth=lowercase__ , name=f'stages.{i+1}' ) ) def __UpperCamelCase (self , lowercase__ , lowercase__ = False , lowercase__ = True ): snake_case_ : List[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: snake_case_ : Dict = hidden_states + (hidden_state,) snake_case_ : List[str] = stage_module(lowercase__ ) if output_hidden_states: snake_case_ : List[Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowercase__ , hidden_states=lowercase__ ) @keras_serializable class __lowercase ( tf.keras.layers.Layer): """simple docstring""" _A : Dict = RegNetConfig def __init__(self , lowercase__ , **lowercase__ ): super().__init__(**lowercase__ ) snake_case_ : Tuple = config snake_case_ : Optional[int] = TFRegNetEmbeddings(lowercase__ , name="""embedder""" ) snake_case_ : Tuple = TFRegNetEncoder(lowercase__ , name="""encoder""" ) snake_case_ : Any = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowercase__ , name="""pooler""" ) @unpack_inputs def __UpperCamelCase (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = False , ): snake_case_ : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case_ : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict snake_case_ : Optional[int] = self.embedder(lowercase__ , training=lowercase__ ) snake_case_ : List[Any] = self.encoder( lowercase__ , output_hidden_states=lowercase__ , return_dict=lowercase__ , training=lowercase__ ) snake_case_ : Optional[Any] = encoder_outputs[0] snake_case_ : Optional[Any] = self.pooler(lowercase__ ) # Change to NCHW output format have uniformity in the modules snake_case_ : Optional[int] = tf.transpose(lowercase__ , perm=(0, 3, 1, 2) ) snake_case_ : List[Any] = tf.transpose(lowercase__ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: snake_case_ : Any = tuple([tf.transpose(lowercase__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase__ , pooler_output=lowercase__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Any = RegNetConfig _A : List[Any] = """regnet""" _A : Tuple = """pixel_values""" @property def __UpperCamelCase (self ): return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) , dtype=tf.floataa )} a_ = r''' Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. ''' a_ = r''' Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" , _UpperCAmelCase , ) class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self , lowercase__ , *lowercase__ , **lowercase__ ): super().__init__(lowercase__ , *lowercase__ , **lowercase__ ) snake_case_ : Tuple = TFRegNetMainLayer(lowercase__ , name="""regnet""" ) @unpack_inputs @add_start_docstrings_to_model_forward(lowercase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase__ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__=False , ): snake_case_ : List[str] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case_ : int = return_dict if return_dict is not None else self.config.use_return_dict snake_case_ : Dict = self.regnet( pixel_values=lowercase__ , output_hidden_states=lowercase__ , return_dict=lowercase__ , training=lowercase__ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , _UpperCAmelCase , ) class __lowercase ( _UpperCAmelCase , _UpperCAmelCase): """simple docstring""" def __init__(self , lowercase__ , *lowercase__ , **lowercase__ ): super().__init__(lowercase__ , *lowercase__ , **lowercase__ ) snake_case_ : Optional[int] = config.num_labels snake_case_ : List[str] = TFRegNetMainLayer(lowercase__ , name="""regnet""" ) # classification head snake_case_ : Dict = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="""classifier.1""" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowercase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __UpperCamelCase (self , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__=False , ): snake_case_ : Optional[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case_ : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict snake_case_ : List[Any] = self.regnet( lowercase__ , output_hidden_states=lowercase__ , return_dict=lowercase__ , training=lowercase__ ) snake_case_ : List[Any] = outputs.pooler_output if return_dict else outputs[1] snake_case_ : Tuple = self.classifier[0](lowercase__ ) snake_case_ : Optional[int] = self.classifier[1](lowercase__ ) snake_case_ : Any = None if labels is None else self.hf_compute_loss(labels=lowercase__ , logits=lowercase__ ) if not return_dict: snake_case_ : Optional[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowercase__ , logits=lowercase__ , hidden_states=outputs.hidden_states )
48
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json''' ), } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """dpr""" def __init__(self , lowercase__=3_05_22 , lowercase__=7_68 , lowercase__=12 , lowercase__=12 , lowercase__=30_72 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_12 , lowercase__=2 , lowercase__=0.02 , lowercase__=1e-12 , lowercase__=0 , lowercase__="absolute" , lowercase__ = 0 , **lowercase__ , ): super().__init__(pad_token_id=lowercase__ , **lowercase__ ) snake_case_ : List[Any] = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : Tuple = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : int = hidden_act snake_case_ : Dict = intermediate_size snake_case_ : int = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : str = max_position_embeddings snake_case_ : List[str] = type_vocab_size snake_case_ : List[str] = initializer_range snake_case_ : Optional[int] = layer_norm_eps snake_case_ : Union[str, Any] = projection_dim snake_case_ : str = position_embedding_type
48
1
"""simple docstring""" a_ = 8.3_1_4_4_6_2 # Unit - J mol-1 K-1 def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ): """simple docstring""" if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ): """simple docstring""" if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
48
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm a_ = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex a_ = 10 a_ = 256 def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" if len(SCREAMING_SNAKE_CASE__ ) < MIN_NUM_TOKENS: return None snake_case_ : Union[str, Any] = MinHash(num_perm=SCREAMING_SNAKE_CASE__ ) for token in set(SCREAMING_SNAKE_CASE__ ): min_hash.update(token.encode() ) return min_hash def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" return {t for t in NON_ALPHA.split(SCREAMING_SNAKE_CASE__ ) if len(t.strip() ) > 0} class __lowercase : """simple docstring""" def __init__(self , *, lowercase__ = 0.85 , ): snake_case_ : Tuple = duplication_jaccard_threshold snake_case_ : Optional[Any] = NUM_PERM snake_case_ : Tuple = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) snake_case_ : List[Any] = defaultdict(lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ : int = self._index.query(lowercase__ ) if code_key in self._index.keys: print(f'Duplicate key {code_key}' ) return self._index.insert(lowercase__ , lowercase__ ) if len(lowercase__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowercase__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(lowercase__ ) def __UpperCamelCase (self ): snake_case_ : str = [] for base, duplicates in self._duplicate_clusters.items(): snake_case_ : Optional[Any] = [base] + list(lowercase__ ) # reformat the cluster to be a list of dict snake_case_ : Any = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(lowercase__ ) return duplicate_clusters def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = self.get_duplicate_clusters() with open(lowercase__ , """w""" ) as f: json.dump(lowercase__ , lowercase__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ , snake_case_ : str = element snake_case_ : Tuple = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] ): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(SCREAMING_SNAKE_CASE__ , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ): if data is not None: yield data def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] , SCREAMING_SNAKE_CASE__ : float ): """simple docstring""" snake_case_ : int = DuplicationIndex(duplication_jaccard_threshold=SCREAMING_SNAKE_CASE__ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(SCREAMING_SNAKE_CASE__ ) ) , max_queue_size=1_0_0 ) ): di.add(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : int = get_tokens(SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = get_tokens(SCREAMING_SNAKE_CASE__ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) a_ = None def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Optional[Any] = [] for elementa in cluster: snake_case_ : Union[str, Any] = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: snake_case_ : Any = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) >= jaccard_threshold: elementa["copies"] += 1 break else: snake_case_ : Union[str, Any] = 1 extremes.append(SCREAMING_SNAKE_CASE__ ) return extremes def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" global _shared_dataset snake_case_ : str = dataset snake_case_ : int = [] snake_case_ : Optional[int] = partial(_find_cluster_extremes_shared , jaccard_threshold=SCREAMING_SNAKE_CASE__ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) , total=len(SCREAMING_SNAKE_CASE__ ) , ): extremes_list.append(SCREAMING_SNAKE_CASE__ ) return extremes_list def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Type[Dataset] , SCREAMING_SNAKE_CASE__ : float = 0.85 ): """simple docstring""" snake_case_ : List[str] = make_duplicate_clusters(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : str = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} snake_case_ : str = {} snake_case_ : Dict = find_extremes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for extremes in extremes_clusters: for element in extremes: snake_case_ : int = element snake_case_ : Optional[int] = duplicate_indices - set(extreme_dict.keys() ) snake_case_ : List[Any] = dataset.filter(lambda SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : idx not in remove_indices , with_indices=SCREAMING_SNAKE_CASE__ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: snake_case_ : List[Any] = element["""base_index"""] in extreme_dict if element["is_extreme"]: snake_case_ : str = extreme_dict[element["""base_index"""]]["""copies"""] print(f'Original dataset size: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Number of duplicate clusters: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Files in duplicate cluster: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Unique files in duplicate cluster: {len(SCREAMING_SNAKE_CASE__ )}' ) print(f'Filtered dataset size: {len(SCREAMING_SNAKE_CASE__ )}' ) return ds_filter, duplicate_clusters
48
1
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer a_ = logging.get_logger(__name__) # pylint: disable=invalid-name a_ = ''' Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu") >>> repo = "openai/shap-e-img2img" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png" >>> image = load_image(image_url).convert("RGB") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], "corgi_3d.gif") ``` ''' @dataclass class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Union[PIL.Image.Image, np.ndarray] class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): super().__init__() self.register_modules( prior=lowercase__ , image_encoder=lowercase__ , image_processor=lowercase__ , scheduler=lowercase__ , renderer=lowercase__ , ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): if latents is None: snake_case_ : Any = randn_tensor(lowercase__ , generator=lowercase__ , device=lowercase__ , dtype=lowercase__ ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) snake_case_ : Tuple = latents.to(lowercase__ ) snake_case_ : Any = latents * scheduler.init_noise_sigma return latents def __UpperCamelCase (self , lowercase__=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) snake_case_ : List[Any] = torch.device(f'cuda:{gpu_id}' ) snake_case_ : List[str] = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase__ , lowercase__ ) @property def __UpperCamelCase (self ): if self.device != torch.device("""meta""" ) or not hasattr(self.image_encoder , """_hf_hook""" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(lowercase__ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): if isinstance(lowercase__ , lowercase__ ) and isinstance(image[0] , torch.Tensor ): snake_case_ : Tuple = torch.cat(lowercase__ , axis=0 ) if image[0].ndim == 4 else torch.stack(lowercase__ , axis=0 ) if not isinstance(lowercase__ , torch.Tensor ): snake_case_ : List[str] = self.image_processor(lowercase__ , return_tensors="""pt""" ).pixel_values[0].unsqueeze(0 ) snake_case_ : List[Any] = image.to(dtype=self.image_encoder.dtype , device=lowercase__ ) snake_case_ : int = self.image_encoder(lowercase__ )["""last_hidden_state"""] snake_case_ : Any = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 snake_case_ : List[str] = image_embeds.repeat_interleave(lowercase__ , dim=0 ) if do_classifier_free_guidance: snake_case_ : Any = torch.zeros_like(lowercase__ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes snake_case_ : List[str] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(lowercase__ ) def __call__(self , lowercase__ , lowercase__ = 1 , lowercase__ = 25 , lowercase__ = None , lowercase__ = None , lowercase__ = 4.0 , lowercase__ = 64 , lowercase__ = "pil" , lowercase__ = True , ): if isinstance(lowercase__ , PIL.Image.Image ): snake_case_ : Dict = 1 elif isinstance(lowercase__ , torch.Tensor ): snake_case_ : str = image.shape[0] elif isinstance(lowercase__ , lowercase__ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): snake_case_ : Union[str, Any] = len(lowercase__ ) else: raise ValueError( f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(lowercase__ )}' ) snake_case_ : Tuple = self._execution_device snake_case_ : int = batch_size * num_images_per_prompt snake_case_ : Optional[int] = guidance_scale > 1.0 snake_case_ : List[str] = self._encode_image(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # prior self.scheduler.set_timesteps(lowercase__ , device=lowercase__ ) snake_case_ : Any = self.scheduler.timesteps snake_case_ : int = self.prior.config.num_embeddings snake_case_ : Optional[int] = self.prior.config.embedding_dim snake_case_ : Tuple = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , lowercase__ , lowercase__ , lowercase__ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim snake_case_ : Optional[int] = latents.reshape(latents.shape[0] , lowercase__ , lowercase__ ) for i, t in enumerate(self.progress_bar(lowercase__ ) ): # expand the latents if we are doing classifier free guidance snake_case_ : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents snake_case_ : Any = self.scheduler.scale_model_input(lowercase__ , lowercase__ ) snake_case_ : List[Any] = self.prior( lowercase__ , timestep=lowercase__ , proj_embedding=lowercase__ , ).predicted_image_embedding # remove the variance snake_case_ , snake_case_ : Any = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: snake_case_ , snake_case_ : List[Any] = noise_pred.chunk(2 ) snake_case_ : Tuple = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) snake_case_ : int = self.scheduler.step( lowercase__ , timestep=lowercase__ , sample=lowercase__ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=lowercase__ ) snake_case_ : List[str] = [] for i, latent in enumerate(lowercase__ ): print() snake_case_ : int = self.renderer.decode( latent[None, :] , lowercase__ , size=lowercase__ , ray_batch_size=40_96 , n_coarse_samples=64 , n_fine_samples=1_28 , ) images.append(lowercase__ ) snake_case_ : Any = torch.stack(lowercase__ ) if output_type not in ["np", "pil"]: raise ValueError(f'Only the output types `pil` and `np` are supported not output_type={output_type}' ) snake_case_ : Optional[Any] = images.cpu().numpy() if output_type == "pil": snake_case_ : List[str] = [self.numpy_to_pil(lowercase__ ) for image in images] # Offload last model to CPU if hasattr(self , """final_offload_hook""" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=lowercase__ )
48
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) a_ = logging.getLogger(__name__) if __name__ == "__main__": a_ = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=30522, type=int) a_ = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, '''rb''') as fp: a_ = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') a_ = Counter() for tk_ids in data: counter.update(tk_ids) a_ = [0] * args.vocab_size for k, v in counter.items(): a_ = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
48
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : str = """timm_backbone""" def __init__(self , lowercase__=None , lowercase__=3 , lowercase__=True , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__(**lowercase__ ) snake_case_ : int = backbone snake_case_ : Union[str, Any] = num_channels snake_case_ : Optional[Any] = features_only snake_case_ : str = use_pretrained_backbone snake_case_ : str = True snake_case_ : List[Any] = out_indices if out_indices is not None else (-1,)
48
"""simple docstring""" import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" snake_case_ : Optional[Any] = tmp_path / """cache""" snake_case_ : Optional[int] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : Tuple = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" snake_case_ : List[Any] = tmp_path / """cache""" snake_case_ : int = {"""text""": """string"""} snake_case_ : Any = features.copy() if features else default_expected_features snake_case_ : List[Any] = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : Dict = TextDatasetReader(SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : Union[str, Any] = tmp_path / """cache""" snake_case_ : Optional[Any] = {"""text""": """string"""} snake_case_ : Optional[int] = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , split=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" if issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : List[str] = text_path elif issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ : str = [text_path] snake_case_ : List[str] = tmp_path / """cache""" snake_case_ : List[str] = {"""text""": """string"""} snake_case_ : Dict = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str]=("train",) ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for split in splits: snake_case_ : Dict = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" snake_case_ : int = tmp_path / """cache""" snake_case_ : List[str] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : Optional[Any] = TextDatasetReader({"""train""": text_path} , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Tuple = tmp_path / """cache""" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" snake_case_ : List[str] = {"""text""": """string"""} snake_case_ : int = features.copy() if features else default_expected_features snake_case_ : Tuple = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : str = TextDatasetReader({"""train""": text_path} , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" if split: snake_case_ : Union[str, Any] = {split: text_path} else: snake_case_ : Union[str, Any] = """train""" snake_case_ : int = {"""train""": text_path, """test""": text_path} snake_case_ : List[Any] = tmp_path / """cache""" snake_case_ : Tuple = {"""text""": """string"""} snake_case_ : int = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
48
1
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : int = 1 snake_case_ : List[str] = 2 while i * i <= n: snake_case_ : int = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Optional[int] = 1 snake_case_ : str = 1 while True: i += 1 t_num += i if count_divisors(SCREAMING_SNAKE_CASE__ ) > 5_0_0: break return t_num if __name__ == "__main__": print(solution())
48
"""simple docstring""" from copy import deepcopy class __lowercase : """simple docstring""" def __init__(self , lowercase__ = None , lowercase__ = None ): if arr is None and size is not None: snake_case_ : str = size snake_case_ : Optional[Any] = [0] * size elif arr is not None: self.init(lowercase__ ) else: raise ValueError("""Either arr or size must be specified""" ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Optional[Any] = len(lowercase__ ) snake_case_ : int = deepcopy(lowercase__ ) for i in range(1 , self.size ): snake_case_ : Optional[Any] = self.next_(lowercase__ ) if j < self.size: self.tree[j] += self.tree[i] def __UpperCamelCase (self ): snake_case_ : Dict = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): snake_case_ : Optional[int] = self.next_(lowercase__ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def __UpperCamelCase (lowercase__ ): return index + (index & (-index)) @staticmethod def __UpperCamelCase (lowercase__ ): return index - (index & (-index)) def __UpperCamelCase (self , lowercase__ , lowercase__ ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value snake_case_ : Tuple = self.next_(lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): self.add(lowercase__ , value - self.get(lowercase__ ) ) def __UpperCamelCase (self , lowercase__ ): if right == 0: return 0 snake_case_ : List[str] = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] snake_case_ : Optional[int] = self.prev(lowercase__ ) return result def __UpperCamelCase (self , lowercase__ , lowercase__ ): return self.prefix(lowercase__ ) - self.prefix(lowercase__ ) def __UpperCamelCase (self , lowercase__ ): return self.query(lowercase__ , index + 1 ) def __UpperCamelCase (self , lowercase__ ): value -= self.tree[0] if value < 0: return -1 snake_case_ : Tuple = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 snake_case_ : Tuple = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
48
1
"""simple docstring""" import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : Dict = VQModel _A : Union[str, Any] = """sample""" @property def __UpperCamelCase (self , lowercase__=(32, 32) ): snake_case_ : int = 4 snake_case_ : Union[str, Any] = 3 snake_case_ : Optional[int] = floats_tensor((batch_size, num_channels) + sizes ).to(lowercase__ ) return {"sample": image} @property def __UpperCamelCase (self ): return (3, 32, 32) @property def __UpperCamelCase (self ): return (3, 32, 32) def __UpperCamelCase (self ): snake_case_ : List[Any] = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 3, } snake_case_ : Union[str, Any] = self.dummy_input return init_dict, inputs_dict def __UpperCamelCase (self ): pass def __UpperCamelCase (self ): pass def __UpperCamelCase (self ): snake_case_ , snake_case_ : int = VQModel.from_pretrained("""fusing/vqgan-dummy""" , output_loading_info=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(lowercase__ ) snake_case_ : Union[str, Any] = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def __UpperCamelCase (self ): snake_case_ : Optional[int] = VQModel.from_pretrained("""fusing/vqgan-dummy""" ) model.to(lowercase__ ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) snake_case_ : int = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) snake_case_ : str = image.to(lowercase__ ) with torch.no_grad(): snake_case_ : Dict = model(lowercase__ ).sample snake_case_ : int = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off snake_case_ : int = torch.tensor([-0.0153, -0.4044, -0.1880, -0.5161, -0.2418, -0.4072, -0.1612, -0.0633, -0.0143] ) # fmt: on self.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3 ) )
48
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : list ): """simple docstring""" snake_case_ : Optional[int] = len(SCREAMING_SNAKE_CASE__ ) for i in range(1 , SCREAMING_SNAKE_CASE__ ): snake_case_ : Tuple = collection[i] snake_case_ : Tuple = 0 snake_case_ : str = i - 1 while low <= high: snake_case_ : Optional[int] = (low + high) // 2 if val < collection[mid]: snake_case_ : List[str] = mid - 1 else: snake_case_ : str = mid + 1 for j in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , -1 ): snake_case_ : List[str] = collection[j - 1] snake_case_ : Any = val return collection if __name__ == "__main__": a_ = input('''Enter numbers separated by a comma:\n''').strip() a_ = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
48
1
"""simple docstring""" import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''} a_ = { '''vocab_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''', }, '''emoji_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''', }, } a_ = { '''abeja/gpt-neox-japanese-2.7b''': 2048, } def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" with open(SCREAMING_SNAKE_CASE__ , """r""" , encoding="""utf-8""" ) as f: snake_case_ : int = json.loads(f.read() ) snake_case_ : int = collections.OrderedDict() snake_case_ : Optional[int] = collections.OrderedDict() snake_case_ : int = collections.OrderedDict() with open(SCREAMING_SNAKE_CASE__ , """r""" , encoding="""utf-8""" ) as f: snake_case_ : Optional[Any] = f.readlines() snake_case_ : Any = [[t.rstrip("""\n""" )] if (t == """,""" or """,""" not in t) else t.rstrip("""\n""" ).split(""",""" ) for t in token] for idx, b in enumerate(SCREAMING_SNAKE_CASE__ ): snake_case_ : Dict = b snake_case_ : List[Any] = idx for wd in b: snake_case_ : Optional[Any] = idx return vocab, raw_vocab, ids_to_tokens, emoji class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : int = VOCAB_FILES_NAMES _A : int = PRETRAINED_VOCAB_FILES_MAP _A : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : List[Any] = ["""input_ids""", """attention_mask"""] def __init__(self , lowercase__ , lowercase__ , lowercase__="<|endoftext|>" , lowercase__="<|endoftext|>" , lowercase__="<|startoftext|>" , lowercase__="<|endoftext|>" , lowercase__=False , **lowercase__ , ): super().__init__( unk_token=lowercase__ , pad_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , do_clean_text=lowercase__ , **lowercase__ , ) if not os.path.isfile(lowercase__ ): raise ValueError( f'Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained' """ model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" ) if not os.path.isfile(lowercase__ ): raise ValueError( f'Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google' """ pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" ) snake_case_ : Optional[int] = do_clean_text snake_case_ , snake_case_ , snake_case_ , snake_case_ : Union[str, Any] = load_vocab_and_emoji(lowercase__ , lowercase__ ) snake_case_ : Tuple = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def __UpperCamelCase (self ): # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def __UpperCamelCase (self ): return dict(self.raw_vocab , **self.added_tokens_encoder ) def __UpperCamelCase (self , lowercase__ ): return self.subword_tokenizer.tokenize(lowercase__ , clean=self.do_clean_text ) def __UpperCamelCase (self , lowercase__ ): return self.vocab.get(lowercase__ , self.vocab.get(self.unk_token ) ) def __UpperCamelCase (self , lowercase__ ): return self.subword_tokenizer.convert_id_to_token(lowercase__ ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Union[str, Any] = """""".join(lowercase__ ).strip() return out_string def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase__ , add_special_tokens=lowercase__ ) + [self.eos_token_id] ) if len(lowercase__ ) > self.model_max_length: snake_case_ : Dict = input_ids[-self.model_max_length :] return input_ids def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): snake_case_ : int = 0 if os.path.isdir(lowercase__ ): snake_case_ : Optional[int] = os.path.join( lowercase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case_ : Tuple = os.path.join( lowercase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""emoji_file"""] ) else: snake_case_ : Optional[Any] = ( (filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case_ : Union[str, Any] = ( (filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""emoji_file"""] ) with open(lowercase__ , """w""" , encoding="""utf-8""" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' """ Please check that the vocabulary is not corrupted!""" ) snake_case_ : int = token_index writer.write(""",""".join(lowercase__ ) + """\n""" ) index += 1 with open(lowercase__ , """w""" , encoding="""utf-8""" ) as writer: json.dump(self.emoji , lowercase__ ) return vocab_file, emoji_file class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : int = vocab # same as swe snake_case_ : Tuple = ids_to_tokens # same as bpe snake_case_ : Any = emoji snake_case_ : Any = np.max([len(lowercase__ ) for w in self.vocab.keys()] ) snake_case_ : Optional[int] = re.compile(R"""(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)""" ) snake_case_ : Dict = re.compile(R"""[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*""" ) snake_case_ : Optional[Any] = re.compile(R"""[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}""" ) snake_case_ : Union[str, Any] = re.compile( R"""([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" ) snake_case_ : List[Any] = re.compile( R"""(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" ) snake_case_ : str = re.compile( R"""((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*""" ) snake_case_ : int = """─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿""" snake_case_ : str = """▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟""" snake_case_ : Any = str.maketrans({k: """<BLOCK>""" for k in keisen + blocks} ) def __len__(self ): return len(self.ids_to_tokens ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Any = self.content_repattera.sub("""<URL>""" , lowercase__ ) snake_case_ : Tuple = self.content_repattera.sub("""<EMAIL>""" , lowercase__ ) snake_case_ : Union[str, Any] = self.content_repattera.sub("""<TEL>""" , lowercase__ ) snake_case_ : Dict = self.content_repattera.sub("""<DATE>""" , lowercase__ ) snake_case_ : Tuple = self.content_repattera.sub("""<DATE>""" , lowercase__ ) snake_case_ : Tuple = self.content_repattera.sub("""<PRICE>""" , lowercase__ ) snake_case_ : Optional[Any] = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: snake_case_ : Tuple = content.replace("""<BLOCK><BLOCK>""" , """<BLOCK>""" ) return content def __UpperCamelCase (self , lowercase__ , lowercase__=False ): snake_case_ : Optional[int] = text.replace(""" """ , """<SP>""" ) snake_case_ : Optional[int] = text.replace(""" """ , """<SP>""" ) snake_case_ : Any = text.replace("""\r\n""" , """<BR>""" ) snake_case_ : Dict = text.replace("""\n""" , """<BR>""" ) snake_case_ : Optional[Any] = text.replace("""\r""" , """<BR>""" ) snake_case_ : Optional[Any] = text.replace("""\t""" , """<TAB>""" ) snake_case_ : List[str] = text.replace("""—""" , """ー""" ) snake_case_ : Union[str, Any] = text.replace("""−""" , """ー""" ) for k, v in self.emoji["emoji"].items(): if k in text: snake_case_ : Union[str, Any] = text.replace(lowercase__ , lowercase__ ) if clean: snake_case_ : Optional[Any] = self.clean_text(lowercase__ ) def check_simbol(lowercase__ ): snake_case_ : int = x.encode() if len(lowercase__ ) == 1 and len(lowercase__ ) == 2: snake_case_ : Tuple = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0Xc_2_a_1 and c <= 0Xc_2_b_f) or (c >= 0Xc_7_8_0 and c <= 0Xc_7_8_3) or (c >= 0Xc_a_b_9 and c <= 0Xc_b_b_f) or (c >= 0Xc_c_8_0 and c <= 0Xc_d_a_2) ): return True return False def checkuae(lowercase__ ): snake_case_ : int = x.encode() if len(lowercase__ ) == 1 and len(lowercase__ ) == 3: snake_case_ : Union[str, Any] = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0Xe_2_8_0_8_0 and c <= 0Xe_2_b_0_7_f: return True return False snake_case_ : Optional[Any] = 0 snake_case_ : List[str] = [] while pos < len(lowercase__ ): snake_case_ : Tuple = min(len(lowercase__ ) , pos + self.maxlen + 1 ) if text[pos] == """<""" else pos + 3 snake_case_ : Optional[Any] = [] # (token_id, token, pos) for e in range(lowercase__ , lowercase__ , -1 ): snake_case_ : str = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(lowercase__ ) > 2: snake_case_ : Optional[Any] = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(lowercase__ ) > 0: # the smallest token_id is adopted snake_case_ , snake_case_ , snake_case_ : Optional[int] = sorted(lowercase__ , key=lambda lowercase__ : x[0] )[0] result.append(lowercase__ ) snake_case_ : Union[str, Any] = e else: snake_case_ : Optional[Any] = pos + 1 snake_case_ : Tuple = text[pos:end] if check_simbol(lowercase__ ): result.append("""<KIGOU>""" ) elif checkuae(lowercase__ ): result.append("""<U2000U2BFF>""" ) else: for i in wd.encode("""utf-8""" ): result.append("""<|byte%d|>""" % i ) snake_case_ : Tuple = end return result def __UpperCamelCase (self , lowercase__ , lowercase__="\n" ): snake_case_ : Optional[Any] = [] snake_case_ : Optional[Any] = [] snake_case_ : Dict = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(lowercase__ ) > 0: words.append(bytearray(lowercase__ ).decode("""utf-8""" , errors="""replace""" ) ) snake_case_ : Tuple = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["""emoji_inv"""][word] ) elif word == "<SP>": words.append(""" """ ) elif word == "<BR>": words.append(lowercase__ ) elif word == "<TAB>": words.append("""\t""" ) elif word == "<BLOCK>": words.append("""▀""" ) elif word == "<KIGOU>": words.append("""ǀ""" ) elif word == "<U2000U2BFF>": words.append("""‖""" ) else: words.append(lowercase__ ) if len(lowercase__ ) > 0: words.append(bytearray(lowercase__ ).decode("""utf-8""" , errors="""replace""" ) ) snake_case_ : str = """""".join(lowercase__ ) return text
48
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Union[str, Any] = ["""image_processor""", """tokenizer"""] _A : str = """ChineseCLIPImageProcessor""" _A : Tuple = ("""BertTokenizer""", """BertTokenizerFast""") def __init__(self , lowercase__=None , lowercase__=None , **lowercase__ ): snake_case_ : Any = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowercase__ , ) snake_case_ : Optional[Any] = kwargs.pop("""feature_extractor""" ) snake_case_ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowercase__ , lowercase__ ) snake_case_ : Union[str, Any] = self.image_processor def __call__(self , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ ): if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: snake_case_ : Any = self.tokenizer(lowercase__ , return_tensors=lowercase__ , **lowercase__ ) if images is not None: snake_case_ : Tuple = self.image_processor(lowercase__ , return_tensors=lowercase__ , **lowercase__ ) if text is not None and images is not None: snake_case_ : List[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase__ ) , tensor_type=lowercase__ ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): return self.tokenizer.batch_decode(*lowercase__ , **lowercase__ ) def __UpperCamelCase (self , *lowercase__ , **lowercase__ ): return self.tokenizer.decode(*lowercase__ , **lowercase__ ) @property def __UpperCamelCase (self ): snake_case_ : Optional[int] = self.tokenizer.model_input_names snake_case_ : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __UpperCamelCase (self ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowercase__ , ) return self.image_processor_class
48
1
"""simple docstring""" import random def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : bool = False ): """simple docstring""" snake_case_ : dict = {i: [] for i in range(SCREAMING_SNAKE_CASE__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(SCREAMING_SNAKE_CASE__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(i + 1 , SCREAMING_SNAKE_CASE__ ): if random.random() < probability: graph[i].append(SCREAMING_SNAKE_CASE__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(SCREAMING_SNAKE_CASE__ ) return graph def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" return { i: [j for j in range(SCREAMING_SNAKE_CASE__ ) if i != j] for i in range(SCREAMING_SNAKE_CASE__ ) } if __name__ == "__main__": import doctest doctest.testmod()
48
"""simple docstring""" import argparse import copy def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" snake_case_ : List[Any] = {} with open(SCREAMING_SNAKE_CASE__ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: snake_case_ : int = [] _list.append([line.split()[1], line.split()[2]] ) snake_case_ : Optional[Any] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: snake_case_ : str = [] _list.append([line.split()[0], line.split()[2]] ) snake_case_ : Optional[Any] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" with open(SCREAMING_SNAKE_CASE__ ) as f: snake_case_ : Optional[Any] = f.read(1 ) snake_case_ : Union[str, Any] = start_node snake_case_ : Dict = [] snake_case_ : Union[str, Any] = start_node snake_case_ : Tuple = 0 while visiting not in first_solution: snake_case_ : int = 1_0_0_0_0 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(SCREAMING_SNAKE_CASE__ ) and k[0] not in first_solution: snake_case_ : Union[str, Any] = k[1] snake_case_ : Any = k[0] first_solution.append(SCREAMING_SNAKE_CASE__ ) snake_case_ : Tuple = distance_of_first_solution + int(SCREAMING_SNAKE_CASE__ ) snake_case_ : List[str] = best_node first_solution.append(SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[Any] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 snake_case_ : int = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0_0_0_0 ) return first_solution, distance_of_first_solution def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" snake_case_ : Union[str, Any] = [] for n in solution[1:-1]: snake_case_ : str = solution.index(SCREAMING_SNAKE_CASE__ ) for kn in solution[1:-1]: snake_case_ : Tuple = solution.index(SCREAMING_SNAKE_CASE__ ) if n == kn: continue snake_case_ : Optional[Any] = copy.deepcopy(SCREAMING_SNAKE_CASE__ ) snake_case_ : int = kn snake_case_ : Dict = n snake_case_ : Optional[int] = 0 for k in _tmp[:-1]: snake_case_ : Dict = _tmp[_tmp.index(SCREAMING_SNAKE_CASE__ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: snake_case_ : Dict = distance + int(i[1] ) _tmp.append(SCREAMING_SNAKE_CASE__ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) snake_case_ : Optional[Any] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda SCREAMING_SNAKE_CASE__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] ): """simple docstring""" snake_case_ : Dict = 1 snake_case_ : List[Any] = first_solution snake_case_ : List[Any] = [] snake_case_ : Optional[Any] = distance_of_first_solution snake_case_ : Dict = solution while count <= iters: snake_case_ : List[str] = find_neighborhood(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : List[Any] = 0 snake_case_ : List[Any] = neighborhood[index_of_best_solution] snake_case_ : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ ) - 1 snake_case_ : List[str] = False while not found: snake_case_ : Tuple = 0 while i < len(SCREAMING_SNAKE_CASE__ ): if best_solution[i] != solution[i]: snake_case_ : Optional[Any] = best_solution[i] snake_case_ : int = solution[i] break snake_case_ : List[str] = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) snake_case_ : Tuple = True snake_case_ : Dict = best_solution[:-1] snake_case_ : Tuple = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: snake_case_ : Tuple = cost snake_case_ : Union[str, Any] = solution else: snake_case_ : str = index_of_best_solution + 1 snake_case_ : Tuple = neighborhood[index_of_best_solution] if len(SCREAMING_SNAKE_CASE__ ) >= size: tabu_list.pop(0 ) snake_case_ : List[str] = count + 1 return best_solution_ever, best_cost def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any]=None ): """simple docstring""" snake_case_ : Tuple = generate_neighbours(args.File ) snake_case_ , snake_case_ : Optional[Any] = generate_first_solution( args.File , SCREAMING_SNAKE_CASE__ ) snake_case_ , snake_case_ : Dict = tabu_search( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , args.Iterations , args.Size , ) print(f'Best solution: {best_sol}, with total distance: {best_cost}.' ) if __name__ == "__main__": a_ = argparse.ArgumentParser(description='''Tabu Search''') parser.add_argument( '''-f''', '''--File''', type=str, help='''Path to the file containing the data''', required=True, ) parser.add_argument( '''-i''', '''--Iterations''', type=int, help='''How many iterations the algorithm should perform''', required=True, ) parser.add_argument( '''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True ) # Pass the arguments to main method main(parser.parse_args())
48
1
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a_ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') a_ = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) a_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowercase : """simple docstring""" _A : Optional[str] = field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""}) _A : Optional[str] = field( default=_UpperCAmelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""}) _A : Optional[str] = field( default=_UpperCAmelCase , metadata={"""help""": """The column name of the images in the files. If not set, will try to use 'image' or 'img'."""} , ) _A : Optional[str] = field(default=_UpperCAmelCase , metadata={"""help""": """A folder containing the training data."""}) _A : Optional[str] = field(default=_UpperCAmelCase , metadata={"""help""": """A folder containing the validation data."""}) _A : Optional[float] = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""}) _A : int = field(default=32 , metadata={"""help""": """The size of the square patches to use for masking."""}) _A : float = field( default=0.6 , metadata={"""help""": """Percentage of patches to mask."""} , ) _A : Optional[int] = field( default=_UpperCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) _A : Optional[int] = field( default=_UpperCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def __UpperCamelCase (self ): snake_case_ : Any = {} if self.train_dir is not None: snake_case_ : Any = self.train_dir if self.validation_dir is not None: snake_case_ : Tuple = self.validation_dir snake_case_ : int = data_files if data_files else None @dataclass class __lowercase : """simple docstring""" _A : str = field( default=_UpperCAmelCase , metadata={ """help""": ( """The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a """ """checkpoint identifier on the hub. """ """Don't set if you want to train a model from scratch.""" ) } , ) _A : Optional[str] = field( default=_UpperCAmelCase , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(_UpperCAmelCase)} , ) _A : Optional[str] = field( default=_UpperCAmelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""}) _A : Optional[str] = field( default=_UpperCAmelCase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) _A : Optional[str] = field( default=_UpperCAmelCase , metadata={"""help""": """Where do you want to store (cache) the pretrained models/datasets downloaded from the hub"""} , ) _A : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) _A : str = field(default=_UpperCAmelCase , metadata={"""help""": """Name or path of preprocessor config."""}) _A : bool = field( default=_UpperCAmelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) _A : Optional[int] = field( default=_UpperCAmelCase , metadata={ """help""": ( """The size (resolution) of each image. If not specified, will use `image_size` of the configuration.""" ) } , ) _A : Optional[int] = field( default=_UpperCAmelCase , metadata={ """help""": ( """The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.""" ) } , ) _A : Optional[int] = field( default=_UpperCAmelCase , metadata={"""help""": """Stride to use for the encoder."""} , ) class __lowercase : """simple docstring""" def __init__(self , lowercase__=1_92 , lowercase__=32 , lowercase__=4 , lowercase__=0.6 ): snake_case_ : Optional[Any] = input_size snake_case_ : List[Any] = mask_patch_size snake_case_ : Tuple = model_patch_size snake_case_ : Dict = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError("""Input size must be divisible by mask patch size""" ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError("""Mask patch size must be divisible by model patch size""" ) snake_case_ : List[Any] = self.input_size // self.mask_patch_size snake_case_ : List[str] = self.mask_patch_size // self.model_patch_size snake_case_ : Optional[int] = self.rand_size**2 snake_case_ : Union[str, Any] = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__(self ): snake_case_ : Optional[int] = np.random.permutation(self.token_count )[: self.mask_count] snake_case_ : Optional[Any] = np.zeros(self.token_count , dtype=lowercase__ ) snake_case_ : Optional[Any] = 1 snake_case_ : Any = mask.reshape((self.rand_size, self.rand_size) ) snake_case_ : List[Any] = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict ): """simple docstring""" snake_case_ : Any = torch.stack([example["""pixel_values"""] for example in examples] ) snake_case_ : Optional[int] = torch.stack([example["""mask"""] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case_ , snake_case_ , snake_case_ : Tuple = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case_ , snake_case_ , snake_case_ : List[Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mim""" , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() snake_case_ : Optional[int] = training_args.get_process_log_level() logger.setLevel(SCREAMING_SNAKE_CASE__ ) transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. snake_case_ : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case_ : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. snake_case_ : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. snake_case_ : int = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , SCREAMING_SNAKE_CASE__ ) and data_args.train_val_split > 0.0: snake_case_ : List[Any] = ds["""train"""].train_test_split(data_args.train_val_split ) snake_case_ : List[str] = split["""train"""] snake_case_ : List[str] = split["""test"""] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ : Dict = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name_or_path: snake_case_ : str = AutoConfig.from_pretrained(model_args.config_name_or_path , **SCREAMING_SNAKE_CASE__ ) elif model_args.model_name_or_path: snake_case_ : str = AutoConfig.from_pretrained(model_args.model_name_or_path , **SCREAMING_SNAKE_CASE__ ) else: snake_case_ : Dict = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(f'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(f'New config: {config}' ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(SCREAMING_SNAKE_CASE__ , """decoder_type""" ): snake_case_ : str = """simmim""" # adapt config snake_case_ : Tuple = model_args.image_size if model_args.image_size is not None else config.image_size snake_case_ : str = model_args.patch_size if model_args.patch_size is not None else config.patch_size snake_case_ : List[Any] = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { """image_size""": model_args.image_size, """patch_size""": model_args.patch_size, """encoder_stride""": model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: snake_case_ : Union[str, Any] = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **SCREAMING_SNAKE_CASE__ ) elif model_args.model_name_or_path: snake_case_ : Optional[Any] = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **SCREAMING_SNAKE_CASE__ ) else: snake_case_ : str = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } snake_case_ : Tuple = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: snake_case_ : List[Any] = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) snake_case_ : Optional[int] = AutoModelForMaskedImageModeling.from_config(SCREAMING_SNAKE_CASE__ ) if training_args.do_train: snake_case_ : str = ds["""train"""].column_names else: snake_case_ : Union[str, Any] = ds["""validation"""].column_names if data_args.image_column_name is not None: snake_case_ : Any = data_args.image_column_name elif "image" in column_names: snake_case_ : str = """image""" elif "img" in column_names: snake_case_ : Dict = """img""" else: snake_case_ : Optional[int] = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py snake_case_ : List[str] = Compose( [ Lambda(lambda SCREAMING_SNAKE_CASE__ : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator snake_case_ : Any = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(SCREAMING_SNAKE_CASE__ : List[Any] ): snake_case_ : List[str] = [transforms(SCREAMING_SNAKE_CASE__ ) for image in examples[image_column_name]] snake_case_ : Any = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: snake_case_ : Optional[int] = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(SCREAMING_SNAKE_CASE__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: snake_case_ : Union[str, Any] = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(SCREAMING_SNAKE_CASE__ ) # Initialize our trainer snake_case_ : Tuple = Trainer( model=SCREAMING_SNAKE_CASE__ , args=SCREAMING_SNAKE_CASE__ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=SCREAMING_SNAKE_CASE__ , data_collator=SCREAMING_SNAKE_CASE__ , ) # Training if training_args.do_train: snake_case_ : Any = None if training_args.resume_from_checkpoint is not None: snake_case_ : str = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case_ : int = last_checkpoint snake_case_ : List[Any] = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: snake_case_ : List[Any] = trainer.evaluate() trainer.log_metrics("""eval""" , SCREAMING_SNAKE_CASE__ ) trainer.save_metrics("""eval""" , SCREAMING_SNAKE_CASE__ ) # Write model card and (optionally) push to hub snake_case_ : Optional[Any] = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """masked-image-modeling""", """dataset""": data_args.dataset_name, """tags""": ["""masked-image-modeling"""], } if training_args.push_to_hub: trainer.push_to_hub(**SCREAMING_SNAKE_CASE__ ) else: trainer.create_model_card(**SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
48
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings a_ = r''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(_UpperCAmelCase) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """rag""" _A : Optional[Any] = True def __init__(self , lowercase__=None , lowercase__=True , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=" / " , lowercase__=" // " , lowercase__=5 , lowercase__=3_00 , lowercase__=7_68 , lowercase__=8 , lowercase__="wiki_dpr" , lowercase__="train" , lowercase__="compressed" , lowercase__=None , lowercase__=None , lowercase__=False , lowercase__=False , lowercase__=0.0 , lowercase__=True , lowercase__=False , lowercase__=False , lowercase__=False , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__( bos_token_id=lowercase__ , pad_token_id=lowercase__ , eos_token_id=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , prefix=lowercase__ , vocab_size=lowercase__ , **lowercase__ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" snake_case_ : List[Any] = kwargs.pop("""question_encoder""" ) snake_case_ : Tuple = question_encoder_config.pop("""model_type""" ) snake_case_ : List[str] = kwargs.pop("""generator""" ) snake_case_ : List[str] = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig snake_case_ : List[str] = AutoConfig.for_model(lowercase__ , **lowercase__ ) snake_case_ : Tuple = AutoConfig.for_model(lowercase__ , **lowercase__ ) snake_case_ : int = reduce_loss snake_case_ : Optional[int] = label_smoothing snake_case_ : Dict = exclude_bos_score snake_case_ : Union[str, Any] = do_marginalize snake_case_ : Union[str, Any] = title_sep snake_case_ : int = doc_sep snake_case_ : int = n_docs snake_case_ : List[str] = max_combined_length snake_case_ : Tuple = dataset snake_case_ : int = dataset_split snake_case_ : str = index_name snake_case_ : List[str] = retrieval_vector_size snake_case_ : Dict = retrieval_batch_size snake_case_ : str = passages_path snake_case_ : Union[str, Any] = index_path snake_case_ : Tuple = use_dummy_dataset snake_case_ : Dict = output_retrieved snake_case_ : str = do_deduplication snake_case_ : Any = use_cache if self.forced_eos_token_id is None: snake_case_ : Any = getattr(self.generator , """forced_eos_token_id""" , lowercase__ ) @classmethod def __UpperCamelCase (cls , lowercase__ , lowercase__ , **lowercase__ ): return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Optional[Any] = copy.deepcopy(self.__dict__ ) snake_case_ : Any = self.question_encoder.to_dict() snake_case_ : Dict = self.generator.to_dict() snake_case_ : Union[str, Any] = self.__class__.model_type return output
48
1
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device a_ = False class __lowercase ( unittest.TestCase): """simple docstring""" pass @slow @require_torch_gpu class __lowercase ( unittest.TestCase): """simple docstring""" def __UpperCamelCase (self ): snake_case_ : Dict = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) snake_case_ : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) snake_case_ : Dict = torch.manual_seed(0 ) snake_case_ : Union[str, Any] = pipe( image=lowercase__ , generator=lowercase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images snake_case_ : str = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) snake_case_ : Any = np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
48
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING a_ = logging.get_logger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """upernet""" def __init__(self , lowercase__=None , lowercase__=5_12 , lowercase__=0.02 , lowercase__=[1, 2, 3, 6] , lowercase__=True , lowercase__=0.4 , lowercase__=3_84 , lowercase__=2_56 , lowercase__=1 , lowercase__=False , lowercase__=2_55 , **lowercase__ , ): super().__init__(**lowercase__ ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) snake_case_ : List[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(lowercase__ , lowercase__ ): snake_case_ : Tuple = backbone_config.get("""model_type""" ) snake_case_ : List[str] = CONFIG_MAPPING[backbone_model_type] snake_case_ : List[Any] = config_class.from_dict(lowercase__ ) snake_case_ : List[Any] = backbone_config snake_case_ : Optional[Any] = hidden_size snake_case_ : Any = initializer_range snake_case_ : str = pool_scales snake_case_ : Dict = use_auxiliary_head snake_case_ : str = auxiliary_loss_weight snake_case_ : List[str] = auxiliary_in_channels snake_case_ : Optional[Any] = auxiliary_channels snake_case_ : Any = auxiliary_num_convs snake_case_ : List[Any] = auxiliary_concat_input snake_case_ : List[str] = loss_ignore_index def __UpperCamelCase (self ): snake_case_ : Dict = copy.deepcopy(self.__dict__ ) snake_case_ : Union[str, Any] = self.backbone_config.to_dict() snake_case_ : Any = self.__class__.model_type return output
48
1
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : List[str] = [] snake_case_ : int = 1 while len(SCREAMING_SNAKE_CASE__ ) < 1E6: constant.append(str(SCREAMING_SNAKE_CASE__ ) ) i += 1 snake_case_ : str = """""".join(SCREAMING_SNAKE_CASE__ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[9_9] ) * int(constant[9_9_9] ) * int(constant[9_9_9_9] ) * int(constant[9_9_9_9_9] ) * int(constant[9_9_9_9_9_9] ) ) if __name__ == "__main__": print(solution())
48
"""simple docstring""" import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask a_ = logging.getLogger(__name__) class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self , lowercase__=-1 ): # in NER datasets, the last column is usually reserved for NER label snake_case_ : Union[str, Any] = label_idx def __UpperCamelCase (self , lowercase__ , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): snake_case_ : List[str] = mode.value snake_case_ : List[Any] = os.path.join(lowercase__ , f'{mode}.txt' ) snake_case_ : Tuple = 1 snake_case_ : Any = [] with open(lowercase__ , encoding="""utf-8""" ) as f: snake_case_ : str = [] snake_case_ : List[Any] = [] for line in f: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) guid_index += 1 snake_case_ : Optional[Any] = [] snake_case_ : int = [] else: snake_case_ : Optional[Any] = line.split(""" """ ) words.append(splits[0] ) if len(lowercase__ ) > 1: labels.append(splits[self.label_idx].replace("""\n""" , """""" ) ) else: # Examples could have no label for mode = "test" labels.append("""O""" ) if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) return examples def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : str = 0 for line in test_input_reader: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": writer.write(lowercase__ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: snake_case_ : Optional[int] = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n""" writer.write(lowercase__ ) else: logger.warning("""Maximum sequence length exceeded: No prediction for '%s'.""" , line.split()[0] ) def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: snake_case_ : Dict = f.read().splitlines() if "O" not in labels: snake_case_ : List[Any] = ["""O"""] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __lowercase ( _UpperCAmelCase): """simple docstring""" def __init__(self ): # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: snake_case_ : Any = f.read().splitlines() if "O" not in labels: snake_case_ : Tuple = ["""O"""] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __lowercase ( _UpperCAmelCase): """simple docstring""" def __UpperCamelCase (self , lowercase__ , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): snake_case_ : List[Any] = mode.value snake_case_ : Optional[int] = os.path.join(lowercase__ , f'{mode}.txt' ) snake_case_ : Tuple = 1 snake_case_ : str = [] with open(lowercase__ , encoding="""utf-8""" ) as f: for sentence in parse_incr(lowercase__ ): snake_case_ : Tuple = [] snake_case_ : Any = [] for token in sentence: words.append(token["""form"""] ) labels.append(token["""upos"""] ) assert len(lowercase__ ) == len(lowercase__ ) if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) guid_index += 1 return examples def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : Dict = 0 for sentence in parse_incr(lowercase__ ): snake_case_ : int = preds_list[example_id] snake_case_ : Dict = """""" for token in sentence: out += f'{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) ' out += "\n" writer.write(lowercase__ ) example_id += 1 def __UpperCamelCase (self , lowercase__ ): if path: with open(lowercase__ , """r""" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
48
1
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" snake_case_ : Dict = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : List[Any] = 0 while b > 0: if b & 1: snake_case_ : Union[str, Any] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
48
"""simple docstring""" import random def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" snake_case_ : Union[str, Any] = num - 1 snake_case_ : List[str] = 0 while s % 2 == 0: snake_case_ : str = s // 2 t += 1 for _ in range(5 ): snake_case_ : List[Any] = random.randrange(2 , num - 1 ) snake_case_ : Dict = pow(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if v != 1: snake_case_ : int = 0 while v != (num - 1): if i == t - 1: return False else: snake_case_ : str = i + 1 snake_case_ : int = (v**2) % num return True def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" if num < 2: return False snake_case_ : Dict = [ 2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1, 4_3, 4_7, 5_3, 5_9, 6_1, 6_7, 7_1, 7_3, 7_9, 8_3, 8_9, 9_7, 1_0_1, 1_0_3, 1_0_7, 1_0_9, 1_1_3, 1_2_7, 1_3_1, 1_3_7, 1_3_9, 1_4_9, 1_5_1, 1_5_7, 1_6_3, 1_6_7, 1_7_3, 1_7_9, 1_8_1, 1_9_1, 1_9_3, 1_9_7, 1_9_9, 2_1_1, 2_2_3, 2_2_7, 2_2_9, 2_3_3, 2_3_9, 2_4_1, 2_5_1, 2_5_7, 2_6_3, 2_6_9, 2_7_1, 2_7_7, 2_8_1, 2_8_3, 2_9_3, 3_0_7, 3_1_1, 3_1_3, 3_1_7, 3_3_1, 3_3_7, 3_4_7, 3_4_9, 3_5_3, 3_5_9, 3_6_7, 3_7_3, 3_7_9, 3_8_3, 3_8_9, 3_9_7, 4_0_1, 4_0_9, 4_1_9, 4_2_1, 4_3_1, 4_3_3, 4_3_9, 4_4_3, 4_4_9, 4_5_7, 4_6_1, 4_6_3, 4_6_7, 4_7_9, 4_8_7, 4_9_1, 4_9_9, 5_0_3, 5_0_9, 5_2_1, 5_2_3, 5_4_1, 5_4_7, 5_5_7, 5_6_3, 5_6_9, 5_7_1, 5_7_7, 5_8_7, 5_9_3, 5_9_9, 6_0_1, 6_0_7, 6_1_3, 6_1_7, 6_1_9, 6_3_1, 6_4_1, 6_4_3, 6_4_7, 6_5_3, 6_5_9, 6_6_1, 6_7_3, 6_7_7, 6_8_3, 6_9_1, 7_0_1, 7_0_9, 7_1_9, 7_2_7, 7_3_3, 7_3_9, 7_4_3, 7_5_1, 7_5_7, 7_6_1, 7_6_9, 7_7_3, 7_8_7, 7_9_7, 8_0_9, 8_1_1, 8_2_1, 8_2_3, 8_2_7, 8_2_9, 8_3_9, 8_5_3, 8_5_7, 8_5_9, 8_6_3, 8_7_7, 8_8_1, 8_8_3, 8_8_7, 9_0_7, 9_1_1, 9_1_9, 9_2_9, 9_3_7, 9_4_1, 9_4_7, 9_5_3, 9_6_7, 9_7_1, 9_7_7, 9_8_3, 9_9_1, 9_9_7, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int = 1_0_2_4 ): """simple docstring""" while True: snake_case_ : Tuple = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(SCREAMING_SNAKE_CASE__ ): return num if __name__ == "__main__": a_ = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
48
1
"""simple docstring""" import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : int = StableUnCLIPPipeline _A : Union[str, Any] = TEXT_TO_IMAGE_PARAMS _A : Any = TEXT_TO_IMAGE_BATCH_PARAMS _A : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS _A : Any = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false _A : Optional[Any] = False def __UpperCamelCase (self ): snake_case_ : List[str] = 32 snake_case_ : List[str] = embedder_hidden_size # prior components torch.manual_seed(0 ) snake_case_ : Optional[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) snake_case_ : Union[str, Any] = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase__ , projection_dim=lowercase__ , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) snake_case_ : Union[str, Any] = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase__ , num_layers=1 , ) torch.manual_seed(0 ) snake_case_ : List[Any] = DDPMScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=10_00 , clip_sample=lowercase__ , clip_sample_range=5.0 , beta_schedule="""squaredcos_cap_v2""" , ) # regular denoising components torch.manual_seed(0 ) snake_case_ : int = StableUnCLIPImageNormalizer(embedding_dim=lowercase__ ) snake_case_ : List[Any] = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ) torch.manual_seed(0 ) snake_case_ : List[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) snake_case_ : Optional[int] = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) snake_case_ : Union[str, Any] = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase__ , layers_per_block=1 , upcast_attention=lowercase__ , use_linear_projection=lowercase__ , ) torch.manual_seed(0 ) snake_case_ : str = DDIMScheduler( beta_schedule="""scaled_linear""" , beta_start=0.00085 , beta_end=0.012 , prediction_type="""v_prediction""" , set_alpha_to_one=lowercase__ , steps_offset=1 , ) torch.manual_seed(0 ) snake_case_ : List[Any] = AutoencoderKL() snake_case_ : Union[str, Any] = { # prior components """prior_tokenizer""": prior_tokenizer, """prior_text_encoder""": prior_text_encoder, """prior""": prior, """prior_scheduler""": prior_scheduler, # image noising components """image_normalizer""": image_normalizer, """image_noising_scheduler""": image_noising_scheduler, # regular denoising components """tokenizer""": tokenizer, """text_encoder""": text_encoder, """unet""": unet, """scheduler""": scheduler, """vae""": vae, } return components def __UpperCamelCase (self , lowercase__ , lowercase__=0 ): if str(lowercase__ ).startswith("""mps""" ): snake_case_ : Optional[Any] = torch.manual_seed(lowercase__ ) else: snake_case_ : List[Any] = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) snake_case_ : Dict = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """prior_num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def __UpperCamelCase (self ): snake_case_ : int = torch_device == """cpu""" self._test_attention_slicing_forward_pass(test_max_difference=lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Any = torch_device in ["""cpu""", """mps"""] self._test_inference_batch_single_identical(test_max_difference=lowercase__ ) @slow @require_torch_gpu class __lowercase ( unittest.TestCase): """simple docstring""" def __UpperCamelCase (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase (self ): snake_case_ : Optional[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy""" ) snake_case_ : Dict = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() snake_case_ : int = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case_ : List[str] = pipe("""anime turle""" , generator=lowercase__ , output_type="""np""" ) snake_case_ : Tuple = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowercase__ , lowercase__ ) def __UpperCamelCase (self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case_ : List[Any] = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) snake_case_ : Tuple = pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() snake_case_ : Optional[int] = pipe( """anime turtle""" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="""np""" , ) snake_case_ : Tuple = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
48
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType a_ = logging.get_logger(__name__) a_ = { '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Dict = """deberta-v2""" def __init__(self , lowercase__=12_81_00 , lowercase__=15_36 , lowercase__=24 , lowercase__=24 , lowercase__=61_44 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_12 , lowercase__=0 , lowercase__=0.02 , lowercase__=1e-7 , lowercase__=False , lowercase__=-1 , lowercase__=0 , lowercase__=True , lowercase__=None , lowercase__=0 , lowercase__="gelu" , **lowercase__ , ): super().__init__(**lowercase__ ) snake_case_ : Union[str, Any] = hidden_size snake_case_ : str = num_hidden_layers snake_case_ : Tuple = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : Optional[int] = hidden_act snake_case_ : Union[str, Any] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : List[Any] = max_position_embeddings snake_case_ : Union[str, Any] = type_vocab_size snake_case_ : Union[str, Any] = initializer_range snake_case_ : List[Any] = relative_attention snake_case_ : Dict = max_relative_positions snake_case_ : Optional[int] = pad_token_id snake_case_ : List[str] = position_biased_input # Backwards compatibility if type(lowercase__ ) == str: snake_case_ : Union[str, Any] = [x.strip() for x in pos_att_type.lower().split("""|""" )] snake_case_ : Optional[int] = pos_att_type snake_case_ : List[str] = vocab_size snake_case_ : Tuple = layer_norm_eps snake_case_ : List[Any] = kwargs.get("""pooler_hidden_size""" , lowercase__ ) snake_case_ : List[str] = pooler_dropout snake_case_ : int = pooler_hidden_act class __lowercase ( _UpperCAmelCase): """simple docstring""" @property def __UpperCamelCase (self ): if self.task == "multiple-choice": snake_case_ : List[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case_ : int = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def __UpperCamelCase (self ): return 12 def __UpperCamelCase (self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , lowercase__ = 3 , lowercase__ = 40 , lowercase__ = 40 , lowercase__ = None , ): snake_case_ : str = super().generate_dummy_inputs(preprocessor=lowercase__ , framework=lowercase__ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
48
1
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int=0 ): """simple docstring""" return sorted(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : x[column] ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Any=float("""inf""" ) ): """simple docstring""" for i in range(points_counts - 1 ): for j in range(i + 1 , SCREAMING_SNAKE_CASE__ ): snake_case_ : str = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: snake_case_ : Tuple = current_dis return min_dis def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any]=float("""inf""" ) ): """simple docstring""" for i in range(min(6 , points_counts - 1 ) , SCREAMING_SNAKE_CASE__ ): for j in range(max(0 , i - 6 ) , SCREAMING_SNAKE_CASE__ ): snake_case_ : List[Any] = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: snake_case_ : Union[str, Any] = current_dis return min_dis def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] ): """simple docstring""" if points_counts <= 3: return dis_between_closest_pair(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # recursion snake_case_ : Optional[Any] = points_counts // 2 snake_case_ : Union[str, Any] = closest_pair_of_points_sqr( SCREAMING_SNAKE_CASE__ , points_sorted_on_y[:mid] , SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[int] = closest_pair_of_points_sqr( SCREAMING_SNAKE_CASE__ , points_sorted_on_y[mid:] , points_counts - mid ) snake_case_ : Optional[int] = min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : Dict = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(SCREAMING_SNAKE_CASE__ ) snake_case_ : int = dis_between_closest_in_strip( SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) return min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : Tuple = column_based_sort(SCREAMING_SNAKE_CASE__ , column=0 ) snake_case_ : str = column_based_sort(SCREAMING_SNAKE_CASE__ , column=1 ) return ( closest_pair_of_points_sqr( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) ** 0.5 if __name__ == "__main__": a_ = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print('''Distance:''', closest_pair_of_points(points, len(points)))
48
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
48
1
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Optional[Any] = 0 for i in range(1 , 1_0_0_1 ): total += i**i return str(SCREAMING_SNAKE_CASE__ )[-1_0:] if __name__ == "__main__": print(solution())
48
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('''fixtures/test_sentencepiece.model''') a_ = {'''target_lang''': '''fi''', '''source_lang''': '''en'''} a_ = '''>>zh<<''' a_ = '''Helsinki-NLP/''' if is_torch_available(): a_ = '''pt''' elif is_tf_available(): a_ = '''tf''' else: a_ = '''jax''' @require_sentencepiece class __lowercase ( _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : str = MarianTokenizer _A : List[str] = False _A : List[str] = True def __UpperCamelCase (self ): super().setUp() snake_case_ : Optional[int] = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] snake_case_ : Any = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) snake_case_ : Any = Path(self.tmpdirname ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) snake_case_ : Optional[Any] = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase (self , **lowercase__ ): return MarianTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def __UpperCamelCase (self , lowercase__ ): return ( "This is a test", "This is a test", ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = """</s>""" snake_case_ : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__ ) , lowercase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__ ) , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(lowercase__ ) , 9 ) def __UpperCamelCase (self ): self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def __UpperCamelCase (self ): snake_case_ : Any = MarianTokenizer.from_pretrained(f'{ORG_NAME}opus-mt-en-de' ) snake_case_ : Tuple = en_de_tokenizer(["""I am a small frog"""] , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) snake_case_ : Dict = [38, 1_21, 14, 6_97, 3_88_48, 0] self.assertListEqual(lowercase__ , batch.input_ids[0] ) snake_case_ : Tuple = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(lowercase__ ) snake_case_ : str = [x.name for x in Path(lowercase__ ).glob("""*""" )] self.assertIn("""source.spm""" , lowercase__ ) MarianTokenizer.from_pretrained(lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = self.get_tokenizer() snake_case_ : List[str] = tok( ["""I am a small frog""" * 10_00, """I am a small frog"""] , padding=lowercase__ , truncation=lowercase__ , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(batch.input_ids.shape , (2, 5_12) ) def __UpperCamelCase (self ): snake_case_ : Tuple = self.get_tokenizer() snake_case_ : Tuple = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=lowercase__ , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def __UpperCamelCase (self ): # fmt: off snake_case_ : str = {"""input_ids""": [[4_34_95, 4_62, 20, 4_21_64, 13_69, 52, 4_64, 1_32, 17_03, 4_92, 13, 74_91, 3_89_99, 6, 8, 4_64, 1_32, 17_03, 4_92, 13, 46_69, 3_78_67, 13, 75_25, 27, 15_93, 9_88, 13, 3_39_72, 70_29, 6, 20, 82_51, 3_83, 2, 2_70, 58_66, 37_88, 2, 23_53, 82_51, 1_23_38, 2, 1_39_58, 3_87, 2, 36_29, 69_53, 1_88, 29_00, 2, 1_39_58, 80_11, 1_15_01, 23, 84_60, 40_73, 3_40_09, 20, 4_35, 1_14_39, 27, 8, 84_60, 40_73, 60_04, 20, 99_88, 3_75, 27, 33, 2_66, 19_45, 10_76, 13_50, 3_78_67, 32_88, 5, 5_77, 10_76, 43_74, 8, 50_82, 5, 2_64_53, 2_57, 5_56, 4_03, 2, 2_42, 1_32, 3_83, 3_16, 4_92, 8, 1_07_67, 6, 3_16, 3_04, 42_39, 3, 0], [1_48, 1_57_22, 19, 18_39, 12, 13_50, 13, 2_23_27, 50_82, 54_18, 4_75_67, 3_59_38, 59, 3_18, 1_95_52, 1_08, 21_83, 54, 1_49_76, 48_35, 32, 5_47, 11_14, 8, 3_15, 24_17, 5, 92, 1_90_88, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00], [36, 63_95, 1_25_70, 3_91_47, 1_15_97, 6, 2_66, 4, 4_54_05, 72_96, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase__ , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def __UpperCamelCase (self ): snake_case_ : Any = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) snake_case_ : Dict = """Tämä on testi""" snake_case_ : List[Any] = """This is a test""" snake_case_ : Optional[int] = [76, 7, 20_47, 2] snake_case_ : List[str] = [69, 12, 11, 9_40, 2] snake_case_ : Any = tokenizer(lowercase__ ).input_ids self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : str = tokenizer(text_target=lowercase__ ).input_ids self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : int = tokenizer.decode(lowercase__ , skip_special_tokens=lowercase__ ) self.assertEqual(lowercase__ , lowercase__ )
48
1